1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction * 109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 110 GlobalVariable *GV, CmpInst &ICI, 111 ConstantInt *AndCst) { 112 Constant *Init = GV->getInitializer(); 113 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 114 return nullptr; 115 116 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 117 // Don't blow up on huge arrays. 118 if (ArrayElementCount > MaxArraySizeForCombine) 119 return nullptr; 120 121 // There are many forms of this optimization we can handle, for now, just do 122 // the simple index into a single-dimensional array. 123 // 124 // Require: GEP GV, 0, i {{, constant indices}} 125 if (GEP->getNumOperands() < 3 || 126 !isa<ConstantInt>(GEP->getOperand(1)) || 127 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 128 isa<Constant>(GEP->getOperand(2))) 129 return nullptr; 130 131 // Check that indices after the variable are constants and in-range for the 132 // type they index. Collect the indices. This is typically for arrays of 133 // structs. 134 SmallVector<unsigned, 4> LaterIndices; 135 136 Type *EltTy = Init->getType()->getArrayElementType(); 137 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 138 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 139 if (!Idx) return nullptr; // Variable index. 140 141 uint64_t IdxVal = Idx->getZExtValue(); 142 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 143 144 if (StructType *STy = dyn_cast<StructType>(EltTy)) 145 EltTy = STy->getElementType(IdxVal); 146 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 147 if (IdxVal >= ATy->getNumElements()) return nullptr; 148 EltTy = ATy->getElementType(); 149 } else { 150 return nullptr; // Unknown type. 151 } 152 153 LaterIndices.push_back(IdxVal); 154 } 155 156 enum { Overdefined = -3, Undefined = -2 }; 157 158 // Variables for our state machines. 159 160 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 161 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 162 // and 87 is the second (and last) index. FirstTrueElement is -2 when 163 // undefined, otherwise set to the first true element. SecondTrueElement is 164 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 165 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 166 167 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 168 // form "i != 47 & i != 87". Same state transitions as for true elements. 169 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 170 171 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 172 /// define a state machine that triggers for ranges of values that the index 173 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 174 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 175 /// index in the range (inclusive). We use -2 for undefined here because we 176 /// use relative comparisons and don't want 0-1 to match -1. 177 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 178 179 // MagicBitvector - This is a magic bitvector where we set a bit if the 180 // comparison is true for element 'i'. If there are 64 elements or less in 181 // the array, this will fully represent all the comparison results. 182 uint64_t MagicBitvector = 0; 183 184 // Scan the array and see if one of our patterns matches. 185 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 186 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 187 Constant *Elt = Init->getAggregateElement(i); 188 if (!Elt) return nullptr; 189 190 // If this is indexing an array of structures, get the structure element. 191 if (!LaterIndices.empty()) 192 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 193 194 // If the element is masked, handle it. 195 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 196 197 // Find out if the comparison would be true or false for the i'th element. 198 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 199 CompareRHS, DL, &TLI); 200 // If the result is undef for this element, ignore it. 201 if (isa<UndefValue>(C)) { 202 // Extend range state machines to cover this element in case there is an 203 // undef in the middle of the range. 204 if (TrueRangeEnd == (int)i-1) 205 TrueRangeEnd = i; 206 if (FalseRangeEnd == (int)i-1) 207 FalseRangeEnd = i; 208 continue; 209 } 210 211 // If we can't compute the result for any of the elements, we have to give 212 // up evaluating the entire conditional. 213 if (!isa<ConstantInt>(C)) return nullptr; 214 215 // Otherwise, we know if the comparison is true or false for this element, 216 // update our state machines. 217 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 218 219 // State machine for single/double/range index comparison. 220 if (IsTrueForElt) { 221 // Update the TrueElement state machine. 222 if (FirstTrueElement == Undefined) 223 FirstTrueElement = TrueRangeEnd = i; // First true element. 224 else { 225 // Update double-compare state machine. 226 if (SecondTrueElement == Undefined) 227 SecondTrueElement = i; 228 else 229 SecondTrueElement = Overdefined; 230 231 // Update range state machine. 232 if (TrueRangeEnd == (int)i-1) 233 TrueRangeEnd = i; 234 else 235 TrueRangeEnd = Overdefined; 236 } 237 } else { 238 // Update the FalseElement state machine. 239 if (FirstFalseElement == Undefined) 240 FirstFalseElement = FalseRangeEnd = i; // First false element. 241 else { 242 // Update double-compare state machine. 243 if (SecondFalseElement == Undefined) 244 SecondFalseElement = i; 245 else 246 SecondFalseElement = Overdefined; 247 248 // Update range state machine. 249 if (FalseRangeEnd == (int)i-1) 250 FalseRangeEnd = i; 251 else 252 FalseRangeEnd = Overdefined; 253 } 254 } 255 256 // If this element is in range, update our magic bitvector. 257 if (i < 64 && IsTrueForElt) 258 MagicBitvector |= 1ULL << i; 259 260 // If all of our states become overdefined, bail out early. Since the 261 // predicate is expensive, only check it every 8 elements. This is only 262 // really useful for really huge arrays. 263 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 264 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 265 FalseRangeEnd == Overdefined) 266 return nullptr; 267 } 268 269 // Now that we've scanned the entire array, emit our new comparison(s). We 270 // order the state machines in complexity of the generated code. 271 Value *Idx = GEP->getOperand(2); 272 273 // If the index is larger than the pointer size of the target, truncate the 274 // index down like the GEP would do implicitly. We don't have to do this for 275 // an inbounds GEP because the index can't be out of range. 276 if (!GEP->isInBounds()) { 277 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 278 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 279 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 280 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 281 } 282 283 // If inbounds keyword is not present, Idx * ElementSize can overflow. 284 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 285 // Then, there are two possible values for Idx to match offset 0: 286 // 0x00..00, 0x80..00. 287 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 288 // comparison is false if Idx was 0x80..00. 289 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 290 unsigned ElementSize = 291 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 292 auto MaskIdx = [&](Value* Idx){ 293 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 294 Value *Mask = ConstantInt::get(Idx->getType(), -1); 295 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 296 Idx = Builder.CreateAnd(Idx, Mask); 297 } 298 return Idx; 299 }; 300 301 // If the comparison is only true for one or two elements, emit direct 302 // comparisons. 303 if (SecondTrueElement != Overdefined) { 304 Idx = MaskIdx(Idx); 305 // None true -> false. 306 if (FirstTrueElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getFalse()); 308 309 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 310 311 // True for one element -> 'i == 47'. 312 if (SecondTrueElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 314 315 // True for two elements -> 'i == 47 | i == 72'. 316 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 317 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 318 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 319 return BinaryOperator::CreateOr(C1, C2); 320 } 321 322 // If the comparison is only false for one or two elements, emit direct 323 // comparisons. 324 if (SecondFalseElement != Overdefined) { 325 Idx = MaskIdx(Idx); 326 // None false -> true. 327 if (FirstFalseElement == Undefined) 328 return replaceInstUsesWith(ICI, Builder.getTrue()); 329 330 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 331 332 // False for one element -> 'i != 47'. 333 if (SecondFalseElement == Undefined) 334 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 335 336 // False for two elements -> 'i != 47 & i != 72'. 337 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 338 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 339 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 340 return BinaryOperator::CreateAnd(C1, C2); 341 } 342 343 // If the comparison can be replaced with a range comparison for the elements 344 // where it is true, emit the range check. 345 if (TrueRangeEnd != Overdefined) { 346 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 347 Idx = MaskIdx(Idx); 348 349 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 350 if (FirstTrueElement) { 351 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 352 Idx = Builder.CreateAdd(Idx, Offs); 353 } 354 355 Value *End = ConstantInt::get(Idx->getType(), 356 TrueRangeEnd-FirstTrueElement+1); 357 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 358 } 359 360 // False range check. 361 if (FalseRangeEnd != Overdefined) { 362 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 363 Idx = MaskIdx(Idx); 364 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 365 if (FirstFalseElement) { 366 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 367 Idx = Builder.CreateAdd(Idx, Offs); 368 } 369 370 Value *End = ConstantInt::get(Idx->getType(), 371 FalseRangeEnd-FirstFalseElement); 372 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 373 } 374 375 // If a magic bitvector captures the entire comparison state 376 // of this load, replace it with computation that does: 377 // ((magic_cst >> i) & 1) != 0 378 { 379 Type *Ty = nullptr; 380 381 // Look for an appropriate type: 382 // - The type of Idx if the magic fits 383 // - The smallest fitting legal type 384 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 385 Ty = Idx->getType(); 386 else 387 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 388 389 if (Ty) { 390 Idx = MaskIdx(Idx); 391 Value *V = Builder.CreateIntCast(Idx, Ty, false); 392 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 393 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 394 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 395 } 396 } 397 398 return nullptr; 399 } 400 401 /// Return a value that can be used to compare the *offset* implied by a GEP to 402 /// zero. For example, if we have &A[i], we want to return 'i' for 403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 404 /// are involved. The above expression would also be legal to codegen as 405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 406 /// This latter form is less amenable to optimization though, and we are allowed 407 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 408 /// 409 /// If we can't emit an optimized form for this expression, this returns null. 410 /// 411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 412 const DataLayout &DL) { 413 gep_type_iterator GTI = gep_type_begin(GEP); 414 415 // Check to see if this gep only has a single variable index. If so, and if 416 // any constant indices are a multiple of its scale, then we can compute this 417 // in terms of the scale of the variable index. For example, if the GEP 418 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 419 // because the expression will cross zero at the same point. 420 unsigned i, e = GEP->getNumOperands(); 421 int64_t Offset = 0; 422 for (i = 1; i != e; ++i, ++GTI) { 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 424 // Compute the aggregate offset of constant indices. 425 if (CI->isZero()) continue; 426 427 // Handle a struct index, which adds its field offset to the pointer. 428 if (StructType *STy = GTI.getStructTypeOrNull()) { 429 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 430 } else { 431 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 432 Offset += Size*CI->getSExtValue(); 433 } 434 } else { 435 // Found our variable index. 436 break; 437 } 438 } 439 440 // If there are no variable indices, we must have a constant offset, just 441 // evaluate it the general way. 442 if (i == e) return nullptr; 443 444 Value *VariableIdx = GEP->getOperand(i); 445 // Determine the scale factor of the variable element. For example, this is 446 // 4 if the variable index is into an array of i32. 447 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 448 449 // Verify that there are no other variable indices. If so, emit the hard way. 450 for (++i, ++GTI; i != e; ++i, ++GTI) { 451 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 452 if (!CI) return nullptr; 453 454 // Compute the aggregate offset of constant indices. 455 if (CI->isZero()) continue; 456 457 // Handle a struct index, which adds its field offset to the pointer. 458 if (StructType *STy = GTI.getStructTypeOrNull()) { 459 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 460 } else { 461 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 462 Offset += Size*CI->getSExtValue(); 463 } 464 } 465 466 // Okay, we know we have a single variable index, which must be a 467 // pointer/array/vector index. If there is no offset, life is simple, return 468 // the index. 469 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 470 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 471 if (Offset == 0) { 472 // Cast to intptrty in case a truncation occurs. If an extension is needed, 473 // we don't need to bother extending: the extension won't affect where the 474 // computation crosses zero. 475 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 476 IntPtrWidth) { 477 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 478 } 479 return VariableIdx; 480 } 481 482 // Otherwise, there is an index. The computation we will do will be modulo 483 // the pointer size. 484 Offset = SignExtend64(Offset, IntPtrWidth); 485 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 486 487 // To do this transformation, any constant index must be a multiple of the 488 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 489 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 490 // multiple of the variable scale. 491 int64_t NewOffs = Offset / (int64_t)VariableScale; 492 if (Offset != NewOffs*(int64_t)VariableScale) 493 return nullptr; 494 495 // Okay, we can do this evaluation. Start by converting the index to intptr. 496 if (VariableIdx->getType() != IntPtrTy) 497 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 498 true /*Signed*/); 499 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 500 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 501 } 502 503 /// Returns true if we can rewrite Start as a GEP with pointer Base 504 /// and some integer offset. The nodes that need to be re-written 505 /// for this transformation will be added to Explored. 506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 507 const DataLayout &DL, 508 SetVector<Value *> &Explored) { 509 SmallVector<Value *, 16> WorkList(1, Start); 510 Explored.insert(Base); 511 512 // The following traversal gives us an order which can be used 513 // when doing the final transformation. Since in the final 514 // transformation we create the PHI replacement instructions first, 515 // we don't have to get them in any particular order. 516 // 517 // However, for other instructions we will have to traverse the 518 // operands of an instruction first, which means that we have to 519 // do a post-order traversal. 