1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty()) {
194       Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
195       if (!Elt)
196         return nullptr;
197     }
198 
199     // If the element is masked, handle it.
200     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
201 
202     // Find out if the comparison would be true or false for the i'th element.
203     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
204                                                   CompareRHS, DL, &TLI);
205     // If the result is undef for this element, ignore it.
206     if (isa<UndefValue>(C)) {
207       // Extend range state machines to cover this element in case there is an
208       // undef in the middle of the range.
209       if (TrueRangeEnd == (int)i-1)
210         TrueRangeEnd = i;
211       if (FalseRangeEnd == (int)i-1)
212         FalseRangeEnd = i;
213       continue;
214     }
215 
216     // If we can't compute the result for any of the elements, we have to give
217     // up evaluating the entire conditional.
218     if (!isa<ConstantInt>(C)) return nullptr;
219 
220     // Otherwise, we know if the comparison is true or false for this element,
221     // update our state machines.
222     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
223 
224     // State machine for single/double/range index comparison.
225     if (IsTrueForElt) {
226       // Update the TrueElement state machine.
227       if (FirstTrueElement == Undefined)
228         FirstTrueElement = TrueRangeEnd = i;  // First true element.
229       else {
230         // Update double-compare state machine.
231         if (SecondTrueElement == Undefined)
232           SecondTrueElement = i;
233         else
234           SecondTrueElement = Overdefined;
235 
236         // Update range state machine.
237         if (TrueRangeEnd == (int)i-1)
238           TrueRangeEnd = i;
239         else
240           TrueRangeEnd = Overdefined;
241       }
242     } else {
243       // Update the FalseElement state machine.
244       if (FirstFalseElement == Undefined)
245         FirstFalseElement = FalseRangeEnd = i; // First false element.
246       else {
247         // Update double-compare state machine.
248         if (SecondFalseElement == Undefined)
249           SecondFalseElement = i;
250         else
251           SecondFalseElement = Overdefined;
252 
253         // Update range state machine.
254         if (FalseRangeEnd == (int)i-1)
255           FalseRangeEnd = i;
256         else
257           FalseRangeEnd = Overdefined;
258       }
259     }
260 
261     // If this element is in range, update our magic bitvector.
262     if (i < 64 && IsTrueForElt)
263       MagicBitvector |= 1ULL << i;
264 
265     // If all of our states become overdefined, bail out early.  Since the
266     // predicate is expensive, only check it every 8 elements.  This is only
267     // really useful for really huge arrays.
268     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
269         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
270         FalseRangeEnd == Overdefined)
271       return nullptr;
272   }
273 
274   // Now that we've scanned the entire array, emit our new comparison(s).  We
275   // order the state machines in complexity of the generated code.
276   Value *Idx = GEP->getOperand(2);
277 
278   // If the index is larger than the pointer size of the target, truncate the
279   // index down like the GEP would do implicitly.  We don't have to do this for
280   // an inbounds GEP because the index can't be out of range.
281   if (!GEP->isInBounds()) {
282     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
283     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
284     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
285       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
286   }
287 
288   // If inbounds keyword is not present, Idx * ElementSize can overflow.
289   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
290   // Then, there are two possible values for Idx to match offset 0:
291   // 0x00..00, 0x80..00.
292   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
293   // comparison is false if Idx was 0x80..00.
294   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
295   unsigned ElementSize =
296       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
297   auto MaskIdx = [&](Value* Idx){
298     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
299       Value *Mask = ConstantInt::get(Idx->getType(), -1);
300       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
301       Idx = Builder.CreateAnd(Idx, Mask);
302     }
303     return Idx;
304   };
305 
306   // If the comparison is only true for one or two elements, emit direct
307   // comparisons.
308   if (SecondTrueElement != Overdefined) {
309     Idx = MaskIdx(Idx);
310     // None true -> false.
311     if (FirstTrueElement == Undefined)
312       return replaceInstUsesWith(ICI, Builder.getFalse());
313 
314     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
315 
316     // True for one element -> 'i == 47'.
317     if (SecondTrueElement == Undefined)
318       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
319 
320     // True for two elements -> 'i == 47 | i == 72'.
321     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
322     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
323     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
324     return BinaryOperator::CreateOr(C1, C2);
325   }
326 
327   // If the comparison is only false for one or two elements, emit direct
328   // comparisons.
329   if (SecondFalseElement != Overdefined) {
330     Idx = MaskIdx(Idx);
331     // None false -> true.
332     if (FirstFalseElement == Undefined)
333       return replaceInstUsesWith(ICI, Builder.getTrue());
334 
335     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
336 
337     // False for one element -> 'i != 47'.
338     if (SecondFalseElement == Undefined)
339       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
340 
341     // False for two elements -> 'i != 47 & i != 72'.
342     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
343     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
344     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
345     return BinaryOperator::CreateAnd(C1, C2);
346   }
347 
348   // If the comparison can be replaced with a range comparison for the elements
349   // where it is true, emit the range check.
350   if (TrueRangeEnd != Overdefined) {
351     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
352     Idx = MaskIdx(Idx);
353 
354     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
355     if (FirstTrueElement) {
356       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
357       Idx = Builder.CreateAdd(Idx, Offs);
358     }
359 
360     Value *End = ConstantInt::get(Idx->getType(),
361                                   TrueRangeEnd-FirstTrueElement+1);
362     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
363   }
364 
365   // False range check.
366   if (FalseRangeEnd != Overdefined) {
367     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
368     Idx = MaskIdx(Idx);
369     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
370     if (FirstFalseElement) {
371       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
372       Idx = Builder.CreateAdd(Idx, Offs);
373     }
374 
375     Value *End = ConstantInt::get(Idx->getType(),
376                                   FalseRangeEnd-FirstFalseElement);
377     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
378   }
379 
380   // If a magic bitvector captures the entire comparison state
381   // of this load, replace it with computation that does:
382   //   ((magic_cst >> i) & 1) != 0
383   {
384     Type *Ty = nullptr;
385 
386     // Look for an appropriate type:
387     // - The type of Idx if the magic fits
388     // - The smallest fitting legal type
389     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
390       Ty = Idx->getType();
391     else
392       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
393 
394     if (Ty) {
395       Idx = MaskIdx(Idx);
396       Value *V = Builder.CreateIntCast(Idx, Ty, false);
397       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
398       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
399       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
400     }
401   }
402 
403   return nullptr;
404 }
405 
406 /// Return a value that can be used to compare the *offset* implied by a GEP to
407 /// zero. For example, if we have &A[i], we want to return 'i' for
408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
409 /// are involved. The above expression would also be legal to codegen as
410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
411 /// This latter form is less amenable to optimization though, and we are allowed
412 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
413 ///
414 /// If we can't emit an optimized form for this expression, this returns null.
415 ///
416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
417                                           const DataLayout &DL) {
418   gep_type_iterator GTI = gep_type_begin(GEP);
419 
420   // Check to see if this gep only has a single variable index.  If so, and if
421   // any constant indices are a multiple of its scale, then we can compute this
422   // in terms of the scale of the variable index.  For example, if the GEP
423   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
424   // because the expression will cross zero at the same point.
425   unsigned i, e = GEP->getNumOperands();
426   int64_t Offset = 0;
427   for (i = 1; i != e; ++i, ++GTI) {
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
429       // Compute the aggregate offset of constant indices.
430       if (CI->isZero()) continue;
431 
432       // Handle a struct index, which adds its field offset to the pointer.
433       if (StructType *STy = GTI.getStructTypeOrNull()) {
434         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
435       } else {
436         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
437         Offset += Size*CI->getSExtValue();
438       }
439     } else {
440       // Found our variable index.
441       break;
442     }
443   }
444 
445   // If there are no variable indices, we must have a constant offset, just
446   // evaluate it the general way.
447   if (i == e) return nullptr;
448 
449   Value *VariableIdx = GEP->getOperand(i);
450   // Determine the scale factor of the variable element.  For example, this is
451   // 4 if the variable index is into an array of i32.
452   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
453 
454   // Verify that there are no other variable indices.  If so, emit the hard way.
455   for (++i, ++GTI; i != e; ++i, ++GTI) {
456     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
457     if (!CI) return nullptr;
458 
459     // Compute the aggregate offset of constant indices.
460     if (CI->isZero()) continue;
461 
462     // Handle a struct index, which adds its field offset to the pointer.
463     if (StructType *STy = GTI.getStructTypeOrNull()) {
464       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
465     } else {
466       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
467       Offset += Size*CI->getSExtValue();
468     }
469   }
470 
471   // Okay, we know we have a single variable index, which must be a
472   // pointer/array/vector index.  If there is no offset, life is simple, return
473   // the index.
474   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
475   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
476   if (Offset == 0) {
477     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
478     // we don't need to bother extending: the extension won't affect where the
479     // computation crosses zero.
480     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
481         IntPtrWidth) {
482       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
483     }
484     return VariableIdx;
485   }
486 
487   // Otherwise, there is an index.  The computation we will do will be modulo
488   // the pointer size.
489   Offset = SignExtend64(Offset, IntPtrWidth);
490   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
491 
492   // To do this transformation, any constant index must be a multiple of the
493   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
494   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
495   // multiple of the variable scale.
496   int64_t NewOffs = Offset / (int64_t)VariableScale;
497   if (Offset != NewOffs*(int64_t)VariableScale)
498     return nullptr;
499 
500   // Okay, we can do this evaluation.  Start by converting the index to intptr.
501   if (VariableIdx->getType() != IntPtrTy)
502     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
503                                             true /*Signed*/);
504   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
505   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
506 }
507 
508 /// Returns true if we can rewrite Start as a GEP with pointer Base
509 /// and some integer offset. The nodes that need to be re-written
510 /// for this transformation will be added to Explored.
511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
512                                   const DataLayout &DL,
513                                   SetVector<Value *> &Explored) {
514   SmallVector<Value *, 16> WorkList(1, Start);
515   Explored.insert(Base);
516 
517   // The following traversal gives us an order which can be used
518   // when doing the final transformation. Since in the final
519   // transformation we create the PHI replacement instructions first,
520   // we don't have to get them in any particular order.
521   //
522   // However, for other instructions we will have to traverse the
523   // operands of an instruction first, which means that we have to
524   // do a post-order traversal.
525   while (!WorkList.empty()) {
526     SetVector<PHINode *> PHIs;
527 
528     while (!WorkList.empty()) {
529       if (Explored.size() >= 100)
530         return false;
531 
532       Value *V = WorkList.back();
533 
534       if (Explored.contains(V)) {
535         WorkList.pop_back();
536         continue;
537       }
538 
539       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
540           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
541         // We've found some value that we can't explore which is different from
542         // the base. Therefore we can't do this transformation.
543         return false;
544 
545       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
546         auto *CI = cast<CastInst>(V);
547         if (!CI->isNoopCast(DL))
548           return false;
549 
550         if (!Explored.contains(CI->getOperand(0)))
551           WorkList.push_back(CI->getOperand(0));
552       }
553 
554       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
555         // We're limiting the GEP to having one index. This will preserve
556         // the original pointer type. We could handle more cases in the
557         // future.
558         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
559             GEP->getSourceElementType() != ElemTy)
560           return false;
561 
562         if (!Explored.contains(GEP->getOperand(0)))
563           WorkList.push_back(GEP->getOperand(0));
564       }
565 
566       if (WorkList.back() == V) {
567         WorkList.pop_back();
568         // We've finished visiting this node, mark it as such.
569         Explored.insert(V);
570       }
571 
572       if (auto *PN = dyn_cast<PHINode>(V)) {
573         // We cannot transform PHIs on unsplittable basic blocks.
574         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
575           return false;
576         Explored.insert(PN);
577         PHIs.insert(PN);
578       }
579     }
580 
581     // Explore the PHI nodes further.
582     for (auto *PN : PHIs)
583       for (Value *Op : PN->incoming_values())
584         if (!Explored.contains(Op))
585           WorkList.push_back(Op);
586   }
587 
588   // Make sure that we can do this. Since we can't insert GEPs in a basic
589   // block before a PHI node, we can't easily do this transformation if
590   // we have PHI node users of transformed instructions.
591   for (Value *Val : Explored) {
592     for (Value *Use : Val->uses()) {
593 
594       auto *PHI = dyn_cast<PHINode>(Use);
595       auto *Inst = dyn_cast<Instruction>(Val);
596 
597       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
598           !Explored.contains(PHI))
599         continue;
600 
601       if (PHI->getParent() == Inst->getParent())
602         return false;
603     }
604   }
605   return true;
606 }
607 
608 // Sets the appropriate insert point on Builder where we can add
609 // a replacement Instruction for V (if that is possible).
610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
611                               bool Before = true) {
612   if (auto *PHI = dyn_cast<PHINode>(V)) {
613     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
614     return;
615   }
616   if (auto *I = dyn_cast<Instruction>(V)) {
617     if (!Before)
618       I = &*std::next(I->getIterator());
619     Builder.SetInsertPoint(I);
620     return;
621   }
622   if (auto *A = dyn_cast<Argument>(V)) {
623     // Set the insertion point in the entry block.
624     BasicBlock &Entry = A->getParent()->getEntryBlock();
625     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
626     return;
627   }
628   // Otherwise, this is a constant and we don't need to set a new
629   // insertion point.
630   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
631 }
632 
633 /// Returns a re-written value of Start as an indexed GEP using Base as a
634 /// pointer.
635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
636                                  const DataLayout &DL,
637                                  SetVector<Value *> &Explored) {
638   // Perform all the substitutions. This is a bit tricky because we can
639   // have cycles in our use-def chains.
640   // 1. Create the PHI nodes without any incoming values.
641   // 2. Create all the other values.
642   // 3. Add the edges for the PHI nodes.
643   // 4. Emit GEPs to get the original pointers.
644   // 5. Remove the original instructions.
645   Type *IndexType = IntegerType::get(
646       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
647 
648   DenseMap<Value *, Value *> NewInsts;
649   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
650 
651   // Create the new PHI nodes, without adding any incoming values.
652   for (Value *Val : Explored) {
653     if (Val == Base)
654       continue;
655     // Create empty phi nodes. This avoids cyclic dependencies when creating
656     // the remaining instructions.
657     if (auto *PHI = dyn_cast<PHINode>(Val))
658       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
659                                       PHI->getName() + ".idx", PHI);
660   }
661   IRBuilder<> Builder(Base->getContext());
662 
663   // Create all the other instructions.
664   for (Value *Val : Explored) {
665 
666     if (NewInsts.find(Val) != NewInsts.end())
667       continue;
668 
669     if (auto *CI = dyn_cast<CastInst>(Val)) {
670       // Don't get rid of the intermediate variable here; the store can grow
671       // the map which will invalidate the reference to the input value.
672       Value *V = NewInsts[CI->getOperand(0)];
673       NewInsts[CI] = V;
674       continue;
675     }
676     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
677       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
678                                                   : GEP->getOperand(1);
679       setInsertionPoint(Builder, GEP);
680       // Indices might need to be sign extended. GEPs will magically do
681       // this, but we need to do it ourselves here.
682       if (Index->getType()->getScalarSizeInBits() !=
683           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
684         Index = Builder.CreateSExtOrTrunc(
685             Index, NewInsts[GEP->getOperand(0)]->getType(),
686             GEP->getOperand(0)->getName() + ".sext");
687       }
688 
689       auto *Op = NewInsts[GEP->getOperand(0)];
690       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
691         NewInsts[GEP] = Index;
692       else
693         NewInsts[GEP] = Builder.CreateNSWAdd(
694             Op, Index, GEP->getOperand(0)->getName() + ".add");
695       continue;
696     }
697     if (isa<PHINode>(Val))
698       continue;
699 
700     llvm_unreachable("Unexpected instruction type");
701   }
702 
703   // Add the incoming values to the PHI nodes.
704   for (Value *Val : Explored) {
705     if (Val == Base)
706       continue;
707     // All the instructions have been created, we can now add edges to the
708     // phi nodes.
709     if (auto *PHI = dyn_cast<PHINode>(Val)) {
710       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
711       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
712         Value *NewIncoming = PHI->getIncomingValue(I);
713 
714         if (NewInsts.find(NewIncoming) != NewInsts.end())
715           NewIncoming = NewInsts[NewIncoming];
716 
717         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
718       }
719     }
720   }
721 
722   PointerType *PtrTy =
723       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
724   for (Value *Val : Explored) {
725     if (Val == Base)
726       continue;
727 
728     // Depending on the type, for external users we have to emit
729     // a GEP or a GEP + ptrtoint.
730     setInsertionPoint(Builder, Val, false);
731 
732     // Cast base to the expected type.
733     Value *NewVal = Builder.CreateBitOrPointerCast(
734         Base, PtrTy, Start->getName() + "to.ptr");
735     NewVal = Builder.CreateInBoundsGEP(
736         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
737     NewVal = Builder.CreateBitOrPointerCast(
738         NewVal, Val->getType(), Val->getName() + ".conv");
739     Val->replaceAllUsesWith(NewVal);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getSourceElementType() == ElemTy) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   Type *ElemTy = GEPLHS->getSourceElementType();
801   Value *PtrBase, *Index;
802   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
803 
804   // The set of nodes that will take part in this transformation.
805   SetVector<Value *> Nodes;
806 
807   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
808     return nullptr;
809 
810   // We know we can re-write this as
811   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
812   // Since we've only looked through inbouds GEPs we know that we
813   // can't have overflow on either side. We can therefore re-write
814   // this as:
815   //   OFFSET1 cmp OFFSET2
816   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
817 
818   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
819   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
820   // offset. Since Index is the offset of LHS to the base pointer, we will now
821   // compare the offsets instead of comparing the pointers.
822   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
823 }
824 
825 /// Fold comparisons between a GEP instruction and something else. At this point
826 /// we know that the GEP is on the LHS of the comparison.
827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
828                                            ICmpInst::Predicate Cond,
829                                            Instruction &I) {
830   // Don't transform signed compares of GEPs into index compares. Even if the
831   // GEP is inbounds, the final add of the base pointer can have signed overflow
832   // and would change the result of the icmp.
833   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
834   // the maximum signed value for the pointer type.
835   if (ICmpInst::isSigned(Cond))
836     return nullptr;
837 
838   // Look through bitcasts and addrspacecasts. We do not however want to remove
839   // 0 GEPs.
840   if (!isa<GetElementPtrInst>(RHS))
841     RHS = RHS->stripPointerCasts();
842 
843   Value *PtrBase = GEPLHS->getOperand(0);
844   // FIXME: Support vector pointer GEPs.
845   if (PtrBase == RHS && GEPLHS->isInBounds() &&
846       !GEPLHS->getType()->isVectorTy()) {
847     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
848     // This transformation (ignoring the base and scales) is valid because we
849     // know pointers can't overflow since the gep is inbounds.  See if we can
850     // output an optimized form.
851     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
852 
853     // If not, synthesize the offset the hard way.
854     if (!Offset)
855       Offset = EmitGEPOffset(GEPLHS);
856     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
857                         Constant::getNullValue(Offset->getType()));
858   }
859 
860   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
861       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
862       !NullPointerIsDefined(I.getFunction(),
863                             RHS->getType()->getPointerAddressSpace())) {
864     // For most address spaces, an allocation can't be placed at null, but null
865     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
866     // the only valid inbounds address derived from null, is null itself.
867     // Thus, we have four cases to consider:
868     // 1) Base == nullptr, Offset == 0 -> inbounds, null
869     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
870     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
871     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
872     //
873     // (Note if we're indexing a type of size 0, that simply collapses into one
874     //  of the buckets above.)
875     //
876     // In general, we're allowed to make values less poison (i.e. remove
877     //   sources of full UB), so in this case, we just select between the two
878     //   non-poison cases (1 and 4 above).
879     //
880     // For vectors, we apply the same reasoning on a per-lane basis.
881     auto *Base = GEPLHS->getPointerOperand();
882     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
883       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
884       Base = Builder.CreateVectorSplat(EC, Base);
885     }
886     return new ICmpInst(Cond, Base,
887                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
888                             cast<Constant>(RHS), Base->getType()));
889   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
890     // If the base pointers are different, but the indices are the same, just
891     // compare the base pointer.
892     if (PtrBase != GEPRHS->getOperand(0)) {
893       bool IndicesTheSame =
894           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
895           GEPLHS->getPointerOperand()->getType() ==
896               GEPRHS->getPointerOperand()->getType() &&
897           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
898       if (IndicesTheSame)
899         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
900           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
901             IndicesTheSame = false;
902             break;
903           }
904 
905       // If all indices are the same, just compare the base pointers.
906       Type *BaseType = GEPLHS->getOperand(0)->getType();
907       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
908         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
909 
910       // If we're comparing GEPs with two base pointers that only differ in type
911       // and both GEPs have only constant indices or just one use, then fold
912       // the compare with the adjusted indices.
913       // FIXME: Support vector of pointers.
914       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
915           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
916           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
917           PtrBase->stripPointerCasts() ==
918               GEPRHS->getOperand(0)->stripPointerCasts() &&
919           !GEPLHS->getType()->isVectorTy()) {
920         Value *LOffset = EmitGEPOffset(GEPLHS);
921         Value *ROffset = EmitGEPOffset(GEPRHS);
922 
923         // If we looked through an addrspacecast between different sized address
924         // spaces, the LHS and RHS pointers are different sized
925         // integers. Truncate to the smaller one.
926         Type *LHSIndexTy = LOffset->getType();
927         Type *RHSIndexTy = ROffset->getType();
928         if (LHSIndexTy != RHSIndexTy) {
929           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
930               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
931             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
932           } else
933             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
934         }
935 
936         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
937                                         LOffset, ROffset);
938         return replaceInstUsesWith(I, Cmp);
939       }
940 
941       // Otherwise, the base pointers are different and the indices are
942       // different. Try convert this to an indexed compare by looking through
943       // PHIs/casts.
944       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
945     }
946 
947     // If one of the GEPs has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
951                          ICmpInst::getSwappedPredicate(Cond), I);
952 
953     // If the other GEP has all zero indices, recurse.
954     // FIXME: Handle vector of pointers.
955     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
956       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
957 
958     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
959     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
960         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca) {
1012   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1013 
1014   // It would be tempting to fold away comparisons between allocas and any
1015   // pointer not based on that alloca (e.g. an argument). However, even
1016   // though such pointers cannot alias, they can still compare equal.
1017   //
1018   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1019   // doesn't escape we can argue that it's impossible to guess its value, and we
1020   // can therefore act as if any such guesses are wrong.
1021   //
1022   // The code below checks that the alloca doesn't escape, and that it's only
1023   // used in a comparison once (the current instruction). The
1024   // single-comparison-use condition ensures that we're trivially folding all
1025   // comparisons against the alloca consistently, and avoids the risk of
1026   // erroneously folding a comparison of the pointer with itself.
1027 
1028   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1029 
1030   SmallVector<const Use *, 32> Worklist;
1031   for (const Use &U : Alloca->uses()) {
1032     if (Worklist.size() >= MaxIter)
1033       return nullptr;
1034     Worklist.push_back(&U);
1035   }
1036 
1037   unsigned NumCmps = 0;
1038   while (!Worklist.empty()) {
1039     assert(Worklist.size() <= MaxIter);
1040     const Use *U = Worklist.pop_back_val();
1041     const Value *V = U->getUser();
1042     --MaxIter;
1043 
1044     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1045         isa<SelectInst>(V)) {
1046       // Track the uses.
1047     } else if (isa<LoadInst>(V)) {
1048       // Loading from the pointer doesn't escape it.
1049       continue;
1050     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1051       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1052       if (SI->getValueOperand() == U->get())
1053         return nullptr;
1054       continue;
1055     } else if (isa<ICmpInst>(V)) {
1056       if (NumCmps++)
1057         return nullptr; // Found more than one cmp.
1058       continue;
1059     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1060       switch (Intrin->getIntrinsicID()) {
1061         // These intrinsics don't escape or compare the pointer. Memset is safe
1062         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1063         // we don't allow stores, so src cannot point to V.
1064         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1065         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1066           continue;
1067         default:
1068           return nullptr;
1069       }
1070     } else {
1071       return nullptr;
1072     }
1073     for (const Use &U : V->uses()) {
1074       if (Worklist.size() >= MaxIter)
1075         return nullptr;
1076       Worklist.push_back(&U);
1077     }
1078   }
1079 
1080   auto *Res = ConstantInt::get(ICI.getType(),
1081                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1082   return replaceInstUsesWith(ICI, Res);
1083 }
1084 
1085 /// Fold "icmp pred (X+C), X".
1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1087                                                   ICmpInst::Predicate Pred) {
1088   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1089   // so the values can never be equal.  Similarly for all other "or equals"
1090   // operators.
