1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 static ConstantInt *extractElement(Constant *V, Constant *Idx) { 40 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 41 } 42 43 static bool hasAddOverflow(ConstantInt *Result, 44 ConstantInt *In1, ConstantInt *In2, 45 bool IsSigned) { 46 if (!IsSigned) 47 return Result->getValue().ult(In1->getValue()); 48 49 if (In2->isNegative()) 50 return Result->getValue().sgt(In1->getValue()); 51 return Result->getValue().slt(In1->getValue()); 52 } 53 54 /// Compute Result = In1+In2, returning true if the result overflowed for this 55 /// type. 56 static bool addWithOverflow(Constant *&Result, Constant *In1, 57 Constant *In2, bool IsSigned = false) { 58 Result = ConstantExpr::getAdd(In1, In2); 59 60 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 63 if (hasAddOverflow(extractElement(Result, Idx), 64 extractElement(In1, Idx), 65 extractElement(In2, Idx), 66 IsSigned)) 67 return true; 68 } 69 return false; 70 } 71 72 return hasAddOverflow(cast<ConstantInt>(Result), 73 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 74 IsSigned); 75 } 76 77 static bool hasSubOverflow(ConstantInt *Result, 78 ConstantInt *In1, ConstantInt *In2, 79 bool IsSigned) { 80 if (!IsSigned) 81 return Result->getValue().ugt(In1->getValue()); 82 83 if (In2->isNegative()) 84 return Result->getValue().slt(In1->getValue()); 85 86 return Result->getValue().sgt(In1->getValue()); 87 } 88 89 /// Compute Result = In1-In2, returning true if the result overflowed for this 90 /// type. 91 static bool subWithOverflow(Constant *&Result, Constant *In1, 92 Constant *In2, bool IsSigned = false) { 93 Result = ConstantExpr::getSub(In1, In2); 94 95 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 98 if (hasSubOverflow(extractElement(Result, Idx), 99 extractElement(In1, Idx), 100 extractElement(In2, Idx), 101 IsSigned)) 102 return true; 103 } 104 return false; 105 } 106 107 return hasSubOverflow(cast<ConstantInt>(Result), 108 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 109 IsSigned); 110 } 111 112 /// Given an icmp instruction, return true if any use of this comparison is a 113 /// branch on sign bit comparison. 114 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) { 115 for (auto *U : I.users()) 116 if (isa<BranchInst>(U)) 117 return isSignBit; 118 return false; 119 } 120 121 /// Given an exploded icmp instruction, return true if the comparison only 122 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 123 /// result of the comparison is true when the input value is signed. 124 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 125 bool &TrueIfSigned) { 126 switch (Pred) { 127 case ICmpInst::ICMP_SLT: // True if LHS s< 0 128 TrueIfSigned = true; 129 return RHS == 0; 130 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 131 TrueIfSigned = true; 132 return RHS.isAllOnesValue(); 133 case ICmpInst::ICMP_SGT: // True if LHS s> -1 134 TrueIfSigned = false; 135 return RHS.isAllOnesValue(); 136 case ICmpInst::ICMP_UGT: 137 // True if LHS u> RHS and RHS == high-bit-mask - 1 138 TrueIfSigned = true; 139 return RHS.isMaxSignedValue(); 140 case ICmpInst::ICMP_UGE: 141 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 142 TrueIfSigned = true; 143 return RHS.isSignBit(); 144 default: 145 return false; 146 } 147 } 148 149 /// Returns true if the exploded icmp can be expressed as a signed comparison 150 /// to zero and updates the predicate accordingly. 151 /// The signedness of the comparison is preserved. 152 /// TODO: Refactor with decomposeBitTestICmp()? 153 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 154 if (!ICmpInst::isSigned(Pred)) 155 return false; 156 157 if (C == 0) 158 return ICmpInst::isRelational(Pred); 159 160 if (C == 1) { 161 if (Pred == ICmpInst::ICMP_SLT) { 162 Pred = ICmpInst::ICMP_SLE; 163 return true; 164 } 165 } else if (C.isAllOnesValue()) { 166 if (Pred == ICmpInst::ICMP_SGT) { 167 Pred = ICmpInst::ICMP_SGE; 168 return true; 169 } 170 } 171 172 return false; 173 } 174 175 /// Given a signed integer type and a set of known zero and one bits, compute 176 /// the maximum and minimum values that could have the specified known zero and 177 /// known one bits, returning them in Min/Max. 178 static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 179 const APInt &KnownOne, 180 APInt &Min, APInt &Max) { 181 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 182 KnownZero.getBitWidth() == Min.getBitWidth() && 183 KnownZero.getBitWidth() == Max.getBitWidth() && 184 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 185 APInt UnknownBits = ~(KnownZero|KnownOne); 186 187 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 188 // bit if it is unknown. 189 Min = KnownOne; 190 Max = KnownOne|UnknownBits; 191 192 if (UnknownBits.isNegative()) { // Sign bit is unknown 193 Min.setBit(Min.getBitWidth()-1); 194 Max.clearBit(Max.getBitWidth()-1); 195 } 196 } 197 198 /// Given an unsigned integer type and a set of known zero and one bits, compute 199 /// the maximum and minimum values that could have the specified known zero and 200 /// known one bits, returning them in Min/Max. 201 static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 202 const APInt &KnownOne, 203 APInt &Min, APInt &Max) { 204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 205 KnownZero.getBitWidth() == Min.getBitWidth() && 206 KnownZero.getBitWidth() == Max.getBitWidth() && 207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 208 APInt UnknownBits = ~(KnownZero|KnownOne); 209 210 // The minimum value is when the unknown bits are all zeros. 211 Min = KnownOne; 212 // The maximum value is when the unknown bits are all ones. 213 Max = KnownOne|UnknownBits; 214 } 215 216 /// This is called when we see this pattern: 217 /// cmp pred (load (gep GV, ...)), cmpcst 218 /// where GV is a global variable with a constant initializer. Try to simplify 219 /// this into some simple computation that does not need the load. For example 220 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 221 /// 222 /// If AndCst is non-null, then the loaded value is masked with that constant 223 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 224 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 225 GlobalVariable *GV, 226 CmpInst &ICI, 227 ConstantInt *AndCst) { 228 Constant *Init = GV->getInitializer(); 229 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 230 return nullptr; 231 232 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 233 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 234 235 // There are many forms of this optimization we can handle, for now, just do 236 // the simple index into a single-dimensional array. 237 // 238 // Require: GEP GV, 0, i {{, constant indices}} 239 if (GEP->getNumOperands() < 3 || 240 !isa<ConstantInt>(GEP->getOperand(1)) || 241 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 242 isa<Constant>(GEP->getOperand(2))) 243 return nullptr; 244 245 // Check that indices after the variable are constants and in-range for the 246 // type they index. Collect the indices. This is typically for arrays of 247 // structs. 248 SmallVector<unsigned, 4> LaterIndices; 249 250 Type *EltTy = Init->getType()->getArrayElementType(); 251 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 252 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 253 if (!Idx) return nullptr; // Variable index. 254 255 uint64_t IdxVal = Idx->getZExtValue(); 256 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 257 258 if (StructType *STy = dyn_cast<StructType>(EltTy)) 259 EltTy = STy->getElementType(IdxVal); 260 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 261 if (IdxVal >= ATy->getNumElements()) return nullptr; 262 EltTy = ATy->getElementType(); 263 } else { 264 return nullptr; // Unknown type. 265 } 266 267 LaterIndices.push_back(IdxVal); 268 } 269 270 enum { Overdefined = -3, Undefined = -2 }; 271 272 // Variables for our state machines. 273 274 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 275 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 276 // and 87 is the second (and last) index. FirstTrueElement is -2 when 277 // undefined, otherwise set to the first true element. SecondTrueElement is 278 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 279 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 280 281 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 282 // form "i != 47 & i != 87". Same state transitions as for true elements. 283 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 284 285 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 286 /// define a state machine that triggers for ranges of values that the index 287 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 288 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 289 /// index in the range (inclusive). We use -2 for undefined here because we 290 /// use relative comparisons and don't want 0-1 to match -1. 291 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 292 293 // MagicBitvector - This is a magic bitvector where we set a bit if the 294 // comparison is true for element 'i'. If there are 64 elements or less in 295 // the array, this will fully represent all the comparison results. 296 uint64_t MagicBitvector = 0; 297 298 // Scan the array and see if one of our patterns matches. 299 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 300 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 301 Constant *Elt = Init->getAggregateElement(i); 302 if (!Elt) return nullptr; 303 304 // If this is indexing an array of structures, get the structure element. 305 if (!LaterIndices.empty()) 306 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 307 308 // If the element is masked, handle it. 309 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 310 311 // Find out if the comparison would be true or false for the i'th element. 312 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 313 CompareRHS, DL, &TLI); 314 // If the result is undef for this element, ignore it. 315 if (isa<UndefValue>(C)) { 316 // Extend range state machines to cover this element in case there is an 317 // undef in the middle of the range. 318 if (TrueRangeEnd == (int)i-1) 319 TrueRangeEnd = i; 320 if (FalseRangeEnd == (int)i-1) 321 FalseRangeEnd = i; 322 continue; 323 } 324 325 // If we can't compute the result for any of the elements, we have to give 326 // up evaluating the entire conditional. 327 if (!isa<ConstantInt>(C)) return nullptr; 328 329 // Otherwise, we know if the comparison is true or false for this element, 330 // update our state machines. 331 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 332 333 // State machine for single/double/range index comparison. 334 if (IsTrueForElt) { 335 // Update the TrueElement state machine. 336 if (FirstTrueElement == Undefined) 337 FirstTrueElement = TrueRangeEnd = i; // First true element. 338 else { 339 // Update double-compare state machine. 340 if (SecondTrueElement == Undefined) 341 SecondTrueElement = i; 342 else 343 SecondTrueElement = Overdefined; 344 345 // Update range state machine. 346 if (TrueRangeEnd == (int)i-1) 347 TrueRangeEnd = i; 348 else 349 TrueRangeEnd = Overdefined; 350 } 351 } else { 352 // Update the FalseElement state machine. 353 if (FirstFalseElement == Undefined) 354 FirstFalseElement = FalseRangeEnd = i; // First false element. 355 else { 356 // Update double-compare state machine. 357 if (SecondFalseElement == Undefined) 358 SecondFalseElement = i; 359 else 360 SecondFalseElement = Overdefined; 361 362 // Update range state machine. 363 if (FalseRangeEnd == (int)i-1) 364 FalseRangeEnd = i; 365 else 366 FalseRangeEnd = Overdefined; 367 } 368 } 369 370 // If this element is in range, update our magic bitvector. 371 if (i < 64 && IsTrueForElt) 372 MagicBitvector |= 1ULL << i; 373 374 // If all of our states become overdefined, bail out early. Since the 375 // predicate is expensive, only check it every 8 elements. This is only 376 // really useful for really huge arrays. 377 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 378 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 379 FalseRangeEnd == Overdefined) 380 return nullptr; 381 } 382 383 // Now that we've scanned the entire array, emit our new comparison(s). We 384 // order the state machines in complexity of the generated code. 385 Value *Idx = GEP->getOperand(2); 386 387 // If the index is larger than the pointer size of the target, truncate the 388 // index down like the GEP would do implicitly. We don't have to do this for 389 // an inbounds GEP because the index can't be out of range. 390 if (!GEP->isInBounds()) { 391 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 392 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 393 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 394 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 395 } 396 397 // If the comparison is only true for one or two elements, emit direct 398 // comparisons. 399 if (SecondTrueElement != Overdefined) { 400 // None true -> false. 401 if (FirstTrueElement == Undefined) 402 return replaceInstUsesWith(ICI, Builder->getFalse()); 403 404 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 405 406 // True for one element -> 'i == 47'. 407 if (SecondTrueElement == Undefined) 408 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 409 410 // True for two elements -> 'i == 47 | i == 72'. 411 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 412 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 413 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 414 return BinaryOperator::CreateOr(C1, C2); 415 } 416 417 // If the comparison is only false for one or two elements, emit direct 418 // comparisons. 419 if (SecondFalseElement != Overdefined) { 420 // None false -> true. 421 if (FirstFalseElement == Undefined) 422 return replaceInstUsesWith(ICI, Builder->getTrue()); 423 424 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 425 426 // False for one element -> 'i != 47'. 427 if (SecondFalseElement == Undefined) 428 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 429 430 // False for two elements -> 'i != 47 & i != 72'. 431 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 432 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 433 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 434 return BinaryOperator::CreateAnd(C1, C2); 435 } 436 437 // If the comparison can be replaced with a range comparison for the elements 438 // where it is true, emit the range check. 439 if (TrueRangeEnd != Overdefined) { 440 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 441 442 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 443 if (FirstTrueElement) { 444 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 445 Idx = Builder->CreateAdd(Idx, Offs); 446 } 447 448 Value *End = ConstantInt::get(Idx->getType(), 449 TrueRangeEnd-FirstTrueElement+1); 450 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 451 } 452 453 // False range check. 454 if (FalseRangeEnd != Overdefined) { 455 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 456 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 457 if (FirstFalseElement) { 458 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 459 Idx = Builder->CreateAdd(Idx, Offs); 460 } 461 462 Value *End = ConstantInt::get(Idx->getType(), 463 FalseRangeEnd-FirstFalseElement); 464 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 465 } 466 467 // If a magic bitvector captures the entire comparison state 468 // of this load, replace it with computation that does: 469 // ((magic_cst >> i) & 1) != 0 470 { 471 Type *Ty = nullptr; 472 473 // Look for an appropriate type: 474 // - The type of Idx if the magic fits 475 // - The smallest fitting legal type if we have a DataLayout 476 // - Default to i32 477 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 478 Ty = Idx->getType(); 479 else 480 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 481 482 if (Ty) { 483 Value *V = Builder->CreateIntCast(Idx, Ty, false); 484 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 485 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 486 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 487 } 488 } 489 490 return nullptr; 491 } 492 493 /// Return a value that can be used to compare the *offset* implied by a GEP to 494 /// zero. For example, if we have &A[i], we want to return 'i' for 495 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 496 /// are involved. The above expression would also be legal to codegen as 497 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 498 /// This latter form is less amenable to optimization though, and we are allowed 499 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 500 /// 501 /// If we can't emit an optimized form for this expression, this returns null. 502 /// 503 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 504 const DataLayout &DL) { 505 gep_type_iterator GTI = gep_type_begin(GEP); 506 507 // Check to see if this gep only has a single variable index. If so, and if 508 // any constant indices are a multiple of its scale, then we can compute this 509 // in terms of the scale of the variable index. For example, if the GEP 510 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 511 // because the expression will cross zero at the same point. 512 unsigned i, e = GEP->getNumOperands(); 513 int64_t Offset = 0; 514 for (i = 1; i != e; ++i, ++GTI) { 515 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 516 // Compute the aggregate offset of constant indices. 517 if (CI->isZero()) continue; 518 519 // Handle a struct index, which adds its field offset to the pointer. 520 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 521 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 522 } else { 523 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 524 Offset += Size*CI->getSExtValue(); 525 } 526 } else { 527 // Found our variable index. 528 break; 529 } 530 } 531 532 // If there are no variable indices, we must have a constant offset, just 533 // evaluate it the general way. 534 if (i == e) return nullptr; 535 536 Value *VariableIdx = GEP->getOperand(i); 537 // Determine the scale factor of the variable element. For example, this is 538 // 4 if the variable index is into an array of i32. 539 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 540 541 // Verify that there are no other variable indices. If so, emit the hard way. 542 for (++i, ++GTI; i != e; ++i, ++GTI) { 543 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 544 if (!CI) return nullptr; 545 546 // Compute the aggregate offset of constant indices. 547 if (CI->isZero()) continue; 548 549 // Handle a struct index, which adds its field offset to the pointer. 550 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 551 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 552 } else { 553 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 554 Offset += Size*CI->getSExtValue(); 555 } 556 } 557 558 // Okay, we know we have a single variable index, which must be a 559 // pointer/array/vector index. If there is no offset, life is simple, return 560 // the index. 561 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 562 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 563 if (Offset == 0) { 564 // Cast to intptrty in case a truncation occurs. If an extension is needed, 565 // we don't need to bother extending: the extension won't affect where the 566 // computation crosses zero. 567 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 568 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 569 } 570 return VariableIdx; 571 } 572 573 // Otherwise, there is an index. The computation we will do will be modulo 574 // the pointer size, so get it. 575 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 576 577 Offset &= PtrSizeMask; 578 VariableScale &= PtrSizeMask; 579 580 // To do this transformation, any constant index must be a multiple of the 581 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 582 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 583 // multiple of the variable scale. 584 int64_t NewOffs = Offset / (int64_t)VariableScale; 585 if (Offset != NewOffs*(int64_t)VariableScale) 586 return nullptr; 587 588 // Okay, we can do this evaluation. Start by converting the index to intptr. 589 if (VariableIdx->getType() != IntPtrTy) 590 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 591 true /*Signed*/); 592 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 593 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 594 } 595 596 /// Returns true if we can rewrite Start as a GEP with pointer Base 597 /// and some integer offset. The nodes that need to be re-written 598 /// for this transformation will be added to Explored. 599 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 600 const DataLayout &DL, 601 SetVector<Value *> &Explored) { 602 SmallVector<Value *, 16> WorkList(1, Start); 603 Explored.insert(Base); 604 605 // The following traversal gives us an order which can be used 606 // when doing the final transformation. Since in the final 607 // transformation we create the PHI replacement instructions first, 608 // we don't have to get them in any particular order. 609 // 610 // However, for other instructions we will have to traverse the 611 // operands of an instruction first, which means that we have to 612 // do a post-order traversal. 613 while (!WorkList.empty()) { 614 SetVector<PHINode *> PHIs; 615 616 while (!WorkList.empty()) { 617 if (Explored.size() >= 100) 618 return false; 619 620 Value *V = WorkList.back(); 621 622 if (Explored.count(V) != 0) { 623 WorkList.pop_back(); 624 continue; 625 } 626 627 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 628 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 629 // We've found some value that we can't explore which is different from 630 // the base. Therefore we can't do this transformation. 