1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 static ConstantInt *extractElement(Constant *V, Constant *Idx) {
40   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41 }
42 
43 static bool hasAddOverflow(ConstantInt *Result,
44                            ConstantInt *In1, ConstantInt *In2,
45                            bool IsSigned) {
46   if (!IsSigned)
47     return Result->getValue().ult(In1->getValue());
48 
49   if (In2->isNegative())
50     return Result->getValue().sgt(In1->getValue());
51   return Result->getValue().slt(In1->getValue());
52 }
53 
54 /// Compute Result = In1+In2, returning true if the result overflowed for this
55 /// type.
56 static bool addWithOverflow(Constant *&Result, Constant *In1,
57                             Constant *In2, bool IsSigned = false) {
58   Result = ConstantExpr::getAdd(In1, In2);
59 
60   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63       if (hasAddOverflow(extractElement(Result, Idx),
64                          extractElement(In1, Idx),
65                          extractElement(In2, Idx),
66                          IsSigned))
67         return true;
68     }
69     return false;
70   }
71 
72   return hasAddOverflow(cast<ConstantInt>(Result),
73                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                         IsSigned);
75 }
76 
77 static bool hasSubOverflow(ConstantInt *Result,
78                            ConstantInt *In1, ConstantInt *In2,
79                            bool IsSigned) {
80   if (!IsSigned)
81     return Result->getValue().ugt(In1->getValue());
82 
83   if (In2->isNegative())
84     return Result->getValue().slt(In1->getValue());
85 
86   return Result->getValue().sgt(In1->getValue());
87 }
88 
89 /// Compute Result = In1-In2, returning true if the result overflowed for this
90 /// type.
91 static bool subWithOverflow(Constant *&Result, Constant *In1,
92                             Constant *In2, bool IsSigned = false) {
93   Result = ConstantExpr::getSub(In1, In2);
94 
95   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98       if (hasSubOverflow(extractElement(Result, Idx),
99                          extractElement(In1, Idx),
100                          extractElement(In2, Idx),
101                          IsSigned))
102         return true;
103     }
104     return false;
105   }
106 
107   return hasSubOverflow(cast<ConstantInt>(Result),
108                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                         IsSigned);
110 }
111 
112 /// Given an icmp instruction, return true if any use of this comparison is a
113 /// branch on sign bit comparison.
114 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
115   for (auto *U : I.users())
116     if (isa<BranchInst>(U))
117       return isSignBit;
118   return false;
119 }
120 
121 /// Given an exploded icmp instruction, return true if the comparison only
122 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
123 /// result of the comparison is true when the input value is signed.
124 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
125                            bool &TrueIfSigned) {
126   switch (Pred) {
127   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
128     TrueIfSigned = true;
129     return RHS == 0;
130   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
131     TrueIfSigned = true;
132     return RHS.isAllOnesValue();
133   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
134     TrueIfSigned = false;
135     return RHS.isAllOnesValue();
136   case ICmpInst::ICMP_UGT:
137     // True if LHS u> RHS and RHS == high-bit-mask - 1
138     TrueIfSigned = true;
139     return RHS.isMaxSignedValue();
140   case ICmpInst::ICMP_UGE:
141     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
142     TrueIfSigned = true;
143     return RHS.isSignBit();
144   default:
145     return false;
146   }
147 }
148 
149 /// Returns true if the exploded icmp can be expressed as a signed comparison
150 /// to zero and updates the predicate accordingly.
151 /// The signedness of the comparison is preserved.
152 /// TODO: Refactor with decomposeBitTestICmp()?
153 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
154   if (!ICmpInst::isSigned(Pred))
155     return false;
156 
157   if (C == 0)
158     return ICmpInst::isRelational(Pred);
159 
160   if (C == 1) {
161     if (Pred == ICmpInst::ICMP_SLT) {
162       Pred = ICmpInst::ICMP_SLE;
163       return true;
164     }
165   } else if (C.isAllOnesValue()) {
166     if (Pred == ICmpInst::ICMP_SGT) {
167       Pred = ICmpInst::ICMP_SGE;
168       return true;
169     }
170   }
171 
172   return false;
173 }
174 
175 /// Given a signed integer type and a set of known zero and one bits, compute
176 /// the maximum and minimum values that could have the specified known zero and
177 /// known one bits, returning them in Min/Max.
178 static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
179                                                    const APInt &KnownOne,
180                                                    APInt &Min, APInt &Max) {
181   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
182          KnownZero.getBitWidth() == Min.getBitWidth() &&
183          KnownZero.getBitWidth() == Max.getBitWidth() &&
184          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
185   APInt UnknownBits = ~(KnownZero|KnownOne);
186 
187   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
188   // bit if it is unknown.
189   Min = KnownOne;
190   Max = KnownOne|UnknownBits;
191 
192   if (UnknownBits.isNegative()) { // Sign bit is unknown
193     Min.setBit(Min.getBitWidth()-1);
194     Max.clearBit(Max.getBitWidth()-1);
195   }
196 }
197 
198 /// Given an unsigned integer type and a set of known zero and one bits, compute
199 /// the maximum and minimum values that could have the specified known zero and
200 /// known one bits, returning them in Min/Max.
201 static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                      const APInt &KnownOne,
203                                                      APInt &Min, APInt &Max) {
204   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205          KnownZero.getBitWidth() == Min.getBitWidth() &&
206          KnownZero.getBitWidth() == Max.getBitWidth() &&
207          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208   APInt UnknownBits = ~(KnownZero|KnownOne);
209 
210   // The minimum value is when the unknown bits are all zeros.
211   Min = KnownOne;
212   // The maximum value is when the unknown bits are all ones.
213   Max = KnownOne|UnknownBits;
214 }
215 
216 /// This is called when we see this pattern:
217 ///   cmp pred (load (gep GV, ...)), cmpcst
218 /// where GV is a global variable with a constant initializer. Try to simplify
219 /// this into some simple computation that does not need the load. For example
220 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
221 ///
222 /// If AndCst is non-null, then the loaded value is masked with that constant
223 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
224 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
225                                                         GlobalVariable *GV,
226                                                         CmpInst &ICI,
227                                                         ConstantInt *AndCst) {
228   Constant *Init = GV->getInitializer();
229   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
230     return nullptr;
231 
232   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
233   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
234 
235   // There are many forms of this optimization we can handle, for now, just do
236   // the simple index into a single-dimensional array.
237   //
238   // Require: GEP GV, 0, i {{, constant indices}}
239   if (GEP->getNumOperands() < 3 ||
240       !isa<ConstantInt>(GEP->getOperand(1)) ||
241       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
242       isa<Constant>(GEP->getOperand(2)))
243     return nullptr;
244 
245   // Check that indices after the variable are constants and in-range for the
246   // type they index.  Collect the indices.  This is typically for arrays of
247   // structs.
248   SmallVector<unsigned, 4> LaterIndices;
249 
250   Type *EltTy = Init->getType()->getArrayElementType();
251   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
252     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
253     if (!Idx) return nullptr;  // Variable index.
254 
255     uint64_t IdxVal = Idx->getZExtValue();
256     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
257 
258     if (StructType *STy = dyn_cast<StructType>(EltTy))
259       EltTy = STy->getElementType(IdxVal);
260     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
261       if (IdxVal >= ATy->getNumElements()) return nullptr;
262       EltTy = ATy->getElementType();
263     } else {
264       return nullptr; // Unknown type.
265     }
266 
267     LaterIndices.push_back(IdxVal);
268   }
269 
270   enum { Overdefined = -3, Undefined = -2 };
271 
272   // Variables for our state machines.
273 
274   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
275   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
276   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
277   // undefined, otherwise set to the first true element.  SecondTrueElement is
278   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
279   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
280 
281   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
282   // form "i != 47 & i != 87".  Same state transitions as for true elements.
283   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
284 
285   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
286   /// define a state machine that triggers for ranges of values that the index
287   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
288   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
289   /// index in the range (inclusive).  We use -2 for undefined here because we
290   /// use relative comparisons and don't want 0-1 to match -1.
291   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
292 
293   // MagicBitvector - This is a magic bitvector where we set a bit if the
294   // comparison is true for element 'i'.  If there are 64 elements or less in
295   // the array, this will fully represent all the comparison results.
296   uint64_t MagicBitvector = 0;
297 
298   // Scan the array and see if one of our patterns matches.
299   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
300   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
301     Constant *Elt = Init->getAggregateElement(i);
302     if (!Elt) return nullptr;
303 
304     // If this is indexing an array of structures, get the structure element.
305     if (!LaterIndices.empty())
306       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
307 
308     // If the element is masked, handle it.
309     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
310 
311     // Find out if the comparison would be true or false for the i'th element.
312     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
313                                                   CompareRHS, DL, &TLI);
314     // If the result is undef for this element, ignore it.
315     if (isa<UndefValue>(C)) {
316       // Extend range state machines to cover this element in case there is an
317       // undef in the middle of the range.
318       if (TrueRangeEnd == (int)i-1)
319         TrueRangeEnd = i;
320       if (FalseRangeEnd == (int)i-1)
321         FalseRangeEnd = i;
322       continue;
323     }
324 
325     // If we can't compute the result for any of the elements, we have to give
326     // up evaluating the entire conditional.
327     if (!isa<ConstantInt>(C)) return nullptr;
328 
329     // Otherwise, we know if the comparison is true or false for this element,
330     // update our state machines.
331     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
332 
333     // State machine for single/double/range index comparison.
334     if (IsTrueForElt) {
335       // Update the TrueElement state machine.
336       if (FirstTrueElement == Undefined)
337         FirstTrueElement = TrueRangeEnd = i;  // First true element.
338       else {
339         // Update double-compare state machine.
340         if (SecondTrueElement == Undefined)
341           SecondTrueElement = i;
342         else
343           SecondTrueElement = Overdefined;
344 
345         // Update range state machine.
346         if (TrueRangeEnd == (int)i-1)
347           TrueRangeEnd = i;
348         else
349           TrueRangeEnd = Overdefined;
350       }
351     } else {
352       // Update the FalseElement state machine.
353       if (FirstFalseElement == Undefined)
354         FirstFalseElement = FalseRangeEnd = i; // First false element.
355       else {
356         // Update double-compare state machine.
357         if (SecondFalseElement == Undefined)
358           SecondFalseElement = i;
359         else
360           SecondFalseElement = Overdefined;
361 
362         // Update range state machine.
363         if (FalseRangeEnd == (int)i-1)
364           FalseRangeEnd = i;
365         else
366           FalseRangeEnd = Overdefined;
367       }
368     }
369 
370     // If this element is in range, update our magic bitvector.
371     if (i < 64 && IsTrueForElt)
372       MagicBitvector |= 1ULL << i;
373 
374     // If all of our states become overdefined, bail out early.  Since the
375     // predicate is expensive, only check it every 8 elements.  This is only
376     // really useful for really huge arrays.
377     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379         FalseRangeEnd == Overdefined)
380       return nullptr;
381   }
382 
383   // Now that we've scanned the entire array, emit our new comparison(s).  We
384   // order the state machines in complexity of the generated code.
385   Value *Idx = GEP->getOperand(2);
386 
387   // If the index is larger than the pointer size of the target, truncate the
388   // index down like the GEP would do implicitly.  We don't have to do this for
389   // an inbounds GEP because the index can't be out of range.
390   if (!GEP->isInBounds()) {
391     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
392     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395   }
396 
397   // If the comparison is only true for one or two elements, emit direct
398   // comparisons.
399   if (SecondTrueElement != Overdefined) {
400     // None true -> false.
401     if (FirstTrueElement == Undefined)
402       return replaceInstUsesWith(ICI, Builder->getFalse());
403 
404     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405 
406     // True for one element -> 'i == 47'.
407     if (SecondTrueElement == Undefined)
408       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409 
410     // True for two elements -> 'i == 47 | i == 72'.
411     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414     return BinaryOperator::CreateOr(C1, C2);
415   }
416 
417   // If the comparison is only false for one or two elements, emit direct
418   // comparisons.
419   if (SecondFalseElement != Overdefined) {
420     // None false -> true.
421     if (FirstFalseElement == Undefined)
422       return replaceInstUsesWith(ICI, Builder->getTrue());
423 
424     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425 
426     // False for one element -> 'i != 47'.
427     if (SecondFalseElement == Undefined)
428       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429 
430     // False for two elements -> 'i != 47 & i != 72'.
431     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434     return BinaryOperator::CreateAnd(C1, C2);
435   }
436 
437   // If the comparison can be replaced with a range comparison for the elements
438   // where it is true, emit the range check.
439   if (TrueRangeEnd != Overdefined) {
440     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441 
442     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443     if (FirstTrueElement) {
444       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445       Idx = Builder->CreateAdd(Idx, Offs);
446     }
447 
448     Value *End = ConstantInt::get(Idx->getType(),
449                                   TrueRangeEnd-FirstTrueElement+1);
450     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451   }
452 
453   // False range check.
454   if (FalseRangeEnd != Overdefined) {
455     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457     if (FirstFalseElement) {
458       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459       Idx = Builder->CreateAdd(Idx, Offs);
460     }
461 
462     Value *End = ConstantInt::get(Idx->getType(),
463                                   FalseRangeEnd-FirstFalseElement);
464     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465   }
466 
467   // If a magic bitvector captures the entire comparison state
468   // of this load, replace it with computation that does:
469   //   ((magic_cst >> i) & 1) != 0
470   {
471     Type *Ty = nullptr;
472 
473     // Look for an appropriate type:
474     // - The type of Idx if the magic fits
475     // - The smallest fitting legal type if we have a DataLayout
476     // - Default to i32
477     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
478       Ty = Idx->getType();
479     else
480       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
481 
482     if (Ty) {
483       Value *V = Builder->CreateIntCast(Idx, Ty, false);
484       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
485       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
486       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// Return a value that can be used to compare the *offset* implied by a GEP to
494 /// zero. For example, if we have &A[i], we want to return 'i' for
495 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
496 /// are involved. The above expression would also be legal to codegen as
497 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
498 /// This latter form is less amenable to optimization though, and we are allowed
499 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
500 ///
501 /// If we can't emit an optimized form for this expression, this returns null.
502 ///
503 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
504                                           const DataLayout &DL) {
505   gep_type_iterator GTI = gep_type_begin(GEP);
506 
507   // Check to see if this gep only has a single variable index.  If so, and if
508   // any constant indices are a multiple of its scale, then we can compute this
509   // in terms of the scale of the variable index.  For example, if the GEP
510   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
511   // because the expression will cross zero at the same point.
512   unsigned i, e = GEP->getNumOperands();
513   int64_t Offset = 0;
514   for (i = 1; i != e; ++i, ++GTI) {
515     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
516       // Compute the aggregate offset of constant indices.
517       if (CI->isZero()) continue;
518 
519       // Handle a struct index, which adds its field offset to the pointer.
520       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
521         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522       } else {
523         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
524         Offset += Size*CI->getSExtValue();
525       }
526     } else {
527       // Found our variable index.
528       break;
529     }
530   }
531 
532   // If there are no variable indices, we must have a constant offset, just
533   // evaluate it the general way.
534   if (i == e) return nullptr;
535 
536   Value *VariableIdx = GEP->getOperand(i);
537   // Determine the scale factor of the variable element.  For example, this is
538   // 4 if the variable index is into an array of i32.
539   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
540 
541   // Verify that there are no other variable indices.  If so, emit the hard way.
542   for (++i, ++GTI; i != e; ++i, ++GTI) {
543     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
544     if (!CI) return nullptr;
545 
546     // Compute the aggregate offset of constant indices.
547     if (CI->isZero()) continue;
548 
549     // Handle a struct index, which adds its field offset to the pointer.
550     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
551       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
552     } else {
553       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
554       Offset += Size*CI->getSExtValue();
555     }
556   }
557 
558   // Okay, we know we have a single variable index, which must be a
559   // pointer/array/vector index.  If there is no offset, life is simple, return
560   // the index.
561   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
562   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
563   if (Offset == 0) {
564     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
565     // we don't need to bother extending: the extension won't affect where the
566     // computation crosses zero.
567     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
568       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
569     }
570     return VariableIdx;
571   }
572 
573   // Otherwise, there is an index.  The computation we will do will be modulo
574   // the pointer size, so get it.
575   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
576 
577   Offset &= PtrSizeMask;
578   VariableScale &= PtrSizeMask;
579 
580   // To do this transformation, any constant index must be a multiple of the
581   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
582   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
583   // multiple of the variable scale.
584   int64_t NewOffs = Offset / (int64_t)VariableScale;
585   if (Offset != NewOffs*(int64_t)VariableScale)
586     return nullptr;
587 
588   // Okay, we can do this evaluation.  Start by converting the index to intptr.
589   if (VariableIdx->getType() != IntPtrTy)
590     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
591                                             true /*Signed*/);
592   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
593   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
594 }
595 
596 /// Returns true if we can rewrite Start as a GEP with pointer Base
597 /// and some integer offset. The nodes that need to be re-written
598 /// for this transformation will be added to Explored.
599 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
600                                   const DataLayout &DL,
601                                   SetVector<Value *> &Explored) {
602   SmallVector<Value *, 16> WorkList(1, Start);
603   Explored.insert(Base);
604 
605   // The following traversal gives us an order which can be used
606   // when doing the final transformation. Since in the final
607   // transformation we create the PHI replacement instructions first,
608   // we don't have to get them in any particular order.
609   //
610   // However, for other instructions we will have to traverse the
611   // operands of an instruction first, which means that we have to
612   // do a post-order traversal.
613   while (!WorkList.empty()) {
614     SetVector<PHINode *> PHIs;
615 
616     while (!WorkList.empty()) {
617       if (Explored.size() >= 100)
618         return false;
619 
620       Value *V = WorkList.back();
621 
622       if (Explored.count(V) != 0) {
623         WorkList.pop_back();
624         continue;
625       }
626 
627       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
628           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
629         // We've found some value that we can't explore which is different from
630         // the base. Therefore we can't do this transformation.
631         return false;
632 
633       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
634         auto *CI = dyn_cast<CastInst>(V);
635         if (!CI->isNoopCast(DL))
636           return false;
637 
638         if (Explored.count(CI->getOperand(0)) == 0)
639           WorkList.push_back(CI->getOperand(0));
640       }
641 
642       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
643         // We're limiting the GEP to having one index. This will preserve
644         // the original pointer type. We could handle more cases in the
645         // future.