1091   assert(!!C && "C should not be zero!");
1092 
1093   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1094   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1095   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1096   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1097     Constant *R = ConstantInt::get(X->getType(),
1098                                    APInt::getMaxValue(C.getBitWidth()) - C);
1099     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1100   }
1101 
1102   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1103   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1104   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1105   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1106     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1107                         ConstantInt::get(X->getType(), -C));
1108 
1109   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1110 
1111   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1112   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1113   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1114   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1115   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1116   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1117   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1118     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1119                         ConstantInt::get(X->getType(), SMax - C));
1120 
1121   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1122   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1123   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1124   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1125   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1126   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1127 
1128   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1129   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1130                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1131 }
1132 
1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1134 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1137                                                      const APInt &AP1,
1138                                                      const APInt &AP2) {
1139   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1140 
1141   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1142     if (I.getPredicate() == I.ICMP_NE)
1143       Pred = CmpInst::getInversePredicate(Pred);
1144     return new ICmpInst(Pred, LHS, RHS);
1145   };
1146 
1147   // Don't bother doing any work for cases which InstSimplify handles.
1148   if (AP2.isZero())
1149     return nullptr;
1150 
1151   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1152   if (IsAShr) {
1153     if (AP2.isAllOnes())
1154       return nullptr;
1155     if (AP2.isNegative() != AP1.isNegative())
1156       return nullptr;
1157     if (AP2.sgt(AP1))
1158       return nullptr;
1159   }
1160 
1161   if (!AP1)
1162     // 'A' must be large enough to shift out the highest set bit.
1163     return getICmp(I.ICMP_UGT, A,
1164                    ConstantInt::get(A->getType(), AP2.logBase2()));
1165 
1166   if (AP1 == AP2)
1167     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1168 
1169   int Shift;
1170   if (IsAShr && AP1.isNegative())
1171     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1172   else
1173     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1174 
1175   if (Shift > 0) {
1176     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1177       // There are multiple solutions if we are comparing against -1 and the LHS
1178       // of the ashr is not a power of two.
1179       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1180         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     } else if (AP1 == AP2.lshr(Shift)) {
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     }
1185   }
1186 
1187   // Shifting const2 will never be equal to const1.
1188   // FIXME: This should always be handled by InstSimplify?
1189   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1190   return replaceInstUsesWith(I, TorF);
1191 }
1192 
1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1196                                                      const APInt &AP1,
1197                                                      const APInt &AP2) {
1198   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1199 
1200   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1201     if (I.getPredicate() == I.ICMP_NE)
1202       Pred = CmpInst::getInversePredicate(Pred);
1203     return new ICmpInst(Pred, LHS, RHS);
1204   };
1205 
1206   // Don't bother doing any work for cases which InstSimplify handles.
1207   if (AP2.isZero())
1208     return nullptr;
1209 
1210   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1211 
1212   if (!AP1 && AP2TrailingZeros != 0)
1213     return getICmp(
1214         I.ICMP_UGE, A,
1215         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1216 
1217   if (AP1 == AP2)
1218     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1219 
1220   // Get the distance between the lowest bits that are set.
1221   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1222 
1223   if (Shift > 0 && AP2.shl(Shift) == AP1)
1224     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225 
1226   // Shifting const2 will never be equal to const1.
1227   // FIXME: This should always be handled by InstSimplify?
1228   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1229   return replaceInstUsesWith(I, TorF);
1230 }
1231 
1232 /// The caller has matched a pattern of the form:
1233 ///   I = icmp ugt (add (add A, B), CI2), CI1
1234 /// If this is of the form:
1235 ///   sum = a + b
1236 ///   if (sum+128 >u 255)
1237 /// Then replace it with llvm.sadd.with.overflow.i8.
1238 ///
1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1240                                           ConstantInt *CI2, ConstantInt *CI1,
1241                                           InstCombinerImpl &IC) {
1242   // The transformation we're trying to do here is to transform this into an
1243   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1244   // with a narrower add, and discard the add-with-constant that is part of the
1245   // range check (if we can't eliminate it, this isn't profitable).
1246 
1247   // In order to eliminate the add-with-constant, the compare can be its only
1248   // use.
1249   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1250   if (!AddWithCst->hasOneUse())
1251     return nullptr;
1252 
1253   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1254   if (!CI2->getValue().isPowerOf2())
1255     return nullptr;
1256   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1257   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1258     return nullptr;
1259 
1260   // The width of the new add formed is 1 more than the bias.
1261   ++NewWidth;
1262 
1263   // Check to see that CI1 is an all-ones value with NewWidth bits.
1264   if (CI1->getBitWidth() == NewWidth ||
1265       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1266     return nullptr;
1267 
1268   // This is only really a signed overflow check if the inputs have been
1269   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1270   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1271   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1272       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1273     return nullptr;
1274 
1275   // In order to replace the original add with a narrower
1276   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1277   // and truncates that discard the high bits of the add.  Verify that this is
1278   // the case.
1279   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1280   for (User *U : OrigAdd->users()) {
1281     if (U == AddWithCst)
1282       continue;
1283 
1284     // Only accept truncates for now.  We would really like a nice recursive
1285     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1286     // chain to see which bits of a value are actually demanded.  If the
1287     // original add had another add which was then immediately truncated, we
1288     // could still do the transformation.
1289     TruncInst *TI = dyn_cast<TruncInst>(U);
1290     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1291       return nullptr;
1292   }
1293 
1294   // If the pattern matches, truncate the inputs to the narrower type and
1295   // use the sadd_with_overflow intrinsic to efficiently compute both the
1296   // result and the overflow bit.
1297   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1298   Function *F = Intrinsic::getDeclaration(
1299       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1300 
1301   InstCombiner::BuilderTy &Builder = IC.Builder;
1302 
1303   // Put the new code above the original add, in case there are any uses of the
1304   // add between the add and the compare.
1305   Builder.SetInsertPoint(OrigAdd);
1306 
1307   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1308   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1309   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1310   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1311   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1312 
1313   // The inner add was the result of the narrow add, zero extended to the
1314   // wider type.  Replace it with the result computed by the intrinsic.
1315   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1316   IC.eraseInstFromFunction(*OrigAdd);
1317 
1318   // The original icmp gets replaced with the overflow value.
1319   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1320 }
1321 
1322 /// If we have:
1323 ///   icmp eq/ne (urem/srem %x, %y), 0
1324 /// iff %y is a power-of-two, we can replace this with a bit test:
1325 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1327   // This fold is only valid for equality predicates.
1328   if (!I.isEquality())
1329     return nullptr;
1330   ICmpInst::Predicate Pred;
1331   Value *X, *Y, *Zero;
1332   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1333                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1334     return nullptr;
1335   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1336     return nullptr;
1337   // This may increase instruction count, we don't enforce that Y is a constant.
1338   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1339   Value *Masked = Builder.CreateAnd(X, Mask);
1340   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1341 }
1342 
1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1344 /// by one-less-than-bitwidth into a sign test on the original value.
1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1346   Instruction *Val;
1347   ICmpInst::Predicate Pred;
1348   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1349     return nullptr;
1350 
1351   Value *X;
1352   Type *XTy;
1353 
1354   Constant *C;
1355   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1356     XTy = X->getType();
1357     unsigned XBitWidth = XTy->getScalarSizeInBits();
1358     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1359                                      APInt(XBitWidth, XBitWidth - 1))))
1360       return nullptr;
1361   } else if (isa<BinaryOperator>(Val) &&
1362              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1363                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1364                   /*AnalyzeForSignBitExtraction=*/true))) {
1365     XTy = X->getType();
1366   } else
1367     return nullptr;
1368 
1369   return ICmpInst::Create(Instruction::ICmp,
1370                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1371                                                     : ICmpInst::ICMP_SLT,
1372                           X, ConstantInt::getNullValue(XTy));
1373 }
1374 
1375 // Handle  icmp pred X, 0
1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1377   CmpInst::Predicate Pred = Cmp.getPredicate();
1378   if (!match(Cmp.getOperand(1), m_Zero()))
1379     return nullptr;
1380 
1381   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1382   if (Pred == ICmpInst::ICMP_SGT) {
1383     Value *A, *B;
1384     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1385       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1386         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1387       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1388         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1389     }
1390   }
1391 
1392   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1393     return New;
1394 
1395   // Given:
1396   //   icmp eq/ne (urem %x, %y), 0
1397   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1398   //   icmp eq/ne %x, 0
1399   Value *X, *Y;
1400   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1401       ICmpInst::isEquality(Pred)) {
1402     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1403     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1404     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1405       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 /// Fold icmp Pred X, C.
1412 /// TODO: This code structure does not make sense. The saturating add fold
1413 /// should be moved to some other helper and extended as noted below (it is also
1414 /// possible that code has been made unnecessary - do we canonicalize IR to
1415 /// overflow/saturating intrinsics or not?).
1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1417   // Match the following pattern, which is a common idiom when writing
1418   // overflow-safe integer arithmetic functions. The source performs an addition
1419   // in wider type and explicitly checks for overflow using comparisons against
1420   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1421   //
1422   // TODO: This could probably be generalized to handle other overflow-safe
1423   // operations if we worked out the formulas to compute the appropriate magic
1424   // constants.
1425   //
1426   // sum = a + b
1427   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1428   CmpInst::Predicate Pred = Cmp.getPredicate();
1429   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1430   Value *A, *B;
1431   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1432   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1433       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1434     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1435       return Res;
1436 
1437   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1438   Constant *C = dyn_cast<Constant>(Op1);
1439   if (!C)
1440     return nullptr;
1441 
1442   if (auto *Phi = dyn_cast<PHINode>(Op0))
1443     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1444       Type *Ty = Cmp.getType();
1445       Builder.SetInsertPoint(Phi);
1446       PHINode *NewPhi =
1447           Builder.CreatePHI(Ty, Phi->getNumOperands());
1448       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1449         auto *Input =
1450             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1451         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1452         NewPhi->addIncoming(BoolInput, Predecessor);
1453       }
1454       NewPhi->takeName(&Cmp);
1455       return replaceInstUsesWith(Cmp, NewPhi);
1456     }
1457 
1458   return nullptr;
1459 }
1460 
1461 /// Canonicalize icmp instructions based on dominating conditions.
1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1463   // This is a cheap/incomplete check for dominance - just match a single
1464   // predecessor with a conditional branch.
1465   BasicBlock *CmpBB = Cmp.getParent();
1466   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1467   if (!DomBB)
1468     return nullptr;
1469 
1470   Value *DomCond;
1471   BasicBlock *TrueBB, *FalseBB;
1472   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1473     return nullptr;
1474 
1475   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1476          "Predecessor block does not point to successor?");
1477 
1478   // The branch should get simplified. Don't bother simplifying this condition.
1479   if (TrueBB == FalseBB)
1480     return nullptr;
1481 
1482   // Try to simplify this compare to T/F based on the dominating condition.
1483   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1484   if (Imp)
1485     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1486 
1487   CmpInst::Predicate Pred = Cmp.getPredicate();
1488   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1489   ICmpInst::Predicate DomPred;
1490   const APInt *C, *DomC;
1491   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1492       match(Y, m_APInt(C))) {
1493     // We have 2 compares of a variable with constants. Calculate the constant
1494     // ranges of those compares to see if we can transform the 2nd compare:
1495     // DomBB:
1496     //   DomCond = icmp DomPred X, DomC
1497     //   br DomCond, CmpBB, FalseBB
1498     // CmpBB:
1499     //   Cmp = icmp Pred X, C
1500     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1501     ConstantRange DominatingCR =
1502         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1503                           : ConstantRange::makeExactICmpRegion(
1504                                 CmpInst::getInversePredicate(DomPred), *DomC);
1505     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1506     ConstantRange Difference = DominatingCR.difference(CR);
1507     if (Intersection.isEmptySet())
1508       return replaceInstUsesWith(Cmp, Builder.getFalse());
1509     if (Difference.isEmptySet())
1510       return replaceInstUsesWith(Cmp, Builder.getTrue());
1511 
1512     // Canonicalizing a sign bit comparison that gets used in a branch,
1513     // pessimizes codegen by generating branch on zero instruction instead
1514     // of a test and branch. So we avoid canonicalizing in such situations
1515     // because test and branch instruction has better branch displacement
1516     // than compare and branch instruction.
1517     bool UnusedBit;
1518     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1519     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1520       return nullptr;
1521 
1522     // Avoid an infinite loop with min/max canonicalization.
1523     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1524     if (Cmp.hasOneUse() &&
1525         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1526       return nullptr;
1527 
1528     if (const APInt *EqC = Intersection.getSingleElement())
1529       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1530     if (const APInt *NeC = Difference.getSingleElement())
1531       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Fold icmp (trunc X), C.
1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1539                                                      TruncInst *Trunc,
1540                                                      const APInt &C) {
1541   ICmpInst::Predicate Pred = Cmp.getPredicate();
1542   Value *X = Trunc->getOperand(0);
1543   if (C.isOne() && C.getBitWidth() > 1) {
1544     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1545     Value *V = nullptr;
1546     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1547       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1548                           ConstantInt::get(V->getType(), 1));
1549   }
1550 
1551   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1552            SrcBits = X->getType()->getScalarSizeInBits();
1553   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1554     // Canonicalize to a mask and wider compare if the wide type is suitable:
1555     // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1556     if (!X->getType()->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1557       Constant *Mask = ConstantInt::get(X->getType(),
1558                                         APInt::getLowBitsSet(SrcBits, DstBits));
1559       Value *And = Builder.CreateAnd(X, Mask);
1560       Constant *WideC = ConstantInt::get(X->getType(), C.zext(SrcBits));
1561       return new ICmpInst(Pred, And, WideC);
1562     }
1563 
1564     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1565     // of the high bits truncated out of x are known.
1566     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1567 
1568     // If all the high bits are known, we can do this xform.
1569     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1570       // Pull in the high bits from known-ones set.
1571       APInt NewRHS = C.zext(SrcBits);
1572       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1573       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1574     }
1575   }
1576 
1577   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1578   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1579   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1580   Value *ShOp;
1581   const APInt *ShAmtC;
1582   bool TrueIfSigned;
1583   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1584       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1585       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1586     return TrueIfSigned
1587                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1588                               ConstantInt::getNullValue(X->getType()))
1589                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1590                               ConstantInt::getAllOnesValue(X->getType()));
1591   }
1592 
1593   return nullptr;
1594 }
1595 
1596 /// Fold icmp (xor X, Y), C.
1597 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1598                                                    BinaryOperator *Xor,
1599                                                    const APInt &C) {
1600   Value *X = Xor->getOperand(0);
1601   Value *Y = Xor->getOperand(1);
1602   const APInt *XorC;
1603   if (!match(Y, m_APInt(XorC)))
1604     return nullptr;
1605 
1606   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1607   // fold the xor.
1608   ICmpInst::Predicate Pred = Cmp.getPredicate();
1609   bool TrueIfSigned = false;
1610   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1611 
1612     // If the sign bit of the XorCst is not set, there is no change to
1613     // the operation, just stop using the Xor.
1614     if (!XorC->isNegative())
1615       return replaceOperand(Cmp, 0, X);
1616 
1617     // Emit the opposite comparison.
1618     if (TrueIfSigned)
1619       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1620                           ConstantInt::getAllOnesValue(X->getType()));
1621     else
1622       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1623                           ConstantInt::getNullValue(X->getType()));
1624   }
1625 
1626   if (Xor->hasOneUse()) {
1627     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1628     if (!Cmp.isEquality() && XorC->isSignMask()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1631     }
1632 
1633     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1634     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1635       Pred = Cmp.getFlippedSignednessPredicate();
1636       Pred = Cmp.getSwappedPredicate(Pred);
1637       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1638     }
1639   }
1640 
1641   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1642   if (Pred == ICmpInst::ICMP_UGT) {
1643     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1644     if (*XorC == ~C && (C + 1).isPowerOf2())
1645       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1646     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1647     if (*XorC == C && (C + 1).isPowerOf2())
1648       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1649   }
1650   if (Pred == ICmpInst::ICMP_ULT) {
1651     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1652     if (*XorC == -C && C.isPowerOf2())
1653       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1654                           ConstantInt::get(X->getType(), ~C));
1655     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1656     if (*XorC == C && (-C).isPowerOf2())
1657       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1658                           ConstantInt::get(X->getType(), ~C));
1659   }
1660   return nullptr;
1661 }
1662 
1663 /// Fold icmp (and (sh X, Y), C2), C1.
1664 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1665                                                 BinaryOperator *And,
1666                                                 const APInt &C1,
1667                                                 const APInt &C2) {
1668   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1669   if (!Shift || !Shift->isShift())
1670     return nullptr;
1671 
1672   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1673   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1674   // code produced by the clang front-end, for bitfield access.
1675   // This seemingly simple opportunity to fold away a shift turns out to be
1676   // rather complicated. See PR17827 for details.
1677   unsigned ShiftOpcode = Shift->getOpcode();
1678   bool IsShl = ShiftOpcode == Instruction::Shl;
1679   const APInt *C3;
1680   if (match(Shift->getOperand(1), m_APInt(C3))) {
1681     APInt NewAndCst, NewCmpCst;
1682     bool AnyCmpCstBitsShiftedOut;
1683     if (ShiftOpcode == Instruction::Shl) {
1684       // For a left shift, we can fold if the comparison is not signed. We can
1685       // also fold a signed comparison if the mask value and comparison value
1686       // are not negative. These constraints may not be obvious, but we can
1687       // prove that they are correct using an SMT solver.
1688       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1689         return nullptr;
1690 
1691       NewCmpCst = C1.lshr(*C3);
1692       NewAndCst = C2.lshr(*C3);
1693       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1694     } else if (ShiftOpcode == Instruction::LShr) {
1695       // For a logical right shift, we can fold if the comparison is not signed.
1696       // We can also fold a signed comparison if the shifted mask value and the
1697       // shifted comparison value are not negative. These constraints may not be
1698       // obvious, but we can prove that they are correct using an SMT solver.
1699       NewCmpCst = C1.shl(*C3);
1700       NewAndCst = C2.shl(*C3);
1701       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1702       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1703         return nullptr;
1704     } else {
1705       // For an arithmetic shift, check that both constants don't use (in a
1706       // signed sense) the top bits being shifted out.
1707       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1708       NewCmpCst = C1.shl(*C3);
1709       NewAndCst = C2.shl(*C3);
1710       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1711       if (NewAndCst.ashr(*C3) != C2)
1712         return nullptr;
1713     }
1714 
1715     if (AnyCmpCstBitsShiftedOut) {
1716       // If we shifted bits out, the fold is not going to work out. As a
1717       // special case, check to see if this means that the result is always
1718       // true or false now.
1719       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1720         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1721       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1722         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1723     } else {
1724       Value *NewAnd = Builder.CreateAnd(
1725           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1726       return new ICmpInst(Cmp.getPredicate(),
1727           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1728     }
1729   }
1730 
1731   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1732   // preferable because it allows the C2 << Y expression to be hoisted out of a
1733   // loop if Y is invariant and X is not.
1734   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1735       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1736     // Compute C2 << Y.
1737     Value *NewShift =
1738         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1739               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1740 
1741     // Compute X & (C2 << Y).
1742     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1743     return replaceOperand(Cmp, 0, NewAnd);
1744   }
1745 
1746   return nullptr;
1747 }
1748 
1749 /// Fold icmp (and X, C2), C1.
1750 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1751                                                      BinaryOperator *And,
1752                                                      const APInt &C1) {
1753   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1754 
1755   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1756   // TODO: We canonicalize to the longer form for scalars because we have
1757   // better analysis/folds for icmp, and codegen may be better with icmp.
1758   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1759       match(And->getOperand(1), m_One()))
1760     return new TruncInst(And->getOperand(0), Cmp.getType());
1761 
1762   const APInt *C2;
1763   Value *X;
1764   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1765     return nullptr;
1766 
1767   // Don't perform the following transforms if the AND has multiple uses
1768   if (!And->hasOneUse())
1769     return nullptr;
1770 
1771   if (Cmp.isEquality() && C1.isZero()) {
1772     // Restrict this fold to single-use 'and' (PR10267).
1773     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1774     if (C2->isSignMask()) {
1775       Constant *Zero = Constant::getNullValue(X->getType());
1776       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1777       return new ICmpInst(NewPred, X, Zero);
1778     }
1779 
1780     APInt NewC2 = *C2;
1781     KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1782     // Set high zeros of C2 to allow matching negated power-of-2.
1783     NewC2 = *C2 + APInt::getHighBitsSet(C2->getBitWidth(),
1784                                         Know.countMinLeadingZeros());
1785 
1786     // Restrict this fold only for single-use 'and' (PR10267).
1787     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1788     if (NewC2.isNegatedPowerOf2()) {
1789       Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1790       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1791       return new ICmpInst(NewPred, X, NegBOC);
1792     }
1793   }
1794 
1795   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1796   // the input width without changing the value produced, eliminate the cast:
1797   //
1798   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1799   //
1800   // We can do this transformation if the constants do not have their sign bits
1801   // set or if it is an equality comparison. Extending a relational comparison
1802   // when we're checking the sign bit would not work.
1803   Value *W;
1804   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1805       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1806     // TODO: Is this a good transform for vectors? Wider types may reduce
1807     // throughput. Should this transform be limited (even for scalars) by using
1808     // shouldChangeType()?
1809     if (!Cmp.getType()->isVectorTy()) {
1810       Type *WideType = W->getType();
1811       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1812       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1813       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1814       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1815       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1816     }
1817   }
1818 
1819   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1820     return I;
1821 
1822   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1823   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1824   //
1825   // iff pred isn't signed
1826   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1827       match(And->getOperand(1), m_One())) {
1828     Constant *One = cast<Constant>(And->getOperand(1));
1829     Value *Or = And->getOperand(0);
1830     Value *A, *B, *LShr;
1831     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1832         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1833       unsigned UsesRemoved = 0;
1834       if (And->hasOneUse())
1835         ++UsesRemoved;
1836       if (Or->hasOneUse())
1837         ++UsesRemoved;
1838       if (LShr->hasOneUse())
1839         ++UsesRemoved;
1840 
1841       // Compute A & ((1 << B) | 1)
1842       Value *NewOr = nullptr;
1843       if (auto *C = dyn_cast<Constant>(B)) {
1844         if (UsesRemoved >= 1)
1845           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1846       } else {
1847         if (UsesRemoved >= 3)
1848           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1849                                                      /*HasNUW=*/true),
1850                                    One, Or->getName());
1851       }
1852       if (NewOr) {
1853         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1854         return replaceOperand(Cmp, 0, NewAnd);
1855       }
1856     }
1857   }
1858 
1859   return nullptr;
1860 }
1861 
1862 /// Fold icmp (and X, Y), C.
1863 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1864                                                    BinaryOperator *And,
1865                                                    const APInt &C) {
1866   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1867     return I;
1868 
1869   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1870   bool TrueIfNeg;
1871   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1872     // ((X - 1) & ~X) <  0 --> X == 0
1873     // ((X - 1) & ~X) >= 0 --> X != 0
1874     Value *X;
1875     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1876         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1877       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1878       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1879     }
1880   }
1881 
1882   // TODO: These all require that Y is constant too, so refactor with the above.
1883 
1884   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1885   Value *X = And->getOperand(0);
1886   Value *Y = And->getOperand(1);
1887   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1888     if (auto *LI = dyn_cast<LoadInst>(X))
1889       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1890         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1891           if (Instruction *Res =
1892                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1893             return Res;
1894 
1895   if (!Cmp.isEquality())
1896     return nullptr;
1897 
1898   // X & -C == -C -> X >  u ~C
1899   // X & -C != -C -> X <= u ~C
1900   //   iff C is a power of 2
1901   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1902     auto NewPred =
1903         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1904     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1905   }
1906 
1907   return nullptr;
1908 }
1909 
1910 /// Fold icmp (or X, Y), C.
1911 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1912                                                   BinaryOperator *Or,
1913                                                   const APInt &C) {
1914   ICmpInst::Predicate Pred = Cmp.getPredicate();
1915   if (C.isOne()) {
1916     // icmp slt signum(V) 1 --> icmp slt V, 1
1917     Value *V = nullptr;
1918     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1919       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1920                           ConstantInt::get(V->getType(), 1));
1921   }
1922 
1923   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1924   const APInt *MaskC;
1925   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1926     if (*MaskC == C && (C + 1).isPowerOf2()) {
1927       // X | C == C --> X <=u C
1928       // X | C != C --> X  >u C
1929       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1930       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1931       return new ICmpInst(Pred, OrOp0, OrOp1);
1932     }
1933 
1934     // More general: canonicalize 'equality with set bits mask' to
1935     // 'equality with clear bits mask'.
