1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isNullValue())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOneValue()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnesValue()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                    APInt &Min, APInt &Max) {
104   assert(Known.getBitWidth() == Min.getBitWidth() &&
105          Known.getBitWidth() == Max.getBitWidth() &&
106          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107   APInt UnknownBits = ~(Known.Zero|Known.One);
108 
109   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110   // bit if it is unknown.
111   Min = Known.One;
112   Max = Known.One|UnknownBits;
113 
114   if (UnknownBits.isNegative()) { // Sign bit is unknown
115     Min.setSignBit();
116     Max.clearSignBit();
117   }
118 }
119 
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                      APInt &Min, APInt &Max) {
126   assert(Known.getBitWidth() == Min.getBitWidth() &&
127          Known.getBitWidth() == Max.getBitWidth() &&
128          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129   APInt UnknownBits = ~(Known.Zero|Known.One);
130 
131   // The minimum value is when the unknown bits are all zeros.
132   Min = Known.One;
133   // The maximum value is when the unknown bits are all ones.
134   Max = Known.One|UnknownBits;
135 }
136 
137 /// This is called when we see this pattern:
138 ///   cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142 ///
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                         GlobalVariable *GV,
147                                                         CmpInst &ICI,
148                                                         ConstantInt *AndCst) {
149   Constant *Init = GV->getInitializer();
150   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151     return nullptr;
152 
153   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154   // Don't blow up on huge arrays.
155   if (ArrayElementCount > MaxArraySizeForCombine)
156     return nullptr;
157 
158   // There are many forms of this optimization we can handle, for now, just do
159   // the simple index into a single-dimensional array.
160   //
161   // Require: GEP GV, 0, i {{, constant indices}}
162   if (GEP->getNumOperands() < 3 ||
163       !isa<ConstantInt>(GEP->getOperand(1)) ||
164       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165       isa<Constant>(GEP->getOperand(2)))
166     return nullptr;
167 
168   // Check that indices after the variable are constants and in-range for the
169   // type they index.  Collect the indices.  This is typically for arrays of
170   // structs.
171   SmallVector<unsigned, 4> LaterIndices;
172 
173   Type *EltTy = Init->getType()->getArrayElementType();
174   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176     if (!Idx) return nullptr;  // Variable index.
177 
178     uint64_t IdxVal = Idx->getZExtValue();
179     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180 
181     if (StructType *STy = dyn_cast<StructType>(EltTy))
182       EltTy = STy->getElementType(IdxVal);
183     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184       if (IdxVal >= ATy->getNumElements()) return nullptr;
185       EltTy = ATy->getElementType();
186     } else {
187       return nullptr; // Unknown type.
188     }
189 
190     LaterIndices.push_back(IdxVal);
191   }
192 
193   enum { Overdefined = -3, Undefined = -2 };
194 
195   // Variables for our state machines.
196 
197   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200   // undefined, otherwise set to the first true element.  SecondTrueElement is
201   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203 
204   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205   // form "i != 47 & i != 87".  Same state transitions as for true elements.
206   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207 
208   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209   /// define a state machine that triggers for ranges of values that the index
210   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212   /// index in the range (inclusive).  We use -2 for undefined here because we
213   /// use relative comparisons and don't want 0-1 to match -1.
214   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215 
216   // MagicBitvector - This is a magic bitvector where we set a bit if the
217   // comparison is true for element 'i'.  If there are 64 elements or less in
218   // the array, this will fully represent all the comparison results.
219   uint64_t MagicBitvector = 0;
220 
221   // Scan the array and see if one of our patterns matches.
222   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224     Constant *Elt = Init->getAggregateElement(i);
225     if (!Elt) return nullptr;
226 
227     // If this is indexing an array of structures, get the structure element.
228     if (!LaterIndices.empty())
229       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230 
231     // If the element is masked, handle it.
232     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233 
234     // Find out if the comparison would be true or false for the i'th element.
235     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                   CompareRHS, DL, &TLI);
237     // If the result is undef for this element, ignore it.
238     if (isa<UndefValue>(C)) {
239       // Extend range state machines to cover this element in case there is an
240       // undef in the middle of the range.
241       if (TrueRangeEnd == (int)i-1)
242         TrueRangeEnd = i;
243       if (FalseRangeEnd == (int)i-1)
244         FalseRangeEnd = i;
245       continue;
246     }
247 
248     // If we can't compute the result for any of the elements, we have to give
249     // up evaluating the entire conditional.
250     if (!isa<ConstantInt>(C)) return nullptr;
251 
252     // Otherwise, we know if the comparison is true or false for this element,
253     // update our state machines.
254     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255 
256     // State machine for single/double/range index comparison.
257     if (IsTrueForElt) {
258       // Update the TrueElement state machine.
259       if (FirstTrueElement == Undefined)
260         FirstTrueElement = TrueRangeEnd = i;  // First true element.
261       else {
262         // Update double-compare state machine.
263         if (SecondTrueElement == Undefined)
264           SecondTrueElement = i;
265         else
266           SecondTrueElement = Overdefined;
267 
268         // Update range state machine.
269         if (TrueRangeEnd == (int)i-1)
270           TrueRangeEnd = i;
271         else
272           TrueRangeEnd = Overdefined;
273       }
274     } else {
275       // Update the FalseElement state machine.
276       if (FirstFalseElement == Undefined)
277         FirstFalseElement = FalseRangeEnd = i; // First false element.
278       else {
279         // Update double-compare state machine.
280         if (SecondFalseElement == Undefined)
281           SecondFalseElement = i;
282         else
283           SecondFalseElement = Overdefined;
284 
285         // Update range state machine.
286         if (FalseRangeEnd == (int)i-1)
287           FalseRangeEnd = i;
288         else
289           FalseRangeEnd = Overdefined;
290       }
291     }
292 
293     // If this element is in range, update our magic bitvector.
294     if (i < 64 && IsTrueForElt)
295       MagicBitvector |= 1ULL << i;
296 
297     // If all of our states become overdefined, bail out early.  Since the
298     // predicate is expensive, only check it every 8 elements.  This is only
299     // really useful for really huge arrays.
300     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302         FalseRangeEnd == Overdefined)
303       return nullptr;
304   }
305 
306   // Now that we've scanned the entire array, emit our new comparison(s).  We
307   // order the state machines in complexity of the generated code.
308   Value *Idx = GEP->getOperand(2);
309 
310   // If the index is larger than the pointer size of the target, truncate the
311   // index down like the GEP would do implicitly.  We don't have to do this for
312   // an inbounds GEP because the index can't be out of range.
313   if (!GEP->isInBounds()) {
314     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318   }
319 
320   // If the comparison is only true for one or two elements, emit direct
321   // comparisons.
322   if (SecondTrueElement != Overdefined) {
323     // None true -> false.
324     if (FirstTrueElement == Undefined)
325       return replaceInstUsesWith(ICI, Builder.getFalse());
326 
327     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 
329     // True for one element -> 'i == 47'.
330     if (SecondTrueElement == Undefined)
331       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 
333     // True for two elements -> 'i == 47 | i == 72'.
334     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337     return BinaryOperator::CreateOr(C1, C2);
338   }
339 
340   // If the comparison is only false for one or two elements, emit direct
341   // comparisons.
342   if (SecondFalseElement != Overdefined) {
343     // None false -> true.
344     if (FirstFalseElement == Undefined)
345       return replaceInstUsesWith(ICI, Builder.getTrue());
346 
347     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348 
349     // False for one element -> 'i != 47'.
350     if (SecondFalseElement == Undefined)
351       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352 
353     // False for two elements -> 'i != 47 & i != 72'.
354     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357     return BinaryOperator::CreateAnd(C1, C2);
358   }
359 
360   // If the comparison can be replaced with a range comparison for the elements
361   // where it is true, emit the range check.
362   if (TrueRangeEnd != Overdefined) {
363     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364 
365     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366     if (FirstTrueElement) {
367       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368       Idx = Builder.CreateAdd(Idx, Offs);
369     }
370 
371     Value *End = ConstantInt::get(Idx->getType(),
372                                   TrueRangeEnd-FirstTrueElement+1);
373     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374   }
375 
376   // False range check.
377   if (FalseRangeEnd != Overdefined) {
378     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380     if (FirstFalseElement) {
381       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382       Idx = Builder.CreateAdd(Idx, Offs);
383     }
384 
385     Value *End = ConstantInt::get(Idx->getType(),
386                                   FalseRangeEnd-FirstFalseElement);
387     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388   }
389 
390   // If a magic bitvector captures the entire comparison state
391   // of this load, replace it with computation that does:
392   //   ((magic_cst >> i) & 1) != 0
393   {
394     Type *Ty = nullptr;
395 
396     // Look for an appropriate type:
397     // - The type of Idx if the magic fits
398     // - The smallest fitting legal type
399     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400       Ty = Idx->getType();
401     else
402       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403 
404     if (Ty) {
405       Value *V = Builder.CreateIntCast(Idx, Ty, false);
406       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409     }
410   }
411 
412   return nullptr;
413 }
414 
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
422 ///
423 /// If we can't emit an optimized form for this expression, this returns null.
424 ///
425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                           const DataLayout &DL) {
427   gep_type_iterator GTI = gep_type_begin(GEP);
428 
429   // Check to see if this gep only has a single variable index.  If so, and if
430   // any constant indices are a multiple of its scale, then we can compute this
431   // in terms of the scale of the variable index.  For example, if the GEP
432   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433   // because the expression will cross zero at the same point.
434   unsigned i, e = GEP->getNumOperands();
435   int64_t Offset = 0;
436   for (i = 1; i != e; ++i, ++GTI) {
437     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438       // Compute the aggregate offset of constant indices.
439       if (CI->isZero()) continue;
440 
441       // Handle a struct index, which adds its field offset to the pointer.
442       if (StructType *STy = GTI.getStructTypeOrNull()) {
443         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444       } else {
445         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446         Offset += Size*CI->getSExtValue();
447       }
448     } else {
449       // Found our variable index.
450       break;
451     }
452   }
453 
454   // If there are no variable indices, we must have a constant offset, just
455   // evaluate it the general way.
456   if (i == e) return nullptr;
457 
458   Value *VariableIdx = GEP->getOperand(i);
459   // Determine the scale factor of the variable element.  For example, this is
460   // 4 if the variable index is into an array of i32.
461   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462 
463   // Verify that there are no other variable indices.  If so, emit the hard way.
464   for (++i, ++GTI; i != e; ++i, ++GTI) {
465     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466     if (!CI) return nullptr;
467 
468     // Compute the aggregate offset of constant indices.
469     if (CI->isZero()) continue;
470 
471     // Handle a struct index, which adds its field offset to the pointer.
472     if (StructType *STy = GTI.getStructTypeOrNull()) {
473       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474     } else {
475       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476       Offset += Size*CI->getSExtValue();
477     }
478   }
479 
480   // Okay, we know we have a single variable index, which must be a
481   // pointer/array/vector index.  If there is no offset, life is simple, return
482   // the index.
483   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485   if (Offset == 0) {
486     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487     // we don't need to bother extending: the extension won't affect where the
488     // computation crosses zero.
489     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491     }
492     return VariableIdx;
493   }
494 
495   // Otherwise, there is an index.  The computation we will do will be modulo
496   // the pointer size.
497   Offset = SignExtend64(Offset, IntPtrWidth);
498   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499 
500   // To do this transformation, any constant index must be a multiple of the
501   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503   // multiple of the variable scale.
504   int64_t NewOffs = Offset / (int64_t)VariableScale;
505   if (Offset != NewOffs*(int64_t)VariableScale)
506     return nullptr;
507 
508   // Okay, we can do this evaluation.  Start by converting the index to intptr.
509   if (VariableIdx->getType() != IntPtrTy)
510     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                             true /*Signed*/);
512   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514 }
515 
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                   const DataLayout &DL,
521                                   SetVector<Value *> &Explored) {
522   SmallVector<Value *, 16> WorkList(1, Start);
523   Explored.insert(Base);
524 
525   // The following traversal gives us an order which can be used
526   // when doing the final transformation. Since in the final
527   // transformation we create the PHI replacement instructions first,
528   // we don't have to get them in any particular order.
529   //
530   // However, for other instructions we will have to traverse the
531   // operands of an instruction first, which means that we have to
532   // do a post-order traversal.
533   while (!WorkList.empty()) {
534     SetVector<PHINode *> PHIs;
535 
536     while (!WorkList.empty()) {
537       if (Explored.size() >= 100)
538         return false;
539 
540       Value *V = WorkList.back();
541 
542       if (Explored.count(V) != 0) {
543         WorkList.pop_back();
544         continue;
545       }
546 
547       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549         // We've found some value that we can't explore which is different from
550         // the base. Therefore we can't do this transformation.
551         return false;
552 
553       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554         auto *CI = dyn_cast<CastInst>(V);
555         if (!CI->isNoopCast(DL))
556           return false;
557 
558         if (Explored.count(CI->getOperand(0)) == 0)
559           WorkList.push_back(CI->getOperand(0));
560       }
561 
562       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563         // We're limiting the GEP to having one index. This will preserve
564         // the original pointer type. We could handle more cases in the
565         // future.
566         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567             GEP->getType() != Start->getType())
568           return false;
569 
570         if (Explored.count(GEP->getOperand(0)) == 0)
571           WorkList.push_back(GEP->getOperand(0));
572       }
573 
574       if (WorkList.back() == V) {
575         WorkList.pop_back();
576         // We've finished visiting this node, mark it as such.
577         Explored.insert(V);
578       }
579 
580       if (auto *PN = dyn_cast<PHINode>(V)) {
581         // We cannot transform PHIs on unsplittable basic blocks.
582         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583           return false;
584         Explored.insert(PN);
585         PHIs.insert(PN);
586       }
587     }
588 
589     // Explore the PHI nodes further.
590     for (auto *PN : PHIs)
591       for (Value *Op : PN->incoming_values())
592         if (Explored.count(Op) == 0)
593           WorkList.push_back(Op);
594   }
595 
596   // Make sure that we can do this. Since we can't insert GEPs in a basic
597   // block before a PHI node, we can't easily do this transformation if
598   // we have PHI node users of transformed instructions.
599   for (Value *Val : Explored) {
600     for (Value *Use : Val->uses()) {
601 
602       auto *PHI = dyn_cast<PHINode>(Use);
603       auto *Inst = dyn_cast<Instruction>(Val);
604 
605       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606           Explored.count(PHI) == 0)
607         continue;
608 
609       if (PHI->getParent() == Inst->getParent())
610         return false;
611     }
612   }
613   return true;
614 }
615 
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                               bool Before = true) {
620   if (auto *PHI = dyn_cast<PHINode>(V)) {
621     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622     return;
623   }
624   if (auto *I = dyn_cast<Instruction>(V)) {
625     if (!Before)
626       I = &*std::next(I->getIterator());
627     Builder.SetInsertPoint(I);
628     return;
629   }
630   if (auto *A = dyn_cast<Argument>(V)) {
631     // Set the insertion point in the entry block.
632     BasicBlock &Entry = A->getParent()->getEntryBlock();
633     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634     return;
635   }
636   // Otherwise, this is a constant and we don't need to set a new
637   // insertion point.
638   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639 }
640 
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
642 /// pointer.
643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                  const DataLayout &DL,
645                                  SetVector<Value *> &Explored) {
646   // Perform all the substitutions. This is a bit tricky because we can
647   // have cycles in our use-def chains.
648   // 1. Create the PHI nodes without any incoming values.
649   // 2. Create all the other values.
650   // 3. Add the edges for the PHI nodes.
651   // 4. Emit GEPs to get the original pointers.
652   // 5. Remove the original instructions.
653   Type *IndexType = IntegerType::get(
654       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655 
656   DenseMap<Value *, Value *> NewInsts;
657   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658 
659   // Create the new PHI nodes, without adding any incoming values.
660   for (Value *Val : Explored) {
661     if (Val == Base)
662       continue;
663     // Create empty phi nodes. This avoids cyclic dependencies when creating
664     // the remaining instructions.
665     if (auto *PHI = dyn_cast<PHINode>(Val))
666       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                       PHI->getName() + ".idx", PHI);
668   }
669   IRBuilder<> Builder(Base->getContext());
670 
671   // Create all the other instructions.
672   for (Value *Val : Explored) {
673 
674     if (NewInsts.find(Val) != NewInsts.end())
675       continue;
676 
677     if (auto *CI = dyn_cast<CastInst>(Val)) {
678       // Don't get rid of the intermediate variable here; the store can grow
679       // the map which will invalidate the reference to the input value.
680       Value *V = NewInsts[CI->getOperand(0)];
681       NewInsts[CI] = V;
682       continue;
683     }
684     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                   : GEP->getOperand(1);
687       setInsertionPoint(Builder, GEP);
688       // Indices might need to be sign extended. GEPs will magically do
689       // this, but we need to do it ourselves here.
690       if (Index->getType()->getScalarSizeInBits() !=
691           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692         Index = Builder.CreateSExtOrTrunc(
693             Index, NewInsts[GEP->getOperand(0)]->getType(),
694             GEP->getOperand(0)->getName() + ".sext");
695       }
696 
697       auto *Op = NewInsts[GEP->getOperand(0)];
698       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699         NewInsts[GEP] = Index;
700       else
701         NewInsts[GEP] = Builder.CreateNSWAdd(
702             Op, Index, GEP->getOperand(0)->getName() + ".add");
703       continue;
704     }
705     if (isa<PHINode>(Val))
706       continue;
707 
708     llvm_unreachable("Unexpected instruction type");
709   }
710 
711   // Add the incoming values to the PHI nodes.
712   for (Value *Val : Explored) {
713     if (Val == Base)
714       continue;
715     // All the instructions have been created, we can now add edges to the
716     // phi nodes.
717     if (auto *PHI = dyn_cast<PHINode>(Val)) {
718       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720         Value *NewIncoming = PHI->getIncomingValue(I);
721 
722         if (NewInsts.find(NewIncoming) != NewInsts.end())
723           NewIncoming = NewInsts[NewIncoming];
724 
725         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726       }
727     }
728   }
729 
730   for (Value *Val : Explored) {
731     if (Val == Base)
732       continue;
733 
734     // Depending on the type, for external users we have to emit
735     // a GEP or a GEP + ptrtoint.
736     setInsertionPoint(Builder, Val, false);
737 
738     // If required, create an inttoptr instruction for Base.
739     Value *NewBase = Base;
740     if (!Base->getType()->isPointerTy())
741       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                                Start->getName() + "to.ptr");
743 
744     Value *GEP = Builder.CreateInBoundsGEP(
745         Start->getType()->getPointerElementType(), NewBase,
746         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747 
748     if (!Val->getType()->isPointerTy()) {
749       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                               Val->getName() + ".conv");
751       GEP = Cast;
752     }
753     Val->replaceAllUsesWith(GEP);
754   }
755 
756   return NewInsts[Start];
757 }
758 
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair<Value *, Value *>
763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764   Type *IndexType = IntegerType::get(V->getContext(),
765                                      DL.getIndexTypeSizeInBits(V->getType()));
766 
767   Constant *Index = ConstantInt::getNullValue(IndexType);
768   while (true) {
769     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770       // We accept only inbouds GEPs here to exclude the possibility of
771       // overflow.
772       if (!GEP->isInBounds())
773         break;
774       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775           GEP->getType() == V->getType()) {
776         V = GEP->getOperand(0);
777         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778         Index = ConstantExpr::getAdd(
779             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780         continue;
781       }
782       break;
783     }
784     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785       if (!CI->isNoopCast(DL))
786         break;
787       V = CI->getOperand(0);
788       continue;
789     }
790     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791       if (!CI->isNoopCast(DL))
792         break;
793       V = CI->getOperand(0);
794       continue;
795     }
796     break;
797   }
798   return {V, Index};
799 }
800 
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                               ICmpInst::Predicate Cond,
806                                               const DataLayout &DL) {
807   // FIXME: Support vector of pointers.
808   if (GEPLHS->getType()->isVectorTy())
809     return nullptr;
810 
811   if (!GEPLHS->hasAllConstantIndices())
812     return nullptr;
813 
814   // Make sure the pointers have the same type.
815   if (GEPLHS->getType() != RHS->getType())
816     return nullptr;
817 
818   Value *PtrBase, *Index;
819   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820 
821   // The set of nodes that will take part in this transformation.
822   SetVector<Value *> Nodes;
823 
824   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825     return nullptr;
826 
827   // We know we can re-write this as
828   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829   // Since we've only looked through inbouds GEPs we know that we
830   // can't have overflow on either side. We can therefore re-write
831   // this as:
832   //   OFFSET1 cmp OFFSET2
833   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834 
835   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837   // offset. Since Index is the offset of LHS to the base pointer, we will now
838   // compare the offsets instead of comparing the pointers.
839   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840 }
841 
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                        ICmpInst::Predicate Cond,
846                                        Instruction &I) {
847   // Don't transform signed compares of GEPs into index compares. Even if the
848   // GEP is inbounds, the final add of the base pointer can have signed overflow
849   // and would change the result of the icmp.
850   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851   // the maximum signed value for the pointer type.
852   if (ICmpInst::isSigned(Cond))
853     return nullptr;
854 
855   // Look through bitcasts and addrspacecasts. We do not however want to remove
856   // 0 GEPs.
857   if (!isa<GetElementPtrInst>(RHS))
858     RHS = RHS->stripPointerCasts();
859 
860   Value *PtrBase = GEPLHS->getOperand(0);
861   // FIXME: Support vector pointer GEPs.
862   if (PtrBase == RHS && GEPLHS->isInBounds() &&
863       !GEPLHS->getType()->isVectorTy()) {
864     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865     // This transformation (ignoring the base and scales) is valid because we
866     // know pointers can't overflow since the gep is inbounds.  See if we can
867     // output an optimized form.
868     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869 
870     // If not, synthesize the offset the hard way.
871     if (!Offset)
872       Offset = EmitGEPOffset(GEPLHS);
873     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                         Constant::getNullValue(Offset->getType()));
875   }
876 
877   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879       !NullPointerIsDefined(I.getFunction(),
880                             RHS->getType()->getPointerAddressSpace())) {
881     // For most address spaces, an allocation can't be placed at null, but null
882     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883     // the only valid inbounds address derived from null, is null itself.