646         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
647             GEP->getType() != Start->getType())
648           return false;
649 
650         if (Explored.count(GEP->getOperand(0)) == 0)
651           WorkList.push_back(GEP->getOperand(0));
652       }
653 
654       if (WorkList.back() == V) {
655         WorkList.pop_back();
656         // We've finished visiting this node, mark it as such.
657         Explored.insert(V);
658       }
659 
660       if (auto *PN = dyn_cast<PHINode>(V)) {
661         // We cannot transform PHIs on unsplittable basic blocks.
662         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
663           return false;
664         Explored.insert(PN);
665         PHIs.insert(PN);
666       }
667     }
668 
669     // Explore the PHI nodes further.
670     for (auto *PN : PHIs)
671       for (Value *Op : PN->incoming_values())
672         if (Explored.count(Op) == 0)
673           WorkList.push_back(Op);
674   }
675 
676   // Make sure that we can do this. Since we can't insert GEPs in a basic
677   // block before a PHI node, we can't easily do this transformation if
678   // we have PHI node users of transformed instructions.
679   for (Value *Val : Explored) {
680     for (Value *Use : Val->uses()) {
681 
682       auto *PHI = dyn_cast<PHINode>(Use);
683       auto *Inst = dyn_cast<Instruction>(Val);
684 
685       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
686           Explored.count(PHI) == 0)
687         continue;
688 
689       if (PHI->getParent() == Inst->getParent())
690         return false;
691     }
692   }
693   return true;
694 }
695 
696 // Sets the appropriate insert point on Builder where we can add
697 // a replacement Instruction for V (if that is possible).
698 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
699                               bool Before = true) {
700   if (auto *PHI = dyn_cast<PHINode>(V)) {
701     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
702     return;
703   }
704   if (auto *I = dyn_cast<Instruction>(V)) {
705     if (!Before)
706       I = &*std::next(I->getIterator());
707     Builder.SetInsertPoint(I);
708     return;
709   }
710   if (auto *A = dyn_cast<Argument>(V)) {
711     // Set the insertion point in the entry block.
712     BasicBlock &Entry = A->getParent()->getEntryBlock();
713     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
714     return;
715   }
716   // Otherwise, this is a constant and we don't need to set a new
717   // insertion point.
718   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
719 }
720 
721 /// Returns a re-written value of Start as an indexed GEP using Base as a
722 /// pointer.
723 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
724                                  const DataLayout &DL,
725                                  SetVector<Value *> &Explored) {
726   // Perform all the substitutions. This is a bit tricky because we can
727   // have cycles in our use-def chains.
728   // 1. Create the PHI nodes without any incoming values.
729   // 2. Create all the other values.
730   // 3. Add the edges for the PHI nodes.
731   // 4. Emit GEPs to get the original pointers.
732   // 5. Remove the original instructions.
733   Type *IndexType = IntegerType::get(
734       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
735 
736   DenseMap<Value *, Value *> NewInsts;
737   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
738 
739   // Create the new PHI nodes, without adding any incoming values.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // Create empty phi nodes. This avoids cyclic dependencies when creating
744     // the remaining instructions.
745     if (auto *PHI = dyn_cast<PHINode>(Val))
746       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
747                                       PHI->getName() + ".idx", PHI);
748   }
749   IRBuilder<> Builder(Base->getContext());
750 
751   // Create all the other instructions.
752   for (Value *Val : Explored) {
753 
754     if (NewInsts.find(Val) != NewInsts.end())
755       continue;
756 
757     if (auto *CI = dyn_cast<CastInst>(Val)) {
758       NewInsts[CI] = NewInsts[CI->getOperand(0)];
759       continue;
760     }
761     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
762       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
763                                                   : GEP->getOperand(1);
764       setInsertionPoint(Builder, GEP);
765       // Indices might need to be sign extended. GEPs will magically do
766       // this, but we need to do it ourselves here.
767       if (Index->getType()->getScalarSizeInBits() !=
768           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
769         Index = Builder.CreateSExtOrTrunc(
770             Index, NewInsts[GEP->getOperand(0)]->getType(),
771             GEP->getOperand(0)->getName() + ".sext");
772       }
773 
774       auto *Op = NewInsts[GEP->getOperand(0)];
775       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
776         NewInsts[GEP] = Index;
777       else
778         NewInsts[GEP] = Builder.CreateNSWAdd(
779             Op, Index, GEP->getOperand(0)->getName() + ".add");
780       continue;
781     }
782     if (isa<PHINode>(Val))
783       continue;
784 
785     llvm_unreachable("Unexpected instruction type");
786   }
787 
788   // Add the incoming values to the PHI nodes.
789   for (Value *Val : Explored) {
790     if (Val == Base)
791       continue;
792     // All the instructions have been created, we can now add edges to the
793     // phi nodes.
794     if (auto *PHI = dyn_cast<PHINode>(Val)) {
795       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
796       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
797         Value *NewIncoming = PHI->getIncomingValue(I);
798 
799         if (NewInsts.find(NewIncoming) != NewInsts.end())
800           NewIncoming = NewInsts[NewIncoming];
801 
802         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
803       }
804     }
805   }
806 
807   for (Value *Val : Explored) {
808     if (Val == Base)
809       continue;
810 
811     // Depending on the type, for external users we have to emit
812     // a GEP or a GEP + ptrtoint.
813     setInsertionPoint(Builder, Val, false);
814 
815     // If required, create an inttoptr instruction for Base.
816     Value *NewBase = Base;
817     if (!Base->getType()->isPointerTy())
818       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
819                                                Start->getName() + "to.ptr");
820 
821     Value *GEP = Builder.CreateInBoundsGEP(
822         Start->getType()->getPointerElementType(), NewBase,
823         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
824 
825     if (!Val->getType()->isPointerTy()) {
826       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
827                                               Val->getName() + ".conv");
828       GEP = Cast;
829     }
830     Val->replaceAllUsesWith(GEP);
831   }
832 
833   return NewInsts[Start];
834 }
835 
836 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
837 /// the input Value as a constant indexed GEP. Returns a pair containing
838 /// the GEPs Pointer and Index.
839 static std::pair<Value *, Value *>
840 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
841   Type *IndexType = IntegerType::get(V->getContext(),
842                                      DL.getPointerTypeSizeInBits(V->getType()));
843 
844   Constant *Index = ConstantInt::getNullValue(IndexType);
845   while (true) {
846     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
847       // We accept only inbouds GEPs here to exclude the possibility of
848       // overflow.
849       if (!GEP->isInBounds())
850         break;
851       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
852           GEP->getType() == V->getType()) {
853         V = GEP->getOperand(0);
854         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
855         Index = ConstantExpr::getAdd(
856             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
857         continue;
858       }
859       break;
860     }
861     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
862       if (!CI->isNoopCast(DL))
863         break;
864       V = CI->getOperand(0);
865       continue;
866     }
867     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
868       if (!CI->isNoopCast(DL))
869         break;
870       V = CI->getOperand(0);
871       continue;
872     }
873     break;
874   }
875   return {V, Index};
876 }
877 
878 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
879 /// We can look through PHIs, GEPs and casts in order to determine a common base
880 /// between GEPLHS and RHS.
881 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
882                                               ICmpInst::Predicate Cond,
883                                               const DataLayout &DL) {
884   if (!GEPLHS->hasAllConstantIndices())
885     return nullptr;
886 
887   Value *PtrBase, *Index;
888   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
889 
890   // The set of nodes that will take part in this transformation.
891   SetVector<Value *> Nodes;
892 
893   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
894     return nullptr;
895 
896   // We know we can re-write this as
897   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
898   // Since we've only looked through inbouds GEPs we know that we
899   // can't have overflow on either side. We can therefore re-write
900   // this as:
901   //   OFFSET1 cmp OFFSET2
902   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
903 
904   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
905   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
906   // offset. Since Index is the offset of LHS to the base pointer, we will now
907   // compare the offsets instead of comparing the pointers.
908   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
909 }
910 
911 /// Fold comparisons between a GEP instruction and something else. At this point
912 /// we know that the GEP is on the LHS of the comparison.
913 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
914                                        ICmpInst::Predicate Cond,
915                                        Instruction &I) {
916   // Don't transform signed compares of GEPs into index compares. Even if the
917   // GEP is inbounds, the final add of the base pointer can have signed overflow
918   // and would change the result of the icmp.
919   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
920   // the maximum signed value for the pointer type.
921   if (ICmpInst::isSigned(Cond))
922     return nullptr;
923 
924   // Look through bitcasts and addrspacecasts. We do not however want to remove
925   // 0 GEPs.
926   if (!isa<GetElementPtrInst>(RHS))
927     RHS = RHS->stripPointerCasts();
928 
929   Value *PtrBase = GEPLHS->getOperand(0);
930   if (PtrBase == RHS && GEPLHS->isInBounds()) {
931     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
932     // This transformation (ignoring the base and scales) is valid because we
933     // know pointers can't overflow since the gep is inbounds.  See if we can
934     // output an optimized form.
935     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
936 
937     // If not, synthesize the offset the hard way.
938     if (!Offset)
939       Offset = EmitGEPOffset(GEPLHS);
940     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
941                         Constant::getNullValue(Offset->getType()));
942   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
943     // If the base pointers are different, but the indices are the same, just
944     // compare the base pointer.
945     if (PtrBase != GEPRHS->getOperand(0)) {
946       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
947       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
948                         GEPRHS->getOperand(0)->getType();
949       if (IndicesTheSame)
950         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
951           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
952             IndicesTheSame = false;
953             break;
954           }
955 
956       // If all indices are the same, just compare the base pointers.
957       if (IndicesTheSame)
958         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
959 
960       // If we're comparing GEPs with two base pointers that only differ in type
961       // and both GEPs have only constant indices or just one use, then fold
962       // the compare with the adjusted indices.
963       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
964           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
965           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
966           PtrBase->stripPointerCasts() ==
967               GEPRHS->getOperand(0)->stripPointerCasts()) {
968         Value *LOffset = EmitGEPOffset(GEPLHS);
969         Value *ROffset = EmitGEPOffset(GEPRHS);
970 
971         // If we looked through an addrspacecast between different sized address
972         // spaces, the LHS and RHS pointers are different sized
973         // integers. Truncate to the smaller one.
974         Type *LHSIndexTy = LOffset->getType();
975         Type *RHSIndexTy = ROffset->getType();
976         if (LHSIndexTy != RHSIndexTy) {
977           if (LHSIndexTy->getPrimitiveSizeInBits() <
978               RHSIndexTy->getPrimitiveSizeInBits()) {
979             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
980           } else
981             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
982         }
983 
984         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
985                                          LOffset, ROffset);
986         return replaceInstUsesWith(I, Cmp);
987       }
988 
989       // Otherwise, the base pointers are different and the indices are
990       // different. Try convert this to an indexed compare by looking through
991       // PHIs/casts.
992       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
993     }
994 
995     // If one of the GEPs has all zero indices, recurse.
996     if (GEPLHS->hasAllZeroIndices())
997       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
998                          ICmpInst::getSwappedPredicate(Cond), I);
999 
1000     // If the other GEP has all zero indices, recurse.
1001     if (GEPRHS->hasAllZeroIndices())
1002       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1003 
1004     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1005     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1006       // If the GEPs only differ by one index, compare it.
1007       unsigned NumDifferences = 0;  // Keep track of # differences.
1008       unsigned DiffOperand = 0;     // The operand that differs.
1009       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1010         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1011           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1012                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1013             // Irreconcilable differences.
1014             NumDifferences = 2;
1015             break;
1016           } else {
1017             if (NumDifferences++) break;
1018             DiffOperand = i;
1019           }
1020         }
1021 
1022       if (NumDifferences == 0)   // SAME GEP?
1023         return replaceInstUsesWith(I, // No comparison is needed here.
1024                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
1025 
1026       else if (NumDifferences == 1 && GEPsInBounds) {
1027         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1028         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1029         // Make sure we do a signed comparison here.
1030         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1031       }
1032     }
1033 
1034     // Only lower this if the icmp is the only user of the GEP or if we expect
1035     // the result to fold to a constant!
1036     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1037         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1038       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1039       Value *L = EmitGEPOffset(GEPLHS);
1040       Value *R = EmitGEPOffset(GEPRHS);
1041       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1042     }
1043   }
1044 
1045   // Try convert this to an indexed compare by looking through PHIs/casts as a
1046   // last resort.
1047   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1048 }
1049 
1050 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1051                                          const AllocaInst *Alloca,
1052                                          const Value *Other) {
1053   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1054 
1055   // It would be tempting to fold away comparisons between allocas and any
1056   // pointer not based on that alloca (e.g. an argument). However, even
1057   // though such pointers cannot alias, they can still compare equal.
1058   //
1059   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1060   // doesn't escape we can argue that it's impossible to guess its value, and we
1061   // can therefore act as if any such guesses are wrong.
1062   //
1063   // The code below checks that the alloca doesn't escape, and that it's only
1064   // used in a comparison once (the current instruction). The
1065   // single-comparison-use condition ensures that we're trivially folding all
1066   // comparisons against the alloca consistently, and avoids the risk of
1067   // erroneously folding a comparison of the pointer with itself.
1068 
1069   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1070 
1071   SmallVector<const Use *, 32> Worklist;
1072   for (const Use &U : Alloca->uses()) {
1073     if (Worklist.size() >= MaxIter)
1074       return nullptr;
1075     Worklist.push_back(&U);
1076   }
1077 
1078   unsigned NumCmps = 0;
1079   while (!Worklist.empty()) {
1080     assert(Worklist.size() <= MaxIter);
1081     const Use *U = Worklist.pop_back_val();
1082     const Value *V = U->getUser();
1083     --MaxIter;
1084 
1085     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1086         isa<SelectInst>(V)) {
1087       // Track the uses.
1088     } else if (isa<LoadInst>(V)) {
1089       // Loading from the pointer doesn't escape it.
1090       continue;
1091     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1092       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1093       if (SI->getValueOperand() == U->get())
1094         return nullptr;
1095       continue;
1096     } else if (isa<ICmpInst>(V)) {
1097       if (NumCmps++)
1098         return nullptr; // Found more than one cmp.
1099       continue;
1100     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1101       switch (Intrin->getIntrinsicID()) {
1102         // These intrinsics don't escape or compare the pointer. Memset is safe
1103         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1104         // we don't allow stores, so src cannot point to V.
1105         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1106         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1107         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1108           continue;
1109         default:
1110           return nullptr;
1111       }
1112     } else {
1113       return nullptr;
1114     }
1115     for (const Use &U : V->uses()) {
1116       if (Worklist.size() >= MaxIter)
1117         return nullptr;
1118       Worklist.push_back(&U);
1119     }
1120   }
1121 
1122   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1123   return replaceInstUsesWith(
1124       ICI,
1125       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1126 }
1127 
1128 /// Fold "icmp pred (X+CI), X".
1129 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
1130                                               Value *X, ConstantInt *CI,
1131                                               ICmpInst::Predicate Pred) {
1132   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1133   // so the values can never be equal.  Similarly for all other "or equals"
1134   // operators.
1135 
1136   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1137   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1138   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1139   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1140     Value *R =
1141       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1142     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1143   }
1144 
1145   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1146   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1147   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1148   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1149     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1150 
1151   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1152   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1153                                        APInt::getSignedMaxValue(BitWidth));
1154 
1155   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1156   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1157   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1158   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1159   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1160   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1161   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1162     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1163 
1164   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1165   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1166   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1167   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1168   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1169   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1170 
1171   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1172   Constant *C = Builder->getInt(CI->getValue()-1);
1173   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1174 }
1175 
1176 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1177 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1178 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1179 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1180                                                  const APInt &AP1,
1181                                                  const APInt &AP2) {
1182   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1183 
1184   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1185     if (I.getPredicate() == I.ICMP_NE)
1186       Pred = CmpInst::getInversePredicate(Pred);
1187     return new ICmpInst(Pred, LHS, RHS);
1188   };
1189 
1190   // Don't bother doing any work for cases which InstSimplify handles.
1191   if (AP2 == 0)
1192     return nullptr;
1193 
1194   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1195   if (IsAShr) {
1196     if (AP2.isAllOnesValue())
1197       return nullptr;
1198     if (AP2.isNegative() != AP1.isNegative())
1199       return nullptr;
1200     if (AP2.sgt(AP1))
1201       return nullptr;
1202   }
1203 
1204   if (!AP1)
1205     // 'A' must be large enough to shift out the highest set bit.
1206     return getICmp(I.ICMP_UGT, A,
1207                    ConstantInt::get(A->getType(), AP2.logBase2()));
1208 
1209   if (AP1 == AP2)
1210     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1211 
1212   int Shift;
1213   if (IsAShr && AP1.isNegative())
1214     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1215   else
1216     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1217 
1218   if (Shift > 0) {
1219     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1220       // There are multiple solutions if we are comparing against -1 and the LHS
1221       // of the ashr is not a power of two.
1222       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1223         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1224       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225     } else if (AP1 == AP2.lshr(Shift)) {
1226       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227     }
1228   }
1229 
1230   // Shifting const2 will never be equal to const1.
1231   // FIXME: This should always be handled by InstSimplify?
1232   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1233   return replaceInstUsesWith(I, TorF);
1234 }
1235 
1236 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1237 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1238 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1239                                                  const APInt &AP1,
1240                                                  const APInt &AP2) {
1241   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1242 
1243   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1244     if (I.getPredicate() == I.ICMP_NE)
1245       Pred = CmpInst::getInversePredicate(Pred);
1246     return new ICmpInst(Pred, LHS, RHS);
1247   };
1248 
1249   // Don't bother doing any work for cases which InstSimplify handles.
1250   if (AP2 == 0)
1251     return nullptr;
1252 
1253   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1254 
1255   if (!AP1 && AP2TrailingZeros != 0)
1256     return getICmp(
1257         I.ICMP_UGE, A,
1258         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1259 
1260   if (AP1 == AP2)
1261     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1262 
1263   // Get the distance between the lowest bits that are set.
1264   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1265 
1266   if (Shift > 0 && AP2.shl(Shift) == AP1)
1267     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1268 
1269   // Shifting const2 will never be equal to const1.
1270   // FIXME: This should always be handled by InstSimplify?