631 return false; 632 633 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 634 auto *CI = dyn_cast<CastInst>(V); 635 if (!CI->isNoopCast(DL)) 636 return false; 637 638 if (Explored.count(CI->getOperand(0)) == 0) 639 WorkList.push_back(CI->getOperand(0)); 640 } 641 642 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 643 // We're limiting the GEP to having one index. This will preserve 644 // the original pointer type. We could handle more cases in the 645 // future. 646 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 647 GEP->getType() != Start->getType()) 648 return false; 649 650 if (Explored.count(GEP->getOperand(0)) == 0) 651 WorkList.push_back(GEP->getOperand(0)); 652 } 653 654 if (WorkList.back() == V) { 655 WorkList.pop_back(); 656 // We've finished visiting this node, mark it as such. 657 Explored.insert(V); 658 } 659 660 if (auto *PN = dyn_cast<PHINode>(V)) { 661 // We cannot transform PHIs on unsplittable basic blocks. 662 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 663 return false; 664 Explored.insert(PN); 665 PHIs.insert(PN); 666 } 667 } 668 669 // Explore the PHI nodes further. 670 for (auto *PN : PHIs) 671 for (Value *Op : PN->incoming_values()) 672 if (Explored.count(Op) == 0) 673 WorkList.push_back(Op); 674 } 675 676 // Make sure that we can do this. Since we can't insert GEPs in a basic 677 // block before a PHI node, we can't easily do this transformation if 678 // we have PHI node users of transformed instructions. 679 for (Value *Val : Explored) { 680 for (Value *Use : Val->uses()) { 681 682 auto *PHI = dyn_cast<PHINode>(Use); 683 auto *Inst = dyn_cast<Instruction>(Val); 684 685 if (Inst == Base || Inst == PHI || !Inst || !PHI || 686 Explored.count(PHI) == 0) 687 continue; 688 689 if (PHI->getParent() == Inst->getParent()) 690 return false; 691 } 692 } 693 return true; 694 } 695 696 // Sets the appropriate insert point on Builder where we can add 697 // a replacement Instruction for V (if that is possible). 698 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 699 bool Before = true) { 700 if (auto *PHI = dyn_cast<PHINode>(V)) { 701 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 702 return; 703 } 704 if (auto *I = dyn_cast<Instruction>(V)) { 705 if (!Before) 706 I = &*std::next(I->getIterator()); 707 Builder.SetInsertPoint(I); 708 return; 709 } 710 if (auto *A = dyn_cast<Argument>(V)) { 711 // Set the insertion point in the entry block. 712 BasicBlock &Entry = A->getParent()->getEntryBlock(); 713 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 714 return; 715 } 716 // Otherwise, this is a constant and we don't need to set a new 717 // insertion point. 718 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 719 } 720 721 /// Returns a re-written value of Start as an indexed GEP using Base as a 722 /// pointer. 723 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 724 const DataLayout &DL, 725 SetVector<Value *> &Explored) { 726 // Perform all the substitutions. This is a bit tricky because we can 727 // have cycles in our use-def chains. 728 // 1. Create the PHI nodes without any incoming values. 729 // 2. Create all the other values. 730 // 3. Add the edges for the PHI nodes. 731 // 4. Emit GEPs to get the original pointers. 732 // 5. Remove the original instructions. 733 Type *IndexType = IntegerType::get( 734 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 735 736 DenseMap<Value *, Value *> NewInsts; 737 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 738 739 // Create the new PHI nodes, without adding any incoming values. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // Create empty phi nodes. This avoids cyclic dependencies when creating 744 // the remaining instructions. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) 746 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 747 PHI->getName() + ".idx", PHI); 748 } 749 IRBuilder<> Builder(Base->getContext()); 750 751 // Create all the other instructions. 752 for (Value *Val : Explored) { 753 754 if (NewInsts.find(Val) != NewInsts.end()) 755 continue; 756 757 if (auto *CI = dyn_cast<CastInst>(Val)) { 758 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 759 continue; 760 } 761 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 762 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 763 : GEP->getOperand(1); 764 setInsertionPoint(Builder, GEP); 765 // Indices might need to be sign extended. GEPs will magically do 766 // this, but we need to do it ourselves here. 767 if (Index->getType()->getScalarSizeInBits() != 768 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 769 Index = Builder.CreateSExtOrTrunc( 770 Index, NewInsts[GEP->getOperand(0)]->getType(), 771 GEP->getOperand(0)->getName() + ".sext"); 772 } 773 774 auto *Op = NewInsts[GEP->getOperand(0)]; 775 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 776 NewInsts[GEP] = Index; 777 else 778 NewInsts[GEP] = Builder.CreateNSWAdd( 779 Op, Index, GEP->getOperand(0)->getName() + ".add"); 780 continue; 781 } 782 if (isa<PHINode>(Val)) 783 continue; 784 785 llvm_unreachable("Unexpected instruction type"); 786 } 787 788 // Add the incoming values to the PHI nodes. 789 for (Value *Val : Explored) { 790 if (Val == Base) 791 continue; 792 // All the instructions have been created, we can now add edges to the 793 // phi nodes. 794 if (auto *PHI = dyn_cast<PHINode>(Val)) { 795 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 796 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 797 Value *NewIncoming = PHI->getIncomingValue(I); 798 799 if (NewInsts.find(NewIncoming) != NewInsts.end()) 800 NewIncoming = NewInsts[NewIncoming]; 801 802 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 803 } 804 } 805 } 806 807 for (Value *Val : Explored) { 808 if (Val == Base) 809 continue; 810 811 // Depending on the type, for external users we have to emit 812 // a GEP or a GEP + ptrtoint. 813 setInsertionPoint(Builder, Val, false); 814 815 // If required, create an inttoptr instruction for Base. 816 Value *NewBase = Base; 817 if (!Base->getType()->isPointerTy()) 818 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 819 Start->getName() + "to.ptr"); 820 821 Value *GEP = Builder.CreateInBoundsGEP( 822 Start->getType()->getPointerElementType(), NewBase, 823 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 824 825 if (!Val->getType()->isPointerTy()) { 826 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 827 Val->getName() + ".conv"); 828 GEP = Cast; 829 } 830 Val->replaceAllUsesWith(GEP); 831 } 832 833 return NewInsts[Start]; 834 } 835 836 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 837 /// the input Value as a constant indexed GEP. Returns a pair containing 838 /// the GEPs Pointer and Index. 839 static std::pair<Value *, Value *> 840 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 841 Type *IndexType = IntegerType::get(V->getContext(), 842 DL.getPointerTypeSizeInBits(V->getType())); 843 844 Constant *Index = ConstantInt::getNullValue(IndexType); 845 while (true) { 846 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 847 // We accept only inbouds GEPs here to exclude the possibility of 848 // overflow. 849 if (!GEP->isInBounds()) 850 break; 851 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 852 GEP->getType() == V->getType()) { 853 V = GEP->getOperand(0); 854 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 855 Index = ConstantExpr::getAdd( 856 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 857 continue; 858 } 859 break; 860 } 861 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 862 if (!CI->isNoopCast(DL)) 863 break; 864 V = CI->getOperand(0); 865 continue; 866 } 867 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 868 if (!CI->isNoopCast(DL)) 869 break; 870 V = CI->getOperand(0); 871 continue; 872 } 873 break; 874 } 875 return {V, Index}; 876 } 877 878 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 879 /// We can look through PHIs, GEPs and casts in order to determine a common base 880 /// between GEPLHS and RHS. 881 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 882 ICmpInst::Predicate Cond, 883 const DataLayout &DL) { 884 if (!GEPLHS->hasAllConstantIndices()) 885 return nullptr; 886 887 Value *PtrBase, *Index; 888 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 889 890 // The set of nodes that will take part in this transformation. 891 SetVector<Value *> Nodes; 892 893 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 894 return nullptr; 895 896 // We know we can re-write this as 897 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 898 // Since we've only looked through inbouds GEPs we know that we 899 // can't have overflow on either side. We can therefore re-write 900 // this as: 901 // OFFSET1 cmp OFFSET2 902 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 903 904 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 905 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 906 // offset. Since Index is the offset of LHS to the base pointer, we will now 907 // compare the offsets instead of comparing the pointers. 908 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 909 } 910 911 /// Fold comparisons between a GEP instruction and something else. At this point 912 /// we know that the GEP is on the LHS of the comparison. 913 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 914 ICmpInst::Predicate Cond, 915 Instruction &I) { 916 // Don't transform signed compares of GEPs into index compares. Even if the 917 // GEP is inbounds, the final add of the base pointer can have signed overflow 918 // and would change the result of the icmp. 919 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 920 // the maximum signed value for the pointer type. 921 if (ICmpInst::isSigned(Cond)) 922 return nullptr; 923 924 // Look through bitcasts and addrspacecasts. We do not however want to remove 925 // 0 GEPs. 926 if (!isa<GetElementPtrInst>(RHS)) 927 RHS = RHS->stripPointerCasts(); 928 929 Value *PtrBase = GEPLHS->getOperand(0); 930 if (PtrBase == RHS && GEPLHS->isInBounds()) { 931 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 932 // This transformation (ignoring the base and scales) is valid because we 933 // know pointers can't overflow since the gep is inbounds. See if we can 934 // output an optimized form. 935 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 936 937 // If not, synthesize the offset the hard way. 938 if (!Offset) 939 Offset = EmitGEPOffset(GEPLHS); 940 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 941 Constant::getNullValue(Offset->getType())); 942 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 943 // If the base pointers are different, but the indices are the same, just 944 // compare the base pointer. 945 if (PtrBase != GEPRHS->getOperand(0)) { 946 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 947 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 948 GEPRHS->getOperand(0)->getType(); 949 if (IndicesTheSame) 950 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 951 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 952 IndicesTheSame = false; 953 break; 954 } 955 956 // If all indices are the same, just compare the base pointers. 957 if (IndicesTheSame) 958 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 959 960 // If we're comparing GEPs with two base pointers that only differ in type 961 // and both GEPs have only constant indices or just one use, then fold 962 // the compare with the adjusted indices. 963 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 964 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 965 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 966 PtrBase->stripPointerCasts() == 967 GEPRHS->getOperand(0)->stripPointerCasts()) { 968 Value *LOffset = EmitGEPOffset(GEPLHS); 969 Value *ROffset = EmitGEPOffset(GEPRHS); 970 971 // If we looked through an addrspacecast between different sized address 972 // spaces, the LHS and RHS pointers are different sized 973 // integers. Truncate to the smaller one. 974 Type *LHSIndexTy = LOffset->getType(); 975 Type *RHSIndexTy = ROffset->getType(); 976 if (LHSIndexTy != RHSIndexTy) { 977 if (LHSIndexTy->getPrimitiveSizeInBits() < 978 RHSIndexTy->getPrimitiveSizeInBits()) { 979 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 980 } else 981 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 982 } 983 984 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 985 LOffset, ROffset); 986 return replaceInstUsesWith(I, Cmp); 987 } 988 989 // Otherwise, the base pointers are different and the indices are 990 // different. Try convert this to an indexed compare by looking through 991 // PHIs/casts. 992 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 993 } 994 995 // If one of the GEPs has all zero indices, recurse. 996 if (GEPLHS->hasAllZeroIndices()) 997 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 998 ICmpInst::getSwappedPredicate(Cond), I); 999 1000 // If the other GEP has all zero indices, recurse. 1001 if (GEPRHS->hasAllZeroIndices()) 1002 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1003 1004 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1005 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1006 // If the GEPs only differ by one index, compare it. 1007 unsigned NumDifferences = 0; // Keep track of # differences. 1008 unsigned DiffOperand = 0; // The operand that differs. 1009 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1010 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1011 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 1012 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 1013 // Irreconcilable differences. 1014 NumDifferences = 2; 1015 break; 1016 } else { 1017 if (NumDifferences++) break; 1018 DiffOperand = i; 1019 } 1020 } 1021 1022 if (NumDifferences == 0) // SAME GEP? 1023 return replaceInstUsesWith(I, // No comparison is needed here. 1024 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 1025 1026 else if (NumDifferences == 1 && GEPsInBounds) { 1027 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1028 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1029 // Make sure we do a signed comparison here. 1030 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1031 } 1032 } 1033 1034 // Only lower this if the icmp is the only user of the GEP or if we expect 1035 // the result to fold to a constant! 1036 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1037 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1038 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1039 Value *L = EmitGEPOffset(GEPLHS); 1040 Value *R = EmitGEPOffset(GEPRHS); 1041 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1042 } 1043 } 1044 1045 // Try convert this to an indexed compare by looking through PHIs/casts as a 1046 // last resort. 1047 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1048 } 1049 1050 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1051 const AllocaInst *Alloca, 1052 const Value *Other) { 1053 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1054 1055 // It would be tempting to fold away comparisons between allocas and any 1056 // pointer not based on that alloca (e.g. an argument). However, even 1057 // though such pointers cannot alias, they can still compare equal. 1058 // 1059 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1060 // doesn't escape we can argue that it's impossible to guess its value, and we 1061 // can therefore act as if any such guesses are wrong. 1062 // 1063 // The code below checks that the alloca doesn't escape, and that it's only 1064 // used in a comparison once (the current instruction). The 1065 // single-comparison-use condition ensures that we're trivially folding all 1066 // comparisons against the alloca consistently, and avoids the risk of 1067 // erroneously folding a comparison of the pointer with itself. 1068 1069 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1070 1071 SmallVector<const Use *, 32> Worklist; 1072 for (const Use &U : Alloca->uses()) { 1073 if (Worklist.size() >= MaxIter) 1074 return nullptr; 1075 Worklist.push_back(&U); 1076 } 1077 1078 unsigned NumCmps = 0; 1079 while (!Worklist.empty()) { 1080 assert(Worklist.size() <= MaxIter); 1081 const Use *U = Worklist.pop_back_val(); 1082 const Value *V = U->getUser(); 1083 --MaxIter; 1084 1085 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1086 isa<SelectInst>(V)) { 1087 // Track the uses. 1088 } else if (isa<LoadInst>(V)) { 1089 // Loading from the pointer doesn't escape it. 1090 continue; 1091 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1092 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1093 if (SI->getValueOperand() == U->get()) 1094 return nullptr; 1095 continue; 1096 } else if (isa<ICmpInst>(V)) { 1097 if (NumCmps++) 1098 return nullptr; // Found more than one cmp. 1099 continue; 1100 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1101 switch (Intrin->getIntrinsicID()) { 1102 // These intrinsics don't escape or compare the pointer. Memset is safe 1103 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1104 // we don't allow stores, so src cannot point to V. 1105 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1106 case Intrinsic::dbg_declare: case Intrinsic::dbg_value: 1107 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1108 continue; 1109 default: 1110 return nullptr; 1111 } 1112 } else { 1113 return nullptr; 1114 } 1115 for (const Use &U : V->uses()) { 1116 if (Worklist.size() >= MaxIter) 1117 return nullptr; 1118 Worklist.push_back(&U); 1119 } 1120 } 1121 1122 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1123 return replaceInstUsesWith( 1124 ICI, 1125 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1126 } 1127 1128 /// Fold "icmp pred (X+CI), X". 1129 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI, 1130 Value *X, ConstantInt *CI, 1131 ICmpInst::Predicate Pred) { 1132 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1133 // so the values can never be equal. Similarly for all other "or equals" 1134 // operators. 1135 1136 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1137 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1138 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1139 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1140 Value *R = 1141 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1142 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1143 } 1144 1145 // (X+1) >u X --> X <u (0-1) --> X != 255 1146 // (X+2) >u X --> X <u (0-2) --> X <u 254 1147 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1148 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1149 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1150 1151 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1152 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1153 APInt::getSignedMaxValue(BitWidth)); 1154 1155 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1156 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1157 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1158 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1159 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1160 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1161 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1162 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1163 1164 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1165 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1166 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1167 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1168 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1169 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1170 1171 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1172 Constant *C = Builder->getInt(CI->getValue()-1); 1173 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1174 } 1175 1176 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1177 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1178 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1179 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1180 const APInt &AP1, 1181 const APInt &AP2) { 1182 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1183 1184 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1185 if (I.getPredicate() == I.ICMP_NE) 1186 Pred = CmpInst::getInversePredicate(Pred); 1187 return new ICmpInst(Pred, LHS, RHS); 1188 }; 1189 1190 // Don't bother doing any work for cases which InstSimplify handles. 1191 if (AP2 == 0) 1192 return nullptr; 1193 1194 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1195 if (IsAShr) { 1196 if (AP2.isAllOnesValue()) 1197 return nullptr; 1198 if (AP2.isNegative() != AP1.isNegative()) 1199 return nullptr; 1200 if (AP2.sgt(AP1)) 1201 return nullptr; 1202 } 1203 1204 if (!AP1) 1205 // 'A' must be large enough to shift out the highest set bit. 1206 return getICmp(I.ICMP_UGT, A, 1207 ConstantInt::get(A->getType(), AP2.logBase2())); 1208 1209 if (AP1 == AP2) 1210 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1211 1212 int Shift; 1213 if (IsAShr && AP1.isNegative()) 1214 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1215 else 1216 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1217 1218 if (Shift > 0) { 1219 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1220 // There are multiple solutions if we are comparing against -1 and the LHS 1221 // of the ashr is not a power of two. 1222 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1223 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1224 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1225 } else if (AP1 == AP2.lshr(Shift)) { 1226 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1227 } 1228 } 1229 1230 // Shifting const2 will never be equal to const1. 1231 // FIXME: This should always be handled by InstSimplify? 