884     // Thus, we have four cases to consider:
885     // 1) Base == nullptr, Offset == 0 -> inbounds, null
886     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889     //
890     // (Note if we're indexing a type of size 0, that simply collapses into one
891     //  of the buckets above.)
892     //
893     // In general, we're allowed to make values less poison (i.e. remove
894     //   sources of full UB), so in this case, we just select between the two
895     //   non-poison cases (1 and 4 above).
896     //
897     // For vectors, we apply the same reasoning on a per-lane basis.
898     auto *Base = GEPLHS->getPointerOperand();
899     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900       int NumElts = GEPLHS->getType()->getVectorNumElements();
901       Base = Builder.CreateVectorSplat(NumElts, Base);
902     }
903     return new ICmpInst(Cond, Base,
904                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                             cast<Constant>(RHS), Base->getType()));
906   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907     // If the base pointers are different, but the indices are the same, just
908     // compare the base pointer.
909     if (PtrBase != GEPRHS->getOperand(0)) {
910       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                         GEPRHS->getOperand(0)->getType();
913       if (IndicesTheSame)
914         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916             IndicesTheSame = false;
917             break;
918           }
919 
920       // If all indices are the same, just compare the base pointers.
921       Type *BaseType = GEPLHS->getOperand(0)->getType();
922       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924 
925       // If we're comparing GEPs with two base pointers that only differ in type
926       // and both GEPs have only constant indices or just one use, then fold
927       // the compare with the adjusted indices.
928       // FIXME: Support vector of pointers.
929       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932           PtrBase->stripPointerCasts() ==
933               GEPRHS->getOperand(0)->stripPointerCasts() &&
934           !GEPLHS->getType()->isVectorTy()) {
935         Value *LOffset = EmitGEPOffset(GEPLHS);
936         Value *ROffset = EmitGEPOffset(GEPRHS);
937 
938         // If we looked through an addrspacecast between different sized address
939         // spaces, the LHS and RHS pointers are different sized
940         // integers. Truncate to the smaller one.
941         Type *LHSIndexTy = LOffset->getType();
942         Type *RHSIndexTy = ROffset->getType();
943         if (LHSIndexTy != RHSIndexTy) {
944           if (LHSIndexTy->getPrimitiveSizeInBits() <
945               RHSIndexTy->getPrimitiveSizeInBits()) {
946             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947           } else
948             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949         }
950 
951         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                         LOffset, ROffset);
953         return replaceInstUsesWith(I, Cmp);
954       }
955 
956       // Otherwise, the base pointers are different and the indices are
957       // different. Try convert this to an indexed compare by looking through
958       // PHIs/casts.
959       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960     }
961 
962     // If one of the GEPs has all zero indices, recurse.
963     // FIXME: Handle vector of pointers.
964     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                          ICmpInst::getSwappedPredicate(Cond), I);
967 
968     // If the other GEP has all zero indices, recurse.
969     // FIXME: Handle vector of pointers.
970     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972 
973     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975       // If the GEPs only differ by one index, compare it.
976       unsigned NumDifferences = 0;  // Keep track of # differences.
977       unsigned DiffOperand = 0;     // The operand that differs.
978       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980           Type *LHSType = GEPLHS->getOperand(i)->getType();
981           Type *RHSType = GEPRHS->getOperand(i)->getType();
982           // FIXME: Better support for vector of pointers.
983           if (LHSType->getPrimitiveSizeInBits() !=
984                    RHSType->getPrimitiveSizeInBits() ||
985               (GEPLHS->getType()->isVectorTy() &&
986                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987             // Irreconcilable differences.
988             NumDifferences = 2;
989             break;
990           }
991 
992           if (NumDifferences++) break;
993           DiffOperand = i;
994         }
995 
996       if (NumDifferences == 0)   // SAME GEP?
997         return replaceInstUsesWith(I, // No comparison is needed here.
998           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999 
1000       else if (NumDifferences == 1 && GEPsInBounds) {
1001         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003         // Make sure we do a signed comparison here.
1004         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005       }
1006     }
1007 
1008     // Only lower this if the icmp is the only user of the GEP or if we expect
1009     // the result to fold to a constant!
1010     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013       Value *L = EmitGEPOffset(GEPLHS);
1014       Value *R = EmitGEPOffset(GEPRHS);
1015       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016     }
1017   }
1018 
1019   // Try convert this to an indexed compare by looking through PHIs/casts as a
1020   // last resort.
1021   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022 }
1023 
1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                          const AllocaInst *Alloca,
1026                                          const Value *Other) {
1027   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028 
1029   // It would be tempting to fold away comparisons between allocas and any
1030   // pointer not based on that alloca (e.g. an argument). However, even
1031   // though such pointers cannot alias, they can still compare equal.
1032   //
1033   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034   // doesn't escape we can argue that it's impossible to guess its value, and we
1035   // can therefore act as if any such guesses are wrong.
1036   //
1037   // The code below checks that the alloca doesn't escape, and that it's only
1038   // used in a comparison once (the current instruction). The
1039   // single-comparison-use condition ensures that we're trivially folding all
1040   // comparisons against the alloca consistently, and avoids the risk of
1041   // erroneously folding a comparison of the pointer with itself.
1042 
1043   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044 
1045   SmallVector<const Use *, 32> Worklist;
1046   for (const Use &U : Alloca->uses()) {
1047     if (Worklist.size() >= MaxIter)
1048       return nullptr;
1049     Worklist.push_back(&U);
1050   }
1051 
1052   unsigned NumCmps = 0;
1053   while (!Worklist.empty()) {
1054     assert(Worklist.size() <= MaxIter);
1055     const Use *U = Worklist.pop_back_val();
1056     const Value *V = U->getUser();
1057     --MaxIter;
1058 
1059     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060         isa<SelectInst>(V)) {
1061       // Track the uses.
1062     } else if (isa<LoadInst>(V)) {
1063       // Loading from the pointer doesn't escape it.
1064       continue;
1065     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067       if (SI->getValueOperand() == U->get())
1068         return nullptr;
1069       continue;
1070     } else if (isa<ICmpInst>(V)) {
1071       if (NumCmps++)
1072         return nullptr; // Found more than one cmp.
1073       continue;
1074     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075       switch (Intrin->getIntrinsicID()) {
1076         // These intrinsics don't escape or compare the pointer. Memset is safe
1077         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078         // we don't allow stores, so src cannot point to V.
1079         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081           continue;
1082         default:
1083           return nullptr;
1084       }
1085     } else {
1086       return nullptr;
1087     }
1088     for (const Use &U : V->uses()) {
1089       if (Worklist.size() >= MaxIter)
1090         return nullptr;
1091       Worklist.push_back(&U);
1092     }
1093   }
1094 
1095   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096   return replaceInstUsesWith(
1097       ICI,
1098       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099 }
1100 
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                               ICmpInst::Predicate Pred) {
1104   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105   // so the values can never be equal.  Similarly for all other "or equals"
1106   // operators.
1107   assert(!!C && "C should not be zero!");
1108 
1109   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113     Constant *R = ConstantInt::get(X->getType(),
1114                                    APInt::getMaxValue(C.getBitWidth()) - C);
1115     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116   }
1117 
1118   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                         ConstantInt::get(X->getType(), -C));
1124 
1125   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126 
1127   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                         ConstantInt::get(X->getType(), SMax - C));
1136 
1137   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143 
1144   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1147 }
1148 
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                  const APInt &AP1,
1154                                                  const APInt &AP2) {
1155   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156 
1157   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158     if (I.getPredicate() == I.ICMP_NE)
1159       Pred = CmpInst::getInversePredicate(Pred);
1160     return new ICmpInst(Pred, LHS, RHS);
1161   };
1162 
1163   // Don't bother doing any work for cases which InstSimplify handles.
1164   if (AP2.isNullValue())
1165     return nullptr;
1166 
1167   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168   if (IsAShr) {
1169     if (AP2.isAllOnesValue())
1170       return nullptr;
1171     if (AP2.isNegative() != AP1.isNegative())
1172       return nullptr;
1173     if (AP2.sgt(AP1))
1174       return nullptr;
1175   }
1176 
1177   if (!AP1)
1178     // 'A' must be large enough to shift out the highest set bit.
1179     return getICmp(I.ICMP_UGT, A,
1180                    ConstantInt::get(A->getType(), AP2.logBase2()));
1181 
1182   if (AP1 == AP2)
1183     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184 
1185   int Shift;
1186   if (IsAShr && AP1.isNegative())
1187     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188   else
1189     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190 
1191   if (Shift > 0) {
1192     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193       // There are multiple solutions if we are comparing against -1 and the LHS
1194       // of the ashr is not a power of two.
1195       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198     } else if (AP1 == AP2.lshr(Shift)) {
1199       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200     }
1201   }
1202 
1203   // Shifting const2 will never be equal to const1.
1204   // FIXME: This should always be handled by InstSimplify?
1205   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206   return replaceInstUsesWith(I, TorF);
1207 }
1208 
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                  const APInt &AP1,
1213                                                  const APInt &AP2) {
1214   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215 
1216   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217     if (I.getPredicate() == I.ICMP_NE)
1218       Pred = CmpInst::getInversePredicate(Pred);
1219     return new ICmpInst(Pred, LHS, RHS);
1220   };
1221 
1222   // Don't bother doing any work for cases which InstSimplify handles.
1223   if (AP2.isNullValue())
1224     return nullptr;
1225 
1226   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227 
1228   if (!AP1 && AP2TrailingZeros != 0)
1229     return getICmp(
1230         I.ICMP_UGE, A,
1231         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232 
1233   if (AP1 == AP2)
1234     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235 
1236   // Get the distance between the lowest bits that are set.
1237   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238 
1239   if (Shift > 0 && AP2.shl(Shift) == AP1)
1240     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241 
1242   // Shifting const2 will never be equal to const1.
1243   // FIXME: This should always be handled by InstSimplify?
1244   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245   return replaceInstUsesWith(I, TorF);
1246 }
1247 
1248 /// The caller has matched a pattern of the form:
1249 ///   I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1251 ///   sum = a + b
1252 ///   if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1254 ///
1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                           ConstantInt *CI2, ConstantInt *CI1,
1257                                           InstCombiner &IC) {
1258   // The transformation we're trying to do here is to transform this into an
1259   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260   // with a narrower add, and discard the add-with-constant that is part of the
1261   // range check (if we can't eliminate it, this isn't profitable).
1262 
1263   // In order to eliminate the add-with-constant, the compare can be its only
1264   // use.
1265   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266   if (!AddWithCst->hasOneUse())
1267     return nullptr;
1268 
1269   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270   if (!CI2->getValue().isPowerOf2())
1271     return nullptr;
1272   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274     return nullptr;
1275 
1276   // The width of the new add formed is 1 more than the bias.
1277   ++NewWidth;
1278 
1279   // Check to see that CI1 is an all-ones value with NewWidth bits.
1280   if (CI1->getBitWidth() == NewWidth ||
1281       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282     return nullptr;
1283 
1284   // This is only really a signed overflow check if the inputs have been
1285   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290     return nullptr;
1291 
1292   // In order to replace the original add with a narrower
1293   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294   // and truncates that discard the high bits of the add.  Verify that this is
1295   // the case.
1296   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297   for (User *U : OrigAdd->users()) {
1298     if (U == AddWithCst)
1299       continue;
1300 
1301     // Only accept truncates for now.  We would really like a nice recursive
1302     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303     // chain to see which bits of a value are actually demanded.  If the
1304     // original add had another add which was then immediately truncated, we
1305     // could still do the transformation.
1306     TruncInst *TI = dyn_cast<TruncInst>(U);
1307     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308       return nullptr;
1309   }
1310 
1311   // If the pattern matches, truncate the inputs to the narrower type and
1312   // use the sadd_with_overflow intrinsic to efficiently compute both the
1313   // result and the overflow bit.
1314   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315   Function *F = Intrinsic::getDeclaration(
1316       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317 
1318   InstCombiner::BuilderTy &Builder = IC.Builder;
1319 
1320   // Put the new code above the original add, in case there are any uses of the
1321   // add between the add and the compare.
1322   Builder.SetInsertPoint(OrigAdd);
1323 
1324   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329 
1330   // The inner add was the result of the narrow add, zero extended to the
1331   // wider type.  Replace it with the result computed by the intrinsic.
1332   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333 
1334   // The original icmp gets replaced with the overflow value.
1335   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1336 }
1337 
1338 /// If we have:
1339 ///   icmp eq/ne (urem/srem %x, %y), 0
1340 /// iff %y is a power-of-two, we can replace this with a bit test:
1341 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1342 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1343   // This fold is only valid for equality predicates.
1344   if (!I.isEquality())
1345     return nullptr;
1346   ICmpInst::Predicate Pred;
1347   Value *X, *Y, *Zero;
1348   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1349                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1350     return nullptr;
1351   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1352     return nullptr;
1353   // This may increase instruction count, we don't enforce that Y is a constant.
1354   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1355   Value *Masked = Builder.CreateAnd(X, Mask);
1356   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1357 }
1358 
1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1360 /// by one-less-than-bitwidth into a sign test on the original value.
1361 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1362   Instruction *Val;
1363   ICmpInst::Predicate Pred;
1364   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1365     return nullptr;
1366 
1367   Value *X;
1368   Type *XTy;
1369 
1370   Constant *C;
1371   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1372     XTy = X->getType();
1373     unsigned XBitWidth = XTy->getScalarSizeInBits();
1374     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1375                                      APInt(XBitWidth, XBitWidth - 1))))
1376       return nullptr;
1377   } else if (isa<BinaryOperator>(Val) &&
1378              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1379                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1380                   /*AnalyzeForSignBitExtraction=*/true))) {
1381     XTy = X->getType();
1382   } else
1383     return nullptr;
1384 
1385   return ICmpInst::Create(Instruction::ICmp,
1386                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1387                                                     : ICmpInst::ICMP_SLT,
1388                           X, ConstantInt::getNullValue(XTy));
1389 }
1390 
1391 // Handle  icmp pred X, 0
1392 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1393   CmpInst::Predicate Pred = Cmp.getPredicate();
1394   if (!match(Cmp.getOperand(1), m_Zero()))
1395     return nullptr;
1396 
1397   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1398   if (Pred == ICmpInst::ICMP_SGT) {
1399     Value *A, *B;
1400     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1401     if (SPR.Flavor == SPF_SMIN) {
1402       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1403         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1404       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1405         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1406     }
1407   }
1408 
1409   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1410     return New;
1411 
1412   // Given:
1413   //   icmp eq/ne (urem %x, %y), 0
1414   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1415   //   icmp eq/ne %x, 0
1416   Value *X, *Y;
1417   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1418       ICmpInst::isEquality(Pred)) {
1419     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1420     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1421     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1422       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1423   }
1424 
1425   return nullptr;
1426 }
1427 
1428 /// Fold icmp Pred X, C.
1429 /// TODO: This code structure does not make sense. The saturating add fold
1430 /// should be moved to some other helper and extended as noted below (it is also
1431 /// possible that code has been made unnecessary - do we canonicalize IR to
1432 /// overflow/saturating intrinsics or not?).
1433 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1434   // Match the following pattern, which is a common idiom when writing
1435   // overflow-safe integer arithmetic functions. The source performs an addition
1436   // in wider type and explicitly checks for overflow using comparisons against
1437   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1438   //
1439   // TODO: This could probably be generalized to handle other overflow-safe
1440   // operations if we worked out the formulas to compute the appropriate magic
1441   // constants.
1442   //
1443   // sum = a + b
1444   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1445   CmpInst::Predicate Pred = Cmp.getPredicate();
1446   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1447   Value *A, *B;
1448   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1449   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1450       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1451     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1452       return Res;
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     if (const APInt *EqC = Intersection.getSingleElement())
1519       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1520     if (const APInt *NeC = Difference.getSingleElement())
1521       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1522   }
1523 
1524   return nullptr;
1525 }
1526 
1527 /// Fold icmp (trunc X, Y), C.
1528 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1529                                                  TruncInst *Trunc,
1530                                                  const APInt &C) {
1531   ICmpInst::Predicate Pred = Cmp.getPredicate();
1532   Value *X = Trunc->getOperand(0);
1533   if (C.isOneValue() && C.getBitWidth() > 1) {
1534     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1535     Value *V = nullptr;
1536     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1537       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1538                           ConstantInt::get(V->getType(), 1));
1539   }
1540 
1541   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1542     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1543     // of the high bits truncated out of x are known.
1544     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1545              SrcBits = X->getType()->getScalarSizeInBits();
1546     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1547 
1548     // If all the high bits are known, we can do this xform.
1549     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1550       // Pull in the high bits from known-ones set.
1551       APInt NewRHS = C.zext(SrcBits);
1552       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1553       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1554     }
1555   }
1556 
1557   return nullptr;
1558 }
1559 
1560 /// Fold icmp (xor X, Y), C.
1561 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1562                                                BinaryOperator *Xor,
1563                                                const APInt &C) {
1564   Value *X = Xor->getOperand(0);
1565   Value *Y = Xor->getOperand(1);
1566   const APInt *XorC;
1567   if (!match(Y, m_APInt(XorC)))
1568     return nullptr;
1569 
1570   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1571   // fold the xor.
1572   ICmpInst::Predicate Pred = Cmp.getPredicate();
1573   bool TrueIfSigned = false;
1574   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1575 
1576     // If the sign bit of the XorCst is not set, there is no change to
1577     // the operation, just stop using the Xor.
1578     if (!XorC->isNegative())
1579       return replaceOperand(Cmp, 0, X);
1580 
1581     // Emit the opposite comparison.
1582     if (TrueIfSigned)
1583       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1584                           ConstantInt::getAllOnesValue(X->getType()));
1585     else
1586       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1587                           ConstantInt::getNullValue(X->getType()));
1588   }
1589 
1590   if (Xor->hasOneUse()) {
1591     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1592     if (!Cmp.isEquality() && XorC->isSignMask()) {
1593       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1594                             : Cmp.getSignedPredicate();
1595       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1596     }
1597 
1598     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1599     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1600       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1601                             : Cmp.getSignedPredicate();
1602       Pred = Cmp.getSwappedPredicate(Pred);
1603       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1604     }
1605   }
1606 
1607   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1608   if (Pred == ICmpInst::ICMP_UGT) {
1609     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1610     if (*XorC == ~C && (C + 1).isPowerOf2())
1611       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1612     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1613     if (*XorC == C && (C + 1).isPowerOf2())
1614       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1615   }
1616   if (Pred == ICmpInst::ICMP_ULT) {
1617     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1618     if (*XorC == -C && C.isPowerOf2())
1619       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1620                           ConstantInt::get(X->getType(), ~C));
1621     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1622     if (*XorC == C && (-C).isPowerOf2())
1623       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1624                           ConstantInt::get(X->getType(), ~C));
1625   }
1626   return nullptr;
1627 }
1628 
1629 /// Fold icmp (and (sh X, Y), C2), C1.
1630 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1631                                             const APInt &C1, const APInt &C2) {
1632   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1633   if (!Shift || !Shift->isShift())
1634     return nullptr;
1635 
1636   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1637   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1638   // code produced by the clang front-end, for bitfield access.
1639   // This seemingly simple opportunity to fold away a shift turns out to be
1640   // rather complicated. See PR17827 for details.
1641   unsigned ShiftOpcode = Shift->getOpcode();
1642   bool IsShl = ShiftOpcode == Instruction::Shl;
1643   const APInt *C3;
1644   if (match(Shift->getOperand(1), m_APInt(C3))) {
1645     APInt NewAndCst, NewCmpCst;
1646     bool AnyCmpCstBitsShiftedOut;
1647     if (ShiftOpcode == Instruction::Shl) {
1648       // For a left shift, we can fold if the comparison is not signed. We can
1649       // also fold a signed comparison if the mask value and comparison value
1650       // are not negative. These constraints may not be obvious, but we can
1651       // prove that they are correct using an SMT solver.
1652       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1653         return nullptr;
1654 
1655       NewCmpCst = C1.lshr(*C3);
1656       NewAndCst = C2.lshr(*C3);
1657       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1658     } else if (ShiftOpcode == Instruction::LShr) {
1659       // For a logical right shift, we can fold if the comparison is not signed.
1660       // We can also fold a signed comparison if the shifted mask value and the
1661       // shifted comparison value are not negative. These constraints may not be
1662       // obvious, but we can prove that they are correct using an SMT solver.
1663       NewCmpCst = C1.shl(*C3);
1664       NewAndCst = C2.shl(*C3);
1665       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1666       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1667         return nullptr;
1668     } else {
1669       // For an arithmetic shift, check that both constants don't use (in a
1670       // signed sense) the top bits being shifted out.
1671       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1672       NewCmpCst = C1.shl(*C3);
1673       NewAndCst = C2.shl(*C3);
1674       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1675       if (NewAndCst.ashr(*C3) != C2)
1676         return nullptr;
1677     }
1678 
1679     if (AnyCmpCstBitsShiftedOut) {
1680       // If we shifted bits out, the fold is not going to work out. As a
1681       // special case, check to see if this means that the result is always
1682       // true or false now.
1683       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1684         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1685       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1686         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1687     } else {
1688       Value *NewAnd = Builder.CreateAnd(
1689           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1690       return new ICmpInst(Cmp.getPredicate(),
1691           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1692     }
1693   }
1694 
1695   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1696   // preferable because it allows the C2 << Y expression to be hoisted out of a
1697   // loop if Y is invariant and X is not.
1698   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1699       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1700     // Compute C2 << Y.
1701     Value *NewShift =
1702         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1703               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1704 
1705     // Compute X & (C2 << Y).
1706     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1707     return replaceOperand(Cmp, 0, NewAnd);
1708   }
1709 
1710   return nullptr;
1711 }
1712 
1713 /// Fold icmp (and X, C2), C1.
