1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/Target/TargetLibraryInfo.h" 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "instcombine" 28 29 static ConstantInt *getOne(Constant *C) { 30 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 31 } 32 33 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 34 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 35 } 36 37 static bool HasAddOverflow(ConstantInt *Result, 38 ConstantInt *In1, ConstantInt *In2, 39 bool IsSigned) { 40 if (!IsSigned) 41 return Result->getValue().ult(In1->getValue()); 42 43 if (In2->isNegative()) 44 return Result->getValue().sgt(In1->getValue()); 45 return Result->getValue().slt(In1->getValue()); 46 } 47 48 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 49 /// overflowed for this type. 50 static bool AddWithOverflow(Constant *&Result, Constant *In1, 51 Constant *In2, bool IsSigned = false) { 52 Result = ConstantExpr::getAdd(In1, In2); 53 54 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 55 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 56 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 57 if (HasAddOverflow(ExtractElement(Result, Idx), 58 ExtractElement(In1, Idx), 59 ExtractElement(In2, Idx), 60 IsSigned)) 61 return true; 62 } 63 return false; 64 } 65 66 return HasAddOverflow(cast<ConstantInt>(Result), 67 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 68 IsSigned); 69 } 70 71 static bool HasSubOverflow(ConstantInt *Result, 72 ConstantInt *In1, ConstantInt *In2, 73 bool IsSigned) { 74 if (!IsSigned) 75 return Result->getValue().ugt(In1->getValue()); 76 77 if (In2->isNegative()) 78 return Result->getValue().slt(In1->getValue()); 79 80 return Result->getValue().sgt(In1->getValue()); 81 } 82 83 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 84 /// overflowed for this type. 85 static bool SubWithOverflow(Constant *&Result, Constant *In1, 86 Constant *In2, bool IsSigned = false) { 87 Result = ConstantExpr::getSub(In1, In2); 88 89 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 90 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 91 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 92 if (HasSubOverflow(ExtractElement(Result, Idx), 93 ExtractElement(In1, Idx), 94 ExtractElement(In2, Idx), 95 IsSigned)) 96 return true; 97 } 98 return false; 99 } 100 101 return HasSubOverflow(cast<ConstantInt>(Result), 102 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 103 IsSigned); 104 } 105 106 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 107 /// comparison only checks the sign bit. If it only checks the sign bit, set 108 /// TrueIfSigned if the result of the comparison is true when the input value is 109 /// signed. 110 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 111 bool &TrueIfSigned) { 112 switch (pred) { 113 case ICmpInst::ICMP_SLT: // True if LHS s< 0 114 TrueIfSigned = true; 115 return RHS->isZero(); 116 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 117 TrueIfSigned = true; 118 return RHS->isAllOnesValue(); 119 case ICmpInst::ICMP_SGT: // True if LHS s> -1 120 TrueIfSigned = false; 121 return RHS->isAllOnesValue(); 122 case ICmpInst::ICMP_UGT: 123 // True if LHS u> RHS and RHS == high-bit-mask - 1 124 TrueIfSigned = true; 125 return RHS->isMaxValue(true); 126 case ICmpInst::ICMP_UGE: 127 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 128 TrueIfSigned = true; 129 return RHS->getValue().isSignBit(); 130 default: 131 return false; 132 } 133 } 134 135 /// Returns true if the exploded icmp can be expressed as a signed comparison 136 /// to zero and updates the predicate accordingly. 137 /// The signedness of the comparison is preserved. 138 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 139 if (!ICmpInst::isSigned(pred)) 140 return false; 141 142 if (RHS->isZero()) 143 return ICmpInst::isRelational(pred); 144 145 if (RHS->isOne()) { 146 if (pred == ICmpInst::ICMP_SLT) { 147 pred = ICmpInst::ICMP_SLE; 148 return true; 149 } 150 } else if (RHS->isAllOnesValue()) { 151 if (pred == ICmpInst::ICMP_SGT) { 152 pred = ICmpInst::ICMP_SGE; 153 return true; 154 } 155 } 156 157 return false; 158 } 159 160 // isHighOnes - Return true if the constant is of the form 1+0+. 161 // This is the same as lowones(~X). 162 static bool isHighOnes(const ConstantInt *CI) { 163 return (~CI->getValue() + 1).isPowerOf2(); 164 } 165 166 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 167 /// set of known zero and one bits, compute the maximum and minimum values that 168 /// could have the specified known zero and known one bits, returning them in 169 /// min/max. 170 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 171 const APInt& KnownOne, 172 APInt& Min, APInt& Max) { 173 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 174 KnownZero.getBitWidth() == Min.getBitWidth() && 175 KnownZero.getBitWidth() == Max.getBitWidth() && 176 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 177 APInt UnknownBits = ~(KnownZero|KnownOne); 178 179 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 180 // bit if it is unknown. 181 Min = KnownOne; 182 Max = KnownOne|UnknownBits; 183 184 if (UnknownBits.isNegative()) { // Sign bit is unknown 185 Min.setBit(Min.getBitWidth()-1); 186 Max.clearBit(Max.getBitWidth()-1); 187 } 188 } 189 190 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 191 // a set of known zero and one bits, compute the maximum and minimum values that 192 // could have the specified known zero and known one bits, returning them in 193 // min/max. 194 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 195 const APInt &KnownOne, 196 APInt &Min, APInt &Max) { 197 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 198 KnownZero.getBitWidth() == Min.getBitWidth() && 199 KnownZero.getBitWidth() == Max.getBitWidth() && 200 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 201 APInt UnknownBits = ~(KnownZero|KnownOne); 202 203 // The minimum value is when the unknown bits are all zeros. 204 Min = KnownOne; 205 // The maximum value is when the unknown bits are all ones. 206 Max = KnownOne|UnknownBits; 207 } 208 209 210 211 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 212 /// cmp pred (load (gep GV, ...)), cmpcst 213 /// where GV is a global variable with a constant initializer. Try to simplify 214 /// this into some simple computation that does not need the load. For example 215 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 216 /// 217 /// If AndCst is non-null, then the loaded value is masked with that constant 218 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 219 Instruction *InstCombiner:: 220 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 221 CmpInst &ICI, ConstantInt *AndCst) { 222 // We need TD information to know the pointer size unless this is inbounds. 223 if (!GEP->isInBounds() && !DL) 224 return nullptr; 225 226 Constant *Init = GV->getInitializer(); 227 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 228 return nullptr; 229 230 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 231 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 232 233 // There are many forms of this optimization we can handle, for now, just do 234 // the simple index into a single-dimensional array. 235 // 236 // Require: GEP GV, 0, i {{, constant indices}} 237 if (GEP->getNumOperands() < 3 || 238 !isa<ConstantInt>(GEP->getOperand(1)) || 239 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 240 isa<Constant>(GEP->getOperand(2))) 241 return nullptr; 242 243 // Check that indices after the variable are constants and in-range for the 244 // type they index. Collect the indices. This is typically for arrays of 245 // structs. 246 SmallVector<unsigned, 4> LaterIndices; 247 248 Type *EltTy = Init->getType()->getArrayElementType(); 249 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 250 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 251 if (!Idx) return nullptr; // Variable index. 252 253 uint64_t IdxVal = Idx->getZExtValue(); 254 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 255 256 if (StructType *STy = dyn_cast<StructType>(EltTy)) 257 EltTy = STy->getElementType(IdxVal); 258 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 259 if (IdxVal >= ATy->getNumElements()) return nullptr; 260 EltTy = ATy->getElementType(); 261 } else { 262 return nullptr; // Unknown type. 263 } 264 265 LaterIndices.push_back(IdxVal); 266 } 267 268 enum { Overdefined = -3, Undefined = -2 }; 269 270 // Variables for our state machines. 271 272 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 273 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 274 // and 87 is the second (and last) index. FirstTrueElement is -2 when 275 // undefined, otherwise set to the first true element. SecondTrueElement is 276 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 277 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 278 279 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 280 // form "i != 47 & i != 87". Same state transitions as for true elements. 281 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 282 283 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 284 /// define a state machine that triggers for ranges of values that the index 285 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 286 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 287 /// index in the range (inclusive). We use -2 for undefined here because we 288 /// use relative comparisons and don't want 0-1 to match -1. 289 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 290 291 // MagicBitvector - This is a magic bitvector where we set a bit if the 292 // comparison is true for element 'i'. If there are 64 elements or less in 293 // the array, this will fully represent all the comparison results. 294 uint64_t MagicBitvector = 0; 295 296 297 // Scan the array and see if one of our patterns matches. 298 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 299 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 300 Constant *Elt = Init->getAggregateElement(i); 301 if (!Elt) return nullptr; 302 303 // If this is indexing an array of structures, get the structure element. 304 if (!LaterIndices.empty()) 305 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 306 307 // If the element is masked, handle it. 308 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 309 310 // Find out if the comparison would be true or false for the i'th element. 311 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 312 CompareRHS, DL, TLI); 313 // If the result is undef for this element, ignore it. 314 if (isa<UndefValue>(C)) { 315 // Extend range state machines to cover this element in case there is an 316 // undef in the middle of the range. 317 if (TrueRangeEnd == (int)i-1) 318 TrueRangeEnd = i; 319 if (FalseRangeEnd == (int)i-1) 320 FalseRangeEnd = i; 321 continue; 322 } 323 324 // If we can't compute the result for any of the elements, we have to give 325 // up evaluating the entire conditional. 326 if (!isa<ConstantInt>(C)) return nullptr; 327 328 // Otherwise, we know if the comparison is true or false for this element, 329 // update our state machines. 330 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 331 332 // State machine for single/double/range index comparison. 333 if (IsTrueForElt) { 334 // Update the TrueElement state machine. 335 if (FirstTrueElement == Undefined) 336 FirstTrueElement = TrueRangeEnd = i; // First true element. 337 else { 338 // Update double-compare state machine. 339 if (SecondTrueElement == Undefined) 340 SecondTrueElement = i; 341 else 342 SecondTrueElement = Overdefined; 343 344 // Update range state machine. 345 if (TrueRangeEnd == (int)i-1) 346 TrueRangeEnd = i; 347 else 348 TrueRangeEnd = Overdefined; 349 } 350 } else { 351 // Update the FalseElement state machine. 352 if (FirstFalseElement == Undefined) 353 FirstFalseElement = FalseRangeEnd = i; // First false element. 354 else { 355 // Update double-compare state machine. 356 if (SecondFalseElement == Undefined) 357 SecondFalseElement = i; 358 else 359 SecondFalseElement = Overdefined; 360 361 // Update range state machine. 362 if (FalseRangeEnd == (int)i-1) 363 FalseRangeEnd = i; 364 else 365 FalseRangeEnd = Overdefined; 366 } 367 } 368 369 370 // If this element is in range, update our magic bitvector. 371 if (i < 64 && IsTrueForElt) 372 MagicBitvector |= 1ULL << i; 373 374 // If all of our states become overdefined, bail out early. Since the 375 // predicate is expensive, only check it every 8 elements. This is only 376 // really useful for really huge arrays. 377 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 378 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 379 FalseRangeEnd == Overdefined) 380 return nullptr; 381 } 382 383 // Now that we've scanned the entire array, emit our new comparison(s). We 384 // order the state machines in complexity of the generated code. 385 Value *Idx = GEP->getOperand(2); 386 387 // If the index is larger than the pointer size of the target, truncate the 388 // index down like the GEP would do implicitly. We don't have to do this for 389 // an inbounds GEP because the index can't be out of range. 390 if (!GEP->isInBounds()) { 391 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 392 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 393 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 394 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 395 } 396 397 // If the comparison is only true for one or two elements, emit direct 398 // comparisons. 399 if (SecondTrueElement != Overdefined) { 400 // None true -> false. 401 if (FirstTrueElement == Undefined) 402 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 403 404 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 405 406 // True for one element -> 'i == 47'. 407 if (SecondTrueElement == Undefined) 408 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 409 410 // True for two elements -> 'i == 47 | i == 72'. 411 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 412 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 413 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 414 return BinaryOperator::CreateOr(C1, C2); 415 } 416 417 // If the comparison is only false for one or two elements, emit direct 418 // comparisons. 419 if (SecondFalseElement != Overdefined) { 420 // None false -> true. 421 if (FirstFalseElement == Undefined) 422 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 423 424 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 425 426 // False for one element -> 'i != 47'. 427 if (SecondFalseElement == Undefined) 428 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 429 430 // False for two elements -> 'i != 47 & i != 72'. 431 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 432 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 433 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 434 return BinaryOperator::CreateAnd(C1, C2); 435 } 436 437 // If the comparison can be replaced with a range comparison for the elements 438 // where it is true, emit the range check. 439 if (TrueRangeEnd != Overdefined) { 440 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 441 442 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 443 if (FirstTrueElement) { 444 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 445 Idx = Builder->CreateAdd(Idx, Offs); 446 } 447 448 Value *End = ConstantInt::get(Idx->getType(), 449 TrueRangeEnd-FirstTrueElement+1); 450 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 451 } 452 453 // False range check. 454 if (FalseRangeEnd != Overdefined) { 455 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 456 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 457 if (FirstFalseElement) { 458 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 459 Idx = Builder->CreateAdd(Idx, Offs); 460 } 461 462 Value *End = ConstantInt::get(Idx->getType(), 463 FalseRangeEnd-FirstFalseElement); 464 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 465 } 466 467 468 // If a magic bitvector captures the entire comparison state 469 // of this load, replace it with computation that does: 470 // ((magic_cst >> i) & 1) != 0 471 { 472 Type *Ty = nullptr; 473 474 // Look for an appropriate type: 475 // - The type of Idx if the magic fits 476 // - The smallest fitting legal type if we have a DataLayout 477 // - Default to i32 478 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 479 Ty = Idx->getType(); 480 else if (DL) 481 Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 482 else if (ArrayElementCount <= 32) 483 Ty = Type::getInt32Ty(Init->getContext()); 484 485 if (Ty) { 486 Value *V = Builder->CreateIntCast(Idx, Ty, false); 487 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 488 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 489 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 490 } 491 } 492 493 return nullptr; 494 } 495 496 497 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 498 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 499 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 500 /// be complex, and scales are involved. The above expression would also be 501 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 502 /// This later form is less amenable to optimization though, and we are allowed 503 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 504 /// 505 /// If we can't emit an optimized form for this expression, this returns null. 506 /// 507 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { 508 const DataLayout &DL = *IC.getDataLayout(); 509 gep_type_iterator GTI = gep_type_begin(GEP); 510 511 // Check to see if this gep only has a single variable index. If so, and if 512 // any constant indices are a multiple of its scale, then we can compute this 513 // in terms of the scale of the variable index. For example, if the GEP 514 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 515 // because the expression will cross zero at the same point. 