1271   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1272   return replaceInstUsesWith(I, TorF);
1273 }
1274 
1275 /// The caller has matched a pattern of the form:
1276 ///   I = icmp ugt (add (add A, B), CI2), CI1
1277 /// If this is of the form:
1278 ///   sum = a + b
1279 ///   if (sum+128 >u 255)
1280 /// Then replace it with llvm.sadd.with.overflow.i8.
1281 ///
1282 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1283                                           ConstantInt *CI2, ConstantInt *CI1,
1284                                           InstCombiner &IC) {
1285   // The transformation we're trying to do here is to transform this into an
1286   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1287   // with a narrower add, and discard the add-with-constant that is part of the
1288   // range check (if we can't eliminate it, this isn't profitable).
1289 
1290   // In order to eliminate the add-with-constant, the compare can be its only
1291   // use.
1292   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1293   if (!AddWithCst->hasOneUse())
1294     return nullptr;
1295 
1296   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1297   if (!CI2->getValue().isPowerOf2())
1298     return nullptr;
1299   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1300   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1301     return nullptr;
1302 
1303   // The width of the new add formed is 1 more than the bias.
1304   ++NewWidth;
1305 
1306   // Check to see that CI1 is an all-ones value with NewWidth bits.
1307   if (CI1->getBitWidth() == NewWidth ||
1308       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1309     return nullptr;
1310 
1311   // This is only really a signed overflow check if the inputs have been
1312   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1313   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1314   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1315   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1316       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1317     return nullptr;
1318 
1319   // In order to replace the original add with a narrower
1320   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1321   // and truncates that discard the high bits of the add.  Verify that this is
1322   // the case.
1323   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1324   for (User *U : OrigAdd->users()) {
1325     if (U == AddWithCst)
1326       continue;
1327 
1328     // Only accept truncates for now.  We would really like a nice recursive
1329     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1330     // chain to see which bits of a value are actually demanded.  If the
1331     // original add had another add which was then immediately truncated, we
1332     // could still do the transformation.
1333     TruncInst *TI = dyn_cast<TruncInst>(U);
1334     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1335       return nullptr;
1336   }
1337 
1338   // If the pattern matches, truncate the inputs to the narrower type and
1339   // use the sadd_with_overflow intrinsic to efficiently compute both the
1340   // result and the overflow bit.
1341   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1342   Value *F = Intrinsic::getDeclaration(I.getModule(),
1343                                        Intrinsic::sadd_with_overflow, NewType);
1344 
1345   InstCombiner::BuilderTy *Builder = IC.Builder;
1346 
1347   // Put the new code above the original add, in case there are any uses of the
1348   // add between the add and the compare.
1349   Builder->SetInsertPoint(OrigAdd);
1350 
1351   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
1352   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
1353   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
1354   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1355   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1356 
1357   // The inner add was the result of the narrow add, zero extended to the
1358   // wider type.  Replace it with the result computed by the intrinsic.
1359   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1360 
1361   // The original icmp gets replaced with the overflow value.
1362   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1363 }
1364 
1365 // Fold icmp Pred X, C.
1366 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1367   CmpInst::Predicate Pred = Cmp.getPredicate();
1368   Value *X = Cmp.getOperand(0);
1369 
1370   const APInt *C;
1371   if (!match(Cmp.getOperand(1), m_APInt(C)))
1372     return nullptr;
1373 
1374   Value *A = nullptr, *B = nullptr;
1375 
1376   // Match the following pattern, which is a common idiom when writing
1377   // overflow-safe integer arithmetic functions. The source performs an addition
1378   // in wider type and explicitly checks for overflow using comparisons against
1379   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1380   //
1381   // TODO: This could probably be generalized to handle other overflow-safe
1382   // operations if we worked out the formulas to compute the appropriate magic
1383   // constants.
1384   //
1385   // sum = a + b
1386   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1387   {
1388     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1389     if (Pred == ICmpInst::ICMP_UGT &&
1390         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1391       if (Instruction *Res = processUGT_ADDCST_ADD(
1392               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
1393         return Res;
1394   }
1395 
1396   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1397   if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
1398     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1399     if (SPR.Flavor == SPF_SMIN) {
1400       if (isKnownPositive(A, DL))
1401         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1402       if (isKnownPositive(B, DL))
1403         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1404     }
1405   }
1406 
1407   // FIXME: Use m_APInt to allow folds for splat constants.
1408   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1409   if (!CI)
1410     return nullptr;
1411 
1412   // Canonicalize icmp instructions based on dominating conditions.
1413   BasicBlock *Parent = Cmp.getParent();
1414   BasicBlock *Dom = Parent->getSinglePredecessor();
1415   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1416   ICmpInst::Predicate Pred2;
1417   BasicBlock *TrueBB, *FalseBB;
1418   ConstantInt *CI2;
1419   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1420                            TrueBB, FalseBB)) &&
1421       TrueBB != FalseBB) {
1422     ConstantRange CR =
1423         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1424     ConstantRange DominatingCR =
1425         (Parent == TrueBB)
1426             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1427             : ConstantRange::makeExactICmpRegion(
1428                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
1429     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1430     ConstantRange Difference = DominatingCR.difference(CR);
1431     if (Intersection.isEmptySet())
1432       return replaceInstUsesWith(Cmp, Builder->getFalse());
1433     if (Difference.isEmptySet())
1434       return replaceInstUsesWith(Cmp, Builder->getTrue());
1435 
1436     // If this is a normal comparison, it demands all bits. If it is a sign
1437     // bit comparison, it only demands the sign bit.
1438     bool UnusedBit;
1439     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1440 
1441     // Canonicalizing a sign bit comparison that gets used in a branch,
1442     // pessimizes codegen by generating branch on zero instruction instead
1443     // of a test and branch. So we avoid canonicalizing in such situations
1444     // because test and branch instruction has better branch displacement
1445     // than compare and branch instruction.
1446     if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
1447       if (auto *AI = Intersection.getSingleElement())
1448         return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
1449       if (auto *AD = Difference.getSingleElement())
1450         return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
1451     }
1452   }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Fold icmp (trunc X, Y), C.
1458 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1459                                                  Instruction *Trunc,
1460                                                  const APInt *C) {
1461   ICmpInst::Predicate Pred = Cmp.getPredicate();
1462   Value *X = Trunc->getOperand(0);
1463   if (*C == 1 && C->getBitWidth() > 1) {
1464     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1465     Value *V = nullptr;
1466     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1467       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1468                           ConstantInt::get(V->getType(), 1));
1469   }
1470 
1471   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1472     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1473     // of the high bits truncated out of x are known.
1474     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1475              SrcBits = X->getType()->getScalarSizeInBits();
1476     APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1477     computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
1478 
1479     // If all the high bits are known, we can do this xform.
1480     if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
1481       // Pull in the high bits from known-ones set.
1482       APInt NewRHS = C->zext(SrcBits);
1483       NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1484       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1485     }
1486   }
1487 
1488   return nullptr;
1489 }
1490 
1491 /// Fold icmp (xor X, Y), C.
1492 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1493                                                BinaryOperator *Xor,
1494                                                const APInt *C) {
1495   Value *X = Xor->getOperand(0);
1496   Value *Y = Xor->getOperand(1);
1497   const APInt *XorC;
1498   if (!match(Y, m_APInt(XorC)))
1499     return nullptr;
1500 
1501   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1502   // fold the xor.
1503   ICmpInst::Predicate Pred = Cmp.getPredicate();
1504   if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
1505       (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
1506 
1507     // If the sign bit of the XorCst is not set, there is no change to
1508     // the operation, just stop using the Xor.
1509     if (!XorC->isNegative()) {
1510       Cmp.setOperand(0, X);
1511       Worklist.Add(Xor);
1512       return &Cmp;
1513     }
1514 
1515     // Was the old condition true if the operand is positive?
1516     bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
1517 
1518     // If so, the new one isn't.
1519     isTrueIfPositive ^= true;
1520 
1521     Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
1522     if (isTrueIfPositive)
1523       return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
1524     else
1525       return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
1526   }
1527 
1528   if (Xor->hasOneUse()) {
1529     // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
1530     if (!Cmp.isEquality() && XorC->isSignBit()) {
1531       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1532                             : Cmp.getSignedPredicate();
1533       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1534     }
1535 
1536     // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
1537     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1538       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1539                             : Cmp.getSignedPredicate();
1540       Pred = Cmp.getSwappedPredicate(Pred);
1541       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1542     }
1543   }
1544 
1545   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1546   //   iff -C is a power of 2
1547   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
1548     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1549 
1550   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1551   //   iff -C is a power of 2
1552   if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
1553     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
1554 
1555   return nullptr;
1556 }
1557 
1558 /// Fold icmp (and (sh X, Y), C2), C1.
1559 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1560                                             const APInt *C1, const APInt *C2) {
1561   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1562   if (!Shift || !Shift->isShift())
1563     return nullptr;
1564 
1565   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1566   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1567   // code produced by the clang front-end, for bitfield access.
1568   // This seemingly simple opportunity to fold away a shift turns out to be
1569   // rather complicated. See PR17827 for details.
1570   unsigned ShiftOpcode = Shift->getOpcode();
1571   bool IsShl = ShiftOpcode == Instruction::Shl;
1572   const APInt *C3;
1573   if (match(Shift->getOperand(1), m_APInt(C3))) {
1574     bool CanFold = false;
1575     if (ShiftOpcode == Instruction::AShr) {
1576       // There may be some constraints that make this possible, but nothing
1577       // simple has been discovered yet.
1578       CanFold = false;
1579     } else if (ShiftOpcode == Instruction::Shl) {
1580       // For a left shift, we can fold if the comparison is not signed. We can
1581       // also fold a signed comparison if the mask value and comparison value
1582       // are not negative. These constraints may not be obvious, but we can
1583       // prove that they are correct using an SMT solver.
1584       if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
1585         CanFold = true;
1586     } else if (ShiftOpcode == Instruction::LShr) {
1587       // For a logical right shift, we can fold if the comparison is not signed.
1588       // We can also fold a signed comparison if the shifted mask value and the
1589       // shifted comparison value are not negative. These constraints may not be
1590       // obvious, but we can prove that they are correct using an SMT solver.
1591       if (!Cmp.isSigned() ||
1592           (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
1593         CanFold = true;
1594     }
1595 
1596     if (CanFold) {
1597       APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
1598       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1599       // Check to see if we are shifting out any of the bits being compared.
1600       if (SameAsC1 != *C1) {
1601         // If we shifted bits out, the fold is not going to work out. As a
1602         // special case, check to see if this means that the result is always
1603         // true or false now.
1604         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1605           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1606         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1607           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1608       } else {
1609         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1610         APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
1611         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1612         And->setOperand(0, Shift->getOperand(0));
1613         Worklist.Add(Shift); // Shift is dead.
1614         return &Cmp;
1615       }
1616     }
1617   }
1618 
1619   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1620   // preferable because it allows the C2 << Y expression to be hoisted out of a
1621   // loop if Y is invariant and X is not.
1622   if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
1623       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1624     // Compute C2 << Y.
1625     Value *NewShift =
1626         IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
1627               : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
1628 
1629     // Compute X & (C2 << Y).
1630     Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
1631     Cmp.setOperand(0, NewAnd);
1632     return &Cmp;
1633   }
1634 
1635   return nullptr;
1636 }
1637 
1638 /// Fold icmp (and X, C2), C1.
1639 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1640                                                  BinaryOperator *And,
1641                                                  const APInt *C1) {
1642   const APInt *C2;
1643   if (!match(And->getOperand(1), m_APInt(C2)))
1644     return nullptr;
1645 
1646   if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
1647     return nullptr;
1648 
1649   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1650   // the input width without changing the value produced, eliminate the cast:
1651   //
1652   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1653   //
1654   // We can do this transformation if the constants do not have their sign bits
1655   // set or if it is an equality comparison. Extending a relational comparison
1656   // when we're checking the sign bit would not work.
1657   Value *W;
1658   if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
1659       (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
1660     // TODO: Is this a good transform for vectors? Wider types may reduce
1661     // throughput. Should this transform be limited (even for scalars) by using
1662     // ShouldChangeType()?
1663     if (!Cmp.getType()->isVectorTy()) {
1664       Type *WideType = W->getType();
1665       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1666       Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
1667       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1668       Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
1669       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1670     }
1671   }
1672 
1673   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
1674     return I;
1675 
1676   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1677   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1678   //
1679   // iff pred isn't signed
1680   if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
1681     Constant *One = cast<Constant>(And->getOperand(1));
1682     Value *Or = And->getOperand(0);
1683     Value *A, *B, *LShr;
1684     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1685         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1686       unsigned UsesRemoved = 0;
1687       if (And->hasOneUse())
1688         ++UsesRemoved;
1689       if (Or->hasOneUse())
1690         ++UsesRemoved;
1691       if (LShr->hasOneUse())
1692         ++UsesRemoved;
1693 
1694       // Compute A & ((1 << B) | 1)
1695       Value *NewOr = nullptr;
1696       if (auto *C = dyn_cast<Constant>(B)) {
1697         if (UsesRemoved >= 1)
1698           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1699       } else {
1700         if (UsesRemoved >= 3)
1701           NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
1702                                                        /*HasNUW=*/true),
1703                                     One, Or->getName());
1704       }
1705       if (NewOr) {
1706         Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
1707         Cmp.setOperand(0, NewAnd);
1708         return &Cmp;
1709       }
1710     }
1711   }
1712 
1713   // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
1714   // result greater than C1.
1715   unsigned NumTZ = C2->countTrailingZeros();
1716   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
1717       APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
1718     Constant *Zero = Constant::getNullValue(And->getType());
1719     return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
1720   }
1721 
1722   return nullptr;
1723 }
1724 
1725 /// Fold icmp (and X, Y), C.
1726 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1727                                                BinaryOperator *And,
1728                                                const APInt *C) {
1729   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1730     return I;
1731 
1732   // TODO: These all require that Y is constant too, so refactor with the above.
1733 
1734   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1735   Value *X = And->getOperand(0);
1736   Value *Y = And->getOperand(1);
1737   if (auto *LI = dyn_cast<LoadInst>(X))
1738     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1739       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1740         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1741             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1742           ConstantInt *C2 = cast<ConstantInt>(Y);
1743           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1744             return Res;
1745         }
1746 
1747   if (!Cmp.isEquality())
1748     return nullptr;
1749 
1750   // X & -C == -C -> X >  u ~C
1751   // X & -C != -C -> X <= u ~C
1752   //   iff C is a power of 2
1753   if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
1754     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1755                                                           : CmpInst::ICMP_ULE;
1756     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1757   }
1758 
1759   // (X & C2) == 0 -> (trunc X) >= 0
1760   // (X & C2) != 0 -> (trunc X) <  0
1761   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1762   const APInt *C2;
1763   if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
1764     int32_t ExactLogBase2 = C2->exactLogBase2();
1765     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1766       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1767       if (And->getType()->isVectorTy())
1768         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1769       Value *Trunc = Builder->CreateTrunc(X, NTy);
1770       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1771                                                             : CmpInst::ICMP_SLT;
1772       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1773     }
1774   }
1775 
1776   return nullptr;
1777 }
1778 
1779 /// Fold icmp (or X, Y), C.
1780 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1781                                               const APInt *C) {
1782   ICmpInst::Predicate Pred = Cmp.getPredicate();
1783   if (*C == 1) {
1784     // icmp slt signum(V) 1 --> icmp slt V, 1
1785     Value *V = nullptr;
1786     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1787       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1788                           ConstantInt::get(V->getType(), 1));
1789   }
1790 
1791   if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
1792     return nullptr;
1793 
1794   Value *P, *Q;
1795   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1796     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1797     // -> and (icmp eq P, null), (icmp eq Q, null).
1798     Value *CmpP =
1799         Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1800     Value *CmpQ =
1801         Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1802     auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
1803                                                          : Instruction::Or;
1804     return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
1805   }
1806 
1807   return nullptr;
1808 }
1809 
1810 /// Fold icmp (mul X, Y), C.
1811 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1812                                                BinaryOperator *Mul,
1813                                                const APInt *C) {
1814   const APInt *MulC;
1815   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1816     return nullptr;
1817 
1818   // If this is a test of the sign bit and the multiply is sign-preserving with
1819   // a constant operand, use the multiply LHS operand instead.
1820   ICmpInst::Predicate Pred = Cmp.getPredicate();
1821   if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
1822     if (MulC->isNegative())
1823       Pred = ICmpInst::getSwappedPredicate(Pred);
1824     return new ICmpInst(Pred, Mul->getOperand(0),
1825                         Constant::getNullValue(Mul->getType()));
1826   }
1827 
1828   return nullptr;
1829 }
1830 
1831 /// Fold icmp (shl 1, Y), C.
1832 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1833                                    const APInt *C) {
1834   Value *Y;
1835   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1836     return nullptr;
1837 
1838   Type *ShiftType = Shl->getType();
1839   uint32_t TypeBits = C->getBitWidth();
1840   bool CIsPowerOf2 = C->isPowerOf2();
1841   ICmpInst::Predicate Pred = Cmp.getPredicate();
1842   if (Cmp.isUnsigned()) {
1843     // (1 << Y) pred C -> Y pred Log2(C)
1844     if (!CIsPowerOf2) {
1845       // (1 << Y) <  30 -> Y <= 4
1846       // (1 << Y) <= 30 -> Y <= 4
1847       // (1 << Y) >= 30 -> Y >  4
1848       // (1 << Y) >  30 -> Y >  4
1849       if (Pred == ICmpInst::ICMP_ULT)
1850         Pred = ICmpInst::ICMP_ULE;
1851       else if (Pred == ICmpInst::ICMP_UGE)
1852         Pred = ICmpInst::ICMP_UGT;
1853     }
1854 
1855     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1856     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1857     unsigned CLog2 = C->logBase2();
1858     if (CLog2 == TypeBits - 1) {
1859       if (Pred == ICmpInst::ICMP_UGE)
1860         Pred = ICmpInst::ICMP_EQ;
1861       else if (Pred == ICmpInst::ICMP_ULT)
1862         Pred = ICmpInst::ICMP_NE;
1863     }
1864     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1865   } else if (Cmp.isSigned()) {
1866     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1867     if (C->isAllOnesValue()) {
1868       // (1 << Y) <= -1 -> Y == 31
1869       if (Pred == ICmpInst::ICMP_SLE)
1870         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1871 
1872       // (1 << Y) >  -1 -> Y != 31
1873       if (Pred == ICmpInst::ICMP_SGT)
1874         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1875     } else if (!(*C)) {
1876       // (1 << Y) <  0 -> Y == 31
1877       // (1 << Y) <= 0 -> Y == 31
1878       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1879         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1880 
1881       // (1 << Y) >= 0 -> Y != 31
1882       // (1 << Y) >  0 -> Y != 31
1883       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1884         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1885     }
1886   } else if (Cmp.isEquality() && CIsPowerOf2) {
1887     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (shl X, Y), C.