1714 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1715                                                  BinaryOperator *And,
1716                                                  const APInt &C1) {
1717   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1718 
1719   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1720   // TODO: We canonicalize to the longer form for scalars because we have
1721   // better analysis/folds for icmp, and codegen may be better with icmp.
1722   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1723       match(And->getOperand(1), m_One()))
1724     return new TruncInst(And->getOperand(0), Cmp.getType());
1725 
1726   const APInt *C2;
1727   Value *X;
1728   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1729     return nullptr;
1730 
1731   // Don't perform the following transforms if the AND has multiple uses
1732   if (!And->hasOneUse())
1733     return nullptr;
1734 
1735   if (Cmp.isEquality() && C1.isNullValue()) {
1736     // Restrict this fold to single-use 'and' (PR10267).
1737     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1738     if (C2->isSignMask()) {
1739       Constant *Zero = Constant::getNullValue(X->getType());
1740       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1741       return new ICmpInst(NewPred, X, Zero);
1742     }
1743 
1744     // Restrict this fold only for single-use 'and' (PR10267).
1745     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1746     if ((~(*C2) + 1).isPowerOf2()) {
1747       Constant *NegBOC =
1748           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1749       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1750       return new ICmpInst(NewPred, X, NegBOC);
1751     }
1752   }
1753 
1754   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1755   // the input width without changing the value produced, eliminate the cast:
1756   //
1757   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1758   //
1759   // We can do this transformation if the constants do not have their sign bits
1760   // set or if it is an equality comparison. Extending a relational comparison
1761   // when we're checking the sign bit would not work.
1762   Value *W;
1763   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1764       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1765     // TODO: Is this a good transform for vectors? Wider types may reduce
1766     // throughput. Should this transform be limited (even for scalars) by using
1767     // shouldChangeType()?
1768     if (!Cmp.getType()->isVectorTy()) {
1769       Type *WideType = W->getType();
1770       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1771       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1772       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1773       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1774       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1775     }
1776   }
1777 
1778   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1779     return I;
1780 
1781   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1782   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1783   //
1784   // iff pred isn't signed
1785   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1786       match(And->getOperand(1), m_One())) {
1787     Constant *One = cast<Constant>(And->getOperand(1));
1788     Value *Or = And->getOperand(0);
1789     Value *A, *B, *LShr;
1790     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1791         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1792       unsigned UsesRemoved = 0;
1793       if (And->hasOneUse())
1794         ++UsesRemoved;
1795       if (Or->hasOneUse())
1796         ++UsesRemoved;
1797       if (LShr->hasOneUse())
1798         ++UsesRemoved;
1799 
1800       // Compute A & ((1 << B) | 1)
1801       Value *NewOr = nullptr;
1802       if (auto *C = dyn_cast<Constant>(B)) {
1803         if (UsesRemoved >= 1)
1804           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1805       } else {
1806         if (UsesRemoved >= 3)
1807           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1808                                                      /*HasNUW=*/true),
1809                                    One, Or->getName());
1810       }
1811       if (NewOr) {
1812         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1813         return replaceOperand(Cmp, 0, NewAnd);
1814       }
1815     }
1816   }
1817 
1818   return nullptr;
1819 }
1820 
1821 /// Fold icmp (and X, Y), C.
1822 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1823                                                BinaryOperator *And,
1824                                                const APInt &C) {
1825   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1826     return I;
1827 
1828   // TODO: These all require that Y is constant too, so refactor with the above.
1829 
1830   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1831   Value *X = And->getOperand(0);
1832   Value *Y = And->getOperand(1);
1833   if (auto *LI = dyn_cast<LoadInst>(X))
1834     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1835       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1836         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1837             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1838           ConstantInt *C2 = cast<ConstantInt>(Y);
1839           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1840             return Res;
1841         }
1842 
1843   if (!Cmp.isEquality())
1844     return nullptr;
1845 
1846   // X & -C == -C -> X >  u ~C
1847   // X & -C != -C -> X <= u ~C
1848   //   iff C is a power of 2
1849   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1850     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1851                                                           : CmpInst::ICMP_ULE;
1852     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1853   }
1854 
1855   // (X & C2) == 0 -> (trunc X) >= 0
1856   // (X & C2) != 0 -> (trunc X) <  0
1857   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1858   const APInt *C2;
1859   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1860     int32_t ExactLogBase2 = C2->exactLogBase2();
1861     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1862       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1863       if (And->getType()->isVectorTy())
1864         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1865       Value *Trunc = Builder.CreateTrunc(X, NTy);
1866       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1867                                                             : CmpInst::ICMP_SLT;
1868       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1869     }
1870   }
1871 
1872   return nullptr;
1873 }
1874 
1875 /// Fold icmp (or X, Y), C.
1876 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1877                                               const APInt &C) {
1878   ICmpInst::Predicate Pred = Cmp.getPredicate();
1879   if (C.isOneValue()) {
1880     // icmp slt signum(V) 1 --> icmp slt V, 1
1881     Value *V = nullptr;
1882     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1883       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1884                           ConstantInt::get(V->getType(), 1));
1885   }
1886 
1887   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1888   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1889     // X | C == C --> X <=u C
1890     // X | C != C --> X  >u C
1891     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1892     if ((C + 1).isPowerOf2()) {
1893       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1894       return new ICmpInst(Pred, OrOp0, OrOp1);
1895     }
1896     // More general: are all bits outside of a mask constant set or not set?
1897     // X | C == C --> (X & ~C) == 0
1898     // X | C != C --> (X & ~C) != 0
1899     if (Or->hasOneUse()) {
1900       Value *A = Builder.CreateAnd(OrOp0, ~C);
1901       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1902     }
1903   }
1904 
1905   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1906     return nullptr;
1907 
1908   Value *P, *Q;
1909   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1910     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1911     // -> and (icmp eq P, null), (icmp eq Q, null).
1912     Value *CmpP =
1913         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1914     Value *CmpQ =
1915         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1916     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1917     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1918   }
1919 
1920   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1921   // a shorter form that has more potential to be folded even further.
1922   Value *X1, *X2, *X3, *X4;
1923   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1924       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1925     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1926     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1927     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1928     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1929     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1930     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1931   }
1932 
1933   return nullptr;
1934 }
1935 
1936 /// Fold icmp (mul X, Y), C.
1937 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1938                                                BinaryOperator *Mul,
1939                                                const APInt &C) {
1940   const APInt *MulC;
1941   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1942     return nullptr;
1943 
1944   // If this is a test of the sign bit and the multiply is sign-preserving with
1945   // a constant operand, use the multiply LHS operand instead.
1946   ICmpInst::Predicate Pred = Cmp.getPredicate();
1947   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1948     if (MulC->isNegative())
1949       Pred = ICmpInst::getSwappedPredicate(Pred);
1950     return new ICmpInst(Pred, Mul->getOperand(0),
1951                         Constant::getNullValue(Mul->getType()));
1952   }
1953 
1954   return nullptr;
1955 }
1956 
1957 /// Fold icmp (shl 1, Y), C.
1958 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1959                                    const APInt &C) {
1960   Value *Y;
1961   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1962     return nullptr;
1963 
1964   Type *ShiftType = Shl->getType();
1965   unsigned TypeBits = C.getBitWidth();
1966   bool CIsPowerOf2 = C.isPowerOf2();
1967   ICmpInst::Predicate Pred = Cmp.getPredicate();
1968   if (Cmp.isUnsigned()) {
1969     // (1 << Y) pred C -> Y pred Log2(C)
1970     if (!CIsPowerOf2) {
1971       // (1 << Y) <  30 -> Y <= 4
1972       // (1 << Y) <= 30 -> Y <= 4
1973       // (1 << Y) >= 30 -> Y >  4
1974       // (1 << Y) >  30 -> Y >  4
1975       if (Pred == ICmpInst::ICMP_ULT)
1976         Pred = ICmpInst::ICMP_ULE;
1977       else if (Pred == ICmpInst::ICMP_UGE)
1978         Pred = ICmpInst::ICMP_UGT;
1979     }
1980 
1981     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1982     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1983     unsigned CLog2 = C.logBase2();
1984     if (CLog2 == TypeBits - 1) {
1985       if (Pred == ICmpInst::ICMP_UGE)
1986         Pred = ICmpInst::ICMP_EQ;
1987       else if (Pred == ICmpInst::ICMP_ULT)
1988         Pred = ICmpInst::ICMP_NE;
1989     }
1990     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1991   } else if (Cmp.isSigned()) {
1992     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1993     if (C.isAllOnesValue()) {
1994       // (1 << Y) <= -1 -> Y == 31
1995       if (Pred == ICmpInst::ICMP_SLE)
1996         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1997 
1998       // (1 << Y) >  -1 -> Y != 31
1999       if (Pred == ICmpInst::ICMP_SGT)
2000         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2001     } else if (!C) {
2002       // (1 << Y) <  0 -> Y == 31
2003       // (1 << Y) <= 0 -> Y == 31
2004       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2005         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2006 
2007       // (1 << Y) >= 0 -> Y != 31
2008       // (1 << Y) >  0 -> Y != 31
2009       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2010         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2011     }
2012   } else if (Cmp.isEquality() && CIsPowerOf2) {
2013     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2014   }
2015 
2016   return nullptr;
2017 }
2018 
2019 /// Fold icmp (shl X, Y), C.
2020 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2021                                                BinaryOperator *Shl,
2022                                                const APInt &C) {
2023   const APInt *ShiftVal;
2024   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2025     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2026 
2027   const APInt *ShiftAmt;
2028   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2029     return foldICmpShlOne(Cmp, Shl, C);
2030 
2031   // Check that the shift amount is in range. If not, don't perform undefined
2032   // shifts. When the shift is visited, it will be simplified.
2033   unsigned TypeBits = C.getBitWidth();
2034   if (ShiftAmt->uge(TypeBits))
2035     return nullptr;
2036 
2037   ICmpInst::Predicate Pred = Cmp.getPredicate();
2038   Value *X = Shl->getOperand(0);
2039   Type *ShType = Shl->getType();
2040 
2041   // NSW guarantees that we are only shifting out sign bits from the high bits,
2042   // so we can ASHR the compare constant without needing a mask and eliminate
2043   // the shift.
2044   if (Shl->hasNoSignedWrap()) {
2045     if (Pred == ICmpInst::ICMP_SGT) {
2046       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2047       APInt ShiftedC = C.ashr(*ShiftAmt);
2048       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2049     }
2050     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2051         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2052       APInt ShiftedC = C.ashr(*ShiftAmt);
2053       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2054     }
2055     if (Pred == ICmpInst::ICMP_SLT) {
2056       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2057       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2058       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2059       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2060       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2061       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2062       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2063     }
2064     // If this is a signed comparison to 0 and the shift is sign preserving,
2065     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2066     // do that if we're sure to not continue on in this function.
2067     if (isSignTest(Pred, C))
2068       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2069   }
2070 
2071   // NUW guarantees that we are only shifting out zero bits from the high bits,
2072   // so we can LSHR the compare constant without needing a mask and eliminate
2073   // the shift.
2074   if (Shl->hasNoUnsignedWrap()) {
2075     if (Pred == ICmpInst::ICMP_UGT) {
2076       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2077       APInt ShiftedC = C.lshr(*ShiftAmt);
2078       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2079     }
2080     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2081         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2082       APInt ShiftedC = C.lshr(*ShiftAmt);
2083       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084     }
2085     if (Pred == ICmpInst::ICMP_ULT) {
2086       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2087       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2088       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2089       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2090       assert(C.ugt(0) && "ult 0 should have been eliminated");
2091       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2092       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2093     }
2094   }
2095 
2096   if (Cmp.isEquality() && Shl->hasOneUse()) {
2097     // Strength-reduce the shift into an 'and'.
2098     Constant *Mask = ConstantInt::get(
2099         ShType,
2100         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2101     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2102     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2103     return new ICmpInst(Pred, And, LShrC);
2104   }
2105 
2106   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2107   bool TrueIfSigned = false;
2108   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2109     // (X << 31) <s 0  --> (X & 1) != 0
2110     Constant *Mask = ConstantInt::get(
2111         ShType,
2112         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2113     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2114     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2115                         And, Constant::getNullValue(ShType));
2116   }
2117 
2118   // Simplify 'shl' inequality test into 'and' equality test.
2119   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2120     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2121     if ((C + 1).isPowerOf2() &&
2122         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2123       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2124       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2125                                                      : ICmpInst::ICMP_NE,
2126                           And, Constant::getNullValue(ShType));
2127     }
2128     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2129     if (C.isPowerOf2() &&
2130         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2131       Value *And =
2132           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2133       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2134                                                      : ICmpInst::ICMP_NE,
2135                           And, Constant::getNullValue(ShType));
2136     }
2137   }
2138 
2139   // Transform (icmp pred iM (shl iM %v, N), C)
2140   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2141   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2142   // This enables us to get rid of the shift in favor of a trunc that may be
2143   // free on the target. It has the additional benefit of comparing to a
2144   // smaller constant that may be more target-friendly.
2145   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2146   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2147       DL.isLegalInteger(TypeBits - Amt)) {
2148     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2149     if (ShType->isVectorTy())
2150       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2151     Constant *NewC =
2152         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2153     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2154   }
2155 
2156   return nullptr;
2157 }
2158 
2159 /// Fold icmp ({al}shr X, Y), C.
2160 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2161                                                BinaryOperator *Shr,
2162                                                const APInt &C) {
2163   // An exact shr only shifts out zero bits, so:
2164   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2165   Value *X = Shr->getOperand(0);
2166   CmpInst::Predicate Pred = Cmp.getPredicate();
2167   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2168       C.isNullValue())
2169     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2170 
2171   const APInt *ShiftVal;
2172   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2173     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2174 
2175   const APInt *ShiftAmt;
2176   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2177     return nullptr;
2178 
2179   // Check that the shift amount is in range. If not, don't perform undefined
2180   // shifts. When the shift is visited it will be simplified.
2181   unsigned TypeBits = C.getBitWidth();
2182   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2183   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2184     return nullptr;
2185 
2186   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2187   bool IsExact = Shr->isExact();
2188   Type *ShrTy = Shr->getType();
2189   // TODO: If we could guarantee that InstSimplify would handle all of the
2190   // constant-value-based preconditions in the folds below, then we could assert
2191   // those conditions rather than checking them. This is difficult because of
2192   // undef/poison (PR34838).
2193   if (IsAShr) {
2194     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2195       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2196       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2197       APInt ShiftedC = C.shl(ShAmtVal);
2198       if (ShiftedC.ashr(ShAmtVal) == C)
2199         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2200     }
2201     if (Pred == CmpInst::ICMP_SGT) {
2202       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2203       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2204       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2205           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2206         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2207     }
2208   } else {
2209     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2210       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2211       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2212       APInt ShiftedC = C.shl(ShAmtVal);
2213       if (ShiftedC.lshr(ShAmtVal) == C)
2214         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2215     }
2216     if (Pred == CmpInst::ICMP_UGT) {
2217       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2218       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2219       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2220         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2221     }
2222   }
2223 
2224   if (!Cmp.isEquality())
2225     return nullptr;
2226 
2227   // Handle equality comparisons of shift-by-constant.
2228 
2229   // If the comparison constant changes with the shift, the comparison cannot
2230   // succeed (bits of the comparison constant cannot match the shifted value).
2231   // This should be known by InstSimplify and already be folded to true/false.
2232   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2233           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2234          "Expected icmp+shr simplify did not occur.");
2235 
2236   // If the bits shifted out are known zero, compare the unshifted value:
2237   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2238   if (Shr->isExact())
2239     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2240 
2241   if (Shr->hasOneUse()) {
2242     // Canonicalize the shift into an 'and':
2243     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2244     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2245     Constant *Mask = ConstantInt::get(ShrTy, Val);
2246     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2247     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2248   }
2249 
2250   return nullptr;
2251 }
2252 
2253 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2254                                                 BinaryOperator *SRem,
2255                                                 const APInt &C) {
2256   // Match an 'is positive' or 'is negative' comparison of remainder by a
2257   // constant power-of-2 value:
2258   // (X % pow2C) sgt/slt 0
2259   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2260   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2261     return nullptr;
2262 
2263   // TODO: The one-use check is standard because we do not typically want to
2264   //       create longer instruction sequences, but this might be a special-case
2265   //       because srem is not good for analysis or codegen.
2266   if (!SRem->hasOneUse())
2267     return nullptr;
2268 
2269   const APInt *DivisorC;
2270   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2271     return nullptr;
2272 
2273   // Mask off the sign bit and the modulo bits (low-bits).
2274   Type *Ty = SRem->getType();
2275   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2276   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2277   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2278 
2279   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2280   // bit is set. Example:
2281   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2282   if (Pred == ICmpInst::ICMP_SGT)
2283     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2284 
2285   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2286   // bit is set. Example:
2287   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2288   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2289 }
2290 
2291 /// Fold icmp (udiv X, Y), C.
2292 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2293                                                 BinaryOperator *UDiv,
2294                                                 const APInt &C) {
2295   const APInt *C2;
2296   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2297     return nullptr;
2298 
2299   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2300 
2301   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2302   Value *Y = UDiv->getOperand(1);
2303   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2304     assert(!C.isMaxValue() &&
2305            "icmp ugt X, UINT_MAX should have been simplified already.");
2306     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2307                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2308   }
2309 
2310   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2311   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2312     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2313     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2314                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2315   }
2316 
2317   return nullptr;
2318 }
2319 
2320 /// Fold icmp ({su}div X, Y), C.
2321 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2322                                                BinaryOperator *Div,
2323                                                const APInt &C) {
2324   // Fold: icmp pred ([us]div X, C2), C -> range test
2325   // Fold this div into the comparison, producing a range check.
2326   // Determine, based on the divide type, what the range is being
2327   // checked.  If there is an overflow on the low or high side, remember
2328   // it, otherwise compute the range [low, hi) bounding the new value.
2329   // See: InsertRangeTest above for the kinds of replacements possible.
2330   const APInt *C2;
2331   if (!match(Div->getOperand(1), m_APInt(C2)))
2332     return nullptr;
2333 
2334   // FIXME: If the operand types don't match the type of the divide
2335   // then don't attempt this transform. The code below doesn't have the
2336   // logic to deal with a signed divide and an unsigned compare (and
2337   // vice versa). This is because (x /s C2) <s C  produces different
2338   // results than (x /s C2) <u C or (x /u C2) <s C or even
2339   // (x /u C2) <u C.  Simply casting the operands and result won't
2340   // work. :(  The if statement below tests that condition and bails
2341   // if it finds it.
2342   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2343   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2344     return nullptr;
2345 
2346   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2347   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2348   // division-by-constant cases should be present, we can not assert that they
2349   // have happened before we reach this icmp instruction.
2350   if (C2->isNullValue() || C2->isOneValue() ||
2351       (DivIsSigned && C2->isAllOnesValue()))
2352     return nullptr;
2353 
2354   // Compute Prod = C * C2. We are essentially solving an equation of
2355   // form X / C2 = C. We solve for X by multiplying C2 and C.
2356   // By solving for X, we can turn this into a range check instead of computing
2357   // a divide.
2358   APInt Prod = C * *C2;
2359 
2360   // Determine if the product overflows by seeing if the product is not equal to
2361   // the divide. Make sure we do the same kind of divide as in the LHS
2362   // instruction that we're folding.
2363   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2364 
2365   ICmpInst::Predicate Pred = Cmp.getPredicate();
2366 
2367   // If the division is known to be exact, then there is no remainder from the
2368   // divide, so the covered range size is unit, otherwise it is the divisor.
2369   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2370 
2371   // Figure out the interval that is being checked.  For example, a comparison
2372   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2373   // Compute this interval based on the constants involved and the signedness of
2374   // the compare/divide.  This computes a half-open interval, keeping track of
2375   // whether either value in the interval overflows.  After analysis each
2376   // overflow variable is set to 0 if it's corresponding bound variable is valid
2377   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2378   int LoOverflow = 0, HiOverflow = 0;
2379   APInt LoBound, HiBound;
2380 
2381   if (!DivIsSigned) {  // udiv
2382     // e.g. X/5 op 3  --> [15, 20)
2383     LoBound = Prod;
2384     HiOverflow = LoOverflow = ProdOV;
2385     if (!HiOverflow) {
2386       // If this is not an exact divide, then many values in the range collapse
2387       // to the same result value.
2388       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2389     }
2390   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2391     if (C.isNullValue()) {       // (X / pos) op 0
2392       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2393       LoBound = -(RangeSize - 1);
2394       HiBound = RangeSize;
2395     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2396       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2397       HiOverflow = LoOverflow = ProdOV;
2398       if (!HiOverflow)
2399         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2400     } else {                       // (X / pos) op neg
2401       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2402       HiBound = Prod + 1;
2403       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2404       if (!LoOverflow) {
2405         APInt DivNeg = -RangeSize;
2406         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2407       }
2408     }
2409   } else if (C2->isNegative()) { // Divisor is < 0.
2410     if (Div->isExact())
2411       RangeSize.negate();
2412     if (C.isNullValue()) { // (X / neg) op 0
2413       // e.g. X/-5 op 0  --> [-4, 5)
2414       LoBound = RangeSize + 1;
2415       HiBound = -RangeSize;
2416       if (HiBound == *C2) {        // -INTMIN = INTMIN
2417         HiOverflow = 1;            // [INTMIN+1, overflow)
2418         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2419       }
2420     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2421       // e.g. X/-5 op 3  --> [-19, -14)
2422       HiBound = Prod + 1;
2423       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2424       if (!LoOverflow)
2425         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2426     } else {                       // (X / neg) op neg
2427       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2428       LoOverflow = HiOverflow = ProdOV;
2429       if (!HiOverflow)
2430         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2431     }
2432 
2433     // Dividing by a negative swaps the condition.  LT <-> GT
2434     Pred = ICmpInst::getSwappedPredicate(Pred);
2435   }
2436 
2437   Value *X = Div->getOperand(0);
2438   switch (Pred) {
2439     default: llvm_unreachable("Unhandled icmp opcode!");
2440     case ICmpInst::ICMP_EQ:
2441       if (LoOverflow && HiOverflow)
2442         return replaceInstUsesWith(Cmp, Builder.getFalse());
2443       if (HiOverflow)
2444         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2445                             ICmpInst::ICMP_UGE, X,
2446                             ConstantInt::get(Div->getType(), LoBound));
2447       if (LoOverflow)
2448         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2449                             ICmpInst::ICMP_ULT, X,
2450                             ConstantInt::get(Div->getType(), HiBound));
2451       return replaceInstUsesWith(
2452           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2453     case ICmpInst::ICMP_NE:
2454       if (LoOverflow && HiOverflow)
2455         return replaceInstUsesWith(Cmp, Builder.getTrue());
2456       if (HiOverflow)
2457         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2458                             ICmpInst::ICMP_ULT, X,
2459                             ConstantInt::get(Div->getType(), LoBound));
2460       if (LoOverflow)
2461         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2462                             ICmpInst::ICMP_UGE, X,
2463                             ConstantInt::get(Div->getType(), HiBound));
2464       return replaceInstUsesWith(Cmp,
2465                                  insertRangeTest(X, LoBound, HiBound,
2466                                                  DivIsSigned, false));
2467     case ICmpInst::ICMP_ULT:
2468     case ICmpInst::ICMP_SLT:
2469       if (LoOverflow == +1)   // Low bound is greater than input range.