1232 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1233 return replaceInstUsesWith(I, TorF); 1234 } 1235 1236 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1237 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1238 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1239 const APInt &AP1, 1240 const APInt &AP2) { 1241 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1242 1243 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1244 if (I.getPredicate() == I.ICMP_NE) 1245 Pred = CmpInst::getInversePredicate(Pred); 1246 return new ICmpInst(Pred, LHS, RHS); 1247 }; 1248 1249 // Don't bother doing any work for cases which InstSimplify handles. 1250 if (AP2 == 0) 1251 return nullptr; 1252 1253 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1254 1255 if (!AP1 && AP2TrailingZeros != 0) 1256 return getICmp( 1257 I.ICMP_UGE, A, 1258 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1259 1260 if (AP1 == AP2) 1261 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1262 1263 // Get the distance between the lowest bits that are set. 1264 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1265 1266 if (Shift > 0 && AP2.shl(Shift) == AP1) 1267 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1268 1269 // Shifting const2 will never be equal to const1. 1270 // FIXME: This should always be handled by InstSimplify? 1271 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1272 return replaceInstUsesWith(I, TorF); 1273 } 1274 1275 /// The caller has matched a pattern of the form: 1276 /// I = icmp ugt (add (add A, B), CI2), CI1 1277 /// If this is of the form: 1278 /// sum = a + b 1279 /// if (sum+128 >u 255) 1280 /// Then replace it with llvm.sadd.with.overflow.i8. 1281 /// 1282 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1283 ConstantInt *CI2, ConstantInt *CI1, 1284 InstCombiner &IC) { 1285 // The transformation we're trying to do here is to transform this into an 1286 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1287 // with a narrower add, and discard the add-with-constant that is part of the 1288 // range check (if we can't eliminate it, this isn't profitable). 1289 1290 // In order to eliminate the add-with-constant, the compare can be its only 1291 // use. 1292 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1293 if (!AddWithCst->hasOneUse()) 1294 return nullptr; 1295 1296 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1297 if (!CI2->getValue().isPowerOf2()) 1298 return nullptr; 1299 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1300 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1301 return nullptr; 1302 1303 // The width of the new add formed is 1 more than the bias. 1304 ++NewWidth; 1305 1306 // Check to see that CI1 is an all-ones value with NewWidth bits. 1307 if (CI1->getBitWidth() == NewWidth || 1308 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1309 return nullptr; 1310 1311 // This is only really a signed overflow check if the inputs have been 1312 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1313 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1314 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1315 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1316 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1317 return nullptr; 1318 1319 // In order to replace the original add with a narrower 1320 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1321 // and truncates that discard the high bits of the add. Verify that this is 1322 // the case. 1323 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1324 for (User *U : OrigAdd->users()) { 1325 if (U == AddWithCst) 1326 continue; 1327 1328 // Only accept truncates for now. We would really like a nice recursive 1329 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1330 // chain to see which bits of a value are actually demanded. If the 1331 // original add had another add which was then immediately truncated, we 1332 // could still do the transformation. 1333 TruncInst *TI = dyn_cast<TruncInst>(U); 1334 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1335 return nullptr; 1336 } 1337 1338 // If the pattern matches, truncate the inputs to the narrower type and 1339 // use the sadd_with_overflow intrinsic to efficiently compute both the 1340 // result and the overflow bit. 1341 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1342 Value *F = Intrinsic::getDeclaration(I.getModule(), 1343 Intrinsic::sadd_with_overflow, NewType); 1344 1345 InstCombiner::BuilderTy *Builder = IC.Builder; 1346 1347 // Put the new code above the original add, in case there are any uses of the 1348 // add between the add and the compare. 1349 Builder->SetInsertPoint(OrigAdd); 1350 1351 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc"); 1352 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc"); 1353 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 1354 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 1355 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 1356 1357 // The inner add was the result of the narrow add, zero extended to the 1358 // wider type. Replace it with the result computed by the intrinsic. 1359 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1360 1361 // The original icmp gets replaced with the overflow value. 1362 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1363 } 1364 1365 // Fold icmp Pred X, C. 1366 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1367 CmpInst::Predicate Pred = Cmp.getPredicate(); 1368 Value *X = Cmp.getOperand(0); 1369 1370 const APInt *C; 1371 if (!match(Cmp.getOperand(1), m_APInt(C))) 1372 return nullptr; 1373 1374 Value *A = nullptr, *B = nullptr; 1375 1376 // Match the following pattern, which is a common idiom when writing 1377 // overflow-safe integer arithmetic functions. The source performs an addition 1378 // in wider type and explicitly checks for overflow using comparisons against 1379 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1380 // 1381 // TODO: This could probably be generalized to handle other overflow-safe 1382 // operations if we worked out the formulas to compute the appropriate magic 1383 // constants. 1384 // 1385 // sum = a + b 1386 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1387 { 1388 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1389 if (Pred == ICmpInst::ICMP_UGT && 1390 match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1391 if (Instruction *Res = processUGT_ADDCST_ADD( 1392 Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this)) 1393 return Res; 1394 } 1395 1396 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1397 if (*C == 0 && Pred == ICmpInst::ICMP_SGT) { 1398 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1399 if (SPR.Flavor == SPF_SMIN) { 1400 if (isKnownPositive(A, DL)) 1401 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1402 if (isKnownPositive(B, DL)) 1403 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1404 } 1405 } 1406 1407 // FIXME: Use m_APInt to allow folds for splat constants. 1408 ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1)); 1409 if (!CI) 1410 return nullptr; 1411 1412 // Canonicalize icmp instructions based on dominating conditions. 1413 BasicBlock *Parent = Cmp.getParent(); 1414 BasicBlock *Dom = Parent->getSinglePredecessor(); 1415 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr; 1416 ICmpInst::Predicate Pred2; 1417 BasicBlock *TrueBB, *FalseBB; 1418 ConstantInt *CI2; 1419 if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)), 1420 TrueBB, FalseBB)) && 1421 TrueBB != FalseBB) { 1422 ConstantRange CR = 1423 ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue()); 1424 ConstantRange DominatingCR = 1425 (Parent == TrueBB) 1426 ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue()) 1427 : ConstantRange::makeExactICmpRegion( 1428 CmpInst::getInversePredicate(Pred2), CI2->getValue()); 1429 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1430 ConstantRange Difference = DominatingCR.difference(CR); 1431 if (Intersection.isEmptySet()) 1432 return replaceInstUsesWith(Cmp, Builder->getFalse()); 1433 if (Difference.isEmptySet()) 1434 return replaceInstUsesWith(Cmp, Builder->getTrue()); 1435 1436 // If this is a normal comparison, it demands all bits. If it is a sign 1437 // bit comparison, it only demands the sign bit. 1438 bool UnusedBit; 1439 bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit); 1440 1441 // Canonicalizing a sign bit comparison that gets used in a branch, 1442 // pessimizes codegen by generating branch on zero instruction instead 1443 // of a test and branch. So we avoid canonicalizing in such situations 1444 // because test and branch instruction has better branch displacement 1445 // than compare and branch instruction. 1446 if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) { 1447 if (auto *AI = Intersection.getSingleElement()) 1448 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI)); 1449 if (auto *AD = Difference.getSingleElement()) 1450 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD)); 1451 } 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// Fold icmp (trunc X, Y), C. 1458 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1459 Instruction *Trunc, 1460 const APInt *C) { 1461 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1462 Value *X = Trunc->getOperand(0); 1463 if (*C == 1 && C->getBitWidth() > 1) { 1464 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1465 Value *V = nullptr; 1466 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1467 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1468 ConstantInt::get(V->getType(), 1)); 1469 } 1470 1471 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1472 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1473 // of the high bits truncated out of x are known. 1474 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1475 SrcBits = X->getType()->getScalarSizeInBits(); 1476 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1477 computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp); 1478 1479 // If all the high bits are known, we can do this xform. 1480 if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) { 1481 // Pull in the high bits from known-ones set. 1482 APInt NewRHS = C->zext(SrcBits); 1483 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1484 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1485 } 1486 } 1487 1488 return nullptr; 1489 } 1490 1491 /// Fold icmp (xor X, Y), C. 1492 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1493 BinaryOperator *Xor, 1494 const APInt *C) { 1495 Value *X = Xor->getOperand(0); 1496 Value *Y = Xor->getOperand(1); 1497 const APInt *XorC; 1498 if (!match(Y, m_APInt(XorC))) 1499 return nullptr; 1500 1501 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1502 // fold the xor. 1503 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1504 if ((Pred == ICmpInst::ICMP_SLT && *C == 0) || 1505 (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) { 1506 1507 // If the sign bit of the XorCst is not set, there is no change to 1508 // the operation, just stop using the Xor. 1509 if (!XorC->isNegative()) { 1510 Cmp.setOperand(0, X); 1511 Worklist.Add(Xor); 1512 return &Cmp; 1513 } 1514 1515 // Was the old condition true if the operand is positive? 1516 bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT; 1517 1518 // If so, the new one isn't. 1519 isTrueIfPositive ^= true; 1520 1521 Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1)); 1522 if (isTrueIfPositive) 1523 return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant)); 1524 else 1525 return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant)); 1526 } 1527 1528 if (Xor->hasOneUse()) { 1529 // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit)) 1530 if (!Cmp.isEquality() && XorC->isSignBit()) { 1531 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1532 : Cmp.getSignedPredicate(); 1533 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC)); 1534 } 1535 1536 // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit)) 1537 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1538 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1539 : Cmp.getSignedPredicate(); 1540 Pred = Cmp.getSwappedPredicate(Pred); 1541 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC)); 1542 } 1543 } 1544 1545 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1546 // iff -C is a power of 2 1547 if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2()) 1548 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1549 1550 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1551 // iff -C is a power of 2 1552 if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2()) 1553 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 1554 1555 return nullptr; 1556 } 1557 1558 /// Fold icmp (and (sh X, Y), C2), C1. 1559 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1560 const APInt *C1, const APInt *C2) { 1561 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1562 if (!Shift || !Shift->isShift()) 1563 return nullptr; 1564 1565 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1566 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1567 // code produced by the clang front-end, for bitfield access. 1568 // This seemingly simple opportunity to fold away a shift turns out to be 1569 // rather complicated. See PR17827 for details. 1570 unsigned ShiftOpcode = Shift->getOpcode(); 1571 bool IsShl = ShiftOpcode == Instruction::Shl; 1572 const APInt *C3; 1573 if (match(Shift->getOperand(1), m_APInt(C3))) { 1574 bool CanFold = false; 1575 if (ShiftOpcode == Instruction::AShr) { 1576 // There may be some constraints that make this possible, but nothing 1577 // simple has been discovered yet. 1578 CanFold = false; 1579 } else if (ShiftOpcode == Instruction::Shl) { 1580 // For a left shift, we can fold if the comparison is not signed. We can 1581 // also fold a signed comparison if the mask value and comparison value 1582 // are not negative. These constraints may not be obvious, but we can 1583 // prove that they are correct using an SMT solver. 1584 if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative())) 1585 CanFold = true; 1586 } else if (ShiftOpcode == Instruction::LShr) { 1587 // For a logical right shift, we can fold if the comparison is not signed. 1588 // We can also fold a signed comparison if the shifted mask value and the 1589 // shifted comparison value are not negative. These constraints may not be 1590 // obvious, but we can prove that they are correct using an SMT solver. 1591 if (!Cmp.isSigned() || 1592 (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative())) 1593 CanFold = true; 1594 } 1595 1596 if (CanFold) { 1597 APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3); 1598 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1599 // Check to see if we are shifting out any of the bits being compared. 1600 if (SameAsC1 != *C1) { 1601 // If we shifted bits out, the fold is not going to work out. As a 1602 // special case, check to see if this means that the result is always 1603 // true or false now. 1604 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1605 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1606 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1607 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1608 } else { 1609 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1610 APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3); 1611 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1612 And->setOperand(0, Shift->getOperand(0)); 1613 Worklist.Add(Shift); // Shift is dead. 1614 return &Cmp; 1615 } 1616 } 1617 } 1618 1619 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1620 // preferable because it allows the C2 << Y expression to be hoisted out of a 1621 // loop if Y is invariant and X is not. 1622 if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() && 1623 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1624 // Compute C2 << Y. 1625 Value *NewShift = 1626 IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1627 : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1)); 1628 1629 // Compute X & (C2 << Y). 1630 Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift); 1631 Cmp.setOperand(0, NewAnd); 1632 return &Cmp; 1633 } 1634 1635 return nullptr; 1636 } 1637 1638 /// Fold icmp (and X, C2), C1. 1639 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1640 BinaryOperator *And, 1641 const APInt *C1) { 1642 const APInt *C2; 1643 if (!match(And->getOperand(1), m_APInt(C2))) 1644 return nullptr; 1645 1646 if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse()) 1647 return nullptr; 1648 1649 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1650 // the input width without changing the value produced, eliminate the cast: 1651 // 1652 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1653 // 1654 // We can do this transformation if the constants do not have their sign bits 1655 // set or if it is an equality comparison. Extending a relational comparison 1656 // when we're checking the sign bit would not work. 1657 Value *W; 1658 if (match(And->getOperand(0), m_Trunc(m_Value(W))) && 1659 (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) { 1660 // TODO: Is this a good transform for vectors? Wider types may reduce 1661 // throughput. Should this transform be limited (even for scalars) by using 1662 // ShouldChangeType()? 1663 if (!Cmp.getType()->isVectorTy()) { 1664 Type *WideType = W->getType(); 1665 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1666 Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits)); 1667 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1668 Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName()); 1669 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1670 } 1671 } 1672 1673 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2)) 1674 return I; 1675 1676 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1677 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1678 // 1679 // iff pred isn't signed 1680 if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) { 1681 Constant *One = cast<Constant>(And->getOperand(1)); 1682 Value *Or = And->getOperand(0); 1683 Value *A, *B, *LShr; 1684 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1685 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1686 unsigned UsesRemoved = 0; 1687 if (And->hasOneUse()) 1688 ++UsesRemoved; 1689 if (Or->hasOneUse()) 1690 ++UsesRemoved; 1691 if (LShr->hasOneUse()) 1692 ++UsesRemoved; 1693 1694 // Compute A & ((1 << B) | 1) 1695 Value *NewOr = nullptr; 1696 if (auto *C = dyn_cast<Constant>(B)) { 1697 if (UsesRemoved >= 1) 1698 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1699 } else { 1700 if (UsesRemoved >= 3) 1701 NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(), 1702 /*HasNUW=*/true), 1703 One, Or->getName()); 1704 } 1705 if (NewOr) { 1706 Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName()); 1707 Cmp.setOperand(0, NewAnd); 1708 return &Cmp; 1709 } 1710 } 1711 } 1712 1713 // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a 1714 // result greater than C1. 1715 unsigned NumTZ = C2->countTrailingZeros(); 1716 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() && 1717 APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) { 1718 Constant *Zero = Constant::getNullValue(And->getType()); 1719 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 1720 } 1721 1722 return nullptr; 1723 } 1724 1725 /// Fold icmp (and X, Y), C. 1726 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1727 BinaryOperator *And, 1728 const APInt *C) { 1729 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1730 return I; 1731 1732 // TODO: These all require that Y is constant too, so refactor with the above. 1733 1734 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1735 Value *X = And->getOperand(0); 1736 Value *Y = And->getOperand(1); 1737 if (auto *LI = dyn_cast<LoadInst>(X)) 1738 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1739 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1740 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1741 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1742 ConstantInt *C2 = cast<ConstantInt>(Y); 1743 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1744 return Res; 1745 } 1746 1747 if (!Cmp.isEquality()) 1748 return nullptr; 1749 1750 // X & -C == -C -> X > u ~C 1751 // X & -C != -C -> X <= u ~C 1752 // iff C is a power of 2 1753 if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) { 1754 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1755 : CmpInst::ICMP_ULE; 1756 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1757 } 1758 1759 // (X & C2) == 0 -> (trunc X) >= 0 1760 // (X & C2) != 0 -> (trunc X) < 0 1761 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1762 const APInt *C2; 1763 if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) { 1764 int32_t ExactLogBase2 = C2->exactLogBase2(); 1765 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1766 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1767 if (And->getType()->isVectorTy()) 1768 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1769 Value *Trunc = Builder->CreateTrunc(X, NTy); 1770 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1771 : CmpInst::ICMP_SLT; 1772 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1773 } 1774 } 1775 1776 return nullptr; 1777 } 1778 1779 /// Fold icmp (or X, Y), C. 1780 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1781 const APInt *C) { 1782 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1783 if (*C == 1) { 1784 // icmp slt signum(V) 1 --> icmp slt V, 1 1785 Value *V = nullptr; 1786 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1787 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1788 ConstantInt::get(V->getType(), 1)); 1789 } 1790 1791 if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse()) 1792 return nullptr; 1793 1794 Value *P, *Q; 1795 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1796 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1797 // -> and (icmp eq P, null), (icmp eq Q, null). 