516 unsigned i, e = GEP->getNumOperands(); 517 int64_t Offset = 0; 518 for (i = 1; i != e; ++i, ++GTI) { 519 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 520 // Compute the aggregate offset of constant indices. 521 if (CI->isZero()) continue; 522 523 // Handle a struct index, which adds its field offset to the pointer. 524 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 525 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 526 } else { 527 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 528 Offset += Size*CI->getSExtValue(); 529 } 530 } else { 531 // Found our variable index. 532 break; 533 } 534 } 535 536 // If there are no variable indices, we must have a constant offset, just 537 // evaluate it the general way. 538 if (i == e) return nullptr; 539 540 Value *VariableIdx = GEP->getOperand(i); 541 // Determine the scale factor of the variable element. For example, this is 542 // 4 if the variable index is into an array of i32. 543 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 544 545 // Verify that there are no other variable indices. If so, emit the hard way. 546 for (++i, ++GTI; i != e; ++i, ++GTI) { 547 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 548 if (!CI) return nullptr; 549 550 // Compute the aggregate offset of constant indices. 551 if (CI->isZero()) continue; 552 553 // Handle a struct index, which adds its field offset to the pointer. 554 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 555 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 556 } else { 557 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 558 Offset += Size*CI->getSExtValue(); 559 } 560 } 561 562 563 564 // Okay, we know we have a single variable index, which must be a 565 // pointer/array/vector index. If there is no offset, life is simple, return 566 // the index. 567 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 568 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 569 if (Offset == 0) { 570 // Cast to intptrty in case a truncation occurs. If an extension is needed, 571 // we don't need to bother extending: the extension won't affect where the 572 // computation crosses zero. 573 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 574 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 575 } 576 return VariableIdx; 577 } 578 579 // Otherwise, there is an index. The computation we will do will be modulo 580 // the pointer size, so get it. 581 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 582 583 Offset &= PtrSizeMask; 584 VariableScale &= PtrSizeMask; 585 586 // To do this transformation, any constant index must be a multiple of the 587 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 588 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 589 // multiple of the variable scale. 590 int64_t NewOffs = Offset / (int64_t)VariableScale; 591 if (Offset != NewOffs*(int64_t)VariableScale) 592 return nullptr; 593 594 // Okay, we can do this evaluation. Start by converting the index to intptr. 595 if (VariableIdx->getType() != IntPtrTy) 596 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 597 true /*Signed*/); 598 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 599 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 600 } 601 602 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 603 /// else. At this point we know that the GEP is on the LHS of the comparison. 604 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 605 ICmpInst::Predicate Cond, 606 Instruction &I) { 607 // Don't transform signed compares of GEPs into index compares. Even if the 608 // GEP is inbounds, the final add of the base pointer can have signed overflow 609 // and would change the result of the icmp. 610 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 611 // the maximum signed value for the pointer type. 612 if (ICmpInst::isSigned(Cond)) 613 return nullptr; 614 615 // Look through bitcasts and addrspacecasts. We do not however want to remove 616 // 0 GEPs. 617 if (!isa<GetElementPtrInst>(RHS)) 618 RHS = RHS->stripPointerCasts(); 619 620 Value *PtrBase = GEPLHS->getOperand(0); 621 if (DL && PtrBase == RHS && GEPLHS->isInBounds()) { 622 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 623 // This transformation (ignoring the base and scales) is valid because we 624 // know pointers can't overflow since the gep is inbounds. See if we can 625 // output an optimized form. 626 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); 627 628 // If not, synthesize the offset the hard way. 629 if (!Offset) 630 Offset = EmitGEPOffset(GEPLHS); 631 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 632 Constant::getNullValue(Offset->getType())); 633 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 634 // If the base pointers are different, but the indices are the same, just 635 // compare the base pointer. 636 if (PtrBase != GEPRHS->getOperand(0)) { 637 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 638 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 639 GEPRHS->getOperand(0)->getType(); 640 if (IndicesTheSame) 641 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 643 IndicesTheSame = false; 644 break; 645 } 646 647 // If all indices are the same, just compare the base pointers. 648 if (IndicesTheSame) 649 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 650 651 // If we're comparing GEPs with two base pointers that only differ in type 652 // and both GEPs have only constant indices or just one use, then fold 653 // the compare with the adjusted indices. 654 if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() && 655 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 656 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 657 PtrBase->stripPointerCasts() == 658 GEPRHS->getOperand(0)->stripPointerCasts()) { 659 Value *LOffset = EmitGEPOffset(GEPLHS); 660 Value *ROffset = EmitGEPOffset(GEPRHS); 661 662 // If we looked through an addrspacecast between different sized address 663 // spaces, the LHS and RHS pointers are different sized 664 // integers. Truncate to the smaller one. 665 Type *LHSIndexTy = LOffset->getType(); 666 Type *RHSIndexTy = ROffset->getType(); 667 if (LHSIndexTy != RHSIndexTy) { 668 if (LHSIndexTy->getPrimitiveSizeInBits() < 669 RHSIndexTy->getPrimitiveSizeInBits()) { 670 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 671 } else 672 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 673 } 674 675 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 676 LOffset, ROffset); 677 return ReplaceInstUsesWith(I, Cmp); 678 } 679 680 // Otherwise, the base pointers are different and the indices are 681 // different, bail out. 682 return nullptr; 683 } 684 685 // If one of the GEPs has all zero indices, recurse. 686 if (GEPLHS->hasAllZeroIndices()) 687 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 688 ICmpInst::getSwappedPredicate(Cond), I); 689 690 // If the other GEP has all zero indices, recurse. 691 if (GEPRHS->hasAllZeroIndices()) 692 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 693 694 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 695 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 696 // If the GEPs only differ by one index, compare it. 697 unsigned NumDifferences = 0; // Keep track of # differences. 698 unsigned DiffOperand = 0; // The operand that differs. 699 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 700 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 701 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 702 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 703 // Irreconcilable differences. 704 NumDifferences = 2; 705 break; 706 } else { 707 if (NumDifferences++) break; 708 DiffOperand = i; 709 } 710 } 711 712 if (NumDifferences == 0) // SAME GEP? 713 return ReplaceInstUsesWith(I, // No comparison is needed here. 714 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 715 716 else if (NumDifferences == 1 && GEPsInBounds) { 717 Value *LHSV = GEPLHS->getOperand(DiffOperand); 718 Value *RHSV = GEPRHS->getOperand(DiffOperand); 719 // Make sure we do a signed comparison here. 720 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 721 } 722 } 723 724 // Only lower this if the icmp is the only user of the GEP or if we expect 725 // the result to fold to a constant! 726 if (DL && 727 GEPsInBounds && 728 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 729 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 730 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 731 Value *L = EmitGEPOffset(GEPLHS); 732 Value *R = EmitGEPOffset(GEPRHS); 733 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 734 } 735 } 736 return nullptr; 737 } 738 739 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 740 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 741 Value *X, ConstantInt *CI, 742 ICmpInst::Predicate Pred) { 743 // If we have X+0, exit early (simplifying logic below) and let it get folded 744 // elsewhere. icmp X+0, X -> icmp X, X 745 if (CI->isZero()) { 746 bool isTrue = ICmpInst::isTrueWhenEqual(Pred); 747 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); 748 } 749 750 // (X+4) == X -> false. 751 if (Pred == ICmpInst::ICMP_EQ) 752 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 753 754 // (X+4) != X -> true. 755 if (Pred == ICmpInst::ICMP_NE) 756 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 757 758 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 759 // so the values can never be equal. Similarly for all other "or equals" 760 // operators. 761 762 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 763 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 764 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 765 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 766 Value *R = 767 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 768 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 769 } 770 771 // (X+1) >u X --> X <u (0-1) --> X != 255 772 // (X+2) >u X --> X <u (0-2) --> X <u 254 773 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 774 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 775 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 776 777 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 778 ConstantInt *SMax = ConstantInt::get(X->getContext(), 779 APInt::getSignedMaxValue(BitWidth)); 780 781 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 782 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 783 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 784 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 785 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 786 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 787 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 788 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 789 790 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 791 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 792 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 793 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 794 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 795 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 796 797 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 798 Constant *C = Builder->getInt(CI->getValue()-1); 799 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 800 } 801 802 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 803 /// and CmpRHS are both known to be integer constants. 804 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 805 ConstantInt *DivRHS) { 806 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 807 const APInt &CmpRHSV = CmpRHS->getValue(); 808 809 // FIXME: If the operand types don't match the type of the divide 810 // then don't attempt this transform. The code below doesn't have the 811 // logic to deal with a signed divide and an unsigned compare (and 812 // vice versa). This is because (x /s C1) <s C2 produces different 813 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 814 // (x /u C1) <u C2. Simply casting the operands and result won't 815 // work. :( The if statement below tests that condition and bails 816 // if it finds it. 817 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 818 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 819 return nullptr; 820 if (DivRHS->isZero()) 821 return nullptr; // The ProdOV computation fails on divide by zero. 822 if (DivIsSigned && DivRHS->isAllOnesValue()) 823 return nullptr; // The overflow computation also screws up here 824 if (DivRHS->isOne()) { 825 // This eliminates some funny cases with INT_MIN. 826 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 827 return &ICI; 828 } 829 830 // Compute Prod = CI * DivRHS. We are essentially solving an equation 831 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 832 // C2 (CI). By solving for X we can turn this into a range check 833 // instead of computing a divide. 834 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 835 836 // Determine if the product overflows by seeing if the product is 837 // not equal to the divide. Make sure we do the same kind of divide 838 // as in the LHS instruction that we're folding. 839 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 840 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 841 842 // Get the ICmp opcode 843 ICmpInst::Predicate Pred = ICI.getPredicate(); 844 845 /// If the division is known to be exact, then there is no remainder from the 846 /// divide, so the covered range size is unit, otherwise it is the divisor. 847 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 848 849 // Figure out the interval that is being checked. For example, a comparison 850 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 851 // Compute this interval based on the constants involved and the signedness of 852 // the compare/divide. This computes a half-open interval, keeping track of 853 // whether either value in the interval overflows. After analysis each 854 // overflow variable is set to 0 if it's corresponding bound variable is valid 855 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 856 int LoOverflow = 0, HiOverflow = 0; 857 Constant *LoBound = nullptr, *HiBound = nullptr; 858 859 if (!DivIsSigned) { // udiv 860 // e.g. X/5 op 3 --> [15, 20) 861 LoBound = Prod; 862 HiOverflow = LoOverflow = ProdOV; 863 if (!HiOverflow) { 864 // If this is not an exact divide, then many values in the range collapse 865 // to the same result value. 866 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 867 } 868 869 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 870 if (CmpRHSV == 0) { // (X / pos) op 0 871 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 872 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 873 HiBound = RangeSize; 874 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 875 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 876 HiOverflow = LoOverflow = ProdOV; 877 if (!HiOverflow) 878 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 879 } else { // (X / pos) op neg 880 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 881 HiBound = AddOne(Prod); 882 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 883 if (!LoOverflow) { 884 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 885 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 886 } 887 } 888 } else if (DivRHS->isNegative()) { // Divisor is < 0. 889 if (DivI->isExact()) 890 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 891 if (CmpRHSV == 0) { // (X / neg) op 0 892 // e.g. X/-5 op 0 --> [-4, 5) 893 LoBound = AddOne(RangeSize); 894 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 895 if (HiBound == DivRHS) { // -INTMIN = INTMIN 896 HiOverflow = 1; // [INTMIN+1, overflow) 897 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 898 } 899 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 900 // e.g. X/-5 op 3 --> [-19, -14) 901 HiBound = AddOne(Prod); 902 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 903 if (!LoOverflow) 904 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 905 } else { // (X / neg) op neg 906 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 907 LoOverflow = HiOverflow = ProdOV; 908 if (!HiOverflow) 909 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 910 } 911 912 // Dividing by a negative swaps the condition. LT <-> GT 913 Pred = ICmpInst::getSwappedPredicate(Pred); 914 } 915 916 Value *X = DivI->getOperand(0); 917 switch (Pred) { 918 default: llvm_unreachable("Unhandled icmp opcode!"); 919 case ICmpInst::ICMP_EQ: 920 if (LoOverflow && HiOverflow) 921 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 922 if (HiOverflow) 923 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 924 ICmpInst::ICMP_UGE, X, LoBound); 925 if (LoOverflow) 926 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 927 ICmpInst::ICMP_ULT, X, HiBound); 928 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 929 DivIsSigned, true)); 930 case ICmpInst::ICMP_NE: 931 if (LoOverflow && HiOverflow) 932 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 933 if (HiOverflow) 934 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 935 ICmpInst::ICMP_ULT, X, LoBound); 936 if (LoOverflow) 937 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 938 ICmpInst::ICMP_UGE, X, HiBound); 939 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 940 DivIsSigned, false)); 941 case ICmpInst::ICMP_ULT: 942 case ICmpInst::ICMP_SLT: 943 if (LoOverflow == +1) // Low bound is greater than input range. 