1936     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1937     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1938     if (Or->hasOneUse()) {
1939       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1940       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1941       return new ICmpInst(Pred, And, NewC);
1942     }
1943   }
1944 
1945   // (X | (X-1)) s<  0 --> X s< 1
1946   // (X | (X-1)) s> -1 --> X s> 0
1947   Value *X;
1948   bool TrueIfSigned;
1949   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1950       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1951     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1952     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1953     return new ICmpInst(NewPred, X, NewC);
1954   }
1955 
1956   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1957     return nullptr;
1958 
1959   Value *P, *Q;
1960   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1961     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1962     // -> and (icmp eq P, null), (icmp eq Q, null).
1963     Value *CmpP =
1964         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1965     Value *CmpQ =
1966         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1967     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1968     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1969   }
1970 
1971   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1972   // a shorter form that has more potential to be folded even further.
1973   Value *X1, *X2, *X3, *X4;
1974   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1975       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1976     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1977     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1978     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1979     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1980     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1981     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1982   }
1983 
1984   return nullptr;
1985 }
1986 
1987 /// Fold icmp (mul X, Y), C.
1988 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1989                                                    BinaryOperator *Mul,
1990                                                    const APInt &C) {
1991   const APInt *MulC;
1992   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1993     return nullptr;
1994 
1995   // If this is a test of the sign bit and the multiply is sign-preserving with
1996   // a constant operand, use the multiply LHS operand instead.
1997   ICmpInst::Predicate Pred = Cmp.getPredicate();
1998   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1999     if (MulC->isNegative())
2000       Pred = ICmpInst::getSwappedPredicate(Pred);
2001     return new ICmpInst(Pred, Mul->getOperand(0),
2002                         Constant::getNullValue(Mul->getType()));
2003   }
2004 
2005   // If the multiply does not wrap, try to divide the compare constant by the
2006   // multiplication factor.
2007   if (Cmp.isEquality() && !MulC->isZero()) {
2008     // (mul nsw X, MulC) == C --> X == C /s MulC
2009     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2010       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2011       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2012     }
2013     // (mul nuw X, MulC) == C --> X == C /u MulC
2014     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2015       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2016       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2017     }
2018   }
2019 
2020   return nullptr;
2021 }
2022 
2023 /// Fold icmp (shl 1, Y), C.
2024 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2025                                    const APInt &C) {
2026   Value *Y;
2027   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2028     return nullptr;
2029 
2030   Type *ShiftType = Shl->getType();
2031   unsigned TypeBits = C.getBitWidth();
2032   bool CIsPowerOf2 = C.isPowerOf2();
2033   ICmpInst::Predicate Pred = Cmp.getPredicate();
2034   if (Cmp.isUnsigned()) {
2035     // (1 << Y) pred C -> Y pred Log2(C)
2036     if (!CIsPowerOf2) {
2037       // (1 << Y) <  30 -> Y <= 4
2038       // (1 << Y) <= 30 -> Y <= 4
2039       // (1 << Y) >= 30 -> Y >  4
2040       // (1 << Y) >  30 -> Y >  4
2041       if (Pred == ICmpInst::ICMP_ULT)
2042         Pred = ICmpInst::ICMP_ULE;
2043       else if (Pred == ICmpInst::ICMP_UGE)
2044         Pred = ICmpInst::ICMP_UGT;
2045     }
2046 
2047     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2048     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2049     unsigned CLog2 = C.logBase2();
2050     if (CLog2 == TypeBits - 1) {
2051       if (Pred == ICmpInst::ICMP_UGE)
2052         Pred = ICmpInst::ICMP_EQ;
2053       else if (Pred == ICmpInst::ICMP_ULT)
2054         Pred = ICmpInst::ICMP_NE;
2055     }
2056     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2057   } else if (Cmp.isSigned()) {
2058     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2059     if (C.isAllOnes()) {
2060       // (1 << Y) <= -1 -> Y == 31
2061       if (Pred == ICmpInst::ICMP_SLE)
2062         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2063 
2064       // (1 << Y) >  -1 -> Y != 31
2065       if (Pred == ICmpInst::ICMP_SGT)
2066         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2067     } else if (!C) {
2068       // (1 << Y) <  0 -> Y == 31
2069       // (1 << Y) <= 0 -> Y == 31
2070       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2071         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2072 
2073       // (1 << Y) >= 0 -> Y != 31
2074       // (1 << Y) >  0 -> Y != 31
2075       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2076         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2077     }
2078   } else if (Cmp.isEquality() && CIsPowerOf2) {
2079     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2080   }
2081 
2082   return nullptr;
2083 }
2084 
2085 /// Fold icmp (shl X, Y), C.
2086 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2087                                                    BinaryOperator *Shl,
2088                                                    const APInt &C) {
2089   const APInt *ShiftVal;
2090   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2091     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2092 
2093   const APInt *ShiftAmt;
2094   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2095     return foldICmpShlOne(Cmp, Shl, C);
2096 
2097   // Check that the shift amount is in range. If not, don't perform undefined
2098   // shifts. When the shift is visited, it will be simplified.
2099   unsigned TypeBits = C.getBitWidth();
2100   if (ShiftAmt->uge(TypeBits))
2101     return nullptr;
2102 
2103   ICmpInst::Predicate Pred = Cmp.getPredicate();
2104   Value *X = Shl->getOperand(0);
2105   Type *ShType = Shl->getType();
2106 
2107   // NSW guarantees that we are only shifting out sign bits from the high bits,
2108   // so we can ASHR the compare constant without needing a mask and eliminate
2109   // the shift.
2110   if (Shl->hasNoSignedWrap()) {
2111     if (Pred == ICmpInst::ICMP_SGT) {
2112       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2113       APInt ShiftedC = C.ashr(*ShiftAmt);
2114       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2115     }
2116     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2117         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2118       APInt ShiftedC = C.ashr(*ShiftAmt);
2119       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120     }
2121     if (Pred == ICmpInst::ICMP_SLT) {
2122       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2123       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2124       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2125       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2126       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2127       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2128       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2129     }
2130     // If this is a signed comparison to 0 and the shift is sign preserving,
2131     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2132     // do that if we're sure to not continue on in this function.
2133     if (isSignTest(Pred, C))
2134       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2135   }
2136 
2137   // NUW guarantees that we are only shifting out zero bits from the high bits,
2138   // so we can LSHR the compare constant without needing a mask and eliminate
2139   // the shift.
2140   if (Shl->hasNoUnsignedWrap()) {
2141     if (Pred == ICmpInst::ICMP_UGT) {
2142       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2143       APInt ShiftedC = C.lshr(*ShiftAmt);
2144       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2145     }
2146     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2147         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2148       APInt ShiftedC = C.lshr(*ShiftAmt);
2149       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2150     }
2151     if (Pred == ICmpInst::ICMP_ULT) {
2152       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2153       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2154       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2155       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2156       assert(C.ugt(0) && "ult 0 should have been eliminated");
2157       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2158       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2159     }
2160   }
2161 
2162   if (Cmp.isEquality() && Shl->hasOneUse()) {
2163     // Strength-reduce the shift into an 'and'.
2164     Constant *Mask = ConstantInt::get(
2165         ShType,
2166         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2167     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2168     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2169     return new ICmpInst(Pred, And, LShrC);
2170   }
2171 
2172   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2173   bool TrueIfSigned = false;
2174   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2175     // (X << 31) <s 0  --> (X & 1) != 0
2176     Constant *Mask = ConstantInt::get(
2177         ShType,
2178         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2179     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2180     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2181                         And, Constant::getNullValue(ShType));
2182   }
2183 
2184   // Simplify 'shl' inequality test into 'and' equality test.
2185   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2186     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2187     if ((C + 1).isPowerOf2() &&
2188         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2189       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2190       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2191                                                      : ICmpInst::ICMP_NE,
2192                           And, Constant::getNullValue(ShType));
2193     }
2194     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2195     if (C.isPowerOf2() &&
2196         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2197       Value *And =
2198           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2199       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2200                                                      : ICmpInst::ICMP_NE,
2201                           And, Constant::getNullValue(ShType));
2202     }
2203   }
2204 
2205   // Transform (icmp pred iM (shl iM %v, N), C)
2206   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2207   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2208   // This enables us to get rid of the shift in favor of a trunc that may be
2209   // free on the target. It has the additional benefit of comparing to a
2210   // smaller constant that may be more target-friendly.
2211   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2212   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2213       DL.isLegalInteger(TypeBits - Amt)) {
2214     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2215     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2216       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2217     Constant *NewC =
2218         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2219     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2220   }
2221 
2222   return nullptr;
2223 }
2224 
2225 /// Fold icmp ({al}shr X, Y), C.
2226 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2227                                                    BinaryOperator *Shr,
2228                                                    const APInt &C) {
2229   // An exact shr only shifts out zero bits, so:
2230   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2231   Value *X = Shr->getOperand(0);
2232   CmpInst::Predicate Pred = Cmp.getPredicate();
2233   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2234     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2235 
2236   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2237   const APInt *ShiftValC;
2238   if (match(Shr->getOperand(0), m_APInt(ShiftValC))) {
2239     if (Cmp.isEquality())
2240       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2241 
2242     // If the shifted constant is a power-of-2, test the shift amount directly:
2243     // (ShiftValC >> X) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2244     // (ShiftValC >> X) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2245     if (!IsAShr && ShiftValC->isPowerOf2() &&
2246         (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2247       bool IsUGT = Pred == CmpInst::ICMP_UGT;
2248       assert(ShiftValC->uge(C) && "Expected simplify of compare");
2249       assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2250 
2251       unsigned CmpLZ =
2252           IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros();
2253       unsigned ShiftLZ = ShiftValC->countLeadingZeros();
2254       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2255       auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2256       return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2257     }
2258   }
2259 
2260   const APInt *ShiftAmtC;
2261   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2262     return nullptr;
2263 
2264   // Check that the shift amount is in range. If not, don't perform undefined
2265   // shifts. When the shift is visited it will be simplified.
2266   unsigned TypeBits = C.getBitWidth();
2267   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2268   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2269     return nullptr;
2270 
2271   bool IsExact = Shr->isExact();
2272   Type *ShrTy = Shr->getType();
2273   // TODO: If we could guarantee that InstSimplify would handle all of the
2274   // constant-value-based preconditions in the folds below, then we could assert
2275   // those conditions rather than checking them. This is difficult because of
2276   // undef/poison (PR34838).
2277   if (IsAShr) {
2278     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2279       // When ShAmtC can be shifted losslessly:
2280       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2281       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2282       APInt ShiftedC = C.shl(ShAmtVal);
2283       if (ShiftedC.ashr(ShAmtVal) == C)
2284         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2285     }
2286     if (Pred == CmpInst::ICMP_SGT) {
2287       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2288       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2289       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2290           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2291         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2292     }
2293     if (Pred == CmpInst::ICMP_UGT) {
2294       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2295       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2296       // clause accounts for that pattern.
2297       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2298       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2299           (C + 1).shl(ShAmtVal).isMinSignedValue())
2300         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2301     }
2302 
2303     // If the compare constant has significant bits above the lowest sign-bit,
2304     // then convert an unsigned cmp to a test of the sign-bit:
2305     // (ashr X, ShiftC) u> C --> X s< 0
2306     // (ashr X, ShiftC) u< C --> X s> -1
2307     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2308       if (Pred == CmpInst::ICMP_UGT) {
2309         return new ICmpInst(CmpInst::ICMP_SLT, X,
2310                             ConstantInt::getNullValue(ShrTy));
2311       }
2312       if (Pred == CmpInst::ICMP_ULT) {
2313         return new ICmpInst(CmpInst::ICMP_SGT, X,
2314                             ConstantInt::getAllOnesValue(ShrTy));
2315       }
2316     }
2317   } else {
2318     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2319       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2320       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2321       APInt ShiftedC = C.shl(ShAmtVal);
2322       if (ShiftedC.lshr(ShAmtVal) == C)
2323         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2324     }
2325     if (Pred == CmpInst::ICMP_UGT) {
2326       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2327       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2328       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2329         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2330     }
2331   }
2332 
2333   if (!Cmp.isEquality())
2334     return nullptr;
2335 
2336   // Handle equality comparisons of shift-by-constant.
2337 
2338   // If the comparison constant changes with the shift, the comparison cannot
2339   // succeed (bits of the comparison constant cannot match the shifted value).
2340   // This should be known by InstSimplify and already be folded to true/false.
2341   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2342           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2343          "Expected icmp+shr simplify did not occur.");
2344 
2345   // If the bits shifted out are known zero, compare the unshifted value:
2346   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2347   if (Shr->isExact())
2348     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2349 
2350   if (C.isZero()) {
2351     // == 0 is u< 1.
2352     if (Pred == CmpInst::ICMP_EQ)
2353       return new ICmpInst(CmpInst::ICMP_ULT, X,
2354                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2355     else
2356       return new ICmpInst(CmpInst::ICMP_UGT, X,
2357                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2358   }
2359 
2360   if (Shr->hasOneUse()) {
2361     // Canonicalize the shift into an 'and':
2362     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2363     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2364     Constant *Mask = ConstantInt::get(ShrTy, Val);
2365     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2366     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2367   }
2368 
2369   return nullptr;
2370 }
2371 
2372 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2373                                                     BinaryOperator *SRem,
2374                                                     const APInt &C) {
2375   // Match an 'is positive' or 'is negative' comparison of remainder by a
2376   // constant power-of-2 value:
2377   // (X % pow2C) sgt/slt 0
2378   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2379   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2380       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2381     return nullptr;
2382 
2383   // TODO: The one-use check is standard because we do not typically want to
2384   //       create longer instruction sequences, but this might be a special-case
2385   //       because srem is not good for analysis or codegen.
2386   if (!SRem->hasOneUse())
2387     return nullptr;
2388 
2389   const APInt *DivisorC;
2390   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2391     return nullptr;
2392 
2393   // For cmp_sgt/cmp_slt only zero valued C is handled.
2394   // For cmp_eq/cmp_ne only positive valued C is handled.
2395   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2396        !C.isZero()) ||
2397       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2398        !C.isStrictlyPositive()))
2399     return nullptr;
2400 
2401   // Mask off the sign bit and the modulo bits (low-bits).
2402   Type *Ty = SRem->getType();
2403   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2404   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2405   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2406 
2407   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2408     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2409 
2410   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2411   // bit is set. Example:
2412   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2413   if (Pred == ICmpInst::ICMP_SGT)
2414     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2415 
2416   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2417   // bit is set. Example:
2418   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2419   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2420 }
2421 
2422 /// Fold icmp (udiv X, Y), C.
2423 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2424                                                     BinaryOperator *UDiv,
2425                                                     const APInt &C) {
2426   ICmpInst::Predicate Pred = Cmp.getPredicate();
2427   Value *X = UDiv->getOperand(0);
2428   Value *Y = UDiv->getOperand(1);
2429   Type *Ty = UDiv->getType();
2430 
2431   const APInt *C2;
2432   if (!match(X, m_APInt(C2)))
2433     return nullptr;
2434 
2435   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2436 
2437   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2438   if (Pred == ICmpInst::ICMP_UGT) {
2439     assert(!C.isMaxValue() &&
2440            "icmp ugt X, UINT_MAX should have been simplified already.");
2441     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2442                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2443   }
2444 
2445   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2446   if (Pred == ICmpInst::ICMP_ULT) {
2447     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2448     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2449                         ConstantInt::get(Ty, C2->udiv(C)));
2450   }
2451 
2452   return nullptr;
2453 }
2454 
2455 /// Fold icmp ({su}div X, Y), C.
2456 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2457                                                    BinaryOperator *Div,
2458                                                    const APInt &C) {
2459   ICmpInst::Predicate Pred = Cmp.getPredicate();
2460   Value *X = Div->getOperand(0);
2461   Value *Y = Div->getOperand(1);
2462   Type *Ty = Div->getType();
2463   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2464 
2465   // If unsigned division and the compare constant is bigger than
2466   // UMAX/2 (negative), there's only one pair of values that satisfies an
2467   // equality check, so eliminate the division:
2468   // (X u/ Y) == C --> (X == C) && (Y == 1)
2469   // (X u/ Y) != C --> (X != C) || (Y != 1)
2470   // Similarly, if signed division and the compare constant is exactly SMIN:
2471   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2472   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2473   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2474       (!DivIsSigned || C.isMinSignedValue()))   {
2475     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2476     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2477     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2478     return BinaryOperator::Create(Logic, XBig, YOne);
2479   }
2480 
2481   // Fold: icmp pred ([us]div X, C2), C -> range test
2482   // Fold this div into the comparison, producing a range check.
2483   // Determine, based on the divide type, what the range is being
2484   // checked.  If there is an overflow on the low or high side, remember
2485   // it, otherwise compute the range [low, hi) bounding the new value.
2486   // See: InsertRangeTest above for the kinds of replacements possible.
2487   const APInt *C2;
2488   if (!match(Y, m_APInt(C2)))
2489     return nullptr;
2490 
2491   // FIXME: If the operand types don't match the type of the divide
2492   // then don't attempt this transform. The code below doesn't have the
2493   // logic to deal with a signed divide and an unsigned compare (and
2494   // vice versa). This is because (x /s C2) <s C  produces different
2495   // results than (x /s C2) <u C or (x /u C2) <s C or even
2496   // (x /u C2) <u C.  Simply casting the operands and result won't
2497   // work. :(  The if statement below tests that condition and bails
2498   // if it finds it.
2499   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2500     return nullptr;
2501 
2502   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2503   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2504   // division-by-constant cases should be present, we can not assert that they
2505   // have happened before we reach this icmp instruction.
2506   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2507     return nullptr;
2508 
2509   // Compute Prod = C * C2. We are essentially solving an equation of
2510   // form X / C2 = C. We solve for X by multiplying C2 and C.
2511   // By solving for X, we can turn this into a range check instead of computing
2512   // a divide.
2513   APInt Prod = C * *C2;
2514 
2515   // Determine if the product overflows by seeing if the product is not equal to
2516   // the divide. Make sure we do the same kind of divide as in the LHS
2517   // instruction that we're folding.
2518   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2519 
2520   // If the division is known to be exact, then there is no remainder from the
2521   // divide, so the covered range size is unit, otherwise it is the divisor.
2522   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2523 
2524   // Figure out the interval that is being checked.  For example, a comparison
2525   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2526   // Compute this interval based on the constants involved and the signedness of
2527   // the compare/divide.  This computes a half-open interval, keeping track of
2528   // whether either value in the interval overflows.  After analysis each
2529   // overflow variable is set to 0 if it's corresponding bound variable is valid
2530   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2531   int LoOverflow = 0, HiOverflow = 0;
2532   APInt LoBound, HiBound;
2533 
2534   if (!DivIsSigned) { // udiv
2535     // e.g. X/5 op 3  --> [15, 20)
2536     LoBound = Prod;
2537     HiOverflow = LoOverflow = ProdOV;
2538     if (!HiOverflow) {
2539       // If this is not an exact divide, then many values in the range collapse
2540       // to the same result value.
2541       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2542     }
2543   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2544     if (C.isZero()) {                    // (X / pos) op 0
2545       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2546       LoBound = -(RangeSize - 1);
2547       HiBound = RangeSize;
2548     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2549       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2550       HiOverflow = LoOverflow = ProdOV;
2551       if (!HiOverflow)
2552         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2553     } else { // (X / pos) op neg
2554       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2555       HiBound = Prod + 1;
2556       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2557       if (!LoOverflow) {
2558         APInt DivNeg = -RangeSize;
2559         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2560       }
2561     }
2562   } else if (C2->isNegative()) { // Divisor is < 0.
2563     if (Div->isExact())
2564       RangeSize.negate();
2565     if (C.isZero()) { // (X / neg) op 0
2566       // e.g. X/-5 op 0  --> [-4, 5)
2567       LoBound = RangeSize + 1;
2568       HiBound = -RangeSize;
2569       if (HiBound == *C2) { // -INTMIN = INTMIN
2570         HiOverflow = 1;     // [INTMIN+1, overflow)
2571         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2572       }
2573     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2574       // e.g. X/-5 op 3  --> [-19, -14)
2575       HiBound = Prod + 1;
2576       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2577       if (!LoOverflow)
2578         LoOverflow =
2579             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2580     } else {          // (X / neg) op neg
2581       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2582       LoOverflow = HiOverflow = ProdOV;
2583       if (!HiOverflow)
2584         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2585     }
2586 
2587     // Dividing by a negative swaps the condition.  LT <-> GT
2588     Pred = ICmpInst::getSwappedPredicate(Pred);
2589   }
2590 
2591   switch (Pred) {
2592   default:
2593     llvm_unreachable("Unhandled icmp predicate!");
2594   case ICmpInst::ICMP_EQ:
2595     if (LoOverflow && HiOverflow)
2596       return replaceInstUsesWith(Cmp, Builder.getFalse());
2597     if (HiOverflow)
2598       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2599                           X, ConstantInt::get(Ty, LoBound));
2600     if (LoOverflow)
2601       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2602                           X, ConstantInt::get(Ty, HiBound));
2603     return replaceInstUsesWith(
2604         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2605   case ICmpInst::ICMP_NE:
2606     if (LoOverflow && HiOverflow)
2607       return replaceInstUsesWith(Cmp, Builder.getTrue());
2608     if (HiOverflow)
2609       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2610                           X, ConstantInt::get(Ty, LoBound));
2611     if (LoOverflow)
2612       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2613                           X, ConstantInt::get(Ty, HiBound));
2614     return replaceInstUsesWith(
2615         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2616   case ICmpInst::ICMP_ULT:
2617   case ICmpInst::ICMP_SLT:
2618     if (LoOverflow == +1) // Low bound is greater than input range.
2619       return replaceInstUsesWith(Cmp, Builder.getTrue());
2620     if (LoOverflow == -1) // Low bound is less than input range.
2621       return replaceInstUsesWith(Cmp, Builder.getFalse());
2622     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2623   case ICmpInst::ICMP_UGT:
2624   case ICmpInst::ICMP_SGT:
2625     if (HiOverflow == +1) // High bound greater than input range.
2626       return replaceInstUsesWith(Cmp, Builder.getFalse());
2627     if (HiOverflow == -1) // High bound less than input range.
2628       return replaceInstUsesWith(Cmp, Builder.getTrue());
2629     if (Pred == ICmpInst::ICMP_UGT)
2630       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2631     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2632   }
2633 
2634   return nullptr;
2635 }
2636 
2637 /// Fold icmp (sub X, Y), C.
2638 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2639                                                    BinaryOperator *Sub,
2640                                                    const APInt &C) {
2641   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2642   ICmpInst::Predicate Pred = Cmp.getPredicate();
2643   Type *Ty = Sub->getType();
2644 
2645   // (SubC - Y) == C) --> Y == (SubC - C)
2646   // (SubC - Y) != C) --> Y != (SubC - C)
2647   Constant *SubC;
2648   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2649     return new ICmpInst(Pred, Y,
2650                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2651   }
2652 
2653   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2654   const APInt *C2;
2655   APInt SubResult;
2656   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2657   bool HasNSW = Sub->hasNoSignedWrap();
2658   bool HasNUW = Sub->hasNoUnsignedWrap();
2659   if (match(X, m_APInt(C2)) &&
2660       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2661       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2662     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2663 
2664   // X - Y == 0 --> X == Y.
2665   // X - Y != 0 --> X != Y.
2666   // TODO: We allow this with multiple uses as long as the other uses are not
2667   //       in phis. The phi use check is guarding against a codegen regression
2668   //       for a loop test. If the backend could undo this (and possibly
2669   //       subsequent transforms), we would not need this hack.
2670   if (Cmp.isEquality() && C.isZero() &&
2671       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2672     return new ICmpInst(Pred, X, Y);
2673 
2674   // The following transforms are only worth it if the only user of the subtract
2675   // is the icmp.
2676   // TODO: This is an artificial restriction for all of the transforms below
2677   //       that only need a single replacement icmp. Can these use the phi test
2678   //       like the transform above here?
2679   if (!Sub->hasOneUse())
2680     return nullptr;
2681 
2682   if (Sub->hasNoSignedWrap()) {
2683     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2684     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2685       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2686 
2687     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2688     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2689       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2690 
2691     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2692     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2693       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2694 
2695     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2696     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2697       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2698   }
2699 
2700   if (!match(X, m_APInt(C2)))
2701     return nullptr;
2702 
2703   // C2 - Y <u C -> (Y | (C - 1)) == C2
2704   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2705   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2706       (*C2 & (C - 1)) == (C - 1))
2707     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2708 
2709   // C2 - Y >u C -> (Y | C) != C2
2710   //   iff C2 & C == C and C + 1 is a power of 2
2711   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2712     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2713 
2714   // We have handled special cases that reduce.
2715   // Canonicalize any remaining sub to add as:
2716   // (C2 - Y) > C --> (Y + ~C2) < ~C
2717   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2718                                  HasNUW, HasNSW);
2719   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2720 }
2721 
2722 /// Fold icmp (add X, Y), C.