520 while (!WorkList.empty()) { 521 SetVector<PHINode *> PHIs; 522 523 while (!WorkList.empty()) { 524 if (Explored.size() >= 100) 525 return false; 526 527 Value *V = WorkList.back(); 528 529 if (Explored.contains(V)) { 530 WorkList.pop_back(); 531 continue; 532 } 533 534 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 535 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 536 // We've found some value that we can't explore which is different from 537 // the base. Therefore we can't do this transformation. 538 return false; 539 540 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 541 auto *CI = cast<CastInst>(V); 542 if (!CI->isNoopCast(DL)) 543 return false; 544 545 if (!Explored.contains(CI->getOperand(0))) 546 WorkList.push_back(CI->getOperand(0)); 547 } 548 549 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 550 // We're limiting the GEP to having one index. This will preserve 551 // the original pointer type. We could handle more cases in the 552 // future. 553 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 554 GEP->getSourceElementType() != ElemTy) 555 return false; 556 557 if (!Explored.contains(GEP->getOperand(0))) 558 WorkList.push_back(GEP->getOperand(0)); 559 } 560 561 if (WorkList.back() == V) { 562 WorkList.pop_back(); 563 // We've finished visiting this node, mark it as such. 564 Explored.insert(V); 565 } 566 567 if (auto *PN = dyn_cast<PHINode>(V)) { 568 // We cannot transform PHIs on unsplittable basic blocks. 569 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 570 return false; 571 Explored.insert(PN); 572 PHIs.insert(PN); 573 } 574 } 575 576 // Explore the PHI nodes further. 577 for (auto *PN : PHIs) 578 for (Value *Op : PN->incoming_values()) 579 if (!Explored.contains(Op)) 580 WorkList.push_back(Op); 581 } 582 583 // Make sure that we can do this. Since we can't insert GEPs in a basic 584 // block before a PHI node, we can't easily do this transformation if 585 // we have PHI node users of transformed instructions. 586 for (Value *Val : Explored) { 587 for (Value *Use : Val->uses()) { 588 589 auto *PHI = dyn_cast<PHINode>(Use); 590 auto *Inst = dyn_cast<Instruction>(Val); 591 592 if (Inst == Base || Inst == PHI || !Inst || !PHI || 593 !Explored.contains(PHI)) 594 continue; 595 596 if (PHI->getParent() == Inst->getParent()) 597 return false; 598 } 599 } 600 return true; 601 } 602 603 // Sets the appropriate insert point on Builder where we can add 604 // a replacement Instruction for V (if that is possible). 605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 606 bool Before = true) { 607 if (auto *PHI = dyn_cast<PHINode>(V)) { 608 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 609 return; 610 } 611 if (auto *I = dyn_cast<Instruction>(V)) { 612 if (!Before) 613 I = &*std::next(I->getIterator()); 614 Builder.SetInsertPoint(I); 615 return; 616 } 617 if (auto *A = dyn_cast<Argument>(V)) { 618 // Set the insertion point in the entry block. 619 BasicBlock &Entry = A->getParent()->getEntryBlock(); 620 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 621 return; 622 } 623 // Otherwise, this is a constant and we don't need to set a new 624 // insertion point. 625 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 626 } 627 628 /// Returns a re-written value of Start as an indexed GEP using Base as a 629 /// pointer. 630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 631 const DataLayout &DL, 632 SetVector<Value *> &Explored) { 633 // Perform all the substitutions. This is a bit tricky because we can 634 // have cycles in our use-def chains. 635 // 1. Create the PHI nodes without any incoming values. 636 // 2. Create all the other values. 637 // 3. Add the edges for the PHI nodes. 638 // 4. Emit GEPs to get the original pointers. 639 // 5. Remove the original instructions. 640 Type *IndexType = IntegerType::get( 641 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 642 643 DenseMap<Value *, Value *> NewInsts; 644 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 645 646 // Create the new PHI nodes, without adding any incoming values. 647 for (Value *Val : Explored) { 648 if (Val == Base) 649 continue; 650 // Create empty phi nodes. This avoids cyclic dependencies when creating 651 // the remaining instructions. 652 if (auto *PHI = dyn_cast<PHINode>(Val)) 653 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 654 PHI->getName() + ".idx", PHI); 655 } 656 IRBuilder<> Builder(Base->getContext()); 657 658 // Create all the other instructions. 659 for (Value *Val : Explored) { 660 661 if (NewInsts.find(Val) != NewInsts.end()) 662 continue; 663 664 if (auto *CI = dyn_cast<CastInst>(Val)) { 665 // Don't get rid of the intermediate variable here; the store can grow 666 // the map which will invalidate the reference to the input value. 667 Value *V = NewInsts[CI->getOperand(0)]; 668 NewInsts[CI] = V; 669 continue; 670 } 671 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 672 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 673 : GEP->getOperand(1); 674 setInsertionPoint(Builder, GEP); 675 // Indices might need to be sign extended. GEPs will magically do 676 // this, but we need to do it ourselves here. 677 if (Index->getType()->getScalarSizeInBits() != 678 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 679 Index = Builder.CreateSExtOrTrunc( 680 Index, NewInsts[GEP->getOperand(0)]->getType(), 681 GEP->getOperand(0)->getName() + ".sext"); 682 } 683 684 auto *Op = NewInsts[GEP->getOperand(0)]; 685 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 686 NewInsts[GEP] = Index; 687 else 688 NewInsts[GEP] = Builder.CreateNSWAdd( 689 Op, Index, GEP->getOperand(0)->getName() + ".add"); 690 continue; 691 } 692 if (isa<PHINode>(Val)) 693 continue; 694 695 llvm_unreachable("Unexpected instruction type"); 696 } 697 698 // Add the incoming values to the PHI nodes. 699 for (Value *Val : Explored) { 700 if (Val == Base) 701 continue; 702 // All the instructions have been created, we can now add edges to the 703 // phi nodes. 704 if (auto *PHI = dyn_cast<PHINode>(Val)) { 705 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 706 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 707 Value *NewIncoming = PHI->getIncomingValue(I); 708 709 if (NewInsts.find(NewIncoming) != NewInsts.end()) 710 NewIncoming = NewInsts[NewIncoming]; 711 712 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 713 } 714 } 715 } 716 717 PointerType *PtrTy = 718 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 719 for (Value *Val : Explored) { 720 if (Val == Base) 721 continue; 722 723 // Depending on the type, for external users we have to emit 724 // a GEP or a GEP + ptrtoint. 725 setInsertionPoint(Builder, Val, false); 726 727 // Cast base to the expected type. 728 Value *NewVal = Builder.CreateBitOrPointerCast( 729 Base, PtrTy, Start->getName() + "to.ptr"); 730 NewVal = Builder.CreateInBoundsGEP( 731 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 732 NewVal = Builder.CreateBitOrPointerCast( 733 NewVal, Val->getType(), Val->getName() + ".conv"); 734 Val->replaceAllUsesWith(NewVal); 735 } 736 737 return NewInsts[Start]; 738 } 739 740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 741 /// the input Value as a constant indexed GEP. Returns a pair containing 742 /// the GEPs Pointer and Index. 743 static std::pair<Value *, Value *> 744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 745 Type *IndexType = IntegerType::get(V->getContext(), 746 DL.getIndexTypeSizeInBits(V->getType())); 747 748 Constant *Index = ConstantInt::getNullValue(IndexType); 749 while (true) { 750 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 751 // We accept only inbouds GEPs here to exclude the possibility of 752 // overflow. 753 if (!GEP->isInBounds()) 754 break; 755 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 756 GEP->getSourceElementType() == ElemTy) { 757 V = GEP->getOperand(0); 758 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 759 Index = ConstantExpr::getAdd( 760 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 761 continue; 762 } 763 break; 764 } 765 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 766 if (!CI->isNoopCast(DL)) 767 break; 768 V = CI->getOperand(0); 769 continue; 770 } 771 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 772 if (!CI->isNoopCast(DL)) 773 break; 774 V = CI->getOperand(0); 775 continue; 776 } 777 break; 778 } 779 return {V, Index}; 780 } 781 782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 783 /// We can look through PHIs, GEPs and casts in order to determine a common base 784 /// between GEPLHS and RHS. 785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 786 ICmpInst::Predicate Cond, 787 const DataLayout &DL) { 788 // FIXME: Support vector of pointers. 789 if (GEPLHS->getType()->isVectorTy()) 790 return nullptr; 791 792 if (!GEPLHS->hasAllConstantIndices()) 793 return nullptr; 794 795 Type *ElemTy = GEPLHS->getSourceElementType(); 796 Value *PtrBase, *Index; 797 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 798 799 // The set of nodes that will take part in this transformation. 800 SetVector<Value *> Nodes; 801 802 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 803 return nullptr; 804 805 // We know we can re-write this as 806 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 807 // Since we've only looked through inbouds GEPs we know that we 808 // can't have overflow on either side. We can therefore re-write 809 // this as: 810 // OFFSET1 cmp OFFSET2 811 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 812 813 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 814 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 815 // offset. Since Index is the offset of LHS to the base pointer, we will now 816 // compare the offsets instead of comparing the pointers. 817 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 818 } 819 820 /// Fold comparisons between a GEP instruction and something else. At this point 821 /// we know that the GEP is on the LHS of the comparison. 822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 823 ICmpInst::Predicate Cond, 824 Instruction &I) { 825 // Don't transform signed compares of GEPs into index compares. Even if the 826 // GEP is inbounds, the final add of the base pointer can have signed overflow 827 // and would change the result of the icmp. 828 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 829 // the maximum signed value for the pointer type. 830 if (ICmpInst::isSigned(Cond)) 831 return nullptr; 832 833 // Look through bitcasts and addrspacecasts. We do not however want to remove 834 // 0 GEPs. 835 if (!isa<GetElementPtrInst>(RHS)) 836 RHS = RHS->stripPointerCasts(); 837 838 Value *PtrBase = GEPLHS->getOperand(0); 839 // FIXME: Support vector pointer GEPs. 840 if (PtrBase == RHS && GEPLHS->isInBounds() && 841 !GEPLHS->getType()->isVectorTy()) { 842 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 843 // This transformation (ignoring the base and scales) is valid because we 844 // know pointers can't overflow since the gep is inbounds. See if we can 845 // output an optimized form. 846 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 847 848 // If not, synthesize the offset the hard way. 849 if (!Offset) 850 Offset = EmitGEPOffset(GEPLHS); 851 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 852 Constant::getNullValue(Offset->getType())); 853 } 854 855 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 856 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 857 !NullPointerIsDefined(I.getFunction(), 858 RHS->getType()->getPointerAddressSpace())) { 859 // For most address spaces, an allocation can't be placed at null, but null 860 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 861 // the only valid inbounds address derived from null, is null itself. 862 // Thus, we have four cases to consider: 863 // 1) Base == nullptr, Offset == 0 -> inbounds, null 864 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 865 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 866 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 867 // 868 // (Note if we're indexing a type of size 0, that simply collapses into one 869 // of the buckets above.) 870 // 871 // In general, we're allowed to make values less poison (i.e. remove 872 // sources of full UB), so in this case, we just select between the two 873 // non-poison cases (1 and 4 above). 874 // 875 // For vectors, we apply the same reasoning on a per-lane basis. 876 auto *Base = GEPLHS->getPointerOperand(); 877 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 878 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 879 Base = Builder.CreateVectorSplat(EC, Base); 880 } 881 return new ICmpInst(Cond, Base, 882 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 883 cast<Constant>(RHS), Base->getType())); 884 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 885 // If the base pointers are different, but the indices are the same, just 886 // compare the base pointer. 887 if (PtrBase != GEPRHS->getOperand(0)) { 888 bool IndicesTheSame = 889 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 890 GEPLHS->getType() == GEPRHS->getType() && 891 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 892 if (IndicesTheSame) 893 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 894 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 895 IndicesTheSame = false; 896 break; 897 } 898 899 // If all indices are the same, just compare the base pointers. 900 Type *BaseType = GEPLHS->getOperand(0)->getType(); 901 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 902 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 903 904 // If we're comparing GEPs with two base pointers that only differ in type 905 // and both GEPs have only constant indices or just one use, then fold 906 // the compare with the adjusted indices. 907 // FIXME: Support vector of pointers. 908 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 909 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 910 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 911 PtrBase->stripPointerCasts() == 912 GEPRHS->getOperand(0)->stripPointerCasts() && 913 !GEPLHS->getType()->isVectorTy()) { 914 Value *LOffset = EmitGEPOffset(GEPLHS); 915 Value *ROffset = EmitGEPOffset(GEPRHS); 916 917 // If we looked through an addrspacecast between different sized address 918 // spaces, the LHS and RHS pointers are different sized 919 // integers. Truncate to the smaller one. 920 Type *LHSIndexTy = LOffset->getType(); 921 Type *RHSIndexTy = ROffset->getType(); 922 if (LHSIndexTy != RHSIndexTy) { 923 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 924 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 925 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 926 } else 927 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 928 } 929 930 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 931 LOffset, ROffset); 932 return replaceInstUsesWith(I, Cmp); 933 } 934 935 // Otherwise, the base pointers are different and the indices are 936 // different. Try convert this to an indexed compare by looking through 937 // PHIs/casts. 938 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 939 } 940 941 // If one of the GEPs has all zero indices, recurse. 942 // FIXME: Handle vector of pointers. 943 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 944 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 945 ICmpInst::getSwappedPredicate(Cond), I); 946 947 // If the other GEP has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 951 952 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 953 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 954 // If the GEPs only differ by one index, compare it. 955 unsigned NumDifferences = 0; // Keep track of # differences. 956 unsigned DiffOperand = 0; // The operand that differs. 957 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 958 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 959 Type *LHSType = GEPLHS->getOperand(i)->getType(); 960 Type *RHSType = GEPRHS->getOperand(i)->getType(); 961 // FIXME: Better support for vector of pointers. 