944 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 945 if (LoOverflow == -1) // Low bound is less than input range. 946 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 947 return new ICmpInst(Pred, X, LoBound); 948 case ICmpInst::ICMP_UGT: 949 case ICmpInst::ICMP_SGT: 950 if (HiOverflow == +1) // High bound greater than input range. 951 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 952 if (HiOverflow == -1) // High bound less than input range. 953 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 954 if (Pred == ICmpInst::ICMP_UGT) 955 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 956 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 957 } 958 } 959 960 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 961 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 962 ConstantInt *ShAmt) { 963 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 964 965 // Check that the shift amount is in range. If not, don't perform 966 // undefined shifts. When the shift is visited it will be 967 // simplified. 968 uint32_t TypeBits = CmpRHSV.getBitWidth(); 969 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 970 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 971 return nullptr; 972 973 if (!ICI.isEquality()) { 974 // If we have an unsigned comparison and an ashr, we can't simplify this. 975 // Similarly for signed comparisons with lshr. 976 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 977 return nullptr; 978 979 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 980 // by a power of 2. Since we already have logic to simplify these, 981 // transform to div and then simplify the resultant comparison. 982 if (Shr->getOpcode() == Instruction::AShr && 983 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 984 return nullptr; 985 986 // Revisit the shift (to delete it). 987 Worklist.Add(Shr); 988 989 Constant *DivCst = 990 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 991 992 Value *Tmp = 993 Shr->getOpcode() == Instruction::AShr ? 994 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 995 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 996 997 ICI.setOperand(0, Tmp); 998 999 // If the builder folded the binop, just return it. 1000 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1001 if (!TheDiv) 1002 return &ICI; 1003 1004 // Otherwise, fold this div/compare. 1005 assert(TheDiv->getOpcode() == Instruction::SDiv || 1006 TheDiv->getOpcode() == Instruction::UDiv); 1007 1008 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1009 assert(Res && "This div/cst should have folded!"); 1010 return Res; 1011 } 1012 1013 1014 // If we are comparing against bits always shifted out, the 1015 // comparison cannot succeed. 1016 APInt Comp = CmpRHSV << ShAmtVal; 1017 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1018 if (Shr->getOpcode() == Instruction::LShr) 1019 Comp = Comp.lshr(ShAmtVal); 1020 else 1021 Comp = Comp.ashr(ShAmtVal); 1022 1023 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1024 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1025 Constant *Cst = Builder->getInt1(IsICMP_NE); 1026 return ReplaceInstUsesWith(ICI, Cst); 1027 } 1028 1029 // Otherwise, check to see if the bits shifted out are known to be zero. 1030 // If so, we can compare against the unshifted value: 1031 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1032 if (Shr->hasOneUse() && Shr->isExact()) 1033 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1034 1035 if (Shr->hasOneUse()) { 1036 // Otherwise strength reduce the shift into an and. 1037 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1038 Constant *Mask = Builder->getInt(Val); 1039 1040 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1041 Mask, Shr->getName()+".mask"); 1042 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1043 } 1044 return nullptr; 1045 } 1046 1047 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" -> 1048 /// (icmp eq/ne A, Log2(const2/const1)) -> 1049 /// (icmp eq/ne A, Log2(const2) - Log2(const1)). 1050 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, 1051 ConstantInt *CI1, 1052 ConstantInt *CI2) { 1053 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1054 1055 auto getConstant = [&I, this](bool IsTrue) { 1056 if (I.getPredicate() == I.ICMP_NE) 1057 IsTrue = !IsTrue; 1058 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1059 }; 1060 1061 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1062 if (I.getPredicate() == I.ICMP_NE) 1063 Pred = CmpInst::getInversePredicate(Pred); 1064 return new ICmpInst(Pred, LHS, RHS); 1065 }; 1066 1067 APInt AP1 = CI1->getValue(); 1068 APInt AP2 = CI2->getValue(); 1069 1070 if (!AP1) { 1071 if (!AP2) { 1072 // Both Constants are 0. 1073 return getConstant(true); 1074 } 1075 1076 if (cast<BinaryOperator>(Op)->isExact()) 1077 return getConstant(false); 1078 1079 if (AP2.isNegative()) { 1080 // MSB is set, so a lshr with a large enough 'A' would be undefined. 1081 return getConstant(false); 1082 } 1083 1084 // 'A' must be large enough to shift out the highest set bit. 1085 return getICmp(I.ICMP_UGT, A, 1086 ConstantInt::get(A->getType(), AP2.logBase2())); 1087 } 1088 1089 if (!AP2) { 1090 // Shifting 0 by any value gives 0. 1091 return getConstant(false); 1092 } 1093 1094 bool IsAShr = isa<AShrOperator>(Op); 1095 if (AP1 == AP2) { 1096 if (AP1.isAllOnesValue() && IsAShr) { 1097 // Arithmatic shift of -1 is always -1. 1098 return getConstant(true); 1099 } 1100 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1101 } 1102 1103 if (IsAShr) { 1104 if (AP1.isNegative() != AP2.isNegative()) { 1105 // Arithmetic shift will never change the sign. 1106 return getConstant(false); 1107 } 1108 // Both the constants are negative, take their positive to calculate 1109 // log. 1110 if (AP1.isNegative()) { 1111 AP1 = -AP1; 1112 AP2 = -AP2; 1113 } 1114 } 1115 1116 if (AP1.ugt(AP2)) { 1117 // Right-shifting will not increase the value. 1118 return getConstant(false); 1119 } 1120 1121 // Get the distance between the highest bit that's set. 1122 int Shift = AP2.logBase2() - AP1.logBase2(); 1123 1124 // Use lshr here, since we've canonicalized to +ve numbers. 1125 if (AP1 == AP2.lshr(Shift)) 1126 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1127 1128 // Shifting const2 will never be equal to const1. 1129 return getConstant(false); 1130 } 1131 1132 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1133 /// 1134 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1135 Instruction *LHSI, 1136 ConstantInt *RHS) { 1137 const APInt &RHSV = RHS->getValue(); 1138 1139 switch (LHSI->getOpcode()) { 1140 case Instruction::Trunc: 1141 if (ICI.isEquality() && LHSI->hasOneUse()) { 1142 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1143 // of the high bits truncated out of x are known. 1144 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1145 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1146 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1147 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne); 1148 1149 // If all the high bits are known, we can do this xform. 1150 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1151 // Pull in the high bits from known-ones set. 1152 APInt NewRHS = RHS->getValue().zext(SrcBits); 1153 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1154 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1155 Builder->getInt(NewRHS)); 1156 } 1157 } 1158 break; 1159 1160 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1161 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1162 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1163 // fold the xor. 1164 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1165 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1166 Value *CompareVal = LHSI->getOperand(0); 1167 1168 // If the sign bit of the XorCst is not set, there is no change to 1169 // the operation, just stop using the Xor. 1170 if (!XorCst->isNegative()) { 1171 ICI.setOperand(0, CompareVal); 1172 Worklist.Add(LHSI); 1173 return &ICI; 1174 } 1175 1176 // Was the old condition true if the operand is positive? 1177 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1178 1179 // If so, the new one isn't. 1180 isTrueIfPositive ^= true; 1181 1182 if (isTrueIfPositive) 1183 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1184 SubOne(RHS)); 1185 else 1186 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1187 AddOne(RHS)); 1188 } 1189 1190 if (LHSI->hasOneUse()) { 1191 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1192 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1193 const APInt &SignBit = XorCst->getValue(); 1194 ICmpInst::Predicate Pred = ICI.isSigned() 1195 ? ICI.getUnsignedPredicate() 1196 : ICI.getSignedPredicate(); 1197 return new ICmpInst(Pred, LHSI->getOperand(0), 1198 Builder->getInt(RHSV ^ SignBit)); 1199 } 1200 1201 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1202 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1203 const APInt &NotSignBit = XorCst->getValue(); 1204 ICmpInst::Predicate Pred = ICI.isSigned() 1205 ? ICI.getUnsignedPredicate() 1206 : ICI.getSignedPredicate(); 1207 Pred = ICI.getSwappedPredicate(Pred); 1208 return new ICmpInst(Pred, LHSI->getOperand(0), 1209 Builder->getInt(RHSV ^ NotSignBit)); 1210 } 1211 } 1212 1213 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1214 // iff -C is a power of 2 1215 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1216 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1217 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1218 1219 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1220 // iff -C is a power of 2 1221 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1222 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1223 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1224 } 1225 break; 1226 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1227 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1228 LHSI->getOperand(0)->hasOneUse()) { 1229 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1230 1231 // If the LHS is an AND of a truncating cast, we can widen the 1232 // and/compare to be the input width without changing the value 1233 // produced, eliminating a cast. 1234 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1235 // We can do this transformation if either the AND constant does not 1236 // have its sign bit set or if it is an equality comparison. 1237 // Extending a relational comparison when we're checking the sign 1238 // bit would not work. 1239 if (ICI.isEquality() || 1240 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1241 Value *NewAnd = 1242 Builder->CreateAnd(Cast->getOperand(0), 1243 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1244 NewAnd->takeName(LHSI); 1245 return new ICmpInst(ICI.getPredicate(), NewAnd, 1246 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1247 } 1248 } 1249 1250 // If the LHS is an AND of a zext, and we have an equality compare, we can 1251 // shrink the and/compare to the smaller type, eliminating the cast. 1252 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1253 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1254 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1255 // should fold the icmp to true/false in that case. 1256 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1257 Value *NewAnd = 1258 Builder->CreateAnd(Cast->getOperand(0), 1259 ConstantExpr::getTrunc(AndCst, Ty)); 1260 NewAnd->takeName(LHSI); 1261 return new ICmpInst(ICI.getPredicate(), NewAnd, 1262 ConstantExpr::getTrunc(RHS, Ty)); 1263 } 1264 } 1265 1266 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1267 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1268 // happens a LOT in code produced by the C front-end, for bitfield 1269 // access. 1270 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1271 if (Shift && !Shift->isShift()) 1272 Shift = nullptr; 1273 1274 ConstantInt *ShAmt; 1275 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1276 1277 // This seemingly simple opportunity to fold away a shift turns out to 1278 // be rather complicated. See PR17827 1279 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1280 if (ShAmt) { 1281 bool CanFold = false; 1282 unsigned ShiftOpcode = Shift->getOpcode(); 1283 if (ShiftOpcode == Instruction::AShr) { 1284 // There may be some constraints that make this possible, 1285 // but nothing simple has been discovered yet. 1286 CanFold = false; 1287 } else if (ShiftOpcode == Instruction::Shl) { 1288 // For a left shift, we can fold if the comparison is not signed. 1289 // We can also fold a signed comparison if the mask value and 1290 // comparison value are not negative. These constraints may not be 1291 // obvious, but we can prove that they are correct using an SMT 1292 // solver. 1293 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1294 CanFold = true; 1295 } else if (ShiftOpcode == Instruction::LShr) { 1296 // For a logical right shift, we can fold if the comparison is not 1297 // signed. We can also fold a signed comparison if the shifted mask 1298 // value and the shifted comparison value are not negative. 1299 // These constraints may not be obvious, but we can prove that they 1300 // are correct using an SMT solver. 1301 if (!ICI.isSigned()) 1302 CanFold = true; 1303 else { 1304 ConstantInt *ShiftedAndCst = 1305 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1306 ConstantInt *ShiftedRHSCst = 1307 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1308 1309 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1310 CanFold = true; 1311 } 1312 } 1313 1314 if (CanFold) { 1315 Constant *NewCst; 1316 if (ShiftOpcode == Instruction::Shl) 1317 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1318 else 1319 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1320 1321 // Check to see if we are shifting out any of the bits being 1322 // compared. 1323 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1324 // If we shifted bits out, the fold is not going to work out. 1325 // As a special case, check to see if this means that the 1326 // result is always true or false now. 1327 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1328 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1329 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1330 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1331 } else { 1332 ICI.setOperand(1, NewCst); 1333 Constant *NewAndCst; 1334 if (ShiftOpcode == Instruction::Shl) 1335 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1336 else 1337 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1338 LHSI->setOperand(1, NewAndCst); 1339 LHSI->setOperand(0, Shift->getOperand(0)); 1340 Worklist.Add(Shift); // Shift is dead. 1341 return &ICI; 1342 } 1343 } 1344 } 1345 1346 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1347 // preferable because it allows the C<<Y expression to be hoisted out 1348 // of a loop if Y is invariant and X is not. 1349 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1350 ICI.isEquality() && !Shift->isArithmeticShift() && 1351 !isa<Constant>(Shift->getOperand(0))) { 1352 // Compute C << Y. 1353 Value *NS; 1354 if (Shift->getOpcode() == Instruction::LShr) { 1355 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1356 } else { 1357 // Insert a logical shift. 1358 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1359 } 1360 1361 // Compute X & (C << Y). 1362 Value *NewAnd = 1363 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1364 1365 ICI.setOperand(0, NewAnd); 1366 return &ICI; 1367 } 1368 1369 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1370 // bit set in (X & AndCst) will produce a result greater than RHSV. 1371 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1372 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1373 if ((NTZ < AndCst->getBitWidth()) && 1374 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1375 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1376 Constant::getNullValue(RHS->getType())); 1377 } 1378 } 1379 1380 // Try to optimize things like "A[i]&42 == 0" to index computations. 1381 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1382 if (GetElementPtrInst *GEP = 1383 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1384 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1385 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1386 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1387 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1388 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1389 return Res; 1390 } 1391 } 1392 1393 // X & -C == -C -> X > u ~C 1394 // X & -C != -C -> X <= u ~C 1395 // iff C is a power of 2 1396 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1397 return new ICmpInst( 1398 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1399 : ICmpInst::ICMP_ULE, 1400 LHSI->getOperand(0), SubOne(RHS)); 1401 break; 1402 1403 case Instruction::Or: { 1404 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1405 break; 1406 Value *P, *Q; 1407 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1408 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1409 // -> and (icmp eq P, null), (icmp eq Q, null). 1410 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1411 Constant::getNullValue(P->getType())); 1412 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1413 Constant::getNullValue(Q->getType())); 1414 Instruction *Op; 1415 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1416 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1417 else 1418 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1419 return Op; 1420 } 1421 break; 1422 } 1423 1424 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1425 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1426 if (!Val) break; 1427 1428 // If this is a signed comparison to 0 and the mul is sign preserving, 1429 // use the mul LHS operand instead. 