2723 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2724                                                    BinaryOperator *Add,
2725                                                    const APInt &C) {
2726   Value *Y = Add->getOperand(1);
2727   const APInt *C2;
2728   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2729     return nullptr;
2730 
2731   // Fold icmp pred (add X, C2), C.
2732   Value *X = Add->getOperand(0);
2733   Type *Ty = Add->getType();
2734   const CmpInst::Predicate Pred = Cmp.getPredicate();
2735 
2736   // If the add does not wrap, we can always adjust the compare by subtracting
2737   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2738   // are canonicalized to SGT/SLT/UGT/ULT.
2739   if ((Add->hasNoSignedWrap() &&
2740        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2741       (Add->hasNoUnsignedWrap() &&
2742        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2743     bool Overflow;
2744     APInt NewC =
2745         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2746     // If there is overflow, the result must be true or false.
2747     // TODO: Can we assert there is no overflow because InstSimplify always
2748     // handles those cases?
2749     if (!Overflow)
2750       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2751       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2752   }
2753 
2754   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2755   const APInt &Upper = CR.getUpper();
2756   const APInt &Lower = CR.getLower();
2757   if (Cmp.isSigned()) {
2758     if (Lower.isSignMask())
2759       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2760     if (Upper.isSignMask())
2761       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2762   } else {
2763     if (Lower.isMinValue())
2764       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2765     if (Upper.isMinValue())
2766       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2767   }
2768 
2769   // This set of folds is intentionally placed after folds that use no-wrapping
2770   // flags because those folds are likely better for later analysis/codegen.
2771   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2772   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2773 
2774   // Fold compare with offset to opposite sign compare if it eliminates offset:
2775   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2776   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2777     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2778 
2779   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2780   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2781     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2782 
2783   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2784   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2785     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2786 
2787   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2788   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2789     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2790 
2791   if (!Add->hasOneUse())
2792     return nullptr;
2793 
2794   // X+C <u C2 -> (X & -C2) == C
2795   //   iff C & (C2-1) == 0
2796   //       C2 is a power of 2
2797   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2798     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2799                         ConstantExpr::getNeg(cast<Constant>(Y)));
2800 
2801   // X+C >u C2 -> (X & ~C2) != C
2802   //   iff C & C2 == 0
2803   //       C2+1 is a power of 2
2804   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2805     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2806                         ConstantExpr::getNeg(cast<Constant>(Y)));
2807 
2808   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2809   // to the ult form.
2810   // X+C2 >u C -> X+(C2-C-1) <u ~C
2811   if (Pred == ICmpInst::ICMP_UGT)
2812     return new ICmpInst(ICmpInst::ICMP_ULT,
2813                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2814                         ConstantInt::get(Ty, ~C));
2815 
2816   return nullptr;
2817 }
2818 
2819 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2820                                                Value *&RHS, ConstantInt *&Less,
2821                                                ConstantInt *&Equal,
2822                                                ConstantInt *&Greater) {
2823   // TODO: Generalize this to work with other comparison idioms or ensure
2824   // they get canonicalized into this form.
2825 
2826   // select i1 (a == b),
2827   //        i32 Equal,
2828   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2829   // where Equal, Less and Greater are placeholders for any three constants.
2830   ICmpInst::Predicate PredA;
2831   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2832       !ICmpInst::isEquality(PredA))
2833     return false;
2834   Value *EqualVal = SI->getTrueValue();
2835   Value *UnequalVal = SI->getFalseValue();
2836   // We still can get non-canonical predicate here, so canonicalize.
2837   if (PredA == ICmpInst::ICMP_NE)
2838     std::swap(EqualVal, UnequalVal);
2839   if (!match(EqualVal, m_ConstantInt(Equal)))
2840     return false;
2841   ICmpInst::Predicate PredB;
2842   Value *LHS2, *RHS2;
2843   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2844                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2845     return false;
2846   // We can get predicate mismatch here, so canonicalize if possible:
2847   // First, ensure that 'LHS' match.
2848   if (LHS2 != LHS) {
2849     // x sgt y <--> y slt x
2850     std::swap(LHS2, RHS2);
2851     PredB = ICmpInst::getSwappedPredicate(PredB);
2852   }
2853   if (LHS2 != LHS)
2854     return false;
2855   // We also need to canonicalize 'RHS'.
2856   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2857     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2858     auto FlippedStrictness =
2859         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2860             PredB, cast<Constant>(RHS2));
2861     if (!FlippedStrictness)
2862       return false;
2863     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2864            "basic correctness failure");
2865     RHS2 = FlippedStrictness->second;
2866     // And kind-of perform the result swap.
2867     std::swap(Less, Greater);
2868     PredB = ICmpInst::ICMP_SLT;
2869   }
2870   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2871 }
2872 
2873 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2874                                                       SelectInst *Select,
2875                                                       ConstantInt *C) {
2876 
2877   assert(C && "Cmp RHS should be a constant int!");
2878   // If we're testing a constant value against the result of a three way
2879   // comparison, the result can be expressed directly in terms of the
2880   // original values being compared.  Note: We could possibly be more
2881   // aggressive here and remove the hasOneUse test. The original select is
2882   // really likely to simplify or sink when we remove a test of the result.
2883   Value *OrigLHS, *OrigRHS;
2884   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2885   if (Cmp.hasOneUse() &&
2886       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2887                               C3GreaterThan)) {
2888     assert(C1LessThan && C2Equal && C3GreaterThan);
2889 
2890     bool TrueWhenLessThan =
2891         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2892             ->isAllOnesValue();
2893     bool TrueWhenEqual =
2894         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2895             ->isAllOnesValue();
2896     bool TrueWhenGreaterThan =
2897         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2898             ->isAllOnesValue();
2899 
2900     // This generates the new instruction that will replace the original Cmp
2901     // Instruction. Instead of enumerating the various combinations when
2902     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2903     // false, we rely on chaining of ORs and future passes of InstCombine to
2904     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2905 
2906     // When none of the three constants satisfy the predicate for the RHS (C),
2907     // the entire original Cmp can be simplified to a false.
2908     Value *Cond = Builder.getFalse();
2909     if (TrueWhenLessThan)
2910       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2911                                                        OrigLHS, OrigRHS));
2912     if (TrueWhenEqual)
2913       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2914                                                        OrigLHS, OrigRHS));
2915     if (TrueWhenGreaterThan)
2916       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2917                                                        OrigLHS, OrigRHS));
2918 
2919     return replaceInstUsesWith(Cmp, Cond);
2920   }
2921   return nullptr;
2922 }
2923 
2924 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2925   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2926   if (!Bitcast)
2927     return nullptr;
2928 
2929   ICmpInst::Predicate Pred = Cmp.getPredicate();
2930   Value *Op1 = Cmp.getOperand(1);
2931   Value *BCSrcOp = Bitcast->getOperand(0);
2932   Type *SrcType = Bitcast->getSrcTy();
2933   Type *DstType = Bitcast->getType();
2934 
2935   // Make sure the bitcast doesn't change between scalar and vector and
2936   // doesn't change the number of vector elements.
2937   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
2938       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
2939     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2940     Value *X;
2941     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2942       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2943       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2944       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2945       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2946       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2947            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2948           match(Op1, m_Zero()))
2949         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2950 
2951       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2952       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2953         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2954 
2955       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2956       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2957         return new ICmpInst(Pred, X,
2958                             ConstantInt::getAllOnesValue(X->getType()));
2959     }
2960 
2961     // Zero-equality checks are preserved through unsigned floating-point casts:
2962     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2963     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2964     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2965       if (Cmp.isEquality() && match(Op1, m_Zero()))
2966         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2967 
2968     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2969     // the FP extend/truncate because that cast does not change the sign-bit.
2970     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2971     // The sign-bit is always the most significant bit in those types.
2972     const APInt *C;
2973     bool TrueIfSigned;
2974     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2975         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2976       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2977           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2978         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2979         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2980         Type *XType = X->getType();
2981 
2982         // We can't currently handle Power style floating point operations here.
2983         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
2984           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2985           if (auto *XVTy = dyn_cast<VectorType>(XType))
2986             NewType = VectorType::get(NewType, XVTy->getElementCount());
2987           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2988           if (TrueIfSigned)
2989             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2990                                 ConstantInt::getNullValue(NewType));
2991           else
2992             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2993                                 ConstantInt::getAllOnesValue(NewType));
2994         }
2995       }
2996     }
2997   }
2998 
2999   // Test to see if the operands of the icmp are casted versions of other
3000   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
3001   if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3002     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3003     // so eliminate it as well.
3004     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
3005       Op1 = BC2->getOperand(0);
3006 
3007     Op1 = Builder.CreateBitCast(Op1, SrcType);
3008     return new ICmpInst(Pred, BCSrcOp, Op1);
3009   }
3010 
3011   const APInt *C;
3012   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3013       !SrcType->isIntOrIntVectorTy())
3014     return nullptr;
3015 
3016   // If this is checking if all elements of a vector compare are set or not,
3017   // invert the casted vector equality compare and test if all compare
3018   // elements are clear or not. Compare against zero is generally easier for
3019   // analysis and codegen.
3020   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3021   // Example: are all elements equal? --> are zero elements not equal?
3022   // TODO: Try harder to reduce compare of 2 freely invertible operands?
3023   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
3024       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
3025     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
3026     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3027   }
3028 
3029   // If this is checking if all elements of an extended vector are clear or not,
3030   // compare in a narrow type to eliminate the extend:
3031   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3032   Value *X;
3033   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3034       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3035     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3036       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3037       Value *NewCast = Builder.CreateBitCast(X, NewType);
3038       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3039     }
3040   }
3041 
3042   // Folding: icmp <pred> iN X, C
3043   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3044   //    and C is a splat of a K-bit pattern
3045   //    and SC is a constant vector = <C', C', C', ..., C'>
3046   // Into:
3047   //   %E = extractelement <M x iK> %vec, i32 C'
3048   //   icmp <pred> iK %E, trunc(C)
3049   Value *Vec;
3050   ArrayRef<int> Mask;
3051   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3052     // Check whether every element of Mask is the same constant
3053     if (is_splat(Mask)) {
3054       auto *VecTy = cast<VectorType>(SrcType);
3055       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3056       if (C->isSplat(EltTy->getBitWidth())) {
3057         // Fold the icmp based on the value of C
3058         // If C is M copies of an iK sized bit pattern,
3059         // then:
3060         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3061         //       icmp <pred> iK %SplatVal, <pattern>
3062         Value *Elem = Builder.getInt32(Mask[0]);
3063         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3064         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3065         return new ICmpInst(Pred, Extract, NewC);
3066       }
3067     }
3068   }
3069   return nullptr;
3070 }
3071 
3072 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3073 /// where X is some kind of instruction.
3074 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3075   const APInt *C;
3076 
3077   if (match(Cmp.getOperand(1), m_APInt(C))) {
3078     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3079       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3080         return I;
3081 
3082     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3083       // For now, we only support constant integers while folding the
3084       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3085       // similar to the cases handled by binary ops above.
3086       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3087         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3088           return I;
3089 
3090     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3091       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3092         return I;
3093 
3094     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3095       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3096         return I;
3097   }
3098 
3099   if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3100     return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3101 
3102   return nullptr;
3103 }
3104 
3105 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3106 /// icmp eq/ne BO, C.
3107 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3108     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3109   // TODO: Some of these folds could work with arbitrary constants, but this
3110   // function is limited to scalar and vector splat constants.
3111   if (!Cmp.isEquality())
3112     return nullptr;
3113 
3114   ICmpInst::Predicate Pred = Cmp.getPredicate();
3115   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3116   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3117   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3118 
3119   switch (BO->getOpcode()) {
3120   case Instruction::SRem:
3121     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3122     if (C.isZero() && BO->hasOneUse()) {
3123       const APInt *BOC;
3124       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3125         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3126         return new ICmpInst(Pred, NewRem,
3127                             Constant::getNullValue(BO->getType()));
3128       }
3129     }
3130     break;
3131   case Instruction::Add: {
3132     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3133     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3134       if (BO->hasOneUse())
3135         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3136     } else if (C.isZero()) {
3137       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3138       // efficiently invertible, or if the add has just this one use.
3139       if (Value *NegVal = dyn_castNegVal(BOp1))
3140         return new ICmpInst(Pred, BOp0, NegVal);
3141       if (Value *NegVal = dyn_castNegVal(BOp0))
3142         return new ICmpInst(Pred, NegVal, BOp1);
3143       if (BO->hasOneUse()) {
3144         Value *Neg = Builder.CreateNeg(BOp1);
3145         Neg->takeName(BO);
3146         return new ICmpInst(Pred, BOp0, Neg);
3147       }
3148     }
3149     break;
3150   }
3151   case Instruction::Xor:
3152     if (BO->hasOneUse()) {
3153       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3154         // For the xor case, we can xor two constants together, eliminating
3155         // the explicit xor.
3156         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3157       } else if (C.isZero()) {
3158         // Replace ((xor A, B) != 0) with (A != B)
3159         return new ICmpInst(Pred, BOp0, BOp1);
3160       }
3161     }
3162     break;
3163   case Instruction::Or: {
3164     const APInt *BOC;
3165     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3166       // Comparing if all bits outside of a constant mask are set?
3167       // Replace (X | C) == -1 with (X & ~C) == ~C.
3168       // This removes the -1 constant.
3169       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3170       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3171       return new ICmpInst(Pred, And, NotBOC);
3172     }
3173     break;
3174   }
3175   case Instruction::And: {
3176     const APInt *BOC;
3177     if (match(BOp1, m_APInt(BOC))) {
3178       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3179       if (C == *BOC && C.isPowerOf2())
3180         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3181                             BO, Constant::getNullValue(RHS->getType()));
3182     }
3183     break;
3184   }
3185   case Instruction::UDiv:
3186     if (C.isZero()) {
3187       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3188       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3189       return new ICmpInst(NewPred, BOp1, BOp0);
3190     }
3191     break;
3192   default:
3193     break;
3194   }
3195   return nullptr;
3196 }
3197 
3198 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3199 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3200     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3201   Type *Ty = II->getType();
3202   unsigned BitWidth = C.getBitWidth();
3203   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3204 
3205   switch (II->getIntrinsicID()) {
3206   case Intrinsic::abs:
3207     // abs(A) == 0  ->  A == 0
3208     // abs(A) == INT_MIN  ->  A == INT_MIN
3209     if (C.isZero() || C.isMinSignedValue())
3210       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3211     break;
3212 
3213   case Intrinsic::bswap:
3214     // bswap(A) == C  ->  A == bswap(C)
3215     return new ICmpInst(Pred, II->getArgOperand(0),
3216                         ConstantInt::get(Ty, C.byteSwap()));
3217 
3218   case Intrinsic::ctlz:
3219   case Intrinsic::cttz: {
3220     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3221     if (C == BitWidth)
3222       return new ICmpInst(Pred, II->getArgOperand(0),
3223                           ConstantInt::getNullValue(Ty));
3224 
3225     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3226     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3227     // Limit to one use to ensure we don't increase instruction count.
3228     unsigned Num = C.getLimitedValue(BitWidth);
3229     if (Num != BitWidth && II->hasOneUse()) {
3230       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3231       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3232                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3233       APInt Mask2 = IsTrailing
3234         ? APInt::getOneBitSet(BitWidth, Num)
3235         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3236       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3237                           ConstantInt::get(Ty, Mask2));
3238     }
3239     break;
3240   }
3241 
3242   case Intrinsic::ctpop: {
3243     // popcount(A) == 0  ->  A == 0 and likewise for !=
3244     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3245     bool IsZero = C.isZero();
3246     if (IsZero || C == BitWidth)
3247       return new ICmpInst(Pred, II->getArgOperand(0),
3248                           IsZero ? Constant::getNullValue(Ty)
3249                                  : Constant::getAllOnesValue(Ty));
3250 
3251     break;
3252   }
3253 
3254   case Intrinsic::fshl:
3255   case Intrinsic::fshr:
3256     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3257       const APInt *RotAmtC;
3258       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3259       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3260       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3261         return new ICmpInst(Pred, II->getArgOperand(0),
3262                             II->getIntrinsicID() == Intrinsic::fshl
3263                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3264                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3265     }
3266     break;
3267 
3268   case Intrinsic::uadd_sat: {
3269     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3270     if (C.isZero()) {
3271       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3272       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3273     }
3274     break;
3275   }
3276 
3277   case Intrinsic::usub_sat: {
3278     // usub.sat(a, b) == 0  ->  a <= b
3279     if (C.isZero()) {
3280       ICmpInst::Predicate NewPred =
3281           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3282       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3283     }
3284     break;
3285   }
3286   default:
3287     break;
3288   }
3289 
3290   return nullptr;
3291 }
3292 
3293 /// Fold an icmp with LLVM intrinsics
3294 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3295   assert(Cmp.isEquality());
3296 
3297   ICmpInst::Predicate Pred = Cmp.getPredicate();
3298   Value *Op0 = Cmp.getOperand(0);
3299   Value *Op1 = Cmp.getOperand(1);
3300   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3301   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3302   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3303     return nullptr;
3304 
3305   switch (IIOp0->getIntrinsicID()) {
3306   case Intrinsic::bswap:
3307   case Intrinsic::bitreverse:
3308     // If both operands are byte-swapped or bit-reversed, just compare the
3309     // original values.
3310     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3311   case Intrinsic::fshl:
3312   case Intrinsic::fshr:
3313     // If both operands are rotated by same amount, just compare the
3314     // original values.
3315     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3316       break;
3317     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3318       break;
3319     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3320       break;
3321     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3322   default:
3323     break;
3324   }
3325 
3326   return nullptr;
3327 }
3328 
3329 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3330 /// where X is some kind of instruction and C is AllowUndef.
3331 /// TODO: Move more folds which allow undef to this function.
3332 Instruction *
3333 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3334                                                      const APInt &C) {
3335   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3336   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3337     switch (II->getIntrinsicID()) {
3338     default:
3339       break;
3340     case Intrinsic::fshl:
3341     case Intrinsic::fshr:
3342       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3343         // (rot X, ?) == 0/-1 --> X == 0/-1
3344         if (C.isZero() || C.isAllOnes())
3345           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3346       }
3347       break;
3348     }
3349   }
3350 
3351   return nullptr;
3352 }
3353 
3354 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3355 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3356                                                          BinaryOperator *BO,
3357                                                          const APInt &C) {
3358   switch (BO->getOpcode()) {
3359   case Instruction::Xor:
3360     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3361       return I;
3362     break;
3363   case Instruction::And:
3364     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3365       return I;
3366     break;
3367   case Instruction::Or:
3368     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3369       return I;
3370     break;
3371   case Instruction::Mul:
3372     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3373       return I;
3374     break;
3375   case Instruction::Shl:
3376     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3377       return I;
3378     break;
3379   case Instruction::LShr:
3380   case Instruction::AShr:
3381     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3382       return I;
3383     break;
3384   case Instruction::SRem:
3385     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3386       return I;
3387     break;
3388   case Instruction::UDiv:
3389     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3390       return I;
3391     LLVM_FALLTHROUGH;
3392   case Instruction::SDiv:
3393     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3394       return I;
3395     break;
3396   case Instruction::Sub:
3397     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3398       return I;
3399     break;
3400   case Instruction::Add:
3401     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3402       return I;
3403     break;
3404   default:
3405     break;
3406   }
3407 
3408   // TODO: These folds could be refactored to be part of the above calls.
3409   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3410 }
3411 
3412 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3413 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3414                                                              IntrinsicInst *II,
3415                                                              const APInt &C) {
3416   if (Cmp.isEquality())
3417     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3418 
3419   Type *Ty = II->getType();
3420   unsigned BitWidth = C.getBitWidth();
3421   ICmpInst::Predicate Pred = Cmp.getPredicate();
3422   switch (II->getIntrinsicID()) {
3423   case Intrinsic::ctpop: {
3424     // (ctpop X > BitWidth - 1) --> X == -1
3425     Value *X = II->getArgOperand(0);
3426     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3427       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3428                              ConstantInt::getAllOnesValue(Ty));
3429     // (ctpop X < BitWidth) --> X != -1
3430     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3431       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3432                              ConstantInt::getAllOnesValue(Ty));
3433     break;
3434   }
3435   case Intrinsic::ctlz: {
3436     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3437     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3438       unsigned Num = C.getLimitedValue();
3439       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3440       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3441                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3442     }
3443 
3444     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3445     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3446       unsigned Num = C.getLimitedValue();
3447       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3448       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3449                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3450     }
3451     break;
3452   }
3453   case Intrinsic::cttz: {
3454     // Limit to one use to ensure we don't increase instruction count.
3455     if (!II->hasOneUse())
3456       return nullptr;
3457 
3458     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3459     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3460       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3461       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3462                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3463                              ConstantInt::getNullValue(Ty));
3464     }
3465 
3466     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3467     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3468       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3469       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3470                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3471                              ConstantInt::getNullValue(Ty));
3472     }
3473     break;
3474   }
3475   default:
3476     break;
3477   }
3478 
3479   return nullptr;
3480 }
3481 
3482 /// Handle icmp with constant (but not simple integer constant) RHS.
3483 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3484   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3485   Constant *RHSC = dyn_cast<Constant>(Op1);
3486   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3487   if (!RHSC || !LHSI)
3488     return nullptr;
3489 
3490   switch (LHSI->getOpcode()) {
3491   case Instruction::GetElementPtr:
3492     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3493     if (RHSC->isNullValue() &&
3494         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3495       return new ICmpInst(
3496           I.getPredicate(), LHSI->getOperand(0),
3497           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3498     break;
3499   case Instruction::PHI:
3500     // Only fold icmp into the PHI if the phi and icmp are in the same
3501     // block.  If in the same block, we're encouraging jump threading.  If
3502     // not, we are just pessimizing the code by making an i1 phi.
3503     if (LHSI->getParent() == I.getParent())
3504       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3505         return NV;
3506     break;
3507   case Instruction::IntToPtr:
3508     // icmp pred inttoptr(X), null -> icmp pred X, 0
3509     if (RHSC->isNullValue() &&
3510         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3511       return new ICmpInst(
3512           I.getPredicate(), LHSI->getOperand(0),
3513           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3514     break;
3515 
3516   case Instruction::Load:
3517     // Try to optimize things like "A[i] > 4" to index computations.
3518     if (GetElementPtrInst *GEP =
3519             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3520       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3521         if (Instruction *Res =
3522                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3523           return Res;
3524     break;
3525   }
3526 
3527   return nullptr;
3528 }
3529 
3530 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3531                                               SelectInst *SI, Value *RHS,
3532                                               const ICmpInst &I) {
3533   // Try to fold the comparison into the select arms, which will cause the
3534   // select to be converted into a logical and/or.
3535   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3536     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3537       return Res;
3538     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3539                                                  RHS, DL, SelectCondIsTrue))
3540       return ConstantInt::get(I.getType(), *Impl);
3541     return nullptr;
3542   };
3543 
3544   ConstantInt *CI = nullptr;
3545   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3546   if (Op1)
3547     CI = dyn_cast<ConstantInt>(Op1);
3548 
3549   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3550   if (Op2)
3551     CI = dyn_cast<ConstantInt>(Op2);
3552 
3553   // We only want to perform this transformation if it will not lead to
3554   // additional code. This is true if either both sides of the select
3555   // fold to a constant (in which case the icmp is replaced with a select
3556   // which will usually simplify) or this is the only user of the
3557   // select (in which case we are trading a select+icmp for a simpler
3558   // select+icmp) or all uses of the select can be replaced based on
3559   // dominance information ("Global cases").
3560   bool Transform = false;
3561   if (Op1 && Op2)
3562     Transform = true;
3563   else if (Op1 || Op2) {
3564     // Local case
3565     if (SI->hasOneUse())
3566       Transform = true;
3567     // Global cases
3568     else if (CI && !CI->isZero())
3569       // When Op1 is constant try replacing select with second operand.
3570       // Otherwise Op2 is constant and try replacing select with first
3571       // operand.
3572       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3573   }
3574   if (Transform) {
3575     if (!Op1)
3576       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3577     if (!Op2)
3578       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3579     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3580   }
3581 
3582   return nullptr;
3583 }
3584 
3585 /// Some comparisons can be simplified.
3586 /// In this case, we are looking for comparisons that look like
3587 /// a check for a lossy truncation.
3588 /// Folds:
3589 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3590 /// Where Mask is some pattern that produces all-ones in low bits:
3591 ///    (-1 >> y)
3592 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3593 ///   ~(-1 << y)
3594 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3595 /// The Mask can be a constant, too.
3596 /// For some predicates, the operands are commutative.
3597 /// For others, x can only be on a specific side.