962 if (LHSType->getPrimitiveSizeInBits() != 963 RHSType->getPrimitiveSizeInBits() || 964 (GEPLHS->getType()->isVectorTy() && 965 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 966 // Irreconcilable differences. 967 NumDifferences = 2; 968 break; 969 } 970 971 if (NumDifferences++) break; 972 DiffOperand = i; 973 } 974 975 if (NumDifferences == 0) // SAME GEP? 976 return replaceInstUsesWith(I, // No comparison is needed here. 977 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 978 979 else if (NumDifferences == 1 && GEPsInBounds) { 980 Value *LHSV = GEPLHS->getOperand(DiffOperand); 981 Value *RHSV = GEPRHS->getOperand(DiffOperand); 982 // Make sure we do a signed comparison here. 983 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 984 } 985 } 986 987 // Only lower this if the icmp is the only user of the GEP or if we expect 988 // the result to fold to a constant! 989 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 990 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 991 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 992 Value *L = EmitGEPOffset(GEPLHS); 993 Value *R = EmitGEPOffset(GEPRHS); 994 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 995 } 996 } 997 998 // Try convert this to an indexed compare by looking through PHIs/casts as a 999 // last resort. 1000 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1001 } 1002 1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1004 const AllocaInst *Alloca, 1005 const Value *Other) { 1006 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1007 1008 // It would be tempting to fold away comparisons between allocas and any 1009 // pointer not based on that alloca (e.g. an argument). However, even 1010 // though such pointers cannot alias, they can still compare equal. 1011 // 1012 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1013 // doesn't escape we can argue that it's impossible to guess its value, and we 1014 // can therefore act as if any such guesses are wrong. 1015 // 1016 // The code below checks that the alloca doesn't escape, and that it's only 1017 // used in a comparison once (the current instruction). The 1018 // single-comparison-use condition ensures that we're trivially folding all 1019 // comparisons against the alloca consistently, and avoids the risk of 1020 // erroneously folding a comparison of the pointer with itself. 1021 1022 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1023 1024 SmallVector<const Use *, 32> Worklist; 1025 for (const Use &U : Alloca->uses()) { 1026 if (Worklist.size() >= MaxIter) 1027 return nullptr; 1028 Worklist.push_back(&U); 1029 } 1030 1031 unsigned NumCmps = 0; 1032 while (!Worklist.empty()) { 1033 assert(Worklist.size() <= MaxIter); 1034 const Use *U = Worklist.pop_back_val(); 1035 const Value *V = U->getUser(); 1036 --MaxIter; 1037 1038 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1039 isa<SelectInst>(V)) { 1040 // Track the uses. 1041 } else if (isa<LoadInst>(V)) { 1042 // Loading from the pointer doesn't escape it. 1043 continue; 1044 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1045 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1046 if (SI->getValueOperand() == U->get()) 1047 return nullptr; 1048 continue; 1049 } else if (isa<ICmpInst>(V)) { 1050 if (NumCmps++) 1051 return nullptr; // Found more than one cmp. 1052 continue; 1053 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1054 switch (Intrin->getIntrinsicID()) { 1055 // These intrinsics don't escape or compare the pointer. Memset is safe 1056 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1057 // we don't allow stores, so src cannot point to V. 1058 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1059 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1060 continue; 1061 default: 1062 return nullptr; 1063 } 1064 } else { 1065 return nullptr; 1066 } 1067 for (const Use &U : V->uses()) { 1068 if (Worklist.size() >= MaxIter) 1069 return nullptr; 1070 Worklist.push_back(&U); 1071 } 1072 } 1073 1074 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1075 return replaceInstUsesWith( 1076 ICI, 1077 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1078 } 1079 1080 /// Fold "icmp pred (X+C), X". 1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1082 ICmpInst::Predicate Pred) { 1083 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1084 // so the values can never be equal. Similarly for all other "or equals" 1085 // operators. 1086 assert(!!C && "C should not be zero!"); 1087 1088 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1089 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1090 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1091 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1092 Constant *R = ConstantInt::get(X->getType(), 1093 APInt::getMaxValue(C.getBitWidth()) - C); 1094 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1095 } 1096 1097 // (X+1) >u X --> X <u (0-1) --> X != 255 1098 // (X+2) >u X --> X <u (0-2) --> X <u 254 1099 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1100 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1101 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1102 ConstantInt::get(X->getType(), -C)); 1103 1104 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1105 1106 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1107 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1108 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1109 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1110 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1111 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1112 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1113 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1114 ConstantInt::get(X->getType(), SMax - C)); 1115 1116 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1117 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1118 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1119 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1120 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1121 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1122 1123 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1124 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1125 ConstantInt::get(X->getType(), SMax - (C - 1))); 1126 } 1127 1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1129 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1132 const APInt &AP1, 1133 const APInt &AP2) { 1134 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1135 1136 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1137 if (I.getPredicate() == I.ICMP_NE) 1138 Pred = CmpInst::getInversePredicate(Pred); 1139 return new ICmpInst(Pred, LHS, RHS); 1140 }; 1141 1142 // Don't bother doing any work for cases which InstSimplify handles. 1143 if (AP2.isZero()) 1144 return nullptr; 1145 1146 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1147 if (IsAShr) { 1148 if (AP2.isAllOnes()) 1149 return nullptr; 1150 if (AP2.isNegative() != AP1.isNegative()) 1151 return nullptr; 1152 if (AP2.sgt(AP1)) 1153 return nullptr; 1154 } 1155 1156 if (!AP1) 1157 // 'A' must be large enough to shift out the highest set bit. 1158 return getICmp(I.ICMP_UGT, A, 1159 ConstantInt::get(A->getType(), AP2.logBase2())); 1160 1161 if (AP1 == AP2) 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1163 1164 int Shift; 1165 if (IsAShr && AP1.isNegative()) 1166 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1167 else 1168 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1169 1170 if (Shift > 0) { 1171 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1172 // There are multiple solutions if we are comparing against -1 and the LHS 1173 // of the ashr is not a power of two. 1174 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1175 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1176 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1177 } else if (AP1 == AP2.lshr(Shift)) { 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } 1180 } 1181 1182 // Shifting const2 will never be equal to const1. 1183 // FIXME: This should always be handled by InstSimplify? 1184 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1185 return replaceInstUsesWith(I, TorF); 1186 } 1187 1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1191 const APInt &AP1, 1192 const APInt &AP2) { 1193 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1194 1195 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1196 if (I.getPredicate() == I.ICMP_NE) 1197 Pred = CmpInst::getInversePredicate(Pred); 1198 return new ICmpInst(Pred, LHS, RHS); 1199 }; 1200 1201 // Don't bother doing any work for cases which InstSimplify handles. 1202 if (AP2.isZero()) 1203 return nullptr; 1204 1205 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1206 1207 if (!AP1 && AP2TrailingZeros != 0) 1208 return getICmp( 1209 I.ICMP_UGE, A, 1210 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1211 1212 if (AP1 == AP2) 1213 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1214 1215 // Get the distance between the lowest bits that are set. 1216 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1217 1218 if (Shift > 0 && AP2.shl(Shift) == AP1) 1219 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1220 1221 // Shifting const2 will never be equal to const1. 1222 // FIXME: This should always be handled by InstSimplify? 1223 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1224 return replaceInstUsesWith(I, TorF); 1225 } 1226 1227 /// The caller has matched a pattern of the form: 1228 /// I = icmp ugt (add (add A, B), CI2), CI1 1229 /// If this is of the form: 1230 /// sum = a + b 1231 /// if (sum+128 >u 255) 1232 /// Then replace it with llvm.sadd.with.overflow.i8. 1233 /// 1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1235 ConstantInt *CI2, ConstantInt *CI1, 1236 InstCombinerImpl &IC) { 1237 // The transformation we're trying to do here is to transform this into an 1238 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1239 // with a narrower add, and discard the add-with-constant that is part of the 1240 // range check (if we can't eliminate it, this isn't profitable). 1241 1242 // In order to eliminate the add-with-constant, the compare can be its only 1243 // use. 1244 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1245 if (!AddWithCst->hasOneUse()) 1246 return nullptr; 1247 1248 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1249 if (!CI2->getValue().isPowerOf2()) 1250 return nullptr; 1251 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1252 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1253 return nullptr; 1254 1255 // The width of the new add formed is 1 more than the bias. 1256 ++NewWidth; 1257 1258 // Check to see that CI1 is an all-ones value with NewWidth bits. 1259 if (CI1->getBitWidth() == NewWidth || 1260 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1261 return nullptr; 1262 1263 // This is only really a signed overflow check if the inputs have been 1264 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1265 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1266 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1267 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1268 return nullptr; 1269 1270 // In order to replace the original add with a narrower 1271 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1272 // and truncates that discard the high bits of the add. Verify that this is 1273 // the case. 1274 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1275 for (User *U : OrigAdd->users()) { 1276 if (U == AddWithCst) 1277 continue; 1278 1279 // Only accept truncates for now. We would really like a nice recursive 1280 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1281 // chain to see which bits of a value are actually demanded. If the 1282 // original add had another add which was then immediately truncated, we 1283 // could still do the transformation. 1284 TruncInst *TI = dyn_cast<TruncInst>(U); 1285 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1286 return nullptr; 1287 } 1288 1289 // If the pattern matches, truncate the inputs to the narrower type and 1290 // use the sadd_with_overflow intrinsic to efficiently compute both the 1291 // result and the overflow bit. 1292 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1293 Function *F = Intrinsic::getDeclaration( 1294 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1295 1296 InstCombiner::BuilderTy &Builder = IC.Builder; 1297 1298 // Put the new code above the original add, in case there are any uses of the 1299 // add between the add and the compare. 1300 Builder.SetInsertPoint(OrigAdd); 1301 1302 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1303 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1304 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1305 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1306 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1307 1308 // The inner add was the result of the narrow add, zero extended to the 1309 // wider type. Replace it with the result computed by the intrinsic. 1310 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1311 IC.eraseInstFromFunction(*OrigAdd); 1312 1313 // The original icmp gets replaced with the overflow value. 1314 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1315 } 1316 1317 /// If we have: 1318 /// icmp eq/ne (urem/srem %x, %y), 0 1319 /// iff %y is a power-of-two, we can replace this with a bit test: 1320 /// icmp eq/ne (and %x, (add %y, -1)), 0 1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1322 // This fold is only valid for equality predicates. 1323 if (!I.isEquality()) 1324 return nullptr; 1325 ICmpInst::Predicate Pred; 1326 Value *X, *Y, *Zero; 1327 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1328 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1329 return nullptr; 1330 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1331 return nullptr; 1332 // This may increase instruction count, we don't enforce that Y is a constant. 1333 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1334 Value *Masked = Builder.CreateAnd(X, Mask); 1335 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1336 } 1337 1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1339 /// by one-less-than-bitwidth into a sign test on the original value. 1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1341 Instruction *Val; 1342 ICmpInst::Predicate Pred; 1343 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1344 return nullptr; 1345 1346 Value *X; 1347 Type *XTy; 1348 1349 Constant *C; 1350 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1351 XTy = X->getType(); 1352 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1353 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1354 APInt(XBitWidth, XBitWidth - 1)))) 1355 return nullptr; 1356 } else if (isa<BinaryOperator>(Val) && 1357 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1358 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1359 /*AnalyzeForSignBitExtraction=*/true))) { 1360 XTy = X->getType(); 1361 } else 1362 return nullptr; 1363 1364 return ICmpInst::Create(Instruction::ICmp, 1365 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1366 : ICmpInst::ICMP_SLT, 1367 X, ConstantInt::getNullValue(XTy)); 1368 } 1369 1370 // Handle icmp pred X, 0 1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1372 CmpInst::Predicate Pred = Cmp.getPredicate(); 1373 if (!match(Cmp.getOperand(1), m_Zero())) 1374 return nullptr; 1375 1376 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1377 if (Pred == ICmpInst::ICMP_SGT) { 1378 Value *A, *B; 1379 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1380 if (SPR.Flavor == SPF_SMIN) { 1381 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1382 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1383 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1384 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1385 } 1386 } 1387 1388 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1389 return New; 1390 1391 // Given: 1392 // icmp eq/ne (urem %x, %y), 0 1393 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1394 // icmp eq/ne %x, 0 1395 Value *X, *Y; 1396 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1397 ICmpInst::isEquality(Pred)) { 1398 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1399 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1400 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1401 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Fold icmp Pred X, C. 1408 /// TODO: This code structure does not make sense. The saturating add fold 1409 /// should be moved to some other helper and extended as noted below (it is also 1410 /// possible that code has been made unnecessary - do we canonicalize IR to 1411 /// overflow/saturating intrinsics or not?). 