2470         return replaceInstUsesWith(Cmp, Builder.getTrue());
2471       if (LoOverflow == -1)   // Low bound is less than input range.
2472         return replaceInstUsesWith(Cmp, Builder.getFalse());
2473       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2474     case ICmpInst::ICMP_UGT:
2475     case ICmpInst::ICMP_SGT:
2476       if (HiOverflow == +1)       // High bound greater than input range.
2477         return replaceInstUsesWith(Cmp, Builder.getFalse());
2478       if (HiOverflow == -1)       // High bound less than input range.
2479         return replaceInstUsesWith(Cmp, Builder.getTrue());
2480       if (Pred == ICmpInst::ICMP_UGT)
2481         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2482                             ConstantInt::get(Div->getType(), HiBound));
2483       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2484                           ConstantInt::get(Div->getType(), HiBound));
2485   }
2486 
2487   return nullptr;
2488 }
2489 
2490 /// Fold icmp (sub X, Y), C.
2491 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2492                                                BinaryOperator *Sub,
2493                                                const APInt &C) {
2494   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2495   ICmpInst::Predicate Pred = Cmp.getPredicate();
2496   const APInt *C2;
2497   APInt SubResult;
2498 
2499   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2500   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2501     return new ICmpInst(Cmp.getPredicate(), Y,
2502                         ConstantInt::get(Y->getType(), 0));
2503 
2504   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2505   if (match(X, m_APInt(C2)) &&
2506       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2507        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2508       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2509     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2510                         ConstantInt::get(Y->getType(), SubResult));
2511 
2512   // The following transforms are only worth it if the only user of the subtract
2513   // is the icmp.
2514   if (!Sub->hasOneUse())
2515     return nullptr;
2516 
2517   if (Sub->hasNoSignedWrap()) {
2518     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2519     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2520       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2521 
2522     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2523     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2524       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2525 
2526     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2527     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2528       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2529 
2530     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2531     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2532       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2533   }
2534 
2535   if (!match(X, m_APInt(C2)))
2536     return nullptr;
2537 
2538   // C2 - Y <u C -> (Y | (C - 1)) == C2
2539   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2540   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2541       (*C2 & (C - 1)) == (C - 1))
2542     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2543 
2544   // C2 - Y >u C -> (Y | C) != C2
2545   //   iff C2 & C == C and C + 1 is a power of 2
2546   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2547     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2548 
2549   return nullptr;
2550 }
2551 
2552 /// Fold icmp (add X, Y), C.
2553 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2554                                                BinaryOperator *Add,
2555                                                const APInt &C) {
2556   Value *Y = Add->getOperand(1);
2557   const APInt *C2;
2558   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2559     return nullptr;
2560 
2561   // Fold icmp pred (add X, C2), C.
2562   Value *X = Add->getOperand(0);
2563   Type *Ty = Add->getType();
2564   CmpInst::Predicate Pred = Cmp.getPredicate();
2565 
2566   // If the add does not wrap, we can always adjust the compare by subtracting
2567   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2568   // are canonicalized to SGT/SLT/UGT/ULT.
2569   if ((Add->hasNoSignedWrap() &&
2570        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2571       (Add->hasNoUnsignedWrap() &&
2572        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2573     bool Overflow;
2574     APInt NewC =
2575         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2576     // If there is overflow, the result must be true or false.
2577     // TODO: Can we assert there is no overflow because InstSimplify always
2578     // handles those cases?
2579     if (!Overflow)
2580       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2581       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2582   }
2583 
2584   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2585   const APInt &Upper = CR.getUpper();
2586   const APInt &Lower = CR.getLower();
2587   if (Cmp.isSigned()) {
2588     if (Lower.isSignMask())
2589       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2590     if (Upper.isSignMask())
2591       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2592   } else {
2593     if (Lower.isMinValue())
2594       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2595     if (Upper.isMinValue())
2596       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2597   }
2598 
2599   if (!Add->hasOneUse())
2600     return nullptr;
2601 
2602   // X+C <u C2 -> (X & -C2) == C
2603   //   iff C & (C2-1) == 0
2604   //       C2 is a power of 2
2605   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2606     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2607                         ConstantExpr::getNeg(cast<Constant>(Y)));
2608 
2609   // X+C >u C2 -> (X & ~C2) != C
2610   //   iff C & C2 == 0
2611   //       C2+1 is a power of 2
2612   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2613     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2614                         ConstantExpr::getNeg(cast<Constant>(Y)));
2615 
2616   return nullptr;
2617 }
2618 
2619 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2620                                            Value *&RHS, ConstantInt *&Less,
2621                                            ConstantInt *&Equal,
2622                                            ConstantInt *&Greater) {
2623   // TODO: Generalize this to work with other comparison idioms or ensure
2624   // they get canonicalized into this form.
2625 
2626   // select i1 (a == b),
2627   //        i32 Equal,
2628   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2629   // where Equal, Less and Greater are placeholders for any three constants.
2630   ICmpInst::Predicate PredA;
2631   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2632       !ICmpInst::isEquality(PredA))
2633     return false;
2634   Value *EqualVal = SI->getTrueValue();
2635   Value *UnequalVal = SI->getFalseValue();
2636   // We still can get non-canonical predicate here, so canonicalize.
2637   if (PredA == ICmpInst::ICMP_NE)
2638     std::swap(EqualVal, UnequalVal);
2639   if (!match(EqualVal, m_ConstantInt(Equal)))
2640     return false;
2641   ICmpInst::Predicate PredB;
2642   Value *LHS2, *RHS2;
2643   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2644                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2645     return false;
2646   // We can get predicate mismatch here, so canonicalize if possible:
2647   // First, ensure that 'LHS' match.
2648   if (LHS2 != LHS) {
2649     // x sgt y <--> y slt x
2650     std::swap(LHS2, RHS2);
2651     PredB = ICmpInst::getSwappedPredicate(PredB);
2652   }
2653   if (LHS2 != LHS)
2654     return false;
2655   // We also need to canonicalize 'RHS'.
2656   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2657     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2658     auto FlippedStrictness =
2659         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2660     if (!FlippedStrictness)
2661       return false;
2662     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2663     RHS2 = FlippedStrictness->second;
2664     // And kind-of perform the result swap.
2665     std::swap(Less, Greater);
2666     PredB = ICmpInst::ICMP_SLT;
2667   }
2668   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2669 }
2670 
2671 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2672                                                   SelectInst *Select,
2673                                                   ConstantInt *C) {
2674 
2675   assert(C && "Cmp RHS should be a constant int!");
2676   // If we're testing a constant value against the result of a three way
2677   // comparison, the result can be expressed directly in terms of the
2678   // original values being compared.  Note: We could possibly be more
2679   // aggressive here and remove the hasOneUse test. The original select is
2680   // really likely to simplify or sink when we remove a test of the result.
2681   Value *OrigLHS, *OrigRHS;
2682   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2683   if (Cmp.hasOneUse() &&
2684       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2685                               C3GreaterThan)) {
2686     assert(C1LessThan && C2Equal && C3GreaterThan);
2687 
2688     bool TrueWhenLessThan =
2689         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2690             ->isAllOnesValue();
2691     bool TrueWhenEqual =
2692         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2693             ->isAllOnesValue();
2694     bool TrueWhenGreaterThan =
2695         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2696             ->isAllOnesValue();
2697 
2698     // This generates the new instruction that will replace the original Cmp
2699     // Instruction. Instead of enumerating the various combinations when
2700     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2701     // false, we rely on chaining of ORs and future passes of InstCombine to
2702     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2703 
2704     // When none of the three constants satisfy the predicate for the RHS (C),
2705     // the entire original Cmp can be simplified to a false.
2706     Value *Cond = Builder.getFalse();
2707     if (TrueWhenLessThan)
2708       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2709                                                        OrigLHS, OrigRHS));
2710     if (TrueWhenEqual)
2711       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2712                                                        OrigLHS, OrigRHS));
2713     if (TrueWhenGreaterThan)
2714       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2715                                                        OrigLHS, OrigRHS));
2716 
2717     return replaceInstUsesWith(Cmp, Cond);
2718   }
2719   return nullptr;
2720 }
2721 
2722 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2723                                     InstCombiner::BuilderTy &Builder) {
2724   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2725   if (!Bitcast)
2726     return nullptr;
2727 
2728   ICmpInst::Predicate Pred = Cmp.getPredicate();
2729   Value *Op1 = Cmp.getOperand(1);
2730   Value *BCSrcOp = Bitcast->getOperand(0);
2731 
2732   // Make sure the bitcast doesn't change the number of vector elements.
2733   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2734           Bitcast->getDestTy()->getScalarSizeInBits()) {
2735     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2736     Value *X;
2737     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2738       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2739       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2740       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2741       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2742       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2743            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2744           match(Op1, m_Zero()))
2745         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2746 
2747       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2748       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2749         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2750 
2751       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2752       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2753         return new ICmpInst(Pred, X,
2754                             ConstantInt::getAllOnesValue(X->getType()));
2755     }
2756 
2757     // Zero-equality checks are preserved through unsigned floating-point casts:
2758     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2759     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2760     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2761       if (Cmp.isEquality() && match(Op1, m_Zero()))
2762         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2763   }
2764 
2765   // Test to see if the operands of the icmp are casted versions of other
2766   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2767   if (Bitcast->getType()->isPointerTy() &&
2768       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2769     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2770     // so eliminate it as well.
2771     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2772       Op1 = BC2->getOperand(0);
2773 
2774     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2775     return new ICmpInst(Pred, BCSrcOp, Op1);
2776   }
2777 
2778   // Folding: icmp <pred> iN X, C
2779   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2780   //    and C is a splat of a K-bit pattern
2781   //    and SC is a constant vector = <C', C', C', ..., C'>
2782   // Into:
2783   //   %E = extractelement <M x iK> %vec, i32 C'
2784   //   icmp <pred> iK %E, trunc(C)
2785   const APInt *C;
2786   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2787       !Bitcast->getType()->isIntegerTy() ||
2788       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2789     return nullptr;
2790 
2791   Value *Vec;
2792   Constant *Mask;
2793   if (match(BCSrcOp,
2794             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2795     // Check whether every element of Mask is the same constant
2796     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2797       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2798       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2799       if (C->isSplat(EltTy->getBitWidth())) {
2800         // Fold the icmp based on the value of C
2801         // If C is M copies of an iK sized bit pattern,
2802         // then:
2803         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2804         //       icmp <pred> iK %SplatVal, <pattern>
2805         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2806         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2807         return new ICmpInst(Pred, Extract, NewC);
2808       }
2809     }
2810   }
2811   return nullptr;
2812 }
2813 
2814 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2815 /// where X is some kind of instruction.
2816 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2817   const APInt *C;
2818   if (!match(Cmp.getOperand(1), m_APInt(C)))
2819     return nullptr;
2820 
2821   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2822     switch (BO->getOpcode()) {
2823     case Instruction::Xor:
2824       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2825         return I;
2826       break;
2827     case Instruction::And:
2828       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2829         return I;
2830       break;
2831     case Instruction::Or:
2832       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2833         return I;
2834       break;
2835     case Instruction::Mul:
2836       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2837         return I;
2838       break;
2839     case Instruction::Shl:
2840       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2841         return I;
2842       break;
2843     case Instruction::LShr:
2844     case Instruction::AShr:
2845       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2846         return I;
2847       break;
2848     case Instruction::SRem:
2849       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2850         return I;
2851       break;
2852     case Instruction::UDiv:
2853       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2854         return I;
2855       LLVM_FALLTHROUGH;
2856     case Instruction::SDiv:
2857       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2858         return I;
2859       break;
2860     case Instruction::Sub:
2861       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2862         return I;
2863       break;
2864     case Instruction::Add:
2865       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2866         return I;
2867       break;
2868     default:
2869       break;
2870     }
2871     // TODO: These folds could be refactored to be part of the above calls.
2872     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2873       return I;
2874   }
2875 
2876   // Match against CmpInst LHS being instructions other than binary operators.
2877 
2878   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2879     // For now, we only support constant integers while folding the
2880     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2881     // similar to the cases handled by binary ops above.
2882     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2883       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2884         return I;
2885   }
2886 
2887   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2888     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2889       return I;
2890   }
2891 
2892   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2893     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2894       return I;
2895 
2896   return nullptr;
2897 }
2898 
2899 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2900 /// icmp eq/ne BO, C.
2901 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2902                                                              BinaryOperator *BO,
2903                                                              const APInt &C) {
2904   // TODO: Some of these folds could work with arbitrary constants, but this
2905   // function is limited to scalar and vector splat constants.
2906   if (!Cmp.isEquality())
2907     return nullptr;
2908 
2909   ICmpInst::Predicate Pred = Cmp.getPredicate();
2910   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2911   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2912   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2913 
2914   switch (BO->getOpcode()) {
2915   case Instruction::SRem:
2916     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2917     if (C.isNullValue() && BO->hasOneUse()) {
2918       const APInt *BOC;
2919       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2920         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2921         return new ICmpInst(Pred, NewRem,
2922                             Constant::getNullValue(BO->getType()));
2923       }
2924     }
2925     break;
2926   case Instruction::Add: {
2927     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2928     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2929       if (BO->hasOneUse())
2930         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2931     } else if (C.isNullValue()) {
2932       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2933       // efficiently invertible, or if the add has just this one use.
2934       if (Value *NegVal = dyn_castNegVal(BOp1))
2935         return new ICmpInst(Pred, BOp0, NegVal);
2936       if (Value *NegVal = dyn_castNegVal(BOp0))
2937         return new ICmpInst(Pred, NegVal, BOp1);
2938       if (BO->hasOneUse()) {
2939         Value *Neg = Builder.CreateNeg(BOp1);
2940         Neg->takeName(BO);
2941         return new ICmpInst(Pred, BOp0, Neg);
2942       }
2943     }
2944     break;
2945   }
2946   case Instruction::Xor:
2947     if (BO->hasOneUse()) {
2948       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2949         // For the xor case, we can xor two constants together, eliminating
2950         // the explicit xor.
2951         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2952       } else if (C.isNullValue()) {
2953         // Replace ((xor A, B) != 0) with (A != B)
2954         return new ICmpInst(Pred, BOp0, BOp1);
2955       }
2956     }
2957     break;
2958   case Instruction::Sub:
2959     if (BO->hasOneUse()) {
2960       // Only check for constant LHS here, as constant RHS will be canonicalized
2961       // to add and use the fold above.
2962       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
2963         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2964         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
2965       } else if (C.isNullValue()) {
2966         // Replace ((sub A, B) != 0) with (A != B).
2967         return new ICmpInst(Pred, BOp0, BOp1);
2968       }
2969     }
2970     break;
2971   case Instruction::Or: {
2972     const APInt *BOC;
2973     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2974       // Comparing if all bits outside of a constant mask are set?
2975       // Replace (X | C) == -1 with (X & ~C) == ~C.
2976       // This removes the -1 constant.
2977       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2978       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2979       return new ICmpInst(Pred, And, NotBOC);
2980     }
2981     break;
2982   }
2983   case Instruction::And: {
2984     const APInt *BOC;
2985     if (match(BOp1, m_APInt(BOC))) {
2986       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2987       if (C == *BOC && C.isPowerOf2())
2988         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2989                             BO, Constant::getNullValue(RHS->getType()));
2990     }
2991     break;
2992   }
2993   case Instruction::Mul:
2994     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2995       const APInt *BOC;
2996       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2997         // The trivial case (mul X, 0) is handled by InstSimplify.
2998         // General case : (mul X, C) != 0 iff X != 0
2999         //                (mul X, C) == 0 iff X == 0
3000         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3001       }
3002     }
3003     break;
3004   case Instruction::UDiv:
3005     if (C.isNullValue()) {
3006       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3007       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3008       return new ICmpInst(NewPred, BOp1, BOp0);
3009     }
3010     break;
3011   default:
3012     break;
3013   }
3014   return nullptr;
3015 }
3016 
3017 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3018 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3019                                                            IntrinsicInst *II,
3020                                                            const APInt &C) {
3021   Type *Ty = II->getType();
3022   unsigned BitWidth = C.getBitWidth();
3023   switch (II->getIntrinsicID()) {
3024   case Intrinsic::bswap:
3025     // bswap(A) == C  ->  A == bswap(C)
3026     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3027                         ConstantInt::get(Ty, C.byteSwap()));
3028 
3029   case Intrinsic::ctlz:
3030   case Intrinsic::cttz: {
3031     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3032     if (C == BitWidth)
3033       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3034                           ConstantInt::getNullValue(Ty));
3035 
3036     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3037     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3038     // Limit to one use to ensure we don't increase instruction count.
3039     unsigned Num = C.getLimitedValue(BitWidth);
3040     if (Num != BitWidth && II->hasOneUse()) {
3041       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3042       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3043                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3044       APInt Mask2 = IsTrailing
3045         ? APInt::getOneBitSet(BitWidth, Num)
3046         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3047       return new ICmpInst(Cmp.getPredicate(),
3048           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3049           ConstantInt::get(Ty, Mask2));
3050     }
3051     break;
3052   }
3053 
3054   case Intrinsic::ctpop: {
3055     // popcount(A) == 0  ->  A == 0 and likewise for !=
3056     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3057     bool IsZero = C.isNullValue();
3058     if (IsZero || C == BitWidth)
3059       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3060           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3061 
3062     break;
3063   }
3064 
3065   case Intrinsic::uadd_sat: {
3066     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3067     if (C.isNullValue()) {
3068       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3069       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3070     }
3071     break;
3072   }
3073 
3074   case Intrinsic::usub_sat: {
3075     // usub.sat(a, b) == 0  ->  a <= b
3076     if (C.isNullValue()) {
3077       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3078           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3079       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3080     }
3081     break;
3082   }
3083   default:
3084     break;
3085   }
3086 
3087   return nullptr;
3088 }
3089 
3090 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3091 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3092                                                          IntrinsicInst *II,
3093                                                          const APInt &C) {
3094   if (Cmp.isEquality())
3095     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3096 
3097   Type *Ty = II->getType();
3098   unsigned BitWidth = C.getBitWidth();
3099   switch (II->getIntrinsicID()) {
3100   case Intrinsic::ctlz: {
3101     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3102     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3103       unsigned Num = C.getLimitedValue();
3104       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3105       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3106                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3107     }
3108 
3109     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3110     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3111         C.uge(1) && C.ule(BitWidth)) {
3112       unsigned Num = C.getLimitedValue();
3113       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3114       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3115                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3116     }
3117     break;
3118   }
3119   case Intrinsic::cttz: {
3120     // Limit to one use to ensure we don't increase instruction count.
3121     if (!II->hasOneUse())
3122       return nullptr;
3123 
3124     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3125     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3126       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3127       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3128                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3129                              ConstantInt::getNullValue(Ty));
3130     }
3131 
3132     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3133     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3134         C.uge(1) && C.ule(BitWidth)) {
3135       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3136       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3137                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3138                              ConstantInt::getNullValue(Ty));
3139     }
3140     break;
3141   }
3142   default:
3143     break;
3144   }
3145 
3146   return nullptr;
3147 }
3148 
3149 /// Handle icmp with constant (but not simple integer constant) RHS.
3150 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3151   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3152   Constant *RHSC = dyn_cast<Constant>(Op1);
3153   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3154   if (!RHSC || !LHSI)
3155     return nullptr;
3156 
3157   switch (LHSI->getOpcode()) {
3158   case Instruction::GetElementPtr:
3159     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3160     if (RHSC->isNullValue() &&
3161         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3162       return new ICmpInst(
3163           I.getPredicate(), LHSI->getOperand(0),
3164           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3165     break;
3166   case Instruction::PHI:
3167     // Only fold icmp into the PHI if the phi and icmp are in the same
3168     // block.  If in the same block, we're encouraging jump threading.  If
3169     // not, we are just pessimizing the code by making an i1 phi.
3170     if (LHSI->getParent() == I.getParent())
3171       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3172         return NV;
3173     break;
3174   case Instruction::Select: {
3175     // If either operand of the select is a constant, we can fold the
3176     // comparison into the select arms, which will cause one to be
3177     // constant folded and the select turned into a bitwise or.
3178     Value *Op1 = nullptr, *Op2 = nullptr;
3179     ConstantInt *CI = nullptr;
3180     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3181       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3182       CI = dyn_cast<ConstantInt>(Op1);
3183     }
3184     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3185       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3186       CI = dyn_cast<ConstantInt>(Op2);
3187     }
3188 
3189     // We only want to perform this transformation if it will not lead to
3190     // additional code. This is true if either both sides of the select
3191     // fold to a constant (in which case the icmp is replaced with a select
3192     // which will usually simplify) or this is the only user of the
3193     // select (in which case we are trading a select+icmp for a simpler
3194     // select+icmp) or all uses of the select can be replaced based on
3195     // dominance information ("Global cases").