1894 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1895                                                BinaryOperator *Shl,
1896                                                const APInt *C) {
1897   const APInt *ShiftVal;
1898   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1899     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
1900 
1901   const APInt *ShiftAmt;
1902   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1903     return foldICmpShlOne(Cmp, Shl, C);
1904 
1905   // Check that the shift amount is in range. If not, don't perform undefined
1906   // shifts. When the shift is visited it will be simplified.
1907   unsigned TypeBits = C->getBitWidth();
1908   if (ShiftAmt->uge(TypeBits))
1909     return nullptr;
1910 
1911   ICmpInst::Predicate Pred = Cmp.getPredicate();
1912   Value *X = Shl->getOperand(0);
1913   if (Cmp.isEquality()) {
1914     // If the shift is NUW, then it is just shifting out zeros, no need for an
1915     // AND.
1916     Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt));
1917     if (Shl->hasNoUnsignedWrap())
1918       return new ICmpInst(Pred, X, LShrC);
1919 
1920     // If the shift is NSW and we compare to 0, then it is just shifting out
1921     // sign bits, no need for an AND either.
1922     if (Shl->hasNoSignedWrap() && *C == 0)
1923       return new ICmpInst(Pred, X, LShrC);
1924 
1925     if (Shl->hasOneUse()) {
1926       // Otherwise strength reduce the shift into an and.
1927       Constant *Mask = ConstantInt::get(Shl->getType(),
1928           APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1929 
1930       Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1931       return new ICmpInst(Pred, And, LShrC);
1932     }
1933   }
1934 
1935   // If this is a signed comparison to 0 and the shift is sign preserving,
1936   // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1937   // do that if we're sure to not continue on in this function.
1938   if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C))
1939     return new ICmpInst(Pred, X, Constant::getNullValue(X->getType()));
1940 
1941   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1942   bool TrueIfSigned = false;
1943   if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
1944     // (X << 31) <s 0  --> (X & 1) != 0
1945     Constant *Mask = ConstantInt::get(
1946         X->getType(),
1947         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
1948     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1949     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1950                         And, Constant::getNullValue(And->getType()));
1951   }
1952 
1953   // Transform (icmp pred iM (shl iM %v, N), C)
1954   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
1955   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
1956   // This enables us to get rid of the shift in favor of a trunc which can be
1957   // free on the target. It has the additional benefit of comparing to a
1958   // smaller constant, which will be target friendly.
1959   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
1960   if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt) {
1961     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
1962     if (X->getType()->isVectorTy())
1963       TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements());
1964     Constant *NewC =
1965         ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
1966     return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
1967   }
1968 
1969   return nullptr;
1970 }
1971 
1972 /// Fold icmp ({al}shr X, Y), C.
1973 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
1974                                                BinaryOperator *Shr,
1975                                                const APInt *C) {
1976   // An exact shr only shifts out zero bits, so:
1977   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
1978   Value *X = Shr->getOperand(0);
1979   CmpInst::Predicate Pred = Cmp.getPredicate();
1980   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
1981     return new ICmpInst(Pred, X, Cmp.getOperand(1));
1982 
1983   const APInt *ShiftVal;
1984   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
1985     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
1986 
1987   const APInt *ShiftAmt;
1988   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
1989     return nullptr;
1990 
1991   // Check that the shift amount is in range. If not, don't perform undefined
1992   // shifts. When the shift is visited it will be simplified.
1993   unsigned TypeBits = C->getBitWidth();
1994   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
1995   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1996     return nullptr;
1997 
1998   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
1999   if (!Cmp.isEquality()) {
2000     // If we have an unsigned comparison and an ashr, we can't simplify this.
2001     // Similarly for signed comparisons with lshr.
2002     if (Cmp.isSigned() != IsAShr)
2003       return nullptr;
2004 
2005     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
2006     // by a power of 2.  Since we already have logic to simplify these,
2007     // transform to div and then simplify the resultant comparison.
2008     if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
2009       return nullptr;
2010 
2011     // Revisit the shift (to delete it).
2012     Worklist.Add(Shr);
2013 
2014     Constant *DivCst = ConstantInt::get(
2015         Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
2016 
2017     Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
2018                         : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
2019 
2020     Cmp.setOperand(0, Tmp);
2021 
2022     // If the builder folded the binop, just return it.
2023     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
2024     if (!TheDiv)
2025       return &Cmp;
2026 
2027     // Otherwise, fold this div/compare.
2028     assert(TheDiv->getOpcode() == Instruction::SDiv ||
2029            TheDiv->getOpcode() == Instruction::UDiv);
2030 
2031     Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
2032     assert(Res && "This div/cst should have folded!");
2033     return Res;
2034   }
2035 
2036   // Handle equality comparisons of shift-by-constant.
2037 
2038   // If the comparison constant changes with the shift, the comparison cannot
2039   // succeed (bits of the comparison constant cannot match the shifted value).
2040   // This should be known by InstSimplify and already be folded to true/false.
2041   assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
2042           (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
2043          "Expected icmp+shr simplify did not occur.");
2044 
2045   // Check if the bits shifted out are known to be zero. If so, we can compare
2046   // against the unshifted value:
2047   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2048   Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
2049   if (Shr->hasOneUse()) {
2050     if (Shr->isExact())
2051       return new ICmpInst(Pred, X, ShiftedCmpRHS);
2052 
2053     // Otherwise strength reduce the shift into an 'and'.
2054     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2055     Constant *Mask = ConstantInt::get(Shr->getType(), Val);
2056     Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
2057     return new ICmpInst(Pred, And, ShiftedCmpRHS);
2058   }
2059 
2060   return nullptr;
2061 }
2062 
2063 /// Fold icmp (udiv X, Y), C.
2064 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2065                                                 BinaryOperator *UDiv,
2066                                                 const APInt *C) {
2067   const APInt *C2;
2068   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2069     return nullptr;
2070 
2071   assert(C2 != 0 && "udiv 0, X should have been simplified already.");
2072 
2073   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2074   Value *Y = UDiv->getOperand(1);
2075   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2076     assert(!C->isMaxValue() &&
2077            "icmp ugt X, UINT_MAX should have been simplified already.");
2078     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2079                         ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
2080   }
2081 
2082   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2083   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2084     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2085     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2086                         ConstantInt::get(Y->getType(), C2->udiv(*C)));
2087   }
2088 
2089   return nullptr;
2090 }
2091 
2092 /// Fold icmp ({su}div X, Y), C.
2093 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2094                                                BinaryOperator *Div,
2095                                                const APInt *C) {
2096   // Fold: icmp pred ([us]div X, C2), C -> range test
2097   // Fold this div into the comparison, producing a range check.
2098   // Determine, based on the divide type, what the range is being
2099   // checked.  If there is an overflow on the low or high side, remember
2100   // it, otherwise compute the range [low, hi) bounding the new value.
2101   // See: InsertRangeTest above for the kinds of replacements possible.
2102   const APInt *C2;
2103   if (!match(Div->getOperand(1), m_APInt(C2)))
2104     return nullptr;
2105 
2106   // FIXME: If the operand types don't match the type of the divide
2107   // then don't attempt this transform. The code below doesn't have the
2108   // logic to deal with a signed divide and an unsigned compare (and
2109   // vice versa). This is because (x /s C2) <s C  produces different
2110   // results than (x /s C2) <u C or (x /u C2) <s C or even
2111   // (x /u C2) <u C.  Simply casting the operands and result won't
2112   // work. :(  The if statement below tests that condition and bails
2113   // if it finds it.
2114   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2115   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2116     return nullptr;
2117 
2118   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2119   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2120   // division-by-constant cases should be present, we can not assert that they
2121   // have happened before we reach this icmp instruction.
2122   if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
2123     return nullptr;
2124 
2125   // TODO: We could do all of the computations below using APInt.
2126   Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
2127   Constant *DivRHS = cast<Constant>(Div->getOperand(1));
2128 
2129   // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
2130   // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
2131   // By solving for X, we can turn this into a range check instead of computing
2132   // a divide.
2133   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
2134 
2135   // Determine if the product overflows by seeing if the product is not equal to
2136   // the divide. Make sure we do the same kind of divide as in the LHS
2137   // instruction that we're folding.
2138   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
2139                              : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
2140 
2141   ICmpInst::Predicate Pred = Cmp.getPredicate();
2142 
2143   // If the division is known to be exact, then there is no remainder from the
2144   // divide, so the covered range size is unit, otherwise it is the divisor.
2145   Constant *RangeSize =
2146       Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
2147 
2148   // Figure out the interval that is being checked.  For example, a comparison
2149   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2150   // Compute this interval based on the constants involved and the signedness of
2151   // the compare/divide.  This computes a half-open interval, keeping track of
2152   // whether either value in the interval overflows.  After analysis each
2153   // overflow variable is set to 0 if it's corresponding bound variable is valid
2154   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2155   int LoOverflow = 0, HiOverflow = 0;
2156   Constant *LoBound = nullptr, *HiBound = nullptr;
2157 
2158   if (!DivIsSigned) {  // udiv
2159     // e.g. X/5 op 3  --> [15, 20)
2160     LoBound = Prod;
2161     HiOverflow = LoOverflow = ProdOV;
2162     if (!HiOverflow) {
2163       // If this is not an exact divide, then many values in the range collapse
2164       // to the same result value.
2165       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2166     }
2167   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2168     if (*C == 0) {       // (X / pos) op 0
2169       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2170       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
2171       HiBound = RangeSize;
2172     } else if (C->isStrictlyPositive()) {   // (X / pos) op pos
2173       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2174       HiOverflow = LoOverflow = ProdOV;
2175       if (!HiOverflow)
2176         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2177     } else {                       // (X / pos) op neg
2178       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2179       HiBound = AddOne(Prod);
2180       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2181       if (!LoOverflow) {
2182         Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
2183         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2184       }
2185     }
2186   } else if (C2->isNegative()) { // Divisor is < 0.
2187     if (Div->isExact())
2188       RangeSize = ConstantExpr::getNeg(RangeSize);
2189     if (*C == 0) {       // (X / neg) op 0
2190       // e.g. X/-5 op 0  --> [-4, 5)
2191       LoBound = AddOne(RangeSize);
2192       HiBound = ConstantExpr::getNeg(RangeSize);
2193       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
2194         HiOverflow = 1;            // [INTMIN+1, overflow)
2195         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
2196       }
2197     } else if (C->isStrictlyPositive()) {   // (X / neg) op pos
2198       // e.g. X/-5 op 3  --> [-19, -14)
2199       HiBound = AddOne(Prod);
2200       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2201       if (!LoOverflow)
2202         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2203     } else {                       // (X / neg) op neg
2204       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2205       LoOverflow = HiOverflow = ProdOV;
2206       if (!HiOverflow)
2207         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2208     }
2209 
2210     // Dividing by a negative swaps the condition.  LT <-> GT
2211     Pred = ICmpInst::getSwappedPredicate(Pred);
2212   }
2213 
2214   Value *X = Div->getOperand(0);
2215   switch (Pred) {
2216     default: llvm_unreachable("Unhandled icmp opcode!");
2217     case ICmpInst::ICMP_EQ:
2218       if (LoOverflow && HiOverflow)
2219         return replaceInstUsesWith(Cmp, Builder->getFalse());
2220       if (HiOverflow)
2221         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2222                             ICmpInst::ICMP_UGE, X, LoBound);
2223       if (LoOverflow)
2224         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2225                             ICmpInst::ICMP_ULT, X, HiBound);
2226       return replaceInstUsesWith(
2227           Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
2228                                HiBound->getUniqueInteger(), DivIsSigned, true));
2229     case ICmpInst::ICMP_NE:
2230       if (LoOverflow && HiOverflow)
2231         return replaceInstUsesWith(Cmp, Builder->getTrue());
2232       if (HiOverflow)
2233         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2234                             ICmpInst::ICMP_ULT, X, LoBound);
2235       if (LoOverflow)
2236         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2237                             ICmpInst::ICMP_UGE, X, HiBound);
2238       return replaceInstUsesWith(Cmp,
2239                                  insertRangeTest(X, LoBound->getUniqueInteger(),
2240                                                  HiBound->getUniqueInteger(),
2241                                                  DivIsSigned, false));
2242     case ICmpInst::ICMP_ULT:
2243     case ICmpInst::ICMP_SLT:
2244       if (LoOverflow == +1)   // Low bound is greater than input range.
2245         return replaceInstUsesWith(Cmp, Builder->getTrue());
2246       if (LoOverflow == -1)   // Low bound is less than input range.
2247         return replaceInstUsesWith(Cmp, Builder->getFalse());
2248       return new ICmpInst(Pred, X, LoBound);
2249     case ICmpInst::ICMP_UGT:
2250     case ICmpInst::ICMP_SGT:
2251       if (HiOverflow == +1)       // High bound greater than input range.
2252         return replaceInstUsesWith(Cmp, Builder->getFalse());
2253       if (HiOverflow == -1)       // High bound less than input range.
2254         return replaceInstUsesWith(Cmp, Builder->getTrue());
2255       if (Pred == ICmpInst::ICMP_UGT)
2256         return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
2257       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
2258   }
2259 
2260   return nullptr;
2261 }
2262 
2263 /// Fold icmp (sub X, Y), C.
2264 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2265                                                BinaryOperator *Sub,
2266                                                const APInt *C) {
2267   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2268   ICmpInst::Predicate Pred = Cmp.getPredicate();
2269 
2270   // The following transforms are only worth it if the only user of the subtract
2271   // is the icmp.
2272   if (!Sub->hasOneUse())
2273     return nullptr;
2274 
2275   if (Sub->hasNoSignedWrap()) {
2276     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2277     if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
2278       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2279 
2280     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2281     if (Pred == ICmpInst::ICMP_SGT && *C == 0)
2282       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2283 
2284     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2285     if (Pred == ICmpInst::ICMP_SLT && *C == 0)
2286       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2287 
2288     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2289     if (Pred == ICmpInst::ICMP_SLT && *C == 1)
2290       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2291   }
2292 
2293   const APInt *C2;
2294   if (!match(X, m_APInt(C2)))
2295     return nullptr;
2296 
2297   // C2 - Y <u C -> (Y | (C - 1)) == C2
2298   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2299   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2300       (*C2 & (*C - 1)) == (*C - 1))
2301     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
2302 
2303   // C2 - Y >u C -> (Y | C) != C2
2304   //   iff C2 & C == C and C + 1 is a power of 2
2305   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
2306     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
2307 
2308   return nullptr;
2309 }
2310 
2311 /// Fold icmp (add X, Y), C.
2312 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2313                                                BinaryOperator *Add,
2314                                                const APInt *C) {
2315   Value *Y = Add->getOperand(1);
2316   const APInt *C2;
2317   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2318     return nullptr;
2319 
2320   // Fold icmp pred (add X, C2), C.
2321   Value *X = Add->getOperand(0);
2322   Type *Ty = Add->getType();
2323   auto CR =
2324       ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
2325   const APInt &Upper = CR.getUpper();
2326   const APInt &Lower = CR.getLower();
2327   if (Cmp.isSigned()) {
2328     if (Lower.isSignBit())
2329       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2330     if (Upper.isSignBit())
2331       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2332   } else {
2333     if (Lower.isMinValue())
2334       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2335     if (Upper.isMinValue())
2336       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2337   }
2338 
2339   if (!Add->hasOneUse())
2340     return nullptr;
2341 
2342   // X+C <u C2 -> (X & -C2) == C
2343   //   iff C & (C2-1) == 0
2344   //       C2 is a power of 2
2345   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2346       (*C2 & (*C - 1)) == 0)
2347     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
2348                         ConstantExpr::getNeg(cast<Constant>(Y)));
2349 
2350   // X+C >u C2 -> (X & ~C2) != C
2351   //   iff C & C2 == 0
2352   //       C2+1 is a power of 2
2353   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
2354       (*C2 & *C) == 0)
2355     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
2356                         ConstantExpr::getNeg(cast<Constant>(Y)));
2357 
2358   return nullptr;
2359 }
2360 
2361 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2362 /// where X is some kind of instruction.
2363 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2364   const APInt *C;
2365   if (!match(Cmp.getOperand(1), m_APInt(C)))
2366     return nullptr;
2367 
2368   BinaryOperator *BO;
2369   if (match(Cmp.getOperand(0), m_BinOp(BO))) {
2370     switch (BO->getOpcode()) {
2371     case Instruction::Xor:
2372       if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
2373         return I;
2374       break;
2375     case Instruction::And:
2376       if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
2377         return I;
2378       break;
2379     case Instruction::Or:
2380       if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
2381         return I;
2382       break;
2383     case Instruction::Mul:
2384       if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
2385         return I;
2386       break;
2387     case Instruction::Shl:
2388       if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
2389         return I;
2390       break;
2391     case Instruction::LShr:
2392     case Instruction::AShr:
2393       if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
2394         return I;
2395       break;
2396     case Instruction::UDiv:
2397       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
2398         return I;
2399       LLVM_FALLTHROUGH;
2400     case Instruction::SDiv:
2401       if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
2402         return I;
2403       break;
2404     case Instruction::Sub:
2405       if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
2406         return I;
2407       break;
2408     case Instruction::Add:
2409       if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
2410         return I;
2411       break;
2412     default:
2413       break;
2414     }
2415     // TODO: These folds could be refactored to be part of the above calls.
2416     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
2417       return I;
2418   }
2419 
2420   Instruction *LHSI;
2421   if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
2422       LHSI->getOpcode() == Instruction::Trunc)
2423     if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
2424       return I;
2425 
2426   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
2427     return I;
2428 
2429   return nullptr;
2430 }
2431 
2432 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2433 /// icmp eq/ne BO, C.