1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1413 // Match the following pattern, which is a common idiom when writing 1414 // overflow-safe integer arithmetic functions. The source performs an addition 1415 // in wider type and explicitly checks for overflow using comparisons against 1416 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1417 // 1418 // TODO: This could probably be generalized to handle other overflow-safe 1419 // operations if we worked out the formulas to compute the appropriate magic 1420 // constants. 1421 // 1422 // sum = a + b 1423 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1424 CmpInst::Predicate Pred = Cmp.getPredicate(); 1425 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1426 Value *A, *B; 1427 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1428 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1429 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1430 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1431 return Res; 1432 1433 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1434 Constant *C = dyn_cast<Constant>(Op1); 1435 if (!C || C->canTrap()) 1436 return nullptr; 1437 1438 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1439 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1440 Type *Ty = Cmp.getType(); 1441 Builder.SetInsertPoint(Phi); 1442 PHINode *NewPhi = 1443 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1444 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1445 auto *Input = 1446 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1447 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1448 NewPhi->addIncoming(BoolInput, Predecessor); 1449 } 1450 NewPhi->takeName(&Cmp); 1451 return replaceInstUsesWith(Cmp, NewPhi); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 // Avoid an infinite loop with min/max canonicalization. 1519 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1520 if (Cmp.hasOneUse() && 1521 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1522 return nullptr; 1523 1524 if (const APInt *EqC = Intersection.getSingleElement()) 1525 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1526 if (const APInt *NeC = Difference.getSingleElement()) 1527 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1528 } 1529 1530 return nullptr; 1531 } 1532 1533 /// Fold icmp (trunc X, Y), C. 1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1535 TruncInst *Trunc, 1536 const APInt &C) { 1537 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1538 Value *X = Trunc->getOperand(0); 1539 if (C.isOne() && C.getBitWidth() > 1) { 1540 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1541 Value *V = nullptr; 1542 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1543 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1544 ConstantInt::get(V->getType(), 1)); 1545 } 1546 1547 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1548 SrcBits = X->getType()->getScalarSizeInBits(); 1549 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1550 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1551 // of the high bits truncated out of x are known. 1552 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1553 1554 // If all the high bits are known, we can do this xform. 1555 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1556 // Pull in the high bits from known-ones set. 1557 APInt NewRHS = C.zext(SrcBits); 1558 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1559 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1560 } 1561 } 1562 1563 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1564 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1566 Value *ShOp; 1567 const APInt *ShAmtC; 1568 bool TrueIfSigned; 1569 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1570 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1571 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1572 return TrueIfSigned 1573 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1574 ConstantInt::getNullValue(X->getType())) 1575 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1576 ConstantInt::getAllOnesValue(X->getType())); 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (xor X, Y), C. 1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1584 BinaryOperator *Xor, 1585 const APInt &C) { 1586 Value *X = Xor->getOperand(0); 1587 Value *Y = Xor->getOperand(1); 1588 const APInt *XorC; 1589 if (!match(Y, m_APInt(XorC))) 1590 return nullptr; 1591 1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1593 // fold the xor. 1594 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1595 bool TrueIfSigned = false; 1596 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1597 1598 // If the sign bit of the XorCst is not set, there is no change to 1599 // the operation, just stop using the Xor. 1600 if (!XorC->isNegative()) 1601 return replaceOperand(Cmp, 0, X); 1602 1603 // Emit the opposite comparison. 1604 if (TrueIfSigned) 1605 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1606 ConstantInt::getAllOnesValue(X->getType())); 1607 else 1608 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1609 ConstantInt::getNullValue(X->getType())); 1610 } 1611 1612 if (Xor->hasOneUse()) { 1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1614 if (!Cmp.isEquality() && XorC->isSignMask()) { 1615 Pred = Cmp.getFlippedSignednessPredicate(); 1616 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1617 } 1618 1619 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1620 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1621 Pred = Cmp.getFlippedSignednessPredicate(); 1622 Pred = Cmp.getSwappedPredicate(Pred); 1623 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1624 } 1625 } 1626 1627 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1628 if (Pred == ICmpInst::ICMP_UGT) { 1629 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1630 if (*XorC == ~C && (C + 1).isPowerOf2()) 1631 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1632 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1633 if (*XorC == C && (C + 1).isPowerOf2()) 1634 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1635 } 1636 if (Pred == ICmpInst::ICMP_ULT) { 1637 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1638 if (*XorC == -C && C.isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1640 ConstantInt::get(X->getType(), ~C)); 1641 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1642 if (*XorC == C && (-C).isPowerOf2()) 1643 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1644 ConstantInt::get(X->getType(), ~C)); 1645 } 1646 return nullptr; 1647 } 1648 1649 /// Fold icmp (and (sh X, Y), C2), C1. 1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1651 BinaryOperator *And, 1652 const APInt &C1, 1653 const APInt &C2) { 1654 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1655 if (!Shift || !Shift->isShift()) 1656 return nullptr; 1657 1658 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1659 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1660 // code produced by the clang front-end, for bitfield access. 1661 // This seemingly simple opportunity to fold away a shift turns out to be 1662 // rather complicated. See PR17827 for details. 1663 unsigned ShiftOpcode = Shift->getOpcode(); 1664 bool IsShl = ShiftOpcode == Instruction::Shl; 1665 const APInt *C3; 1666 if (match(Shift->getOperand(1), m_APInt(C3))) { 1667 APInt NewAndCst, NewCmpCst; 1668 bool AnyCmpCstBitsShiftedOut; 1669 if (ShiftOpcode == Instruction::Shl) { 1670 // For a left shift, we can fold if the comparison is not signed. We can 1671 // also fold a signed comparison if the mask value and comparison value 1672 // are not negative. These constraints may not be obvious, but we can 1673 // prove that they are correct using an SMT solver. 1674 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1675 return nullptr; 1676 1677 NewCmpCst = C1.lshr(*C3); 1678 NewAndCst = C2.lshr(*C3); 1679 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1680 } else if (ShiftOpcode == Instruction::LShr) { 1681 // For a logical right shift, we can fold if the comparison is not signed. 1682 // We can also fold a signed comparison if the shifted mask value and the 1683 // shifted comparison value are not negative. These constraints may not be 1684 // obvious, but we can prove that they are correct using an SMT solver. 1685 NewCmpCst = C1.shl(*C3); 1686 NewAndCst = C2.shl(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1688 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1689 return nullptr; 1690 } else { 1691 // For an arithmetic shift, check that both constants don't use (in a 1692 // signed sense) the top bits being shifted out. 1693 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1697 if (NewAndCst.ashr(*C3) != C2) 1698 return nullptr; 1699 } 1700 1701 if (AnyCmpCstBitsShiftedOut) { 1702 // If we shifted bits out, the fold is not going to work out. As a 1703 // special case, check to see if this means that the result is always 1704 // true or false now. 1705 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1706 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1709 } else { 1710 Value *NewAnd = Builder.CreateAnd( 1711 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1712 return new ICmpInst(Cmp.getPredicate(), 1713 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1714 } 1715 } 1716 1717 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1718 // preferable because it allows the C2 << Y expression to be hoisted out of a 1719 // loop if Y is invariant and X is not. 1720 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1721 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1722 // Compute C2 << Y. 1723 Value *NewShift = 1724 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1725 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1726 1727 // Compute X & (C2 << Y). 1728 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1729 return replaceOperand(Cmp, 0, NewAnd); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Fold icmp (and X, C2), C1. 1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1737 BinaryOperator *And, 1738 const APInt &C1) { 1739 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1740 1741 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1742 // TODO: We canonicalize to the longer form for scalars because we have 1743 // better analysis/folds for icmp, and codegen may be better with icmp. 1744 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1745 match(And->getOperand(1), m_One())) 1746 return new TruncInst(And->getOperand(0), Cmp.getType()); 1747 1748 const APInt *C2; 1749 Value *X; 1750 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1751 return nullptr; 1752 1753 // Don't perform the following transforms if the AND has multiple uses 1754 if (!And->hasOneUse()) 1755 return nullptr; 1756 1757 if (Cmp.isEquality() && C1.isZero()) { 1758 // Restrict this fold to single-use 'and' (PR10267). 1759 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1760 if (C2->isSignMask()) { 1761 Constant *Zero = Constant::getNullValue(X->getType()); 1762 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1763 return new ICmpInst(NewPred, X, Zero); 1764 } 1765 1766 // Restrict this fold only for single-use 'and' (PR10267). 1767 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1768 if ((~(*C2) + 1).isPowerOf2()) { 1769 Constant *NegBOC = 1770 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1772 return new ICmpInst(NewPred, X, NegBOC); 1773 } 1774 } 1775 1776 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1777 // the input width without changing the value produced, eliminate the cast: 1778 // 1779 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1780 // 1781 // We can do this transformation if the constants do not have their sign bits 1782 // set or if it is an equality comparison. Extending a relational comparison 1783 // when we're checking the sign bit would not work. 1784 Value *W; 1785 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1786 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1787 // TODO: Is this a good transform for vectors? Wider types may reduce 1788 // throughput. Should this transform be limited (even for scalars) by using 1789 // shouldChangeType()? 1790 if (!Cmp.getType()->isVectorTy()) { 1791 Type *WideType = W->getType(); 1792 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1793 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1794 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1795 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1796 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1797 } 1798 } 1799 1800 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1801 return I; 1802 1803 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1804 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1805 // 1806 // iff pred isn't signed 1807 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1808 match(And->getOperand(1), m_One())) { 1809 Constant *One = cast<Constant>(And->getOperand(1)); 1810 Value *Or = And->getOperand(0); 1811 Value *A, *B, *LShr; 1812 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1813 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1814 unsigned UsesRemoved = 0; 1815 if (And->hasOneUse()) 1816 ++UsesRemoved; 1817 if (Or->hasOneUse()) 1818 ++UsesRemoved; 1819 if (LShr->hasOneUse()) 1820 ++UsesRemoved; 1821 1822 // Compute A & ((1 << B) | 1) 1823 Value *NewOr = nullptr; 1824 if (auto *C = dyn_cast<Constant>(B)) { 1825 if (UsesRemoved >= 1) 1826 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1827 } else { 1828 if (UsesRemoved >= 3) 1829 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1830 /*HasNUW=*/true), 1831 One, Or->getName()); 1832 } 1833 if (NewOr) { 1834 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1835 return replaceOperand(Cmp, 0, NewAnd); 1836 } 1837 } 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 /// Fold icmp (and X, Y), C. 1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1845 BinaryOperator *And, 1846 const APInt &C) { 1847 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1848 return I; 1849 1850 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1851 bool TrueIfNeg; 1852 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1853 // ((X - 1) & ~X) < 0 --> X == 0 1854 // ((X - 1) & ~X) >= 0 --> X != 0 1855 Value *X; 1856 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1857 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1858 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1859 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1860 } 1861 } 1862 1863 // TODO: These all require that Y is constant too, so refactor with the above. 