1430 ICmpInst::Predicate pred = ICI.getPredicate(); 1431 if (isSignTest(pred, RHS) && !Val->isZero() && 1432 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1433 return new ICmpInst(Val->isNegative() ? 1434 ICmpInst::getSwappedPredicate(pred) : pred, 1435 LHSI->getOperand(0), 1436 Constant::getNullValue(RHS->getType())); 1437 1438 break; 1439 } 1440 1441 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1442 uint32_t TypeBits = RHSV.getBitWidth(); 1443 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1444 if (!ShAmt) { 1445 Value *X; 1446 // (1 << X) pred P2 -> X pred Log2(P2) 1447 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1448 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1449 ICmpInst::Predicate Pred = ICI.getPredicate(); 1450 if (ICI.isUnsigned()) { 1451 if (!RHSVIsPowerOf2) { 1452 // (1 << X) < 30 -> X <= 4 1453 // (1 << X) <= 30 -> X <= 4 1454 // (1 << X) >= 30 -> X > 4 1455 // (1 << X) > 30 -> X > 4 1456 if (Pred == ICmpInst::ICMP_ULT) 1457 Pred = ICmpInst::ICMP_ULE; 1458 else if (Pred == ICmpInst::ICMP_UGE) 1459 Pred = ICmpInst::ICMP_UGT; 1460 } 1461 unsigned RHSLog2 = RHSV.logBase2(); 1462 1463 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1464 // (1 << X) > 2147483648 -> X > 31 -> false 1465 // (1 << X) <= 2147483648 -> X <= 31 -> true 1466 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1467 if (RHSLog2 == TypeBits-1) { 1468 if (Pred == ICmpInst::ICMP_UGE) 1469 Pred = ICmpInst::ICMP_EQ; 1470 else if (Pred == ICmpInst::ICMP_UGT) 1471 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1472 else if (Pred == ICmpInst::ICMP_ULE) 1473 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1474 else if (Pred == ICmpInst::ICMP_ULT) 1475 Pred = ICmpInst::ICMP_NE; 1476 } 1477 1478 return new ICmpInst(Pred, X, 1479 ConstantInt::get(RHS->getType(), RHSLog2)); 1480 } else if (ICI.isSigned()) { 1481 if (RHSV.isAllOnesValue()) { 1482 // (1 << X) <= -1 -> X == 31 1483 if (Pred == ICmpInst::ICMP_SLE) 1484 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1485 ConstantInt::get(RHS->getType(), TypeBits-1)); 1486 1487 // (1 << X) > -1 -> X != 31 1488 if (Pred == ICmpInst::ICMP_SGT) 1489 return new ICmpInst(ICmpInst::ICMP_NE, X, 1490 ConstantInt::get(RHS->getType(), TypeBits-1)); 1491 } else if (!RHSV) { 1492 // (1 << X) < 0 -> X == 31 1493 // (1 << X) <= 0 -> X == 31 1494 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1495 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1496 ConstantInt::get(RHS->getType(), TypeBits-1)); 1497 1498 // (1 << X) >= 0 -> X != 31 1499 // (1 << X) > 0 -> X != 31 1500 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1501 return new ICmpInst(ICmpInst::ICMP_NE, X, 1502 ConstantInt::get(RHS->getType(), TypeBits-1)); 1503 } 1504 } else if (ICI.isEquality()) { 1505 if (RHSVIsPowerOf2) 1506 return new ICmpInst( 1507 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1508 1509 return ReplaceInstUsesWith( 1510 ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse() 1511 : Builder->getTrue()); 1512 } 1513 } 1514 break; 1515 } 1516 1517 // Check that the shift amount is in range. If not, don't perform 1518 // undefined shifts. When the shift is visited it will be 1519 // simplified. 1520 if (ShAmt->uge(TypeBits)) 1521 break; 1522 1523 if (ICI.isEquality()) { 1524 // If we are comparing against bits always shifted out, the 1525 // comparison cannot succeed. 1526 Constant *Comp = 1527 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1528 ShAmt); 1529 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1530 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1531 Constant *Cst = Builder->getInt1(IsICMP_NE); 1532 return ReplaceInstUsesWith(ICI, Cst); 1533 } 1534 1535 // If the shift is NUW, then it is just shifting out zeros, no need for an 1536 // AND. 1537 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 1538 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1539 ConstantExpr::getLShr(RHS, ShAmt)); 1540 1541 // If the shift is NSW and we compare to 0, then it is just shifting out 1542 // sign bits, no need for an AND either. 1543 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 1544 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1545 ConstantExpr::getLShr(RHS, ShAmt)); 1546 1547 if (LHSI->hasOneUse()) { 1548 // Otherwise strength reduce the shift into an and. 1549 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1550 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 1551 TypeBits - ShAmtVal)); 1552 1553 Value *And = 1554 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 1555 return new ICmpInst(ICI.getPredicate(), And, 1556 ConstantExpr::getLShr(RHS, ShAmt)); 1557 } 1558 } 1559 1560 // If this is a signed comparison to 0 and the shift is sign preserving, 1561 // use the shift LHS operand instead. 1562 ICmpInst::Predicate pred = ICI.getPredicate(); 1563 if (isSignTest(pred, RHS) && 1564 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1565 return new ICmpInst(pred, 1566 LHSI->getOperand(0), 1567 Constant::getNullValue(RHS->getType())); 1568 1569 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1570 bool TrueIfSigned = false; 1571 if (LHSI->hasOneUse() && 1572 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 1573 // (X << 31) <s 0 --> (X&1) != 0 1574 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 1575 APInt::getOneBitSet(TypeBits, 1576 TypeBits-ShAmt->getZExtValue()-1)); 1577 Value *And = 1578 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 1579 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1580 And, Constant::getNullValue(And->getType())); 1581 } 1582 1583 // Transform (icmp pred iM (shl iM %v, N), CI) 1584 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 1585 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 1586 // This enables to get rid of the shift in favor of a trunc which can be 1587 // free on the target. It has the additional benefit of comparing to a 1588 // smaller constant, which will be target friendly. 1589 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 1590 if (LHSI->hasOneUse() && 1591 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 1592 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 1593 Constant *NCI = ConstantExpr::getTrunc( 1594 ConstantExpr::getAShr(RHS, 1595 ConstantInt::get(RHS->getType(), Amt)), 1596 NTy); 1597 return new ICmpInst(ICI.getPredicate(), 1598 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 1599 NCI); 1600 } 1601 1602 break; 1603 } 1604 1605 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 1606 case Instruction::AShr: { 1607 // Handle equality comparisons of shift-by-constant. 1608 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 1609 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1610 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 1611 return Res; 1612 } 1613 1614 // Handle exact shr's. 1615 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 1616 if (RHSV.isMinValue()) 1617 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 1618 } 1619 break; 1620 } 1621 1622 case Instruction::SDiv: 1623 case Instruction::UDiv: 1624 // Fold: icmp pred ([us]div X, C1), C2 -> range test 1625 // Fold this div into the comparison, producing a range check. 1626 // Determine, based on the divide type, what the range is being 1627 // checked. If there is an overflow on the low or high side, remember 1628 // it, otherwise compute the range [low, hi) bounding the new value. 1629 // See: InsertRangeTest above for the kinds of replacements possible. 1630 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 1631 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 1632 DivRHS)) 1633 return R; 1634 break; 1635 1636 case Instruction::Sub: { 1637 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 1638 if (!LHSC) break; 1639 const APInt &LHSV = LHSC->getValue(); 1640 1641 // C1-X <u C2 -> (X|(C2-1)) == C1 1642 // iff C1 & (C2-1) == C2-1 1643 // C2 is a power of 2 1644 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1645 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 1646 return new ICmpInst(ICmpInst::ICMP_EQ, 1647 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 1648 LHSC); 1649 1650 // C1-X >u C2 -> (X|C2) != C1 1651 // iff C1 & C2 == C2 1652 // C2+1 is a power of 2 1653 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1654 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 1655 return new ICmpInst(ICmpInst::ICMP_NE, 1656 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 1657 break; 1658 } 1659 1660 case Instruction::Add: 1661 // Fold: icmp pred (add X, C1), C2 1662 if (!ICI.isEquality()) { 1663 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1664 if (!LHSC) break; 1665 const APInt &LHSV = LHSC->getValue(); 1666 1667 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 1668 .subtract(LHSV); 1669 1670 if (ICI.isSigned()) { 1671 if (CR.getLower().isSignBit()) { 1672 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 1673 Builder->getInt(CR.getUpper())); 1674 } else if (CR.getUpper().isSignBit()) { 1675 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 1676 Builder->getInt(CR.getLower())); 1677 } 1678 } else { 1679 if (CR.getLower().isMinValue()) { 1680 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 1681 Builder->getInt(CR.getUpper())); 1682 } else if (CR.getUpper().isMinValue()) { 1683 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 1684 Builder->getInt(CR.getLower())); 1685 } 1686 } 1687 1688 // X-C1 <u C2 -> (X & -C2) == C1 1689 // iff C1 & (C2-1) == 0 1690 // C2 is a power of 2 1691 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1692 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 1693 return new ICmpInst(ICmpInst::ICMP_EQ, 1694 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 1695 ConstantExpr::getNeg(LHSC)); 1696 1697 // X-C1 >u C2 -> (X & ~C2) != C1 1698 // iff C1 & C2 == 0 1699 // C2+1 is a power of 2 1700 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1701 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 1702 return new ICmpInst(ICmpInst::ICMP_NE, 1703 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 1704 ConstantExpr::getNeg(LHSC)); 1705 } 1706 break; 1707 } 1708 1709 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 1710 if (ICI.isEquality()) { 1711 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1712 1713 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 1714 // the second operand is a constant, simplify a bit. 1715 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 1716 switch (BO->getOpcode()) { 1717 case Instruction::SRem: 1718 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 1719 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 1720 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 1721 if (V.sgt(1) && V.isPowerOf2()) { 1722 Value *NewRem = 1723 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 1724 BO->getName()); 1725 return new ICmpInst(ICI.getPredicate(), NewRem, 1726 Constant::getNullValue(BO->getType())); 1727 } 1728 } 1729 break; 1730 case Instruction::Add: 1731 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 1732 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1733 if (BO->hasOneUse()) 1734 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1735 ConstantExpr::getSub(RHS, BOp1C)); 1736 } else if (RHSV == 0) { 1737 // Replace ((add A, B) != 0) with (A != -B) if A or B is 1738 // efficiently invertible, or if the add has just this one use. 1739 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 1740 1741 if (Value *NegVal = dyn_castNegVal(BOp1)) 1742 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 1743 if (Value *NegVal = dyn_castNegVal(BOp0)) 1744 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 1745 if (BO->hasOneUse()) { 1746 Value *Neg = Builder->CreateNeg(BOp1); 1747 Neg->takeName(BO); 1748 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 1749 } 1750 } 1751 break; 1752 case Instruction::Xor: 1753 // For the xor case, we can xor two constants together, eliminating 1754 // the explicit xor. 1755 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 1756 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1757 ConstantExpr::getXor(RHS, BOC)); 1758 } else if (RHSV == 0) { 1759 // Replace ((xor A, B) != 0) with (A != B) 1760 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1761 BO->getOperand(1)); 1762 } 1763 break; 1764 case Instruction::Sub: 1765 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 1766 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 1767 if (BO->hasOneUse()) 1768 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 1769 ConstantExpr::getSub(BOp0C, RHS)); 1770 } else if (RHSV == 0) { 1771 // Replace ((sub A, B) != 0) with (A != B) 1772 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1773 BO->getOperand(1)); 1774 } 1775 break; 1776 case Instruction::Or: 1777 // If bits are being or'd in that are not present in the constant we 1778 // are comparing against, then the comparison could never succeed! 1779 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1780 Constant *NotCI = ConstantExpr::getNot(RHS); 1781 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 1782 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1783 } 1784 break; 1785 1786 case Instruction::And: 1787 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1788 // If bits are being compared against that are and'd out, then the 1789 // comparison can never succeed! 1790 if ((RHSV & ~BOC->getValue()) != 0) 1791 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1792 1793 // If we have ((X & C) == C), turn it into ((X & C) != 0). 1794 if (RHS == BOC && RHSV.isPowerOf2()) 1795 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 1796 ICmpInst::ICMP_NE, LHSI, 1797 Constant::getNullValue(RHS->getType())); 1798 1799 // Don't perform the following transforms if the AND has multiple uses 1800 if (!BO->hasOneUse()) 1801 break; 1802 1803 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 1804 if (BOC->getValue().isSignBit()) { 1805 Value *X = BO->getOperand(0); 1806 Constant *Zero = Constant::getNullValue(X->getType()); 1807 ICmpInst::Predicate pred = isICMP_NE ? 1808 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1809 return new ICmpInst(pred, X, Zero); 1810 } 1811 1812 // ((X & ~7) == 0) --> X < 8 1813 if (RHSV == 0 && isHighOnes(BOC)) { 1814 Value *X = BO->getOperand(0); 1815 Constant *NegX = ConstantExpr::getNeg(BOC); 1816 ICmpInst::Predicate pred = isICMP_NE ? 1817 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1818 return new ICmpInst(pred, X, NegX); 1819 } 1820 } 1821 break; 1822 case Instruction::Mul: 1823 if (RHSV == 0 && BO->hasNoSignedWrap()) { 1824 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1825 // The trivial case (mul X, 0) is handled by InstSimplify 1826 // General case : (mul X, C) != 0 iff X != 0 1827 // (mul X, C) == 0 iff X == 0 1828 if (!BOC->isZero()) 1829 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1830 Constant::getNullValue(RHS->getType())); 1831 } 1832 } 1833 break; 1834 default: break; 1835 } 1836 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 1837 // Handle icmp {eq|ne} <intrinsic>, intcst. 1838 switch (II->getIntrinsicID()) { 1839 case Intrinsic::bswap: 1840 Worklist.Add(II); 1841 ICI.setOperand(0, II->getArgOperand(0)); 1842 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 1843 return &ICI; 1844 case Intrinsic::ctlz: 1845 case Intrinsic::cttz: 1846 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 1847 if (RHSV == RHS->getType()->getBitWidth()) { 1848 Worklist.Add(II); 1849 ICI.setOperand(0, II->getArgOperand(0)); 1850 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 1851 return &ICI; 1852 } 1853 break; 1854 case Intrinsic::ctpop: 1855 // popcount(A) == 0 -> A == 0 and likewise for != 1856 if (RHS->isZero()) { 1857 Worklist.Add(II); 1858 ICI.setOperand(0, II->getArgOperand(0)); 1859 ICI.setOperand(1, RHS); 1860 return &ICI; 1861 } 1862 break; 1863 default: 1864 break; 1865 } 1866 } 1867 } 1868 return nullptr; 1869 } 1870 1871 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 1872 /// We only handle extending casts so far. 1873 /// 1874 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 1875 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 1876 Value *LHSCIOp = LHSCI->getOperand(0); 1877 Type *SrcTy = LHSCIOp->getType(); 1878 Type *DestTy = LHSCI->getType(); 1879 Value *RHSCIOp; 1880 1881 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 1882 // integer type is the same size as the pointer type. 1883 if (DL && LHSCI->getOpcode() == Instruction::PtrToInt && 1884 DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 1885 Value *RHSOp = nullptr; 1886 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { 1887 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 1888 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { 1889 RHSOp = RHSC->getOperand(0); 1890 // If the pointer types don't match, insert a bitcast. 1891 if (LHSCIOp->getType() != RHSOp->getType()) 1892 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 1893 } 1894 1895 if (RHSOp) 1896 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 1897 } 1898 1899 // The code below only handles extension cast instructions, so far. 1900 // Enforce this. 1901 if (LHSCI->getOpcode() != Instruction::ZExt && 1902 LHSCI->getOpcode() != Instruction::SExt) 1903 return nullptr; 1904 1905 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 1906 bool isSignedCmp = ICI.isSigned(); 1907 1908 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 1909 // Not an extension from the same type? 1910 RHSCIOp = CI->getOperand(0); 1911 if (RHSCIOp->getType() != LHSCIOp->getType()) 1912 return nullptr; 1913 1914 // If the signedness of the two casts doesn't agree (i.e. one is a sext 1915 // and the other is a zext), then we can't handle this. 1916 if (CI->getOpcode() != LHSCI->getOpcode()) 1917 return nullptr; 1918 1919 // Deal with equality cases early. 