2434 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2435                                                              BinaryOperator *BO,
2436                                                              const APInt *C) {
2437   // TODO: Some of these folds could work with arbitrary constants, but this
2438   // function is limited to scalar and vector splat constants.
2439   if (!Cmp.isEquality())
2440     return nullptr;
2441 
2442   ICmpInst::Predicate Pred = Cmp.getPredicate();
2443   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2444   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2445   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2446 
2447   switch (BO->getOpcode()) {
2448   case Instruction::SRem:
2449     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2450     if (*C == 0 && BO->hasOneUse()) {
2451       const APInt *BOC;
2452       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2453         Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
2454         return new ICmpInst(Pred, NewRem,
2455                             Constant::getNullValue(BO->getType()));
2456       }
2457     }
2458     break;
2459   case Instruction::Add: {
2460     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2461     const APInt *BOC;
2462     if (match(BOp1, m_APInt(BOC))) {
2463       if (BO->hasOneUse()) {
2464         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2465         return new ICmpInst(Pred, BOp0, SubC);
2466       }
2467     } else if (*C == 0) {
2468       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2469       // efficiently invertible, or if the add has just this one use.
2470       if (Value *NegVal = dyn_castNegVal(BOp1))
2471         return new ICmpInst(Pred, BOp0, NegVal);
2472       if (Value *NegVal = dyn_castNegVal(BOp0))
2473         return new ICmpInst(Pred, NegVal, BOp1);
2474       if (BO->hasOneUse()) {
2475         Value *Neg = Builder->CreateNeg(BOp1);
2476         Neg->takeName(BO);
2477         return new ICmpInst(Pred, BOp0, Neg);
2478       }
2479     }
2480     break;
2481   }
2482   case Instruction::Xor:
2483     if (BO->hasOneUse()) {
2484       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2485         // For the xor case, we can xor two constants together, eliminating
2486         // the explicit xor.
2487         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2488       } else if (*C == 0) {
2489         // Replace ((xor A, B) != 0) with (A != B)
2490         return new ICmpInst(Pred, BOp0, BOp1);
2491       }
2492     }
2493     break;
2494   case Instruction::Sub:
2495     if (BO->hasOneUse()) {
2496       const APInt *BOC;
2497       if (match(BOp0, m_APInt(BOC))) {
2498         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2499         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2500         return new ICmpInst(Pred, BOp1, SubC);
2501       } else if (*C == 0) {
2502         // Replace ((sub A, B) != 0) with (A != B).
2503         return new ICmpInst(Pred, BOp0, BOp1);
2504       }
2505     }
2506     break;
2507   case Instruction::Or: {
2508     const APInt *BOC;
2509     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2510       // Comparing if all bits outside of a constant mask are set?
2511       // Replace (X | C) == -1 with (X & ~C) == ~C.
2512       // This removes the -1 constant.
2513       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2514       Value *And = Builder->CreateAnd(BOp0, NotBOC);
2515       return new ICmpInst(Pred, And, NotBOC);
2516     }
2517     break;
2518   }
2519   case Instruction::And: {
2520     const APInt *BOC;
2521     if (match(BOp1, m_APInt(BOC))) {
2522       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2523       if (C == BOC && C->isPowerOf2())
2524         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2525                             BO, Constant::getNullValue(RHS->getType()));
2526 
2527       // Don't perform the following transforms if the AND has multiple uses
2528       if (!BO->hasOneUse())
2529         break;
2530 
2531       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2532       if (BOC->isSignBit()) {
2533         Constant *Zero = Constant::getNullValue(BOp0->getType());
2534         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2535         return new ICmpInst(NewPred, BOp0, Zero);
2536       }
2537 
2538       // ((X & ~7) == 0) --> X < 8
2539       if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
2540         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2541         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2542         return new ICmpInst(NewPred, BOp0, NegBOC);
2543       }
2544     }
2545     break;
2546   }
2547   case Instruction::Mul:
2548     if (*C == 0 && BO->hasNoSignedWrap()) {
2549       const APInt *BOC;
2550       if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
2551         // The trivial case (mul X, 0) is handled by InstSimplify.
2552         // General case : (mul X, C) != 0 iff X != 0
2553         //                (mul X, C) == 0 iff X == 0
2554         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2555       }
2556     }
2557     break;
2558   case Instruction::UDiv:
2559     if (*C == 0) {
2560       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2561       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2562       return new ICmpInst(NewPred, BOp1, BOp0);
2563     }
2564     break;
2565   default:
2566     break;
2567   }
2568   return nullptr;
2569 }
2570 
2571 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2572 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2573                                                          const APInt *C) {
2574   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2575   if (!II || !Cmp.isEquality())
2576     return nullptr;
2577 
2578   // Handle icmp {eq|ne} <intrinsic>, intcst.
2579   switch (II->getIntrinsicID()) {
2580   case Intrinsic::bswap:
2581     Worklist.Add(II);
2582     Cmp.setOperand(0, II->getArgOperand(0));
2583     Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
2584     return &Cmp;
2585   case Intrinsic::ctlz:
2586   case Intrinsic::cttz:
2587     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2588     if (*C == C->getBitWidth()) {
2589       Worklist.Add(II);
2590       Cmp.setOperand(0, II->getArgOperand(0));
2591       Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
2592       return &Cmp;
2593     }
2594     break;
2595   case Intrinsic::ctpop: {
2596     // popcount(A) == 0  ->  A == 0 and likewise for !=
2597     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2598     bool IsZero = *C == 0;
2599     if (IsZero || *C == C->getBitWidth()) {
2600       Worklist.Add(II);
2601       Cmp.setOperand(0, II->getArgOperand(0));
2602       auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
2603                            : Constant::getAllOnesValue(II->getType());
2604       Cmp.setOperand(1, NewOp);
2605       return &Cmp;
2606     }
2607     break;
2608   }
2609   default:
2610     break;
2611   }
2612   return nullptr;
2613 }
2614 
2615 /// Handle icmp with constant (but not simple integer constant) RHS.
2616 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2617   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2618   Constant *RHSC = dyn_cast<Constant>(Op1);
2619   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2620   if (!RHSC || !LHSI)
2621     return nullptr;
2622 
2623   switch (LHSI->getOpcode()) {
2624   case Instruction::GetElementPtr:
2625     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2626     if (RHSC->isNullValue() &&
2627         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2628       return new ICmpInst(
2629           I.getPredicate(), LHSI->getOperand(0),
2630           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2631     break;
2632   case Instruction::PHI:
2633     // Only fold icmp into the PHI if the phi and icmp are in the same
2634     // block.  If in the same block, we're encouraging jump threading.  If
2635     // not, we are just pessimizing the code by making an i1 phi.
2636     if (LHSI->getParent() == I.getParent())
2637       if (Instruction *NV = FoldOpIntoPhi(I))
2638         return NV;
2639     break;
2640   case Instruction::Select: {
2641     // If either operand of the select is a constant, we can fold the
2642     // comparison into the select arms, which will cause one to be
2643     // constant folded and the select turned into a bitwise or.
2644     Value *Op1 = nullptr, *Op2 = nullptr;
2645     ConstantInt *CI = nullptr;
2646     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2647       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2648       CI = dyn_cast<ConstantInt>(Op1);
2649     }
2650     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2651       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2652       CI = dyn_cast<ConstantInt>(Op2);
2653     }
2654 
2655     // We only want to perform this transformation if it will not lead to
2656     // additional code. This is true if either both sides of the select
2657     // fold to a constant (in which case the icmp is replaced with a select
2658     // which will usually simplify) or this is the only user of the
2659     // select (in which case we are trading a select+icmp for a simpler
2660     // select+icmp) or all uses of the select can be replaced based on
2661     // dominance information ("Global cases").
2662     bool Transform = false;
2663     if (Op1 && Op2)
2664       Transform = true;
2665     else if (Op1 || Op2) {
2666       // Local case
2667       if (LHSI->hasOneUse())
2668         Transform = true;
2669       // Global cases
2670       else if (CI && !CI->isZero())
2671         // When Op1 is constant try replacing select with second operand.
2672         // Otherwise Op2 is constant and try replacing select with first
2673         // operand.
2674         Transform =
2675             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2676     }
2677     if (Transform) {
2678       if (!Op1)
2679         Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2680                                   I.getName());
2681       if (!Op2)
2682         Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2683                                   I.getName());
2684       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2685     }
2686     break;
2687   }
2688   case Instruction::IntToPtr:
2689     // icmp pred inttoptr(X), null -> icmp pred X, 0
2690     if (RHSC->isNullValue() &&
2691         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2692       return new ICmpInst(
2693           I.getPredicate(), LHSI->getOperand(0),
2694           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2695     break;
2696 
2697   case Instruction::Load:
2698     // Try to optimize things like "A[i] > 4" to index computations.
2699     if (GetElementPtrInst *GEP =
2700             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2701       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2702         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2703             !cast<LoadInst>(LHSI)->isVolatile())
2704           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2705             return Res;
2706     }
2707     break;
2708   }
2709 
2710   return nullptr;
2711 }
2712 
2713 /// Try to fold icmp (binop), X or icmp X, (binop).
2714 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2715   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2716 
2717   // Special logic for binary operators.
2718   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2719   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2720   if (!BO0 && !BO1)
2721     return nullptr;
2722 
2723   CmpInst::Predicate Pred = I.getPredicate();
2724   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2725   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2726     NoOp0WrapProblem =
2727         ICmpInst::isEquality(Pred) ||
2728         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2729         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2730   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2731     NoOp1WrapProblem =
2732         ICmpInst::isEquality(Pred) ||
2733         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2734         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2735 
2736   // Analyze the case when either Op0 or Op1 is an add instruction.
2737   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2738   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2739   if (BO0 && BO0->getOpcode() == Instruction::Add) {
2740     A = BO0->getOperand(0);
2741     B = BO0->getOperand(1);
2742   }
2743   if (BO1 && BO1->getOpcode() == Instruction::Add) {
2744     C = BO1->getOperand(0);
2745     D = BO1->getOperand(1);
2746   }
2747 
2748   // icmp (X+cst) < 0 --> X < -cst
2749   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
2750     if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
2751       if (!RHSC->isMinValue(/*isSigned=*/true))
2752         return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
2753 
2754   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2755   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2756     return new ICmpInst(Pred, A == Op1 ? B : A,
2757                         Constant::getNullValue(Op1->getType()));
2758 
2759   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2760   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2761     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2762                         C == Op0 ? D : C);
2763 
2764   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2765   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2766       NoOp1WrapProblem &&
2767       // Try not to increase register pressure.
2768       BO0->hasOneUse() && BO1->hasOneUse()) {
2769     // Determine Y and Z in the form icmp (X+Y), (X+Z).
2770     Value *Y, *Z;
2771     if (A == C) {
2772       // C + B == C + D  ->  B == D
2773       Y = B;
2774       Z = D;
2775     } else if (A == D) {
2776       // D + B == C + D  ->  B == C
2777       Y = B;
2778       Z = C;
2779     } else if (B == C) {
2780       // A + C == C + D  ->  A == D
2781       Y = A;
2782       Z = D;
2783     } else {
2784       assert(B == D);
2785       // A + D == C + D  ->  A == C
2786       Y = A;
2787       Z = C;
2788     }
2789     return new ICmpInst(Pred, Y, Z);
2790   }
2791 
2792   // icmp slt (X + -1), Y -> icmp sle X, Y
2793   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2794       match(B, m_AllOnes()))
2795     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2796 
2797   // icmp sge (X + -1), Y -> icmp sgt X, Y
2798   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2799       match(B, m_AllOnes()))
2800     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2801 
2802   // icmp sle (X + 1), Y -> icmp slt X, Y
2803   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2804     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2805 
2806   // icmp sgt (X + 1), Y -> icmp sge X, Y
2807   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2808     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2809 
2810   // icmp sgt X, (Y + -1) -> icmp sge X, Y
2811   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2812       match(D, m_AllOnes()))
2813     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2814 
2815   // icmp sle X, (Y + -1) -> icmp slt X, Y
2816   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2817       match(D, m_AllOnes()))
2818     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2819 
2820   // icmp sge X, (Y + 1) -> icmp sgt X, Y
2821   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2822     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2823 
2824   // icmp slt X, (Y + 1) -> icmp sle X, Y
2825   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2826     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2827 
2828   // if C1 has greater magnitude than C2:
2829   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2830   //  s.t. C3 = C1 - C2
2831   //
2832   // if C2 has greater magnitude than C1:
2833   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2834   //  s.t. C3 = C2 - C1
2835   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2836       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2837     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2838       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2839         const APInt &AP1 = C1->getValue();
2840         const APInt &AP2 = C2->getValue();
2841         if (AP1.isNegative() == AP2.isNegative()) {
2842           APInt AP1Abs = C1->getValue().abs();
2843           APInt AP2Abs = C2->getValue().abs();
2844           if (AP1Abs.uge(AP2Abs)) {
2845             ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2846             Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2847             return new ICmpInst(Pred, NewAdd, C);
2848           } else {
2849             ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2850             Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2851             return new ICmpInst(Pred, A, NewAdd);
2852           }
2853         }
2854       }
2855 
2856   // Analyze the case when either Op0 or Op1 is a sub instruction.
2857   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2858   A = nullptr;
2859   B = nullptr;
2860   C = nullptr;
2861   D = nullptr;
2862   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
2863     A = BO0->getOperand(0);
2864     B = BO0->getOperand(1);
2865   }
2866   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
2867     C = BO1->getOperand(0);
2868     D = BO1->getOperand(1);
2869   }
2870 
2871   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2872   if (A == Op1 && NoOp0WrapProblem)
2873     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2874 
2875   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2876   if (C == Op0 && NoOp1WrapProblem)
2877     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2878 
2879   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2880   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2881       // Try not to increase register pressure.
2882       BO0->hasOneUse() && BO1->hasOneUse())
2883     return new ICmpInst(Pred, A, C);
2884 
2885   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2886   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2887       // Try not to increase register pressure.
2888       BO0->hasOneUse() && BO1->hasOneUse())
2889     return new ICmpInst(Pred, D, B);
2890 
2891   // icmp (0-X) < cst --> x > -cst
2892   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2893     Value *X;
2894     if (match(BO0, m_Neg(m_Value(X))))
2895       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2896         if (!RHSC->isMinValue(/*isSigned=*/true))
2897           return new ICmpInst(I.getSwappedPredicate(), X,
2898                               ConstantExpr::getNeg(RHSC));
2899   }
2900 
2901   BinaryOperator *SRem = nullptr;
2902   // icmp (srem X, Y), Y
2903   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
2904     SRem = BO0;
2905   // icmp Y, (srem X, Y)
2906   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2907            Op0 == BO1->getOperand(1))
2908     SRem = BO1;
2909   if (SRem) {
2910     // We don't check hasOneUse to avoid increasing register pressure because
2911     // the value we use is the same value this instruction was already using.
2912     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2913     default:
2914       break;
2915     case ICmpInst::ICMP_EQ:
2916       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2917     case ICmpInst::ICMP_NE:
2918       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2919     case ICmpInst::ICMP_SGT:
2920     case ICmpInst::ICMP_SGE:
2921       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2922                           Constant::getAllOnesValue(SRem->getType()));
2923     case ICmpInst::ICMP_SLT:
2924     case ICmpInst::ICMP_SLE:
2925       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2926                           Constant::getNullValue(SRem->getType()));
2927     }
2928   }
2929 
2930   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
2931       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
2932     switch (BO0->getOpcode()) {
2933     default:
2934       break;
2935     case Instruction::Add:
2936     case Instruction::Sub:
2937     case Instruction::Xor:
2938       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2939         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2940                             BO1->getOperand(0));
2941       // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2942       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2943         if (CI->getValue().isSignBit()) {
2944           ICmpInst::Predicate Pred =
2945               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
2946           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
2947         }
2948 
2949         if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
2950           ICmpInst::Predicate Pred =
2951               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
2952           Pred = I.getSwappedPredicate(Pred);
2953           return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
2954         }
2955       }
2956       break;
2957     case Instruction::Mul:
2958       if (!I.isEquality())
2959         break;
2960 
2961       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2962         // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2963         // Mask = -1 >> count-trailing-zeros(Cst).
2964         if (!CI->isZero() && !CI->isOne()) {
2965           const APInt &AP = CI->getValue();
2966           ConstantInt *Mask = ConstantInt::get(
2967               I.getContext(),
2968               APInt::getLowBitsSet(AP.getBitWidth(),
2969                                    AP.getBitWidth() - AP.countTrailingZeros()));
2970           Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2971           Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2972           return new ICmpInst(I.getPredicate(), And1, And2);
2973         }
2974       }
2975       break;
2976     case Instruction::UDiv:
2977     case Instruction::LShr:
2978       if (I.isSigned())
2979         break;
2980       LLVM_FALLTHROUGH;
2981     case Instruction::SDiv:
2982     case Instruction::AShr:
2983       if (!BO0->isExact() || !BO1->isExact())
2984         break;
2985       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2986                           BO1->getOperand(0));
2987     case Instruction::Shl: {
2988       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2989       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2990       if (!NUW && !NSW)
2991         break;
2992       if (!NSW && I.isSigned())
2993         break;
2994       return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2995                           BO1->getOperand(0));
2996     }
2997     }
2998   }
2999 
3000   if (BO0) {
3001     // Transform  A & (L - 1) `ult` L --> L != 0
3002     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3003     auto BitwiseAnd =
3004         m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3005 
3006     if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3007       auto *Zero = Constant::getNullValue(BO0->getType());
3008       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3009     }
3010   }
3011 
3012   return nullptr;
3013 }
3014 
3015 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3016   if (!I.isEquality())
3017     return nullptr;
3018 
3019   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3020   Value *A, *B, *C, *D;
3021   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3022     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3023       Value *OtherVal = A == Op1 ? B : A;
3024       return new ICmpInst(I.getPredicate(), OtherVal,
3025                           Constant::getNullValue(A->getType()));
3026     }
3027 
3028     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3029       // A^c1 == C^c2 --> A == C^(c1^c2)
3030       ConstantInt *C1, *C2;
3031       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3032           Op1->hasOneUse()) {
3033         Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3034         Value *Xor = Builder->CreateXor(C, NC);
3035         return new ICmpInst(I.getPredicate(), A, Xor);
3036       }
3037 
3038       // A^B == A^D -> B == D
3039       if (A == C)
3040         return new ICmpInst(I.getPredicate(), B, D);
3041       if (A == D)
3042         return new ICmpInst(I.getPredicate(), B, C);
3043       if (B == C)
3044         return new ICmpInst(I.getPredicate(), A, D);
3045       if (B == D)
3046         return new ICmpInst(I.getPredicate(), A, C);
3047     }
3048   }
3049 
3050   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3051     // A == (A^B)  ->  B == 0
3052     Value *OtherVal = A == Op0 ? B : A;
3053     return new ICmpInst(I.getPredicate(), OtherVal,
3054                         Constant::getNullValue(A->getType()));
3055   }
3056 
3057   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3058   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3059       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3060     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3061 
3062     if (A == C) {
3063       X = B;
3064       Y = D;
3065       Z = A;
3066     } else if (A == D) {
3067       X = B;
3068       Y = C;
3069       Z = A;
3070     } else if (B == C) {
3071       X = A;
3072       Y = D;
3073       Z = B;
3074     } else if (B == D) {
3075       X = A;
3076       Y = C;
3077       Z = B;
3078     }
3079 
3080     if (X) { // Build (X^Y) & Z
3081       Op1 = Builder->CreateXor(X, Y);
3082       Op1 = Builder->CreateAnd(Op1, Z);
3083       I.setOperand(0, Op1);
3084       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3085       return &I;
3086     }
3087   }
3088 
3089   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3090   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3091   ConstantInt *Cst1;
3092   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3093        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3094       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3095        match(Op1, m_ZExt(m_Value(A))))) {
3096     APInt Pow2 = Cst1->getValue() + 1;
3097     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3098         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3099       return new ICmpInst(I.getPredicate(), A,
3100                           Builder->CreateTrunc(B, A->getType()));
3101   }
3102 
3103   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3104   // For lshr and ashr pairs.