1864 1865 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1866 Value *X = And->getOperand(0); 1867 Value *Y = And->getOperand(1); 1868 if (auto *LI = dyn_cast<LoadInst>(X)) 1869 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1870 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1871 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1872 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1873 ConstantInt *C2 = cast<ConstantInt>(Y); 1874 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1875 return Res; 1876 } 1877 1878 if (!Cmp.isEquality()) 1879 return nullptr; 1880 1881 // X & -C == -C -> X > u ~C 1882 // X & -C != -C -> X <= u ~C 1883 // iff C is a power of 2 1884 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1885 auto NewPred = 1886 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1887 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 /// Fold icmp (or X, Y), C. 1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1895 BinaryOperator *Or, 1896 const APInt &C) { 1897 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1898 if (C.isOne()) { 1899 // icmp slt signum(V) 1 --> icmp slt V, 1 1900 Value *V = nullptr; 1901 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1902 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1903 ConstantInt::get(V->getType(), 1)); 1904 } 1905 1906 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1907 const APInt *MaskC; 1908 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1909 if (*MaskC == C && (C + 1).isPowerOf2()) { 1910 // X | C == C --> X <=u C 1911 // X | C != C --> X >u C 1912 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1913 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1914 return new ICmpInst(Pred, OrOp0, OrOp1); 1915 } 1916 1917 // More general: canonicalize 'equality with set bits mask' to 1918 // 'equality with clear bits mask'. 1919 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1920 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1921 if (Or->hasOneUse()) { 1922 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1923 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1924 return new ICmpInst(Pred, And, NewC); 1925 } 1926 } 1927 1928 // (X | (X-1)) s< 0 --> X s< 1 1929 // (X | (X-1)) s> -1 --> X s> 0 1930 Value *X; 1931 bool TrueIfSigned; 1932 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1933 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1934 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1935 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1936 return new ICmpInst(NewPred, X, NewC); 1937 } 1938 1939 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1940 return nullptr; 1941 1942 Value *P, *Q; 1943 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1944 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1945 // -> and (icmp eq P, null), (icmp eq Q, null). 1946 Value *CmpP = 1947 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1948 Value *CmpQ = 1949 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1950 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1951 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1952 } 1953 1954 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1955 // a shorter form that has more potential to be folded even further. 1956 Value *X1, *X2, *X3, *X4; 1957 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1958 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1959 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1960 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1961 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1962 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1963 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1964 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1965 } 1966 1967 return nullptr; 1968 } 1969 1970 /// Fold icmp (mul X, Y), C. 1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1972 BinaryOperator *Mul, 1973 const APInt &C) { 1974 const APInt *MulC; 1975 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1976 return nullptr; 1977 1978 // If this is a test of the sign bit and the multiply is sign-preserving with 1979 // a constant operand, use the multiply LHS operand instead. 1980 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1981 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1982 if (MulC->isNegative()) 1983 Pred = ICmpInst::getSwappedPredicate(Pred); 1984 return new ICmpInst(Pred, Mul->getOperand(0), 1985 Constant::getNullValue(Mul->getType())); 1986 } 1987 1988 // If the multiply does not wrap, try to divide the compare constant by the 1989 // multiplication factor. 1990 if (Cmp.isEquality() && !MulC->isZero()) { 1991 // (mul nsw X, MulC) == C --> X == C /s MulC 1992 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1993 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1994 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1995 } 1996 // (mul nuw X, MulC) == C --> X == C /u MulC 1997 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1998 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1999 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2000 } 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 /// Fold icmp (shl 1, Y), C. 2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2008 const APInt &C) { 2009 Value *Y; 2010 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2011 return nullptr; 2012 2013 Type *ShiftType = Shl->getType(); 2014 unsigned TypeBits = C.getBitWidth(); 2015 bool CIsPowerOf2 = C.isPowerOf2(); 2016 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2017 if (Cmp.isUnsigned()) { 2018 // (1 << Y) pred C -> Y pred Log2(C) 2019 if (!CIsPowerOf2) { 2020 // (1 << Y) < 30 -> Y <= 4 2021 // (1 << Y) <= 30 -> Y <= 4 2022 // (1 << Y) >= 30 -> Y > 4 2023 // (1 << Y) > 30 -> Y > 4 2024 if (Pred == ICmpInst::ICMP_ULT) 2025 Pred = ICmpInst::ICMP_ULE; 2026 else if (Pred == ICmpInst::ICMP_UGE) 2027 Pred = ICmpInst::ICMP_UGT; 2028 } 2029 2030 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2031 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2032 unsigned CLog2 = C.logBase2(); 2033 if (CLog2 == TypeBits - 1) { 2034 if (Pred == ICmpInst::ICMP_UGE) 2035 Pred = ICmpInst::ICMP_EQ; 2036 else if (Pred == ICmpInst::ICMP_ULT) 2037 Pred = ICmpInst::ICMP_NE; 2038 } 2039 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2040 } else if (Cmp.isSigned()) { 2041 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2042 if (C.isAllOnes()) { 2043 // (1 << Y) <= -1 -> Y == 31 2044 if (Pred == ICmpInst::ICMP_SLE) 2045 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2046 2047 // (1 << Y) > -1 -> Y != 31 2048 if (Pred == ICmpInst::ICMP_SGT) 2049 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2050 } else if (!C) { 2051 // (1 << Y) < 0 -> Y == 31 2052 // (1 << Y) <= 0 -> Y == 31 2053 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2054 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2055 2056 // (1 << Y) >= 0 -> Y != 31 2057 // (1 << Y) > 0 -> Y != 31 2058 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2059 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2060 } 2061 } else if (Cmp.isEquality() && CIsPowerOf2) { 2062 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2063 } 2064 2065 return nullptr; 2066 } 2067 2068 /// Fold icmp (shl X, Y), C. 2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2070 BinaryOperator *Shl, 2071 const APInt &C) { 2072 const APInt *ShiftVal; 2073 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2074 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2075 2076 const APInt *ShiftAmt; 2077 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2078 return foldICmpShlOne(Cmp, Shl, C); 2079 2080 // Check that the shift amount is in range. If not, don't perform undefined 2081 // shifts. When the shift is visited, it will be simplified. 2082 unsigned TypeBits = C.getBitWidth(); 2083 if (ShiftAmt->uge(TypeBits)) 2084 return nullptr; 2085 2086 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2087 Value *X = Shl->getOperand(0); 2088 Type *ShType = Shl->getType(); 2089 2090 // NSW guarantees that we are only shifting out sign bits from the high bits, 2091 // so we can ASHR the compare constant without needing a mask and eliminate 2092 // the shift. 2093 if (Shl->hasNoSignedWrap()) { 2094 if (Pred == ICmpInst::ICMP_SGT) { 2095 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2096 APInt ShiftedC = C.ashr(*ShiftAmt); 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2098 } 2099 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2100 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2101 APInt ShiftedC = C.ashr(*ShiftAmt); 2102 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2103 } 2104 if (Pred == ICmpInst::ICMP_SLT) { 2105 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2106 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2107 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2108 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2109 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2110 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2111 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2112 } 2113 // If this is a signed comparison to 0 and the shift is sign preserving, 2114 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2115 // do that if we're sure to not continue on in this function. 2116 if (isSignTest(Pred, C)) 2117 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2118 } 2119 2120 // NUW guarantees that we are only shifting out zero bits from the high bits, 2121 // so we can LSHR the compare constant without needing a mask and eliminate 2122 // the shift. 2123 if (Shl->hasNoUnsignedWrap()) { 2124 if (Pred == ICmpInst::ICMP_UGT) { 2125 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2126 APInt ShiftedC = C.lshr(*ShiftAmt); 2127 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2128 } 2129 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2130 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2131 APInt ShiftedC = C.lshr(*ShiftAmt); 2132 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2133 } 2134 if (Pred == ICmpInst::ICMP_ULT) { 2135 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2136 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2137 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2138 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2139 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2140 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2141 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2142 } 2143 } 2144 2145 if (Cmp.isEquality() && Shl->hasOneUse()) { 2146 // Strength-reduce the shift into an 'and'. 2147 Constant *Mask = ConstantInt::get( 2148 ShType, 2149 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2150 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2151 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2152 return new ICmpInst(Pred, And, LShrC); 2153 } 2154 2155 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2156 bool TrueIfSigned = false; 2157 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2158 // (X << 31) <s 0 --> (X & 1) != 0 2159 Constant *Mask = ConstantInt::get( 2160 ShType, 2161 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2162 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2163 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2164 And, Constant::getNullValue(ShType)); 2165 } 2166 2167 // Simplify 'shl' inequality test into 'and' equality test. 2168 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2169 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2170 if ((C + 1).isPowerOf2() && 2171 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2172 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2173 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2174 : ICmpInst::ICMP_NE, 2175 And, Constant::getNullValue(ShType)); 2176 } 2177 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2178 if (C.isPowerOf2() && 2179 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2180 Value *And = 2181 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2182 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2183 : ICmpInst::ICMP_NE, 2184 And, Constant::getNullValue(ShType)); 2185 } 2186 } 2187 2188 // Transform (icmp pred iM (shl iM %v, N), C) 2189 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2190 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2191 // This enables us to get rid of the shift in favor of a trunc that may be 2192 // free on the target. It has the additional benefit of comparing to a 2193 // smaller constant that may be more target-friendly. 2194 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2195 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2196 DL.isLegalInteger(TypeBits - Amt)) { 2197 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2198 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2199 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2200 Constant *NewC = 2201 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2202 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2203 } 2204 2205 return nullptr; 2206 } 2207 2208 /// Fold icmp ({al}shr X, Y), C. 2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2210 BinaryOperator *Shr, 2211 const APInt &C) { 2212 // An exact shr only shifts out zero bits, so: 2213 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2214 Value *X = Shr->getOperand(0); 2215 CmpInst::Predicate Pred = Cmp.getPredicate(); 2216 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero()) 2217 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2218 2219 const APInt *ShiftVal; 2220 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2221 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2222 2223 const APInt *ShiftAmt; 2224 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2225 return nullptr; 2226 2227 // Check that the shift amount is in range. If not, don't perform undefined 2228 // shifts. When the shift is visited it will be simplified. 2229 unsigned TypeBits = C.getBitWidth(); 2230 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2231 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2232 return nullptr; 2233 2234 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2235 bool IsExact = Shr->isExact(); 2236 Type *ShrTy = Shr->getType(); 2237 // TODO: If we could guarantee that InstSimplify would handle all of the 2238 // constant-value-based preconditions in the folds below, then we could assert 2239 // those conditions rather than checking them. This is difficult because of 2240 // undef/poison (PR34838). 2241 if (IsAShr) { 2242 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2243 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2244 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2245 APInt ShiftedC = C.shl(ShAmtVal); 2246 if (ShiftedC.ashr(ShAmtVal) == C) 2247 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2248 } 2249 if (Pred == CmpInst::ICMP_SGT) { 2250 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2251 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2252 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2253 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2254 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2255 } 2256 2257 // If the compare constant has significant bits above the lowest sign-bit, 2258 // then convert an unsigned cmp to a test of the sign-bit: 2259 // (ashr X, ShiftC) u> C --> X s< 0 2260 // (ashr X, ShiftC) u< C --> X s> -1 2261 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2262 if (Pred == CmpInst::ICMP_UGT) { 2263 return new ICmpInst(CmpInst::ICMP_SLT, X, 2264 ConstantInt::getNullValue(ShrTy)); 2265 } 2266 if (Pred == CmpInst::ICMP_ULT) { 2267 return new ICmpInst(CmpInst::ICMP_SGT, X, 2268 ConstantInt::getAllOnesValue(ShrTy)); 2269 } 2270 } 2271 } else { 2272 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2273 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2274 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2275 APInt ShiftedC = C.shl(ShAmtVal); 2276 if (ShiftedC.lshr(ShAmtVal) == C) 2277 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2278 } 2279 if (Pred == CmpInst::ICMP_UGT) { 2280 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2281 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2282 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2283 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2284 } 2285 } 2286 2287 if (!Cmp.isEquality()) 2288 return nullptr; 2289 2290 // Handle equality comparisons of shift-by-constant. 2291 2292 // If the comparison constant changes with the shift, the comparison cannot 2293 // succeed (bits of the comparison constant cannot match the shifted value). 