1798 Value *CmpP = 1799 Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1800 Value *CmpQ = 1801 Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1802 auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And 1803 : Instruction::Or; 1804 return BinaryOperator::Create(LogicOpc, CmpP, CmpQ); 1805 } 1806 1807 return nullptr; 1808 } 1809 1810 /// Fold icmp (mul X, Y), C. 1811 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1812 BinaryOperator *Mul, 1813 const APInt *C) { 1814 const APInt *MulC; 1815 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1816 return nullptr; 1817 1818 // If this is a test of the sign bit and the multiply is sign-preserving with 1819 // a constant operand, use the multiply LHS operand instead. 1820 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1821 if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) { 1822 if (MulC->isNegative()) 1823 Pred = ICmpInst::getSwappedPredicate(Pred); 1824 return new ICmpInst(Pred, Mul->getOperand(0), 1825 Constant::getNullValue(Mul->getType())); 1826 } 1827 1828 return nullptr; 1829 } 1830 1831 /// Fold icmp (shl 1, Y), C. 1832 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1833 const APInt *C) { 1834 Value *Y; 1835 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1836 return nullptr; 1837 1838 Type *ShiftType = Shl->getType(); 1839 uint32_t TypeBits = C->getBitWidth(); 1840 bool CIsPowerOf2 = C->isPowerOf2(); 1841 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1842 if (Cmp.isUnsigned()) { 1843 // (1 << Y) pred C -> Y pred Log2(C) 1844 if (!CIsPowerOf2) { 1845 // (1 << Y) < 30 -> Y <= 4 1846 // (1 << Y) <= 30 -> Y <= 4 1847 // (1 << Y) >= 30 -> Y > 4 1848 // (1 << Y) > 30 -> Y > 4 1849 if (Pred == ICmpInst::ICMP_ULT) 1850 Pred = ICmpInst::ICMP_ULE; 1851 else if (Pred == ICmpInst::ICMP_UGE) 1852 Pred = ICmpInst::ICMP_UGT; 1853 } 1854 1855 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1856 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1857 unsigned CLog2 = C->logBase2(); 1858 if (CLog2 == TypeBits - 1) { 1859 if (Pred == ICmpInst::ICMP_UGE) 1860 Pred = ICmpInst::ICMP_EQ; 1861 else if (Pred == ICmpInst::ICMP_ULT) 1862 Pred = ICmpInst::ICMP_NE; 1863 } 1864 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1865 } else if (Cmp.isSigned()) { 1866 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1867 if (C->isAllOnesValue()) { 1868 // (1 << Y) <= -1 -> Y == 31 1869 if (Pred == ICmpInst::ICMP_SLE) 1870 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1871 1872 // (1 << Y) > -1 -> Y != 31 1873 if (Pred == ICmpInst::ICMP_SGT) 1874 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1875 } else if (!(*C)) { 1876 // (1 << Y) < 0 -> Y == 31 1877 // (1 << Y) <= 0 -> Y == 31 1878 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1879 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1880 1881 // (1 << Y) >= 0 -> Y != 31 1882 // (1 << Y) > 0 -> Y != 31 1883 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1884 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1885 } 1886 } else if (Cmp.isEquality() && CIsPowerOf2) { 1887 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2())); 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 /// Fold icmp (shl X, Y), C. 1894 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1895 BinaryOperator *Shl, 1896 const APInt *C) { 1897 const APInt *ShiftVal; 1898 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1899 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal); 1900 1901 const APInt *ShiftAmt; 1902 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1903 return foldICmpShlOne(Cmp, Shl, C); 1904 1905 // Check that the shift amount is in range. If not, don't perform undefined 1906 // shifts. When the shift is visited it will be simplified. 1907 unsigned TypeBits = C->getBitWidth(); 1908 if (ShiftAmt->uge(TypeBits)) 1909 return nullptr; 1910 1911 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1912 Value *X = Shl->getOperand(0); 1913 if (Cmp.isEquality()) { 1914 // If the shift is NUW, then it is just shifting out zeros, no need for an 1915 // AND. 1916 Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt)); 1917 if (Shl->hasNoUnsignedWrap()) 1918 return new ICmpInst(Pred, X, LShrC); 1919 1920 // If the shift is NSW and we compare to 0, then it is just shifting out 1921 // sign bits, no need for an AND either. 1922 if (Shl->hasNoSignedWrap() && *C == 0) 1923 return new ICmpInst(Pred, X, LShrC); 1924 1925 if (Shl->hasOneUse()) { 1926 // Otherwise strength reduce the shift into an and. 1927 Constant *Mask = ConstantInt::get(Shl->getType(), 1928 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1929 1930 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask"); 1931 return new ICmpInst(Pred, And, LShrC); 1932 } 1933 } 1934 1935 // If this is a signed comparison to 0 and the shift is sign preserving, 1936 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1937 // do that if we're sure to not continue on in this function. 1938 if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C)) 1939 return new ICmpInst(Pred, X, Constant::getNullValue(X->getType())); 1940 1941 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1942 bool TrueIfSigned = false; 1943 if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) { 1944 // (X << 31) <s 0 --> (X & 1) != 0 1945 Constant *Mask = ConstantInt::get( 1946 X->getType(), 1947 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 1948 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask"); 1949 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1950 And, Constant::getNullValue(And->getType())); 1951 } 1952 1953 // Transform (icmp pred iM (shl iM %v, N), C) 1954 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 1955 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 1956 // This enables us to get rid of the shift in favor of a trunc which can be 1957 // free on the target. It has the additional benefit of comparing to a 1958 // smaller constant, which will be target friendly. 1959 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 1960 if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt) { 1961 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 1962 if (X->getType()->isVectorTy()) 1963 TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements()); 1964 Constant *NewC = 1965 ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt)); 1966 return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC); 1967 } 1968 1969 return nullptr; 1970 } 1971 1972 /// Fold icmp ({al}shr X, Y), C. 1973 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 1974 BinaryOperator *Shr, 1975 const APInt *C) { 1976 // An exact shr only shifts out zero bits, so: 1977 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 1978 Value *X = Shr->getOperand(0); 1979 CmpInst::Predicate Pred = Cmp.getPredicate(); 1980 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0) 1981 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1982 1983 const APInt *ShiftVal; 1984 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 1985 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal); 1986 1987 const APInt *ShiftAmt; 1988 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 1989 return nullptr; 1990 1991 // Check that the shift amount is in range. If not, don't perform undefined 1992 // shifts. When the shift is visited it will be simplified. 1993 unsigned TypeBits = C->getBitWidth(); 1994 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 1995 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 1996 return nullptr; 1997 1998 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 1999 if (!Cmp.isEquality()) { 2000 // If we have an unsigned comparison and an ashr, we can't simplify this. 2001 // Similarly for signed comparisons with lshr. 2002 if (Cmp.isSigned() != IsAShr) 2003 return nullptr; 2004 2005 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 2006 // by a power of 2. Since we already have logic to simplify these, 2007 // transform to div and then simplify the resultant comparison. 2008 if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 2009 return nullptr; 2010 2011 // Revisit the shift (to delete it). 2012 Worklist.Add(Shr); 2013 2014 Constant *DivCst = ConstantInt::get( 2015 Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 2016 2017 Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact()) 2018 : Builder->CreateUDiv(X, DivCst, "", Shr->isExact()); 2019 2020 Cmp.setOperand(0, Tmp); 2021 2022 // If the builder folded the binop, just return it. 2023 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 2024 if (!TheDiv) 2025 return &Cmp; 2026 2027 // Otherwise, fold this div/compare. 2028 assert(TheDiv->getOpcode() == Instruction::SDiv || 2029 TheDiv->getOpcode() == Instruction::UDiv); 2030 2031 Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C); 2032 assert(Res && "This div/cst should have folded!"); 2033 return Res; 2034 } 2035 2036 // Handle equality comparisons of shift-by-constant. 2037 2038 // If the comparison constant changes with the shift, the comparison cannot 2039 // succeed (bits of the comparison constant cannot match the shifted value). 2040 // This should be known by InstSimplify and already be folded to true/false. 2041 assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) || 2042 (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) && 2043 "Expected icmp+shr simplify did not occur."); 2044 2045 // Check if the bits shifted out are known to be zero. If so, we can compare 2046 // against the unshifted value: 2047 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2048 Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal); 2049 if (Shr->hasOneUse()) { 2050 if (Shr->isExact()) 2051 return new ICmpInst(Pred, X, ShiftedCmpRHS); 2052 2053 // Otherwise strength reduce the shift into an 'and'. 2054 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2055 Constant *Mask = ConstantInt::get(Shr->getType(), Val); 2056 Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask"); 2057 return new ICmpInst(Pred, And, ShiftedCmpRHS); 2058 } 2059 2060 return nullptr; 2061 } 2062 2063 /// Fold icmp (udiv X, Y), C. 2064 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2065 BinaryOperator *UDiv, 2066 const APInt *C) { 2067 const APInt *C2; 2068 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2069 return nullptr; 2070 2071 assert(C2 != 0 && "udiv 0, X should have been simplified already."); 2072 2073 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2074 Value *Y = UDiv->getOperand(1); 2075 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2076 assert(!C->isMaxValue() && 2077 "icmp ugt X, UINT_MAX should have been simplified already."); 2078 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2079 ConstantInt::get(Y->getType(), C2->udiv(*C + 1))); 2080 } 2081 2082 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2083 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2084 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2085 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2086 ConstantInt::get(Y->getType(), C2->udiv(*C))); 2087 } 2088 2089 return nullptr; 2090 } 2091 2092 /// Fold icmp ({su}div X, Y), C. 2093 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2094 BinaryOperator *Div, 2095 const APInt *C) { 2096 // Fold: icmp pred ([us]div X, C2), C -> range test 2097 // Fold this div into the comparison, producing a range check. 2098 // Determine, based on the divide type, what the range is being 2099 // checked. If there is an overflow on the low or high side, remember 2100 // it, otherwise compute the range [low, hi) bounding the new value. 2101 // See: InsertRangeTest above for the kinds of replacements possible. 2102 const APInt *C2; 2103 if (!match(Div->getOperand(1), m_APInt(C2))) 2104 return nullptr; 2105 2106 // FIXME: If the operand types don't match the type of the divide 2107 // then don't attempt this transform. The code below doesn't have the 2108 // logic to deal with a signed divide and an unsigned compare (and 2109 // vice versa). This is because (x /s C2) <s C produces different 2110 // results than (x /s C2) <u C or (x /u C2) <s C or even 2111 // (x /u C2) <u C. Simply casting the operands and result won't 2112 // work. :( The if statement below tests that condition and bails 2113 // if it finds it. 2114 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2115 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2116 return nullptr; 2117 2118 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2119 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2120 // division-by-constant cases should be present, we can not assert that they 2121 // have happened before we reach this icmp instruction. 2122 if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue())) 2123 return nullptr; 2124 2125 // TODO: We could do all of the computations below using APInt. 2126 Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1)); 2127 Constant *DivRHS = cast<Constant>(Div->getOperand(1)); 2128 2129 // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of 2130 // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS). 2131 // By solving for X, we can turn this into a range check instead of computing 2132 // a divide. 2133 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 2134 2135 // Determine if the product overflows by seeing if the product is not equal to 2136 // the divide. Make sure we do the same kind of divide as in the LHS 2137 // instruction that we're folding. 2138 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) 2139 : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 2140 2141 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2142 2143 // If the division is known to be exact, then there is no remainder from the 2144 // divide, so the covered range size is unit, otherwise it is the divisor. 2145 Constant *RangeSize = 2146 Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS; 2147 2148 // Figure out the interval that is being checked. For example, a comparison 2149 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2150 // Compute this interval based on the constants involved and the signedness of 2151 // the compare/divide. This computes a half-open interval, keeping track of 2152 // whether either value in the interval overflows. After analysis each 2153 // overflow variable is set to 0 if it's corresponding bound variable is valid 2154 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2155 int LoOverflow = 0, HiOverflow = 0; 2156 Constant *LoBound = nullptr, *HiBound = nullptr; 2157 2158 if (!DivIsSigned) { // udiv 2159 // e.g. X/5 op 3 --> [15, 20) 2160 LoBound = Prod; 2161 HiOverflow = LoOverflow = ProdOV; 2162 if (!HiOverflow) { 2163 // If this is not an exact divide, then many values in the range collapse 2164 // to the same result value. 2165 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2166 } 2167 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2168 if (*C == 0) { // (X / pos) op 0 2169 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2170 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 2171 HiBound = RangeSize; 2172 } else if (C->isStrictlyPositive()) { // (X / pos) op pos 2173 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2174 HiOverflow = LoOverflow = ProdOV; 2175 if (!HiOverflow) 2176 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2177 } else { // (X / pos) op neg 2178 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2179 HiBound = AddOne(Prod); 2180 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2181 if (!LoOverflow) { 2182 Constant *DivNeg = ConstantExpr::getNeg(RangeSize); 2183 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2184 } 2185 } 2186 } else if (C2->isNegative()) { // Divisor is < 0. 2187 if (Div->isExact()) 2188 RangeSize = ConstantExpr::getNeg(RangeSize); 2189 if (*C == 0) { // (X / neg) op 0 2190 // e.g. X/-5 op 0 --> [-4, 5) 2191 LoBound = AddOne(RangeSize); 2192 HiBound = ConstantExpr::getNeg(RangeSize); 2193 if (HiBound == DivRHS) { // -INTMIN = INTMIN 2194 HiOverflow = 1; // [INTMIN+1, overflow) 2195 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 2196 } 2197 } else if (C->isStrictlyPositive()) { // (X / neg) op pos 2198 // e.g. X/-5 op 3 --> [-19, -14) 2199 HiBound = AddOne(Prod); 2200 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2201 if (!LoOverflow) 2202 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2203 } else { // (X / neg) op neg 2204 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2205 LoOverflow = HiOverflow = ProdOV; 2206 if (!HiOverflow) 2207 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2208 } 2209 2210 // Dividing by a negative swaps the condition. LT <-> GT 2211 Pred = ICmpInst::getSwappedPredicate(Pred); 2212 } 2213 2214 Value *X = Div->getOperand(0); 2215 switch (Pred) { 2216 default: llvm_unreachable("Unhandled icmp opcode!"); 2217 case ICmpInst::ICMP_EQ: 2218 if (LoOverflow && HiOverflow) 2219 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2220 if (HiOverflow) 2221 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2222 ICmpInst::ICMP_UGE, X, LoBound); 2223 if (LoOverflow) 2224 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2225 ICmpInst::ICMP_ULT, X, HiBound); 2226 return replaceInstUsesWith( 2227 Cmp, insertRangeTest(X, LoBound->getUniqueInteger(), 2228 HiBound->getUniqueInteger(), DivIsSigned, true)); 2229 case ICmpInst::ICMP_NE: 2230 if (LoOverflow && HiOverflow) 2231 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2232 if (HiOverflow) 2233 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2234 ICmpInst::ICMP_ULT, X, LoBound); 2235 if (LoOverflow) 2236 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2237 ICmpInst::ICMP_UGE, X, HiBound); 2238 return replaceInstUsesWith(Cmp, 2239 insertRangeTest(X, LoBound->getUniqueInteger(), 2240 HiBound->getUniqueInteger(), 2241 DivIsSigned, false)); 2242 case ICmpInst::ICMP_ULT: 2243 case ICmpInst::ICMP_SLT: 2244 if (LoOverflow == +1) // Low bound is greater than input range. 2245 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2246 if (LoOverflow == -1) // Low bound is less than input range. 2247 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2248 return new ICmpInst(Pred, X, LoBound); 2249 case ICmpInst::ICMP_UGT: 2250 case ICmpInst::ICMP_SGT: 2251 if (HiOverflow == +1) // High bound greater than input range. 2252 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2253 if (HiOverflow == -1) // High bound less than input range. 2254 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2255 if (Pred == ICmpInst::ICMP_UGT) 2256 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 2257 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 2258 } 2259 2260 return nullptr; 2261 } 2262 2263 /// Fold icmp (sub X, Y), C. 2264 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2265 BinaryOperator *Sub, 2266 const APInt *C) { 2267 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2268 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2269 2270 // The following transforms are only worth it if the only user of the subtract 2271 // is the icmp. 2272 if (!Sub->hasOneUse()) 2273 return nullptr; 2274 2275 if (Sub->hasNoSignedWrap()) { 2276 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2277 if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue()) 2278 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2279 2280 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2281 if (Pred == ICmpInst::ICMP_SGT && *C == 0) 2282 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2283 2284 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2285 if (Pred == ICmpInst::ICMP_SLT && *C == 0) 2286 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2287 2288 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2289 if (Pred == ICmpInst::ICMP_SLT && *C == 1) 2290 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2291 } 2292 2293 const APInt *C2; 2294 if (!match(X, m_APInt(C2))) 2295 return nullptr; 2296 2297 // C2 - Y <u C -> (Y | (C - 1)) == C2 2298 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2299 if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && 2300 (*C2 & (*C - 1)) == (*C - 1)) 2301 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X); 2302 2303 // C2 - Y >u C -> (Y | C) != C2 2304 // iff C2 & C == C and C + 1 is a power of 2 2305 if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C) 2306 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X); 2307 2308 return nullptr; 2309 } 2310 2311 /// Fold icmp (add X, Y), C. 2312 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2313 BinaryOperator *Add, 2314 const APInt *C) { 2315 Value *Y = Add->getOperand(1); 2316 const APInt *C2; 2317 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2318 return nullptr; 2319 2320 // Fold icmp pred (add X, C2), C. 2321 Value *X = Add->getOperand(0); 2322 Type *Ty = Add->getType(); 2323 auto CR = 2324 ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2); 2325 const APInt &Upper = CR.getUpper(); 2326 const APInt &Lower = CR.getLower(); 2327 if (Cmp.isSigned()) { 2328 if (Lower.isSignBit()) 2329 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2330 if (Upper.isSignBit()) 2331 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2332 } else { 2333 if (Lower.isMinValue()) 2334 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2335 if (Upper.isMinValue()) 2336 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2337 } 2338 2339 if (!Add->hasOneUse()) 2340 return nullptr; 2341 2342 // X+C <u C2 -> (X & -C2) == C 2343 // iff C & (C2-1) == 0 2344 // C2 is a power of 2 2345 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() && 2346 (*C2 & (*C - 1)) == 0) 2347 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)), 2348 ConstantExpr::getNeg(cast<Constant>(Y))); 2349 2350 // X+C >u C2 -> (X & ~C2) != C 2351 // iff C & C2 == 0 2352 // C2+1 is a power of 2 2353 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && 2354 (*C2 & *C) == 0) 2355 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)), 2356 ConstantExpr::getNeg(cast<Constant>(Y))); 2357 2358 return nullptr; 2359 } 2360 2361 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2362 /// where X is some kind of instruction. 