3105   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3106        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3107       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3108        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3109     unsigned TypeBits = Cst1->getBitWidth();
3110     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3111     if (ShAmt < TypeBits && ShAmt != 0) {
3112       ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3113                                      ? ICmpInst::ICMP_UGE
3114                                      : ICmpInst::ICMP_ULT;
3115       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3116       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3117       return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3118     }
3119   }
3120 
3121   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3122   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3123       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3124     unsigned TypeBits = Cst1->getBitWidth();
3125     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3126     if (ShAmt < TypeBits && ShAmt != 0) {
3127       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3128       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3129       Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3130                                       I.getName() + ".mask");
3131       return new ICmpInst(I.getPredicate(), And,
3132                           Constant::getNullValue(Cst1->getType()));
3133     }
3134   }
3135 
3136   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3137   // "icmp (and X, mask), cst"
3138   uint64_t ShAmt = 0;
3139   if (Op0->hasOneUse() &&
3140       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3141       match(Op1, m_ConstantInt(Cst1)) &&
3142       // Only do this when A has multiple uses.  This is most important to do
3143       // when it exposes other optimizations.
3144       !A->hasOneUse()) {
3145     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3146 
3147     if (ShAmt < ASize) {
3148       APInt MaskV =
3149           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3150       MaskV <<= ShAmt;
3151 
3152       APInt CmpV = Cst1->getValue().zext(ASize);
3153       CmpV <<= ShAmt;
3154 
3155       Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3156       return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3157     }
3158   }
3159 
3160   return nullptr;
3161 }
3162 
3163 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3164 /// far.
3165 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3166   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3167   Value *LHSCIOp        = LHSCI->getOperand(0);
3168   Type *SrcTy     = LHSCIOp->getType();
3169   Type *DestTy    = LHSCI->getType();
3170   Value *RHSCIOp;
3171 
3172   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3173   // integer type is the same size as the pointer type.
3174   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3175       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
3176     Value *RHSOp = nullptr;
3177     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3178       Value *RHSCIOp = RHSC->getOperand(0);
3179       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3180           LHSCIOp->getType()->getPointerAddressSpace()) {
3181         RHSOp = RHSC->getOperand(0);
3182         // If the pointer types don't match, insert a bitcast.
3183         if (LHSCIOp->getType() != RHSOp->getType())
3184           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
3185       }
3186     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3187       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3188     }
3189 
3190     if (RHSOp)
3191       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3192   }
3193 
3194   // The code below only handles extension cast instructions, so far.
3195   // Enforce this.
3196   if (LHSCI->getOpcode() != Instruction::ZExt &&
3197       LHSCI->getOpcode() != Instruction::SExt)
3198     return nullptr;
3199 
3200   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3201   bool isSignedCmp = ICmp.isSigned();
3202 
3203   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3204     // Not an extension from the same type?
3205     RHSCIOp = CI->getOperand(0);
3206     if (RHSCIOp->getType() != LHSCIOp->getType())
3207       return nullptr;
3208 
3209     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3210     // and the other is a zext), then we can't handle this.
3211     if (CI->getOpcode() != LHSCI->getOpcode())
3212       return nullptr;
3213 
3214     // Deal with equality cases early.
3215     if (ICmp.isEquality())
3216       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3217 
3218     // A signed comparison of sign extended values simplifies into a
3219     // signed comparison.
3220     if (isSignedCmp && isSignedExt)
3221       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3222 
3223     // The other three cases all fold into an unsigned comparison.
3224     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3225   }
3226 
3227   // If we aren't dealing with a constant on the RHS, exit early.
3228   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3229   if (!C)
3230     return nullptr;
3231 
3232   // Compute the constant that would happen if we truncated to SrcTy then
3233   // re-extended to DestTy.
3234   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3235   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3236 
3237   // If the re-extended constant didn't change...
3238   if (Res2 == C) {
3239     // Deal with equality cases early.
3240     if (ICmp.isEquality())
3241       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3242 
3243     // A signed comparison of sign extended values simplifies into a
3244     // signed comparison.
3245     if (isSignedExt && isSignedCmp)
3246       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3247 
3248     // The other three cases all fold into an unsigned comparison.
3249     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3250   }
3251 
3252   // The re-extended constant changed, partly changed (in the case of a vector),
3253   // or could not be determined to be equal (in the case of a constant
3254   // expression), so the constant cannot be represented in the shorter type.
3255   // Consequently, we cannot emit a simple comparison.
3256   // All the cases that fold to true or false will have already been handled
3257   // by SimplifyICmpInst, so only deal with the tricky case.
3258 
3259   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3260     return nullptr;
3261 
3262   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3263   // should have been folded away previously and not enter in here.
3264 
3265   // We're performing an unsigned comp with a sign extended value.
3266   // This is true if the input is >= 0. [aka >s -1]
3267   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3268   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3269 
3270   // Finally, return the value computed.
3271   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3272     return replaceInstUsesWith(ICmp, Result);
3273 
3274   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3275   return BinaryOperator::CreateNot(Result);
3276 }
3277 
3278 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3279                                          Value *RHS, Instruction &OrigI,
3280                                          Value *&Result, Constant *&Overflow) {
3281   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3282     std::swap(LHS, RHS);
3283 
3284   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3285     Result = OpResult;
3286     Overflow = OverflowVal;
3287     if (ReuseName)
3288       Result->takeName(&OrigI);
3289     return true;
3290   };
3291 
3292   // If the overflow check was an add followed by a compare, the insertion point
3293   // may be pointing to the compare.  We want to insert the new instructions
3294   // before the add in case there are uses of the add between the add and the
3295   // compare.
3296   Builder->SetInsertPoint(&OrigI);
3297 
3298   switch (OCF) {
3299   case OCF_INVALID:
3300     llvm_unreachable("bad overflow check kind!");
3301 
3302   case OCF_UNSIGNED_ADD: {
3303     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3304     if (OR == OverflowResult::NeverOverflows)
3305       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
3306                        true);
3307 
3308     if (OR == OverflowResult::AlwaysOverflows)
3309       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
3310 
3311     // Fall through uadd into sadd
3312     LLVM_FALLTHROUGH;
3313   }
3314   case OCF_SIGNED_ADD: {
3315     // X + 0 -> {X, false}
3316     if (match(RHS, m_Zero()))
3317       return SetResult(LHS, Builder->getFalse(), false);
3318 
3319     // We can strength reduce this signed add into a regular add if we can prove
3320     // that it will never overflow.
3321     if (OCF == OCF_SIGNED_ADD)
3322       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
3323         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
3324                          true);
3325     break;
3326   }
3327 
3328   case OCF_UNSIGNED_SUB:
3329   case OCF_SIGNED_SUB: {
3330     // X - 0 -> {X, false}
3331     if (match(RHS, m_Zero()))
3332       return SetResult(LHS, Builder->getFalse(), false);
3333 
3334     if (OCF == OCF_SIGNED_SUB) {
3335       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
3336         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
3337                          true);
3338     } else {
3339       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
3340         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
3341                          true);
3342     }
3343     break;
3344   }
3345 
3346   case OCF_UNSIGNED_MUL: {
3347     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3348     if (OR == OverflowResult::NeverOverflows)
3349       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
3350                        true);
3351     if (OR == OverflowResult::AlwaysOverflows)
3352       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
3353     LLVM_FALLTHROUGH;
3354   }
3355   case OCF_SIGNED_MUL:
3356     // X * undef -> undef
3357     if (isa<UndefValue>(RHS))
3358       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
3359 
3360     // X * 0 -> {0, false}
3361     if (match(RHS, m_Zero()))
3362       return SetResult(RHS, Builder->getFalse(), false);
3363 
3364     // X * 1 -> {X, false}
3365     if (match(RHS, m_One()))
3366       return SetResult(LHS, Builder->getFalse(), false);
3367 
3368     if (OCF == OCF_SIGNED_MUL)
3369       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
3370         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
3371                          true);
3372     break;
3373   }
3374 
3375   return false;
3376 }
3377 
3378 /// \brief Recognize and process idiom involving test for multiplication
3379 /// overflow.
3380 ///
3381 /// The caller has matched a pattern of the form:
3382 ///   I = cmp u (mul(zext A, zext B), V
3383 /// The function checks if this is a test for overflow and if so replaces
3384 /// multiplication with call to 'mul.with.overflow' intrinsic.
3385 ///
3386 /// \param I Compare instruction.
3387 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
3388 ///               the compare instruction.  Must be of integer type.
3389 /// \param OtherVal The other argument of compare instruction.
3390 /// \returns Instruction which must replace the compare instruction, NULL if no
3391 ///          replacement required.
3392 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
3393                                          Value *OtherVal, InstCombiner &IC) {
3394   // Don't bother doing this transformation for pointers, don't do it for
3395   // vectors.
3396   if (!isa<IntegerType>(MulVal->getType()))
3397     return nullptr;
3398 
3399   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3400   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3401   auto *MulInstr = dyn_cast<Instruction>(MulVal);
3402   if (!MulInstr)
3403     return nullptr;
3404   assert(MulInstr->getOpcode() == Instruction::Mul);
3405 
3406   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3407        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3408   assert(LHS->getOpcode() == Instruction::ZExt);
3409   assert(RHS->getOpcode() == Instruction::ZExt);
3410   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3411 
3412   // Calculate type and width of the result produced by mul.with.overflow.
3413   Type *TyA = A->getType(), *TyB = B->getType();
3414   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3415            WidthB = TyB->getPrimitiveSizeInBits();
3416   unsigned MulWidth;
3417   Type *MulType;
3418   if (WidthB > WidthA) {
3419     MulWidth = WidthB;
3420     MulType = TyB;
3421   } else {
3422     MulWidth = WidthA;
3423     MulType = TyA;
3424   }
3425 
3426   // In order to replace the original mul with a narrower mul.with.overflow,
3427   // all uses must ignore upper bits of the product.  The number of used low
3428   // bits must be not greater than the width of mul.with.overflow.
3429   if (MulVal->hasNUsesOrMore(2))
3430     for (User *U : MulVal->users()) {
3431       if (U == &I)
3432         continue;
3433       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3434         // Check if truncation ignores bits above MulWidth.
3435         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3436         if (TruncWidth > MulWidth)
3437           return nullptr;
3438       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3439         // Check if AND ignores bits above MulWidth.
3440         if (BO->getOpcode() != Instruction::And)
3441           return nullptr;
3442         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3443           const APInt &CVal = CI->getValue();
3444           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3445             return nullptr;
3446         }
3447       } else {
3448         // Other uses prohibit this transformation.
3449         return nullptr;
3450       }
3451     }
3452 
3453   // Recognize patterns
3454   switch (I.getPredicate()) {
3455   case ICmpInst::ICMP_EQ:
3456   case ICmpInst::ICMP_NE:
3457     // Recognize pattern:
3458     //   mulval = mul(zext A, zext B)
3459     //   cmp eq/neq mulval, zext trunc mulval
3460     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3461       if (Zext->hasOneUse()) {
3462         Value *ZextArg = Zext->getOperand(0);
3463         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3464           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3465             break; //Recognized
3466       }
3467 
3468     // Recognize pattern:
3469     //   mulval = mul(zext A, zext B)
3470     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3471     ConstantInt *CI;
3472     Value *ValToMask;
3473     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3474       if (ValToMask != MulVal)
3475         return nullptr;
3476       const APInt &CVal = CI->getValue() + 1;
3477       if (CVal.isPowerOf2()) {
3478         unsigned MaskWidth = CVal.logBase2();
3479         if (MaskWidth == MulWidth)
3480           break; // Recognized
3481       }
3482     }
3483     return nullptr;
3484 
3485   case ICmpInst::ICMP_UGT:
3486     // Recognize pattern:
3487     //   mulval = mul(zext A, zext B)
3488     //   cmp ugt mulval, max
3489     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3490       APInt MaxVal = APInt::getMaxValue(MulWidth);
3491       MaxVal = MaxVal.zext(CI->getBitWidth());
3492       if (MaxVal.eq(CI->getValue()))
3493         break; // Recognized
3494     }
3495     return nullptr;
3496 
3497   case ICmpInst::ICMP_UGE:
3498     // Recognize pattern:
3499     //   mulval = mul(zext A, zext B)
3500     //   cmp uge mulval, max+1
3501     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3502       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3503       if (MaxVal.eq(CI->getValue()))
3504         break; // Recognized
3505     }
3506     return nullptr;
3507 
3508   case ICmpInst::ICMP_ULE:
3509     // Recognize pattern:
3510     //   mulval = mul(zext A, zext B)
3511     //   cmp ule mulval, max
3512     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3513       APInt MaxVal = APInt::getMaxValue(MulWidth);
3514       MaxVal = MaxVal.zext(CI->getBitWidth());
3515       if (MaxVal.eq(CI->getValue()))
3516         break; // Recognized
3517     }
3518     return nullptr;
3519 
3520   case ICmpInst::ICMP_ULT:
3521     // Recognize pattern:
3522     //   mulval = mul(zext A, zext B)
3523     //   cmp ule mulval, max + 1
3524     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3525       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3526       if (MaxVal.eq(CI->getValue()))
3527         break; // Recognized
3528     }
3529     return nullptr;
3530 
3531   default:
3532     return nullptr;
3533   }
3534 
3535   InstCombiner::BuilderTy *Builder = IC.Builder;
3536   Builder->SetInsertPoint(MulInstr);
3537 
3538   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3539   Value *MulA = A, *MulB = B;
3540   if (WidthA < MulWidth)
3541     MulA = Builder->CreateZExt(A, MulType);
3542   if (WidthB < MulWidth)
3543     MulB = Builder->CreateZExt(B, MulType);
3544   Value *F = Intrinsic::getDeclaration(I.getModule(),
3545                                        Intrinsic::umul_with_overflow, MulType);
3546   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
3547   IC.Worklist.Add(MulInstr);
3548 
3549   // If there are uses of mul result other than the comparison, we know that
3550   // they are truncation or binary AND. Change them to use result of
3551   // mul.with.overflow and adjust properly mask/size.
3552   if (MulVal->hasNUsesOrMore(2)) {
3553     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
3554     for (User *U : MulVal->users()) {
3555       if (U == &I || U == OtherVal)
3556         continue;
3557       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3558         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
3559           IC.replaceInstUsesWith(*TI, Mul);
3560         else
3561           TI->setOperand(0, Mul);
3562       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3563         assert(BO->getOpcode() == Instruction::And);
3564         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3565         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3566         APInt ShortMask = CI->getValue().trunc(MulWidth);
3567         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
3568         Instruction *Zext =
3569             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
3570         IC.Worklist.Add(Zext);
3571         IC.replaceInstUsesWith(*BO, Zext);
3572       } else {
3573         llvm_unreachable("Unexpected Binary operation");
3574       }
3575       IC.Worklist.Add(cast<Instruction>(U));
3576     }
3577   }
3578   if (isa<Instruction>(OtherVal))
3579     IC.Worklist.Add(cast<Instruction>(OtherVal));
3580 
3581   // The original icmp gets replaced with the overflow value, maybe inverted
3582   // depending on predicate.
3583   bool Inverse = false;
3584   switch (I.getPredicate()) {
3585   case ICmpInst::ICMP_NE:
3586     break;
3587   case ICmpInst::ICMP_EQ:
3588     Inverse = true;
3589     break;
3590   case ICmpInst::ICMP_UGT:
3591   case ICmpInst::ICMP_UGE:
3592     if (I.getOperand(0) == MulVal)
3593       break;
3594     Inverse = true;
3595     break;
3596   case ICmpInst::ICMP_ULT:
3597   case ICmpInst::ICMP_ULE:
3598     if (I.getOperand(1) == MulVal)
3599       break;
3600     Inverse = true;
3601     break;
3602   default:
3603     llvm_unreachable("Unexpected predicate");
3604   }
3605   if (Inverse) {
3606     Value *Res = Builder->CreateExtractValue(Call, 1);
3607     return BinaryOperator::CreateNot(Res);
3608   }
3609 
3610   return ExtractValueInst::Create(Call, 1);
3611 }
3612 
3613 /// When performing a comparison against a constant, it is possible that not all
3614 /// the bits in the LHS are demanded. This helper method computes the mask that
3615 /// IS demanded.
3616 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
3617                                     bool isSignCheck) {
3618   if (isSignCheck)
3619     return APInt::getSignBit(BitWidth);
3620 
3621   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3622   if (!CI) return APInt::getAllOnesValue(BitWidth);
3623   const APInt &RHS = CI->getValue();
3624 
3625   switch (I.getPredicate()) {
3626   // For a UGT comparison, we don't care about any bits that
3627   // correspond to the trailing ones of the comparand.  The value of these
3628   // bits doesn't impact the outcome of the comparison, because any value
3629   // greater than the RHS must differ in a bit higher than these due to carry.