3196     bool Transform = false;
3197     if (Op1 && Op2)
3198       Transform = true;
3199     else if (Op1 || Op2) {
3200       // Local case
3201       if (LHSI->hasOneUse())
3202         Transform = true;
3203       // Global cases
3204       else if (CI && !CI->isZero())
3205         // When Op1 is constant try replacing select with second operand.
3206         // Otherwise Op2 is constant and try replacing select with first
3207         // operand.
3208         Transform =
3209             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3210     }
3211     if (Transform) {
3212       if (!Op1)
3213         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3214                                  I.getName());
3215       if (!Op2)
3216         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3217                                  I.getName());
3218       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3219     }
3220     break;
3221   }
3222   case Instruction::IntToPtr:
3223     // icmp pred inttoptr(X), null -> icmp pred X, 0
3224     if (RHSC->isNullValue() &&
3225         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3226       return new ICmpInst(
3227           I.getPredicate(), LHSI->getOperand(0),
3228           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3229     break;
3230 
3231   case Instruction::Load:
3232     // Try to optimize things like "A[i] > 4" to index computations.
3233     if (GetElementPtrInst *GEP =
3234             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3235       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3236         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3237             !cast<LoadInst>(LHSI)->isVolatile())
3238           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3239             return Res;
3240     }
3241     break;
3242   }
3243 
3244   return nullptr;
3245 }
3246 
3247 /// Some comparisons can be simplified.
3248 /// In this case, we are looking for comparisons that look like
3249 /// a check for a lossy truncation.
3250 /// Folds:
3251 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3252 /// Where Mask is some pattern that produces all-ones in low bits:
3253 ///    (-1 >> y)
3254 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3255 ///   ~(-1 << y)
3256 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3257 /// The Mask can be a constant, too.
3258 /// For some predicates, the operands are commutative.
3259 /// For others, x can only be on a specific side.
3260 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3261                                           InstCombiner::BuilderTy &Builder) {
3262   ICmpInst::Predicate SrcPred;
3263   Value *X, *M, *Y;
3264   auto m_VariableMask = m_CombineOr(
3265       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3266                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3267       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3268                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3269   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3270   if (!match(&I, m_c_ICmp(SrcPred,
3271                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3272                           m_Deferred(X))))
3273     return nullptr;
3274 
3275   ICmpInst::Predicate DstPred;
3276   switch (SrcPred) {
3277   case ICmpInst::Predicate::ICMP_EQ:
3278     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3279     DstPred = ICmpInst::Predicate::ICMP_ULE;
3280     break;
3281   case ICmpInst::Predicate::ICMP_NE:
3282     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3283     DstPred = ICmpInst::Predicate::ICMP_UGT;
3284     break;
3285   case ICmpInst::Predicate::ICMP_ULT:
3286     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3287     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3288     DstPred = ICmpInst::Predicate::ICMP_UGT;
3289     break;
3290   case ICmpInst::Predicate::ICMP_UGE:
3291     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3292     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3293     DstPred = ICmpInst::Predicate::ICMP_ULE;
3294     break;
3295   case ICmpInst::Predicate::ICMP_SLT:
3296     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3297     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3298     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3299       return nullptr;
3300     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3301       return nullptr;
3302     DstPred = ICmpInst::Predicate::ICMP_SGT;
3303     break;
3304   case ICmpInst::Predicate::ICMP_SGE:
3305     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3306     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3307     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3308       return nullptr;
3309     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3310       return nullptr;
3311     DstPred = ICmpInst::Predicate::ICMP_SLE;
3312     break;
3313   case ICmpInst::Predicate::ICMP_SGT:
3314   case ICmpInst::Predicate::ICMP_SLE:
3315     return nullptr;
3316   case ICmpInst::Predicate::ICMP_UGT:
3317   case ICmpInst::Predicate::ICMP_ULE:
3318     llvm_unreachable("Instsimplify took care of commut. variant");
3319     break;
3320   default:
3321     llvm_unreachable("All possible folds are handled.");
3322   }
3323 
3324   // The mask value may be a vector constant that has undefined elements. But it
3325   // may not be safe to propagate those undefs into the new compare, so replace
3326   // those elements by copying an existing, defined, and safe scalar constant.
3327   Type *OpTy = M->getType();
3328   auto *VecC = dyn_cast<Constant>(M);
3329   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3330     Constant *SafeReplacementConstant = nullptr;
3331     for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) {
3332       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3333         SafeReplacementConstant = VecC->getAggregateElement(i);
3334         break;
3335       }
3336     }
3337     assert(SafeReplacementConstant && "Failed to find undef replacement");
3338     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3339   }
3340 
3341   return Builder.CreateICmp(DstPred, X, M);
3342 }
3343 
3344 /// Some comparisons can be simplified.
3345 /// In this case, we are looking for comparisons that look like
3346 /// a check for a lossy signed truncation.
3347 /// Folds:   (MaskedBits is a constant.)
3348 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3349 /// Into:
3350 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3351 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3352 static Value *
3353 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3354                                  InstCombiner::BuilderTy &Builder) {
3355   ICmpInst::Predicate SrcPred;
3356   Value *X;
3357   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3358   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3359   if (!match(&I, m_c_ICmp(SrcPred,
3360                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3361                                           m_APInt(C1))),
3362                           m_Deferred(X))))
3363     return nullptr;
3364 
3365   // Potential handling of non-splats: for each element:
3366   //  * if both are undef, replace with constant 0.
3367   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3368   //  * if both are not undef, and are different, bailout.
3369   //  * else, only one is undef, then pick the non-undef one.
3370 
3371   // The shift amount must be equal.
3372   if (*C0 != *C1)
3373     return nullptr;
3374   const APInt &MaskedBits = *C0;
3375   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3376 
3377   ICmpInst::Predicate DstPred;
3378   switch (SrcPred) {
3379   case ICmpInst::Predicate::ICMP_EQ:
3380     // ((%x << MaskedBits) a>> MaskedBits) == %x
3381     //   =>
3382     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3383     DstPred = ICmpInst::Predicate::ICMP_ULT;
3384     break;
3385   case ICmpInst::Predicate::ICMP_NE:
3386     // ((%x << MaskedBits) a>> MaskedBits) != %x
3387     //   =>
3388     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3389     DstPred = ICmpInst::Predicate::ICMP_UGE;
3390     break;
3391   // FIXME: are more folds possible?
3392   default:
3393     return nullptr;
3394   }
3395 
3396   auto *XType = X->getType();
3397   const unsigned XBitWidth = XType->getScalarSizeInBits();
3398   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3399   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3400 
3401   // KeptBits = bitwidth(%x) - MaskedBits
3402   const APInt KeptBits = BitWidth - MaskedBits;
3403   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3404   // ICmpCst = (1 << KeptBits)
3405   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3406   assert(ICmpCst.isPowerOf2());
3407   // AddCst = (1 << (KeptBits-1))
3408   const APInt AddCst = ICmpCst.lshr(1);
3409   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3410 
3411   // T0 = add %x, AddCst
3412   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3413   // T1 = T0 DstPred ICmpCst
3414   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3415 
3416   return T1;
3417 }
3418 
3419 // Given pattern:
3420 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3421 // we should move shifts to the same hand of 'and', i.e. rewrite as
3422 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3423 // We are only interested in opposite logical shifts here.
3424 // One of the shifts can be truncated.
3425 // If we can, we want to end up creating 'lshr' shift.
3426 static Value *
3427 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3428                                            InstCombiner::BuilderTy &Builder) {
3429   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3430       !I.getOperand(0)->hasOneUse())
3431     return nullptr;
3432 
3433   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3434 
3435   // Look for an 'and' of two logical shifts, one of which may be truncated.
3436   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3437   Instruction *XShift, *MaybeTruncation, *YShift;
3438   if (!match(
3439           I.getOperand(0),
3440           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3441                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3442                                    m_AnyLogicalShift, m_Instruction(YShift))),
3443                                m_Instruction(MaybeTruncation)))))
3444     return nullptr;
3445 
3446   // We potentially looked past 'trunc', but only when matching YShift,
3447   // therefore YShift must have the widest type.
3448   Instruction *WidestShift = YShift;
3449   // Therefore XShift must have the shallowest type.
3450   // Or they both have identical types if there was no truncation.
3451   Instruction *NarrowestShift = XShift;
3452 
3453   Type *WidestTy = WidestShift->getType();
3454   assert(NarrowestShift->getType() == I.getOperand(0)->getType() &&
3455          "We did not look past any shifts while matching XShift though.");
3456   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3457 
3458   // If YShift is a 'lshr', swap the shifts around.
3459   if (match(YShift, m_LShr(m_Value(), m_Value())))
3460     std::swap(XShift, YShift);
3461 
3462   // The shifts must be in opposite directions.
3463   auto XShiftOpcode = XShift->getOpcode();
3464   if (XShiftOpcode == YShift->getOpcode())
3465     return nullptr; // Do not care about same-direction shifts here.
3466 
3467   Value *X, *XShAmt, *Y, *YShAmt;
3468   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3469   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3470 
3471   // If one of the values being shifted is a constant, then we will end with
3472   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3473   // however, we will need to ensure that we won't increase instruction count.
3474   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3475     // At least one of the hands of the 'and' should be one-use shift.
3476     if (!match(I.getOperand(0),
3477                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3478       return nullptr;
3479     if (HadTrunc) {
3480       // Due to the 'trunc', we will need to widen X. For that either the old
3481       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3482       if (!MaybeTruncation->hasOneUse() &&
3483           !NarrowestShift->getOperand(1)->hasOneUse())
3484         return nullptr;
3485     }
3486   }
3487 
3488   // We have two shift amounts from two different shifts. The types of those
3489   // shift amounts may not match. If that's the case let's bailout now.
3490   if (XShAmt->getType() != YShAmt->getType())
3491     return nullptr;
3492 
3493   // Can we fold (XShAmt+YShAmt) ?
3494   auto *NewShAmt = dyn_cast_or_null<Constant>(
3495       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3496                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3497   if (!NewShAmt)
3498     return nullptr;
3499   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3500   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3501 
3502   // Is the new shift amount smaller than the bit width?
3503   // FIXME: could also rely on ConstantRange.
3504   if (!match(NewShAmt,
3505              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3506                                 APInt(WidestBitWidth, WidestBitWidth))))
3507     return nullptr;
3508 
3509   // An extra legality check is needed if we had trunc-of-lshr.
3510   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3511     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3512                     WidestShift]() {
3513       // It isn't obvious whether it's worth it to analyze non-constants here.
3514       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3515       // If *any* of these preconditions matches we can perform the fold.
3516       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3517                                     ? NewShAmt->getSplatValue()
3518                                     : NewShAmt;
3519       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3520       if (NewShAmtSplat &&
3521           (NewShAmtSplat->isNullValue() ||
3522            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3523         return true;
3524       // We consider *min* leading zeros so a single outlier
3525       // blocks the transform as opposed to allowing it.
3526       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3527         KnownBits Known = computeKnownBits(C, SQ.DL);
3528         unsigned MinLeadZero = Known.countMinLeadingZeros();
3529         // If the value being shifted has at most lowest bit set we can fold.
3530         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3531         if (MaxActiveBits <= 1)
3532           return true;
3533         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3534         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3535           return true;
3536       }
3537       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3538         KnownBits Known = computeKnownBits(C, SQ.DL);
3539         unsigned MinLeadZero = Known.countMinLeadingZeros();
3540         // If the value being shifted has at most lowest bit set we can fold.
3541         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3542         if (MaxActiveBits <= 1)
3543           return true;
3544         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3545         if (NewShAmtSplat) {
3546           APInt AdjNewShAmt =
3547               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3548           if (AdjNewShAmt.ule(MinLeadZero))
3549             return true;
3550         }
3551       }
3552       return false; // Can't tell if it's ok.
3553     };
3554     if (!CanFold())
3555       return nullptr;
3556   }
3557 
3558   // All good, we can do this fold.
3559   X = Builder.CreateZExt(X, WidestTy);
3560   Y = Builder.CreateZExt(Y, WidestTy);
3561   // The shift is the same that was for X.
3562   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3563                   ? Builder.CreateLShr(X, NewShAmt)
3564                   : Builder.CreateShl(X, NewShAmt);
3565   Value *T1 = Builder.CreateAnd(T0, Y);
3566   return Builder.CreateICmp(I.getPredicate(), T1,
3567                             Constant::getNullValue(WidestTy));
3568 }
3569 
3570 /// Fold
3571 ///   (-1 u/ x) u< y
3572 ///   ((x * y) u/ x) != y
3573 /// to
3574 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3575 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3576 /// will mean that we are looking for the opposite answer.
3577 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3578   ICmpInst::Predicate Pred;
3579   Value *X, *Y;
3580   Instruction *Mul;
3581   bool NeedNegation;
3582   // Look for: (-1 u/ x) u</u>= y
3583   if (!I.isEquality() &&
3584       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3585                          m_Value(Y)))) {
3586     Mul = nullptr;
3587 
3588     // Are we checking that overflow does not happen, or does happen?
3589     switch (Pred) {
3590     case ICmpInst::Predicate::ICMP_ULT:
3591       NeedNegation = false;
3592       break; // OK
3593     case ICmpInst::Predicate::ICMP_UGE:
3594       NeedNegation = true;
3595       break; // OK
3596     default:
3597       return nullptr; // Wrong predicate.
3598     }
3599   } else // Look for: ((x * y) u/ x) !=/== y
3600       if (I.isEquality() &&
3601           match(&I, m_c_ICmp(Pred, m_Value(Y),
3602                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3603                                                                   m_Value(X)),
3604                                                           m_Instruction(Mul)),
3605                                              m_Deferred(X)))))) {
3606     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3607   } else
3608     return nullptr;
3609 
3610   BuilderTy::InsertPointGuard Guard(Builder);
3611   // If the pattern included (x * y), we'll want to insert new instructions
3612   // right before that original multiplication so that we can replace it.
3613   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3614   if (MulHadOtherUses)
3615     Builder.SetInsertPoint(Mul);
3616 
3617   Function *F = Intrinsic::getDeclaration(
3618       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3619   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3620 
3621   // If the multiplication was used elsewhere, to ensure that we don't leave
3622   // "duplicate" instructions, replace uses of that original multiplication
3623   // with the multiplication result from the with.overflow intrinsic.
3624   if (MulHadOtherUses)
3625     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3626 
3627   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3628   if (NeedNegation) // This technically increases instruction count.
3629     Res = Builder.CreateNot(Res, "umul.not.ov");
3630 
3631   return Res;
3632 }
3633 
3634 /// Try to fold icmp (binop), X or icmp X, (binop).
3635 /// TODO: A large part of this logic is duplicated in InstSimplify's
3636 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3637 /// duplication.
3638 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3639   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3640   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3641 
3642   // Special logic for binary operators.
3643   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3644   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3645   if (!BO0 && !BO1)
3646     return nullptr;
3647 
3648   const CmpInst::Predicate Pred = I.getPredicate();
3649   Value *X;
3650 
3651   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3652   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3653   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3654       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3655     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3656   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3657   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3658       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3659     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3660 
3661   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3662   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3663     NoOp0WrapProblem =
3664         ICmpInst::isEquality(Pred) ||
3665         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3666         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3667   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3668     NoOp1WrapProblem =
3669         ICmpInst::isEquality(Pred) ||
3670         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3671         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3672 
3673   // Analyze the case when either Op0 or Op1 is an add instruction.
3674   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3675   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3676   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3677     A = BO0->getOperand(0);
3678     B = BO0->getOperand(1);
3679   }
3680   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3681     C = BO1->getOperand(0);
3682     D = BO1->getOperand(1);
3683   }
3684 
3685   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3686   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3687   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3688     return new ICmpInst(Pred, A == Op1 ? B : A,
3689                         Constant::getNullValue(Op1->getType()));
3690 
3691   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3692   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3693   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3694     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3695                         C == Op0 ? D : C);
3696 
3697   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3698   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3699       NoOp1WrapProblem) {
3700     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3701     Value *Y, *Z;
3702     if (A == C) {
3703       // C + B == C + D  ->  B == D
3704       Y = B;
3705       Z = D;
3706     } else if (A == D) {
3707       // D + B == C + D  ->  B == C
3708       Y = B;
3709       Z = C;
3710     } else if (B == C) {
3711       // A + C == C + D  ->  A == D
3712       Y = A;
3713       Z = D;
3714     } else {
3715       assert(B == D);
3716       // A + D == C + D  ->  A == C
3717       Y = A;
3718       Z = C;
3719     }
3720     return new ICmpInst(Pred, Y, Z);
3721   }
3722 
3723   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3724   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3725       match(B, m_AllOnes()))
3726     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3727 
3728   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3729   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3730       match(B, m_AllOnes()))
3731     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3732 
3733   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3734   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3735     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3736 
3737   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3738   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3739     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3740 
3741   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3742   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3743       match(D, m_AllOnes()))
3744     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3745 
3746   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3747   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3748       match(D, m_AllOnes()))
3749     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3750 
3751   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3752   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3753     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3754 
3755   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3756   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3757     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3758 
3759   // TODO: The subtraction-related identities shown below also hold, but
3760   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3761   // wouldn't happen even if they were implemented.
3762   //
3763   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3764   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3765   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3766   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3767 
3768   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3769   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3770     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3771 
3772   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3773   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3774     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3775 
3776   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3777   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3778     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3779 
3780   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3781   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3782     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3783 
3784   // if C1 has greater magnitude than C2:
3785   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3786   //  s.t. C3 = C1 - C2
3787   //
3788   // if C2 has greater magnitude than C1:
3789   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3790   //  s.t. C3 = C2 - C1
3791   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3792       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3793     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3794       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3795         const APInt &AP1 = C1->getValue();
3796         const APInt &AP2 = C2->getValue();
3797         if (AP1.isNegative() == AP2.isNegative()) {
3798           APInt AP1Abs = C1->getValue().abs();
3799           APInt AP2Abs = C2->getValue().abs();
3800           if (AP1Abs.uge(AP2Abs)) {
3801             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3802             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3803             return new ICmpInst(Pred, NewAdd, C);
3804           } else {
3805             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3806             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3807             return new ICmpInst(Pred, A, NewAdd);
3808           }
3809         }
3810       }
3811 
3812   // Analyze the case when either Op0 or Op1 is a sub instruction.
3813   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3814   A = nullptr;
3815   B = nullptr;
3816   C = nullptr;
3817   D = nullptr;
3818   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3819     A = BO0->getOperand(0);
3820     B = BO0->getOperand(1);
3821   }
3822   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3823     C = BO1->getOperand(0);
3824     D = BO1->getOperand(1);
3825   }
3826 
3827   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3828   if (A == Op1 && NoOp0WrapProblem)
3829     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3830   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3831   if (C == Op0 && NoOp1WrapProblem)
3832     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3833 
3834   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3835   // (A - B) u>/u<= A --> B u>/u<= A
3836   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3837     return new ICmpInst(Pred, B, A);
3838   // C u</u>= (C - D) --> C u</u>= D
3839   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3840     return new ICmpInst(Pred, C, D);
3841   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3842   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3843       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3844     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3845   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3846   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3847       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3848     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3849 
3850   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3851   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3852     return new ICmpInst(Pred, A, C);
3853 
3854   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3855   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3856     return new ICmpInst(Pred, D, B);
3857 
3858   // icmp (0-X) < cst --> x > -cst
3859   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3860     Value *X;
3861     if (match(BO0, m_Neg(m_Value(X))))
3862       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3863         if (RHSC->isNotMinSignedValue())
3864           return new ICmpInst(I.getSwappedPredicate(), X,
3865                               ConstantExpr::getNeg(RHSC));
3866   }
3867 
3868   BinaryOperator *SRem = nullptr;
3869   // icmp (srem X, Y), Y
3870   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3871     SRem = BO0;
3872   // icmp Y, (srem X, Y)
3873   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3874            Op0 == BO1->getOperand(1))
3875     SRem = BO1;
3876   if (SRem) {
3877     // We don't check hasOneUse to avoid increasing register pressure because
3878     // the value we use is the same value this instruction was already using.
3879     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3880     default:
3881       break;
3882     case ICmpInst::ICMP_EQ:
3883       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3884     case ICmpInst::ICMP_NE:
3885       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3886     case ICmpInst::ICMP_SGT:
3887     case ICmpInst::ICMP_SGE:
3888       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3889                           Constant::getAllOnesValue(SRem->getType()));
3890     case ICmpInst::ICMP_SLT:
3891     case ICmpInst::ICMP_SLE:
3892       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3893                           Constant::getNullValue(SRem->getType()));
3894     }
3895   }
3896 
3897   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3898       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3899     switch (BO0->getOpcode()) {
3900     default:
3901       break;
3902     case Instruction::Add:
3903     case Instruction::Sub:
3904     case Instruction::Xor: {
3905       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3906         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3907 
3908       const APInt *C;
3909       if (match(BO0->getOperand(1), m_APInt(C))) {
3910         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3911         if (C->isSignMask()) {
3912           ICmpInst::Predicate NewPred =
3913               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3914           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3915         }
3916 
3917         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3918         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3919           ICmpInst::Predicate NewPred =
3920               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3921           NewPred = I.getSwappedPredicate(NewPred);
3922           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3923         }
3924       }
3925       break;
3926     }
3927     case Instruction::Mul: {
3928       if (!I.isEquality())
3929         break;
3930 
3931       const APInt *C;
3932       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3933           !C->isOneValue()) {
3934         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3935         // Mask = -1 >> count-trailing-zeros(C).