3598 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3599                                           InstCombiner::BuilderTy &Builder) {
3600   ICmpInst::Predicate SrcPred;
3601   Value *X, *M, *Y;
3602   auto m_VariableMask = m_CombineOr(
3603       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3604                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3605       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3606                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3607   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3608   if (!match(&I, m_c_ICmp(SrcPred,
3609                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3610                           m_Deferred(X))))
3611     return nullptr;
3612 
3613   ICmpInst::Predicate DstPred;
3614   switch (SrcPred) {
3615   case ICmpInst::Predicate::ICMP_EQ:
3616     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3617     DstPred = ICmpInst::Predicate::ICMP_ULE;
3618     break;
3619   case ICmpInst::Predicate::ICMP_NE:
3620     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3621     DstPred = ICmpInst::Predicate::ICMP_UGT;
3622     break;
3623   case ICmpInst::Predicate::ICMP_ULT:
3624     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3625     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3626     DstPred = ICmpInst::Predicate::ICMP_UGT;
3627     break;
3628   case ICmpInst::Predicate::ICMP_UGE:
3629     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3630     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3631     DstPred = ICmpInst::Predicate::ICMP_ULE;
3632     break;
3633   case ICmpInst::Predicate::ICMP_SLT:
3634     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3635     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3636     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3637       return nullptr;
3638     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3639       return nullptr;
3640     DstPred = ICmpInst::Predicate::ICMP_SGT;
3641     break;
3642   case ICmpInst::Predicate::ICMP_SGE:
3643     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3644     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3645     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3646       return nullptr;
3647     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3648       return nullptr;
3649     DstPred = ICmpInst::Predicate::ICMP_SLE;
3650     break;
3651   case ICmpInst::Predicate::ICMP_SGT:
3652   case ICmpInst::Predicate::ICMP_SLE:
3653     return nullptr;
3654   case ICmpInst::Predicate::ICMP_UGT:
3655   case ICmpInst::Predicate::ICMP_ULE:
3656     llvm_unreachable("Instsimplify took care of commut. variant");
3657     break;
3658   default:
3659     llvm_unreachable("All possible folds are handled.");
3660   }
3661 
3662   // The mask value may be a vector constant that has undefined elements. But it
3663   // may not be safe to propagate those undefs into the new compare, so replace
3664   // those elements by copying an existing, defined, and safe scalar constant.
3665   Type *OpTy = M->getType();
3666   auto *VecC = dyn_cast<Constant>(M);
3667   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3668   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3669     Constant *SafeReplacementConstant = nullptr;
3670     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3671       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3672         SafeReplacementConstant = VecC->getAggregateElement(i);
3673         break;
3674       }
3675     }
3676     assert(SafeReplacementConstant && "Failed to find undef replacement");
3677     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3678   }
3679 
3680   return Builder.CreateICmp(DstPred, X, M);
3681 }
3682 
3683 /// Some comparisons can be simplified.
3684 /// In this case, we are looking for comparisons that look like
3685 /// a check for a lossy signed truncation.
3686 /// Folds:   (MaskedBits is a constant.)
3687 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3688 /// Into:
3689 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3690 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3691 static Value *
3692 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3693                                  InstCombiner::BuilderTy &Builder) {
3694   ICmpInst::Predicate SrcPred;
3695   Value *X;
3696   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3697   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3698   if (!match(&I, m_c_ICmp(SrcPred,
3699                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3700                                           m_APInt(C1))),
3701                           m_Deferred(X))))
3702     return nullptr;
3703 
3704   // Potential handling of non-splats: for each element:
3705   //  * if both are undef, replace with constant 0.
3706   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3707   //  * if both are not undef, and are different, bailout.
3708   //  * else, only one is undef, then pick the non-undef one.
3709 
3710   // The shift amount must be equal.
3711   if (*C0 != *C1)
3712     return nullptr;
3713   const APInt &MaskedBits = *C0;
3714   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3715 
3716   ICmpInst::Predicate DstPred;
3717   switch (SrcPred) {
3718   case ICmpInst::Predicate::ICMP_EQ:
3719     // ((%x << MaskedBits) a>> MaskedBits) == %x
3720     //   =>
3721     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3722     DstPred = ICmpInst::Predicate::ICMP_ULT;
3723     break;
3724   case ICmpInst::Predicate::ICMP_NE:
3725     // ((%x << MaskedBits) a>> MaskedBits) != %x
3726     //   =>
3727     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3728     DstPred = ICmpInst::Predicate::ICMP_UGE;
3729     break;
3730   // FIXME: are more folds possible?
3731   default:
3732     return nullptr;
3733   }
3734 
3735   auto *XType = X->getType();
3736   const unsigned XBitWidth = XType->getScalarSizeInBits();
3737   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3738   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3739 
3740   // KeptBits = bitwidth(%x) - MaskedBits
3741   const APInt KeptBits = BitWidth - MaskedBits;
3742   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3743   // ICmpCst = (1 << KeptBits)
3744   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3745   assert(ICmpCst.isPowerOf2());
3746   // AddCst = (1 << (KeptBits-1))
3747   const APInt AddCst = ICmpCst.lshr(1);
3748   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3749 
3750   // T0 = add %x, AddCst
3751   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3752   // T1 = T0 DstPred ICmpCst
3753   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3754 
3755   return T1;
3756 }
3757 
3758 // Given pattern:
3759 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3760 // we should move shifts to the same hand of 'and', i.e. rewrite as
3761 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3762 // We are only interested in opposite logical shifts here.
3763 // One of the shifts can be truncated.
3764 // If we can, we want to end up creating 'lshr' shift.
3765 static Value *
3766 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3767                                            InstCombiner::BuilderTy &Builder) {
3768   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3769       !I.getOperand(0)->hasOneUse())
3770     return nullptr;
3771 
3772   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3773 
3774   // Look for an 'and' of two logical shifts, one of which may be truncated.
3775   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3776   Instruction *XShift, *MaybeTruncation, *YShift;
3777   if (!match(
3778           I.getOperand(0),
3779           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3780                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3781                                    m_AnyLogicalShift, m_Instruction(YShift))),
3782                                m_Instruction(MaybeTruncation)))))
3783     return nullptr;
3784 
3785   // We potentially looked past 'trunc', but only when matching YShift,
3786   // therefore YShift must have the widest type.
3787   Instruction *WidestShift = YShift;
3788   // Therefore XShift must have the shallowest type.
3789   // Or they both have identical types if there was no truncation.
3790   Instruction *NarrowestShift = XShift;
3791 
3792   Type *WidestTy = WidestShift->getType();
3793   Type *NarrowestTy = NarrowestShift->getType();
3794   assert(NarrowestTy == I.getOperand(0)->getType() &&
3795          "We did not look past any shifts while matching XShift though.");
3796   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3797 
3798   // If YShift is a 'lshr', swap the shifts around.
3799   if (match(YShift, m_LShr(m_Value(), m_Value())))
3800     std::swap(XShift, YShift);
3801 
3802   // The shifts must be in opposite directions.
3803   auto XShiftOpcode = XShift->getOpcode();
3804   if (XShiftOpcode == YShift->getOpcode())
3805     return nullptr; // Do not care about same-direction shifts here.
3806 
3807   Value *X, *XShAmt, *Y, *YShAmt;
3808   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3809   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3810 
3811   // If one of the values being shifted is a constant, then we will end with
3812   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3813   // however, we will need to ensure that we won't increase instruction count.
3814   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3815     // At least one of the hands of the 'and' should be one-use shift.
3816     if (!match(I.getOperand(0),
3817                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3818       return nullptr;
3819     if (HadTrunc) {
3820       // Due to the 'trunc', we will need to widen X. For that either the old
3821       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3822       if (!MaybeTruncation->hasOneUse() &&
3823           !NarrowestShift->getOperand(1)->hasOneUse())
3824         return nullptr;
3825     }
3826   }
3827 
3828   // We have two shift amounts from two different shifts. The types of those
3829   // shift amounts may not match. If that's the case let's bailout now.
3830   if (XShAmt->getType() != YShAmt->getType())
3831     return nullptr;
3832 
3833   // As input, we have the following pattern:
3834   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3835   // We want to rewrite that as:
3836   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3837   // While we know that originally (Q+K) would not overflow
3838   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3839   // shift amounts. so it may now overflow in smaller bitwidth.
3840   // To ensure that does not happen, we need to ensure that the total maximal
3841   // shift amount is still representable in that smaller bit width.
3842   unsigned MaximalPossibleTotalShiftAmount =
3843       (WidestTy->getScalarSizeInBits() - 1) +
3844       (NarrowestTy->getScalarSizeInBits() - 1);
3845   APInt MaximalRepresentableShiftAmount =
3846       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3847   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3848     return nullptr;
3849 
3850   // Can we fold (XShAmt+YShAmt) ?
3851   auto *NewShAmt = dyn_cast_or_null<Constant>(
3852       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3853                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3854   if (!NewShAmt)
3855     return nullptr;
3856   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3857   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3858 
3859   // Is the new shift amount smaller than the bit width?
3860   // FIXME: could also rely on ConstantRange.
3861   if (!match(NewShAmt,
3862              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3863                                 APInt(WidestBitWidth, WidestBitWidth))))
3864     return nullptr;
3865 
3866   // An extra legality check is needed if we had trunc-of-lshr.
3867   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3868     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3869                     WidestShift]() {
3870       // It isn't obvious whether it's worth it to analyze non-constants here.
3871       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3872       // If *any* of these preconditions matches we can perform the fold.
3873       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3874                                     ? NewShAmt->getSplatValue()
3875                                     : NewShAmt;
3876       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3877       if (NewShAmtSplat &&
3878           (NewShAmtSplat->isNullValue() ||
3879            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3880         return true;
3881       // We consider *min* leading zeros so a single outlier
3882       // blocks the transform as opposed to allowing it.
3883       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3884         KnownBits Known = computeKnownBits(C, SQ.DL);
3885         unsigned MinLeadZero = Known.countMinLeadingZeros();
3886         // If the value being shifted has at most lowest bit set we can fold.
3887         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3888         if (MaxActiveBits <= 1)
3889           return true;
3890         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3891         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3892           return true;
3893       }
3894       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3895         KnownBits Known = computeKnownBits(C, SQ.DL);
3896         unsigned MinLeadZero = Known.countMinLeadingZeros();
3897         // If the value being shifted has at most lowest bit set we can fold.
3898         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3899         if (MaxActiveBits <= 1)
3900           return true;
3901         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3902         if (NewShAmtSplat) {
3903           APInt AdjNewShAmt =
3904               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3905           if (AdjNewShAmt.ule(MinLeadZero))
3906             return true;
3907         }
3908       }
3909       return false; // Can't tell if it's ok.
3910     };
3911     if (!CanFold())
3912       return nullptr;
3913   }
3914 
3915   // All good, we can do this fold.
3916   X = Builder.CreateZExt(X, WidestTy);
3917   Y = Builder.CreateZExt(Y, WidestTy);
3918   // The shift is the same that was for X.
3919   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3920                   ? Builder.CreateLShr(X, NewShAmt)
3921                   : Builder.CreateShl(X, NewShAmt);
3922   Value *T1 = Builder.CreateAnd(T0, Y);
3923   return Builder.CreateICmp(I.getPredicate(), T1,
3924                             Constant::getNullValue(WidestTy));
3925 }
3926 
3927 /// Fold
3928 ///   (-1 u/ x) u< y
3929 ///   ((x * y) ?/ x) != y
3930 /// to
3931 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3932 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3933 /// will mean that we are looking for the opposite answer.
3934 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3935   ICmpInst::Predicate Pred;
3936   Value *X, *Y;
3937   Instruction *Mul;
3938   Instruction *Div;
3939   bool NeedNegation;
3940   // Look for: (-1 u/ x) u</u>= y
3941   if (!I.isEquality() &&
3942       match(&I, m_c_ICmp(Pred,
3943                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3944                                       m_Instruction(Div)),
3945                          m_Value(Y)))) {
3946     Mul = nullptr;
3947 
3948     // Are we checking that overflow does not happen, or does happen?
3949     switch (Pred) {
3950     case ICmpInst::Predicate::ICMP_ULT:
3951       NeedNegation = false;
3952       break; // OK
3953     case ICmpInst::Predicate::ICMP_UGE:
3954       NeedNegation = true;
3955       break; // OK
3956     default:
3957       return nullptr; // Wrong predicate.
3958     }
3959   } else // Look for: ((x * y) / x) !=/== y
3960       if (I.isEquality() &&
3961           match(&I,
3962                 m_c_ICmp(Pred, m_Value(Y),
3963                          m_CombineAnd(
3964                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3965                                                                   m_Value(X)),
3966                                                           m_Instruction(Mul)),
3967                                              m_Deferred(X))),
3968                              m_Instruction(Div))))) {
3969     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3970   } else
3971     return nullptr;
3972 
3973   BuilderTy::InsertPointGuard Guard(Builder);
3974   // If the pattern included (x * y), we'll want to insert new instructions
3975   // right before that original multiplication so that we can replace it.
3976   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3977   if (MulHadOtherUses)
3978     Builder.SetInsertPoint(Mul);
3979 
3980   Function *F = Intrinsic::getDeclaration(I.getModule(),
3981                                           Div->getOpcode() == Instruction::UDiv
3982                                               ? Intrinsic::umul_with_overflow
3983                                               : Intrinsic::smul_with_overflow,
3984                                           X->getType());
3985   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3986 
3987   // If the multiplication was used elsewhere, to ensure that we don't leave
3988   // "duplicate" instructions, replace uses of that original multiplication
3989   // with the multiplication result from the with.overflow intrinsic.
3990   if (MulHadOtherUses)
3991     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3992 
3993   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3994   if (NeedNegation) // This technically increases instruction count.
3995     Res = Builder.CreateNot(Res, "mul.not.ov");
3996 
3997   // If we replaced the mul, erase it. Do this after all uses of Builder,
3998   // as the mul is used as insertion point.
3999   if (MulHadOtherUses)
4000     eraseInstFromFunction(*Mul);
4001 
4002   return Res;
4003 }
4004 
4005 static Instruction *foldICmpXNegX(ICmpInst &I) {
4006   CmpInst::Predicate Pred;
4007   Value *X;
4008   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
4009     return nullptr;
4010 
4011   if (ICmpInst::isSigned(Pred))
4012     Pred = ICmpInst::getSwappedPredicate(Pred);
4013   else if (ICmpInst::isUnsigned(Pred))
4014     Pred = ICmpInst::getSignedPredicate(Pred);
4015   // else for equality-comparisons just keep the predicate.
4016 
4017   return ICmpInst::Create(Instruction::ICmp, Pred, X,
4018                           Constant::getNullValue(X->getType()), I.getName());
4019 }
4020 
4021 /// Try to fold icmp (binop), X or icmp X, (binop).
4022 /// TODO: A large part of this logic is duplicated in InstSimplify's
4023 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4024 /// duplication.
4025 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4026                                              const SimplifyQuery &SQ) {
4027   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4028   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4029 
4030   // Special logic for binary operators.
4031   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4032   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4033   if (!BO0 && !BO1)
4034     return nullptr;
4035 
4036   if (Instruction *NewICmp = foldICmpXNegX(I))
4037     return NewICmp;
4038 
4039   const CmpInst::Predicate Pred = I.getPredicate();
4040   Value *X;
4041 
4042   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4043   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4044   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4045       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4046     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4047   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4048   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4049       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4050     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4051 
4052   {
4053     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4054     Constant *C;
4055     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4056                                   m_ImmConstant(C)))) &&
4057         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4058       Constant *C2 = ConstantExpr::getNot(C);
4059       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4060     }
4061     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4062     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4063                                   m_ImmConstant(C)))) &&
4064         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4065       Constant *C2 = ConstantExpr::getNot(C);
4066       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4067     }
4068   }
4069 
4070   {
4071     // Similar to above: an unsigned overflow comparison may use offset + mask:
4072     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4073     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4074     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4075     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4076     BinaryOperator *BO;
4077     const APInt *C;
4078     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4079         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4080         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4081       CmpInst::Predicate NewPred =
4082           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4083       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4084       return new ICmpInst(NewPred, Op1, Zero);
4085     }
4086 
4087     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4088         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4089         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4090       CmpInst::Predicate NewPred =
4091           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4092       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4093       return new ICmpInst(NewPred, Op0, Zero);
4094     }
4095   }
4096 
4097   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4098   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4099     NoOp0WrapProblem =
4100         ICmpInst::isEquality(Pred) ||
4101         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4102         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4103   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4104     NoOp1WrapProblem =
4105         ICmpInst::isEquality(Pred) ||
4106         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4107         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4108 
4109   // Analyze the case when either Op0 or Op1 is an add instruction.
4110   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4111   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4112   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4113     A = BO0->getOperand(0);
4114     B = BO0->getOperand(1);
4115   }
4116   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4117     C = BO1->getOperand(0);
4118     D = BO1->getOperand(1);
4119   }
4120 
4121   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4122   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4123   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4124     return new ICmpInst(Pred, A == Op1 ? B : A,
4125                         Constant::getNullValue(Op1->getType()));
4126 
4127   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4128   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4129   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4130     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4131                         C == Op0 ? D : C);
4132 
4133   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4134   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4135       NoOp1WrapProblem) {
4136     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4137     Value *Y, *Z;
4138     if (A == C) {
4139       // C + B == C + D  ->  B == D
4140       Y = B;
4141       Z = D;
4142     } else if (A == D) {
4143       // D + B == C + D  ->  B == C
4144       Y = B;
4145       Z = C;
4146     } else if (B == C) {
4147       // A + C == C + D  ->  A == D
4148       Y = A;
4149       Z = D;
4150     } else {
4151       assert(B == D);
4152       // A + D == C + D  ->  A == C
4153       Y = A;
4154       Z = C;
4155     }
4156     return new ICmpInst(Pred, Y, Z);
4157   }
4158 
4159   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4160   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4161       match(B, m_AllOnes()))
4162     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4163 
4164   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4165   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4166       match(B, m_AllOnes()))
4167     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4168 
4169   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4170   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4171     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4172 
4173   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4174   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4175     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4176 
4177   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4178   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4179       match(D, m_AllOnes()))
4180     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4181 
4182   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4183   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4184       match(D, m_AllOnes()))
4185     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4186 
4187   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4188   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4189     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4190 
4191   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4192   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4193     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4194 
4195   // TODO: The subtraction-related identities shown below also hold, but
4196   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4197   // wouldn't happen even if they were implemented.
4198   //
4199   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4200   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4201   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4202   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4203 
4204   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4205   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4206     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4207 
4208   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4209   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4210     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4211 
4212   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4213   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4214     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4215 
4216   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4217   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4218     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4219 
4220   // if C1 has greater magnitude than C2:
4221   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4222   //  s.t. C3 = C1 - C2
4223   //
4224   // if C2 has greater magnitude than C1:
4225   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4226   //  s.t. C3 = C2 - C1
4227   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4228       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4229     const APInt *AP1, *AP2;
4230     // TODO: Support non-uniform vectors.
4231     // TODO: Allow undef passthrough if B AND D's element is undef.
4232     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4233         AP1->isNegative() == AP2->isNegative()) {
4234       APInt AP1Abs = AP1->abs();
4235       APInt AP2Abs = AP2->abs();
4236       if (AP1Abs.uge(AP2Abs)) {
4237         APInt Diff = *AP1 - *AP2;
4238         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4239         bool HasNSW = BO0->hasNoSignedWrap();
4240         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4241         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4242         return new ICmpInst(Pred, NewAdd, C);
4243       } else {
4244         APInt Diff = *AP2 - *AP1;
4245         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4246         bool HasNSW = BO1->hasNoSignedWrap();
4247         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4248         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4249         return new ICmpInst(Pred, A, NewAdd);
4250       }
4251     }
4252     Constant *Cst1, *Cst2;
4253     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4254         ICmpInst::isEquality(Pred)) {
4255       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4256       Value *NewAdd = Builder.CreateAdd(C, Diff);
4257       return new ICmpInst(Pred, A, NewAdd);
4258     }
4259   }
4260 
4261   // Analyze the case when either Op0 or Op1 is a sub instruction.
4262   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4263   A = nullptr;
4264   B = nullptr;
4265   C = nullptr;
4266   D = nullptr;
4267   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4268     A = BO0->getOperand(0);
4269     B = BO0->getOperand(1);
4270   }
4271   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4272     C = BO1->getOperand(0);
4273     D = BO1->getOperand(1);
4274   }
4275 
4276   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4277   if (A == Op1 && NoOp0WrapProblem)
4278     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4279   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4280   if (C == Op0 && NoOp1WrapProblem)
4281     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4282 
4283   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4284   // (A - B) u>/u<= A --> B u>/u<= A
4285   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4286     return new ICmpInst(Pred, B, A);
4287   // C u</u>= (C - D) --> C u</u>= D
4288   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4289     return new ICmpInst(Pred, C, D);
4290   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4291   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4292       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4293     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4294   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4295   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4296       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4297     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4298 
4299   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4300   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4301     return new ICmpInst(Pred, A, C);
4302 
4303   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4304   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4305     return new ICmpInst(Pred, D, B);
4306 
4307   // icmp (0-X) < cst --> x > -cst
4308   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4309     Value *X;
4310     if (match(BO0, m_Neg(m_Value(X))))
4311       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4312         if (RHSC->isNotMinSignedValue())
4313           return new ICmpInst(I.getSwappedPredicate(), X,
4314                               ConstantExpr::getNeg(RHSC));
4315   }
4316 
4317   {
4318     // Try to remove shared constant multiplier from equality comparison:
4319     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4320     Value *X, *Y;
4321     const APInt *C;
4322     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4323         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4324       if (!C->countTrailingZeros() ||
4325           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4326           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4327       return new ICmpInst(Pred, X, Y);
4328   }
4329 
4330   BinaryOperator *SRem = nullptr;
4331   // icmp (srem X, Y), Y
4332   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4333     SRem = BO0;
4334   // icmp Y, (srem X, Y)
4335   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4336            Op0 == BO1->getOperand(1))
4337     SRem = BO1;
4338   if (SRem) {
4339     // We don't check hasOneUse to avoid increasing register pressure because
4340     // the value we use is the same value this instruction was already using.
4341     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4342     default:
4343       break;
4344     case ICmpInst::ICMP_EQ:
4345       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4346     case ICmpInst::ICMP_NE:
4347       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4348     case ICmpInst::ICMP_SGT:
4349     case ICmpInst::ICMP_SGE:
4350       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4351                           Constant::getAllOnesValue(SRem->getType()));
4352     case ICmpInst::ICMP_SLT:
4353     case ICmpInst::ICMP_SLE:
4354       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4355                           Constant::getNullValue(SRem->getType()));
4356     }
4357   }
4358 
4359   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4360       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4361     switch (BO0->getOpcode()) {
4362     default:
4363       break;
4364     case Instruction::Add:
4365     case Instruction::Sub:
4366     case Instruction::Xor: {
4367       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4368         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4369 
4370       const APInt *C;
4371       if (match(BO0->getOperand(1), m_APInt(C))) {
4372         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4373         if (C->isSignMask()) {
4374           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4375           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4376         }
4377 
4378         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4379         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4380           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4381           NewPred = I.getSwappedPredicate(NewPred);
4382           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4383         }
4384       }
4385       break;
4386     }
4387     case Instruction::Mul: {
4388       if (!I.isEquality())
4389         break;
4390 
4391       const APInt *C;
4392       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4393           !C->isOne()) {
4394         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4395         // Mask = -1 >> count-trailing-zeros(C).
4396         if (unsigned TZs = C->countTrailingZeros()) {
4397           Constant *Mask = ConstantInt::get(
4398               BO0->getType(),
4399               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4400           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4401           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4402           return new ICmpInst(Pred, And1, And2);
4403         }
4404       }
4405       break;
4406     }
4407     case Instruction::UDiv:
4408     case Instruction::LShr:
4409       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4410         break;
4411       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4412 
4413     case Instruction::SDiv:
4414       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4415         break;
4416       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4417 
4418     case Instruction::AShr:
4419       if (!BO0->isExact() || !BO1->isExact())
4420         break;
4421       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4422 
4423     case Instruction::Shl: {
4424       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4425       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4426       if (!NUW && !NSW)
4427         break;
4428       if (!NSW && I.isSigned())
4429         break;
4430       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4431     }
4432     }
4433   }
4434 
4435   if (BO0) {
4436     // Transform  A & (L - 1) `ult` L --> L != 0
4437     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4438     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4439 
4440     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4441       auto *Zero = Constant::getNullValue(BO0->getType());
4442       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4443     }
4444   }
4445 
4446   if (Value *V = foldMultiplicationOverflowCheck(I))
4447     return replaceInstUsesWith(I, V);
4448 
4449   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4450     return replaceInstUsesWith(I, V);
4451 
4452   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4453     return replaceInstUsesWith(I, V);
4454 
4455   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4456     return replaceInstUsesWith(I, V);
4457 
4458   return nullptr;
4459 }
4460 
4461 /// Fold icmp Pred min|max(X, Y), X.