3630   case ICmpInst::ICMP_UGT: {
3631     unsigned trailingOnes = RHS.countTrailingOnes();
3632     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
3633     return ~lowBitsSet;
3634   }
3635 
3636   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3637   // Any value less than the RHS must differ in a higher bit because of carries.
3638   case ICmpInst::ICMP_ULT: {
3639     unsigned trailingZeros = RHS.countTrailingZeros();
3640     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
3641     return ~lowBitsSet;
3642   }
3643 
3644   default:
3645     return APInt::getAllOnesValue(BitWidth);
3646   }
3647 }
3648 
3649 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
3650 /// should be swapped.
3651 /// The decision is based on how many times these two operands are reused
3652 /// as subtract operands and their positions in those instructions.
3653 /// The rational is that several architectures use the same instruction for
3654 /// both subtract and cmp, thus it is better if the order of those operands
3655 /// match.
3656 /// \return true if Op0 and Op1 should be swapped.
3657 static bool swapMayExposeCSEOpportunities(const Value * Op0,
3658                                           const Value * Op1) {
3659   // Filter out pointer value as those cannot appears directly in subtract.
3660   // FIXME: we may want to go through inttoptrs or bitcasts.
3661   if (Op0->getType()->isPointerTy())
3662     return false;
3663   // Count every uses of both Op0 and Op1 in a subtract.
3664   // Each time Op0 is the first operand, count -1: swapping is bad, the
3665   // subtract has already the same layout as the compare.
3666   // Each time Op0 is the second operand, count +1: swapping is good, the
3667   // subtract has a different layout as the compare.
3668   // At the end, if the benefit is greater than 0, Op0 should come second to
3669   // expose more CSE opportunities.
3670   int GlobalSwapBenefits = 0;
3671   for (const User *U : Op0->users()) {
3672     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
3673     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
3674       continue;
3675     // If Op0 is the first argument, this is not beneficial to swap the
3676     // arguments.
3677     int LocalSwapBenefits = -1;
3678     unsigned Op1Idx = 1;
3679     if (BinOp->getOperand(Op1Idx) == Op0) {
3680       Op1Idx = 0;
3681       LocalSwapBenefits = 1;
3682     }
3683     if (BinOp->getOperand(Op1Idx) != Op1)
3684       continue;
3685     GlobalSwapBenefits += LocalSwapBenefits;
3686   }
3687   return GlobalSwapBenefits > 0;
3688 }
3689 
3690 /// \brief Check that one use is in the same block as the definition and all
3691 /// other uses are in blocks dominated by a given block.
3692 ///
3693 /// \param DI Definition
3694 /// \param UI Use
3695 /// \param DB Block that must dominate all uses of \p DI outside
3696 ///           the parent block
3697 /// \return true when \p UI is the only use of \p DI in the parent block
3698 /// and all other uses of \p DI are in blocks dominated by \p DB.
3699 ///
3700 bool InstCombiner::dominatesAllUses(const Instruction *DI,
3701                                     const Instruction *UI,
3702                                     const BasicBlock *DB) const {
3703   assert(DI && UI && "Instruction not defined\n");
3704   // Ignore incomplete definitions.
3705   if (!DI->getParent())
3706     return false;
3707   // DI and UI must be in the same block.
3708   if (DI->getParent() != UI->getParent())
3709     return false;
3710   // Protect from self-referencing blocks.
3711   if (DI->getParent() == DB)
3712     return false;
3713   for (const User *U : DI->users()) {
3714     auto *Usr = cast<Instruction>(U);
3715     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
3716       return false;
3717   }
3718   return true;
3719 }
3720 
3721 /// Return true when the instruction sequence within a block is select-cmp-br.
3722 static bool isChainSelectCmpBranch(const SelectInst *SI) {
3723   const BasicBlock *BB = SI->getParent();
3724   if (!BB)
3725     return false;
3726   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
3727   if (!BI || BI->getNumSuccessors() != 2)
3728     return false;
3729   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3730   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3731     return false;
3732   return true;
3733 }
3734 
3735 /// \brief True when a select result is replaced by one of its operands
3736 /// in select-icmp sequence. This will eventually result in the elimination
3737 /// of the select.
3738 ///
3739 /// \param SI    Select instruction
3740 /// \param Icmp  Compare instruction
3741 /// \param SIOpd Operand that replaces the select
3742 ///
3743 /// Notes:
3744 /// - The replacement is global and requires dominator information
3745 /// - The caller is responsible for the actual replacement
3746 ///
3747 /// Example:
3748 ///
3749 /// entry:
3750 ///  %4 = select i1 %3, %C* %0, %C* null
3751 ///  %5 = icmp eq %C* %4, null
3752 ///  br i1 %5, label %9, label %7
3753 ///  ...
3754 ///  ; <label>:7                                       ; preds = %entry
3755 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3756 ///  ...
3757 ///
3758 /// can be transformed to
3759 ///
3760 ///  %5 = icmp eq %C* %0, null
3761 ///  %6 = select i1 %3, i1 %5, i1 true
3762 ///  br i1 %6, label %9, label %7
3763 ///  ...
3764 ///  ; <label>:7                                       ; preds = %entry
3765 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
3766 ///
3767 /// Similar when the first operand of the select is a constant or/and
3768 /// the compare is for not equal rather than equal.
3769 ///
3770 /// NOTE: The function is only called when the select and compare constants
3771 /// are equal, the optimization can work only for EQ predicates. This is not a
3772 /// major restriction since a NE compare should be 'normalized' to an equal
3773 /// compare, which usually happens in the combiner and test case
3774 /// select-cmp-br.ll checks for it.
3775 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3776                                              const ICmpInst *Icmp,
3777                                              const unsigned SIOpd) {
3778   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
3779   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3780     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3781     // The check for the unique predecessor is not the best that can be
3782     // done. But it protects efficiently against cases like when SI's
3783     // home block has two successors, Succ and Succ1, and Succ1 predecessor
3784     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3785     // replaced can be reached on either path. So the uniqueness check
3786     // guarantees that the path all uses of SI (outside SI's parent) are on
3787     // is disjoint from all other paths out of SI. But that information
3788     // is more expensive to compute, and the trade-off here is in favor
3789     // of compile-time.
3790     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3791       NumSel++;
3792       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3793       return true;
3794     }
3795   }
3796   return false;
3797 }
3798 
3799 /// Try to fold the comparison based on range information we can get by checking
3800 /// whether bits are known to be zero or one in the inputs.
3801 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
3802   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3803   Type *Ty = Op0->getType();
3804   ICmpInst::Predicate Pred = I.getPredicate();
3805 
3806   // Get scalar or pointer size.
3807   unsigned BitWidth = Ty->isIntOrIntVectorTy()
3808                           ? Ty->getScalarSizeInBits()
3809                           : DL.getTypeSizeInBits(Ty->getScalarType());
3810 
3811   if (!BitWidth)
3812     return nullptr;
3813 
3814   // If this is a normal comparison, it demands all bits. If it is a sign bit
3815   // comparison, it only demands the sign bit.
3816   bool IsSignBit = false;
3817   const APInt *CmpC;
3818   if (match(Op1, m_APInt(CmpC))) {
3819     bool UnusedBit;
3820     IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
3821   }
3822 
3823   APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
3824   APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
3825 
3826   if (SimplifyDemandedBits(I.getOperandUse(0),
3827                            getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
3828                            Op0KnownZero, Op0KnownOne, 0))
3829     return &I;
3830 
3831   if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
3832                            Op1KnownZero, Op1KnownOne, 0))
3833     return &I;
3834 
3835   // Given the known and unknown bits, compute a range that the LHS could be
3836   // in.  Compute the Min, Max and RHS values based on the known bits. For the
3837   // EQ and NE we use unsigned values.
3838   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
3839   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
3840   if (I.isSigned()) {
3841     computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
3842                                            Op0Max);
3843     computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
3844                                            Op1Max);
3845   } else {
3846     computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
3847                                              Op0Max);
3848     computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
3849                                              Op1Max);
3850   }
3851 
3852   // If Min and Max are known to be the same, then SimplifyDemandedBits
3853   // figured out that the LHS is a constant. Constant fold this now, so that
3854   // code below can assume that Min != Max.
3855   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
3856     return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
3857   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
3858     return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
3859 
3860   // Based on the range information we know about the LHS, see if we can
3861   // simplify this comparison.  For example, (x&4) < 8 is always true.
3862   switch (Pred) {
3863   default:
3864     llvm_unreachable("Unknown icmp opcode!");
3865   case ICmpInst::ICMP_EQ:
3866   case ICmpInst::ICMP_NE: {
3867     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
3868       return Pred == CmpInst::ICMP_EQ
3869                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
3870                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3871     }
3872 
3873     // If all bits are known zero except for one, then we know at most one bit
3874     // is set. If the comparison is against zero, then this is a check to see if
3875     // *that* bit is set.
3876     APInt Op0KnownZeroInverted = ~Op0KnownZero;
3877     if (~Op1KnownZero == 0) {
3878       // If the LHS is an AND with the same constant, look through it.
3879       Value *LHS = nullptr;
3880       const APInt *LHSC;
3881       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
3882           *LHSC != Op0KnownZeroInverted)
3883         LHS = Op0;
3884 
3885       Value *X;
3886       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3887         APInt ValToCheck = Op0KnownZeroInverted;
3888         Type *XTy = X->getType();
3889         if (ValToCheck.isPowerOf2()) {
3890           // ((1 << X) & 8) == 0 -> X != 3
3891           // ((1 << X) & 8) != 0 -> X == 3
3892           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
3893           auto NewPred = ICmpInst::getInversePredicate(Pred);
3894           return new ICmpInst(NewPred, X, CmpC);
3895         } else if ((++ValToCheck).isPowerOf2()) {
3896           // ((1 << X) & 7) == 0 -> X >= 3
3897           // ((1 << X) & 7) != 0 -> X  < 3
3898           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
3899           auto NewPred =
3900               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
3901           return new ICmpInst(NewPred, X, CmpC);
3902         }
3903       }
3904 
3905       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
3906       const APInt *CI;
3907       if (Op0KnownZeroInverted == 1 &&
3908           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
3909         // ((8 >>u X) & 1) == 0 -> X != 3
3910         // ((8 >>u X) & 1) != 0 -> X == 3
3911         unsigned CmpVal = CI->countTrailingZeros();
3912         auto NewPred = ICmpInst::getInversePredicate(Pred);
3913         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
3914       }
3915     }
3916     break;
3917   }
3918   case ICmpInst::ICMP_ULT: {
3919     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
3920       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3921     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
3922       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3923     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
3924       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3925 
3926     const APInt *CmpC;
3927     if (match(Op1, m_APInt(CmpC))) {
3928       // A <u C -> A == C-1 if min(A)+1 == C
3929       if (Op1Max == Op0Min + 1) {
3930         Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
3931         return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
3932       }
3933       // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
3934       if (CmpC->isMinSignedValue()) {
3935         Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
3936         return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
3937       }
3938     }
3939     break;
3940   }
3941   case ICmpInst::ICMP_UGT: {
3942     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
3943       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3944 
3945     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
3946       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3947 
3948     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
3949       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3950 
3951     const APInt *CmpC;
3952     if (match(Op1, m_APInt(CmpC))) {
3953       // A >u C -> A == C+1 if max(a)-1 == C
3954       if (*CmpC == Op0Max - 1)
3955         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3956                             ConstantInt::get(Op1->getType(), *CmpC + 1));
3957 
3958       // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
3959       if (CmpC->isMaxSignedValue())
3960         return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3961                             Constant::getNullValue(Op0->getType()));
3962     }
3963     break;
3964   }
3965   case ICmpInst::ICMP_SLT:
3966     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
3967       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3968     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
3969       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3970     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
3971       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3972     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3973       if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
3974         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3975                             Builder->getInt(CI->getValue() - 1));
3976     }
3977     break;
3978   case ICmpInst::ICMP_SGT:
3979     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
3980       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3981     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
3982       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3983 
3984     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
3985       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3986     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3987       if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
3988         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3989                             Builder->getInt(CI->getValue() + 1));
3990     }
3991     break;
3992   case ICmpInst::ICMP_SGE:
3993     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3994     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
3995       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3996     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
3997       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3998     break;
3999   case ICmpInst::ICMP_SLE:
4000     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4001     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4002       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4003     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4004       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4005     break;
4006   case ICmpInst::ICMP_UGE:
4007     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4008     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4009       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4010     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4011       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4012     break;
4013   case ICmpInst::ICMP_ULE:
4014     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4015     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4016       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4017     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4018       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4019     break;
4020   }
4021 
4022   // Turn a signed comparison into an unsigned one if both operands are known to
4023   // have the same sign.
4024   if (I.isSigned() &&
4025       ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
4026        (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
4027     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4028 
4029   return nullptr;
4030 }
4031 
4032 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4033 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4034 /// allows them to be folded in visitICmpInst.
4035 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4036   ICmpInst::Predicate Pred = I.getPredicate();
4037   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4038       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4039     return nullptr;
4040 
4041   Value *Op0 = I.getOperand(0);
4042   Value *Op1 = I.getOperand(1);
4043   auto *Op1C = dyn_cast<Constant>(Op1);
4044   if (!Op1C)
4045     return nullptr;
4046 
4047   // Check if the constant operand can be safely incremented/decremented without
4048   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4049   // the edge cases for us, so we just assert on them. For vectors, we must
4050   // handle the edge cases.
4051   Type *Op1Type = Op1->getType();
4052   bool IsSigned = I.isSigned();
4053   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4054   auto *CI = dyn_cast<ConstantInt>(Op1C);
4055   if (CI) {
4056     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4057     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4058   } else if (Op1Type->isVectorTy()) {
4059     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4060     // are for scalar, we could remove the min/max checks. However, to do that,
4061     // we would have to use insertelement/shufflevector to replace edge values.
4062     unsigned NumElts = Op1Type->getVectorNumElements();
4063     for (unsigned i = 0; i != NumElts; ++i) {
4064       Constant *Elt = Op1C->getAggregateElement(i);
4065       if (!Elt)
4066         return nullptr;
4067 
4068       if (isa<UndefValue>(Elt))
4069         continue;
4070 
4071       // Bail out if we can't determine if this constant is min/max or if we
4072       // know that this constant is min/max.
4073       auto *CI = dyn_cast<ConstantInt>(Elt);
4074       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4075         return nullptr;
4076     }
4077   } else {
4078     // ConstantExpr?
4079     return nullptr;
4080   }
4081 
4082   // Increment or decrement the constant and set the new comparison predicate:
4083   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4084   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4085   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4086   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4087   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4088 }
4089 
4090 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4091   bool Changed = false;
4092   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4093   unsigned Op0Cplxity = getComplexity(Op0);
4094   unsigned Op1Cplxity = getComplexity(Op1);
4095 
4096   /// Orders the operands of the compare so that they are listed from most
4097   /// complex to least complex.  This puts constants before unary operators,
4098   /// before binary operators.
4099   if (Op0Cplxity < Op1Cplxity ||
4100       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4101     I.swapOperands();
4102     std::swap(Op0, Op1);
4103     Changed = true;
4104   }
4105 
4106   if (Value *V =
4107           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
4108     return replaceInstUsesWith(I, V);
4109 
4110   // comparing -val or val with non-zero is the same as just comparing val
4111   // ie, abs(val) != 0 -> val != 0
4112   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4113     Value *Cond, *SelectTrue, *SelectFalse;
4114     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4115                             m_Value(SelectFalse)))) {
4116       if (Value *V = dyn_castNegVal(SelectTrue)) {
4117         if (V == SelectFalse)
4118           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4119       }
4120       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4121         if (V == SelectTrue)
4122           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4123       }
4124     }
4125   }
4126 
4127   Type *Ty = Op0->getType();
4128 
4129   // icmp's with boolean values can always be turned into bitwise operations
4130   if (Ty->getScalarType()->isIntegerTy(1)) {
4131     switch (I.getPredicate()) {
4132     default: llvm_unreachable("Invalid icmp instruction!");
4133     case ICmpInst::ICMP_EQ: {                // icmp eq i1 A, B -> ~(A^B)
4134       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
4135       return BinaryOperator::CreateNot(Xor);
4136     }
4137     case ICmpInst::ICMP_NE:                  // icmp ne i1 A, B -> A^B
4138       return BinaryOperator::CreateXor(Op0, Op1);
4139 
4140     case ICmpInst::ICMP_UGT:
4141       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
4142       LLVM_FALLTHROUGH;
4143     case ICmpInst::ICMP_ULT:{                // icmp ult i1 A, B -> ~A & B
4144       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4145       return BinaryOperator::CreateAnd(Not, Op1);
4146     }
4147     case ICmpInst::ICMP_SGT:
4148       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
4149       LLVM_FALLTHROUGH;
4150     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
4151       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4152       return BinaryOperator::CreateAnd(Not, Op0);
4153     }
4154     case ICmpInst::ICMP_UGE:
4155       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
4156       LLVM_FALLTHROUGH;
4157     case ICmpInst::ICMP_ULE: {               // icmp ule i1 A, B -> ~A | B
4158       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
4159       return BinaryOperator::CreateOr(Not, Op1);
4160     }
4161     case ICmpInst::ICMP_SGE:
4162       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
4163       LLVM_FALLTHROUGH;
4164     case ICmpInst::ICMP_SLE: {               // icmp sle i1 A, B -> A | ~B
4165       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
4166       return BinaryOperator::CreateOr(Not, Op0);
4167     }
4168     }
4169   }
4170 
4171   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4172     return NewICmp;
4173 
4174   if (Instruction *Res = foldICmpWithConstant(I))
4175     return Res;
4176 
4177   if (Instruction *Res = foldICmpUsingKnownBits(I))
4178     return Res;
4179 
4180   // Test if the ICmpInst instruction is used exclusively by a select as
4181   // part of a minimum or maximum operation. If so, refrain from doing
4182   // any other folding. This helps out other analyses which understand
4183   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4184   // and CodeGen. And in this case, at least one of the comparison
4185   // operands has at least one user besides the compare (the select),
4186   // which would often largely negate the benefit of folding anyway.