2294 // This should be known by InstSimplify and already be folded to true/false. 2295 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2296 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2297 "Expected icmp+shr simplify did not occur."); 2298 2299 // If the bits shifted out are known zero, compare the unshifted value: 2300 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2301 if (Shr->isExact()) 2302 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2303 2304 if (C.isZero()) { 2305 // == 0 is u< 1. 2306 if (Pred == CmpInst::ICMP_EQ) 2307 return new ICmpInst(CmpInst::ICMP_ULT, X, 2308 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2309 else 2310 return new ICmpInst(CmpInst::ICMP_UGT, X, 2311 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2312 } 2313 2314 if (Shr->hasOneUse()) { 2315 // Canonicalize the shift into an 'and': 2316 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2317 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2318 Constant *Mask = ConstantInt::get(ShrTy, Val); 2319 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2320 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2321 } 2322 2323 return nullptr; 2324 } 2325 2326 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2327 BinaryOperator *SRem, 2328 const APInt &C) { 2329 // Match an 'is positive' or 'is negative' comparison of remainder by a 2330 // constant power-of-2 value: 2331 // (X % pow2C) sgt/slt 0 2332 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2333 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2334 return nullptr; 2335 2336 // TODO: The one-use check is standard because we do not typically want to 2337 // create longer instruction sequences, but this might be a special-case 2338 // because srem is not good for analysis or codegen. 2339 if (!SRem->hasOneUse()) 2340 return nullptr; 2341 2342 const APInt *DivisorC; 2343 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2344 return nullptr; 2345 2346 // Mask off the sign bit and the modulo bits (low-bits). 2347 Type *Ty = SRem->getType(); 2348 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2349 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2350 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2351 2352 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2353 // bit is set. Example: 2354 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2355 if (Pred == ICmpInst::ICMP_SGT) 2356 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2357 2358 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2359 // bit is set. Example: 2360 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2361 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2362 } 2363 2364 /// Fold icmp (udiv X, Y), C. 2365 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2366 BinaryOperator *UDiv, 2367 const APInt &C) { 2368 const APInt *C2; 2369 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2370 return nullptr; 2371 2372 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2373 2374 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2375 Value *Y = UDiv->getOperand(1); 2376 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2377 assert(!C.isMaxValue() && 2378 "icmp ugt X, UINT_MAX should have been simplified already."); 2379 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2380 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2381 } 2382 2383 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2384 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2385 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2386 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2387 ConstantInt::get(Y->getType(), C2->udiv(C))); 2388 } 2389 2390 return nullptr; 2391 } 2392 2393 /// Fold icmp ({su}div X, Y), C. 2394 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2395 BinaryOperator *Div, 2396 const APInt &C) { 2397 // Fold: icmp pred ([us]div X, C2), C -> range test 2398 // Fold this div into the comparison, producing a range check. 2399 // Determine, based on the divide type, what the range is being 2400 // checked. If there is an overflow on the low or high side, remember 2401 // it, otherwise compute the range [low, hi) bounding the new value. 2402 // See: InsertRangeTest above for the kinds of replacements possible. 2403 const APInt *C2; 2404 if (!match(Div->getOperand(1), m_APInt(C2))) 2405 return nullptr; 2406 2407 // FIXME: If the operand types don't match the type of the divide 2408 // then don't attempt this transform. The code below doesn't have the 2409 // logic to deal with a signed divide and an unsigned compare (and 2410 // vice versa). This is because (x /s C2) <s C produces different 2411 // results than (x /s C2) <u C or (x /u C2) <s C or even 2412 // (x /u C2) <u C. Simply casting the operands and result won't 2413 // work. :( The if statement below tests that condition and bails 2414 // if it finds it. 2415 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2416 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2417 return nullptr; 2418 2419 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2420 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2421 // division-by-constant cases should be present, we can not assert that they 2422 // have happened before we reach this icmp instruction. 2423 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2424 return nullptr; 2425 2426 // Compute Prod = C * C2. We are essentially solving an equation of 2427 // form X / C2 = C. We solve for X by multiplying C2 and C. 2428 // By solving for X, we can turn this into a range check instead of computing 2429 // a divide. 2430 APInt Prod = C * *C2; 2431 2432 // Determine if the product overflows by seeing if the product is not equal to 2433 // the divide. Make sure we do the same kind of divide as in the LHS 2434 // instruction that we're folding. 2435 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2436 2437 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2438 2439 // If the division is known to be exact, then there is no remainder from the 2440 // divide, so the covered range size is unit, otherwise it is the divisor. 2441 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2442 2443 // Figure out the interval that is being checked. For example, a comparison 2444 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2445 // Compute this interval based on the constants involved and the signedness of 2446 // the compare/divide. This computes a half-open interval, keeping track of 2447 // whether either value in the interval overflows. After analysis each 2448 // overflow variable is set to 0 if it's corresponding bound variable is valid 2449 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2450 int LoOverflow = 0, HiOverflow = 0; 2451 APInt LoBound, HiBound; 2452 2453 if (!DivIsSigned) { // udiv 2454 // e.g. X/5 op 3 --> [15, 20) 2455 LoBound = Prod; 2456 HiOverflow = LoOverflow = ProdOV; 2457 if (!HiOverflow) { 2458 // If this is not an exact divide, then many values in the range collapse 2459 // to the same result value. 2460 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2461 } 2462 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2463 if (C.isZero()) { // (X / pos) op 0 2464 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2465 LoBound = -(RangeSize - 1); 2466 HiBound = RangeSize; 2467 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2468 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2469 HiOverflow = LoOverflow = ProdOV; 2470 if (!HiOverflow) 2471 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2472 } else { // (X / pos) op neg 2473 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2474 HiBound = Prod + 1; 2475 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2476 if (!LoOverflow) { 2477 APInt DivNeg = -RangeSize; 2478 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2479 } 2480 } 2481 } else if (C2->isNegative()) { // Divisor is < 0. 2482 if (Div->isExact()) 2483 RangeSize.negate(); 2484 if (C.isZero()) { // (X / neg) op 0 2485 // e.g. X/-5 op 0 --> [-4, 5) 2486 LoBound = RangeSize + 1; 2487 HiBound = -RangeSize; 2488 if (HiBound == *C2) { // -INTMIN = INTMIN 2489 HiOverflow = 1; // [INTMIN+1, overflow) 2490 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2491 } 2492 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2493 // e.g. X/-5 op 3 --> [-19, -14) 2494 HiBound = Prod + 1; 2495 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2496 if (!LoOverflow) 2497 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2498 } else { // (X / neg) op neg 2499 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2500 LoOverflow = HiOverflow = ProdOV; 2501 if (!HiOverflow) 2502 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2503 } 2504 2505 // Dividing by a negative swaps the condition. LT <-> GT 2506 Pred = ICmpInst::getSwappedPredicate(Pred); 2507 } 2508 2509 Value *X = Div->getOperand(0); 2510 switch (Pred) { 2511 default: llvm_unreachable("Unhandled icmp opcode!"); 2512 case ICmpInst::ICMP_EQ: 2513 if (LoOverflow && HiOverflow) 2514 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2515 if (HiOverflow) 2516 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2517 ICmpInst::ICMP_UGE, X, 2518 ConstantInt::get(Div->getType(), LoBound)); 2519 if (LoOverflow) 2520 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2521 ICmpInst::ICMP_ULT, X, 2522 ConstantInt::get(Div->getType(), HiBound)); 2523 return replaceInstUsesWith( 2524 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2525 case ICmpInst::ICMP_NE: 2526 if (LoOverflow && HiOverflow) 2527 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2528 if (HiOverflow) 2529 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2530 ICmpInst::ICMP_ULT, X, 2531 ConstantInt::get(Div->getType(), LoBound)); 2532 if (LoOverflow) 2533 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2534 ICmpInst::ICMP_UGE, X, 2535 ConstantInt::get(Div->getType(), HiBound)); 2536 return replaceInstUsesWith(Cmp, 2537 insertRangeTest(X, LoBound, HiBound, 2538 DivIsSigned, false)); 2539 case ICmpInst::ICMP_ULT: 2540 case ICmpInst::ICMP_SLT: 2541 if (LoOverflow == +1) // Low bound is greater than input range. 2542 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2543 if (LoOverflow == -1) // Low bound is less than input range. 2544 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2545 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2546 case ICmpInst::ICMP_UGT: 2547 case ICmpInst::ICMP_SGT: 2548 if (HiOverflow == +1) // High bound greater than input range. 2549 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2550 if (HiOverflow == -1) // High bound less than input range. 2551 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2552 if (Pred == ICmpInst::ICMP_UGT) 2553 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2554 ConstantInt::get(Div->getType(), HiBound)); 2555 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2556 ConstantInt::get(Div->getType(), HiBound)); 2557 } 2558 2559 return nullptr; 2560 } 2561 2562 /// Fold icmp (sub X, Y), C. 2563 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2564 BinaryOperator *Sub, 2565 const APInt &C) { 2566 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2567 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2568 Type *Ty = Sub->getType(); 2569 2570 // (SubC - Y) == C) --> Y == (SubC - C) 2571 // (SubC - Y) != C) --> Y != (SubC - C) 2572 Constant *SubC; 2573 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2574 return new ICmpInst(Pred, Y, 2575 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2576 } 2577 2578 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2579 const APInt *C2; 2580 APInt SubResult; 2581 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2582 bool HasNSW = Sub->hasNoSignedWrap(); 2583 bool HasNUW = Sub->hasNoUnsignedWrap(); 2584 if (match(X, m_APInt(C2)) && 2585 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2586 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2587 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2588 2589 // The following transforms are only worth it if the only user of the subtract 2590 // is the icmp. 2591 // TODO: This is an artificial restriction for all of the transforms below 2592 // that only need a single replacement icmp. 2593 if (!Sub->hasOneUse()) 2594 return nullptr; 2595 2596 // X - Y == 0 --> X == Y. 2597 // X - Y != 0 --> X != Y. 2598 if (Cmp.isEquality() && C.isZero()) 2599 return new ICmpInst(Pred, X, Y); 2600 2601 if (Sub->hasNoSignedWrap()) { 2602 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2603 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2604 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2605 2606 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2607 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2608 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2609 2610 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2611 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2612 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2613 2614 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2615 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2616 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2617 } 2618 2619 if (!match(X, m_APInt(C2))) 2620 return nullptr; 2621 2622 // C2 - Y <u C -> (Y | (C - 1)) == C2 2623 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2624 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2625 (*C2 & (C - 1)) == (C - 1)) 2626 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2627 2628 // C2 - Y >u C -> (Y | C) != C2 2629 // iff C2 & C == C and C + 1 is a power of 2 2630 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2631 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2632 2633 // We have handled special cases that reduce. 2634 // Canonicalize any remaining sub to add as: 2635 // (C2 - Y) > C --> (Y + ~C2) < ~C 2636 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2637 HasNUW, HasNSW); 2638 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2639 } 2640 2641 /// Fold icmp (add X, Y), C. 2642 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2643 BinaryOperator *Add, 2644 const APInt &C) { 2645 Value *Y = Add->getOperand(1); 2646 const APInt *C2; 2647 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2648 return nullptr; 2649 2650 // Fold icmp pred (add X, C2), C. 2651 Value *X = Add->getOperand(0); 2652 Type *Ty = Add->getType(); 2653 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2654 2655 // If the add does not wrap, we can always adjust the compare by subtracting 2656 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2657 // are canonicalized to SGT/SLT/UGT/ULT. 2658 if ((Add->hasNoSignedWrap() && 2659 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2660 (Add->hasNoUnsignedWrap() && 2661 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2662 bool Overflow; 2663 APInt NewC = 2664 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2665 // If there is overflow, the result must be true or false. 2666 // TODO: Can we assert there is no overflow because InstSimplify always 2667 // handles those cases? 2668 if (!Overflow) 2669 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2670 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2671 } 2672 2673 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2674 const APInt &Upper = CR.getUpper(); 2675 const APInt &Lower = CR.getLower(); 2676 if (Cmp.isSigned()) { 2677 if (Lower.isSignMask()) 2678 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2679 if (Upper.isSignMask()) 2680 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2681 } else { 2682 if (Lower.isMinValue()) 2683 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2684 if (Upper.isMinValue()) 2685 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2686 } 2687 2688 // This set of folds is intentionally placed after folds that use no-wrapping 2689 // flags because those folds are likely better for later analysis/codegen. 