2363 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2364 const APInt *C; 2365 if (!match(Cmp.getOperand(1), m_APInt(C))) 2366 return nullptr; 2367 2368 BinaryOperator *BO; 2369 if (match(Cmp.getOperand(0), m_BinOp(BO))) { 2370 switch (BO->getOpcode()) { 2371 case Instruction::Xor: 2372 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 2373 return I; 2374 break; 2375 case Instruction::And: 2376 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 2377 return I; 2378 break; 2379 case Instruction::Or: 2380 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 2381 return I; 2382 break; 2383 case Instruction::Mul: 2384 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 2385 return I; 2386 break; 2387 case Instruction::Shl: 2388 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 2389 return I; 2390 break; 2391 case Instruction::LShr: 2392 case Instruction::AShr: 2393 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 2394 return I; 2395 break; 2396 case Instruction::UDiv: 2397 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 2398 return I; 2399 LLVM_FALLTHROUGH; 2400 case Instruction::SDiv: 2401 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 2402 return I; 2403 break; 2404 case Instruction::Sub: 2405 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 2406 return I; 2407 break; 2408 case Instruction::Add: 2409 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 2410 return I; 2411 break; 2412 default: 2413 break; 2414 } 2415 // TODO: These folds could be refactored to be part of the above calls. 2416 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C)) 2417 return I; 2418 } 2419 2420 Instruction *LHSI; 2421 if (match(Cmp.getOperand(0), m_Instruction(LHSI)) && 2422 LHSI->getOpcode() == Instruction::Trunc) 2423 if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C)) 2424 return I; 2425 2426 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C)) 2427 return I; 2428 2429 return nullptr; 2430 } 2431 2432 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2433 /// icmp eq/ne BO, C. 2434 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2435 BinaryOperator *BO, 2436 const APInt *C) { 2437 // TODO: Some of these folds could work with arbitrary constants, but this 2438 // function is limited to scalar and vector splat constants. 2439 if (!Cmp.isEquality()) 2440 return nullptr; 2441 2442 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2443 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2444 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2445 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2446 2447 switch (BO->getOpcode()) { 2448 case Instruction::SRem: 2449 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2450 if (*C == 0 && BO->hasOneUse()) { 2451 const APInt *BOC; 2452 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2453 Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName()); 2454 return new ICmpInst(Pred, NewRem, 2455 Constant::getNullValue(BO->getType())); 2456 } 2457 } 2458 break; 2459 case Instruction::Add: { 2460 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2461 const APInt *BOC; 2462 if (match(BOp1, m_APInt(BOC))) { 2463 if (BO->hasOneUse()) { 2464 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2465 return new ICmpInst(Pred, BOp0, SubC); 2466 } 2467 } else if (*C == 0) { 2468 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2469 // efficiently invertible, or if the add has just this one use. 2470 if (Value *NegVal = dyn_castNegVal(BOp1)) 2471 return new ICmpInst(Pred, BOp0, NegVal); 2472 if (Value *NegVal = dyn_castNegVal(BOp0)) 2473 return new ICmpInst(Pred, NegVal, BOp1); 2474 if (BO->hasOneUse()) { 2475 Value *Neg = Builder->CreateNeg(BOp1); 2476 Neg->takeName(BO); 2477 return new ICmpInst(Pred, BOp0, Neg); 2478 } 2479 } 2480 break; 2481 } 2482 case Instruction::Xor: 2483 if (BO->hasOneUse()) { 2484 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2485 // For the xor case, we can xor two constants together, eliminating 2486 // the explicit xor. 2487 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2488 } else if (*C == 0) { 2489 // Replace ((xor A, B) != 0) with (A != B) 2490 return new ICmpInst(Pred, BOp0, BOp1); 2491 } 2492 } 2493 break; 2494 case Instruction::Sub: 2495 if (BO->hasOneUse()) { 2496 const APInt *BOC; 2497 if (match(BOp0, m_APInt(BOC))) { 2498 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2499 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2500 return new ICmpInst(Pred, BOp1, SubC); 2501 } else if (*C == 0) { 2502 // Replace ((sub A, B) != 0) with (A != B). 2503 return new ICmpInst(Pred, BOp0, BOp1); 2504 } 2505 } 2506 break; 2507 case Instruction::Or: { 2508 const APInt *BOC; 2509 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2510 // Comparing if all bits outside of a constant mask are set? 2511 // Replace (X | C) == -1 with (X & ~C) == ~C. 2512 // This removes the -1 constant. 2513 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2514 Value *And = Builder->CreateAnd(BOp0, NotBOC); 2515 return new ICmpInst(Pred, And, NotBOC); 2516 } 2517 break; 2518 } 2519 case Instruction::And: { 2520 const APInt *BOC; 2521 if (match(BOp1, m_APInt(BOC))) { 2522 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2523 if (C == BOC && C->isPowerOf2()) 2524 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2525 BO, Constant::getNullValue(RHS->getType())); 2526 2527 // Don't perform the following transforms if the AND has multiple uses 2528 if (!BO->hasOneUse()) 2529 break; 2530 2531 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2532 if (BOC->isSignBit()) { 2533 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2534 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2535 return new ICmpInst(NewPred, BOp0, Zero); 2536 } 2537 2538 // ((X & ~7) == 0) --> X < 8 2539 if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) { 2540 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2541 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2542 return new ICmpInst(NewPred, BOp0, NegBOC); 2543 } 2544 } 2545 break; 2546 } 2547 case Instruction::Mul: 2548 if (*C == 0 && BO->hasNoSignedWrap()) { 2549 const APInt *BOC; 2550 if (match(BOp1, m_APInt(BOC)) && *BOC != 0) { 2551 // The trivial case (mul X, 0) is handled by InstSimplify. 2552 // General case : (mul X, C) != 0 iff X != 0 2553 // (mul X, C) == 0 iff X == 0 2554 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2555 } 2556 } 2557 break; 2558 case Instruction::UDiv: 2559 if (*C == 0) { 2560 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2561 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2562 return new ICmpInst(NewPred, BOp1, BOp0); 2563 } 2564 break; 2565 default: 2566 break; 2567 } 2568 return nullptr; 2569 } 2570 2571 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2572 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2573 const APInt *C) { 2574 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); 2575 if (!II || !Cmp.isEquality()) 2576 return nullptr; 2577 2578 // Handle icmp {eq|ne} <intrinsic>, intcst. 2579 switch (II->getIntrinsicID()) { 2580 case Intrinsic::bswap: 2581 Worklist.Add(II); 2582 Cmp.setOperand(0, II->getArgOperand(0)); 2583 Cmp.setOperand(1, Builder->getInt(C->byteSwap())); 2584 return &Cmp; 2585 case Intrinsic::ctlz: 2586 case Intrinsic::cttz: 2587 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2588 if (*C == C->getBitWidth()) { 2589 Worklist.Add(II); 2590 Cmp.setOperand(0, II->getArgOperand(0)); 2591 Cmp.setOperand(1, ConstantInt::getNullValue(II->getType())); 2592 return &Cmp; 2593 } 2594 break; 2595 case Intrinsic::ctpop: { 2596 // popcount(A) == 0 -> A == 0 and likewise for != 2597 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2598 bool IsZero = *C == 0; 2599 if (IsZero || *C == C->getBitWidth()) { 2600 Worklist.Add(II); 2601 Cmp.setOperand(0, II->getArgOperand(0)); 2602 auto *NewOp = IsZero ? Constant::getNullValue(II->getType()) 2603 : Constant::getAllOnesValue(II->getType()); 2604 Cmp.setOperand(1, NewOp); 2605 return &Cmp; 2606 } 2607 break; 2608 } 2609 default: 2610 break; 2611 } 2612 return nullptr; 2613 } 2614 2615 /// Handle icmp with constant (but not simple integer constant) RHS. 2616 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2617 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2618 Constant *RHSC = dyn_cast<Constant>(Op1); 2619 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2620 if (!RHSC || !LHSI) 2621 return nullptr; 2622 2623 switch (LHSI->getOpcode()) { 2624 case Instruction::GetElementPtr: 2625 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2626 if (RHSC->isNullValue() && 2627 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2628 return new ICmpInst( 2629 I.getPredicate(), LHSI->getOperand(0), 2630 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2631 break; 2632 case Instruction::PHI: 2633 // Only fold icmp into the PHI if the phi and icmp are in the same 2634 // block. If in the same block, we're encouraging jump threading. If 2635 // not, we are just pessimizing the code by making an i1 phi. 2636 if (LHSI->getParent() == I.getParent()) 2637 if (Instruction *NV = FoldOpIntoPhi(I)) 2638 return NV; 2639 break; 2640 case Instruction::Select: { 2641 // If either operand of the select is a constant, we can fold the 2642 // comparison into the select arms, which will cause one to be 2643 // constant folded and the select turned into a bitwise or. 2644 Value *Op1 = nullptr, *Op2 = nullptr; 2645 ConstantInt *CI = nullptr; 2646 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2647 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2648 CI = dyn_cast<ConstantInt>(Op1); 2649 } 2650 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2651 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2652 CI = dyn_cast<ConstantInt>(Op2); 2653 } 2654 2655 // We only want to perform this transformation if it will not lead to 2656 // additional code. This is true if either both sides of the select 2657 // fold to a constant (in which case the icmp is replaced with a select 2658 // which will usually simplify) or this is the only user of the 2659 // select (in which case we are trading a select+icmp for a simpler 2660 // select+icmp) or all uses of the select can be replaced based on 2661 // dominance information ("Global cases"). 2662 bool Transform = false; 2663 if (Op1 && Op2) 2664 Transform = true; 2665 else if (Op1 || Op2) { 2666 // Local case 2667 if (LHSI->hasOneUse()) 2668 Transform = true; 2669 // Global cases 2670 else if (CI && !CI->isZero()) 2671 // When Op1 is constant try replacing select with second operand. 2672 // Otherwise Op2 is constant and try replacing select with first 2673 // operand. 2674 Transform = 2675 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 2676 } 2677 if (Transform) { 2678 if (!Op1) 2679 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 2680 I.getName()); 2681 if (!Op2) 2682 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 2683 I.getName()); 2684 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2685 } 2686 break; 2687 } 2688 case Instruction::IntToPtr: 2689 // icmp pred inttoptr(X), null -> icmp pred X, 0 2690 if (RHSC->isNullValue() && 2691 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 2692 return new ICmpInst( 2693 I.getPredicate(), LHSI->getOperand(0), 2694 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2695 break; 2696 2697 case Instruction::Load: 2698 // Try to optimize things like "A[i] > 4" to index computations. 2699 if (GetElementPtrInst *GEP = 2700 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2701 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2702 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2703 !cast<LoadInst>(LHSI)->isVolatile()) 2704 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2705 return Res; 2706 } 2707 break; 2708 } 2709 2710 return nullptr; 2711 } 2712 2713 /// Try to fold icmp (binop), X or icmp X, (binop). 2714 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 2715 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2716 2717 // Special logic for binary operators. 2718 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2719 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2720 if (!BO0 && !BO1) 2721 return nullptr; 2722 2723 CmpInst::Predicate Pred = I.getPredicate(); 2724 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2725 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2726 NoOp0WrapProblem = 2727 ICmpInst::isEquality(Pred) || 2728 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2729 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2730 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2731 NoOp1WrapProblem = 2732 ICmpInst::isEquality(Pred) || 2733 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2734 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2735 2736 // Analyze the case when either Op0 or Op1 is an add instruction. 2737 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2738 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2739 if (BO0 && BO0->getOpcode() == Instruction::Add) { 2740 A = BO0->getOperand(0); 2741 B = BO0->getOperand(1); 2742 } 2743 if (BO1 && BO1->getOpcode() == Instruction::Add) { 2744 C = BO1->getOperand(0); 2745 D = BO1->getOperand(1); 2746 } 2747 2748 // icmp (X+cst) < 0 --> X < -cst 2749 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero())) 2750 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B)) 2751 if (!RHSC->isMinValue(/*isSigned=*/true)) 2752 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC)); 2753 2754 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2755 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2756 return new ICmpInst(Pred, A == Op1 ? B : A, 2757 Constant::getNullValue(Op1->getType())); 2758 2759 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2760 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2761 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2762 C == Op0 ? D : C); 2763 2764 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2765 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 2766 NoOp1WrapProblem && 2767 // Try not to increase register pressure. 2768 BO0->hasOneUse() && BO1->hasOneUse()) { 2769 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2770 Value *Y, *Z; 2771 if (A == C) { 2772 // C + B == C + D -> B == D 2773 Y = B; 2774 Z = D; 2775 } else if (A == D) { 2776 // D + B == C + D -> B == C 2777 Y = B; 2778 Z = C; 2779 } else if (B == C) { 2780 // A + C == C + D -> A == D 2781 Y = A; 2782 Z = D; 2783 } else { 2784 assert(B == D); 2785 // A + D == C + D -> A == C 2786 Y = A; 2787 Z = C; 2788 } 2789 return new ICmpInst(Pred, Y, Z); 2790 } 2791 2792 // icmp slt (X + -1), Y -> icmp sle X, Y 2793 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 2794 match(B, m_AllOnes())) 2795 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 2796 2797 // icmp sge (X + -1), Y -> icmp sgt X, Y 2798 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 2799 match(B, m_AllOnes())) 2800 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 2801 2802 // icmp sle (X + 1), Y -> icmp slt X, Y 2803 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 2804 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 2805 2806 // icmp sgt (X + 1), Y -> icmp sge X, Y 2807 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 2808 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 2809 2810 // icmp sgt X, (Y + -1) -> icmp sge X, Y 2811 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 2812 match(D, m_AllOnes())) 2813 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 2814 2815 // icmp sle X, (Y + -1) -> icmp slt X, Y 2816 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 2817 match(D, m_AllOnes())) 2818 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 2819 2820 // icmp sge X, (Y + 1) -> icmp sgt X, Y 2821 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 2822 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 2823 2824 // icmp slt X, (Y + 1) -> icmp sle X, Y 2825 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 2826 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 2827 2828 // if C1 has greater magnitude than C2: 2829 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 2830 // s.t. C3 = C1 - C2 2831 // 2832 // if C2 has greater magnitude than C1: 2833 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 2834 // s.t. C3 = C2 - C1 2835 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 2836 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 2837 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 2838 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 2839 const APInt &AP1 = C1->getValue(); 2840 const APInt &AP2 = C2->getValue(); 2841 if (AP1.isNegative() == AP2.isNegative()) { 2842 APInt AP1Abs = C1->getValue().abs(); 2843 APInt AP2Abs = C2->getValue().abs(); 2844 if (AP1Abs.uge(AP2Abs)) { 2845 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 2846 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 2847 return new ICmpInst(Pred, NewAdd, C); 2848 } else { 2849 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 2850 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 2851 return new ICmpInst(Pred, A, NewAdd); 2852 } 2853 } 2854 } 2855 2856 // Analyze the case when either Op0 or Op1 is a sub instruction. 2857 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2858 A = nullptr; 2859 B = nullptr; 2860 C = nullptr; 2861 D = nullptr; 2862 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 2863 A = BO0->getOperand(0); 2864 B = BO0->getOperand(1); 2865 } 2866 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 2867 C = BO1->getOperand(0); 2868 D = BO1->getOperand(1); 2869 } 2870 2871 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 2872 if (A == Op1 && NoOp0WrapProblem) 2873 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 2874 2875 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 2876 if (C == Op0 && NoOp1WrapProblem) 2877 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 2878 2879 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 2880 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 2881 // Try not to increase register pressure. 2882 BO0->hasOneUse() && BO1->hasOneUse()) 2883 return new ICmpInst(Pred, A, C); 2884 2885 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 2886 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 2887 // Try not to increase register pressure. 2888 BO0->hasOneUse() && BO1->hasOneUse()) 2889 return new ICmpInst(Pred, D, B); 2890 2891 // icmp (0-X) < cst --> x > -cst 2892 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 2893 Value *X; 2894 if (match(BO0, m_Neg(m_Value(X)))) 2895 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 2896 if (!RHSC->isMinValue(/*isSigned=*/true)) 2897 return new ICmpInst(I.getSwappedPredicate(), X, 2898 ConstantExpr::getNeg(RHSC)); 2899 } 2900 2901 BinaryOperator *SRem = nullptr; 2902 // icmp (srem X, Y), Y 2903 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 2904 SRem = BO0; 2905 // icmp Y, (srem X, Y) 2906 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 2907 Op0 == BO1->getOperand(1)) 2908 SRem = BO1; 2909 if (SRem) { 2910 // We don't check hasOneUse to avoid increasing register pressure because 2911 // the value we use is the same value this instruction was already using. 2912 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 2913 default: 2914 break; 2915 case ICmpInst::ICMP_EQ: 2916 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2917 case ICmpInst::ICMP_NE: 2918 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2919 case ICmpInst::ICMP_SGT: 2920 case ICmpInst::ICMP_SGE: 2921 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 2922 Constant::getAllOnesValue(SRem->getType())); 2923 case ICmpInst::ICMP_SLT: 2924 case ICmpInst::ICMP_SLE: 2925 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 2926 Constant::getNullValue(SRem->getType())); 2927 } 2928 } 2929 2930 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 2931 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 2932 switch (BO0->getOpcode()) { 2933 default: 2934 break; 2935 case Instruction::Add: 2936 case Instruction::Sub: 2937 case Instruction::Xor: 2938 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 2939 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2940 BO1->getOperand(0)); 2941 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 2942 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2943 if (CI->getValue().isSignBit()) { 2944 ICmpInst::Predicate Pred = 2945 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 2946 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 2947 } 2948 2949 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) { 2950 ICmpInst::Predicate Pred = 2951 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 2952 Pred = I.getSwappedPredicate(Pred); 2953 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 2954 } 2955 } 2956 break; 2957 case Instruction::Mul: 2958 if (!I.isEquality()) 2959 break; 2960 2961 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2962 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 2963 // Mask = -1 >> count-trailing-zeros(Cst). 