3936         if (unsigned TZs = C->countTrailingZeros()) {
3937           Constant *Mask = ConstantInt::get(
3938               BO0->getType(),
3939               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3940           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3941           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3942           return new ICmpInst(Pred, And1, And2);
3943         }
3944         // If there are no trailing zeros in the multiplier, just eliminate
3945         // the multiplies (no masking is needed):
3946         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3947         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3948       }
3949       break;
3950     }
3951     case Instruction::UDiv:
3952     case Instruction::LShr:
3953       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3954         break;
3955       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3956 
3957     case Instruction::SDiv:
3958       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3959         break;
3960       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3961 
3962     case Instruction::AShr:
3963       if (!BO0->isExact() || !BO1->isExact())
3964         break;
3965       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3966 
3967     case Instruction::Shl: {
3968       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3969       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3970       if (!NUW && !NSW)
3971         break;
3972       if (!NSW && I.isSigned())
3973         break;
3974       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3975     }
3976     }
3977   }
3978 
3979   if (BO0) {
3980     // Transform  A & (L - 1) `ult` L --> L != 0
3981     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3982     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3983 
3984     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3985       auto *Zero = Constant::getNullValue(BO0->getType());
3986       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3987     }
3988   }
3989 
3990   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
3991     return replaceInstUsesWith(I, V);
3992 
3993   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3994     return replaceInstUsesWith(I, V);
3995 
3996   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3997     return replaceInstUsesWith(I, V);
3998 
3999   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4000     return replaceInstUsesWith(I, V);
4001 
4002   return nullptr;
4003 }
4004 
4005 /// Fold icmp Pred min|max(X, Y), X.
4006 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4007   ICmpInst::Predicate Pred = Cmp.getPredicate();
4008   Value *Op0 = Cmp.getOperand(0);
4009   Value *X = Cmp.getOperand(1);
4010 
4011   // Canonicalize minimum or maximum operand to LHS of the icmp.
4012   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4013       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4014       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4015       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4016     std::swap(Op0, X);
4017     Pred = Cmp.getSwappedPredicate();
4018   }
4019 
4020   Value *Y;
4021   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4022     // smin(X, Y)  == X --> X s<= Y
4023     // smin(X, Y) s>= X --> X s<= Y
4024     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4025       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4026 
4027     // smin(X, Y) != X --> X s> Y
4028     // smin(X, Y) s< X --> X s> Y
4029     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4030       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4031 
4032     // These cases should be handled in InstSimplify:
4033     // smin(X, Y) s<= X --> true
4034     // smin(X, Y) s> X --> false
4035     return nullptr;
4036   }
4037 
4038   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4039     // smax(X, Y)  == X --> X s>= Y
4040     // smax(X, Y) s<= X --> X s>= Y
4041     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4042       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4043 
4044     // smax(X, Y) != X --> X s< Y
4045     // smax(X, Y) s> X --> X s< Y
4046     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4047       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4048 
4049     // These cases should be handled in InstSimplify:
4050     // smax(X, Y) s>= X --> true
4051     // smax(X, Y) s< X --> false
4052     return nullptr;
4053   }
4054 
4055   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4056     // umin(X, Y)  == X --> X u<= Y
4057     // umin(X, Y) u>= X --> X u<= Y
4058     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4059       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4060 
4061     // umin(X, Y) != X --> X u> Y
4062     // umin(X, Y) u< X --> X u> Y
4063     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4064       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4065 
4066     // These cases should be handled in InstSimplify:
4067     // umin(X, Y) u<= X --> true
4068     // umin(X, Y) u> X --> false
4069     return nullptr;
4070   }
4071 
4072   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4073     // umax(X, Y)  == X --> X u>= Y
4074     // umax(X, Y) u<= X --> X u>= Y
4075     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4076       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4077 
4078     // umax(X, Y) != X --> X u< Y
4079     // umax(X, Y) u> X --> X u< Y
4080     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4081       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4082 
4083     // These cases should be handled in InstSimplify:
4084     // umax(X, Y) u>= X --> true
4085     // umax(X, Y) u< X --> false
4086     return nullptr;
4087   }
4088 
4089   return nullptr;
4090 }
4091 
4092 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4093   if (!I.isEquality())
4094     return nullptr;
4095 
4096   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4097   const CmpInst::Predicate Pred = I.getPredicate();
4098   Value *A, *B, *C, *D;
4099   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4100     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4101       Value *OtherVal = A == Op1 ? B : A;
4102       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4103     }
4104 
4105     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4106       // A^c1 == C^c2 --> A == C^(c1^c2)
4107       ConstantInt *C1, *C2;
4108       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4109           Op1->hasOneUse()) {
4110         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4111         Value *Xor = Builder.CreateXor(C, NC);
4112         return new ICmpInst(Pred, A, Xor);
4113       }
4114 
4115       // A^B == A^D -> B == D
4116       if (A == C)
4117         return new ICmpInst(Pred, B, D);
4118       if (A == D)
4119         return new ICmpInst(Pred, B, C);
4120       if (B == C)
4121         return new ICmpInst(Pred, A, D);
4122       if (B == D)
4123         return new ICmpInst(Pred, A, C);
4124     }
4125   }
4126 
4127   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4128     // A == (A^B)  ->  B == 0
4129     Value *OtherVal = A == Op0 ? B : A;
4130     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4131   }
4132 
4133   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4134   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4135       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4136     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4137 
4138     if (A == C) {
4139       X = B;
4140       Y = D;
4141       Z = A;
4142     } else if (A == D) {
4143       X = B;
4144       Y = C;
4145       Z = A;
4146     } else if (B == C) {
4147       X = A;
4148       Y = D;
4149       Z = B;
4150     } else if (B == D) {
4151       X = A;
4152       Y = C;
4153       Z = B;
4154     }
4155 
4156     if (X) { // Build (X^Y) & Z
4157       Op1 = Builder.CreateXor(X, Y);
4158       Op1 = Builder.CreateAnd(Op1, Z);
4159       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4160     }
4161   }
4162 
4163   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4164   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4165   ConstantInt *Cst1;
4166   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4167        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4168       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4169        match(Op1, m_ZExt(m_Value(A))))) {
4170     APInt Pow2 = Cst1->getValue() + 1;
4171     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4172         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4173       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4174   }
4175 
4176   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4177   // For lshr and ashr pairs.
4178   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4179        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4180       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4181        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4182     unsigned TypeBits = Cst1->getBitWidth();
4183     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4184     if (ShAmt < TypeBits && ShAmt != 0) {
4185       ICmpInst::Predicate NewPred =
4186           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4187       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4188       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4189       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4190     }
4191   }
4192 
4193   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4194   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4195       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4196     unsigned TypeBits = Cst1->getBitWidth();
4197     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4198     if (ShAmt < TypeBits && ShAmt != 0) {
4199       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4200       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4201       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4202                                       I.getName() + ".mask");
4203       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4204     }
4205   }
4206 
4207   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4208   // "icmp (and X, mask), cst"
4209   uint64_t ShAmt = 0;
4210   if (Op0->hasOneUse() &&
4211       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4212       match(Op1, m_ConstantInt(Cst1)) &&
4213       // Only do this when A has multiple uses.  This is most important to do
4214       // when it exposes other optimizations.
4215       !A->hasOneUse()) {
4216     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4217 
4218     if (ShAmt < ASize) {
4219       APInt MaskV =
4220           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4221       MaskV <<= ShAmt;
4222 
4223       APInt CmpV = Cst1->getValue().zext(ASize);
4224       CmpV <<= ShAmt;
4225 
4226       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4227       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4228     }
4229   }
4230 
4231   // If both operands are byte-swapped or bit-reversed, just compare the
4232   // original values.
4233   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4234   // and handle more intrinsics.
4235   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4236       (match(Op0, m_BitReverse(m_Value(A))) &&
4237        match(Op1, m_BitReverse(m_Value(B)))))
4238     return new ICmpInst(Pred, A, B);
4239 
4240   // Canonicalize checking for a power-of-2-or-zero value:
4241   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4242   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4243   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4244                                    m_Deferred(A)))) ||
4245       !match(Op1, m_ZeroInt()))
4246     A = nullptr;
4247 
4248   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4249   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4250   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4251     A = Op1;
4252   else if (match(Op1,
4253                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4254     A = Op0;
4255 
4256   if (A) {
4257     Type *Ty = A->getType();
4258     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4259     return Pred == ICmpInst::ICMP_EQ
4260         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4261         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4262   }
4263 
4264   return nullptr;
4265 }
4266 
4267 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4268                                            InstCombiner::BuilderTy &Builder) {
4269   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4270   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4271   Value *X;
4272   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4273     return nullptr;
4274 
4275   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4276   bool IsSignedCmp = ICmp.isSigned();
4277   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4278     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4279     // and the other is a zext), then we can't handle this.
4280     // TODO: This is too strict. We can handle some predicates (equality?).
4281     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4282       return nullptr;
4283 
4284     // Not an extension from the same type?
4285     Value *Y = CastOp1->getOperand(0);
4286     Type *XTy = X->getType(), *YTy = Y->getType();
4287     if (XTy != YTy) {
4288       // One of the casts must have one use because we are creating a new cast.
4289       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4290         return nullptr;
4291       // Extend the narrower operand to the type of the wider operand.
4292       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4293         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4294       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4295         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4296       else
4297         return nullptr;
4298     }
4299 
4300     // (zext X) == (zext Y) --> X == Y
4301     // (sext X) == (sext Y) --> X == Y
4302     if (ICmp.isEquality())
4303       return new ICmpInst(ICmp.getPredicate(), X, Y);
4304 
4305     // A signed comparison of sign extended values simplifies into a
4306     // signed comparison.
4307     if (IsSignedCmp && IsSignedExt)
4308       return new ICmpInst(ICmp.getPredicate(), X, Y);
4309 
4310     // The other three cases all fold into an unsigned comparison.
4311     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4312   }
4313 
4314   // Below here, we are only folding a compare with constant.
4315   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4316   if (!C)
4317     return nullptr;
4318 
4319   // Compute the constant that would happen if we truncated to SrcTy then
4320   // re-extended to DestTy.
4321   Type *SrcTy = CastOp0->getSrcTy();
4322   Type *DestTy = CastOp0->getDestTy();
4323   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4324   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4325 
4326   // If the re-extended constant didn't change...
4327   if (Res2 == C) {
4328     if (ICmp.isEquality())
4329       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4330 
4331     // A signed comparison of sign extended values simplifies into a
4332     // signed comparison.
4333     if (IsSignedExt && IsSignedCmp)
4334       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4335 
4336     // The other three cases all fold into an unsigned comparison.
4337     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4338   }
4339 
4340   // The re-extended constant changed, partly changed (in the case of a vector),
4341   // or could not be determined to be equal (in the case of a constant
4342   // expression), so the constant cannot be represented in the shorter type.
4343   // All the cases that fold to true or false will have already been handled
4344   // by SimplifyICmpInst, so only deal with the tricky case.
4345   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4346     return nullptr;
4347 
4348   // Is source op positive?
4349   // icmp ult (sext X), C --> icmp sgt X, -1
4350   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4351     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4352 
4353   // Is source op negative?
4354   // icmp ugt (sext X), C --> icmp slt X, 0
4355   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4356   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4357 }
4358 
4359 /// Handle icmp (cast x), (cast or constant).
4360 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4361   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4362   if (!CastOp0)
4363     return nullptr;
4364   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4365     return nullptr;
4366 
4367   Value *Op0Src = CastOp0->getOperand(0);
4368   Type *SrcTy = CastOp0->getSrcTy();
4369   Type *DestTy = CastOp0->getDestTy();
4370 
4371   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4372   // integer type is the same size as the pointer type.
4373   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4374     if (isa<VectorType>(SrcTy)) {
4375       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4376       DestTy = cast<VectorType>(DestTy)->getElementType();
4377     }
4378     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4379   };
4380   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4381       CompatibleSizes(SrcTy, DestTy)) {
4382     Value *NewOp1 = nullptr;
4383     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4384       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4385       if (PtrSrc->getType()->getPointerAddressSpace() ==
4386           Op0Src->getType()->getPointerAddressSpace()) {
4387         NewOp1 = PtrToIntOp1->getOperand(0);
4388         // If the pointer types don't match, insert a bitcast.
4389         if (Op0Src->getType() != NewOp1->getType())
4390           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4391       }
4392     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4393       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4394     }
4395 
4396     if (NewOp1)
4397       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4398   }
4399 
4400   return foldICmpWithZextOrSext(ICmp, Builder);
4401 }
4402 
4403 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4404   switch (BinaryOp) {
4405     default:
4406       llvm_unreachable("Unsupported binary op");
4407     case Instruction::Add:
4408     case Instruction::Sub:
4409       return match(RHS, m_Zero());
4410     case Instruction::Mul:
4411       return match(RHS, m_One());
4412   }
4413 }
4414 
4415 OverflowResult InstCombiner::computeOverflow(
4416     Instruction::BinaryOps BinaryOp, bool IsSigned,
4417     Value *LHS, Value *RHS, Instruction *CxtI) const {
4418   switch (BinaryOp) {
4419     default:
4420       llvm_unreachable("Unsupported binary op");
4421     case Instruction::Add:
4422       if (IsSigned)
4423         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4424       else
4425         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4426     case Instruction::Sub:
4427       if (IsSigned)
4428         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4429       else
4430         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4431     case Instruction::Mul:
4432       if (IsSigned)
4433         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4434       else
4435         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4436   }
4437 }
4438 
4439 bool InstCombiner::OptimizeOverflowCheck(
4440     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4441     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4442   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4443     std::swap(LHS, RHS);
4444 
4445   // If the overflow check was an add followed by a compare, the insertion point
4446   // may be pointing to the compare.  We want to insert the new instructions
4447   // before the add in case there are uses of the add between the add and the
4448   // compare.
4449   Builder.SetInsertPoint(&OrigI);
4450 
4451   if (isNeutralValue(BinaryOp, RHS)) {
4452     Result = LHS;
4453     Overflow = Builder.getFalse();
4454     return true;
4455   }
4456 
4457   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4458     case OverflowResult::MayOverflow:
4459       return false;
4460     case OverflowResult::AlwaysOverflowsLow:
4461     case OverflowResult::AlwaysOverflowsHigh:
4462       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4463       Result->takeName(&OrigI);
4464       Overflow = Builder.getTrue();
4465       return true;
4466     case OverflowResult::NeverOverflows:
4467       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4468       Result->takeName(&OrigI);
4469       Overflow = Builder.getFalse();
4470       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4471         if (IsSigned)
4472           Inst->setHasNoSignedWrap();
4473         else
4474           Inst->setHasNoUnsignedWrap();
4475       }
4476       return true;
4477   }
4478 
4479   llvm_unreachable("Unexpected overflow result");
4480 }
4481 
4482 /// Recognize and process idiom involving test for multiplication
4483 /// overflow.
4484 ///
4485 /// The caller has matched a pattern of the form:
4486 ///   I = cmp u (mul(zext A, zext B), V
4487 /// The function checks if this is a test for overflow and if so replaces
4488 /// multiplication with call to 'mul.with.overflow' intrinsic.
4489 ///
4490 /// \param I Compare instruction.
4491 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4492 ///               the compare instruction.  Must be of integer type.
4493 /// \param OtherVal The other argument of compare instruction.
4494 /// \returns Instruction which must replace the compare instruction, NULL if no
4495 ///          replacement required.
4496 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4497                                          Value *OtherVal, InstCombiner &IC) {
4498   // Don't bother doing this transformation for pointers, don't do it for
4499   // vectors.
4500   if (!isa<IntegerType>(MulVal->getType()))
4501     return nullptr;
4502 
4503   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4504   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4505   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4506   if (!MulInstr)
4507     return nullptr;
4508   assert(MulInstr->getOpcode() == Instruction::Mul);
4509 
4510   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4511        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4512   assert(LHS->getOpcode() == Instruction::ZExt);
4513   assert(RHS->getOpcode() == Instruction::ZExt);
4514   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4515 
4516   // Calculate type and width of the result produced by mul.with.overflow.
4517   Type *TyA = A->getType(), *TyB = B->getType();
4518   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4519            WidthB = TyB->getPrimitiveSizeInBits();
4520   unsigned MulWidth;
4521   Type *MulType;
4522   if (WidthB > WidthA) {
4523     MulWidth = WidthB;
4524     MulType = TyB;
4525   } else {
4526     MulWidth = WidthA;
4527     MulType = TyA;
4528   }
4529 
4530   // In order to replace the original mul with a narrower mul.with.overflow,
4531   // all uses must ignore upper bits of the product.  The number of used low
4532   // bits must be not greater than the width of mul.with.overflow.
4533   if (MulVal->hasNUsesOrMore(2))
4534     for (User *U : MulVal->users()) {
4535       if (U == &I)
4536         continue;
4537       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4538         // Check if truncation ignores bits above MulWidth.
4539         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4540         if (TruncWidth > MulWidth)
4541           return nullptr;
4542       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4543         // Check if AND ignores bits above MulWidth.
4544         if (BO->getOpcode() != Instruction::And)
4545           return nullptr;
4546         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4547           const APInt &CVal = CI->getValue();
4548           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4549             return nullptr;
4550         } else {
4551           // In this case we could have the operand of the binary operation
4552           // being defined in another block, and performing the replacement
4553           // could break the dominance relation.
4554           return nullptr;
4555         }
4556       } else {
4557         // Other uses prohibit this transformation.
4558         return nullptr;
4559       }
4560     }
4561 
4562   // Recognize patterns
4563   switch (I.getPredicate()) {
4564   case ICmpInst::ICMP_EQ:
4565   case ICmpInst::ICMP_NE:
4566     // Recognize pattern:
4567     //   mulval = mul(zext A, zext B)
4568     //   cmp eq/neq mulval, zext trunc mulval
4569     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4570       if (Zext->hasOneUse()) {
4571         Value *ZextArg = Zext->getOperand(0);
4572         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4573           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4574             break; //Recognized
4575       }
4576 
4577     // Recognize pattern:
4578     //   mulval = mul(zext A, zext B)
4579     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4580     ConstantInt *CI;
4581     Value *ValToMask;
4582     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4583       if (ValToMask != MulVal)
4584         return nullptr;
4585       const APInt &CVal = CI->getValue() + 1;
4586       if (CVal.isPowerOf2()) {
4587         unsigned MaskWidth = CVal.logBase2();
4588         if (MaskWidth == MulWidth)
4589           break; // Recognized
4590       }
4591     }
4592     return nullptr;
4593 
4594   case ICmpInst::ICMP_UGT:
4595     // Recognize pattern:
4596     //   mulval = mul(zext A, zext B)
4597     //   cmp ugt mulval, max
4598     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4599       APInt MaxVal = APInt::getMaxValue(MulWidth);
4600       MaxVal = MaxVal.zext(CI->getBitWidth());
4601       if (MaxVal.eq(CI->getValue()))
4602         break; // Recognized
4603     }
4604     return nullptr;
4605 
4606   case ICmpInst::ICMP_UGE:
4607     // Recognize pattern:
4608     //   mulval = mul(zext A, zext B)
4609     //   cmp uge mulval, max+1
4610     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4611       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4612       if (MaxVal.eq(CI->getValue()))
4613         break; // Recognized
4614     }
4615     return nullptr;
4616 
4617   case ICmpInst::ICMP_ULE:
4618     // Recognize pattern:
4619     //   mulval = mul(zext A, zext B)
4620     //   cmp ule mulval, max
4621     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4622       APInt MaxVal = APInt::getMaxValue(MulWidth);
4623       MaxVal = MaxVal.zext(CI->getBitWidth());
4624       if (MaxVal.eq(CI->getValue()))
4625         break; // Recognized
4626     }
4627     return nullptr;
4628 
4629   case ICmpInst::ICMP_ULT:
4630     // Recognize pattern:
4631     //   mulval = mul(zext A, zext B)
4632     //   cmp ule mulval, max + 1
4633     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4634       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4635       if (MaxVal.eq(CI->getValue()))
4636         break; // Recognized
4637     }
4638     return nullptr;
4639 
4640   default:
4641     return nullptr;
4642   }
4643 
4644   InstCombiner::BuilderTy &Builder = IC.Builder;
4645   Builder.SetInsertPoint(MulInstr);
4646 
4647   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4648   Value *MulA = A, *MulB = B;
4649   if (WidthA < MulWidth)
4650     MulA = Builder.CreateZExt(A, MulType);
4651   if (WidthB < MulWidth)
4652     MulB = Builder.CreateZExt(B, MulType);
4653   Function *F = Intrinsic::getDeclaration(
4654       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4655   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4656   IC.Worklist.push(MulInstr);
4657 
4658   // If there are uses of mul result other than the comparison, we know that
4659   // they are truncation or binary AND. Change them to use result of
4660   // mul.with.overflow and adjust properly mask/size.
4661   if (MulVal->hasNUsesOrMore(2)) {
4662     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4663     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4664       User *U = *UI++;
4665       if (U == &I || U == OtherVal)
4666         continue;
4667       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4668         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4669           IC.replaceInstUsesWith(*TI, Mul);
4670         else
4671           TI->setOperand(0, Mul);
4672       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4673         assert(BO->getOpcode() == Instruction::And);
4674         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4675         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4676         APInt ShortMask = CI->getValue().trunc(MulWidth);
4677         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4678         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4679         IC.replaceInstUsesWith(*BO, Zext);
4680       } else {
4681         llvm_unreachable("Unexpected Binary operation");
4682       }
4683       IC.Worklist.push(cast<Instruction>(U));
4684     }
4685   }
4686   if (isa<Instruction>(OtherVal))
4687     IC.Worklist.push(cast<Instruction>(OtherVal));
4688 
4689   // The original icmp gets replaced with the overflow value, maybe inverted
4690   // depending on predicate.
4691   bool Inverse = false;
4692   switch (I.getPredicate()) {
4693   case ICmpInst::ICMP_NE:
4694     break;
4695   case ICmpInst::ICMP_EQ:
4696     Inverse = true;
4697     break;
4698   case ICmpInst::ICMP_UGT:
4699   case ICmpInst::ICMP_UGE:
4700     if (I.getOperand(0) == MulVal)
4701       break;
4702     Inverse = true;
4703     break;
4704   case ICmpInst::ICMP_ULT:
4705   case ICmpInst::ICMP_ULE:
4706     if (I.getOperand(1) == MulVal)
4707       break;
4708     Inverse = true;
4709     break;
4710   default:
4711     llvm_unreachable("Unexpected predicate");
4712   }
4713   if (Inverse) {
4714     Value *Res = Builder.CreateExtractValue(Call, 1);
4715     return BinaryOperator::CreateNot(Res);
4716   }
4717 
4718   return ExtractValueInst::Create(Call, 1);
4719 }
4720 
4721 /// When performing a comparison against a constant, it is possible that not all
4722 /// the bits in the LHS are demanded. This helper method computes the mask that
4723 /// IS demanded.