1920 if (ICI.isEquality()) 1921 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1922 1923 // A signed comparison of sign extended values simplifies into a 1924 // signed comparison. 1925 if (isSignedCmp && isSignedExt) 1926 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1927 1928 // The other three cases all fold into an unsigned comparison. 1929 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 1930 } 1931 1932 // If we aren't dealing with a constant on the RHS, exit early 1933 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 1934 if (!CI) 1935 return nullptr; 1936 1937 // Compute the constant that would happen if we truncated to SrcTy then 1938 // reextended to DestTy. 1939 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 1940 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 1941 Res1, DestTy); 1942 1943 // If the re-extended constant didn't change... 1944 if (Res2 == CI) { 1945 // Deal with equality cases early. 1946 if (ICI.isEquality()) 1947 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1948 1949 // A signed comparison of sign extended values simplifies into a 1950 // signed comparison. 1951 if (isSignedExt && isSignedCmp) 1952 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1953 1954 // The other three cases all fold into an unsigned comparison. 1955 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 1956 } 1957 1958 // The re-extended constant changed so the constant cannot be represented 1959 // in the shorter type. Consequently, we cannot emit a simple comparison. 1960 // All the cases that fold to true or false will have already been handled 1961 // by SimplifyICmpInst, so only deal with the tricky case. 1962 1963 if (isSignedCmp || !isSignedExt) 1964 return nullptr; 1965 1966 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 1967 // should have been folded away previously and not enter in here. 1968 1969 // We're performing an unsigned comp with a sign extended value. 1970 // This is true if the input is >= 0. [aka >s -1] 1971 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 1972 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 1973 1974 // Finally, return the value computed. 1975 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 1976 return ReplaceInstUsesWith(ICI, Result); 1977 1978 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 1979 return BinaryOperator::CreateNot(Result); 1980 } 1981 1982 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 1983 /// I = icmp ugt (add (add A, B), CI2), CI1 1984 /// If this is of the form: 1985 /// sum = a + b 1986 /// if (sum+128 >u 255) 1987 /// Then replace it with llvm.sadd.with.overflow.i8. 1988 /// 1989 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1990 ConstantInt *CI2, ConstantInt *CI1, 1991 InstCombiner &IC) { 1992 // The transformation we're trying to do here is to transform this into an 1993 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1994 // with a narrower add, and discard the add-with-constant that is part of the 1995 // range check (if we can't eliminate it, this isn't profitable). 1996 1997 // In order to eliminate the add-with-constant, the compare can be its only 1998 // use. 1999 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 2000 if (!AddWithCst->hasOneUse()) return nullptr; 2001 2002 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 2003 if (!CI2->getValue().isPowerOf2()) return nullptr; 2004 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 2005 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 2006 2007 // The width of the new add formed is 1 more than the bias. 2008 ++NewWidth; 2009 2010 // Check to see that CI1 is an all-ones value with NewWidth bits. 2011 if (CI1->getBitWidth() == NewWidth || 2012 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 2013 return nullptr; 2014 2015 // This is only really a signed overflow check if the inputs have been 2016 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 2017 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 2018 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 2019 if (IC.ComputeNumSignBits(A) < NeededSignBits || 2020 IC.ComputeNumSignBits(B) < NeededSignBits) 2021 return nullptr; 2022 2023 // In order to replace the original add with a narrower 2024 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 2025 // and truncates that discard the high bits of the add. Verify that this is 2026 // the case. 2027 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 2028 for (User *U : OrigAdd->users()) { 2029 if (U == AddWithCst) continue; 2030 2031 // Only accept truncates for now. We would really like a nice recursive 2032 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 2033 // chain to see which bits of a value are actually demanded. If the 2034 // original add had another add which was then immediately truncated, we 2035 // could still do the transformation. 2036 TruncInst *TI = dyn_cast<TruncInst>(U); 2037 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 2038 return nullptr; 2039 } 2040 2041 // If the pattern matches, truncate the inputs to the narrower type and 2042 // use the sadd_with_overflow intrinsic to efficiently compute both the 2043 // result and the overflow bit. 2044 Module *M = I.getParent()->getParent()->getParent(); 2045 2046 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 2047 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 2048 NewType); 2049 2050 InstCombiner::BuilderTy *Builder = IC.Builder; 2051 2052 // Put the new code above the original add, in case there are any uses of the 2053 // add between the add and the compare. 2054 Builder->SetInsertPoint(OrigAdd); 2055 2056 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 2057 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 2058 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd"); 2059 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 2060 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 2061 2062 // The inner add was the result of the narrow add, zero extended to the 2063 // wider type. Replace it with the result computed by the intrinsic. 2064 IC.ReplaceInstUsesWith(*OrigAdd, ZExt); 2065 2066 // The original icmp gets replaced with the overflow value. 2067 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 2068 } 2069 2070 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV, 2071 InstCombiner &IC) { 2072 // Don't bother doing this transformation for pointers, don't do it for 2073 // vectors. 2074 if (!isa<IntegerType>(OrigAddV->getType())) return nullptr; 2075 2076 // If the add is a constant expr, then we don't bother transforming it. 2077 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV); 2078 if (!OrigAdd) return nullptr; 2079 2080 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); 2081 2082 // Put the new code above the original add, in case there are any uses of the 2083 // add between the add and the compare. 2084 InstCombiner::BuilderTy *Builder = IC.Builder; 2085 Builder->SetInsertPoint(OrigAdd); 2086 2087 Module *M = I.getParent()->getParent()->getParent(); 2088 Type *Ty = LHS->getType(); 2089 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 2090 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd"); 2091 Value *Add = Builder->CreateExtractValue(Call, 0); 2092 2093 IC.ReplaceInstUsesWith(*OrigAdd, Add); 2094 2095 // The original icmp gets replaced with the overflow value. 2096 return ExtractValueInst::Create(Call, 1, "uadd.overflow"); 2097 } 2098 2099 /// \brief Recognize and process idiom involving test for multiplication 2100 /// overflow. 2101 /// 2102 /// The caller has matched a pattern of the form: 2103 /// I = cmp u (mul(zext A, zext B), V 2104 /// The function checks if this is a test for overflow and if so replaces 2105 /// multiplication with call to 'mul.with.overflow' intrinsic. 2106 /// 2107 /// \param I Compare instruction. 2108 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2109 /// the compare instruction. Must be of integer type. 2110 /// \param OtherVal The other argument of compare instruction. 2111 /// \returns Instruction which must replace the compare instruction, NULL if no 2112 /// replacement required. 2113 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2114 Value *OtherVal, InstCombiner &IC) { 2115 // Don't bother doing this transformation for pointers, don't do it for 2116 // vectors. 2117 if (!isa<IntegerType>(MulVal->getType())) 2118 return nullptr; 2119 2120 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2121 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2122 Instruction *MulInstr = cast<Instruction>(MulVal); 2123 assert(MulInstr->getOpcode() == Instruction::Mul); 2124 2125 Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)), 2126 *RHS = cast<Instruction>(MulInstr->getOperand(1)); 2127 assert(LHS->getOpcode() == Instruction::ZExt); 2128 assert(RHS->getOpcode() == Instruction::ZExt); 2129 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2130 2131 // Calculate type and width of the result produced by mul.with.overflow. 2132 Type *TyA = A->getType(), *TyB = B->getType(); 2133 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2134 WidthB = TyB->getPrimitiveSizeInBits(); 2135 unsigned MulWidth; 2136 Type *MulType; 2137 if (WidthB > WidthA) { 2138 MulWidth = WidthB; 2139 MulType = TyB; 2140 } else { 2141 MulWidth = WidthA; 2142 MulType = TyA; 2143 } 2144 2145 // In order to replace the original mul with a narrower mul.with.overflow, 2146 // all uses must ignore upper bits of the product. The number of used low 2147 // bits must be not greater than the width of mul.with.overflow. 2148 if (MulVal->hasNUsesOrMore(2)) 2149 for (User *U : MulVal->users()) { 2150 if (U == &I) 2151 continue; 2152 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2153 // Check if truncation ignores bits above MulWidth. 2154 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2155 if (TruncWidth > MulWidth) 2156 return nullptr; 2157 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2158 // Check if AND ignores bits above MulWidth. 2159 if (BO->getOpcode() != Instruction::And) 2160 return nullptr; 2161 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2162 const APInt &CVal = CI->getValue(); 2163 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2164 return nullptr; 2165 } 2166 } else { 2167 // Other uses prohibit this transformation. 2168 return nullptr; 2169 } 2170 } 2171 2172 // Recognize patterns 2173 switch (I.getPredicate()) { 2174 case ICmpInst::ICMP_EQ: 2175 case ICmpInst::ICMP_NE: 2176 // Recognize pattern: 2177 // mulval = mul(zext A, zext B) 2178 // cmp eq/neq mulval, zext trunc mulval 2179 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2180 if (Zext->hasOneUse()) { 2181 Value *ZextArg = Zext->getOperand(0); 2182 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2183 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2184 break; //Recognized 2185 } 2186 2187 // Recognize pattern: 2188 // mulval = mul(zext A, zext B) 2189 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2190 ConstantInt *CI; 2191 Value *ValToMask; 2192 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2193 if (ValToMask != MulVal) 2194 return nullptr; 2195 const APInt &CVal = CI->getValue() + 1; 2196 if (CVal.isPowerOf2()) { 2197 unsigned MaskWidth = CVal.logBase2(); 2198 if (MaskWidth == MulWidth) 2199 break; // Recognized 2200 } 2201 } 2202 return nullptr; 2203 2204 case ICmpInst::ICMP_UGT: 2205 // Recognize pattern: 2206 // mulval = mul(zext A, zext B) 2207 // cmp ugt mulval, max 2208 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2209 APInt MaxVal = APInt::getMaxValue(MulWidth); 2210 MaxVal = MaxVal.zext(CI->getBitWidth()); 2211 if (MaxVal.eq(CI->getValue())) 2212 break; // Recognized 2213 } 2214 return nullptr; 2215 2216 case ICmpInst::ICMP_UGE: 2217 // Recognize pattern: 2218 // mulval = mul(zext A, zext B) 2219 // cmp uge mulval, max+1 2220 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2221 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2222 if (MaxVal.eq(CI->getValue())) 2223 break; // Recognized 2224 } 2225 return nullptr; 2226 2227 case ICmpInst::ICMP_ULE: 2228 // Recognize pattern: 2229 // mulval = mul(zext A, zext B) 2230 // cmp ule mulval, max 2231 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2232 APInt MaxVal = APInt::getMaxValue(MulWidth); 2233 MaxVal = MaxVal.zext(CI->getBitWidth()); 2234 if (MaxVal.eq(CI->getValue())) 2235 break; // Recognized 2236 } 2237 return nullptr; 2238 2239 case ICmpInst::ICMP_ULT: 2240 // Recognize pattern: 2241 // mulval = mul(zext A, zext B) 2242 // cmp ule mulval, max + 1 2243 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2244 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2245 if (MaxVal.eq(CI->getValue())) 2246 break; // Recognized 2247 } 2248 return nullptr; 2249 2250 default: 2251 return nullptr; 2252 } 2253 2254 InstCombiner::BuilderTy *Builder = IC.Builder; 2255 Builder->SetInsertPoint(MulInstr); 2256 Module *M = I.getParent()->getParent()->getParent(); 2257 2258 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2259 Value *MulA = A, *MulB = B; 2260 if (WidthA < MulWidth) 2261 MulA = Builder->CreateZExt(A, MulType); 2262 if (WidthB < MulWidth) 2263 MulB = Builder->CreateZExt(B, MulType); 2264 Value *F = 2265 Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType); 2266 CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul"); 2267 IC.Worklist.Add(MulInstr); 2268 2269 // If there are uses of mul result other than the comparison, we know that 2270 // they are truncation or binary AND. Change them to use result of 2271 // mul.with.overflow and adjust properly mask/size. 2272 if (MulVal->hasNUsesOrMore(2)) { 2273 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2274 for (User *U : MulVal->users()) { 2275 if (U == &I || U == OtherVal) 2276 continue; 2277 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2278 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2279 IC.ReplaceInstUsesWith(*TI, Mul); 2280 else 2281 TI->setOperand(0, Mul); 2282 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2283 assert(BO->getOpcode() == Instruction::And); 2284 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2285 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2286 APInt ShortMask = CI->getValue().trunc(MulWidth); 2287 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2288 Instruction *Zext = 2289 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2290 IC.Worklist.Add(Zext); 2291 IC.ReplaceInstUsesWith(*BO, Zext); 2292 } else { 2293 llvm_unreachable("Unexpected Binary operation"); 2294 } 2295 IC.Worklist.Add(cast<Instruction>(U)); 2296 } 2297 } 2298 if (isa<Instruction>(OtherVal)) 2299 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2300 2301 // The original icmp gets replaced with the overflow value, maybe inverted 2302 // depending on predicate. 2303 bool Inverse = false; 2304 switch (I.getPredicate()) { 2305 case ICmpInst::ICMP_NE: 2306 break; 2307 case ICmpInst::ICMP_EQ: 2308 Inverse = true; 2309 break; 2310 case ICmpInst::ICMP_UGT: 2311 case ICmpInst::ICMP_UGE: 2312 if (I.getOperand(0) == MulVal) 2313 break; 2314 Inverse = true; 2315 break; 2316 case ICmpInst::ICMP_ULT: 2317 case ICmpInst::ICMP_ULE: 2318 if (I.getOperand(1) == MulVal) 2319 break; 2320 Inverse = true; 2321 break; 2322 default: 2323 llvm_unreachable("Unexpected predicate"); 2324 } 2325 if (Inverse) { 2326 Value *Res = Builder->CreateExtractValue(Call, 1); 2327 return BinaryOperator::CreateNot(Res); 2328 } 2329 2330 return ExtractValueInst::Create(Call, 1); 2331 } 2332 2333 // DemandedBitsLHSMask - When performing a comparison against a constant, 2334 // it is possible that not all the bits in the LHS are demanded. This helper 2335 // method computes the mask that IS demanded. 2336 static APInt DemandedBitsLHSMask(ICmpInst &I, 2337 unsigned BitWidth, bool isSignCheck) { 2338 if (isSignCheck) 2339 return APInt::getSignBit(BitWidth); 2340 2341 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2342 if (!CI) return APInt::getAllOnesValue(BitWidth); 2343 const APInt &RHS = CI->getValue(); 2344 2345 switch (I.getPredicate()) { 2346 // For a UGT comparison, we don't care about any bits that 2347 // correspond to the trailing ones of the comparand. The value of these 2348 // bits doesn't impact the outcome of the comparison, because any value 2349 // greater than the RHS must differ in a bit higher than these due to carry. 2350 case ICmpInst::ICMP_UGT: { 2351 unsigned trailingOnes = RHS.countTrailingOnes(); 2352 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2353 return ~lowBitsSet; 2354 } 2355 2356 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2357 // Any value less than the RHS must differ in a higher bit because of carries. 2358 case ICmpInst::ICMP_ULT: { 2359 unsigned trailingZeros = RHS.countTrailingZeros(); 2360 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2361 return ~lowBitsSet; 2362 } 2363 2364 default: 2365 return APInt::getAllOnesValue(BitWidth); 2366 } 2367 2368 } 2369 2370 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2371 /// should be swapped. 2372 /// The decision is based on how many times these two operands are reused 2373 /// as subtract operands and their positions in those instructions. 2374 /// The rational is that several architectures use the same instruction for 2375 /// both subtract and cmp, thus it is better if the order of those operands 2376 /// match. 