2964 if (!CI->isZero() && !CI->isOne()) { 2965 const APInt &AP = CI->getValue(); 2966 ConstantInt *Mask = ConstantInt::get( 2967 I.getContext(), 2968 APInt::getLowBitsSet(AP.getBitWidth(), 2969 AP.getBitWidth() - AP.countTrailingZeros())); 2970 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 2971 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 2972 return new ICmpInst(I.getPredicate(), And1, And2); 2973 } 2974 } 2975 break; 2976 case Instruction::UDiv: 2977 case Instruction::LShr: 2978 if (I.isSigned()) 2979 break; 2980 LLVM_FALLTHROUGH; 2981 case Instruction::SDiv: 2982 case Instruction::AShr: 2983 if (!BO0->isExact() || !BO1->isExact()) 2984 break; 2985 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2986 BO1->getOperand(0)); 2987 case Instruction::Shl: { 2988 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 2989 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 2990 if (!NUW && !NSW) 2991 break; 2992 if (!NSW && I.isSigned()) 2993 break; 2994 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2995 BO1->getOperand(0)); 2996 } 2997 } 2998 } 2999 3000 if (BO0) { 3001 // Transform A & (L - 1) `ult` L --> L != 0 3002 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3003 auto BitwiseAnd = 3004 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 3005 3006 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 3007 auto *Zero = Constant::getNullValue(BO0->getType()); 3008 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3009 } 3010 } 3011 3012 return nullptr; 3013 } 3014 3015 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3016 if (!I.isEquality()) 3017 return nullptr; 3018 3019 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3020 Value *A, *B, *C, *D; 3021 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3022 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3023 Value *OtherVal = A == Op1 ? B : A; 3024 return new ICmpInst(I.getPredicate(), OtherVal, 3025 Constant::getNullValue(A->getType())); 3026 } 3027 3028 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3029 // A^c1 == C^c2 --> A == C^(c1^c2) 3030 ConstantInt *C1, *C2; 3031 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3032 Op1->hasOneUse()) { 3033 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 3034 Value *Xor = Builder->CreateXor(C, NC); 3035 return new ICmpInst(I.getPredicate(), A, Xor); 3036 } 3037 3038 // A^B == A^D -> B == D 3039 if (A == C) 3040 return new ICmpInst(I.getPredicate(), B, D); 3041 if (A == D) 3042 return new ICmpInst(I.getPredicate(), B, C); 3043 if (B == C) 3044 return new ICmpInst(I.getPredicate(), A, D); 3045 if (B == D) 3046 return new ICmpInst(I.getPredicate(), A, C); 3047 } 3048 } 3049 3050 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3051 // A == (A^B) -> B == 0 3052 Value *OtherVal = A == Op0 ? B : A; 3053 return new ICmpInst(I.getPredicate(), OtherVal, 3054 Constant::getNullValue(A->getType())); 3055 } 3056 3057 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3058 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3059 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3060 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3061 3062 if (A == C) { 3063 X = B; 3064 Y = D; 3065 Z = A; 3066 } else if (A == D) { 3067 X = B; 3068 Y = C; 3069 Z = A; 3070 } else if (B == C) { 3071 X = A; 3072 Y = D; 3073 Z = B; 3074 } else if (B == D) { 3075 X = A; 3076 Y = C; 3077 Z = B; 3078 } 3079 3080 if (X) { // Build (X^Y) & Z 3081 Op1 = Builder->CreateXor(X, Y); 3082 Op1 = Builder->CreateAnd(Op1, Z); 3083 I.setOperand(0, Op1); 3084 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3085 return &I; 3086 } 3087 } 3088 3089 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3090 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3091 ConstantInt *Cst1; 3092 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3093 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3094 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3095 match(Op1, m_ZExt(m_Value(A))))) { 3096 APInt Pow2 = Cst1->getValue() + 1; 3097 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3098 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3099 return new ICmpInst(I.getPredicate(), A, 3100 Builder->CreateTrunc(B, A->getType())); 3101 } 3102 3103 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3104 // For lshr and ashr pairs. 3105 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3106 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3107 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3108 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3109 unsigned TypeBits = Cst1->getBitWidth(); 3110 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3111 if (ShAmt < TypeBits && ShAmt != 0) { 3112 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 3113 ? ICmpInst::ICMP_UGE 3114 : ICmpInst::ICMP_ULT; 3115 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3116 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3117 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 3118 } 3119 } 3120 3121 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3122 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3123 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3124 unsigned TypeBits = Cst1->getBitWidth(); 3125 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3126 if (ShAmt < TypeBits && ShAmt != 0) { 3127 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3128 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3129 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 3130 I.getName() + ".mask"); 3131 return new ICmpInst(I.getPredicate(), And, 3132 Constant::getNullValue(Cst1->getType())); 3133 } 3134 } 3135 3136 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3137 // "icmp (and X, mask), cst" 3138 uint64_t ShAmt = 0; 3139 if (Op0->hasOneUse() && 3140 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3141 match(Op1, m_ConstantInt(Cst1)) && 3142 // Only do this when A has multiple uses. This is most important to do 3143 // when it exposes other optimizations. 3144 !A->hasOneUse()) { 3145 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3146 3147 if (ShAmt < ASize) { 3148 APInt MaskV = 3149 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3150 MaskV <<= ShAmt; 3151 3152 APInt CmpV = Cst1->getValue().zext(ASize); 3153 CmpV <<= ShAmt; 3154 3155 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 3156 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 3157 } 3158 } 3159 3160 return nullptr; 3161 } 3162 3163 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3164 /// far. 3165 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3166 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3167 Value *LHSCIOp = LHSCI->getOperand(0); 3168 Type *SrcTy = LHSCIOp->getType(); 3169 Type *DestTy = LHSCI->getType(); 3170 Value *RHSCIOp; 3171 3172 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3173 // integer type is the same size as the pointer type. 3174 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3175 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 3176 Value *RHSOp = nullptr; 3177 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3178 Value *RHSCIOp = RHSC->getOperand(0); 3179 if (RHSCIOp->getType()->getPointerAddressSpace() == 3180 LHSCIOp->getType()->getPointerAddressSpace()) { 3181 RHSOp = RHSC->getOperand(0); 3182 // If the pointer types don't match, insert a bitcast. 3183 if (LHSCIOp->getType() != RHSOp->getType()) 3184 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 3185 } 3186 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3187 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3188 } 3189 3190 if (RHSOp) 3191 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3192 } 3193 3194 // The code below only handles extension cast instructions, so far. 3195 // Enforce this. 3196 if (LHSCI->getOpcode() != Instruction::ZExt && 3197 LHSCI->getOpcode() != Instruction::SExt) 3198 return nullptr; 3199 3200 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3201 bool isSignedCmp = ICmp.isSigned(); 3202 3203 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3204 // Not an extension from the same type? 3205 RHSCIOp = CI->getOperand(0); 3206 if (RHSCIOp->getType() != LHSCIOp->getType()) 3207 return nullptr; 3208 3209 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3210 // and the other is a zext), then we can't handle this. 3211 if (CI->getOpcode() != LHSCI->getOpcode()) 3212 return nullptr; 3213 3214 // Deal with equality cases early. 3215 if (ICmp.isEquality()) 3216 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3217 3218 // A signed comparison of sign extended values simplifies into a 3219 // signed comparison. 3220 if (isSignedCmp && isSignedExt) 3221 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3222 3223 // The other three cases all fold into an unsigned comparison. 3224 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3225 } 3226 3227 // If we aren't dealing with a constant on the RHS, exit early. 3228 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3229 if (!C) 3230 return nullptr; 3231 3232 // Compute the constant that would happen if we truncated to SrcTy then 3233 // re-extended to DestTy. 3234 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3235 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3236 3237 // If the re-extended constant didn't change... 3238 if (Res2 == C) { 3239 // Deal with equality cases early. 3240 if (ICmp.isEquality()) 3241 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3242 3243 // A signed comparison of sign extended values simplifies into a 3244 // signed comparison. 3245 if (isSignedExt && isSignedCmp) 3246 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3247 3248 // The other three cases all fold into an unsigned comparison. 3249 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3250 } 3251 3252 // The re-extended constant changed, partly changed (in the case of a vector), 3253 // or could not be determined to be equal (in the case of a constant 3254 // expression), so the constant cannot be represented in the shorter type. 3255 // Consequently, we cannot emit a simple comparison. 3256 // All the cases that fold to true or false will have already been handled 3257 // by SimplifyICmpInst, so only deal with the tricky case. 3258 3259 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3260 return nullptr; 3261 3262 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3263 // should have been folded away previously and not enter in here. 3264 3265 // We're performing an unsigned comp with a sign extended value. 3266 // This is true if the input is >= 0. [aka >s -1] 3267 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3268 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3269 3270 // Finally, return the value computed. 3271 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3272 return replaceInstUsesWith(ICmp, Result); 3273 3274 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3275 return BinaryOperator::CreateNot(Result); 3276 } 3277 3278 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3279 Value *RHS, Instruction &OrigI, 3280 Value *&Result, Constant *&Overflow) { 3281 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3282 std::swap(LHS, RHS); 3283 3284 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3285 Result = OpResult; 3286 Overflow = OverflowVal; 3287 if (ReuseName) 3288 Result->takeName(&OrigI); 3289 return true; 3290 }; 3291 3292 // If the overflow check was an add followed by a compare, the insertion point 3293 // may be pointing to the compare. We want to insert the new instructions 3294 // before the add in case there are uses of the add between the add and the 3295 // compare. 3296 Builder->SetInsertPoint(&OrigI); 3297 3298 switch (OCF) { 3299 case OCF_INVALID: 3300 llvm_unreachable("bad overflow check kind!"); 3301 3302 case OCF_UNSIGNED_ADD: { 3303 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3304 if (OR == OverflowResult::NeverOverflows) 3305 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 3306 true); 3307 3308 if (OR == OverflowResult::AlwaysOverflows) 3309 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 3310 3311 // Fall through uadd into sadd 3312 LLVM_FALLTHROUGH; 3313 } 3314 case OCF_SIGNED_ADD: { 3315 // X + 0 -> {X, false} 3316 if (match(RHS, m_Zero())) 3317 return SetResult(LHS, Builder->getFalse(), false); 3318 3319 // We can strength reduce this signed add into a regular add if we can prove 3320 // that it will never overflow. 3321 if (OCF == OCF_SIGNED_ADD) 3322 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 3323 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 3324 true); 3325 break; 3326 } 3327 3328 case OCF_UNSIGNED_SUB: 3329 case OCF_SIGNED_SUB: { 3330 // X - 0 -> {X, false} 3331 if (match(RHS, m_Zero())) 3332 return SetResult(LHS, Builder->getFalse(), false); 3333 3334 if (OCF == OCF_SIGNED_SUB) { 3335 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 3336 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 3337 true); 3338 } else { 3339 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 3340 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 3341 true); 3342 } 3343 break; 3344 } 3345 3346 case OCF_UNSIGNED_MUL: { 3347 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 3348 if (OR == OverflowResult::NeverOverflows) 3349 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 3350 true); 3351 if (OR == OverflowResult::AlwaysOverflows) 3352 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 3353 LLVM_FALLTHROUGH; 3354 } 3355 case OCF_SIGNED_MUL: 3356 // X * undef -> undef 3357 if (isa<UndefValue>(RHS)) 3358 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 3359 3360 // X * 0 -> {0, false} 3361 if (match(RHS, m_Zero())) 3362 return SetResult(RHS, Builder->getFalse(), false); 3363 3364 // X * 1 -> {X, false} 3365 if (match(RHS, m_One())) 3366 return SetResult(LHS, Builder->getFalse(), false); 3367 3368 if (OCF == OCF_SIGNED_MUL) 3369 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 3370 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 3371 true); 3372 break; 3373 } 3374 3375 return false; 3376 } 3377 3378 /// \brief Recognize and process idiom involving test for multiplication 3379 /// overflow. 3380 /// 3381 /// The caller has matched a pattern of the form: 3382 /// I = cmp u (mul(zext A, zext B), V 3383 /// The function checks if this is a test for overflow and if so replaces 3384 /// multiplication with call to 'mul.with.overflow' intrinsic. 3385 /// 3386 /// \param I Compare instruction. 3387 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 3388 /// the compare instruction. Must be of integer type. 3389 /// \param OtherVal The other argument of compare instruction. 3390 /// \returns Instruction which must replace the compare instruction, NULL if no 3391 /// replacement required. 3392 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 3393 Value *OtherVal, InstCombiner &IC) { 3394 // Don't bother doing this transformation for pointers, don't do it for 3395 // vectors. 3396 if (!isa<IntegerType>(MulVal->getType())) 3397 return nullptr; 3398 3399 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 3400 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 3401 auto *MulInstr = dyn_cast<Instruction>(MulVal); 3402 if (!MulInstr) 3403 return nullptr; 3404 assert(MulInstr->getOpcode() == Instruction::Mul); 3405 3406 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 3407 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 3408 assert(LHS->getOpcode() == Instruction::ZExt); 3409 assert(RHS->getOpcode() == Instruction::ZExt); 3410 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 3411 3412 // Calculate type and width of the result produced by mul.with.overflow. 3413 Type *TyA = A->getType(), *TyB = B->getType(); 3414 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 3415 WidthB = TyB->getPrimitiveSizeInBits(); 3416 unsigned MulWidth; 3417 Type *MulType; 3418 if (WidthB > WidthA) { 3419 MulWidth = WidthB; 3420 MulType = TyB; 3421 } else { 3422 MulWidth = WidthA; 3423 MulType = TyA; 3424 } 3425 3426 // In order to replace the original mul with a narrower mul.with.overflow, 3427 // all uses must ignore upper bits of the product. The number of used low 3428 // bits must be not greater than the width of mul.with.overflow. 3429 if (MulVal->hasNUsesOrMore(2)) 3430 for (User *U : MulVal->users()) { 3431 if (U == &I) 3432 continue; 3433 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3434 // Check if truncation ignores bits above MulWidth. 3435 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 3436 if (TruncWidth > MulWidth) 3437 return nullptr; 3438 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3439 // Check if AND ignores bits above MulWidth. 3440 if (BO->getOpcode() != Instruction::And) 3441 return nullptr; 3442 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 3443 const APInt &CVal = CI->getValue(); 3444 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 3445 return nullptr; 3446 } 3447 } else { 3448 // Other uses prohibit this transformation. 3449 return nullptr; 3450 } 3451 } 3452 3453 // Recognize patterns 3454 switch (I.getPredicate()) { 3455 case ICmpInst::ICMP_EQ: 3456 case ICmpInst::ICMP_NE: 3457 // Recognize pattern: 3458 // mulval = mul(zext A, zext B) 3459 // cmp eq/neq mulval, zext trunc mulval 3460 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 3461 if (Zext->hasOneUse()) { 3462 Value *ZextArg = Zext->getOperand(0); 3463 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 3464 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 3465 break; //Recognized 3466 } 3467 3468 // Recognize pattern: 3469 // mulval = mul(zext A, zext B) 3470 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 3471 ConstantInt *CI; 3472 Value *ValToMask; 3473 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 3474 if (ValToMask != MulVal) 3475 return nullptr; 3476 const APInt &CVal = CI->getValue() + 1; 3477 if (CVal.isPowerOf2()) { 3478 unsigned MaskWidth = CVal.logBase2(); 3479 if (MaskWidth == MulWidth) 3480 break; // Recognized 3481 } 3482 } 3483 return nullptr; 3484 3485 case ICmpInst::ICMP_UGT: 3486 // Recognize pattern: 3487 // mulval = mul(zext A, zext B) 3488 // cmp ugt mulval, max 3489 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3490 APInt MaxVal = APInt::getMaxValue(MulWidth); 3491 MaxVal = MaxVal.zext(CI->getBitWidth()); 3492 if (MaxVal.eq(CI->getValue())) 3493 break; // Recognized 3494 } 3495 return nullptr; 3496 3497 case ICmpInst::ICMP_UGE: 3498 // Recognize pattern: 3499 // mulval = mul(zext A, zext B) 3500 // cmp uge mulval, max+1 3501 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3502 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3503 if (MaxVal.eq(CI->getValue())) 3504 break; // Recognized 3505 } 3506 return nullptr; 3507 3508 case ICmpInst::ICMP_ULE: 3509 // Recognize pattern: 3510 // mulval = mul(zext A, zext B) 3511 // cmp ule mulval, max 3512 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3513 APInt MaxVal = APInt::getMaxValue(MulWidth); 3514 MaxVal = MaxVal.zext(CI->getBitWidth()); 3515 if (MaxVal.eq(CI->getValue())) 3516 break; // Recognized 3517 } 3518 return nullptr; 3519 3520 case ICmpInst::ICMP_ULT: 3521 // Recognize pattern: 3522 // mulval = mul(zext A, zext B) 3523 // cmp ule mulval, max + 1 3524 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3525 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3526 if (MaxVal.eq(CI->getValue())) 3527 break; // Recognized 3528 } 3529 return nullptr; 3530 3531 default: 3532 return nullptr; 3533 } 3534 3535 InstCombiner::BuilderTy *Builder = IC.Builder; 3536 Builder->SetInsertPoint(MulInstr); 3537 3538 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 3539 Value *MulA = A, *MulB = B; 3540 if (WidthA < MulWidth) 3541 MulA = Builder->CreateZExt(A, MulType); 3542 if (WidthB < MulWidth) 3543 MulB = Builder->CreateZExt(B, MulType); 3544 Value *F = Intrinsic::getDeclaration(I.getModule(), 3545 Intrinsic::umul_with_overflow, MulType); 3546 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 3547 IC.Worklist.Add(MulInstr); 3548 3549 // If there are uses of mul result other than the comparison, we know that 3550 // they are truncation or binary AND. Change them to use result of 3551 // mul.with.overflow and adjust properly mask/size. 3552 if (MulVal->hasNUsesOrMore(2)) { 3553 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 3554 for (User *U : MulVal->users()) { 3555 if (U == &I || U == OtherVal) 3556 continue; 3557 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3558 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 3559 IC.replaceInstUsesWith(*TI, Mul); 3560 else 3561 TI->setOperand(0, Mul); 3562 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3563 assert(BO->getOpcode() == Instruction::And); 3564 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 3565 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 3566 APInt ShortMask = CI->getValue().trunc(MulWidth); 3567 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 3568 Instruction *Zext = 3569 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 3570 IC.Worklist.Add(Zext); 3571 IC.replaceInstUsesWith(*BO, Zext); 3572 } else { 3573 llvm_unreachable("Unexpected Binary operation"); 3574 } 3575 IC.Worklist.Add(cast<Instruction>(U)); 3576 } 3577 } 3578 if (isa<Instruction>(OtherVal)) 3579 IC.Worklist.Add(cast<Instruction>(OtherVal)); 3580 3581 // The original icmp gets replaced with the overflow value, maybe inverted 3582 // depending on predicate. 3583 bool Inverse = false; 3584 switch (I.getPredicate()) { 3585 case ICmpInst::ICMP_NE: 3586 break; 3587 case ICmpInst::ICMP_EQ: 3588 Inverse = true; 3589 break; 3590 case ICmpInst::ICMP_UGT: 3591 case ICmpInst::ICMP_UGE: 3592 if (I.getOperand(0) == MulVal) 3593 break; 3594 Inverse = true; 3595 break; 3596 case ICmpInst::ICMP_ULT: 3597 case ICmpInst::ICMP_ULE: 3598 if (I.getOperand(1) == MulVal) 3599 break; 3600 Inverse = true; 3601 break; 3602 default: 3603 llvm_unreachable("Unexpected predicate"); 3604 } 3605 if (Inverse) { 3606 Value *Res = Builder->CreateExtractValue(Call, 1); 3607 return BinaryOperator::CreateNot(Res); 3608 } 3609 3610 return ExtractValueInst::Create(Call, 1); 3611 } 3612 3613 /// When performing a comparison against a constant, it is possible that not all 3614 /// the bits in the LHS are demanded. This helper method computes the mask that 3615 /// IS demanded. 