4724 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4725   const APInt *RHS;
4726   if (!match(I.getOperand(1), m_APInt(RHS)))
4727     return APInt::getAllOnesValue(BitWidth);
4728 
4729   // If this is a normal comparison, it demands all bits. If it is a sign bit
4730   // comparison, it only demands the sign bit.
4731   bool UnusedBit;
4732   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4733     return APInt::getSignMask(BitWidth);
4734 
4735   switch (I.getPredicate()) {
4736   // For a UGT comparison, we don't care about any bits that
4737   // correspond to the trailing ones of the comparand.  The value of these
4738   // bits doesn't impact the outcome of the comparison, because any value
4739   // greater than the RHS must differ in a bit higher than these due to carry.
4740   case ICmpInst::ICMP_UGT:
4741     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4742 
4743   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4744   // Any value less than the RHS must differ in a higher bit because of carries.
4745   case ICmpInst::ICMP_ULT:
4746     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4747 
4748   default:
4749     return APInt::getAllOnesValue(BitWidth);
4750   }
4751 }
4752 
4753 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4754 /// should be swapped.
4755 /// The decision is based on how many times these two operands are reused
4756 /// as subtract operands and their positions in those instructions.
4757 /// The rationale is that several architectures use the same instruction for
4758 /// both subtract and cmp. Thus, it is better if the order of those operands
4759 /// match.
4760 /// \return true if Op0 and Op1 should be swapped.
4761 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4762   // Filter out pointer values as those cannot appear directly in subtract.
4763   // FIXME: we may want to go through inttoptrs or bitcasts.
4764   if (Op0->getType()->isPointerTy())
4765     return false;
4766   // If a subtract already has the same operands as a compare, swapping would be
4767   // bad. If a subtract has the same operands as a compare but in reverse order,
4768   // then swapping is good.
4769   int GoodToSwap = 0;
4770   for (const User *U : Op0->users()) {
4771     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4772       GoodToSwap++;
4773     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4774       GoodToSwap--;
4775   }
4776   return GoodToSwap > 0;
4777 }
4778 
4779 /// Check that one use is in the same block as the definition and all
4780 /// other uses are in blocks dominated by a given block.
4781 ///
4782 /// \param DI Definition
4783 /// \param UI Use
4784 /// \param DB Block that must dominate all uses of \p DI outside
4785 ///           the parent block
4786 /// \return true when \p UI is the only use of \p DI in the parent block
4787 /// and all other uses of \p DI are in blocks dominated by \p DB.
4788 ///
4789 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4790                                     const Instruction *UI,
4791                                     const BasicBlock *DB) const {
4792   assert(DI && UI && "Instruction not defined\n");
4793   // Ignore incomplete definitions.
4794   if (!DI->getParent())
4795     return false;
4796   // DI and UI must be in the same block.
4797   if (DI->getParent() != UI->getParent())
4798     return false;
4799   // Protect from self-referencing blocks.
4800   if (DI->getParent() == DB)
4801     return false;
4802   for (const User *U : DI->users()) {
4803     auto *Usr = cast<Instruction>(U);
4804     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4805       return false;
4806   }
4807   return true;
4808 }
4809 
4810 /// Return true when the instruction sequence within a block is select-cmp-br.
4811 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4812   const BasicBlock *BB = SI->getParent();
4813   if (!BB)
4814     return false;
4815   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4816   if (!BI || BI->getNumSuccessors() != 2)
4817     return false;
4818   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4819   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4820     return false;
4821   return true;
4822 }
4823 
4824 /// True when a select result is replaced by one of its operands
4825 /// in select-icmp sequence. This will eventually result in the elimination
4826 /// of the select.
4827 ///
4828 /// \param SI    Select instruction
4829 /// \param Icmp  Compare instruction
4830 /// \param SIOpd Operand that replaces the select
4831 ///
4832 /// Notes:
4833 /// - The replacement is global and requires dominator information
4834 /// - The caller is responsible for the actual replacement
4835 ///
4836 /// Example:
4837 ///
4838 /// entry:
4839 ///  %4 = select i1 %3, %C* %0, %C* null
4840 ///  %5 = icmp eq %C* %4, null
4841 ///  br i1 %5, label %9, label %7
4842 ///  ...
4843 ///  ; <label>:7                                       ; preds = %entry
4844 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4845 ///  ...
4846 ///
4847 /// can be transformed to
4848 ///
4849 ///  %5 = icmp eq %C* %0, null
4850 ///  %6 = select i1 %3, i1 %5, i1 true
4851 ///  br i1 %6, label %9, label %7
4852 ///  ...
4853 ///  ; <label>:7                                       ; preds = %entry
4854 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4855 ///
4856 /// Similar when the first operand of the select is a constant or/and
4857 /// the compare is for not equal rather than equal.
4858 ///
4859 /// NOTE: The function is only called when the select and compare constants
4860 /// are equal, the optimization can work only for EQ predicates. This is not a
4861 /// major restriction since a NE compare should be 'normalized' to an equal
4862 /// compare, which usually happens in the combiner and test case
4863 /// select-cmp-br.ll checks for it.
4864 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4865                                              const ICmpInst *Icmp,
4866                                              const unsigned SIOpd) {
4867   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4868   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4869     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4870     // The check for the single predecessor is not the best that can be
4871     // done. But it protects efficiently against cases like when SI's
4872     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4873     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4874     // replaced can be reached on either path. So the uniqueness check
4875     // guarantees that the path all uses of SI (outside SI's parent) are on
4876     // is disjoint from all other paths out of SI. But that information
4877     // is more expensive to compute, and the trade-off here is in favor
4878     // of compile-time. It should also be noticed that we check for a single
4879     // predecessor and not only uniqueness. This to handle the situation when
4880     // Succ and Succ1 points to the same basic block.
4881     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4882       NumSel++;
4883       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4884       return true;
4885     }
4886   }
4887   return false;
4888 }
4889 
4890 /// Try to fold the comparison based on range information we can get by checking
4891 /// whether bits are known to be zero or one in the inputs.
4892 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4893   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4894   Type *Ty = Op0->getType();
4895   ICmpInst::Predicate Pred = I.getPredicate();
4896 
4897   // Get scalar or pointer size.
4898   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4899                           ? Ty->getScalarSizeInBits()
4900                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4901 
4902   if (!BitWidth)
4903     return nullptr;
4904 
4905   KnownBits Op0Known(BitWidth);
4906   KnownBits Op1Known(BitWidth);
4907 
4908   if (SimplifyDemandedBits(&I, 0,
4909                            getDemandedBitsLHSMask(I, BitWidth),
4910                            Op0Known, 0))
4911     return &I;
4912 
4913   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4914                            Op1Known, 0))
4915     return &I;
4916 
4917   // Given the known and unknown bits, compute a range that the LHS could be
4918   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4919   // EQ and NE we use unsigned values.
4920   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4921   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4922   if (I.isSigned()) {
4923     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4924     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4925   } else {
4926     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4927     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4928   }
4929 
4930   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4931   // out that the LHS or RHS is a constant. Constant fold this now, so that
4932   // code below can assume that Min != Max.
4933   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4934     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4935   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4936     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4937 
4938   // Based on the range information we know about the LHS, see if we can
4939   // simplify this comparison.  For example, (x&4) < 8 is always true.
4940   switch (Pred) {
4941   default:
4942     llvm_unreachable("Unknown icmp opcode!");
4943   case ICmpInst::ICMP_EQ:
4944   case ICmpInst::ICMP_NE: {
4945     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4946       return Pred == CmpInst::ICMP_EQ
4947                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4948                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4949     }
4950 
4951     // If all bits are known zero except for one, then we know at most one bit
4952     // is set. If the comparison is against zero, then this is a check to see if
4953     // *that* bit is set.
4954     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4955     if (Op1Known.isZero()) {
4956       // If the LHS is an AND with the same constant, look through it.
4957       Value *LHS = nullptr;
4958       const APInt *LHSC;
4959       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4960           *LHSC != Op0KnownZeroInverted)
4961         LHS = Op0;
4962 
4963       Value *X;
4964       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4965         APInt ValToCheck = Op0KnownZeroInverted;
4966         Type *XTy = X->getType();
4967         if (ValToCheck.isPowerOf2()) {
4968           // ((1 << X) & 8) == 0 -> X != 3
4969           // ((1 << X) & 8) != 0 -> X == 3
4970           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4971           auto NewPred = ICmpInst::getInversePredicate(Pred);
4972           return new ICmpInst(NewPred, X, CmpC);
4973         } else if ((++ValToCheck).isPowerOf2()) {
4974           // ((1 << X) & 7) == 0 -> X >= 3
4975           // ((1 << X) & 7) != 0 -> X  < 3
4976           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4977           auto NewPred =
4978               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4979           return new ICmpInst(NewPred, X, CmpC);
4980         }
4981       }
4982 
4983       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4984       const APInt *CI;
4985       if (Op0KnownZeroInverted.isOneValue() &&
4986           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4987         // ((8 >>u X) & 1) == 0 -> X != 3
4988         // ((8 >>u X) & 1) != 0 -> X == 3
4989         unsigned CmpVal = CI->countTrailingZeros();
4990         auto NewPred = ICmpInst::getInversePredicate(Pred);
4991         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4992       }
4993     }
4994     break;
4995   }
4996   case ICmpInst::ICMP_ULT: {
4997     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4998       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4999     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5000       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5001     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5002       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5003 
5004     const APInt *CmpC;
5005     if (match(Op1, m_APInt(CmpC))) {
5006       // A <u C -> A == C-1 if min(A)+1 == C
5007       if (*CmpC == Op0Min + 1)
5008         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5009                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5010       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5011       // exceeds the log2 of C.
5012       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5013         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5014                             Constant::getNullValue(Op1->getType()));
5015     }
5016     break;
5017   }
5018   case ICmpInst::ICMP_UGT: {
5019     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5020       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5021     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5022       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5023     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5024       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5025 
5026     const APInt *CmpC;
5027     if (match(Op1, m_APInt(CmpC))) {
5028       // A >u C -> A == C+1 if max(a)-1 == C
5029       if (*CmpC == Op0Max - 1)
5030         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5031                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5032       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5033       // exceeds the log2 of C.
5034       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5035         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5036                             Constant::getNullValue(Op1->getType()));
5037     }
5038     break;
5039   }
5040   case ICmpInst::ICMP_SLT: {
5041     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5042       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5043     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5044       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5045     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5046       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5047     const APInt *CmpC;
5048     if (match(Op1, m_APInt(CmpC))) {
5049       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5050         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5051                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5052     }
5053     break;
5054   }
5055   case ICmpInst::ICMP_SGT: {
5056     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5057       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5058     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5059       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5060     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5061       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5062     const APInt *CmpC;
5063     if (match(Op1, m_APInt(CmpC))) {
5064       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5065         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5066                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5067     }
5068     break;
5069   }
5070   case ICmpInst::ICMP_SGE:
5071     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5072     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5073       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5074     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5075       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5076     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5077       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5078     break;
5079   case ICmpInst::ICMP_SLE:
5080     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5081     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5082       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5083     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5084       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5085     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5086       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5087     break;
5088   case ICmpInst::ICMP_UGE:
5089     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5090     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5091       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5092     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5093       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5094     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5095       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5096     break;
5097   case ICmpInst::ICMP_ULE:
5098     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5099     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5100       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5101     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5102       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5103     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5104       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5105     break;
5106   }
5107 
5108   // Turn a signed comparison into an unsigned one if both operands are known to
5109   // have the same sign.
5110   if (I.isSigned() &&
5111       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5112        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5113     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5114 
5115   return nullptr;
5116 }
5117 
5118 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5119 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5120                                                Constant *C) {
5121   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5122          "Only for relational integer predicates.");
5123 
5124   Type *Type = C->getType();
5125   bool IsSigned = ICmpInst::isSigned(Pred);
5126 
5127   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5128   bool WillIncrement =
5129       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5130 
5131   // Check if the constant operand can be safely incremented/decremented
5132   // without overflowing/underflowing.
5133   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5134     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5135   };
5136 
5137   Constant *SafeReplacementConstant = nullptr;
5138   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5139     // Bail out if the constant can't be safely incremented/decremented.
5140     if (!ConstantIsOk(CI))
5141       return llvm::None;
5142   } else if (Type->isVectorTy()) {
5143     unsigned NumElts = Type->getVectorNumElements();
5144     for (unsigned i = 0; i != NumElts; ++i) {
5145       Constant *Elt = C->getAggregateElement(i);
5146       if (!Elt)
5147         return llvm::None;
5148 
5149       if (isa<UndefValue>(Elt))
5150         continue;
5151 
5152       // Bail out if we can't determine if this constant is min/max or if we
5153       // know that this constant is min/max.
5154       auto *CI = dyn_cast<ConstantInt>(Elt);
5155       if (!CI || !ConstantIsOk(CI))
5156         return llvm::None;
5157 
5158       if (!SafeReplacementConstant)
5159         SafeReplacementConstant = CI;
5160     }
5161   } else {
5162     // ConstantExpr?
5163     return llvm::None;
5164   }
5165 
5166   // It may not be safe to change a compare predicate in the presence of
5167   // undefined elements, so replace those elements with the first safe constant
5168   // that we found.
5169   if (C->containsUndefElement()) {
5170     assert(SafeReplacementConstant && "Replacement constant not set");
5171     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5172   }
5173 
5174   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5175 
5176   // Increment or decrement the constant.
5177   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5178   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5179 
5180   return std::make_pair(NewPred, NewC);
5181 }
5182 
5183 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5184 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5185 /// allows them to be folded in visitICmpInst.
5186 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5187   ICmpInst::Predicate Pred = I.getPredicate();
5188   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5189       isCanonicalPredicate(Pred))
5190     return nullptr;
5191 
5192   Value *Op0 = I.getOperand(0);
5193   Value *Op1 = I.getOperand(1);
5194   auto *Op1C = dyn_cast<Constant>(Op1);
5195   if (!Op1C)
5196     return nullptr;
5197 
5198   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5199   if (!FlippedStrictness)
5200     return nullptr;
5201 
5202   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5203 }
5204 
5205 /// Integer compare with boolean values can always be turned into bitwise ops.
5206 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5207                                          InstCombiner::BuilderTy &Builder) {
5208   Value *A = I.getOperand(0), *B = I.getOperand(1);
5209   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5210 
5211   // A boolean compared to true/false can be simplified to Op0/true/false in
5212   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5213   // Cases not handled by InstSimplify are always 'not' of Op0.
5214   if (match(B, m_Zero())) {
5215     switch (I.getPredicate()) {
5216       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5217       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5218       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5219         return BinaryOperator::CreateNot(A);
5220       default:
5221         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5222     }
5223   } else if (match(B, m_One())) {
5224     switch (I.getPredicate()) {
5225       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5226       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5227       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5228         return BinaryOperator::CreateNot(A);
5229       default:
5230         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5231     }
5232   }
5233 
5234   switch (I.getPredicate()) {
5235   default:
5236     llvm_unreachable("Invalid icmp instruction!");
5237   case ICmpInst::ICMP_EQ:
5238     // icmp eq i1 A, B -> ~(A ^ B)
5239     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5240 
5241   case ICmpInst::ICMP_NE:
5242     // icmp ne i1 A, B -> A ^ B
5243     return BinaryOperator::CreateXor(A, B);
5244 
5245   case ICmpInst::ICMP_UGT:
5246     // icmp ugt -> icmp ult
5247     std::swap(A, B);
5248     LLVM_FALLTHROUGH;
5249   case ICmpInst::ICMP_ULT:
5250     // icmp ult i1 A, B -> ~A & B
5251     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5252 
5253   case ICmpInst::ICMP_SGT:
5254     // icmp sgt -> icmp slt
5255     std::swap(A, B);
5256     LLVM_FALLTHROUGH;
5257   case ICmpInst::ICMP_SLT:
5258     // icmp slt i1 A, B -> A & ~B
5259     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5260 
5261   case ICmpInst::ICMP_UGE:
5262     // icmp uge -> icmp ule
5263     std::swap(A, B);
5264     LLVM_FALLTHROUGH;
5265   case ICmpInst::ICMP_ULE:
5266     // icmp ule i1 A, B -> ~A | B
5267     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5268 
5269   case ICmpInst::ICMP_SGE:
5270     // icmp sge -> icmp sle
5271     std::swap(A, B);
5272     LLVM_FALLTHROUGH;
5273   case ICmpInst::ICMP_SLE:
5274     // icmp sle i1 A, B -> A | ~B
5275     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5276   }
5277 }
5278 
5279 // Transform pattern like:
5280 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5281 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5282 // Into:
5283 //   (X l>> Y) != 0
5284 //   (X l>> Y) == 0
5285 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5286                                             InstCombiner::BuilderTy &Builder) {
5287   ICmpInst::Predicate Pred, NewPred;
5288   Value *X, *Y;
5289   if (match(&Cmp,
5290             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5291     switch (Pred) {
5292     case ICmpInst::ICMP_ULE:
5293       NewPred = ICmpInst::ICMP_NE;
5294       break;
5295     case ICmpInst::ICMP_UGT:
5296       NewPred = ICmpInst::ICMP_EQ;
5297       break;
5298     default:
5299       return nullptr;
5300     }
5301   } else if (match(&Cmp, m_c_ICmp(Pred,
5302                                   m_OneUse(m_CombineOr(
5303                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5304                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5305                                             m_AllOnes()))),
5306                                   m_Value(X)))) {
5307     // The variant with 'add' is not canonical, (the variant with 'not' is)
5308     // we only get it because it has extra uses, and can't be canonicalized,
5309 
5310     switch (Pred) {
5311     case ICmpInst::ICMP_ULT:
5312       NewPred = ICmpInst::ICMP_NE;
5313       break;
5314     case ICmpInst::ICMP_UGE:
5315       NewPred = ICmpInst::ICMP_EQ;
5316       break;
5317     default:
5318       return nullptr;
5319     }
5320   } else
5321     return nullptr;
5322 
5323   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5324   Constant *Zero = Constant::getNullValue(NewX->getType());
5325   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5326 }
5327 
5328 static Instruction *foldVectorCmp(CmpInst &Cmp,
5329                                   InstCombiner::BuilderTy &Builder) {
5330   const CmpInst::Predicate Pred = Cmp.getPredicate();
5331   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5332   bool IsFP = isa<FCmpInst>(Cmp);
5333 
5334   Value *V1, *V2;
5335   Constant *M;
5336   if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))))
5337     return nullptr;
5338 
5339   // If both arguments of the cmp are shuffles that use the same mask and
5340   // shuffle within a single vector, move the shuffle after the cmp:
5341   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5342   Type *V1Ty = V1->getType();
5343   if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5344       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5345     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2)
5346                          : Builder.CreateICmp(Pred, V1, V2);
5347     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5348   }
5349 
5350   // Try to canonicalize compare with splatted operand and splat constant.
5351   // TODO: We could generalize this for more than splats. See/use the code in
5352   //       InstCombiner::foldVectorBinop().
5353   Constant *C;
5354   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5355     return nullptr;
5356 
5357   // Length-changing splats are ok, so adjust the constants as needed:
5358   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5359   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5360   Constant *ScalarM = M->getSplatValue(/* AllowUndefs */ true);
5361   if (ScalarC && ScalarM) {
5362     // We allow undefs in matching, but this transform removes those for safety.
5363     // Demanded elements analysis should be able to recover some/all of that.
5364     C = ConstantVector::getSplat(V1Ty->getVectorNumElements(), ScalarC);
5365     M = ConstantVector::getSplat(M->getType()->getVectorNumElements(), ScalarM);
5366     Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C)
5367                          : Builder.CreateICmp(Pred, V1, C);
5368     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5369   }
5370 
5371   return nullptr;
5372 }
5373 
5374 // extract(uadd.with.overflow(A, B), 0) ult A
5375 //  -> extract(uadd.with.overflow(A, B), 1)
5376 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5377   CmpInst::Predicate Pred = I.getPredicate();
5378   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5379 
5380   Value *UAddOv;
5381   Value *A, *B;
5382   auto UAddOvResultPat = m_ExtractValue<0>(
5383       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5384   if (match(Op0, UAddOvResultPat) &&
5385       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5386        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5387         (match(A, m_One()) || match(B, m_One()))) ||
5388        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5389         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5390     // extract(uadd.with.overflow(A, B), 0) < A
5391     // extract(uadd.with.overflow(A, 1), 0) == 0
5392     // extract(uadd.with.overflow(A, -1), 0) != -1
5393     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5394   else if (match(Op1, UAddOvResultPat) &&
5395            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5396     // A > extract(uadd.with.overflow(A, B), 0)
5397     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5398   else
5399     return nullptr;
5400 
5401   return ExtractValueInst::Create(UAddOv, 1);
5402 }
5403 
5404 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5405   bool Changed = false;
5406   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5407   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5408   unsigned Op0Cplxity = getComplexity(Op0);
5409   unsigned Op1Cplxity = getComplexity(Op1);
5410 
5411   /// Orders the operands of the compare so that they are listed from most
5412   /// complex to least complex.  This puts constants before unary operators,
5413   /// before binary operators.