2690 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2691 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2692 2693 // Fold compare with offset to opposite sign compare if it eliminates offset: 2694 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2695 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2696 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2697 2698 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2699 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2700 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2701 2702 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2703 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2704 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2705 2706 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2707 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2708 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2709 2710 if (!Add->hasOneUse()) 2711 return nullptr; 2712 2713 // X+C <u C2 -> (X & -C2) == C 2714 // iff C & (C2-1) == 0 2715 // C2 is a power of 2 2716 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2717 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2718 ConstantExpr::getNeg(cast<Constant>(Y))); 2719 2720 // X+C >u C2 -> (X & ~C2) != C 2721 // iff C & C2 == 0 2722 // C2+1 is a power of 2 2723 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2724 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2725 ConstantExpr::getNeg(cast<Constant>(Y))); 2726 2727 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2728 // to the ult form. 2729 // X+C2 >u C -> X+(C2-C-1) <u ~C 2730 if (Pred == ICmpInst::ICMP_UGT) 2731 return new ICmpInst(ICmpInst::ICMP_ULT, 2732 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2733 ConstantInt::get(Ty, ~C)); 2734 2735 return nullptr; 2736 } 2737 2738 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2739 Value *&RHS, ConstantInt *&Less, 2740 ConstantInt *&Equal, 2741 ConstantInt *&Greater) { 2742 // TODO: Generalize this to work with other comparison idioms or ensure 2743 // they get canonicalized into this form. 2744 2745 // select i1 (a == b), 2746 // i32 Equal, 2747 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2748 // where Equal, Less and Greater are placeholders for any three constants. 2749 ICmpInst::Predicate PredA; 2750 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2751 !ICmpInst::isEquality(PredA)) 2752 return false; 2753 Value *EqualVal = SI->getTrueValue(); 2754 Value *UnequalVal = SI->getFalseValue(); 2755 // We still can get non-canonical predicate here, so canonicalize. 2756 if (PredA == ICmpInst::ICMP_NE) 2757 std::swap(EqualVal, UnequalVal); 2758 if (!match(EqualVal, m_ConstantInt(Equal))) 2759 return false; 2760 ICmpInst::Predicate PredB; 2761 Value *LHS2, *RHS2; 2762 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2763 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2764 return false; 2765 // We can get predicate mismatch here, so canonicalize if possible: 2766 // First, ensure that 'LHS' match. 2767 if (LHS2 != LHS) { 2768 // x sgt y <--> y slt x 2769 std::swap(LHS2, RHS2); 2770 PredB = ICmpInst::getSwappedPredicate(PredB); 2771 } 2772 if (LHS2 != LHS) 2773 return false; 2774 // We also need to canonicalize 'RHS'. 2775 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2776 // x sgt C-1 <--> x sge C <--> not(x slt C) 2777 auto FlippedStrictness = 2778 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2779 PredB, cast<Constant>(RHS2)); 2780 if (!FlippedStrictness) 2781 return false; 2782 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2783 "basic correctness failure"); 2784 RHS2 = FlippedStrictness->second; 2785 // And kind-of perform the result swap. 2786 std::swap(Less, Greater); 2787 PredB = ICmpInst::ICMP_SLT; 2788 } 2789 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2790 } 2791 2792 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2793 SelectInst *Select, 2794 ConstantInt *C) { 2795 2796 assert(C && "Cmp RHS should be a constant int!"); 2797 // If we're testing a constant value against the result of a three way 2798 // comparison, the result can be expressed directly in terms of the 2799 // original values being compared. Note: We could possibly be more 2800 // aggressive here and remove the hasOneUse test. The original select is 2801 // really likely to simplify or sink when we remove a test of the result. 2802 Value *OrigLHS, *OrigRHS; 2803 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2804 if (Cmp.hasOneUse() && 2805 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2806 C3GreaterThan)) { 2807 assert(C1LessThan && C2Equal && C3GreaterThan); 2808 2809 bool TrueWhenLessThan = 2810 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2811 ->isAllOnesValue(); 2812 bool TrueWhenEqual = 2813 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2814 ->isAllOnesValue(); 2815 bool TrueWhenGreaterThan = 2816 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2817 ->isAllOnesValue(); 2818 2819 // This generates the new instruction that will replace the original Cmp 2820 // Instruction. Instead of enumerating the various combinations when 2821 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2822 // false, we rely on chaining of ORs and future passes of InstCombine to 2823 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2824 2825 // When none of the three constants satisfy the predicate for the RHS (C), 2826 // the entire original Cmp can be simplified to a false. 2827 Value *Cond = Builder.getFalse(); 2828 if (TrueWhenLessThan) 2829 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2830 OrigLHS, OrigRHS)); 2831 if (TrueWhenEqual) 2832 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2833 OrigLHS, OrigRHS)); 2834 if (TrueWhenGreaterThan) 2835 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2836 OrigLHS, OrigRHS)); 2837 2838 return replaceInstUsesWith(Cmp, Cond); 2839 } 2840 return nullptr; 2841 } 2842 2843 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2844 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2845 if (!Bitcast) 2846 return nullptr; 2847 2848 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2849 Value *Op1 = Cmp.getOperand(1); 2850 Value *BCSrcOp = Bitcast->getOperand(0); 2851 2852 // Make sure the bitcast doesn't change the number of vector elements. 2853 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2854 Bitcast->getDestTy()->getScalarSizeInBits()) { 2855 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2856 Value *X; 2857 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2858 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2859 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2860 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2861 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2862 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2863 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2864 match(Op1, m_Zero())) 2865 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2866 2867 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2868 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2869 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2870 2871 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2872 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2873 return new ICmpInst(Pred, X, 2874 ConstantInt::getAllOnesValue(X->getType())); 2875 } 2876 2877 // Zero-equality checks are preserved through unsigned floating-point casts: 2878 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2879 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2880 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2881 if (Cmp.isEquality() && match(Op1, m_Zero())) 2882 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2883 2884 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2885 // the FP extend/truncate because that cast does not change the sign-bit. 2886 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2887 // The sign-bit is always the most significant bit in those types. 2888 const APInt *C; 2889 bool TrueIfSigned; 2890 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2891 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2892 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2893 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2894 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2895 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2896 Type *XType = X->getType(); 2897 2898 // We can't currently handle Power style floating point operations here. 2899 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2900 2901 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2902 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2903 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2904 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2905 if (TrueIfSigned) 2906 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2907 ConstantInt::getNullValue(NewType)); 2908 else 2909 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2910 ConstantInt::getAllOnesValue(NewType)); 2911 } 2912 } 2913 } 2914 } 2915 2916 // Test to see if the operands of the icmp are casted versions of other 2917 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2918 if (Bitcast->getType()->isPointerTy() && 2919 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2920 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2921 // so eliminate it as well. 2922 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2923 Op1 = BC2->getOperand(0); 2924 2925 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2926 return new ICmpInst(Pred, BCSrcOp, Op1); 2927 } 2928 2929 const APInt *C; 2930 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2931 !Bitcast->getType()->isIntegerTy() || 2932 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2933 return nullptr; 2934 2935 // If this is checking if all elements of a vector compare are set or not, 2936 // invert the casted vector equality compare and test if all compare 2937 // elements are clear or not. Compare against zero is generally easier for 2938 // analysis and codegen. 2939 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2940 // Example: are all elements equal? --> are zero elements not equal? 2941 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2942 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2943 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2944 Type *ScalarTy = Bitcast->getType(); 2945 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2946 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2947 } 2948 2949 // If this is checking if all elements of an extended vector are clear or not, 2950 // compare in a narrow type to eliminate the extend: 2951 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2952 Value *X; 2953 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2954 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2955 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2956 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2957 Value *NewCast = Builder.CreateBitCast(X, NewType); 2958 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2959 } 2960 } 2961 2962 // Folding: icmp <pred> iN X, C 2963 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2964 // and C is a splat of a K-bit pattern 2965 // and SC is a constant vector = <C', C', C', ..., C'> 2966 // Into: 2967 // %E = extractelement <M x iK> %vec, i32 C' 2968 // icmp <pred> iK %E, trunc(C) 2969 Value *Vec; 2970 ArrayRef<int> Mask; 2971 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2972 // Check whether every element of Mask is the same constant 2973 if (is_splat(Mask)) { 2974 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2975 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2976 if (C->isSplat(EltTy->getBitWidth())) { 2977 // Fold the icmp based on the value of C 2978 // If C is M copies of an iK sized bit pattern, 2979 // then: 2980 // => %E = extractelement <N x iK> %vec, i32 Elem 2981 // icmp <pred> iK %SplatVal, <pattern> 2982 Value *Elem = Builder.getInt32(Mask[0]); 2983 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2984 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2985 return new ICmpInst(Pred, Extract, NewC); 2986 } 2987 } 2988 } 2989 return nullptr; 2990 } 2991 2992 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2993 /// where X is some kind of instruction. 2994 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2995 const APInt *C; 2996 if (!match(Cmp.getOperand(1), m_APInt(C))) 2997 return nullptr; 2998 2999 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3000 switch (BO->getOpcode()) { 3001 case Instruction::Xor: 3002 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3003 return I; 3004 break; 3005 case Instruction::And: 3006 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3007 return I; 3008 break; 3009 case Instruction::Or: 3010 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3011 return I; 3012 break; 3013 case Instruction::Mul: 3014 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3015 return I; 3016 break; 3017 case Instruction::Shl: 3018 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3019 return I; 3020 break; 3021 case Instruction::LShr: 3022 case Instruction::AShr: 3023 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3024 return I; 3025 break; 3026 case Instruction::SRem: 3027 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3028 return I; 3029 break; 3030 case Instruction::UDiv: 3031 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3032 return I; 3033 LLVM_FALLTHROUGH; 3034 case Instruction::SDiv: 3035 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3036 return I; 3037 break; 3038 case Instruction::Sub: 3039 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3040 return I; 3041 break; 3042 case Instruction::Add: 3043 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3044 return I; 3045 break; 3046 default: 3047 break; 3048 } 3049 // TODO: These folds could be refactored to be part of the above calls. 3050 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3051 return I; 3052 } 3053 3054 // Match against CmpInst LHS being instructions other than binary operators. 3055 3056 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3057 // For now, we only support constant integers while folding the 3058 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3059 // similar to the cases handled by binary ops above. 3060 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3061 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3062 return I; 3063 } 3064 3065 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3066 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3067 return I; 3068 } 3069 3070 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3071 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3072 return I; 3073 3074 return nullptr; 3075 } 3076 3077 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3078 /// icmp eq/ne BO, C. 3079 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3080 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3081 // TODO: Some of these folds could work with arbitrary constants, but this 3082 // function is limited to scalar and vector splat constants. 