4462 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4463   ICmpInst::Predicate Pred = Cmp.getPredicate();
4464   Value *Op0 = Cmp.getOperand(0);
4465   Value *X = Cmp.getOperand(1);
4466 
4467   // Canonicalize minimum or maximum operand to LHS of the icmp.
4468   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4469       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4470       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4471       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4472     std::swap(Op0, X);
4473     Pred = Cmp.getSwappedPredicate();
4474   }
4475 
4476   Value *Y;
4477   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4478     // smin(X, Y)  == X --> X s<= Y
4479     // smin(X, Y) s>= X --> X s<= Y
4480     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4481       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4482 
4483     // smin(X, Y) != X --> X s> Y
4484     // smin(X, Y) s< X --> X s> Y
4485     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4486       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4487 
4488     // These cases should be handled in InstSimplify:
4489     // smin(X, Y) s<= X --> true
4490     // smin(X, Y) s> X --> false
4491     return nullptr;
4492   }
4493 
4494   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4495     // smax(X, Y)  == X --> X s>= Y
4496     // smax(X, Y) s<= X --> X s>= Y
4497     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4498       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4499 
4500     // smax(X, Y) != X --> X s< Y
4501     // smax(X, Y) s> X --> X s< Y
4502     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4503       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4504 
4505     // These cases should be handled in InstSimplify:
4506     // smax(X, Y) s>= X --> true
4507     // smax(X, Y) s< X --> false
4508     return nullptr;
4509   }
4510 
4511   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4512     // umin(X, Y)  == X --> X u<= Y
4513     // umin(X, Y) u>= X --> X u<= Y
4514     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4515       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4516 
4517     // umin(X, Y) != X --> X u> Y
4518     // umin(X, Y) u< X --> X u> Y
4519     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4520       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4521 
4522     // These cases should be handled in InstSimplify:
4523     // umin(X, Y) u<= X --> true
4524     // umin(X, Y) u> X --> false
4525     return nullptr;
4526   }
4527 
4528   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4529     // umax(X, Y)  == X --> X u>= Y
4530     // umax(X, Y) u<= X --> X u>= Y
4531     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4532       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4533 
4534     // umax(X, Y) != X --> X u< Y
4535     // umax(X, Y) u> X --> X u< Y
4536     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4537       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4538 
4539     // These cases should be handled in InstSimplify:
4540     // umax(X, Y) u>= X --> true
4541     // umax(X, Y) u< X --> false
4542     return nullptr;
4543   }
4544 
4545   return nullptr;
4546 }
4547 
4548 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4549   if (!I.isEquality())
4550     return nullptr;
4551 
4552   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4553   const CmpInst::Predicate Pred = I.getPredicate();
4554   Value *A, *B, *C, *D;
4555   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4556     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4557       Value *OtherVal = A == Op1 ? B : A;
4558       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4559     }
4560 
4561     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4562       // A^c1 == C^c2 --> A == C^(c1^c2)
4563       ConstantInt *C1, *C2;
4564       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4565           Op1->hasOneUse()) {
4566         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4567         Value *Xor = Builder.CreateXor(C, NC);
4568         return new ICmpInst(Pred, A, Xor);
4569       }
4570 
4571       // A^B == A^D -> B == D
4572       if (A == C)
4573         return new ICmpInst(Pred, B, D);
4574       if (A == D)
4575         return new ICmpInst(Pred, B, C);
4576       if (B == C)
4577         return new ICmpInst(Pred, A, D);
4578       if (B == D)
4579         return new ICmpInst(Pred, A, C);
4580     }
4581   }
4582 
4583   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4584     // A == (A^B)  ->  B == 0
4585     Value *OtherVal = A == Op0 ? B : A;
4586     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4587   }
4588 
4589   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4590   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4591       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4592     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4593 
4594     if (A == C) {
4595       X = B;
4596       Y = D;
4597       Z = A;
4598     } else if (A == D) {
4599       X = B;
4600       Y = C;
4601       Z = A;
4602     } else if (B == C) {
4603       X = A;
4604       Y = D;
4605       Z = B;
4606     } else if (B == D) {
4607       X = A;
4608       Y = C;
4609       Z = B;
4610     }
4611 
4612     if (X) { // Build (X^Y) & Z
4613       Op1 = Builder.CreateXor(X, Y);
4614       Op1 = Builder.CreateAnd(Op1, Z);
4615       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4616     }
4617   }
4618 
4619   {
4620     // Similar to above, but specialized for constant because invert is needed:
4621     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4622     Value *X, *Y;
4623     Constant *C;
4624     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4625         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4626       Value *Xor = Builder.CreateXor(X, Y);
4627       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4628       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4629     }
4630   }
4631 
4632   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4633   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4634   ConstantInt *Cst1;
4635   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4636        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4637       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4638        match(Op1, m_ZExt(m_Value(A))))) {
4639     APInt Pow2 = Cst1->getValue() + 1;
4640     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4641         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4642       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4643   }
4644 
4645   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4646   // For lshr and ashr pairs.
4647   const APInt *AP1, *AP2;
4648   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4649        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
4650       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4651        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
4652     if (AP1 != AP2)
4653       return nullptr;
4654     unsigned TypeBits = AP1->getBitWidth();
4655     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
4656     if (ShAmt < TypeBits && ShAmt != 0) {
4657       ICmpInst::Predicate NewPred =
4658           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4659       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4660       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4661       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
4662     }
4663   }
4664 
4665   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4666   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4667       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4668     unsigned TypeBits = Cst1->getBitWidth();
4669     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4670     if (ShAmt < TypeBits && ShAmt != 0) {
4671       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4672       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4673       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4674                                       I.getName() + ".mask");
4675       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4676     }
4677   }
4678 
4679   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4680   // "icmp (and X, mask), cst"
4681   uint64_t ShAmt = 0;
4682   if (Op0->hasOneUse() &&
4683       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4684       match(Op1, m_ConstantInt(Cst1)) &&
4685       // Only do this when A has multiple uses.  This is most important to do
4686       // when it exposes other optimizations.
4687       !A->hasOneUse()) {
4688     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4689 
4690     if (ShAmt < ASize) {
4691       APInt MaskV =
4692           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4693       MaskV <<= ShAmt;
4694 
4695       APInt CmpV = Cst1->getValue().zext(ASize);
4696       CmpV <<= ShAmt;
4697 
4698       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4699       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4700     }
4701   }
4702 
4703   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4704     return ICmp;
4705 
4706   // Canonicalize checking for a power-of-2-or-zero value:
4707   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4708   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4709   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4710                                    m_Deferred(A)))) ||
4711       !match(Op1, m_ZeroInt()))
4712     A = nullptr;
4713 
4714   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4715   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4716   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4717     A = Op1;
4718   else if (match(Op1,
4719                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4720     A = Op0;
4721 
4722   if (A) {
4723     Type *Ty = A->getType();
4724     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4725     return Pred == ICmpInst::ICMP_EQ
4726         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4727         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4728   }
4729 
4730   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4731   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4732   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4733   // of instcombine.
4734   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4735   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4736       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4737       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4738       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4739     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4740     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4741     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4742                                                   : ICmpInst::ICMP_UGE,
4743                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4744   }
4745 
4746   return nullptr;
4747 }
4748 
4749 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4750                                       InstCombiner::BuilderTy &Builder) {
4751   ICmpInst::Predicate Pred = ICmp.getPredicate();
4752   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4753 
4754   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4755   // The trunc masks high bits while the compare may effectively mask low bits.
4756   Value *X;
4757   const APInt *C;
4758   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4759     return nullptr;
4760 
4761   // This matches patterns corresponding to tests of the signbit as well as:
4762   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4763   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4764   APInt Mask;
4765   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4766     Value *And = Builder.CreateAnd(X, Mask);
4767     Constant *Zero = ConstantInt::getNullValue(X->getType());
4768     return new ICmpInst(Pred, And, Zero);
4769   }
4770 
4771   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4772   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4773     // If C is a negative power-of-2 (high-bit mask):
4774     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4775     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4776     Value *And = Builder.CreateAnd(X, MaskC);
4777     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4778   }
4779 
4780   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4781     // If C is not-of-power-of-2 (one clear bit):
4782     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4783     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4784     Value *And = Builder.CreateAnd(X, MaskC);
4785     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4786   }
4787 
4788   return nullptr;
4789 }
4790 
4791 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4792   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4793   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4794   Value *X;
4795   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4796     return nullptr;
4797 
4798   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4799   bool IsSignedCmp = ICmp.isSigned();
4800 
4801   // icmp Pred (ext X), (ext Y)
4802   Value *Y;
4803   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4804     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4805     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4806 
4807     // If we have mismatched casts, treat the zext of a non-negative source as
4808     // a sext to simulate matching casts. Otherwise, we are done.
4809     // TODO: Can we handle some predicates (equality) without non-negative?
4810     if (IsZext0 != IsZext1) {
4811       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4812           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4813         IsSignedExt = true;
4814       else
4815         return nullptr;
4816     }
4817 
4818     // Not an extension from the same type?
4819     Type *XTy = X->getType(), *YTy = Y->getType();
4820     if (XTy != YTy) {
4821       // One of the casts must have one use because we are creating a new cast.
4822       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4823         return nullptr;
4824       // Extend the narrower operand to the type of the wider operand.
4825       CastInst::CastOps CastOpcode =
4826           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4827       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4828         X = Builder.CreateCast(CastOpcode, X, YTy);
4829       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4830         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4831       else
4832         return nullptr;
4833     }
4834 
4835     // (zext X) == (zext Y) --> X == Y
4836     // (sext X) == (sext Y) --> X == Y
4837     if (ICmp.isEquality())
4838       return new ICmpInst(ICmp.getPredicate(), X, Y);
4839 
4840     // A signed comparison of sign extended values simplifies into a
4841     // signed comparison.
4842     if (IsSignedCmp && IsSignedExt)
4843       return new ICmpInst(ICmp.getPredicate(), X, Y);
4844 
4845     // The other three cases all fold into an unsigned comparison.
4846     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4847   }
4848 
4849   // Below here, we are only folding a compare with constant.
4850   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4851   if (!C)
4852     return nullptr;
4853 
4854   // Compute the constant that would happen if we truncated to SrcTy then
4855   // re-extended to DestTy.
4856   Type *SrcTy = CastOp0->getSrcTy();
4857   Type *DestTy = CastOp0->getDestTy();
4858   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4859   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4860 
4861   // If the re-extended constant didn't change...
4862   if (Res2 == C) {
4863     if (ICmp.isEquality())
4864       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4865 
4866     // A signed comparison of sign extended values simplifies into a
4867     // signed comparison.
4868     if (IsSignedExt && IsSignedCmp)
4869       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4870 
4871     // The other three cases all fold into an unsigned comparison.
4872     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4873   }
4874 
4875   // The re-extended constant changed, partly changed (in the case of a vector),
4876   // or could not be determined to be equal (in the case of a constant
4877   // expression), so the constant cannot be represented in the shorter type.
4878   // All the cases that fold to true or false will have already been handled
4879   // by simplifyICmpInst, so only deal with the tricky case.
4880   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4881     return nullptr;
4882 
4883   // Is source op positive?
4884   // icmp ult (sext X), C --> icmp sgt X, -1
4885   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4886     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4887 
4888   // Is source op negative?
4889   // icmp ugt (sext X), C --> icmp slt X, 0
4890   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4891   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4892 }
4893 
4894 /// Handle icmp (cast x), (cast or constant).
4895 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4896   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4897   // icmp compares only pointer's value.
4898   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4899   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4900   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4901   if (SimplifiedOp0 || SimplifiedOp1)
4902     return new ICmpInst(ICmp.getPredicate(),
4903                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4904                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4905 
4906   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4907   if (!CastOp0)
4908     return nullptr;
4909   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4910     return nullptr;
4911 
4912   Value *Op0Src = CastOp0->getOperand(0);
4913   Type *SrcTy = CastOp0->getSrcTy();
4914   Type *DestTy = CastOp0->getDestTy();
4915 
4916   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4917   // integer type is the same size as the pointer type.
4918   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4919     if (isa<VectorType>(SrcTy)) {
4920       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4921       DestTy = cast<VectorType>(DestTy)->getElementType();
4922     }
4923     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4924   };
4925   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4926       CompatibleSizes(SrcTy, DestTy)) {
4927     Value *NewOp1 = nullptr;
4928     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4929       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4930       if (PtrSrc->getType()->getPointerAddressSpace() ==
4931           Op0Src->getType()->getPointerAddressSpace()) {
4932         NewOp1 = PtrToIntOp1->getOperand(0);
4933         // If the pointer types don't match, insert a bitcast.
4934         if (Op0Src->getType() != NewOp1->getType())
4935           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4936       }
4937     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4938       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4939     }
4940 
4941     if (NewOp1)
4942       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4943   }
4944 
4945   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4946     return R;
4947 
4948   return foldICmpWithZextOrSext(ICmp);
4949 }
4950 
4951 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4952   switch (BinaryOp) {
4953     default:
4954       llvm_unreachable("Unsupported binary op");
4955     case Instruction::Add:
4956     case Instruction::Sub:
4957       return match(RHS, m_Zero());
4958     case Instruction::Mul:
4959       return match(RHS, m_One());
4960   }
4961 }
4962 
4963 OverflowResult
4964 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4965                                   bool IsSigned, Value *LHS, Value *RHS,
4966                                   Instruction *CxtI) const {
4967   switch (BinaryOp) {
4968     default:
4969       llvm_unreachable("Unsupported binary op");
4970     case Instruction::Add:
4971       if (IsSigned)
4972         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4973       else
4974         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4975     case Instruction::Sub:
4976       if (IsSigned)
4977         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4978       else
4979         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4980     case Instruction::Mul:
4981       if (IsSigned)
4982         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4983       else
4984         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4985   }
4986 }
4987 
4988 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4989                                              bool IsSigned, Value *LHS,
4990                                              Value *RHS, Instruction &OrigI,
4991                                              Value *&Result,
4992                                              Constant *&Overflow) {
4993   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4994     std::swap(LHS, RHS);
4995 
4996   // If the overflow check was an add followed by a compare, the insertion point
4997   // may be pointing to the compare.  We want to insert the new instructions
4998   // before the add in case there are uses of the add between the add and the
4999   // compare.
5000   Builder.SetInsertPoint(&OrigI);
5001 
5002   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
5003   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
5004     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
5005 
5006   if (isNeutralValue(BinaryOp, RHS)) {
5007     Result = LHS;
5008     Overflow = ConstantInt::getFalse(OverflowTy);
5009     return true;
5010   }
5011 
5012   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
5013     case OverflowResult::MayOverflow:
5014       return false;
5015     case OverflowResult::AlwaysOverflowsLow:
5016     case OverflowResult::AlwaysOverflowsHigh:
5017       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5018       Result->takeName(&OrigI);
5019       Overflow = ConstantInt::getTrue(OverflowTy);
5020       return true;
5021     case OverflowResult::NeverOverflows:
5022       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5023       Result->takeName(&OrigI);
5024       Overflow = ConstantInt::getFalse(OverflowTy);
5025       if (auto *Inst = dyn_cast<Instruction>(Result)) {
5026         if (IsSigned)
5027           Inst->setHasNoSignedWrap();
5028         else
5029           Inst->setHasNoUnsignedWrap();
5030       }
5031       return true;
5032   }
5033 
5034   llvm_unreachable("Unexpected overflow result");
5035 }
5036 
5037 /// Recognize and process idiom involving test for multiplication
5038 /// overflow.
5039 ///
5040 /// The caller has matched a pattern of the form:
5041 ///   I = cmp u (mul(zext A, zext B), V
5042 /// The function checks if this is a test for overflow and if so replaces
5043 /// multiplication with call to 'mul.with.overflow' intrinsic.
5044 ///
5045 /// \param I Compare instruction.
5046 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
5047 ///               the compare instruction.  Must be of integer type.
5048 /// \param OtherVal The other argument of compare instruction.
5049 /// \returns Instruction which must replace the compare instruction, NULL if no
5050 ///          replacement required.
5051 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5052                                          Value *OtherVal,
5053                                          InstCombinerImpl &IC) {
5054   // Don't bother doing this transformation for pointers, don't do it for
5055   // vectors.
5056   if (!isa<IntegerType>(MulVal->getType()))
5057     return nullptr;
5058 
5059   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
5060   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
5061   auto *MulInstr = dyn_cast<Instruction>(MulVal);
5062   if (!MulInstr)
5063     return nullptr;
5064   assert(MulInstr->getOpcode() == Instruction::Mul);
5065 
5066   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
5067        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
5068   assert(LHS->getOpcode() == Instruction::ZExt);
5069   assert(RHS->getOpcode() == Instruction::ZExt);
5070   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5071 
5072   // Calculate type and width of the result produced by mul.with.overflow.
5073   Type *TyA = A->getType(), *TyB = B->getType();
5074   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5075            WidthB = TyB->getPrimitiveSizeInBits();
5076   unsigned MulWidth;
5077   Type *MulType;
5078   if (WidthB > WidthA) {
5079     MulWidth = WidthB;
5080     MulType = TyB;
5081   } else {
5082     MulWidth = WidthA;
5083     MulType = TyA;
5084   }
5085 
5086   // In order to replace the original mul with a narrower mul.with.overflow,
5087   // all uses must ignore upper bits of the product.  The number of used low
5088   // bits must be not greater than the width of mul.with.overflow.
5089   if (MulVal->hasNUsesOrMore(2))
5090     for (User *U : MulVal->users()) {
5091       if (U == &I)
5092         continue;
5093       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5094         // Check if truncation ignores bits above MulWidth.
5095         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5096         if (TruncWidth > MulWidth)
5097           return nullptr;
5098       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5099         // Check if AND ignores bits above MulWidth.
5100         if (BO->getOpcode() != Instruction::And)
5101           return nullptr;
5102         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5103           const APInt &CVal = CI->getValue();
5104           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5105             return nullptr;
5106         } else {
5107           // In this case we could have the operand of the binary operation
5108           // being defined in another block, and performing the replacement
5109           // could break the dominance relation.
5110           return nullptr;
5111         }
5112       } else {
5113         // Other uses prohibit this transformation.
5114         return nullptr;
5115       }
5116     }
5117 
5118   // Recognize patterns
5119   switch (I.getPredicate()) {
5120   case ICmpInst::ICMP_EQ:
5121   case ICmpInst::ICMP_NE:
5122     // Recognize pattern:
5123     //   mulval = mul(zext A, zext B)
5124     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5125     ConstantInt *CI;
5126     Value *ValToMask;
5127     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5128       if (ValToMask != MulVal)
5129         return nullptr;
5130       const APInt &CVal = CI->getValue() + 1;
5131       if (CVal.isPowerOf2()) {
5132         unsigned MaskWidth = CVal.logBase2();
5133         if (MaskWidth == MulWidth)
5134           break; // Recognized
5135       }
5136     }
5137     return nullptr;
5138 
5139   case ICmpInst::ICMP_UGT:
5140     // Recognize pattern:
5141     //   mulval = mul(zext A, zext B)
5142     //   cmp ugt mulval, max
5143     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5144       APInt MaxVal = APInt::getMaxValue(MulWidth);
5145       MaxVal = MaxVal.zext(CI->getBitWidth());
5146       if (MaxVal.eq(CI->getValue()))
5147         break; // Recognized
5148     }
5149     return nullptr;
5150 
5151   case ICmpInst::ICMP_UGE:
5152     // Recognize pattern:
5153     //   mulval = mul(zext A, zext B)
5154     //   cmp uge mulval, max+1
5155     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5156       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5157       if (MaxVal.eq(CI->getValue()))
5158         break; // Recognized
5159     }
5160     return nullptr;
5161 
5162   case ICmpInst::ICMP_ULE:
5163     // Recognize pattern:
5164     //   mulval = mul(zext A, zext B)
5165     //   cmp ule mulval, max
5166     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5167       APInt MaxVal = APInt::getMaxValue(MulWidth);
5168       MaxVal = MaxVal.zext(CI->getBitWidth());
5169       if (MaxVal.eq(CI->getValue()))
5170         break; // Recognized
5171     }
5172     return nullptr;
5173 
5174   case ICmpInst::ICMP_ULT:
5175     // Recognize pattern:
5176     //   mulval = mul(zext A, zext B)
5177     //   cmp ule mulval, max + 1
5178     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5179       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5180       if (MaxVal.eq(CI->getValue()))
5181         break; // Recognized
5182     }
5183     return nullptr;
5184 
5185   default:
5186     return nullptr;
5187   }
5188 
5189   InstCombiner::BuilderTy &Builder = IC.Builder;
5190   Builder.SetInsertPoint(MulInstr);
5191 
5192   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5193   Value *MulA = A, *MulB = B;
5194   if (WidthA < MulWidth)
5195     MulA = Builder.CreateZExt(A, MulType);
5196   if (WidthB < MulWidth)
5197     MulB = Builder.CreateZExt(B, MulType);
5198   Function *F = Intrinsic::getDeclaration(
5199       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5200   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5201   IC.addToWorklist(MulInstr);
5202 
5203   // If there are uses of mul result other than the comparison, we know that
5204   // they are truncation or binary AND. Change them to use result of
5205   // mul.with.overflow and adjust properly mask/size.
5206   if (MulVal->hasNUsesOrMore(2)) {
5207     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5208     for (User *U : make_early_inc_range(MulVal->users())) {
5209       if (U == &I || U == OtherVal)
5210         continue;
5211       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5212         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5213           IC.replaceInstUsesWith(*TI, Mul);
5214         else
5215           TI->setOperand(0, Mul);
5216       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5217         assert(BO->getOpcode() == Instruction::And);
5218         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5219         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5220         APInt ShortMask = CI->getValue().trunc(MulWidth);
5221         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5222         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5223         IC.replaceInstUsesWith(*BO, Zext);
5224       } else {
5225         llvm_unreachable("Unexpected Binary operation");
5226       }
5227       IC.addToWorklist(cast<Instruction>(U));
5228     }
5229   }
5230   if (isa<Instruction>(OtherVal))
5231     IC.addToWorklist(cast<Instruction>(OtherVal));
5232 
5233   // The original icmp gets replaced with the overflow value, maybe inverted
5234   // depending on predicate.
5235   bool Inverse = false;
5236   switch (I.getPredicate()) {
5237   case ICmpInst::ICMP_NE:
5238     break;
5239   case ICmpInst::ICMP_EQ:
5240     Inverse = true;
5241     break;
5242   case ICmpInst::ICMP_UGT:
5243   case ICmpInst::ICMP_UGE:
5244     if (I.getOperand(0) == MulVal)
5245       break;
5246     Inverse = true;
5247     break;
5248   case ICmpInst::ICMP_ULT:
5249   case ICmpInst::ICMP_ULE:
5250     if (I.getOperand(1) == MulVal)
5251       break;
5252     Inverse = true;
5253     break;
5254   default:
5255     llvm_unreachable("Unexpected predicate");
5256   }
5257   if (Inverse) {
5258     Value *Res = Builder.CreateExtractValue(Call, 1);
5259     return BinaryOperator::CreateNot(Res);
5260   }
5261 
5262   return ExtractValueInst::Create(Call, 1);
5263 }
5264 
5265 /// When performing a comparison against a constant, it is possible that not all
5266 /// the bits in the LHS are demanded. This helper method computes the mask that
5267 /// IS demanded.
5268 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5269   const APInt *RHS;
5270   if (!match(I.getOperand(1), m_APInt(RHS)))
5271     return APInt::getAllOnes(BitWidth);
5272 
5273   // If this is a normal comparison, it demands all bits. If it is a sign bit
5274   // comparison, it only demands the sign bit.
5275   bool UnusedBit;
5276   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5277     return APInt::getSignMask(BitWidth);
5278 
5279   switch (I.getPredicate()) {
5280   // For a UGT comparison, we don't care about any bits that
5281   // correspond to the trailing ones of the comparand.  The value of these
5282   // bits doesn't impact the outcome of the comparison, because any value
5283   // greater than the RHS must differ in a bit higher than these due to carry.
5284   case ICmpInst::ICMP_UGT:
5285     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5286 
5287   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5288   // Any value less than the RHS must differ in a higher bit because of carries.
5289   case ICmpInst::ICMP_ULT:
5290     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5291 
5292   default:
5293     return APInt::getAllOnes(BitWidth);
5294   }
5295 }
5296 
5297 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5298 /// should be swapped.
5299 /// The decision is based on how many times these two operands are reused
5300 /// as subtract operands and their positions in those instructions.
5301 /// The rationale is that several architectures use the same instruction for
5302 /// both subtract and cmp. Thus, it is better if the order of those operands
5303 /// match.
5304 /// \return true if Op0 and Op1 should be swapped.