2377 /// \return true if Op0 and Op1 should be swapped. 2378 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2379 const Value * Op1) { 2380 // Filter out pointer value as those cannot appears directly in subtract. 2381 // FIXME: we may want to go through inttoptrs or bitcasts. 2382 if (Op0->getType()->isPointerTy()) 2383 return false; 2384 // Count every uses of both Op0 and Op1 in a subtract. 2385 // Each time Op0 is the first operand, count -1: swapping is bad, the 2386 // subtract has already the same layout as the compare. 2387 // Each time Op0 is the second operand, count +1: swapping is good, the 2388 // subtract has a different layout as the compare. 2389 // At the end, if the benefit is greater than 0, Op0 should come second to 2390 // expose more CSE opportunities. 2391 int GlobalSwapBenefits = 0; 2392 for (const User *U : Op0->users()) { 2393 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2394 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2395 continue; 2396 // If Op0 is the first argument, this is not beneficial to swap the 2397 // arguments. 2398 int LocalSwapBenefits = -1; 2399 unsigned Op1Idx = 1; 2400 if (BinOp->getOperand(Op1Idx) == Op0) { 2401 Op1Idx = 0; 2402 LocalSwapBenefits = 1; 2403 } 2404 if (BinOp->getOperand(Op1Idx) != Op1) 2405 continue; 2406 GlobalSwapBenefits += LocalSwapBenefits; 2407 } 2408 return GlobalSwapBenefits > 0; 2409 } 2410 2411 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 2412 bool Changed = false; 2413 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2414 unsigned Op0Cplxity = getComplexity(Op0); 2415 unsigned Op1Cplxity = getComplexity(Op1); 2416 2417 /// Orders the operands of the compare so that they are listed from most 2418 /// complex to least complex. This puts constants before unary operators, 2419 /// before binary operators. 2420 if (Op0Cplxity < Op1Cplxity || 2421 (Op0Cplxity == Op1Cplxity && 2422 swapMayExposeCSEOpportunities(Op0, Op1))) { 2423 I.swapOperands(); 2424 std::swap(Op0, Op1); 2425 Changed = true; 2426 } 2427 2428 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL)) 2429 return ReplaceInstUsesWith(I, V); 2430 2431 // comparing -val or val with non-zero is the same as just comparing val 2432 // ie, abs(val) != 0 -> val != 0 2433 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 2434 { 2435 Value *Cond, *SelectTrue, *SelectFalse; 2436 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 2437 m_Value(SelectFalse)))) { 2438 if (Value *V = dyn_castNegVal(SelectTrue)) { 2439 if (V == SelectFalse) 2440 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2441 } 2442 else if (Value *V = dyn_castNegVal(SelectFalse)) { 2443 if (V == SelectTrue) 2444 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2445 } 2446 } 2447 } 2448 2449 Type *Ty = Op0->getType(); 2450 2451 // icmp's with boolean values can always be turned into bitwise operations 2452 if (Ty->isIntegerTy(1)) { 2453 switch (I.getPredicate()) { 2454 default: llvm_unreachable("Invalid icmp instruction!"); 2455 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 2456 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 2457 return BinaryOperator::CreateNot(Xor); 2458 } 2459 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 2460 return BinaryOperator::CreateXor(Op0, Op1); 2461 2462 case ICmpInst::ICMP_UGT: 2463 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 2464 // FALL THROUGH 2465 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 2466 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2467 return BinaryOperator::CreateAnd(Not, Op1); 2468 } 2469 case ICmpInst::ICMP_SGT: 2470 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 2471 // FALL THROUGH 2472 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 2473 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2474 return BinaryOperator::CreateAnd(Not, Op0); 2475 } 2476 case ICmpInst::ICMP_UGE: 2477 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 2478 // FALL THROUGH 2479 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 2480 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2481 return BinaryOperator::CreateOr(Not, Op1); 2482 } 2483 case ICmpInst::ICMP_SGE: 2484 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 2485 // FALL THROUGH 2486 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 2487 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2488 return BinaryOperator::CreateOr(Not, Op0); 2489 } 2490 } 2491 } 2492 2493 unsigned BitWidth = 0; 2494 if (Ty->isIntOrIntVectorTy()) 2495 BitWidth = Ty->getScalarSizeInBits(); 2496 else if (DL) // Pointers require DL info to get their size. 2497 BitWidth = DL->getTypeSizeInBits(Ty->getScalarType()); 2498 2499 bool isSignBit = false; 2500 2501 // See if we are doing a comparison with a constant. 2502 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2503 Value *A = nullptr, *B = nullptr; 2504 2505 // Match the following pattern, which is a common idiom when writing 2506 // overflow-safe integer arithmetic function. The source performs an 2507 // addition in wider type, and explicitly checks for overflow using 2508 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 2509 // sadd_with_overflow intrinsic. 2510 // 2511 // TODO: This could probably be generalized to handle other overflow-safe 2512 // operations if we worked out the formulas to compute the appropriate 2513 // magic constants. 2514 // 2515 // sum = a + b 2516 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 2517 { 2518 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 2519 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2520 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 2521 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 2522 return Res; 2523 } 2524 2525 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 2526 if (I.isEquality() && CI->isZero() && 2527 match(Op0, m_Sub(m_Value(A), m_Value(B)))) { 2528 // (icmp cond A B) if cond is equality 2529 return new ICmpInst(I.getPredicate(), A, B); 2530 } 2531 2532 // If we have an icmp le or icmp ge instruction, turn it into the 2533 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 2534 // them being folded in the code below. The SimplifyICmpInst code has 2535 // already handled the edge cases for us, so we just assert on them. 2536 switch (I.getPredicate()) { 2537 default: break; 2538 case ICmpInst::ICMP_ULE: 2539 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 2540 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 2541 Builder->getInt(CI->getValue()+1)); 2542 case ICmpInst::ICMP_SLE: 2543 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 2544 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2545 Builder->getInt(CI->getValue()+1)); 2546 case ICmpInst::ICMP_UGE: 2547 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 2548 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 2549 Builder->getInt(CI->getValue()-1)); 2550 case ICmpInst::ICMP_SGE: 2551 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 2552 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2553 Builder->getInt(CI->getValue()-1)); 2554 } 2555 2556 // (icmp eq/ne (ashr/lshr const2, A), const1) 2557 if (I.isEquality()) { 2558 ConstantInt *CI2; 2559 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) || 2560 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) { 2561 return FoldICmpCstShrCst(I, Op0, A, CI, CI2); 2562 } 2563 } 2564 2565 // If this comparison is a normal comparison, it demands all 2566 // bits, if it is a sign bit comparison, it only demands the sign bit. 2567 bool UnusedBit; 2568 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 2569 } 2570 2571 // See if we can fold the comparison based on range information we can get 2572 // by checking whether bits are known to be zero or one in the input. 2573 if (BitWidth != 0) { 2574 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 2575 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 2576 2577 if (SimplifyDemandedBits(I.getOperandUse(0), 2578 DemandedBitsLHSMask(I, BitWidth, isSignBit), 2579 Op0KnownZero, Op0KnownOne, 0)) 2580 return &I; 2581 if (SimplifyDemandedBits(I.getOperandUse(1), 2582 APInt::getAllOnesValue(BitWidth), 2583 Op1KnownZero, Op1KnownOne, 0)) 2584 return &I; 2585 2586 // Given the known and unknown bits, compute a range that the LHS could be 2587 // in. Compute the Min, Max and RHS values based on the known bits. For the 2588 // EQ and NE we use unsigned values. 2589 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 2590 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 2591 if (I.isSigned()) { 2592 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2593 Op0Min, Op0Max); 2594 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2595 Op1Min, Op1Max); 2596 } else { 2597 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2598 Op0Min, Op0Max); 2599 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2600 Op1Min, Op1Max); 2601 } 2602 2603 // If Min and Max are known to be the same, then SimplifyDemandedBits 2604 // figured out that the LHS is a constant. Just constant fold this now so 2605 // that code below can assume that Min != Max. 2606 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 2607 return new ICmpInst(I.getPredicate(), 2608 ConstantInt::get(Op0->getType(), Op0Min), Op1); 2609 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 2610 return new ICmpInst(I.getPredicate(), Op0, 2611 ConstantInt::get(Op1->getType(), Op1Min)); 2612 2613 // Based on the range information we know about the LHS, see if we can 2614 // simplify this comparison. For example, (x&4) < 8 is always true. 2615 switch (I.getPredicate()) { 2616 default: llvm_unreachable("Unknown icmp opcode!"); 2617 case ICmpInst::ICMP_EQ: { 2618 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2619 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2620 2621 // If all bits are known zero except for one, then we know at most one 2622 // bit is set. If the comparison is against zero, then this is a check 2623 // to see if *that* bit is set. 2624 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2625 if (~Op1KnownZero == 0) { 2626 // If the LHS is an AND with the same constant, look through it. 2627 Value *LHS = nullptr; 2628 ConstantInt *LHSC = nullptr; 2629 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2630 LHSC->getValue() != Op0KnownZeroInverted) 2631 LHS = Op0; 2632 2633 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2634 // then turn "((1 << x)&8) == 0" into "x != 3". 2635 // or turn "((1 << x)&7) == 0" into "x > 2". 2636 Value *X = nullptr; 2637 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2638 APInt ValToCheck = Op0KnownZeroInverted; 2639 if (ValToCheck.isPowerOf2()) { 2640 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2641 return new ICmpInst(ICmpInst::ICMP_NE, X, 2642 ConstantInt::get(X->getType(), CmpVal)); 2643 } else if ((++ValToCheck).isPowerOf2()) { 2644 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 2645 return new ICmpInst(ICmpInst::ICMP_UGT, X, 2646 ConstantInt::get(X->getType(), CmpVal)); 2647 } 2648 } 2649 2650 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2651 // then turn "((8 >>u x)&1) == 0" into "x != 3". 2652 const APInt *CI; 2653 if (Op0KnownZeroInverted == 1 && 2654 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2655 return new ICmpInst(ICmpInst::ICMP_NE, X, 2656 ConstantInt::get(X->getType(), 2657 CI->countTrailingZeros())); 2658 } 2659 2660 break; 2661 } 2662 case ICmpInst::ICMP_NE: { 2663 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2664 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2665 2666 // If all bits are known zero except for one, then we know at most one 2667 // bit is set. If the comparison is against zero, then this is a check 2668 // to see if *that* bit is set. 2669 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2670 if (~Op1KnownZero == 0) { 2671 // If the LHS is an AND with the same constant, look through it. 2672 Value *LHS = nullptr; 2673 ConstantInt *LHSC = nullptr; 2674 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2675 LHSC->getValue() != Op0KnownZeroInverted) 2676 LHS = Op0; 2677 2678 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2679 // then turn "((1 << x)&8) != 0" into "x == 3". 2680 // or turn "((1 << x)&7) != 0" into "x < 3". 2681 Value *X = nullptr; 2682 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2683 APInt ValToCheck = Op0KnownZeroInverted; 2684 if (ValToCheck.isPowerOf2()) { 2685 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2686 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2687 ConstantInt::get(X->getType(), CmpVal)); 2688 } else if ((++ValToCheck).isPowerOf2()) { 2689 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2690 return new ICmpInst(ICmpInst::ICMP_ULT, X, 2691 ConstantInt::get(X->getType(), CmpVal)); 2692 } 2693 } 2694 2695 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2696 // then turn "((8 >>u x)&1) != 0" into "x == 3". 2697 const APInt *CI; 2698 if (Op0KnownZeroInverted == 1 && 2699 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2700 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2701 ConstantInt::get(X->getType(), 2702 CI->countTrailingZeros())); 2703 } 2704 2705 break; 2706 } 2707 case ICmpInst::ICMP_ULT: 2708 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 2709 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2710 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 2711 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2712 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 2713 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2714 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2715 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 2716 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2717 Builder->getInt(CI->getValue()-1)); 2718 2719 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 2720 if (CI->isMinValue(true)) 2721 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2722 Constant::getAllOnesValue(Op0->getType())); 2723 } 2724 break; 2725 case ICmpInst::ICMP_UGT: 2726 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 2727 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2728 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 2729 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2730 2731 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 2732 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2733 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2734 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 2735 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2736 Builder->getInt(CI->getValue()+1)); 2737 2738 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 2739 if (CI->isMaxValue(true)) 2740 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2741 Constant::getNullValue(Op0->getType())); 2742 } 2743 break; 2744 case ICmpInst::ICMP_SLT: 2745 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 2746 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2747 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 2748 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2749 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 2750 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2751 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2752 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 2753 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2754 Builder->getInt(CI->getValue()-1)); 2755 } 2756 break; 2757 case ICmpInst::ICMP_SGT: 2758 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 2759 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2760 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 2761 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2762 2763 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 2764 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2765 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2766 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 2767 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2768 Builder->getInt(CI->getValue()+1)); 2769 } 2770 break; 2771 case ICmpInst::ICMP_SGE: 2772 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 2773 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 2774 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2775 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 2776 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2777 break; 2778 case ICmpInst::ICMP_SLE: 2779 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 2780 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 2781 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2782 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 2783 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2784 break; 2785 case ICmpInst::ICMP_UGE: 2786 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 2787 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 2788 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2789 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 2790 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2791 break; 2792 case ICmpInst::ICMP_ULE: 2793 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 2794 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 2795 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2796 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 2797 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2798 break; 2799 } 2800 2801 // Turn a signed comparison into an unsigned one if both operands 2802 // are known to have the same sign. 2803 if (I.isSigned() && 2804 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 2805 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 2806 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 2807 } 2808 2809 // Test if the ICmpInst instruction is used exclusively by a select as 2810 // part of a minimum or maximum operation. If so, refrain from doing 2811 // any other folding. This helps out other analyses which understand 2812 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 2813 // and CodeGen. And in this case, at least one of the comparison 2814 // operands has at least one user besides the compare (the select), 2815 // which would often largely negate the benefit of folding anyway. 