5414   if (Op0Cplxity < Op1Cplxity ||
5415       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5416     I.swapOperands();
5417     std::swap(Op0, Op1);
5418     Changed = true;
5419   }
5420 
5421   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5422     return replaceInstUsesWith(I, V);
5423 
5424   // Comparing -val or val with non-zero is the same as just comparing val
5425   // ie, abs(val) != 0 -> val != 0
5426   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5427     Value *Cond, *SelectTrue, *SelectFalse;
5428     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5429                             m_Value(SelectFalse)))) {
5430       if (Value *V = dyn_castNegVal(SelectTrue)) {
5431         if (V == SelectFalse)
5432           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5433       }
5434       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5435         if (V == SelectTrue)
5436           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5437       }
5438     }
5439   }
5440 
5441   if (Op0->getType()->isIntOrIntVectorTy(1))
5442     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5443       return Res;
5444 
5445   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5446     return NewICmp;
5447 
5448   if (Instruction *Res = foldICmpWithConstant(I))
5449     return Res;
5450 
5451   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5452     return Res;
5453 
5454   if (Instruction *Res = foldICmpBinOp(I, Q))
5455     return Res;
5456 
5457   if (Instruction *Res = foldICmpUsingKnownBits(I))
5458     return Res;
5459 
5460   // Test if the ICmpInst instruction is used exclusively by a select as
5461   // part of a minimum or maximum operation. If so, refrain from doing
5462   // any other folding. This helps out other analyses which understand
5463   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5464   // and CodeGen. And in this case, at least one of the comparison
5465   // operands has at least one user besides the compare (the select),
5466   // which would often largely negate the benefit of folding anyway.
5467   //
5468   // Do the same for the other patterns recognized by matchSelectPattern.
5469   if (I.hasOneUse())
5470     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5471       Value *A, *B;
5472       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5473       if (SPR.Flavor != SPF_UNKNOWN)
5474         return nullptr;
5475     }
5476 
5477   // Do this after checking for min/max to prevent infinite looping.
5478   if (Instruction *Res = foldICmpWithZero(I))
5479     return Res;
5480 
5481   // FIXME: We only do this after checking for min/max to prevent infinite
5482   // looping caused by a reverse canonicalization of these patterns for min/max.
5483   // FIXME: The organization of folds is a mess. These would naturally go into
5484   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5485   // down here after the min/max restriction.
5486   ICmpInst::Predicate Pred = I.getPredicate();
5487   const APInt *C;
5488   if (match(Op1, m_APInt(C))) {
5489     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5490     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5491       Constant *Zero = Constant::getNullValue(Op0->getType());
5492       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5493     }
5494 
5495     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5496     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5497       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5498       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5499     }
5500   }
5501 
5502   if (Instruction *Res = foldICmpInstWithConstant(I))
5503     return Res;
5504 
5505   // Try to match comparison as a sign bit test. Intentionally do this after
5506   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5507   if (Instruction *New = foldSignBitTest(I))
5508     return New;
5509 
5510   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5511     return Res;
5512 
5513   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5514   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5515     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5516       return NI;
5517   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5518     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5519                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5520       return NI;
5521 
5522   // Try to optimize equality comparisons against alloca-based pointers.
5523   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5524     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5525     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5526       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5527         return New;
5528     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5529       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5530         return New;
5531   }
5532 
5533   if (Instruction *Res = foldICmpBitCast(I, Builder))
5534     return Res;
5535 
5536   if (Instruction *R = foldICmpWithCastOp(I))
5537     return R;
5538 
5539   if (Instruction *Res = foldICmpWithMinMax(I))
5540     return Res;
5541 
5542   {
5543     Value *A, *B;
5544     // Transform (A & ~B) == 0 --> (A & B) != 0
5545     // and       (A & ~B) != 0 --> (A & B) == 0
5546     // if A is a power of 2.
5547     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5548         match(Op1, m_Zero()) &&
5549         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5550       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5551                           Op1);
5552 
5553     // ~X < ~Y --> Y < X
5554     // ~X < C -->  X > ~C
5555     if (match(Op0, m_Not(m_Value(A)))) {
5556       if (match(Op1, m_Not(m_Value(B))))
5557         return new ICmpInst(I.getPredicate(), B, A);
5558 
5559       const APInt *C;
5560       if (match(Op1, m_APInt(C)))
5561         return new ICmpInst(I.getSwappedPredicate(), A,
5562                             ConstantInt::get(Op1->getType(), ~(*C)));
5563     }
5564 
5565     Instruction *AddI = nullptr;
5566     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5567                                      m_Instruction(AddI))) &&
5568         isa<IntegerType>(A->getType())) {
5569       Value *Result;
5570       Constant *Overflow;
5571       // m_UAddWithOverflow can match patterns that do not include  an explicit
5572       // "add" instruction, so check the opcode of the matched op.
5573       if (AddI->getOpcode() == Instruction::Add &&
5574           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5575                                 Result, Overflow)) {
5576         replaceInstUsesWith(*AddI, Result);
5577         return replaceInstUsesWith(I, Overflow);
5578       }
5579     }
5580 
5581     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5582     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5583       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5584         return R;
5585     }
5586     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5587       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5588         return R;
5589     }
5590   }
5591 
5592   if (Instruction *Res = foldICmpEquality(I))
5593     return Res;
5594 
5595   if (Instruction *Res = foldICmpOfUAddOv(I))
5596     return Res;
5597 
5598   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5599   // an i1 which indicates whether or not we successfully did the swap.
5600   //
5601   // Replace comparisons between the old value and the expected value with the
5602   // indicator that 'cmpxchg' returns.
5603   //
5604   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5605   // spuriously fail.  In those cases, the old value may equal the expected
5606   // value but it is possible for the swap to not occur.
5607   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5608     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5609       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5610         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5611             !ACXI->isWeak())
5612           return ExtractValueInst::Create(ACXI, 1);
5613 
5614   {
5615     Value *X;
5616     const APInt *C;
5617     // icmp X+Cst, X
5618     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5619       return foldICmpAddOpConst(X, *C, I.getPredicate());
5620 
5621     // icmp X, X+Cst
5622     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5623       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5624   }
5625 
5626   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5627     return Res;
5628 
5629   if (I.getType()->isVectorTy())
5630     if (Instruction *Res = foldVectorCmp(I, Builder))
5631       return Res;
5632 
5633   return Changed ? &I : nullptr;
5634 }
5635 
5636 /// Fold fcmp ([us]itofp x, cst) if possible.
5637 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5638                                                 Constant *RHSC) {
5639   if (!isa<ConstantFP>(RHSC)) return nullptr;
5640   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5641 
5642   // Get the width of the mantissa.  We don't want to hack on conversions that
5643   // might lose information from the integer, e.g. "i64 -> float"
5644   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5645   if (MantissaWidth == -1) return nullptr;  // Unknown.
5646 
5647   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5648 
5649   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5650 
5651   if (I.isEquality()) {
5652     FCmpInst::Predicate P = I.getPredicate();
5653     bool IsExact = false;
5654     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5655     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5656 
5657     // If the floating point constant isn't an integer value, we know if we will
5658     // ever compare equal / not equal to it.
5659     if (!IsExact) {
5660       // TODO: Can never be -0.0 and other non-representable values
5661       APFloat RHSRoundInt(RHS);
5662       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5663       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5664         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5665           return replaceInstUsesWith(I, Builder.getFalse());
5666 
5667         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5668         return replaceInstUsesWith(I, Builder.getTrue());
5669       }
5670     }
5671 
5672     // TODO: If the constant is exactly representable, is it always OK to do
5673     // equality compares as integer?
5674   }
5675 
5676   // Check to see that the input is converted from an integer type that is small
5677   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5678   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5679   unsigned InputSize = IntTy->getScalarSizeInBits();
5680 
5681   // Following test does NOT adjust InputSize downwards for signed inputs,
5682   // because the most negative value still requires all the mantissa bits
5683   // to distinguish it from one less than that value.
5684   if ((int)InputSize > MantissaWidth) {
5685     // Conversion would lose accuracy. Check if loss can impact comparison.
5686     int Exp = ilogb(RHS);
5687     if (Exp == APFloat::IEK_Inf) {
5688       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5689       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5690         // Conversion could create infinity.
5691         return nullptr;
5692     } else {
5693       // Note that if RHS is zero or NaN, then Exp is negative
5694       // and first condition is trivially false.
5695       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5696         // Conversion could affect comparison.
5697         return nullptr;
5698     }
5699   }
5700 
5701   // Otherwise, we can potentially simplify the comparison.  We know that it
5702   // will always come through as an integer value and we know the constant is
5703   // not a NAN (it would have been previously simplified).
5704   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5705 
5706   ICmpInst::Predicate Pred;
5707   switch (I.getPredicate()) {
5708   default: llvm_unreachable("Unexpected predicate!");
5709   case FCmpInst::FCMP_UEQ:
5710   case FCmpInst::FCMP_OEQ:
5711     Pred = ICmpInst::ICMP_EQ;
5712     break;
5713   case FCmpInst::FCMP_UGT:
5714   case FCmpInst::FCMP_OGT:
5715     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5716     break;
5717   case FCmpInst::FCMP_UGE:
5718   case FCmpInst::FCMP_OGE:
5719     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5720     break;
5721   case FCmpInst::FCMP_ULT:
5722   case FCmpInst::FCMP_OLT:
5723     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5724     break;
5725   case FCmpInst::FCMP_ULE:
5726   case FCmpInst::FCMP_OLE:
5727     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5728     break;
5729   case FCmpInst::FCMP_UNE:
5730   case FCmpInst::FCMP_ONE:
5731     Pred = ICmpInst::ICMP_NE;
5732     break;
5733   case FCmpInst::FCMP_ORD:
5734     return replaceInstUsesWith(I, Builder.getTrue());
5735   case FCmpInst::FCMP_UNO:
5736     return replaceInstUsesWith(I, Builder.getFalse());
5737   }
5738 
5739   // Now we know that the APFloat is a normal number, zero or inf.
5740 
5741   // See if the FP constant is too large for the integer.  For example,
5742   // comparing an i8 to 300.0.
5743   unsigned IntWidth = IntTy->getScalarSizeInBits();
5744 
5745   if (!LHSUnsigned) {
5746     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5747     // and large values.
5748     APFloat SMax(RHS.getSemantics());
5749     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5750                           APFloat::rmNearestTiesToEven);
5751     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5752       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5753           Pred == ICmpInst::ICMP_SLE)
5754         return replaceInstUsesWith(I, Builder.getTrue());
5755       return replaceInstUsesWith(I, Builder.getFalse());
5756     }
5757   } else {
5758     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5759     // +INF and large values.
5760     APFloat UMax(RHS.getSemantics());
5761     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5762                           APFloat::rmNearestTiesToEven);
5763     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5764       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5765           Pred == ICmpInst::ICMP_ULE)
5766         return replaceInstUsesWith(I, Builder.getTrue());
5767       return replaceInstUsesWith(I, Builder.getFalse());
5768     }
5769   }
5770 
5771   if (!LHSUnsigned) {
5772     // See if the RHS value is < SignedMin.
5773     APFloat SMin(RHS.getSemantics());
5774     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5775                           APFloat::rmNearestTiesToEven);
5776     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5777       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5778           Pred == ICmpInst::ICMP_SGE)
5779         return replaceInstUsesWith(I, Builder.getTrue());
5780       return replaceInstUsesWith(I, Builder.getFalse());
5781     }
5782   } else {
5783     // See if the RHS value is < UnsignedMin.
5784     APFloat SMin(RHS.getSemantics());
5785     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5786                           APFloat::rmNearestTiesToEven);
5787     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5788       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5789           Pred == ICmpInst::ICMP_UGE)
5790         return replaceInstUsesWith(I, Builder.getTrue());
5791       return replaceInstUsesWith(I, Builder.getFalse());
5792     }
5793   }
5794 
5795   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5796   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5797   // casting the FP value to the integer value and back, checking for equality.
5798   // Don't do this for zero, because -0.0 is not fractional.
5799   Constant *RHSInt = LHSUnsigned
5800     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5801     : ConstantExpr::getFPToSI(RHSC, IntTy);
5802   if (!RHS.isZero()) {
5803     bool Equal = LHSUnsigned
5804       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5805       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5806     if (!Equal) {
5807       // If we had a comparison against a fractional value, we have to adjust
5808       // the compare predicate and sometimes the value.  RHSC is rounded towards
5809       // zero at this point.
5810       switch (Pred) {
5811       default: llvm_unreachable("Unexpected integer comparison!");
5812       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5813         return replaceInstUsesWith(I, Builder.getTrue());
5814       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5815         return replaceInstUsesWith(I, Builder.getFalse());
5816       case ICmpInst::ICMP_ULE:
5817         // (float)int <= 4.4   --> int <= 4
5818         // (float)int <= -4.4  --> false
5819         if (RHS.isNegative())
5820           return replaceInstUsesWith(I, Builder.getFalse());
5821         break;
5822       case ICmpInst::ICMP_SLE:
5823         // (float)int <= 4.4   --> int <= 4
5824         // (float)int <= -4.4  --> int < -4
5825         if (RHS.isNegative())
5826           Pred = ICmpInst::ICMP_SLT;
5827         break;
5828       case ICmpInst::ICMP_ULT:
5829         // (float)int < -4.4   --> false
5830         // (float)int < 4.4    --> int <= 4
5831         if (RHS.isNegative())
5832           return replaceInstUsesWith(I, Builder.getFalse());
5833         Pred = ICmpInst::ICMP_ULE;
5834         break;
5835       case ICmpInst::ICMP_SLT:
5836         // (float)int < -4.4   --> int < -4
5837         // (float)int < 4.4    --> int <= 4
5838         if (!RHS.isNegative())
5839           Pred = ICmpInst::ICMP_SLE;
5840         break;
5841       case ICmpInst::ICMP_UGT:
5842         // (float)int > 4.4    --> int > 4
5843         // (float)int > -4.4   --> true
5844         if (RHS.isNegative())
5845           return replaceInstUsesWith(I, Builder.getTrue());
5846         break;
5847       case ICmpInst::ICMP_SGT:
5848         // (float)int > 4.4    --> int > 4
5849         // (float)int > -4.4   --> int >= -4
5850         if (RHS.isNegative())
5851           Pred = ICmpInst::ICMP_SGE;
5852         break;
5853       case ICmpInst::ICMP_UGE:
5854         // (float)int >= -4.4   --> true
5855         // (float)int >= 4.4    --> int > 4
5856         if (RHS.isNegative())
5857           return replaceInstUsesWith(I, Builder.getTrue());
5858         Pred = ICmpInst::ICMP_UGT;
5859         break;
5860       case ICmpInst::ICMP_SGE:
5861         // (float)int >= -4.4   --> int >= -4
5862         // (float)int >= 4.4    --> int > 4
5863         if (!RHS.isNegative())
5864           Pred = ICmpInst::ICMP_SGT;
5865         break;
5866       }
5867     }
5868   }
5869 
5870   // Lower this FP comparison into an appropriate integer version of the
5871   // comparison.
5872   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5873 }
5874 
5875 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5876 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5877                                               Constant *RHSC) {
5878   // When C is not 0.0 and infinities are not allowed:
5879   // (C / X) < 0.0 is a sign-bit test of X
5880   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5881   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5882   //
5883   // Proof:
5884   // Multiply (C / X) < 0.0 by X * X / C.
5885   // - X is non zero, if it is the flag 'ninf' is violated.
5886   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5887   //   the predicate. C is also non zero by definition.
5888   //
5889   // Thus X * X / C is non zero and the transformation is valid. [qed]
5890 
5891   FCmpInst::Predicate Pred = I.getPredicate();
5892 
5893   // Check that predicates are valid.
5894   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5895       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5896     return nullptr;
5897 
5898   // Check that RHS operand is zero.
5899   if (!match(RHSC, m_AnyZeroFP()))
5900     return nullptr;
5901 
5902   // Check fastmath flags ('ninf').
5903   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5904     return nullptr;
5905 
5906   // Check the properties of the dividend. It must not be zero to avoid a
5907   // division by zero (see Proof).
5908   const APFloat *C;
5909   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5910     return nullptr;
5911 
5912   if (C->isZero())
5913     return nullptr;
5914 
5915   // Get swapped predicate if necessary.
5916   if (C->isNegative())
5917     Pred = I.getSwappedPredicate();
5918 
5919   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5920 }
5921 
5922 /// Optimize fabs(X) compared with zero.
5923 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5924   Value *X;
5925   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5926       !match(I.getOperand(1), m_PosZeroFP()))
5927     return nullptr;
5928 
5929   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5930     I->setPredicate(P);
5931     I->setOperand(0, X);
5932     return I;
5933   };
5934 
5935   switch (I.getPredicate()) {
5936   case FCmpInst::FCMP_UGE:
5937   case FCmpInst::FCMP_OLT:
5938     // fabs(X) >= 0.0 --> true
5939     // fabs(X) <  0.0 --> false
5940     llvm_unreachable("fcmp should have simplified");
5941 
5942   case FCmpInst::FCMP_OGT:
5943     // fabs(X) > 0.0 --> X != 0.0
5944     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5945 
5946   case FCmpInst::FCMP_UGT:
5947     // fabs(X) u> 0.0 --> X u!= 0.0
5948     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5949 
5950   case FCmpInst::FCMP_OLE:
5951     // fabs(X) <= 0.0 --> X == 0.0
5952     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5953 
5954   case FCmpInst::FCMP_ULE:
5955     // fabs(X) u<= 0.0 --> X u== 0.0
5956     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5957 
5958   case FCmpInst::FCMP_OGE:
5959     // fabs(X) >= 0.0 --> !isnan(X)
5960     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5961     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5962 
5963   case FCmpInst::FCMP_ULT:
5964     // fabs(X) u< 0.0 --> isnan(X)
5965     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5966     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5967 
5968   case FCmpInst::FCMP_OEQ:
5969   case FCmpInst::FCMP_UEQ:
5970   case FCmpInst::FCMP_ONE:
5971   case FCmpInst::FCMP_UNE:
5972   case FCmpInst::FCMP_ORD:
5973   case FCmpInst::FCMP_UNO:
5974     // Look through the fabs() because it doesn't change anything but the sign.
5975     // fabs(X) == 0.0 --> X == 0.0,
5976     // fabs(X) != 0.0 --> X != 0.0
5977     // isnan(fabs(X)) --> isnan(X)
5978     // !isnan(fabs(X) --> !isnan(X)
5979     return replacePredAndOp0(&I, I.getPredicate(), X);
5980 
5981   default:
5982     return nullptr;
5983   }
5984 }
5985 
5986 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5987   bool Changed = false;
5988 
5989   /// Orders the operands of the compare so that they are listed from most
5990   /// complex to least complex.  This puts constants before unary operators,
5991   /// before binary operators.
5992   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5993     I.swapOperands();
5994     Changed = true;
5995   }
5996 
5997   const CmpInst::Predicate Pred = I.getPredicate();
5998   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5999   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6000                                   SQ.getWithInstruction(&I)))
6001     return replaceInstUsesWith(I, V);
6002 
6003   // Simplify 'fcmp pred X, X'
6004   Type *OpType = Op0->getType();
6005   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6006   if (Op0 == Op1) {
6007     switch (Pred) {
6008       default: break;
6009     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6010     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6011     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6012     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6013       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6014       I.setPredicate(FCmpInst::FCMP_UNO);
6015       I.setOperand(1, Constant::getNullValue(OpType));
6016       return &I;
6017 
6018     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6019     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6020     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6021     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6022       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6023       I.setPredicate(FCmpInst::FCMP_ORD);
6024       I.setOperand(1, Constant::getNullValue(OpType));
6025       return &I;
6026     }
6027   }
6028 
6029   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6030   // then canonicalize the operand to 0.0.
6031   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6032     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6033       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6034 
6035     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6036       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6037   }
6038 
6039   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6040   Value *X, *Y;
6041   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6042     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6043 
6044   // Test if the FCmpInst instruction is used exclusively by a select as
6045   // part of a minimum or maximum operation. If so, refrain from doing
6046   // any other folding. This helps out other analyses which understand
6047   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6048   // and CodeGen. And in this case, at least one of the comparison
6049   // operands has at least one user besides the compare (the select),
6050   // which would often largely negate the benefit of folding anyway.
6051   if (I.hasOneUse())
6052     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6053       Value *A, *B;
6054       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6055       if (SPR.Flavor != SPF_UNKNOWN)
6056         return nullptr;
6057     }
6058 
6059   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6060   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6061   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6062     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6063 
6064   // Handle fcmp with instruction LHS and constant RHS.
6065   Instruction *LHSI;
6066   Constant *RHSC;
6067   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6068     switch (LHSI->getOpcode()) {
6069     case Instruction::PHI:
6070       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6071       // block.  If in the same block, we're encouraging jump threading.  If
6072       // not, we are just pessimizing the code by making an i1 phi.
6073       if (LHSI->getParent() == I.getParent())
6074         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6075           return NV;
6076       break;
6077     case Instruction::SIToFP:
6078     case Instruction::UIToFP:
6079       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6080         return NV;
6081       break;
6082     case Instruction::FDiv:
6083       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6084         return NV;
6085       break;
6086     case Instruction::Load:
6087       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6088         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6089           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6090               !cast<LoadInst>(LHSI)->isVolatile())
6091             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6092               return Res;
6093       break;
6094   }
6095   }
6096 
6097   if (Instruction *R = foldFabsWithFcmpZero(I))
6098     return R;
6099 
6100   if (match(Op0, m_FNeg(m_Value(X)))) {
6101     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6102     Constant *C;
6103     if (match(Op1, m_Constant(C))) {
6104       Constant *NegC = ConstantExpr::getFNeg(C);
6105       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6106     }
6107   }
6108 
6109   if (match(Op0, m_FPExt(m_Value(X)))) {
6110     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6111     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6112       return new FCmpInst(Pred, X, Y, "", &I);
6113 
6114     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6115     const APFloat *C;
6116     if (match(Op1, m_APFloat(C))) {
6117       const fltSemantics &FPSem =
6118           X->getType()->getScalarType()->getFltSemantics();
6119       bool Lossy;
6120       APFloat TruncC = *C;
6121       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6122 
6123       // Avoid lossy conversions and denormals.
6124       // Zero is a special case that's OK to convert.
6125       APFloat Fabs = TruncC;
6126       Fabs.clearSign();
6127       if (!Lossy &&
6128           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6129             APFloat::cmpLessThan) || Fabs.isZero())) {
6130         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6131         return new FCmpInst(Pred, X, NewC, "", &I);
6132       }
6133     }
6134   }
6135 
6136   if (I.getType()->isVectorTy())
6137     if (Instruction *Res = foldVectorCmp(I, Builder))
6138       return Res;
6139 
6140   return Changed ? &I : nullptr;
6141 }
6142