5305 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5306   // Filter out pointer values as those cannot appear directly in subtract.
5307   // FIXME: we may want to go through inttoptrs or bitcasts.
5308   if (Op0->getType()->isPointerTy())
5309     return false;
5310   // If a subtract already has the same operands as a compare, swapping would be
5311   // bad. If a subtract has the same operands as a compare but in reverse order,
5312   // then swapping is good.
5313   int GoodToSwap = 0;
5314   for (const User *U : Op0->users()) {
5315     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5316       GoodToSwap++;
5317     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5318       GoodToSwap--;
5319   }
5320   return GoodToSwap > 0;
5321 }
5322 
5323 /// Check that one use is in the same block as the definition and all
5324 /// other uses are in blocks dominated by a given block.
5325 ///
5326 /// \param DI Definition
5327 /// \param UI Use
5328 /// \param DB Block that must dominate all uses of \p DI outside
5329 ///           the parent block
5330 /// \return true when \p UI is the only use of \p DI in the parent block
5331 /// and all other uses of \p DI are in blocks dominated by \p DB.
5332 ///
5333 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5334                                         const Instruction *UI,
5335                                         const BasicBlock *DB) const {
5336   assert(DI && UI && "Instruction not defined\n");
5337   // Ignore incomplete definitions.
5338   if (!DI->getParent())
5339     return false;
5340   // DI and UI must be in the same block.
5341   if (DI->getParent() != UI->getParent())
5342     return false;
5343   // Protect from self-referencing blocks.
5344   if (DI->getParent() == DB)
5345     return false;
5346   for (const User *U : DI->users()) {
5347     auto *Usr = cast<Instruction>(U);
5348     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5349       return false;
5350   }
5351   return true;
5352 }
5353 
5354 /// Return true when the instruction sequence within a block is select-cmp-br.
5355 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5356   const BasicBlock *BB = SI->getParent();
5357   if (!BB)
5358     return false;
5359   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5360   if (!BI || BI->getNumSuccessors() != 2)
5361     return false;
5362   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5363   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5364     return false;
5365   return true;
5366 }
5367 
5368 /// True when a select result is replaced by one of its operands
5369 /// in select-icmp sequence. This will eventually result in the elimination
5370 /// of the select.
5371 ///
5372 /// \param SI    Select instruction
5373 /// \param Icmp  Compare instruction
5374 /// \param SIOpd Operand that replaces the select
5375 ///
5376 /// Notes:
5377 /// - The replacement is global and requires dominator information
5378 /// - The caller is responsible for the actual replacement
5379 ///
5380 /// Example:
5381 ///
5382 /// entry:
5383 ///  %4 = select i1 %3, %C* %0, %C* null
5384 ///  %5 = icmp eq %C* %4, null
5385 ///  br i1 %5, label %9, label %7
5386 ///  ...
5387 ///  ; <label>:7                                       ; preds = %entry
5388 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5389 ///  ...
5390 ///
5391 /// can be transformed to
5392 ///
5393 ///  %5 = icmp eq %C* %0, null
5394 ///  %6 = select i1 %3, i1 %5, i1 true
5395 ///  br i1 %6, label %9, label %7
5396 ///  ...
5397 ///  ; <label>:7                                       ; preds = %entry
5398 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5399 ///
5400 /// Similar when the first operand of the select is a constant or/and
5401 /// the compare is for not equal rather than equal.
5402 ///
5403 /// NOTE: The function is only called when the select and compare constants
5404 /// are equal, the optimization can work only for EQ predicates. This is not a
5405 /// major restriction since a NE compare should be 'normalized' to an equal
5406 /// compare, which usually happens in the combiner and test case
5407 /// select-cmp-br.ll checks for it.
5408 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5409                                                  const ICmpInst *Icmp,
5410                                                  const unsigned SIOpd) {
5411   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5412   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5413     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5414     // The check for the single predecessor is not the best that can be
5415     // done. But it protects efficiently against cases like when SI's
5416     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5417     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5418     // replaced can be reached on either path. So the uniqueness check
5419     // guarantees that the path all uses of SI (outside SI's parent) are on
5420     // is disjoint from all other paths out of SI. But that information
5421     // is more expensive to compute, and the trade-off here is in favor
5422     // of compile-time. It should also be noticed that we check for a single
5423     // predecessor and not only uniqueness. This to handle the situation when
5424     // Succ and Succ1 points to the same basic block.
5425     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5426       NumSel++;
5427       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5428       return true;
5429     }
5430   }
5431   return false;
5432 }
5433 
5434 /// Try to fold the comparison based on range information we can get by checking
5435 /// whether bits are known to be zero or one in the inputs.
5436 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5437   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5438   Type *Ty = Op0->getType();
5439   ICmpInst::Predicate Pred = I.getPredicate();
5440 
5441   // Get scalar or pointer size.
5442   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5443                           ? Ty->getScalarSizeInBits()
5444                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5445 
5446   if (!BitWidth)
5447     return nullptr;
5448 
5449   KnownBits Op0Known(BitWidth);
5450   KnownBits Op1Known(BitWidth);
5451 
5452   if (SimplifyDemandedBits(&I, 0,
5453                            getDemandedBitsLHSMask(I, BitWidth),
5454                            Op0Known, 0))
5455     return &I;
5456 
5457   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5458     return &I;
5459 
5460   // Given the known and unknown bits, compute a range that the LHS could be
5461   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5462   // EQ and NE we use unsigned values.
5463   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5464   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5465   if (I.isSigned()) {
5466     Op0Min = Op0Known.getSignedMinValue();
5467     Op0Max = Op0Known.getSignedMaxValue();
5468     Op1Min = Op1Known.getSignedMinValue();
5469     Op1Max = Op1Known.getSignedMaxValue();
5470   } else {
5471     Op0Min = Op0Known.getMinValue();
5472     Op0Max = Op0Known.getMaxValue();
5473     Op1Min = Op1Known.getMinValue();
5474     Op1Max = Op1Known.getMaxValue();
5475   }
5476 
5477   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5478   // out that the LHS or RHS is a constant. Constant fold this now, so that
5479   // code below can assume that Min != Max.
5480   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5481     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5482   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5483     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5484 
5485   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5486   // min/max canonical compare with some other compare. That could lead to
5487   // conflict with select canonicalization and infinite looping.
5488   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5489   auto isMinMaxCmp = [&](Instruction &Cmp) {
5490     if (!Cmp.hasOneUse())
5491       return false;
5492     Value *A, *B;
5493     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5494     if (!SelectPatternResult::isMinOrMax(SPF))
5495       return false;
5496     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5497            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5498   };
5499   if (!isMinMaxCmp(I)) {
5500     switch (Pred) {
5501     default:
5502       break;
5503     case ICmpInst::ICMP_ULT: {
5504       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5505         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5506       const APInt *CmpC;
5507       if (match(Op1, m_APInt(CmpC))) {
5508         // A <u C -> A == C-1 if min(A)+1 == C
5509         if (*CmpC == Op0Min + 1)
5510           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5511                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5512         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5513         // exceeds the log2 of C.
5514         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5515           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5516                               Constant::getNullValue(Op1->getType()));
5517       }
5518       break;
5519     }
5520     case ICmpInst::ICMP_UGT: {
5521       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5522         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5523       const APInt *CmpC;
5524       if (match(Op1, m_APInt(CmpC))) {
5525         // A >u C -> A == C+1 if max(a)-1 == C
5526         if (*CmpC == Op0Max - 1)
5527           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5528                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5529         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5530         // exceeds the log2 of C.
5531         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5532           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5533                               Constant::getNullValue(Op1->getType()));
5534       }
5535       break;
5536     }
5537     case ICmpInst::ICMP_SLT: {
5538       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5539         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5540       const APInt *CmpC;
5541       if (match(Op1, m_APInt(CmpC))) {
5542         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5543           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5544                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5545       }
5546       break;
5547     }
5548     case ICmpInst::ICMP_SGT: {
5549       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5550         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5551       const APInt *CmpC;
5552       if (match(Op1, m_APInt(CmpC))) {
5553         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5554           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5555                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5556       }
5557       break;
5558     }
5559     }
5560   }
5561 
5562   // Based on the range information we know about the LHS, see if we can
5563   // simplify this comparison.  For example, (x&4) < 8 is always true.
5564   switch (Pred) {
5565   default:
5566     llvm_unreachable("Unknown icmp opcode!");
5567   case ICmpInst::ICMP_EQ:
5568   case ICmpInst::ICMP_NE: {
5569     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5570       return replaceInstUsesWith(
5571           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5572 
5573     // If all bits are known zero except for one, then we know at most one bit
5574     // is set. If the comparison is against zero, then this is a check to see if
5575     // *that* bit is set.
5576     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5577     if (Op1Known.isZero()) {
5578       // If the LHS is an AND with the same constant, look through it.
5579       Value *LHS = nullptr;
5580       const APInt *LHSC;
5581       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5582           *LHSC != Op0KnownZeroInverted)
5583         LHS = Op0;
5584 
5585       Value *X;
5586       const APInt *C1;
5587       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
5588         Type *XTy = X->getType();
5589         unsigned Log2C1 = C1->countTrailingZeros();
5590         APInt C2 = Op0KnownZeroInverted;
5591         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
5592         if (C2Pow2.isPowerOf2()) {
5593           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
5594           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
5595           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
5596           unsigned Log2C2 = C2Pow2.countTrailingZeros();
5597           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
5598           auto NewPred =
5599               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5600           return new ICmpInst(NewPred, X, CmpC);
5601         }
5602       }
5603     }
5604     break;
5605   }
5606   case ICmpInst::ICMP_ULT: {
5607     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5608       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5609     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5610       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5611     break;
5612   }
5613   case ICmpInst::ICMP_UGT: {
5614     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5615       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5616     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5617       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5618     break;
5619   }
5620   case ICmpInst::ICMP_SLT: {
5621     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5622       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5623     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5624       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5625     break;
5626   }
5627   case ICmpInst::ICMP_SGT: {
5628     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5629       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5630     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5631       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5632     break;
5633   }
5634   case ICmpInst::ICMP_SGE:
5635     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5636     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5637       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5638     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5639       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5640     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5641       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5642     break;
5643   case ICmpInst::ICMP_SLE:
5644     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5645     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5646       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5647     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5648       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5649     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5650       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5651     break;
5652   case ICmpInst::ICMP_UGE:
5653     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5654     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5655       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5656     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5657       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5658     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5659       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5660     break;
5661   case ICmpInst::ICMP_ULE:
5662     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5663     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5664       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5665     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5666       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5667     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5668       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5669     break;
5670   }
5671 
5672   // Turn a signed comparison into an unsigned one if both operands are known to
5673   // have the same sign.
5674   if (I.isSigned() &&
5675       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5676        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5677     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5678 
5679   return nullptr;
5680 }
5681 
5682 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
5683 /// then try to reduce patterns based on that limit.
5684 static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
5685                                            InstCombiner::BuilderTy &Builder) {
5686   Value *X, *Y;
5687   ICmpInst::Predicate Pred;
5688 
5689   // X must be 0 and bool must be true for "ULT":
5690   // X <u (zext i1 Y) --> (X == 0) & Y
5691   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
5692       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
5693     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
5694 
5695   // X must be 0 or bool must be true for "ULE":
5696   // X <=u (sext i1 Y) --> (X == 0) | Y
5697   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
5698       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
5699     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
5700 
5701   return nullptr;
5702 }
5703 
5704 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5705 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5706                                                        Constant *C) {
5707   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5708          "Only for relational integer predicates.");
5709 
5710   Type *Type = C->getType();
5711   bool IsSigned = ICmpInst::isSigned(Pred);
5712 
5713   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5714   bool WillIncrement =
5715       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5716 
5717   // Check if the constant operand can be safely incremented/decremented
5718   // without overflowing/underflowing.
5719   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5720     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5721   };
5722 
5723   Constant *SafeReplacementConstant = nullptr;
5724   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5725     // Bail out if the constant can't be safely incremented/decremented.
5726     if (!ConstantIsOk(CI))
5727       return llvm::None;
5728   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5729     unsigned NumElts = FVTy->getNumElements();
5730     for (unsigned i = 0; i != NumElts; ++i) {
5731       Constant *Elt = C->getAggregateElement(i);
5732       if (!Elt)
5733         return llvm::None;
5734 
5735       if (isa<UndefValue>(Elt))
5736         continue;
5737 
5738       // Bail out if we can't determine if this constant is min/max or if we
5739       // know that this constant is min/max.
5740       auto *CI = dyn_cast<ConstantInt>(Elt);
5741       if (!CI || !ConstantIsOk(CI))
5742         return llvm::None;
5743 
5744       if (!SafeReplacementConstant)
5745         SafeReplacementConstant = CI;
5746     }
5747   } else {
5748     // ConstantExpr?
5749     return llvm::None;
5750   }
5751 
5752   // It may not be safe to change a compare predicate in the presence of
5753   // undefined elements, so replace those elements with the first safe constant
5754   // that we found.
5755   // TODO: in case of poison, it is safe; let's replace undefs only.
5756   if (C->containsUndefOrPoisonElement()) {
5757     assert(SafeReplacementConstant && "Replacement constant not set");
5758     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5759   }
5760 
5761   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5762 
5763   // Increment or decrement the constant.
5764   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5765   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5766 
5767   return std::make_pair(NewPred, NewC);
5768 }
5769 
5770 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5771 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5772 /// allows them to be folded in visitICmpInst.
5773 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5774   ICmpInst::Predicate Pred = I.getPredicate();
5775   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5776       InstCombiner::isCanonicalPredicate(Pred))
5777     return nullptr;
5778 
5779   Value *Op0 = I.getOperand(0);
5780   Value *Op1 = I.getOperand(1);
5781   auto *Op1C = dyn_cast<Constant>(Op1);
5782   if (!Op1C)
5783     return nullptr;
5784 
5785   auto FlippedStrictness =
5786       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5787   if (!FlippedStrictness)
5788     return nullptr;
5789 
5790   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5791 }
5792 
5793 /// If we have a comparison with a non-canonical predicate, if we can update
5794 /// all the users, invert the predicate and adjust all the users.
5795 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5796   // Is the predicate already canonical?
5797   CmpInst::Predicate Pred = I.getPredicate();
5798   if (InstCombiner::isCanonicalPredicate(Pred))
5799     return nullptr;
5800 
5801   // Can all users be adjusted to predicate inversion?
5802   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5803     return nullptr;
5804 
5805   // Ok, we can canonicalize comparison!
5806   // Let's first invert the comparison's predicate.
5807   I.setPredicate(CmpInst::getInversePredicate(Pred));
5808   I.setName(I.getName() + ".not");
5809 
5810   // And, adapt users.
5811   freelyInvertAllUsersOf(&I);
5812 
5813   return &I;
5814 }
5815 
5816 /// Integer compare with boolean values can always be turned into bitwise ops.
5817 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5818                                          InstCombiner::BuilderTy &Builder) {
5819   Value *A = I.getOperand(0), *B = I.getOperand(1);
5820   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5821 
5822   // A boolean compared to true/false can be simplified to Op0/true/false in
5823   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5824   // Cases not handled by InstSimplify are always 'not' of Op0.
5825   if (match(B, m_Zero())) {
5826     switch (I.getPredicate()) {
5827       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5828       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5829       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5830         return BinaryOperator::CreateNot(A);
5831       default:
5832         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5833     }
5834   } else if (match(B, m_One())) {
5835     switch (I.getPredicate()) {
5836       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5837       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5838       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5839         return BinaryOperator::CreateNot(A);
5840       default:
5841         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5842     }
5843   }
5844 
5845   switch (I.getPredicate()) {
5846   default:
5847     llvm_unreachable("Invalid icmp instruction!");
5848   case ICmpInst::ICMP_EQ:
5849     // icmp eq i1 A, B -> ~(A ^ B)
5850     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5851 
5852   case ICmpInst::ICMP_NE:
5853     // icmp ne i1 A, B -> A ^ B
5854     return BinaryOperator::CreateXor(A, B);
5855 
5856   case ICmpInst::ICMP_UGT:
5857     // icmp ugt -> icmp ult
5858     std::swap(A, B);
5859     LLVM_FALLTHROUGH;
5860   case ICmpInst::ICMP_ULT:
5861     // icmp ult i1 A, B -> ~A & B
5862     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5863 
5864   case ICmpInst::ICMP_SGT:
5865     // icmp sgt -> icmp slt
5866     std::swap(A, B);
5867     LLVM_FALLTHROUGH;
5868   case ICmpInst::ICMP_SLT:
5869     // icmp slt i1 A, B -> A & ~B
5870     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5871 
5872   case ICmpInst::ICMP_UGE:
5873     // icmp uge -> icmp ule
5874     std::swap(A, B);
5875     LLVM_FALLTHROUGH;
5876   case ICmpInst::ICMP_ULE:
5877     // icmp ule i1 A, B -> ~A | B
5878     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5879 
5880   case ICmpInst::ICMP_SGE:
5881     // icmp sge -> icmp sle
5882     std::swap(A, B);
5883     LLVM_FALLTHROUGH;
5884   case ICmpInst::ICMP_SLE:
5885     // icmp sle i1 A, B -> A | ~B
5886     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5887   }
5888 }
5889 
5890 // Transform pattern like:
5891 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5892 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5893 // Into:
5894 //   (X l>> Y) != 0
5895 //   (X l>> Y) == 0
5896 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5897                                             InstCombiner::BuilderTy &Builder) {
5898   ICmpInst::Predicate Pred, NewPred;
5899   Value *X, *Y;
5900   if (match(&Cmp,
5901             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5902     switch (Pred) {
5903     case ICmpInst::ICMP_ULE:
5904       NewPred = ICmpInst::ICMP_NE;
5905       break;
5906     case ICmpInst::ICMP_UGT:
5907       NewPred = ICmpInst::ICMP_EQ;
5908       break;
5909     default:
5910       return nullptr;
5911     }
5912   } else if (match(&Cmp, m_c_ICmp(Pred,
5913                                   m_OneUse(m_CombineOr(
5914                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5915                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5916                                             m_AllOnes()))),
5917                                   m_Value(X)))) {
5918     // The variant with 'add' is not canonical, (the variant with 'not' is)
5919     // we only get it because it has extra uses, and can't be canonicalized,
5920 
5921     switch (Pred) {
5922     case ICmpInst::ICMP_ULT:
5923       NewPred = ICmpInst::ICMP_NE;
5924       break;
5925     case ICmpInst::ICMP_UGE:
5926       NewPred = ICmpInst::ICMP_EQ;
5927       break;
5928     default:
5929       return nullptr;
5930     }
5931   } else
5932     return nullptr;
5933 
5934   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5935   Constant *Zero = Constant::getNullValue(NewX->getType());
5936   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5937 }
5938 
5939 static Instruction *foldVectorCmp(CmpInst &Cmp,
5940                                   InstCombiner::BuilderTy &Builder) {
5941   const CmpInst::Predicate Pred = Cmp.getPredicate();
5942   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5943   Value *V1, *V2;
5944   ArrayRef<int> M;
5945   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5946     return nullptr;
5947 
5948   // If both arguments of the cmp are shuffles that use the same mask and
5949   // shuffle within a single vector, move the shuffle after the cmp:
5950   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5951   Type *V1Ty = V1->getType();
5952   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5953       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5954     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5955     return new ShuffleVectorInst(NewCmp, M);
5956   }
5957 
5958   // Try to canonicalize compare with splatted operand and splat constant.
5959   // TODO: We could generalize this for more than splats. See/use the code in
5960   //       InstCombiner::foldVectorBinop().
5961   Constant *C;
5962   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5963     return nullptr;
5964 
5965   // Length-changing splats are ok, so adjust the constants as needed:
5966   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5967   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5968   int MaskSplatIndex;
5969   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5970     // We allow undefs in matching, but this transform removes those for safety.
5971     // Demanded elements analysis should be able to recover some/all of that.
5972     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5973                                  ScalarC);
5974     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5975     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5976     return new ShuffleVectorInst(NewCmp, NewM);
5977   }
5978 
5979   return nullptr;
5980 }
5981 
5982 // extract(uadd.with.overflow(A, B), 0) ult A
5983 //  -> extract(uadd.with.overflow(A, B), 1)
5984 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5985   CmpInst::Predicate Pred = I.getPredicate();
5986   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5987 
5988   Value *UAddOv;
5989   Value *A, *B;
5990   auto UAddOvResultPat = m_ExtractValue<0>(
5991       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5992   if (match(Op0, UAddOvResultPat) &&
5993       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5994        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5995         (match(A, m_One()) || match(B, m_One()))) ||
5996        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5997         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5998     // extract(uadd.with.overflow(A, B), 0) < A
5999     // extract(uadd.with.overflow(A, 1), 0) == 0
6000     // extract(uadd.with.overflow(A, -1), 0) != -1
6001     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
6002   else if (match(Op1, UAddOvResultPat) &&
6003            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
6004     // A > extract(uadd.with.overflow(A, B), 0)
6005     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
6006   else
6007     return nullptr;
6008 
6009   return ExtractValueInst::Create(UAddOv, 1);
6010 }
6011 
6012 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
6013   if (!I.getOperand(0)->getType()->isPointerTy() ||
6014       NullPointerIsDefined(
6015           I.getParent()->getParent(),
6016           I.getOperand(0)->getType()->getPointerAddressSpace())) {
6017     return nullptr;
6018   }
6019   Instruction *Op;
6020   if (match(I.getOperand(0), m_Instruction(Op)) &&
6021       match(I.getOperand(1), m_Zero()) &&
6022       Op->isLaunderOrStripInvariantGroup()) {
6023     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6024                             Op->getOperand(0), I.getOperand(1));
6025   }
6026   return nullptr;
6027 }
6028 
6029 /// This function folds patterns produced by lowering of reduce idioms, such as
6030 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6031 /// attempts to generate fewer number of scalar comparisons instead of vector
6032 /// comparisons when possible.
6033 static Instruction *foldReductionIdiom(ICmpInst &I,
6034                                        InstCombiner::BuilderTy &Builder,
6035                                        const DataLayout &DL) {
6036   if (I.getType()->isVectorTy())
6037     return nullptr;
6038   ICmpInst::Predicate OuterPred, InnerPred;
6039   Value *LHS, *RHS;
6040 
6041   // Match lowering of @llvm.vector.reduce.and. Turn
6042   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6043   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6044   ///   %res = icmp <pred> i8 %scalar_ne, 0
6045   ///
6046   /// into
6047   ///
6048   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
6049   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
6050   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6051   ///
6052   /// for <pred> in {ne, eq}.
6053   if (!match(&I, m_ICmp(OuterPred,
6054                         m_OneUse(m_BitCast(m_OneUse(
6055                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6056                         m_Zero())))
6057     return nullptr;
6058   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6059   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6060     return nullptr;
6061   unsigned NumBits =
6062       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6063   // TODO: Relax this to "not wider than max legal integer type"?
6064   if (!DL.isLegalInteger(NumBits))
6065     return nullptr;
6066 
6067   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6068     auto *ScalarTy = Builder.getIntNTy(NumBits);
6069     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6070     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6071     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6072                             I.getName());
6073   }
6074 
6075   return nullptr;
6076 }
6077 
6078 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6079   bool Changed = false;
6080   const SimplifyQuery Q = SQ.getWithInstruction(&I);
6081   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6082   unsigned Op0Cplxity = getComplexity(Op0);
6083   unsigned Op1Cplxity = getComplexity(Op1);
6084 
6085   /// Orders the operands of the compare so that they are listed from most
6086   /// complex to least complex.  This puts constants before unary operators,
6087   /// before binary operators.
6088   if (Op0Cplxity < Op1Cplxity ||
6089       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
6090     I.swapOperands();
6091     std::swap(Op0, Op1);
6092     Changed = true;
6093   }
6094 
6095   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6096     return replaceInstUsesWith(I, V);
6097 
6098   // Comparing -val or val with non-zero is the same as just comparing val
6099   // ie, abs(val) != 0 -> val != 0
6100   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6101     Value *Cond, *SelectTrue, *SelectFalse;
6102     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6103                             m_Value(SelectFalse)))) {
6104       if (Value *V = dyn_castNegVal(SelectTrue)) {
6105         if (V == SelectFalse)
6106           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6107       }
6108       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6109         if (V == SelectTrue)
6110           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6111       }
6112     }
6113   }
6114 
6115   if (Op0->getType()->isIntOrIntVectorTy(1))
6116     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6117       return Res;
6118 
6119   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6120     return Res;
6121 
6122   if (Instruction *Res = canonicalizeICmpPredicate(I))
6123     return Res;
6124 
6125   if (Instruction *Res = foldICmpWithConstant(I))
6126     return Res;
6127 
6128   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6129     return Res;
6130 
6131   if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
6132     return Res;
6133 
6134   if (Instruction *Res = foldICmpUsingKnownBits(I))
6135     return Res;
6136 
6137   // Test if the ICmpInst instruction is used exclusively by a select as
6138   // part of a minimum or maximum operation. If so, refrain from doing
6139   // any other folding. This helps out other analyses which understand
6140   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6141   // and CodeGen. And in this case, at least one of the comparison
6142   // operands has at least one user besides the compare (the select),
6143   // which would often largely negate the benefit of folding anyway.