2816 if (I.hasOneUse()) 2817 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 2818 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 2819 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 2820 return nullptr; 2821 2822 // See if we are doing a comparison between a constant and an instruction that 2823 // can be folded into the comparison. 2824 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2825 // Since the RHS is a ConstantInt (CI), if the left hand side is an 2826 // instruction, see if that instruction also has constants so that the 2827 // instruction can be folded into the icmp 2828 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2829 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 2830 return Res; 2831 } 2832 2833 // Handle icmp with constant (but not simple integer constant) RHS 2834 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 2835 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2836 switch (LHSI->getOpcode()) { 2837 case Instruction::GetElementPtr: 2838 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2839 if (RHSC->isNullValue() && 2840 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2841 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2842 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2843 break; 2844 case Instruction::PHI: 2845 // Only fold icmp into the PHI if the phi and icmp are in the same 2846 // block. If in the same block, we're encouraging jump threading. If 2847 // not, we are just pessimizing the code by making an i1 phi. 2848 if (LHSI->getParent() == I.getParent()) 2849 if (Instruction *NV = FoldOpIntoPhi(I)) 2850 return NV; 2851 break; 2852 case Instruction::Select: { 2853 // If either operand of the select is a constant, we can fold the 2854 // comparison into the select arms, which will cause one to be 2855 // constant folded and the select turned into a bitwise or. 2856 Value *Op1 = nullptr, *Op2 = nullptr; 2857 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) 2858 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2859 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) 2860 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2861 2862 // We only want to perform this transformation if it will not lead to 2863 // additional code. This is true if either both sides of the select 2864 // fold to a constant (in which case the icmp is replaced with a select 2865 // which will usually simplify) or this is the only user of the 2866 // select (in which case we are trading a select+icmp for a simpler 2867 // select+icmp). 2868 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) { 2869 if (!Op1) 2870 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 2871 RHSC, I.getName()); 2872 if (!Op2) 2873 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 2874 RHSC, I.getName()); 2875 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2876 } 2877 break; 2878 } 2879 case Instruction::IntToPtr: 2880 // icmp pred inttoptr(X), null -> icmp pred X, 0 2881 if (RHSC->isNullValue() && DL && 2882 DL->getIntPtrType(RHSC->getType()) == 2883 LHSI->getOperand(0)->getType()) 2884 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2885 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2886 break; 2887 2888 case Instruction::Load: 2889 // Try to optimize things like "A[i] > 4" to index computations. 2890 if (GetElementPtrInst *GEP = 2891 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2892 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2893 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2894 !cast<LoadInst>(LHSI)->isVolatile()) 2895 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2896 return Res; 2897 } 2898 break; 2899 } 2900 } 2901 2902 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 2903 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 2904 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 2905 return NI; 2906 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 2907 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 2908 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 2909 return NI; 2910 2911 // Test to see if the operands of the icmp are casted versions of other 2912 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 2913 // now. 2914 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 2915 if (Op0->getType()->isPointerTy() && 2916 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2917 // We keep moving the cast from the left operand over to the right 2918 // operand, where it can often be eliminated completely. 2919 Op0 = CI->getOperand(0); 2920 2921 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2922 // so eliminate it as well. 2923 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 2924 Op1 = CI2->getOperand(0); 2925 2926 // If Op1 is a constant, we can fold the cast into the constant. 2927 if (Op0->getType() != Op1->getType()) { 2928 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 2929 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 2930 } else { 2931 // Otherwise, cast the RHS right before the icmp 2932 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 2933 } 2934 } 2935 return new ICmpInst(I.getPredicate(), Op0, Op1); 2936 } 2937 } 2938 2939 if (isa<CastInst>(Op0)) { 2940 // Handle the special case of: icmp (cast bool to X), <cst> 2941 // This comes up when you have code like 2942 // int X = A < B; 2943 // if (X) ... 2944 // For generality, we handle any zero-extension of any operand comparison 2945 // with a constant or another cast from the same type. 2946 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 2947 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 2948 return R; 2949 } 2950 2951 // Special logic for binary operators. 2952 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2953 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2954 if (BO0 || BO1) { 2955 CmpInst::Predicate Pred = I.getPredicate(); 2956 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2957 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2958 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 2959 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2960 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2961 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2962 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 2963 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2964 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2965 2966 // Analyze the case when either Op0 or Op1 is an add instruction. 2967 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2968 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2969 if (BO0 && BO0->getOpcode() == Instruction::Add) 2970 A = BO0->getOperand(0), B = BO0->getOperand(1); 2971 if (BO1 && BO1->getOpcode() == Instruction::Add) 2972 C = BO1->getOperand(0), D = BO1->getOperand(1); 2973 2974 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2975 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2976 return new ICmpInst(Pred, A == Op1 ? B : A, 2977 Constant::getNullValue(Op1->getType())); 2978 2979 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2980 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2981 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2982 C == Op0 ? D : C); 2983 2984 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2985 if (A && C && (A == C || A == D || B == C || B == D) && 2986 NoOp0WrapProblem && NoOp1WrapProblem && 2987 // Try not to increase register pressure. 2988 BO0->hasOneUse() && BO1->hasOneUse()) { 2989 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2990 Value *Y, *Z; 2991 if (A == C) { 2992 // C + B == C + D -> B == D 2993 Y = B; 2994 Z = D; 2995 } else if (A == D) { 2996 // D + B == C + D -> B == C 2997 Y = B; 2998 Z = C; 2999 } else if (B == C) { 3000 // A + C == C + D -> A == D 3001 Y = A; 3002 Z = D; 3003 } else { 3004 assert(B == D); 3005 // A + D == C + D -> A == C 3006 Y = A; 3007 Z = C; 3008 } 3009 return new ICmpInst(Pred, Y, Z); 3010 } 3011 3012 // icmp slt (X + -1), Y -> icmp sle X, Y 3013 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3014 match(B, m_AllOnes())) 3015 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3016 3017 // icmp sge (X + -1), Y -> icmp sgt X, Y 3018 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3019 match(B, m_AllOnes())) 3020 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3021 3022 // icmp sle (X + 1), Y -> icmp slt X, Y 3023 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 3024 match(B, m_One())) 3025 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3026 3027 // icmp sgt (X + 1), Y -> icmp sge X, Y 3028 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 3029 match(B, m_One())) 3030 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3031 3032 // if C1 has greater magnitude than C2: 3033 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3034 // s.t. C3 = C1 - C2 3035 // 3036 // if C2 has greater magnitude than C1: 3037 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3038 // s.t. C3 = C2 - C1 3039 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3040 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3041 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3042 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3043 const APInt &AP1 = C1->getValue(); 3044 const APInt &AP2 = C2->getValue(); 3045 if (AP1.isNegative() == AP2.isNegative()) { 3046 APInt AP1Abs = C1->getValue().abs(); 3047 APInt AP2Abs = C2->getValue().abs(); 3048 if (AP1Abs.uge(AP2Abs)) { 3049 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 3050 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 3051 return new ICmpInst(Pred, NewAdd, C); 3052 } else { 3053 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 3054 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 3055 return new ICmpInst(Pred, A, NewAdd); 3056 } 3057 } 3058 } 3059 3060 3061 // Analyze the case when either Op0 or Op1 is a sub instruction. 3062 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3063 A = nullptr; B = nullptr; C = nullptr; D = nullptr; 3064 if (BO0 && BO0->getOpcode() == Instruction::Sub) 3065 A = BO0->getOperand(0), B = BO0->getOperand(1); 3066 if (BO1 && BO1->getOpcode() == Instruction::Sub) 3067 C = BO1->getOperand(0), D = BO1->getOperand(1); 3068 3069 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3070 if (A == Op1 && NoOp0WrapProblem) 3071 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3072 3073 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3074 if (C == Op0 && NoOp1WrapProblem) 3075 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3076 3077 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3078 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3079 // Try not to increase register pressure. 3080 BO0->hasOneUse() && BO1->hasOneUse()) 3081 return new ICmpInst(Pred, A, C); 3082 3083 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3084 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3085 // Try not to increase register pressure. 3086 BO0->hasOneUse() && BO1->hasOneUse()) 3087 return new ICmpInst(Pred, D, B); 3088 3089 // icmp (0-X) < cst --> x > -cst 3090 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3091 Value *X; 3092 if (match(BO0, m_Neg(m_Value(X)))) 3093 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3094 if (!RHSC->isMinValue(/*isSigned=*/true)) 3095 return new ICmpInst(I.getSwappedPredicate(), X, 3096 ConstantExpr::getNeg(RHSC)); 3097 } 3098 3099 BinaryOperator *SRem = nullptr; 3100 // icmp (srem X, Y), Y 3101 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3102 Op1 == BO0->getOperand(1)) 3103 SRem = BO0; 3104 // icmp Y, (srem X, Y) 3105 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3106 Op0 == BO1->getOperand(1)) 3107 SRem = BO1; 3108 if (SRem) { 3109 // We don't check hasOneUse to avoid increasing register pressure because 3110 // the value we use is the same value this instruction was already using. 3111 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3112 default: break; 3113 case ICmpInst::ICMP_EQ: 3114 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3115 case ICmpInst::ICMP_NE: 3116 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3117 case ICmpInst::ICMP_SGT: 3118 case ICmpInst::ICMP_SGE: 3119 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3120 Constant::getAllOnesValue(SRem->getType())); 3121 case ICmpInst::ICMP_SLT: 3122 case ICmpInst::ICMP_SLE: 3123 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3124 Constant::getNullValue(SRem->getType())); 3125 } 3126 } 3127 3128 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 3129 BO0->hasOneUse() && BO1->hasOneUse() && 3130 BO0->getOperand(1) == BO1->getOperand(1)) { 3131 switch (BO0->getOpcode()) { 3132 default: break; 3133 case Instruction::Add: 3134 case Instruction::Sub: 3135 case Instruction::Xor: 3136 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3137 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3138 BO1->getOperand(0)); 3139 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 3140 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3141 if (CI->getValue().isSignBit()) { 3142 ICmpInst::Predicate Pred = I.isSigned() 3143 ? I.getUnsignedPredicate() 3144 : I.getSignedPredicate(); 3145 return new ICmpInst(Pred, BO0->getOperand(0), 3146 BO1->getOperand(0)); 3147 } 3148 3149 if (CI->isMaxValue(true)) { 3150 ICmpInst::Predicate Pred = I.isSigned() 3151 ? I.getUnsignedPredicate() 3152 : I.getSignedPredicate(); 3153 Pred = I.getSwappedPredicate(Pred); 3154 return new ICmpInst(Pred, BO0->getOperand(0), 3155 BO1->getOperand(0)); 3156 } 3157 } 3158 break; 3159 case Instruction::Mul: 3160 if (!I.isEquality()) 3161 break; 3162 3163 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3164 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 3165 // Mask = -1 >> count-trailing-zeros(Cst). 3166 if (!CI->isZero() && !CI->isOne()) { 3167 const APInt &AP = CI->getValue(); 3168 ConstantInt *Mask = ConstantInt::get(I.getContext(), 3169 APInt::getLowBitsSet(AP.getBitWidth(), 3170 AP.getBitWidth() - 3171 AP.countTrailingZeros())); 3172 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 3173 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 3174 return new ICmpInst(I.getPredicate(), And1, And2); 3175 } 3176 } 3177 break; 3178 case Instruction::UDiv: 3179 case Instruction::LShr: 3180 if (I.isSigned()) 3181 break; 3182 // fall-through 3183 case Instruction::SDiv: 3184 case Instruction::AShr: 3185 if (!BO0->isExact() || !BO1->isExact()) 3186 break; 3187 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3188 BO1->getOperand(0)); 3189 case Instruction::Shl: { 3190 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3191 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3192 if (!NUW && !NSW) 3193 break; 3194 if (!NSW && I.isSigned()) 3195 break; 3196 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3197 BO1->getOperand(0)); 3198 } 3199 } 3200 } 3201 } 3202 3203 { Value *A, *B; 3204 // Transform (A & ~B) == 0 --> (A & B) != 0 3205 // and (A & ~B) != 0 --> (A & B) == 0 3206 // if A is a power of 2. 3207 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 3208 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality()) 3209 return new ICmpInst(I.getInversePredicate(), 3210 Builder->CreateAnd(A, B), 3211 Op1); 3212 3213 // ~x < ~y --> y < x 3214 // ~x < cst --> ~cst < x 3215 if (match(Op0, m_Not(m_Value(A)))) { 3216 if (match(Op1, m_Not(m_Value(B)))) 3217 return new ICmpInst(I.getPredicate(), B, A); 3218 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3219 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 3220 } 3221 3222 // (a+b) <u a --> llvm.uadd.with.overflow. 3223 // (a+b) <u b --> llvm.uadd.with.overflow. 3224 if (I.getPredicate() == ICmpInst::ICMP_ULT && 3225 match(Op0, m_Add(m_Value(A), m_Value(B))) && 3226 (Op1 == A || Op1 == B)) 3227 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this)) 3228 return R; 3229 3230 // a >u (a+b) --> llvm.uadd.with.overflow. 3231 // b >u (a+b) --> llvm.uadd.with.overflow. 3232 if (I.getPredicate() == ICmpInst::ICMP_UGT && 3233 match(Op1, m_Add(m_Value(A), m_Value(B))) && 3234 (Op0 == A || Op0 == B)) 3235 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this)) 3236 return R; 3237 3238 // (zext a) * (zext b) --> llvm.umul.with.overflow. 