3616 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth, 3617 bool isSignCheck) { 3618 if (isSignCheck) 3619 return APInt::getSignBit(BitWidth); 3620 3621 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3622 if (!CI) return APInt::getAllOnesValue(BitWidth); 3623 const APInt &RHS = CI->getValue(); 3624 3625 switch (I.getPredicate()) { 3626 // For a UGT comparison, we don't care about any bits that 3627 // correspond to the trailing ones of the comparand. The value of these 3628 // bits doesn't impact the outcome of the comparison, because any value 3629 // greater than the RHS must differ in a bit higher than these due to carry. 3630 case ICmpInst::ICMP_UGT: { 3631 unsigned trailingOnes = RHS.countTrailingOnes(); 3632 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 3633 return ~lowBitsSet; 3634 } 3635 3636 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 3637 // Any value less than the RHS must differ in a higher bit because of carries. 3638 case ICmpInst::ICMP_ULT: { 3639 unsigned trailingZeros = RHS.countTrailingZeros(); 3640 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 3641 return ~lowBitsSet; 3642 } 3643 3644 default: 3645 return APInt::getAllOnesValue(BitWidth); 3646 } 3647 } 3648 3649 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 3650 /// should be swapped. 3651 /// The decision is based on how many times these two operands are reused 3652 /// as subtract operands and their positions in those instructions. 3653 /// The rational is that several architectures use the same instruction for 3654 /// both subtract and cmp, thus it is better if the order of those operands 3655 /// match. 3656 /// \return true if Op0 and Op1 should be swapped. 3657 static bool swapMayExposeCSEOpportunities(const Value * Op0, 3658 const Value * Op1) { 3659 // Filter out pointer value as those cannot appears directly in subtract. 3660 // FIXME: we may want to go through inttoptrs or bitcasts. 3661 if (Op0->getType()->isPointerTy()) 3662 return false; 3663 // Count every uses of both Op0 and Op1 in a subtract. 3664 // Each time Op0 is the first operand, count -1: swapping is bad, the 3665 // subtract has already the same layout as the compare. 3666 // Each time Op0 is the second operand, count +1: swapping is good, the 3667 // subtract has a different layout as the compare. 3668 // At the end, if the benefit is greater than 0, Op0 should come second to 3669 // expose more CSE opportunities. 3670 int GlobalSwapBenefits = 0; 3671 for (const User *U : Op0->users()) { 3672 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 3673 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 3674 continue; 3675 // If Op0 is the first argument, this is not beneficial to swap the 3676 // arguments. 3677 int LocalSwapBenefits = -1; 3678 unsigned Op1Idx = 1; 3679 if (BinOp->getOperand(Op1Idx) == Op0) { 3680 Op1Idx = 0; 3681 LocalSwapBenefits = 1; 3682 } 3683 if (BinOp->getOperand(Op1Idx) != Op1) 3684 continue; 3685 GlobalSwapBenefits += LocalSwapBenefits; 3686 } 3687 return GlobalSwapBenefits > 0; 3688 } 3689 3690 /// \brief Check that one use is in the same block as the definition and all 3691 /// other uses are in blocks dominated by a given block. 3692 /// 3693 /// \param DI Definition 3694 /// \param UI Use 3695 /// \param DB Block that must dominate all uses of \p DI outside 3696 /// the parent block 3697 /// \return true when \p UI is the only use of \p DI in the parent block 3698 /// and all other uses of \p DI are in blocks dominated by \p DB. 3699 /// 3700 bool InstCombiner::dominatesAllUses(const Instruction *DI, 3701 const Instruction *UI, 3702 const BasicBlock *DB) const { 3703 assert(DI && UI && "Instruction not defined\n"); 3704 // Ignore incomplete definitions. 3705 if (!DI->getParent()) 3706 return false; 3707 // DI and UI must be in the same block. 3708 if (DI->getParent() != UI->getParent()) 3709 return false; 3710 // Protect from self-referencing blocks. 3711 if (DI->getParent() == DB) 3712 return false; 3713 for (const User *U : DI->users()) { 3714 auto *Usr = cast<Instruction>(U); 3715 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 3716 return false; 3717 } 3718 return true; 3719 } 3720 3721 /// Return true when the instruction sequence within a block is select-cmp-br. 3722 static bool isChainSelectCmpBranch(const SelectInst *SI) { 3723 const BasicBlock *BB = SI->getParent(); 3724 if (!BB) 3725 return false; 3726 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 3727 if (!BI || BI->getNumSuccessors() != 2) 3728 return false; 3729 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3730 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3731 return false; 3732 return true; 3733 } 3734 3735 /// \brief True when a select result is replaced by one of its operands 3736 /// in select-icmp sequence. This will eventually result in the elimination 3737 /// of the select. 3738 /// 3739 /// \param SI Select instruction 3740 /// \param Icmp Compare instruction 3741 /// \param SIOpd Operand that replaces the select 3742 /// 3743 /// Notes: 3744 /// - The replacement is global and requires dominator information 3745 /// - The caller is responsible for the actual replacement 3746 /// 3747 /// Example: 3748 /// 3749 /// entry: 3750 /// %4 = select i1 %3, %C* %0, %C* null 3751 /// %5 = icmp eq %C* %4, null 3752 /// br i1 %5, label %9, label %7 3753 /// ... 3754 /// ; <label>:7 ; preds = %entry 3755 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3756 /// ... 3757 /// 3758 /// can be transformed to 3759 /// 3760 /// %5 = icmp eq %C* %0, null 3761 /// %6 = select i1 %3, i1 %5, i1 true 3762 /// br i1 %6, label %9, label %7 3763 /// ... 3764 /// ; <label>:7 ; preds = %entry 3765 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 3766 /// 3767 /// Similar when the first operand of the select is a constant or/and 3768 /// the compare is for not equal rather than equal. 3769 /// 3770 /// NOTE: The function is only called when the select and compare constants 3771 /// are equal, the optimization can work only for EQ predicates. This is not a 3772 /// major restriction since a NE compare should be 'normalized' to an equal 3773 /// compare, which usually happens in the combiner and test case 3774 /// select-cmp-br.ll checks for it. 3775 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 3776 const ICmpInst *Icmp, 3777 const unsigned SIOpd) { 3778 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 3779 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 3780 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 3781 // The check for the unique predecessor is not the best that can be 3782 // done. But it protects efficiently against cases like when SI's 3783 // home block has two successors, Succ and Succ1, and Succ1 predecessor 3784 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 3785 // replaced can be reached on either path. So the uniqueness check 3786 // guarantees that the path all uses of SI (outside SI's parent) are on 3787 // is disjoint from all other paths out of SI. But that information 3788 // is more expensive to compute, and the trade-off here is in favor 3789 // of compile-time. 3790 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 3791 NumSel++; 3792 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 3793 return true; 3794 } 3795 } 3796 return false; 3797 } 3798 3799 /// Try to fold the comparison based on range information we can get by checking 3800 /// whether bits are known to be zero or one in the inputs. 3801 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 3802 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3803 Type *Ty = Op0->getType(); 3804 ICmpInst::Predicate Pred = I.getPredicate(); 3805 3806 // Get scalar or pointer size. 3807 unsigned BitWidth = Ty->isIntOrIntVectorTy() 3808 ? Ty->getScalarSizeInBits() 3809 : DL.getTypeSizeInBits(Ty->getScalarType()); 3810 3811 if (!BitWidth) 3812 return nullptr; 3813 3814 // If this is a normal comparison, it demands all bits. If it is a sign bit 3815 // comparison, it only demands the sign bit. 3816 bool IsSignBit = false; 3817 const APInt *CmpC; 3818 if (match(Op1, m_APInt(CmpC))) { 3819 bool UnusedBit; 3820 IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit); 3821 } 3822 3823 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 3824 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 3825 3826 if (SimplifyDemandedBits(I.getOperandUse(0), 3827 getDemandedBitsLHSMask(I, BitWidth, IsSignBit), 3828 Op0KnownZero, Op0KnownOne, 0)) 3829 return &I; 3830 3831 if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth), 3832 Op1KnownZero, Op1KnownOne, 0)) 3833 return &I; 3834 3835 // Given the known and unknown bits, compute a range that the LHS could be 3836 // in. Compute the Min, Max and RHS values based on the known bits. For the 3837 // EQ and NE we use unsigned values. 3838 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 3839 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 3840 if (I.isSigned()) { 3841 computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min, 3842 Op0Max); 3843 computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min, 3844 Op1Max); 3845 } else { 3846 computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min, 3847 Op0Max); 3848 computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min, 3849 Op1Max); 3850 } 3851 3852 // If Min and Max are known to be the same, then SimplifyDemandedBits 3853 // figured out that the LHS is a constant. Constant fold this now, so that 3854 // code below can assume that Min != Max. 3855 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 3856 return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1); 3857 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 3858 return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min)); 3859 3860 // Based on the range information we know about the LHS, see if we can 3861 // simplify this comparison. For example, (x&4) < 8 is always true. 3862 switch (Pred) { 3863 default: 3864 llvm_unreachable("Unknown icmp opcode!"); 3865 case ICmpInst::ICMP_EQ: 3866 case ICmpInst::ICMP_NE: { 3867 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 3868 return Pred == CmpInst::ICMP_EQ 3869 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 3870 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3871 } 3872 3873 // If all bits are known zero except for one, then we know at most one bit 3874 // is set. If the comparison is against zero, then this is a check to see if 3875 // *that* bit is set. 3876 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3877 if (~Op1KnownZero == 0) { 3878 // If the LHS is an AND with the same constant, look through it. 3879 Value *LHS = nullptr; 3880 const APInt *LHSC; 3881 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 3882 *LHSC != Op0KnownZeroInverted) 3883 LHS = Op0; 3884 3885 Value *X; 3886 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3887 APInt ValToCheck = Op0KnownZeroInverted; 3888 Type *XTy = X->getType(); 3889 if (ValToCheck.isPowerOf2()) { 3890 // ((1 << X) & 8) == 0 -> X != 3 3891 // ((1 << X) & 8) != 0 -> X == 3 3892 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 3893 auto NewPred = ICmpInst::getInversePredicate(Pred); 3894 return new ICmpInst(NewPred, X, CmpC); 3895 } else if ((++ValToCheck).isPowerOf2()) { 3896 // ((1 << X) & 7) == 0 -> X >= 3 3897 // ((1 << X) & 7) != 0 -> X < 3 3898 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 3899 auto NewPred = 3900 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 3901 return new ICmpInst(NewPred, X, CmpC); 3902 } 3903 } 3904 3905 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 3906 const APInt *CI; 3907 if (Op0KnownZeroInverted == 1 && 3908 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 3909 // ((8 >>u X) & 1) == 0 -> X != 3 3910 // ((8 >>u X) & 1) != 0 -> X == 3 3911 unsigned CmpVal = CI->countTrailingZeros(); 3912 auto NewPred = ICmpInst::getInversePredicate(Pred); 3913 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 3914 } 3915 } 3916 break; 3917 } 3918 case ICmpInst::ICMP_ULT: { 3919 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 3920 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3921 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 3922 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3923 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 3924 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3925 3926 const APInt *CmpC; 3927 if (match(Op1, m_APInt(CmpC))) { 3928 // A <u C -> A == C-1 if min(A)+1 == C 3929 if (Op1Max == Op0Min + 1) { 3930 Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1); 3931 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1); 3932 } 3933 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 3934 if (CmpC->isMinSignedValue()) { 3935 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 3936 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 3937 } 3938 } 3939 break; 3940 } 3941 case ICmpInst::ICMP_UGT: { 3942 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 3943 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3944 3945 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 3946 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3947 3948 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 3949 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3950 3951 const APInt *CmpC; 3952 if (match(Op1, m_APInt(CmpC))) { 3953 // A >u C -> A == C+1 if max(a)-1 == C 3954 if (*CmpC == Op0Max - 1) 3955 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3956 ConstantInt::get(Op1->getType(), *CmpC + 1)); 3957 3958 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 3959 if (CmpC->isMaxSignedValue()) 3960 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3961 Constant::getNullValue(Op0->getType())); 3962 } 3963 break; 3964 } 3965 case ICmpInst::ICMP_SLT: 3966 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 3967 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3968 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 3969 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3970 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 3971 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3972 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3973 if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 3974 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3975 Builder->getInt(CI->getValue() - 1)); 3976 } 3977 break; 3978 case ICmpInst::ICMP_SGT: 3979 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 3980 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3981 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 3982 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3983 3984 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 3985 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3986 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3987 if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 3988 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3989 Builder->getInt(CI->getValue() + 1)); 3990 } 3991 break; 3992 case ICmpInst::ICMP_SGE: 3993 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 3994 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 3995 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3996 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 3997 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3998 break; 3999 case ICmpInst::ICMP_SLE: 4000 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4001 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4002 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4003 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4004 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4005 break; 4006 case ICmpInst::ICMP_UGE: 4007 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4008 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4009 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4010 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4011 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4012 break; 4013 case ICmpInst::ICMP_ULE: 4014 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4015 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4016 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4017 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4018 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4019 break; 4020 } 4021 4022 // Turn a signed comparison into an unsigned one if both operands are known to 4023 // have the same sign. 4024 if (I.isSigned() && 4025 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 4026 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 4027 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4028 4029 return nullptr; 4030 } 4031 4032 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4033 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4034 /// allows them to be folded in visitICmpInst. 4035 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4036 ICmpInst::Predicate Pred = I.getPredicate(); 4037 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4038 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4039 return nullptr; 4040 4041 Value *Op0 = I.getOperand(0); 4042 Value *Op1 = I.getOperand(1); 4043 auto *Op1C = dyn_cast<Constant>(Op1); 4044 if (!Op1C) 4045 return nullptr; 4046 4047 // Check if the constant operand can be safely incremented/decremented without 4048 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4049 // the edge cases for us, so we just assert on them. For vectors, we must 4050 // handle the edge cases. 4051 Type *Op1Type = Op1->getType(); 4052 bool IsSigned = I.isSigned(); 4053 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4054 auto *CI = dyn_cast<ConstantInt>(Op1C); 4055 if (CI) { 4056 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4057 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4058 } else if (Op1Type->isVectorTy()) { 4059 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4060 // are for scalar, we could remove the min/max checks. However, to do that, 4061 // we would have to use insertelement/shufflevector to replace edge values. 4062 unsigned NumElts = Op1Type->getVectorNumElements(); 4063 for (unsigned i = 0; i != NumElts; ++i) { 4064 Constant *Elt = Op1C->getAggregateElement(i); 4065 if (!Elt) 4066 return nullptr; 4067 4068 if (isa<UndefValue>(Elt)) 4069 continue; 4070 4071 // Bail out if we can't determine if this constant is min/max or if we 4072 // know that this constant is min/max. 4073 auto *CI = dyn_cast<ConstantInt>(Elt); 4074 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4075 return nullptr; 4076 } 4077 } else { 4078 // ConstantExpr? 4079 return nullptr; 4080 } 4081 4082 // Increment or decrement the constant and set the new comparison predicate: 4083 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4084 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4085 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4086 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4087 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4088 } 4089 4090 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4091 bool Changed = false; 4092 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4093 unsigned Op0Cplxity = getComplexity(Op0); 4094 unsigned Op1Cplxity = getComplexity(Op1); 4095 4096 /// Orders the operands of the compare so that they are listed from most 4097 /// complex to least complex. This puts constants before unary operators, 4098 /// before binary operators. 4099 if (Op0Cplxity < Op1Cplxity || 4100 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4101 I.swapOperands(); 4102 std::swap(Op0, Op1); 4103 Changed = true; 4104 } 4105 4106 if (Value *V = 4107 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I)) 4108 return replaceInstUsesWith(I, V); 4109 4110 // comparing -val or val with non-zero is the same as just comparing val 4111 // ie, abs(val) != 0 -> val != 0 4112 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4113 Value *Cond, *SelectTrue, *SelectFalse; 4114 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4115 m_Value(SelectFalse)))) { 4116 if (Value *V = dyn_castNegVal(SelectTrue)) { 4117 if (V == SelectFalse) 4118 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4119 } 4120 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4121 if (V == SelectTrue) 4122 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4123 } 4124 } 4125 } 4126 4127 Type *Ty = Op0->getType(); 4128 4129 // icmp's with boolean values can always be turned into bitwise operations 4130 if (Ty->getScalarType()->isIntegerTy(1)) { 4131 switch (I.getPredicate()) { 4132 default: llvm_unreachable("Invalid icmp instruction!"); 4133 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 4134 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp"); 4135 return BinaryOperator::CreateNot(Xor); 4136 } 4137 case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B 4138 return BinaryOperator::CreateXor(Op0, Op1); 4139 4140 case ICmpInst::ICMP_UGT: 4141 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 4142 LLVM_FALLTHROUGH; 4143 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 4144 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 4145 return BinaryOperator::CreateAnd(Not, Op1); 4146 } 4147 case ICmpInst::ICMP_SGT: 4148 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 4149 LLVM_FALLTHROUGH; 4150 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 4151 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 4152 return BinaryOperator::CreateAnd(Not, Op0); 4153 } 4154 case ICmpInst::ICMP_UGE: 4155 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 4156 LLVM_FALLTHROUGH; 4157 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 4158 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 4159 return BinaryOperator::CreateOr(Not, Op1); 4160 } 4161 case ICmpInst::ICMP_SGE: 4162 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 4163 LLVM_FALLTHROUGH; 4164 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 4165 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 4166 return BinaryOperator::CreateOr(Not, Op0); 4167 } 4168 } 4169 } 4170 4171 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4172 return NewICmp; 4173 4174 if (Instruction *Res = foldICmpWithConstant(I)) 4175 return Res; 4176 4177 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4178 return Res; 4179 4180 // Test if the ICmpInst instruction is used exclusively by a select as 4181 // part of a minimum or maximum operation. If so, refrain from doing 4182 // any other folding. This helps out other analyses which understand 4183 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4184 // and CodeGen. And in this case, at least one of the comparison 4185 // operands has at least one user besides the compare (the select), 4186 // which would often largely negate the benefit of folding anyway. 