6144   //
6145   // Do the same for the other patterns recognized by matchSelectPattern.
6146   if (I.hasOneUse())
6147     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6148       Value *A, *B;
6149       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6150       if (SPR.Flavor != SPF_UNKNOWN)
6151         return nullptr;
6152     }
6153 
6154   // Do this after checking for min/max to prevent infinite looping.
6155   if (Instruction *Res = foldICmpWithZero(I))
6156     return Res;
6157 
6158   // FIXME: We only do this after checking for min/max to prevent infinite
6159   // looping caused by a reverse canonicalization of these patterns for min/max.
6160   // FIXME: The organization of folds is a mess. These would naturally go into
6161   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6162   // down here after the min/max restriction.
6163   ICmpInst::Predicate Pred = I.getPredicate();
6164   const APInt *C;
6165   if (match(Op1, m_APInt(C))) {
6166     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6167     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6168       Constant *Zero = Constant::getNullValue(Op0->getType());
6169       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6170     }
6171 
6172     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6173     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6174       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6175       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6176     }
6177   }
6178 
6179   // The folds in here may rely on wrapping flags and special constants, so
6180   // they can break up min/max idioms in some cases but not seemingly similar
6181   // patterns.
6182   // FIXME: It may be possible to enhance select folding to make this
6183   //        unnecessary. It may also be moot if we canonicalize to min/max
6184   //        intrinsics.
6185   if (Instruction *Res = foldICmpBinOp(I, Q))
6186     return Res;
6187 
6188   if (Instruction *Res = foldICmpInstWithConstant(I))
6189     return Res;
6190 
6191   // Try to match comparison as a sign bit test. Intentionally do this after
6192   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6193   if (Instruction *New = foldSignBitTest(I))
6194     return New;
6195 
6196   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6197     return Res;
6198 
6199   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6200   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6201     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6202       return NI;
6203   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6204     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6205       return NI;
6206 
6207   if (auto *SI = dyn_cast<SelectInst>(Op0))
6208     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6209       return NI;
6210   if (auto *SI = dyn_cast<SelectInst>(Op1))
6211     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6212       return NI;
6213 
6214   // Try to optimize equality comparisons against alloca-based pointers.
6215   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6216     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6217     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6218       if (Instruction *New = foldAllocaCmp(I, Alloca))
6219         return New;
6220     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6221       if (Instruction *New = foldAllocaCmp(I, Alloca))
6222         return New;
6223   }
6224 
6225   if (Instruction *Res = foldICmpBitCast(I))
6226     return Res;
6227 
6228   // TODO: Hoist this above the min/max bailout.
6229   if (Instruction *R = foldICmpWithCastOp(I))
6230     return R;
6231 
6232   if (Instruction *Res = foldICmpWithMinMax(I))
6233     return Res;
6234 
6235   {
6236     Value *A, *B;
6237     // Transform (A & ~B) == 0 --> (A & B) != 0
6238     // and       (A & ~B) != 0 --> (A & B) == 0
6239     // if A is a power of 2.
6240     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6241         match(Op1, m_Zero()) &&
6242         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6243       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6244                           Op1);
6245 
6246     // ~X < ~Y --> Y < X
6247     // ~X < C -->  X > ~C
6248     if (match(Op0, m_Not(m_Value(A)))) {
6249       if (match(Op1, m_Not(m_Value(B))))
6250         return new ICmpInst(I.getPredicate(), B, A);
6251 
6252       const APInt *C;
6253       if (match(Op1, m_APInt(C)))
6254         return new ICmpInst(I.getSwappedPredicate(), A,
6255                             ConstantInt::get(Op1->getType(), ~(*C)));
6256     }
6257 
6258     Instruction *AddI = nullptr;
6259     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6260                                      m_Instruction(AddI))) &&
6261         isa<IntegerType>(A->getType())) {
6262       Value *Result;
6263       Constant *Overflow;
6264       // m_UAddWithOverflow can match patterns that do not include  an explicit
6265       // "add" instruction, so check the opcode of the matched op.
6266       if (AddI->getOpcode() == Instruction::Add &&
6267           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6268                                 Result, Overflow)) {
6269         replaceInstUsesWith(*AddI, Result);
6270         eraseInstFromFunction(*AddI);
6271         return replaceInstUsesWith(I, Overflow);
6272       }
6273     }
6274 
6275     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6276     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6277       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6278         return R;
6279     }
6280     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6281       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6282         return R;
6283     }
6284   }
6285 
6286   if (Instruction *Res = foldICmpEquality(I))
6287     return Res;
6288 
6289   if (Instruction *Res = foldICmpOfUAddOv(I))
6290     return Res;
6291 
6292   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6293   // an i1 which indicates whether or not we successfully did the swap.
6294   //
6295   // Replace comparisons between the old value and the expected value with the
6296   // indicator that 'cmpxchg' returns.
6297   //
6298   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6299   // spuriously fail.  In those cases, the old value may equal the expected
6300   // value but it is possible for the swap to not occur.
6301   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6302     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6303       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6304         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6305             !ACXI->isWeak())
6306           return ExtractValueInst::Create(ACXI, 1);
6307 
6308   {
6309     Value *X;
6310     const APInt *C;
6311     // icmp X+Cst, X
6312     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6313       return foldICmpAddOpConst(X, *C, I.getPredicate());
6314 
6315     // icmp X, X+Cst
6316     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6317       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6318   }
6319 
6320   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6321     return Res;
6322 
6323   if (I.getType()->isVectorTy())
6324     if (Instruction *Res = foldVectorCmp(I, Builder))
6325       return Res;
6326 
6327   if (Instruction *Res = foldICmpInvariantGroup(I))
6328     return Res;
6329 
6330   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6331     return Res;
6332 
6333   return Changed ? &I : nullptr;
6334 }
6335 
6336 /// Fold fcmp ([us]itofp x, cst) if possible.
6337 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6338                                                     Instruction *LHSI,
6339                                                     Constant *RHSC) {
6340   if (!isa<ConstantFP>(RHSC)) return nullptr;
6341   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6342 
6343   // Get the width of the mantissa.  We don't want to hack on conversions that
6344   // might lose information from the integer, e.g. "i64 -> float"
6345   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6346   if (MantissaWidth == -1) return nullptr;  // Unknown.
6347 
6348   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6349 
6350   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6351 
6352   if (I.isEquality()) {
6353     FCmpInst::Predicate P = I.getPredicate();
6354     bool IsExact = false;
6355     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6356     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6357 
6358     // If the floating point constant isn't an integer value, we know if we will
6359     // ever compare equal / not equal to it.
6360     if (!IsExact) {
6361       // TODO: Can never be -0.0 and other non-representable values
6362       APFloat RHSRoundInt(RHS);
6363       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6364       if (RHS != RHSRoundInt) {
6365         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6366           return replaceInstUsesWith(I, Builder.getFalse());
6367 
6368         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6369         return replaceInstUsesWith(I, Builder.getTrue());
6370       }
6371     }
6372 
6373     // TODO: If the constant is exactly representable, is it always OK to do
6374     // equality compares as integer?
6375   }
6376 
6377   // Check to see that the input is converted from an integer type that is small
6378   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6379   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6380   unsigned InputSize = IntTy->getScalarSizeInBits();
6381 
6382   // Following test does NOT adjust InputSize downwards for signed inputs,
6383   // because the most negative value still requires all the mantissa bits
6384   // to distinguish it from one less than that value.
6385   if ((int)InputSize > MantissaWidth) {
6386     // Conversion would lose accuracy. Check if loss can impact comparison.
6387     int Exp = ilogb(RHS);
6388     if (Exp == APFloat::IEK_Inf) {
6389       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6390       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6391         // Conversion could create infinity.
6392         return nullptr;
6393     } else {
6394       // Note that if RHS is zero or NaN, then Exp is negative
6395       // and first condition is trivially false.
6396       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6397         // Conversion could affect comparison.
6398         return nullptr;
6399     }
6400   }
6401 
6402   // Otherwise, we can potentially simplify the comparison.  We know that it
6403   // will always come through as an integer value and we know the constant is
6404   // not a NAN (it would have been previously simplified).
6405   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6406 
6407   ICmpInst::Predicate Pred;
6408   switch (I.getPredicate()) {
6409   default: llvm_unreachable("Unexpected predicate!");
6410   case FCmpInst::FCMP_UEQ:
6411   case FCmpInst::FCMP_OEQ:
6412     Pred = ICmpInst::ICMP_EQ;
6413     break;
6414   case FCmpInst::FCMP_UGT:
6415   case FCmpInst::FCMP_OGT:
6416     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6417     break;
6418   case FCmpInst::FCMP_UGE:
6419   case FCmpInst::FCMP_OGE:
6420     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6421     break;
6422   case FCmpInst::FCMP_ULT:
6423   case FCmpInst::FCMP_OLT:
6424     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6425     break;
6426   case FCmpInst::FCMP_ULE:
6427   case FCmpInst::FCMP_OLE:
6428     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6429     break;
6430   case FCmpInst::FCMP_UNE:
6431   case FCmpInst::FCMP_ONE:
6432     Pred = ICmpInst::ICMP_NE;
6433     break;
6434   case FCmpInst::FCMP_ORD:
6435     return replaceInstUsesWith(I, Builder.getTrue());
6436   case FCmpInst::FCMP_UNO:
6437     return replaceInstUsesWith(I, Builder.getFalse());
6438   }
6439 
6440   // Now we know that the APFloat is a normal number, zero or inf.
6441 
6442   // See if the FP constant is too large for the integer.  For example,
6443   // comparing an i8 to 300.0.
6444   unsigned IntWidth = IntTy->getScalarSizeInBits();
6445 
6446   if (!LHSUnsigned) {
6447     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6448     // and large values.
6449     APFloat SMax(RHS.getSemantics());
6450     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6451                           APFloat::rmNearestTiesToEven);
6452     if (SMax < RHS) { // smax < 13123.0
6453       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6454           Pred == ICmpInst::ICMP_SLE)
6455         return replaceInstUsesWith(I, Builder.getTrue());
6456       return replaceInstUsesWith(I, Builder.getFalse());
6457     }
6458   } else {
6459     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6460     // +INF and large values.
6461     APFloat UMax(RHS.getSemantics());
6462     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6463                           APFloat::rmNearestTiesToEven);
6464     if (UMax < RHS) { // umax < 13123.0
6465       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6466           Pred == ICmpInst::ICMP_ULE)
6467         return replaceInstUsesWith(I, Builder.getTrue());
6468       return replaceInstUsesWith(I, Builder.getFalse());
6469     }
6470   }
6471 
6472   if (!LHSUnsigned) {
6473     // See if the RHS value is < SignedMin.
6474     APFloat SMin(RHS.getSemantics());
6475     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6476                           APFloat::rmNearestTiesToEven);
6477     if (SMin > RHS) { // smin > 12312.0
6478       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6479           Pred == ICmpInst::ICMP_SGE)
6480         return replaceInstUsesWith(I, Builder.getTrue());
6481       return replaceInstUsesWith(I, Builder.getFalse());
6482     }
6483   } else {
6484     // See if the RHS value is < UnsignedMin.
6485     APFloat UMin(RHS.getSemantics());
6486     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6487                           APFloat::rmNearestTiesToEven);
6488     if (UMin > RHS) { // umin > 12312.0
6489       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6490           Pred == ICmpInst::ICMP_UGE)
6491         return replaceInstUsesWith(I, Builder.getTrue());
6492       return replaceInstUsesWith(I, Builder.getFalse());
6493     }
6494   }
6495 
6496   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6497   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6498   // casting the FP value to the integer value and back, checking for equality.
6499   // Don't do this for zero, because -0.0 is not fractional.
6500   Constant *RHSInt = LHSUnsigned
6501     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6502     : ConstantExpr::getFPToSI(RHSC, IntTy);
6503   if (!RHS.isZero()) {
6504     bool Equal = LHSUnsigned
6505       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6506       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6507     if (!Equal) {
6508       // If we had a comparison against a fractional value, we have to adjust
6509       // the compare predicate and sometimes the value.  RHSC is rounded towards
6510       // zero at this point.
6511       switch (Pred) {
6512       default: llvm_unreachable("Unexpected integer comparison!");
6513       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6514         return replaceInstUsesWith(I, Builder.getTrue());
6515       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6516         return replaceInstUsesWith(I, Builder.getFalse());
6517       case ICmpInst::ICMP_ULE:
6518         // (float)int <= 4.4   --> int <= 4
6519         // (float)int <= -4.4  --> false
6520         if (RHS.isNegative())
6521           return replaceInstUsesWith(I, Builder.getFalse());
6522         break;
6523       case ICmpInst::ICMP_SLE:
6524         // (float)int <= 4.4   --> int <= 4
6525         // (float)int <= -4.4  --> int < -4
6526         if (RHS.isNegative())
6527           Pred = ICmpInst::ICMP_SLT;
6528         break;
6529       case ICmpInst::ICMP_ULT:
6530         // (float)int < -4.4   --> false
6531         // (float)int < 4.4    --> int <= 4
6532         if (RHS.isNegative())
6533           return replaceInstUsesWith(I, Builder.getFalse());
6534         Pred = ICmpInst::ICMP_ULE;
6535         break;
6536       case ICmpInst::ICMP_SLT:
6537         // (float)int < -4.4   --> int < -4
6538         // (float)int < 4.4    --> int <= 4
6539         if (!RHS.isNegative())
6540           Pred = ICmpInst::ICMP_SLE;
6541         break;
6542       case ICmpInst::ICMP_UGT:
6543         // (float)int > 4.4    --> int > 4
6544         // (float)int > -4.4   --> true
6545         if (RHS.isNegative())
6546           return replaceInstUsesWith(I, Builder.getTrue());
6547         break;
6548       case ICmpInst::ICMP_SGT:
6549         // (float)int > 4.4    --> int > 4
6550         // (float)int > -4.4   --> int >= -4
6551         if (RHS.isNegative())
6552           Pred = ICmpInst::ICMP_SGE;
6553         break;
6554       case ICmpInst::ICMP_UGE:
6555         // (float)int >= -4.4   --> true
6556         // (float)int >= 4.4    --> int > 4
6557         if (RHS.isNegative())
6558           return replaceInstUsesWith(I, Builder.getTrue());
6559         Pred = ICmpInst::ICMP_UGT;
6560         break;
6561       case ICmpInst::ICMP_SGE:
6562         // (float)int >= -4.4   --> int >= -4
6563         // (float)int >= 4.4    --> int > 4
6564         if (!RHS.isNegative())
6565           Pred = ICmpInst::ICMP_SGT;
6566         break;
6567       }
6568     }
6569   }
6570 
6571   // Lower this FP comparison into an appropriate integer version of the
6572   // comparison.
6573   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6574 }
6575 
6576 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6577 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6578                                               Constant *RHSC) {
6579   // When C is not 0.0 and infinities are not allowed:
6580   // (C / X) < 0.0 is a sign-bit test of X
6581   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6582   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6583   //
6584   // Proof:
6585   // Multiply (C / X) < 0.0 by X * X / C.
6586   // - X is non zero, if it is the flag 'ninf' is violated.
6587   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6588   //   the predicate. C is also non zero by definition.
6589   //
6590   // Thus X * X / C is non zero and the transformation is valid. [qed]
6591 
6592   FCmpInst::Predicate Pred = I.getPredicate();
6593 
6594   // Check that predicates are valid.
6595   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6596       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6597     return nullptr;
6598 
6599   // Check that RHS operand is zero.
6600   if (!match(RHSC, m_AnyZeroFP()))
6601     return nullptr;
6602 
6603   // Check fastmath flags ('ninf').
6604   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6605     return nullptr;
6606 
6607   // Check the properties of the dividend. It must not be zero to avoid a
6608   // division by zero (see Proof).
6609   const APFloat *C;
6610   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6611     return nullptr;
6612 
6613   if (C->isZero())
6614     return nullptr;
6615 
6616   // Get swapped predicate if necessary.
6617   if (C->isNegative())
6618     Pred = I.getSwappedPredicate();
6619 
6620   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6621 }
6622 
6623 /// Optimize fabs(X) compared with zero.
6624 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6625   Value *X;
6626   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6627       !match(I.getOperand(1), m_PosZeroFP()))
6628     return nullptr;
6629 
6630   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6631     I->setPredicate(P);
6632     return IC.replaceOperand(*I, 0, X);
6633   };
6634 
6635   switch (I.getPredicate()) {
6636   case FCmpInst::FCMP_UGE:
6637   case FCmpInst::FCMP_OLT:
6638     // fabs(X) >= 0.0 --> true
6639     // fabs(X) <  0.0 --> false
6640     llvm_unreachable("fcmp should have simplified");
6641 
6642   case FCmpInst::FCMP_OGT:
6643     // fabs(X) > 0.0 --> X != 0.0
6644     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6645 
6646   case FCmpInst::FCMP_UGT:
6647     // fabs(X) u> 0.0 --> X u!= 0.0
6648     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6649 
6650   case FCmpInst::FCMP_OLE:
6651     // fabs(X) <= 0.0 --> X == 0.0
6652     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6653 
6654   case FCmpInst::FCMP_ULE:
6655     // fabs(X) u<= 0.0 --> X u== 0.0
6656     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6657 
6658   case FCmpInst::FCMP_OGE:
6659     // fabs(X) >= 0.0 --> !isnan(X)
6660     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6661     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6662 
6663   case FCmpInst::FCMP_ULT:
6664     // fabs(X) u< 0.0 --> isnan(X)
6665     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6666     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6667 
6668   case FCmpInst::FCMP_OEQ:
6669   case FCmpInst::FCMP_UEQ:
6670   case FCmpInst::FCMP_ONE:
6671   case FCmpInst::FCMP_UNE:
6672   case FCmpInst::FCMP_ORD:
6673   case FCmpInst::FCMP_UNO:
6674     // Look through the fabs() because it doesn't change anything but the sign.
6675     // fabs(X) == 0.0 --> X == 0.0,
6676     // fabs(X) != 0.0 --> X != 0.0
6677     // isnan(fabs(X)) --> isnan(X)
6678     // !isnan(fabs(X) --> !isnan(X)
6679     return replacePredAndOp0(&I, I.getPredicate(), X);
6680 
6681   default:
6682     return nullptr;
6683   }
6684 }
6685 
6686 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6687   CmpInst::Predicate Pred = I.getPredicate();
6688   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6689 
6690   // Canonicalize fneg as Op1.
6691   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6692     std::swap(Op0, Op1);
6693     Pred = I.getSwappedPredicate();
6694   }
6695 
6696   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6697     return nullptr;
6698 
6699   // Replace the negated operand with 0.0:
6700   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6701   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6702   return new FCmpInst(Pred, Op0, Zero, "", &I);
6703 }
6704 
6705 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6706   bool Changed = false;
6707 
6708   /// Orders the operands of the compare so that they are listed from most
6709   /// complex to least complex.  This puts constants before unary operators,
6710   /// before binary operators.
6711   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6712     I.swapOperands();
6713     Changed = true;
6714   }
6715 
6716   const CmpInst::Predicate Pred = I.getPredicate();
6717   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6718   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6719                                   SQ.getWithInstruction(&I)))
6720     return replaceInstUsesWith(I, V);
6721 
6722   // Simplify 'fcmp pred X, X'
6723   Type *OpType = Op0->getType();
6724   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6725   if (Op0 == Op1) {
6726     switch (Pred) {
6727       default: break;
6728     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6729     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6730     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6731     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6732       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6733       I.setPredicate(FCmpInst::FCMP_UNO);
6734       I.setOperand(1, Constant::getNullValue(OpType));
6735       return &I;
6736 
6737     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6738     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6739     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6740     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6741       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6742       I.setPredicate(FCmpInst::FCMP_ORD);
6743       I.setOperand(1, Constant::getNullValue(OpType));
6744       return &I;
6745     }
6746   }
6747 
6748   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6749   // then canonicalize the operand to 0.0.
6750   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6751     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6752       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6753 
6754     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6755       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6756   }
6757 
6758   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6759   Value *X, *Y;
6760   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6761     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6762 
6763   if (Instruction *R = foldFCmpFNegCommonOp(I))
6764     return R;
6765 
6766   // Test if the FCmpInst instruction is used exclusively by a select as
6767   // part of a minimum or maximum operation. If so, refrain from doing
6768   // any other folding. This helps out other analyses which understand
6769   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6770   // and CodeGen. And in this case, at least one of the comparison
6771   // operands has at least one user besides the compare (the select),
6772   // which would often largely negate the benefit of folding anyway.
6773   if (I.hasOneUse())
6774     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6775       Value *A, *B;
6776       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6777       if (SPR.Flavor != SPF_UNKNOWN)
6778         return nullptr;
6779     }
6780 
6781   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6782   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6783   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6784     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6785 
6786   // Handle fcmp with instruction LHS and constant RHS.
6787   Instruction *LHSI;
6788   Constant *RHSC;
6789   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6790     switch (LHSI->getOpcode()) {
6791     case Instruction::PHI:
6792       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6793       // block.  If in the same block, we're encouraging jump threading.  If
6794       // not, we are just pessimizing the code by making an i1 phi.
6795       if (LHSI->getParent() == I.getParent())
6796         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6797           return NV;
6798       break;
6799     case Instruction::SIToFP:
6800     case Instruction::UIToFP:
6801       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6802         return NV;
6803       break;
6804     case Instruction::FDiv:
6805       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6806         return NV;
6807       break;
6808     case Instruction::Load:
6809       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6810         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6811           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6812                   cast<LoadInst>(LHSI), GEP, GV, I))
6813             return Res;
6814       break;
6815   }
6816   }
6817 
6818   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6819     return R;
6820 
6821   if (match(Op0, m_FNeg(m_Value(X)))) {
6822     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6823     Constant *C;
6824     if (match(Op1, m_Constant(C))) {
6825       Constant *NegC = ConstantExpr::getFNeg(C);
6826       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6827     }
6828   }
6829 
6830   if (match(Op0, m_FPExt(m_Value(X)))) {
6831     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6832     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6833       return new FCmpInst(Pred, X, Y, "", &I);
6834 
6835     const APFloat *C;
6836     if (match(Op1, m_APFloat(C))) {
6837       const fltSemantics &FPSem =
6838           X->getType()->getScalarType()->getFltSemantics();
6839       bool Lossy;
6840       APFloat TruncC = *C;
6841       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6842 
6843       if (Lossy) {
6844         // X can't possibly equal the higher-precision constant, so reduce any
6845         // equality comparison.
6846         // TODO: Other predicates can be handled via getFCmpCode().
6847         switch (Pred) {
6848         case FCmpInst::FCMP_OEQ:
6849           // X is ordered and equal to an impossible constant --> false
6850           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6851         case FCmpInst::FCMP_ONE:
6852           // X is ordered and not equal to an impossible constant --> ordered
6853           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6854                               ConstantFP::getNullValue(X->getType()));
6855         case FCmpInst::FCMP_UEQ:
6856           // X is unordered or equal to an impossible constant --> unordered
6857           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6858                               ConstantFP::getNullValue(X->getType()));
6859         case FCmpInst::FCMP_UNE:
6860           // X is unordered or not equal to an impossible constant --> true
6861           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6862         default:
6863           break;
6864         }
6865       }
6866 
6867       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6868       // Avoid lossy conversions and denormals.
6869       // Zero is a special case that's OK to convert.
6870       APFloat Fabs = TruncC;
6871       Fabs.clearSign();
6872       if (!Lossy &&
6873           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6874         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6875         return new FCmpInst(Pred, X, NewC, "", &I);
6876       }
6877     }
6878   }
6879 
6880   // Convert a sign-bit test of an FP value into a cast and integer compare.
6881   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6882   // TODO: Handle non-zero compare constants.
6883   // TODO: Handle other predicates.
6884   const APFloat *C;
6885   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6886                                                            m_Value(X)))) &&
6887       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6888     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6889     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6890       IntType = VectorType::get(IntType, VecTy->getElementCount());
6891 
6892     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6893     if (Pred == FCmpInst::FCMP_OLT) {
6894       Value *IntX = Builder.CreateBitCast(X, IntType);
6895       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6896                           ConstantInt::getNullValue(IntType));
6897     }
6898   }
6899 
6900   if (I.getType()->isVectorTy())
6901     if (Instruction *Res = foldVectorCmp(I, Builder))
6902       return Res;
6903 
6904   return Changed ? &I : nullptr;
6905 }
6906