3239 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3240 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 3241 return R; 3242 } 3243 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3244 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 3245 return R; 3246 } 3247 } 3248 3249 if (I.isEquality()) { 3250 Value *A, *B, *C, *D; 3251 3252 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3253 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3254 Value *OtherVal = A == Op1 ? B : A; 3255 return new ICmpInst(I.getPredicate(), OtherVal, 3256 Constant::getNullValue(A->getType())); 3257 } 3258 3259 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3260 // A^c1 == C^c2 --> A == C^(c1^c2) 3261 ConstantInt *C1, *C2; 3262 if (match(B, m_ConstantInt(C1)) && 3263 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 3264 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 3265 Value *Xor = Builder->CreateXor(C, NC); 3266 return new ICmpInst(I.getPredicate(), A, Xor); 3267 } 3268 3269 // A^B == A^D -> B == D 3270 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 3271 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 3272 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 3273 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 3274 } 3275 } 3276 3277 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 3278 (A == Op0 || B == Op0)) { 3279 // A == (A^B) -> B == 0 3280 Value *OtherVal = A == Op0 ? B : A; 3281 return new ICmpInst(I.getPredicate(), OtherVal, 3282 Constant::getNullValue(A->getType())); 3283 } 3284 3285 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3286 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3287 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3288 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3289 3290 if (A == C) { 3291 X = B; Y = D; Z = A; 3292 } else if (A == D) { 3293 X = B; Y = C; Z = A; 3294 } else if (B == C) { 3295 X = A; Y = D; Z = B; 3296 } else if (B == D) { 3297 X = A; Y = C; Z = B; 3298 } 3299 3300 if (X) { // Build (X^Y) & Z 3301 Op1 = Builder->CreateXor(X, Y); 3302 Op1 = Builder->CreateAnd(Op1, Z); 3303 I.setOperand(0, Op1); 3304 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3305 return &I; 3306 } 3307 } 3308 3309 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3310 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3311 ConstantInt *Cst1; 3312 if ((Op0->hasOneUse() && 3313 match(Op0, m_ZExt(m_Value(A))) && 3314 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3315 (Op1->hasOneUse() && 3316 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3317 match(Op1, m_ZExt(m_Value(A))))) { 3318 APInt Pow2 = Cst1->getValue() + 1; 3319 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3320 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3321 return new ICmpInst(I.getPredicate(), A, 3322 Builder->CreateTrunc(B, A->getType())); 3323 } 3324 3325 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3326 // For lshr and ashr pairs. 3327 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3328 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3329 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3330 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3331 unsigned TypeBits = Cst1->getBitWidth(); 3332 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3333 if (ShAmt < TypeBits && ShAmt != 0) { 3334 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 3335 ? ICmpInst::ICMP_UGE 3336 : ICmpInst::ICMP_ULT; 3337 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3338 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3339 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 3340 } 3341 } 3342 3343 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3344 // "icmp (and X, mask), cst" 3345 uint64_t ShAmt = 0; 3346 if (Op0->hasOneUse() && 3347 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 3348 m_ConstantInt(ShAmt))))) && 3349 match(Op1, m_ConstantInt(Cst1)) && 3350 // Only do this when A has multiple uses. This is most important to do 3351 // when it exposes other optimizations. 3352 !A->hasOneUse()) { 3353 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3354 3355 if (ShAmt < ASize) { 3356 APInt MaskV = 3357 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3358 MaskV <<= ShAmt; 3359 3360 APInt CmpV = Cst1->getValue().zext(ASize); 3361 CmpV <<= ShAmt; 3362 3363 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 3364 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 3365 } 3366 } 3367 } 3368 3369 { 3370 Value *X; ConstantInt *Cst; 3371 // icmp X+Cst, X 3372 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 3373 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 3374 3375 // icmp X, X+Cst 3376 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 3377 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 3378 } 3379 return Changed ? &I : nullptr; 3380 } 3381 3382 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 3383 /// 3384 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 3385 Instruction *LHSI, 3386 Constant *RHSC) { 3387 if (!isa<ConstantFP>(RHSC)) return nullptr; 3388 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 3389 3390 // Get the width of the mantissa. We don't want to hack on conversions that 3391 // might lose information from the integer, e.g. "i64 -> float" 3392 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 3393 if (MantissaWidth == -1) return nullptr; // Unknown. 3394 3395 // Check to see that the input is converted from an integer type that is small 3396 // enough that preserves all bits. TODO: check here for "known" sign bits. 3397 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 3398 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); 3399 3400 // If this is a uitofp instruction, we need an extra bit to hold the sign. 3401 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 3402 if (LHSUnsigned) 3403 ++InputSize; 3404 3405 // If the conversion would lose info, don't hack on this. 3406 if ((int)InputSize > MantissaWidth) 3407 return nullptr; 3408 3409 // Otherwise, we can potentially simplify the comparison. We know that it 3410 // will always come through as an integer value and we know the constant is 3411 // not a NAN (it would have been previously simplified). 3412 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 3413 3414 ICmpInst::Predicate Pred; 3415 switch (I.getPredicate()) { 3416 default: llvm_unreachable("Unexpected predicate!"); 3417 case FCmpInst::FCMP_UEQ: 3418 case FCmpInst::FCMP_OEQ: 3419 Pred = ICmpInst::ICMP_EQ; 3420 break; 3421 case FCmpInst::FCMP_UGT: 3422 case FCmpInst::FCMP_OGT: 3423 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 3424 break; 3425 case FCmpInst::FCMP_UGE: 3426 case FCmpInst::FCMP_OGE: 3427 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 3428 break; 3429 case FCmpInst::FCMP_ULT: 3430 case FCmpInst::FCMP_OLT: 3431 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 3432 break; 3433 case FCmpInst::FCMP_ULE: 3434 case FCmpInst::FCMP_OLE: 3435 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 3436 break; 3437 case FCmpInst::FCMP_UNE: 3438 case FCmpInst::FCMP_ONE: 3439 Pred = ICmpInst::ICMP_NE; 3440 break; 3441 case FCmpInst::FCMP_ORD: 3442 return ReplaceInstUsesWith(I, Builder->getTrue()); 3443 case FCmpInst::FCMP_UNO: 3444 return ReplaceInstUsesWith(I, Builder->getFalse()); 3445 } 3446 3447 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 3448 3449 // Now we know that the APFloat is a normal number, zero or inf. 3450 3451 // See if the FP constant is too large for the integer. For example, 3452 // comparing an i8 to 300.0. 3453 unsigned IntWidth = IntTy->getScalarSizeInBits(); 3454 3455 if (!LHSUnsigned) { 3456 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 3457 // and large values. 3458 APFloat SMax(RHS.getSemantics()); 3459 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 3460 APFloat::rmNearestTiesToEven); 3461 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 3462 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 3463 Pred == ICmpInst::ICMP_SLE) 3464 return ReplaceInstUsesWith(I, Builder->getTrue()); 3465 return ReplaceInstUsesWith(I, Builder->getFalse()); 3466 } 3467 } else { 3468 // If the RHS value is > UnsignedMax, fold the comparison. This handles 3469 // +INF and large values. 3470 APFloat UMax(RHS.getSemantics()); 3471 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 3472 APFloat::rmNearestTiesToEven); 3473 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 3474 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 3475 Pred == ICmpInst::ICMP_ULE) 3476 return ReplaceInstUsesWith(I, Builder->getTrue()); 3477 return ReplaceInstUsesWith(I, Builder->getFalse()); 3478 } 3479 } 3480 3481 if (!LHSUnsigned) { 3482 // See if the RHS value is < SignedMin. 3483 APFloat SMin(RHS.getSemantics()); 3484 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 3485 APFloat::rmNearestTiesToEven); 3486 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 3487 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 3488 Pred == ICmpInst::ICMP_SGE) 3489 return ReplaceInstUsesWith(I, Builder->getTrue()); 3490 return ReplaceInstUsesWith(I, Builder->getFalse()); 3491 } 3492 } else { 3493 // See if the RHS value is < UnsignedMin. 3494 APFloat SMin(RHS.getSemantics()); 3495 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 3496 APFloat::rmNearestTiesToEven); 3497 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 3498 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 3499 Pred == ICmpInst::ICMP_UGE) 3500 return ReplaceInstUsesWith(I, Builder->getTrue()); 3501 return ReplaceInstUsesWith(I, Builder->getFalse()); 3502 } 3503 } 3504 3505 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 3506 // [0, UMAX], but it may still be fractional. See if it is fractional by 3507 // casting the FP value to the integer value and back, checking for equality. 3508 // Don't do this for zero, because -0.0 is not fractional. 3509 Constant *RHSInt = LHSUnsigned 3510 ? ConstantExpr::getFPToUI(RHSC, IntTy) 3511 : ConstantExpr::getFPToSI(RHSC, IntTy); 3512 if (!RHS.isZero()) { 3513 bool Equal = LHSUnsigned 3514 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 3515 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 3516 if (!Equal) { 3517 // If we had a comparison against a fractional value, we have to adjust 3518 // the compare predicate and sometimes the value. RHSC is rounded towards 3519 // zero at this point. 3520 switch (Pred) { 3521 default: llvm_unreachable("Unexpected integer comparison!"); 3522 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 3523 return ReplaceInstUsesWith(I, Builder->getTrue()); 3524 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 3525 return ReplaceInstUsesWith(I, Builder->getFalse()); 3526 case ICmpInst::ICMP_ULE: 3527 // (float)int <= 4.4 --> int <= 4 3528 // (float)int <= -4.4 --> false 3529 if (RHS.isNegative()) 3530 return ReplaceInstUsesWith(I, Builder->getFalse()); 3531 break; 3532 case ICmpInst::ICMP_SLE: 3533 // (float)int <= 4.4 --> int <= 4 3534 // (float)int <= -4.4 --> int < -4 3535 if (RHS.isNegative()) 3536 Pred = ICmpInst::ICMP_SLT; 3537 break; 3538 case ICmpInst::ICMP_ULT: 3539 // (float)int < -4.4 --> false 3540 // (float)int < 4.4 --> int <= 4 3541 if (RHS.isNegative()) 3542 return ReplaceInstUsesWith(I, Builder->getFalse()); 3543 Pred = ICmpInst::ICMP_ULE; 3544 break; 3545 case ICmpInst::ICMP_SLT: 3546 // (float)int < -4.4 --> int < -4 3547 // (float)int < 4.4 --> int <= 4 3548 if (!RHS.isNegative()) 3549 Pred = ICmpInst::ICMP_SLE; 3550 break; 3551 case ICmpInst::ICMP_UGT: 3552 // (float)int > 4.4 --> int > 4 3553 // (float)int > -4.4 --> true 3554 if (RHS.isNegative()) 3555 return ReplaceInstUsesWith(I, Builder->getTrue()); 3556 break; 3557 case ICmpInst::ICMP_SGT: 3558 // (float)int > 4.4 --> int > 4 3559 // (float)int > -4.4 --> int >= -4 3560 if (RHS.isNegative()) 3561 Pred = ICmpInst::ICMP_SGE; 3562 break; 3563 case ICmpInst::ICMP_UGE: 3564 // (float)int >= -4.4 --> true 3565 // (float)int >= 4.4 --> int > 4 3566 if (RHS.isNegative()) 3567 return ReplaceInstUsesWith(I, Builder->getTrue()); 3568 Pred = ICmpInst::ICMP_UGT; 3569 break; 3570 case ICmpInst::ICMP_SGE: 3571 // (float)int >= -4.4 --> int >= -4 3572 // (float)int >= 4.4 --> int > 4 3573 if (!RHS.isNegative()) 3574 Pred = ICmpInst::ICMP_SGT; 3575 break; 3576 } 3577 } 3578 } 3579 3580 // Lower this FP comparison into an appropriate integer version of the 3581 // comparison. 3582 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 3583 } 3584 3585 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 3586 bool Changed = false; 3587 3588 /// Orders the operands of the compare so that they are listed from most 3589 /// complex to least complex. This puts constants before unary operators, 3590 /// before binary operators. 3591 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 3592 I.swapOperands(); 3593 Changed = true; 3594 } 3595 3596 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3597 3598 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL)) 3599 return ReplaceInstUsesWith(I, V); 3600 3601 // Simplify 'fcmp pred X, X' 3602 if (Op0 == Op1) { 3603 switch (I.getPredicate()) { 3604 default: llvm_unreachable("Unknown predicate!"); 3605 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 3606 case FCmpInst::FCMP_ULT: // True if unordered or less than 3607 case FCmpInst::FCMP_UGT: // True if unordered or greater than 3608 case FCmpInst::FCMP_UNE: // True if unordered or not equal 3609 // Canonicalize these to be 'fcmp uno %X, 0.0'. 3610 I.setPredicate(FCmpInst::FCMP_UNO); 3611 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3612 return &I; 3613 3614 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 3615 case FCmpInst::FCMP_OEQ: // True if ordered and equal 3616 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 3617 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 3618 // Canonicalize these to be 'fcmp ord %X, 0.0'. 3619 I.setPredicate(FCmpInst::FCMP_ORD); 3620 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3621 return &I; 3622 } 3623 } 3624 3625 // Handle fcmp with constant RHS 3626 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3627 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3628 switch (LHSI->getOpcode()) { 3629 case Instruction::FPExt: { 3630 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 3631 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 3632 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 3633 if (!RHSF) 3634 break; 3635 3636 const fltSemantics *Sem; 3637 // FIXME: This shouldn't be here. 3638 if (LHSExt->getSrcTy()->isHalfTy()) 3639 Sem = &APFloat::IEEEhalf; 3640 else if (LHSExt->getSrcTy()->isFloatTy()) 3641 Sem = &APFloat::IEEEsingle; 3642 else if (LHSExt->getSrcTy()->isDoubleTy()) 3643 Sem = &APFloat::IEEEdouble; 3644 else if (LHSExt->getSrcTy()->isFP128Ty()) 3645 Sem = &APFloat::IEEEquad; 3646 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 3647 Sem = &APFloat::x87DoubleExtended; 3648 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 3649 Sem = &APFloat::PPCDoubleDouble; 3650 else 3651 break; 3652 3653 bool Lossy; 3654 APFloat F = RHSF->getValueAPF(); 3655 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 3656 3657 // Avoid lossy conversions and denormals. Zero is a special case 3658 // that's OK to convert. 3659 APFloat Fabs = F; 3660 Fabs.clearSign(); 3661 if (!Lossy && 3662 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 3663 APFloat::cmpLessThan) || Fabs.isZero())) 3664 3665 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3666 ConstantFP::get(RHSC->getContext(), F)); 3667 break; 3668 } 3669 case Instruction::PHI: 3670 // Only fold fcmp into the PHI if the phi and fcmp are in the same 3671 // block. If in the same block, we're encouraging jump threading. If 3672 // not, we are just pessimizing the code by making an i1 phi. 3673 if (LHSI->getParent() == I.getParent()) 3674 if (Instruction *NV = FoldOpIntoPhi(I)) 3675 return NV; 3676 break; 3677 case Instruction::SIToFP: 3678 case Instruction::UIToFP: 3679 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 3680 return NV; 3681 break; 3682 case Instruction::FSub: { 3683 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 3684 Value *Op; 3685 if (match(LHSI, m_FNeg(m_Value(Op)))) 3686 return new FCmpInst(I.getSwappedPredicate(), Op, 3687 ConstantExpr::getFNeg(RHSC)); 3688 break; 3689 } 3690 case Instruction::Load: 3691 if (GetElementPtrInst *GEP = 3692 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3693 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3694 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3695 !cast<LoadInst>(LHSI)->isVolatile()) 3696 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3697 return Res; 3698 } 3699 break; 3700 case Instruction::Call: { 3701 CallInst *CI = cast<CallInst>(LHSI); 3702 LibFunc::Func Func; 3703 // Various optimization for fabs compared with zero. 3704 if (RHSC->isNullValue() && CI->getCalledFunction() && 3705 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 3706 TLI->has(Func)) { 3707 if (Func == LibFunc::fabs || Func == LibFunc::fabsf || 3708 Func == LibFunc::fabsl) { 3709 switch (I.getPredicate()) { 3710 default: break; 3711 // fabs(x) < 0 --> false 3712 case FCmpInst::FCMP_OLT: 3713 return ReplaceInstUsesWith(I, Builder->getFalse()); 3714 // fabs(x) > 0 --> x != 0 3715 case FCmpInst::FCMP_OGT: 3716 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), 3717 RHSC); 3718 // fabs(x) <= 0 --> x == 0 3719 case FCmpInst::FCMP_OLE: 3720 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), 3721 RHSC); 3722 // fabs(x) >= 0 --> !isnan(x) 3723 case FCmpInst::FCMP_OGE: 3724 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), 3725 RHSC); 3726 // fabs(x) == 0 --> x == 0 3727 // fabs(x) != 0 --> x != 0 3728 case FCmpInst::FCMP_OEQ: 3729 case FCmpInst::FCMP_UEQ: 3730 case FCmpInst::FCMP_ONE: 3731 case FCmpInst::FCMP_UNE: 3732 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), 3733 RHSC); 3734 } 3735 } 3736 } 3737 } 3738 } 3739 } 3740 3741 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 3742 Value *X, *Y; 3743 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 3744 return new FCmpInst(I.getSwappedPredicate(), X, Y); 3745 3746 // fcmp (fpext x), (fpext y) -> fcmp x, y 3747 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 3748 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 3749 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 3750 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3751 RHSExt->getOperand(0)); 3752 3753 return Changed ? &I : nullptr; 3754 } 3755