4187 if (I.hasOneUse()) 4188 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4189 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4190 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4191 return nullptr; 4192 4193 if (Instruction *Res = foldICmpInstWithConstant(I)) 4194 return Res; 4195 4196 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4197 return Res; 4198 4199 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4200 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4201 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4202 return NI; 4203 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4204 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4205 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4206 return NI; 4207 4208 // Try to optimize equality comparisons against alloca-based pointers. 4209 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4210 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4211 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4212 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4213 return New; 4214 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4215 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4216 return New; 4217 } 4218 4219 // Test to see if the operands of the icmp are casted versions of other 4220 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 4221 // now. 4222 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 4223 if (Op0->getType()->isPointerTy() && 4224 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 4225 // We keep moving the cast from the left operand over to the right 4226 // operand, where it can often be eliminated completely. 4227 Op0 = CI->getOperand(0); 4228 4229 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 4230 // so eliminate it as well. 4231 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 4232 Op1 = CI2->getOperand(0); 4233 4234 // If Op1 is a constant, we can fold the cast into the constant. 4235 if (Op0->getType() != Op1->getType()) { 4236 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 4237 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 4238 } else { 4239 // Otherwise, cast the RHS right before the icmp 4240 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 4241 } 4242 } 4243 return new ICmpInst(I.getPredicate(), Op0, Op1); 4244 } 4245 } 4246 4247 if (isa<CastInst>(Op0)) { 4248 // Handle the special case of: icmp (cast bool to X), <cst> 4249 // This comes up when you have code like 4250 // int X = A < B; 4251 // if (X) ... 4252 // For generality, we handle any zero-extension of any operand comparison 4253 // with a constant or another cast from the same type. 4254 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 4255 if (Instruction *R = foldICmpWithCastAndCast(I)) 4256 return R; 4257 } 4258 4259 if (Instruction *Res = foldICmpBinOp(I)) 4260 return Res; 4261 4262 { 4263 Value *A, *B; 4264 // Transform (A & ~B) == 0 --> (A & B) != 0 4265 // and (A & ~B) != 0 --> (A & B) == 0 4266 // if A is a power of 2. 4267 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4268 match(Op1, m_Zero()) && 4269 isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality()) 4270 return new ICmpInst(I.getInversePredicate(), 4271 Builder->CreateAnd(A, B), 4272 Op1); 4273 4274 // ~x < ~y --> y < x 4275 // ~x < cst --> ~cst < x 4276 if (match(Op0, m_Not(m_Value(A)))) { 4277 if (match(Op1, m_Not(m_Value(B)))) 4278 return new ICmpInst(I.getPredicate(), B, A); 4279 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 4280 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 4281 } 4282 4283 Instruction *AddI = nullptr; 4284 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4285 m_Instruction(AddI))) && 4286 isa<IntegerType>(A->getType())) { 4287 Value *Result; 4288 Constant *Overflow; 4289 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4290 Overflow)) { 4291 replaceInstUsesWith(*AddI, Result); 4292 return replaceInstUsesWith(I, Overflow); 4293 } 4294 } 4295 4296 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4297 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4298 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 4299 return R; 4300 } 4301 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4302 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 4303 return R; 4304 } 4305 } 4306 4307 if (Instruction *Res = foldICmpEquality(I)) 4308 return Res; 4309 4310 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4311 // an i1 which indicates whether or not we successfully did the swap. 4312 // 4313 // Replace comparisons between the old value and the expected value with the 4314 // indicator that 'cmpxchg' returns. 4315 // 4316 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4317 // spuriously fail. In those cases, the old value may equal the expected 4318 // value but it is possible for the swap to not occur. 4319 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4320 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4321 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4322 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4323 !ACXI->isWeak()) 4324 return ExtractValueInst::Create(ACXI, 1); 4325 4326 { 4327 Value *X; ConstantInt *Cst; 4328 // icmp X+Cst, X 4329 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4330 return foldICmpAddOpConst(I, X, Cst, I.getPredicate()); 4331 4332 // icmp X, X+Cst 4333 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4334 return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate()); 4335 } 4336 return Changed ? &I : nullptr; 4337 } 4338 4339 /// Fold fcmp ([us]itofp x, cst) if possible. 4340 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 4341 Constant *RHSC) { 4342 if (!isa<ConstantFP>(RHSC)) return nullptr; 4343 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4344 4345 // Get the width of the mantissa. We don't want to hack on conversions that 4346 // might lose information from the integer, e.g. "i64 -> float" 4347 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4348 if (MantissaWidth == -1) return nullptr; // Unknown. 4349 4350 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4351 4352 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4353 4354 if (I.isEquality()) { 4355 FCmpInst::Predicate P = I.getPredicate(); 4356 bool IsExact = false; 4357 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4358 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4359 4360 // If the floating point constant isn't an integer value, we know if we will 4361 // ever compare equal / not equal to it. 4362 if (!IsExact) { 4363 // TODO: Can never be -0.0 and other non-representable values 4364 APFloat RHSRoundInt(RHS); 4365 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4366 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4367 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4368 return replaceInstUsesWith(I, Builder->getFalse()); 4369 4370 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4371 return replaceInstUsesWith(I, Builder->getTrue()); 4372 } 4373 } 4374 4375 // TODO: If the constant is exactly representable, is it always OK to do 4376 // equality compares as integer? 4377 } 4378 4379 // Check to see that the input is converted from an integer type that is small 4380 // enough that preserves all bits. TODO: check here for "known" sign bits. 4381 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4382 unsigned InputSize = IntTy->getScalarSizeInBits(); 4383 4384 // Following test does NOT adjust InputSize downwards for signed inputs, 4385 // because the most negative value still requires all the mantissa bits 4386 // to distinguish it from one less than that value. 4387 if ((int)InputSize > MantissaWidth) { 4388 // Conversion would lose accuracy. Check if loss can impact comparison. 4389 int Exp = ilogb(RHS); 4390 if (Exp == APFloat::IEK_Inf) { 4391 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4392 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4393 // Conversion could create infinity. 4394 return nullptr; 4395 } else { 4396 // Note that if RHS is zero or NaN, then Exp is negative 4397 // and first condition is trivially false. 4398 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4399 // Conversion could affect comparison. 4400 return nullptr; 4401 } 4402 } 4403 4404 // Otherwise, we can potentially simplify the comparison. We know that it 4405 // will always come through as an integer value and we know the constant is 4406 // not a NAN (it would have been previously simplified). 4407 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4408 4409 ICmpInst::Predicate Pred; 4410 switch (I.getPredicate()) { 4411 default: llvm_unreachable("Unexpected predicate!"); 4412 case FCmpInst::FCMP_UEQ: 4413 case FCmpInst::FCMP_OEQ: 4414 Pred = ICmpInst::ICMP_EQ; 4415 break; 4416 case FCmpInst::FCMP_UGT: 4417 case FCmpInst::FCMP_OGT: 4418 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4419 break; 4420 case FCmpInst::FCMP_UGE: 4421 case FCmpInst::FCMP_OGE: 4422 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4423 break; 4424 case FCmpInst::FCMP_ULT: 4425 case FCmpInst::FCMP_OLT: 4426 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4427 break; 4428 case FCmpInst::FCMP_ULE: 4429 case FCmpInst::FCMP_OLE: 4430 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4431 break; 4432 case FCmpInst::FCMP_UNE: 4433 case FCmpInst::FCMP_ONE: 4434 Pred = ICmpInst::ICMP_NE; 4435 break; 4436 case FCmpInst::FCMP_ORD: 4437 return replaceInstUsesWith(I, Builder->getTrue()); 4438 case FCmpInst::FCMP_UNO: 4439 return replaceInstUsesWith(I, Builder->getFalse()); 4440 } 4441 4442 // Now we know that the APFloat is a normal number, zero or inf. 4443 4444 // See if the FP constant is too large for the integer. For example, 4445 // comparing an i8 to 300.0. 4446 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4447 4448 if (!LHSUnsigned) { 4449 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4450 // and large values. 4451 APFloat SMax(RHS.getSemantics()); 4452 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4453 APFloat::rmNearestTiesToEven); 4454 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4455 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4456 Pred == ICmpInst::ICMP_SLE) 4457 return replaceInstUsesWith(I, Builder->getTrue()); 4458 return replaceInstUsesWith(I, Builder->getFalse()); 4459 } 4460 } else { 4461 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4462 // +INF and large values. 4463 APFloat UMax(RHS.getSemantics()); 4464 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4465 APFloat::rmNearestTiesToEven); 4466 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4467 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4468 Pred == ICmpInst::ICMP_ULE) 4469 return replaceInstUsesWith(I, Builder->getTrue()); 4470 return replaceInstUsesWith(I, Builder->getFalse()); 4471 } 4472 } 4473 4474 if (!LHSUnsigned) { 4475 // See if the RHS value is < SignedMin. 4476 APFloat SMin(RHS.getSemantics()); 4477 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4478 APFloat::rmNearestTiesToEven); 4479 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4480 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4481 Pred == ICmpInst::ICMP_SGE) 4482 return replaceInstUsesWith(I, Builder->getTrue()); 4483 return replaceInstUsesWith(I, Builder->getFalse()); 4484 } 4485 } else { 4486 // See if the RHS value is < UnsignedMin. 4487 APFloat SMin(RHS.getSemantics()); 4488 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4489 APFloat::rmNearestTiesToEven); 4490 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4491 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4492 Pred == ICmpInst::ICMP_UGE) 4493 return replaceInstUsesWith(I, Builder->getTrue()); 4494 return replaceInstUsesWith(I, Builder->getFalse()); 4495 } 4496 } 4497 4498 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4499 // [0, UMAX], but it may still be fractional. See if it is fractional by 4500 // casting the FP value to the integer value and back, checking for equality. 4501 // Don't do this for zero, because -0.0 is not fractional. 4502 Constant *RHSInt = LHSUnsigned 4503 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4504 : ConstantExpr::getFPToSI(RHSC, IntTy); 4505 if (!RHS.isZero()) { 4506 bool Equal = LHSUnsigned 4507 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4508 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4509 if (!Equal) { 4510 // If we had a comparison against a fractional value, we have to adjust 4511 // the compare predicate and sometimes the value. RHSC is rounded towards 4512 // zero at this point. 4513 switch (Pred) { 4514 default: llvm_unreachable("Unexpected integer comparison!"); 4515 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4516 return replaceInstUsesWith(I, Builder->getTrue()); 4517 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4518 return replaceInstUsesWith(I, Builder->getFalse()); 4519 case ICmpInst::ICMP_ULE: 4520 // (float)int <= 4.4 --> int <= 4 4521 // (float)int <= -4.4 --> false 4522 if (RHS.isNegative()) 4523 return replaceInstUsesWith(I, Builder->getFalse()); 4524 break; 4525 case ICmpInst::ICMP_SLE: 4526 // (float)int <= 4.4 --> int <= 4 4527 // (float)int <= -4.4 --> int < -4 4528 if (RHS.isNegative()) 4529 Pred = ICmpInst::ICMP_SLT; 4530 break; 4531 case ICmpInst::ICMP_ULT: 4532 // (float)int < -4.4 --> false 4533 // (float)int < 4.4 --> int <= 4 4534 if (RHS.isNegative()) 4535 return replaceInstUsesWith(I, Builder->getFalse()); 4536 Pred = ICmpInst::ICMP_ULE; 4537 break; 4538 case ICmpInst::ICMP_SLT: 4539 // (float)int < -4.4 --> int < -4 4540 // (float)int < 4.4 --> int <= 4 4541 if (!RHS.isNegative()) 4542 Pred = ICmpInst::ICMP_SLE; 4543 break; 4544 case ICmpInst::ICMP_UGT: 4545 // (float)int > 4.4 --> int > 4 4546 // (float)int > -4.4 --> true 4547 if (RHS.isNegative()) 4548 return replaceInstUsesWith(I, Builder->getTrue()); 4549 break; 4550 case ICmpInst::ICMP_SGT: 4551 // (float)int > 4.4 --> int > 4 4552 // (float)int > -4.4 --> int >= -4 4553 if (RHS.isNegative()) 4554 Pred = ICmpInst::ICMP_SGE; 4555 break; 4556 case ICmpInst::ICMP_UGE: 4557 // (float)int >= -4.4 --> true 4558 // (float)int >= 4.4 --> int > 4 4559 if (RHS.isNegative()) 4560 return replaceInstUsesWith(I, Builder->getTrue()); 4561 Pred = ICmpInst::ICMP_UGT; 4562 break; 4563 case ICmpInst::ICMP_SGE: 4564 // (float)int >= -4.4 --> int >= -4 4565 // (float)int >= 4.4 --> int > 4 4566 if (!RHS.isNegative()) 4567 Pred = ICmpInst::ICMP_SGT; 4568 break; 4569 } 4570 } 4571 } 4572 4573 // Lower this FP comparison into an appropriate integer version of the 4574 // comparison. 4575 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4576 } 4577 4578 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4579 bool Changed = false; 4580 4581 /// Orders the operands of the compare so that they are listed from most 4582 /// complex to least complex. This puts constants before unary operators, 4583 /// before binary operators. 4584 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4585 I.swapOperands(); 4586 Changed = true; 4587 } 4588 4589 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4590 4591 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 4592 I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I)) 4593 return replaceInstUsesWith(I, V); 4594 4595 // Simplify 'fcmp pred X, X' 4596 if (Op0 == Op1) { 4597 switch (I.getPredicate()) { 4598 default: llvm_unreachable("Unknown predicate!"); 4599 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4600 case FCmpInst::FCMP_ULT: // True if unordered or less than 4601 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4602 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4603 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4604 I.setPredicate(FCmpInst::FCMP_UNO); 4605 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4606 return &I; 4607 4608 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4609 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4610 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4611 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4612 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4613 I.setPredicate(FCmpInst::FCMP_ORD); 4614 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4615 return &I; 4616 } 4617 } 4618 4619 // Test if the FCmpInst instruction is used exclusively by a select as 4620 // part of a minimum or maximum operation. If so, refrain from doing 4621 // any other folding. This helps out other analyses which understand 4622 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4623 // and CodeGen. And in this case, at least one of the comparison 4624 // operands has at least one user besides the compare (the select), 4625 // which would often largely negate the benefit of folding anyway. 4626 if (I.hasOneUse()) 4627 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4628 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4629 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4630 return nullptr; 4631 4632 // Handle fcmp with constant RHS 4633 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4634 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4635 switch (LHSI->getOpcode()) { 4636 case Instruction::FPExt: { 4637 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4638 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4639 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4640 if (!RHSF) 4641 break; 4642 4643 const fltSemantics *Sem; 4644 // FIXME: This shouldn't be here. 4645 if (LHSExt->getSrcTy()->isHalfTy()) 4646 Sem = &APFloat::IEEEhalf; 4647 else if (LHSExt->getSrcTy()->isFloatTy()) 4648 Sem = &APFloat::IEEEsingle; 4649 else if (LHSExt->getSrcTy()->isDoubleTy()) 4650 Sem = &APFloat::IEEEdouble; 4651 else if (LHSExt->getSrcTy()->isFP128Ty()) 4652 Sem = &APFloat::IEEEquad; 4653 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4654 Sem = &APFloat::x87DoubleExtended; 4655 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4656 Sem = &APFloat::PPCDoubleDouble; 4657 else 4658 break; 4659 4660 bool Lossy; 4661 APFloat F = RHSF->getValueAPF(); 4662 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4663 4664 // Avoid lossy conversions and denormals. Zero is a special case 4665 // that's OK to convert. 4666 APFloat Fabs = F; 4667 Fabs.clearSign(); 4668 if (!Lossy && 4669 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4670 APFloat::cmpLessThan) || Fabs.isZero())) 4671 4672 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4673 ConstantFP::get(RHSC->getContext(), F)); 4674 break; 4675 } 4676 case Instruction::PHI: 4677 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4678 // block. If in the same block, we're encouraging jump threading. If 4679 // not, we are just pessimizing the code by making an i1 phi. 4680 if (LHSI->getParent() == I.getParent()) 4681 if (Instruction *NV = FoldOpIntoPhi(I)) 4682 return NV; 4683 break; 4684 case Instruction::SIToFP: 4685 case Instruction::UIToFP: 4686 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 4687 return NV; 4688 break; 4689 case Instruction::FSub: { 4690 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4691 Value *Op; 4692 if (match(LHSI, m_FNeg(m_Value(Op)))) 4693 return new FCmpInst(I.getSwappedPredicate(), Op, 4694 ConstantExpr::getFNeg(RHSC)); 4695 break; 4696 } 4697 case Instruction::Load: 4698 if (GetElementPtrInst *GEP = 4699 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4700 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4701 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4702 !cast<LoadInst>(LHSI)->isVolatile()) 4703 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4704 return Res; 4705 } 4706 break; 4707 case Instruction::Call: { 4708 if (!RHSC->isNullValue()) 4709 break; 4710 4711 CallInst *CI = cast<CallInst>(LHSI); 4712 Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI); 4713 if (IID != Intrinsic::fabs) 4714 break; 4715 4716 // Various optimization for fabs compared with zero. 4717 switch (I.getPredicate()) { 4718 default: 4719 break; 4720 // fabs(x) < 0 --> false 4721 case FCmpInst::FCMP_OLT: 4722 llvm_unreachable("handled by SimplifyFCmpInst"); 4723 // fabs(x) > 0 --> x != 0 4724 case FCmpInst::FCMP_OGT: 4725 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4726 // fabs(x) <= 0 --> x == 0 4727 case FCmpInst::FCMP_OLE: 4728 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4729 // fabs(x) >= 0 --> !isnan(x) 4730 case FCmpInst::FCMP_OGE: 4731 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4732 // fabs(x) == 0 --> x == 0 4733 // fabs(x) != 0 --> x != 0 4734 case FCmpInst::FCMP_OEQ: 4735 case FCmpInst::FCMP_UEQ: 4736 case FCmpInst::FCMP_ONE: 4737 case FCmpInst::FCMP_UNE: 4738 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4739 } 4740 } 4741 } 4742 } 4743 4744 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4745 Value *X, *Y; 4746 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4747 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4748 4749 // fcmp (fpext x), (fpext y) -> fcmp x, y 4750 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4751 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4752 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4753 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4754 RHSExt->getOperand(0)); 4755 4756 return Changed ? &I : nullptr; 4757 } 4758