4187   if (I.hasOneUse())
4188     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4189       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4190           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4191         return nullptr;
4192 
4193   if (Instruction *Res = foldICmpInstWithConstant(I))
4194     return Res;
4195 
4196   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4197     return Res;
4198 
4199   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4200   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4201     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4202       return NI;
4203   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4204     if (Instruction *NI = foldGEPICmp(GEP, Op0,
4205                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4206       return NI;
4207 
4208   // Try to optimize equality comparisons against alloca-based pointers.
4209   if (Op0->getType()->isPointerTy() && I.isEquality()) {
4210     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4211     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4212       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4213         return New;
4214     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4215       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4216         return New;
4217   }
4218 
4219   // Test to see if the operands of the icmp are casted versions of other
4220   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
4221   // now.
4222   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4223     if (Op0->getType()->isPointerTy() &&
4224         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4225       // We keep moving the cast from the left operand over to the right
4226       // operand, where it can often be eliminated completely.
4227       Op0 = CI->getOperand(0);
4228 
4229       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4230       // so eliminate it as well.
4231       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4232         Op1 = CI2->getOperand(0);
4233 
4234       // If Op1 is a constant, we can fold the cast into the constant.
4235       if (Op0->getType() != Op1->getType()) {
4236         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4237           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4238         } else {
4239           // Otherwise, cast the RHS right before the icmp
4240           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
4241         }
4242       }
4243       return new ICmpInst(I.getPredicate(), Op0, Op1);
4244     }
4245   }
4246 
4247   if (isa<CastInst>(Op0)) {
4248     // Handle the special case of: icmp (cast bool to X), <cst>
4249     // This comes up when you have code like
4250     //   int X = A < B;
4251     //   if (X) ...
4252     // For generality, we handle any zero-extension of any operand comparison
4253     // with a constant or another cast from the same type.
4254     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4255       if (Instruction *R = foldICmpWithCastAndCast(I))
4256         return R;
4257   }
4258 
4259   if (Instruction *Res = foldICmpBinOp(I))
4260     return Res;
4261 
4262   {
4263     Value *A, *B;
4264     // Transform (A & ~B) == 0 --> (A & B) != 0
4265     // and       (A & ~B) != 0 --> (A & B) == 0
4266     // if A is a power of 2.
4267     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4268         match(Op1, m_Zero()) &&
4269         isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
4270       return new ICmpInst(I.getInversePredicate(),
4271                           Builder->CreateAnd(A, B),
4272                           Op1);
4273 
4274     // ~x < ~y --> y < x
4275     // ~x < cst --> ~cst < x
4276     if (match(Op0, m_Not(m_Value(A)))) {
4277       if (match(Op1, m_Not(m_Value(B))))
4278         return new ICmpInst(I.getPredicate(), B, A);
4279       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
4280         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4281     }
4282 
4283     Instruction *AddI = nullptr;
4284     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4285                                      m_Instruction(AddI))) &&
4286         isa<IntegerType>(A->getType())) {
4287       Value *Result;
4288       Constant *Overflow;
4289       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4290                                 Overflow)) {
4291         replaceInstUsesWith(*AddI, Result);
4292         return replaceInstUsesWith(I, Overflow);
4293       }
4294     }
4295 
4296     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4297     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4298       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4299         return R;
4300     }
4301     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4302       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
4303         return R;
4304     }
4305   }
4306 
4307   if (Instruction *Res = foldICmpEquality(I))
4308     return Res;
4309 
4310   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4311   // an i1 which indicates whether or not we successfully did the swap.
4312   //
4313   // Replace comparisons between the old value and the expected value with the
4314   // indicator that 'cmpxchg' returns.
4315   //
4316   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4317   // spuriously fail.  In those cases, the old value may equal the expected
4318   // value but it is possible for the swap to not occur.
4319   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4320     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4321       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4322         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4323             !ACXI->isWeak())
4324           return ExtractValueInst::Create(ACXI, 1);
4325 
4326   {
4327     Value *X; ConstantInt *Cst;
4328     // icmp X+Cst, X
4329     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4330       return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
4331 
4332     // icmp X, X+Cst
4333     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4334       return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
4335   }
4336   return Changed ? &I : nullptr;
4337 }
4338 
4339 /// Fold fcmp ([us]itofp x, cst) if possible.
4340 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
4341                                                 Constant *RHSC) {
4342   if (!isa<ConstantFP>(RHSC)) return nullptr;
4343   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4344 
4345   // Get the width of the mantissa.  We don't want to hack on conversions that
4346   // might lose information from the integer, e.g. "i64 -> float"
4347   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4348   if (MantissaWidth == -1) return nullptr;  // Unknown.
4349 
4350   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4351 
4352   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4353 
4354   if (I.isEquality()) {
4355     FCmpInst::Predicate P = I.getPredicate();
4356     bool IsExact = false;
4357     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4358     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4359 
4360     // If the floating point constant isn't an integer value, we know if we will
4361     // ever compare equal / not equal to it.
4362     if (!IsExact) {
4363       // TODO: Can never be -0.0 and other non-representable values
4364       APFloat RHSRoundInt(RHS);
4365       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4366       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4367         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4368           return replaceInstUsesWith(I, Builder->getFalse());
4369 
4370         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4371         return replaceInstUsesWith(I, Builder->getTrue());
4372       }
4373     }
4374 
4375     // TODO: If the constant is exactly representable, is it always OK to do
4376     // equality compares as integer?
4377   }
4378 
4379   // Check to see that the input is converted from an integer type that is small
4380   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4381   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4382   unsigned InputSize = IntTy->getScalarSizeInBits();
4383 
4384   // Following test does NOT adjust InputSize downwards for signed inputs,
4385   // because the most negative value still requires all the mantissa bits
4386   // to distinguish it from one less than that value.
4387   if ((int)InputSize > MantissaWidth) {
4388     // Conversion would lose accuracy. Check if loss can impact comparison.
4389     int Exp = ilogb(RHS);
4390     if (Exp == APFloat::IEK_Inf) {
4391       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4392       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4393         // Conversion could create infinity.
4394         return nullptr;
4395     } else {
4396       // Note that if RHS is zero or NaN, then Exp is negative
4397       // and first condition is trivially false.
4398       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4399         // Conversion could affect comparison.
4400         return nullptr;
4401     }
4402   }
4403 
4404   // Otherwise, we can potentially simplify the comparison.  We know that it
4405   // will always come through as an integer value and we know the constant is
4406   // not a NAN (it would have been previously simplified).
4407   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4408 
4409   ICmpInst::Predicate Pred;
4410   switch (I.getPredicate()) {
4411   default: llvm_unreachable("Unexpected predicate!");
4412   case FCmpInst::FCMP_UEQ:
4413   case FCmpInst::FCMP_OEQ:
4414     Pred = ICmpInst::ICMP_EQ;
4415     break;
4416   case FCmpInst::FCMP_UGT:
4417   case FCmpInst::FCMP_OGT:
4418     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4419     break;
4420   case FCmpInst::FCMP_UGE:
4421   case FCmpInst::FCMP_OGE:
4422     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4423     break;
4424   case FCmpInst::FCMP_ULT:
4425   case FCmpInst::FCMP_OLT:
4426     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4427     break;
4428   case FCmpInst::FCMP_ULE:
4429   case FCmpInst::FCMP_OLE:
4430     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4431     break;
4432   case FCmpInst::FCMP_UNE:
4433   case FCmpInst::FCMP_ONE:
4434     Pred = ICmpInst::ICMP_NE;
4435     break;
4436   case FCmpInst::FCMP_ORD:
4437     return replaceInstUsesWith(I, Builder->getTrue());
4438   case FCmpInst::FCMP_UNO:
4439     return replaceInstUsesWith(I, Builder->getFalse());
4440   }
4441 
4442   // Now we know that the APFloat is a normal number, zero or inf.
4443 
4444   // See if the FP constant is too large for the integer.  For example,
4445   // comparing an i8 to 300.0.
4446   unsigned IntWidth = IntTy->getScalarSizeInBits();
4447 
4448   if (!LHSUnsigned) {
4449     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4450     // and large values.
4451     APFloat SMax(RHS.getSemantics());
4452     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4453                           APFloat::rmNearestTiesToEven);
4454     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4455       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4456           Pred == ICmpInst::ICMP_SLE)
4457         return replaceInstUsesWith(I, Builder->getTrue());
4458       return replaceInstUsesWith(I, Builder->getFalse());
4459     }
4460   } else {
4461     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4462     // +INF and large values.
4463     APFloat UMax(RHS.getSemantics());
4464     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4465                           APFloat::rmNearestTiesToEven);
4466     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4467       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4468           Pred == ICmpInst::ICMP_ULE)
4469         return replaceInstUsesWith(I, Builder->getTrue());
4470       return replaceInstUsesWith(I, Builder->getFalse());
4471     }
4472   }
4473 
4474   if (!LHSUnsigned) {
4475     // See if the RHS value is < SignedMin.
4476     APFloat SMin(RHS.getSemantics());
4477     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4478                           APFloat::rmNearestTiesToEven);
4479     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4480       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4481           Pred == ICmpInst::ICMP_SGE)
4482         return replaceInstUsesWith(I, Builder->getTrue());
4483       return replaceInstUsesWith(I, Builder->getFalse());
4484     }
4485   } else {
4486     // See if the RHS value is < UnsignedMin.
4487     APFloat SMin(RHS.getSemantics());
4488     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4489                           APFloat::rmNearestTiesToEven);
4490     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4491       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4492           Pred == ICmpInst::ICMP_UGE)
4493         return replaceInstUsesWith(I, Builder->getTrue());
4494       return replaceInstUsesWith(I, Builder->getFalse());
4495     }
4496   }
4497 
4498   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4499   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4500   // casting the FP value to the integer value and back, checking for equality.
4501   // Don't do this for zero, because -0.0 is not fractional.
4502   Constant *RHSInt = LHSUnsigned
4503     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4504     : ConstantExpr::getFPToSI(RHSC, IntTy);
4505   if (!RHS.isZero()) {
4506     bool Equal = LHSUnsigned
4507       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4508       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4509     if (!Equal) {
4510       // If we had a comparison against a fractional value, we have to adjust
4511       // the compare predicate and sometimes the value.  RHSC is rounded towards
4512       // zero at this point.
4513       switch (Pred) {
4514       default: llvm_unreachable("Unexpected integer comparison!");
4515       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4516         return replaceInstUsesWith(I, Builder->getTrue());
4517       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4518         return replaceInstUsesWith(I, Builder->getFalse());
4519       case ICmpInst::ICMP_ULE:
4520         // (float)int <= 4.4   --> int <= 4
4521         // (float)int <= -4.4  --> false
4522         if (RHS.isNegative())
4523           return replaceInstUsesWith(I, Builder->getFalse());
4524         break;
4525       case ICmpInst::ICMP_SLE:
4526         // (float)int <= 4.4   --> int <= 4
4527         // (float)int <= -4.4  --> int < -4
4528         if (RHS.isNegative())
4529           Pred = ICmpInst::ICMP_SLT;
4530         break;
4531       case ICmpInst::ICMP_ULT:
4532         // (float)int < -4.4   --> false
4533         // (float)int < 4.4    --> int <= 4
4534         if (RHS.isNegative())
4535           return replaceInstUsesWith(I, Builder->getFalse());
4536         Pred = ICmpInst::ICMP_ULE;
4537         break;
4538       case ICmpInst::ICMP_SLT:
4539         // (float)int < -4.4   --> int < -4
4540         // (float)int < 4.4    --> int <= 4
4541         if (!RHS.isNegative())
4542           Pred = ICmpInst::ICMP_SLE;
4543         break;
4544       case ICmpInst::ICMP_UGT:
4545         // (float)int > 4.4    --> int > 4
4546         // (float)int > -4.4   --> true
4547         if (RHS.isNegative())
4548           return replaceInstUsesWith(I, Builder->getTrue());
4549         break;
4550       case ICmpInst::ICMP_SGT:
4551         // (float)int > 4.4    --> int > 4
4552         // (float)int > -4.4   --> int >= -4
4553         if (RHS.isNegative())
4554           Pred = ICmpInst::ICMP_SGE;
4555         break;
4556       case ICmpInst::ICMP_UGE:
4557         // (float)int >= -4.4   --> true
4558         // (float)int >= 4.4    --> int > 4
4559         if (RHS.isNegative())
4560           return replaceInstUsesWith(I, Builder->getTrue());
4561         Pred = ICmpInst::ICMP_UGT;
4562         break;
4563       case ICmpInst::ICMP_SGE:
4564         // (float)int >= -4.4   --> int >= -4
4565         // (float)int >= 4.4    --> int > 4
4566         if (!RHS.isNegative())
4567           Pred = ICmpInst::ICMP_SGT;
4568         break;
4569       }
4570     }
4571   }
4572 
4573   // Lower this FP comparison into an appropriate integer version of the
4574   // comparison.
4575   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4576 }
4577 
4578 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4579   bool Changed = false;
4580 
4581   /// Orders the operands of the compare so that they are listed from most
4582   /// complex to least complex.  This puts constants before unary operators,
4583   /// before binary operators.
4584   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4585     I.swapOperands();
4586     Changed = true;
4587   }
4588 
4589   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4590 
4591   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4592                                   I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
4593     return replaceInstUsesWith(I, V);
4594 
4595   // Simplify 'fcmp pred X, X'
4596   if (Op0 == Op1) {
4597     switch (I.getPredicate()) {
4598     default: llvm_unreachable("Unknown predicate!");
4599     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4600     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4601     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4602     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4603       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4604       I.setPredicate(FCmpInst::FCMP_UNO);
4605       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4606       return &I;
4607 
4608     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4609     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4610     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4611     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4612       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4613       I.setPredicate(FCmpInst::FCMP_ORD);
4614       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4615       return &I;
4616     }
4617   }
4618 
4619   // Test if the FCmpInst instruction is used exclusively by a select as
4620   // part of a minimum or maximum operation. If so, refrain from doing
4621   // any other folding. This helps out other analyses which understand
4622   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4623   // and CodeGen. And in this case, at least one of the comparison
4624   // operands has at least one user besides the compare (the select),
4625   // which would often largely negate the benefit of folding anyway.
4626   if (I.hasOneUse())
4627     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4628       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4629           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4630         return nullptr;
4631 
4632   // Handle fcmp with constant RHS
4633   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4634     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4635       switch (LHSI->getOpcode()) {
4636       case Instruction::FPExt: {
4637         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4638         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4639         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4640         if (!RHSF)
4641           break;
4642 
4643         const fltSemantics *Sem;
4644         // FIXME: This shouldn't be here.
4645         if (LHSExt->getSrcTy()->isHalfTy())
4646           Sem = &APFloat::IEEEhalf;
4647         else if (LHSExt->getSrcTy()->isFloatTy())
4648           Sem = &APFloat::IEEEsingle;
4649         else if (LHSExt->getSrcTy()->isDoubleTy())
4650           Sem = &APFloat::IEEEdouble;
4651         else if (LHSExt->getSrcTy()->isFP128Ty())
4652           Sem = &APFloat::IEEEquad;
4653         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4654           Sem = &APFloat::x87DoubleExtended;
4655         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4656           Sem = &APFloat::PPCDoubleDouble;
4657         else
4658           break;
4659 
4660         bool Lossy;
4661         APFloat F = RHSF->getValueAPF();
4662         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4663 
4664         // Avoid lossy conversions and denormals. Zero is a special case
4665         // that's OK to convert.
4666         APFloat Fabs = F;
4667         Fabs.clearSign();
4668         if (!Lossy &&
4669             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4670                  APFloat::cmpLessThan) || Fabs.isZero()))
4671 
4672           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4673                               ConstantFP::get(RHSC->getContext(), F));
4674         break;
4675       }
4676       case Instruction::PHI:
4677         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4678         // block.  If in the same block, we're encouraging jump threading.  If
4679         // not, we are just pessimizing the code by making an i1 phi.
4680         if (LHSI->getParent() == I.getParent())
4681           if (Instruction *NV = FoldOpIntoPhi(I))
4682             return NV;
4683         break;
4684       case Instruction::SIToFP:
4685       case Instruction::UIToFP:
4686         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
4687           return NV;
4688         break;
4689       case Instruction::FSub: {
4690         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4691         Value *Op;
4692         if (match(LHSI, m_FNeg(m_Value(Op))))
4693           return new FCmpInst(I.getSwappedPredicate(), Op,
4694                               ConstantExpr::getFNeg(RHSC));
4695         break;
4696       }
4697       case Instruction::Load:
4698         if (GetElementPtrInst *GEP =
4699             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4700           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4701             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4702                 !cast<LoadInst>(LHSI)->isVolatile())
4703               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
4704                 return Res;
4705         }
4706         break;
4707       case Instruction::Call: {
4708         if (!RHSC->isNullValue())
4709           break;
4710 
4711         CallInst *CI = cast<CallInst>(LHSI);
4712         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
4713         if (IID != Intrinsic::fabs)
4714           break;
4715 
4716         // Various optimization for fabs compared with zero.
4717         switch (I.getPredicate()) {
4718         default:
4719           break;
4720         // fabs(x) < 0 --> false
4721         case FCmpInst::FCMP_OLT:
4722           llvm_unreachable("handled by SimplifyFCmpInst");
4723         // fabs(x) > 0 --> x != 0
4724         case FCmpInst::FCMP_OGT:
4725           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4726         // fabs(x) <= 0 --> x == 0
4727         case FCmpInst::FCMP_OLE:
4728           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4729         // fabs(x) >= 0 --> !isnan(x)
4730         case FCmpInst::FCMP_OGE:
4731           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4732         // fabs(x) == 0 --> x == 0
4733         // fabs(x) != 0 --> x != 0
4734         case FCmpInst::FCMP_OEQ:
4735         case FCmpInst::FCMP_UEQ:
4736         case FCmpInst::FCMP_ONE:
4737         case FCmpInst::FCMP_UNE:
4738           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4739         }
4740       }
4741       }
4742   }
4743 
4744   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4745   Value *X, *Y;
4746   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4747     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4748 
4749   // fcmp (fpext x), (fpext y) -> fcmp x, y
4750   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4751     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4752       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4753         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4754                             RHSExt->getOperand(0));
4755 
4756   return Changed ? &I : nullptr;
4757 }
4758