3083 if (!Cmp.isEquality()) 3084 return nullptr; 3085 3086 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3087 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3088 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3089 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3090 3091 switch (BO->getOpcode()) { 3092 case Instruction::SRem: 3093 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3094 if (C.isZero() && BO->hasOneUse()) { 3095 const APInt *BOC; 3096 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3097 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3098 return new ICmpInst(Pred, NewRem, 3099 Constant::getNullValue(BO->getType())); 3100 } 3101 } 3102 break; 3103 case Instruction::Add: { 3104 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3105 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3106 if (BO->hasOneUse()) 3107 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3108 } else if (C.isZero()) { 3109 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3110 // efficiently invertible, or if the add has just this one use. 3111 if (Value *NegVal = dyn_castNegVal(BOp1)) 3112 return new ICmpInst(Pred, BOp0, NegVal); 3113 if (Value *NegVal = dyn_castNegVal(BOp0)) 3114 return new ICmpInst(Pred, NegVal, BOp1); 3115 if (BO->hasOneUse()) { 3116 Value *Neg = Builder.CreateNeg(BOp1); 3117 Neg->takeName(BO); 3118 return new ICmpInst(Pred, BOp0, Neg); 3119 } 3120 } 3121 break; 3122 } 3123 case Instruction::Xor: 3124 if (BO->hasOneUse()) { 3125 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3126 // For the xor case, we can xor two constants together, eliminating 3127 // the explicit xor. 3128 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3129 } else if (C.isZero()) { 3130 // Replace ((xor A, B) != 0) with (A != B) 3131 return new ICmpInst(Pred, BOp0, BOp1); 3132 } 3133 } 3134 break; 3135 case Instruction::Or: { 3136 const APInt *BOC; 3137 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3138 // Comparing if all bits outside of a constant mask are set? 3139 // Replace (X | C) == -1 with (X & ~C) == ~C. 3140 // This removes the -1 constant. 3141 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3142 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3143 return new ICmpInst(Pred, And, NotBOC); 3144 } 3145 break; 3146 } 3147 case Instruction::And: { 3148 const APInt *BOC; 3149 if (match(BOp1, m_APInt(BOC))) { 3150 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3151 if (C == *BOC && C.isPowerOf2()) 3152 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3153 BO, Constant::getNullValue(RHS->getType())); 3154 } 3155 break; 3156 } 3157 case Instruction::UDiv: 3158 if (C.isZero()) { 3159 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3160 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3161 return new ICmpInst(NewPred, BOp1, BOp0); 3162 } 3163 break; 3164 default: 3165 break; 3166 } 3167 return nullptr; 3168 } 3169 3170 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3171 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3172 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3173 Type *Ty = II->getType(); 3174 unsigned BitWidth = C.getBitWidth(); 3175 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3176 3177 switch (II->getIntrinsicID()) { 3178 case Intrinsic::abs: 3179 // abs(A) == 0 -> A == 0 3180 // abs(A) == INT_MIN -> A == INT_MIN 3181 if (C.isZero() || C.isMinSignedValue()) 3182 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3183 break; 3184 3185 case Intrinsic::bswap: 3186 // bswap(A) == C -> A == bswap(C) 3187 return new ICmpInst(Pred, II->getArgOperand(0), 3188 ConstantInt::get(Ty, C.byteSwap())); 3189 3190 case Intrinsic::ctlz: 3191 case Intrinsic::cttz: { 3192 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3193 if (C == BitWidth) 3194 return new ICmpInst(Pred, II->getArgOperand(0), 3195 ConstantInt::getNullValue(Ty)); 3196 3197 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3198 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3199 // Limit to one use to ensure we don't increase instruction count. 3200 unsigned Num = C.getLimitedValue(BitWidth); 3201 if (Num != BitWidth && II->hasOneUse()) { 3202 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3203 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3204 : APInt::getHighBitsSet(BitWidth, Num + 1); 3205 APInt Mask2 = IsTrailing 3206 ? APInt::getOneBitSet(BitWidth, Num) 3207 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3208 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3209 ConstantInt::get(Ty, Mask2)); 3210 } 3211 break; 3212 } 3213 3214 case Intrinsic::ctpop: { 3215 // popcount(A) == 0 -> A == 0 and likewise for != 3216 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3217 bool IsZero = C.isZero(); 3218 if (IsZero || C == BitWidth) 3219 return new ICmpInst(Pred, II->getArgOperand(0), 3220 IsZero ? Constant::getNullValue(Ty) 3221 : Constant::getAllOnesValue(Ty)); 3222 3223 break; 3224 } 3225 3226 case Intrinsic::fshl: 3227 case Intrinsic::fshr: 3228 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3229 // (rot X, ?) == 0/-1 --> X == 0/-1 3230 // TODO: This transform is safe to re-use undef elts in a vector, but 3231 // the constant value passed in by the caller doesn't allow that. 3232 if (C.isZero() || C.isAllOnes()) 3233 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3234 3235 const APInt *RotAmtC; 3236 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3237 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3238 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3239 return new ICmpInst(Pred, II->getArgOperand(0), 3240 II->getIntrinsicID() == Intrinsic::fshl 3241 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3242 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3243 } 3244 break; 3245 3246 case Intrinsic::uadd_sat: { 3247 // uadd.sat(a, b) == 0 -> (a | b) == 0 3248 if (C.isZero()) { 3249 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3250 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3251 } 3252 break; 3253 } 3254 3255 case Intrinsic::usub_sat: { 3256 // usub.sat(a, b) == 0 -> a <= b 3257 if (C.isZero()) { 3258 ICmpInst::Predicate NewPred = 3259 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3260 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3261 } 3262 break; 3263 } 3264 default: 3265 break; 3266 } 3267 3268 return nullptr; 3269 } 3270 3271 /// Fold an icmp with LLVM intrinsics 3272 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3273 assert(Cmp.isEquality()); 3274 3275 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3276 Value *Op0 = Cmp.getOperand(0); 3277 Value *Op1 = Cmp.getOperand(1); 3278 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3279 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3280 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3281 return nullptr; 3282 3283 switch (IIOp0->getIntrinsicID()) { 3284 case Intrinsic::bswap: 3285 case Intrinsic::bitreverse: 3286 // If both operands are byte-swapped or bit-reversed, just compare the 3287 // original values. 3288 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3289 case Intrinsic::fshl: 3290 case Intrinsic::fshr: 3291 // If both operands are rotated by same amount, just compare the 3292 // original values. 3293 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3294 break; 3295 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3296 break; 3297 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3298 break; 3299 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3300 default: 3301 break; 3302 } 3303 3304 return nullptr; 3305 } 3306 3307 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3308 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3309 IntrinsicInst *II, 3310 const APInt &C) { 3311 if (Cmp.isEquality()) 3312 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3313 3314 Type *Ty = II->getType(); 3315 unsigned BitWidth = C.getBitWidth(); 3316 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3317 switch (II->getIntrinsicID()) { 3318 case Intrinsic::ctpop: { 3319 // (ctpop X > BitWidth - 1) --> X == -1 3320 Value *X = II->getArgOperand(0); 3321 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3322 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3323 ConstantInt::getAllOnesValue(Ty)); 3324 // (ctpop X < BitWidth) --> X != -1 3325 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3326 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3327 ConstantInt::getAllOnesValue(Ty)); 3328 break; 3329 } 3330 case Intrinsic::ctlz: { 3331 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3332 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3333 unsigned Num = C.getLimitedValue(); 3334 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3335 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3336 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3337 } 3338 3339 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3340 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3341 unsigned Num = C.getLimitedValue(); 3342 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3343 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3344 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3345 } 3346 break; 3347 } 3348 case Intrinsic::cttz: { 3349 // Limit to one use to ensure we don't increase instruction count. 3350 if (!II->hasOneUse()) 3351 return nullptr; 3352 3353 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3354 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3355 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3356 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3357 Builder.CreateAnd(II->getArgOperand(0), Mask), 3358 ConstantInt::getNullValue(Ty)); 3359 } 3360 3361 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3362 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3363 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3364 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3365 Builder.CreateAnd(II->getArgOperand(0), Mask), 3366 ConstantInt::getNullValue(Ty)); 3367 } 3368 break; 3369 } 3370 default: 3371 break; 3372 } 3373 3374 return nullptr; 3375 } 3376 3377 /// Handle icmp with constant (but not simple integer constant) RHS. 3378 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3379 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3380 Constant *RHSC = dyn_cast<Constant>(Op1); 3381 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3382 if (!RHSC || !LHSI) 3383 return nullptr; 3384 3385 switch (LHSI->getOpcode()) { 3386 case Instruction::GetElementPtr: 3387 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3388 if (RHSC->isNullValue() && 3389 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3390 return new ICmpInst( 3391 I.getPredicate(), LHSI->getOperand(0), 3392 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3393 break; 3394 case Instruction::PHI: 3395 // Only fold icmp into the PHI if the phi and icmp are in the same 3396 // block. If in the same block, we're encouraging jump threading. If 3397 // not, we are just pessimizing the code by making an i1 phi. 3398 if (LHSI->getParent() == I.getParent()) 3399 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3400 return NV; 3401 break; 3402 case Instruction::Select: { 3403 // If either operand of the select is a constant, we can fold the 3404 // comparison into the select arms, which will cause one to be 3405 // constant folded and the select turned into a bitwise or. 3406 Value *Op1 = nullptr, *Op2 = nullptr; 3407 ConstantInt *CI = nullptr; 3408 3409 auto SimplifyOp = [&](Value *V) { 3410 Value *Op = nullptr; 3411 if (Constant *C = dyn_cast<Constant>(V)) { 3412 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3413 } else if (RHSC->isNullValue()) { 3414 // If null is being compared, check if it can be further simplified. 3415 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3416 } 3417 return Op; 3418 }; 3419 Op1 = SimplifyOp(LHSI->getOperand(1)); 3420 if (Op1) 3421 CI = dyn_cast<ConstantInt>(Op1); 3422 3423 Op2 = SimplifyOp(LHSI->getOperand(2)); 3424 if (Op2) 3425 CI = dyn_cast<ConstantInt>(Op2); 3426 3427 // We only want to perform this transformation if it will not lead to 3428 // additional code. This is true if either both sides of the select 3429 // fold to a constant (in which case the icmp is replaced with a select 3430 // which will usually simplify) or this is the only user of the 3431 // select (in which case we are trading a select+icmp for a simpler 3432 // select+icmp) or all uses of the select can be replaced based on 3433 // dominance information ("Global cases"). 3434 bool Transform = false; 3435 if (Op1 && Op2) 3436 Transform = true; 3437 else if (Op1 || Op2) { 3438 // Local case 3439 if (LHSI->hasOneUse()) 3440 Transform = true; 3441 // Global cases 3442 else if (CI && !CI->isZero()) 3443 // When Op1 is constant try replacing select with second operand. 3444 // Otherwise Op2 is constant and try replacing select with first 3445 // operand. 3446 Transform = 3447 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3448 } 3449 if (Transform) { 3450 if (!Op1) 3451 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3452 I.getName()); 3453 if (!Op2) 3454 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3455 I.getName()); 3456 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3457 } 3458 break; 3459 } 3460 case Instruction::IntToPtr: 3461 // icmp pred inttoptr(X), null -> icmp pred X, 0 3462 if (RHSC->isNullValue() && 3463 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3464 return new ICmpInst( 3465 I.getPredicate(), LHSI->getOperand(0), 3466 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3467 break; 3468 3469 case Instruction::Load: 3470 // Try to optimize things like "A[i] > 4" to index computations. 3471 if (GetElementPtrInst *GEP = 3472 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3473 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3474 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3475 !cast<LoadInst>(LHSI)->isVolatile()) 3476 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3477 return Res; 3478 } 3479 break; 3480 } 3481 3482 return nullptr; 3483 } 3484 3485 /// Some comparisons can be simplified. 3486 /// In this case, we are looking for comparisons that look like 3487 /// a check for a lossy truncation. 3488 /// Folds: 3489 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3490 /// Where Mask is some pattern that produces all-ones in low bits: 3491 /// (-1 >> y) 3492 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3493 /// ~(-1 << y) 3494 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3495 /// The Mask can be a constant, too. 3496 /// For some predicates, the operands are commutative. 3497 /// For others, x can only be on a specific side. 3498 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3499 InstCombiner::BuilderTy &Builder) { 3500 ICmpInst::Predicate SrcPred; 3501 Value *X, *M, *Y; 3502 auto m_VariableMask = m_CombineOr( 3503 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3504 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3505 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3506 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3507 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3508 if (!match(&I, m_c_ICmp(SrcPred, 3509 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3510 m_Deferred(X)))) 3511 return nullptr; 3512 3513 ICmpInst::Predicate DstPred; 3514 switch (SrcPred) { 3515 case ICmpInst::Predicate::ICMP_EQ: 3516 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3517 DstPred = ICmpInst::Predicate::ICMP_ULE; 3518 break; 3519 case ICmpInst::Predicate::ICMP_NE: 3520 // x & (-1 >> y) != x -> x u> (-1 >> y) 3521 DstPred = ICmpInst::Predicate::ICMP_UGT; 3522 break; 3523 case ICmpInst::Predicate::ICMP_ULT: 3524 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3525 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3526 DstPred = ICmpInst::Predicate::ICMP_UGT; 3527 break; 3528 case ICmpInst::Predicate::ICMP_UGE: 3529 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3530 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3531 DstPred = ICmpInst::Predicate::ICMP_ULE; 3532 break; 3533 case ICmpInst::Predicate::ICMP_SLT: 3534 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3535 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3536 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3537 return nullptr; 3538 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3539 return nullptr; 3540 DstPred = ICmpInst::Predicate::ICMP_SGT; 3541 break; 3542 case ICmpInst::Predicate::ICMP_SGE: 3543 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3544 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3545 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3546 return nullptr; 3547 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3548 return nullptr; 3549 DstPred = ICmpInst::Predicate::ICMP_SLE; 3550 break; 3551 case ICmpInst::Predicate::ICMP_SGT: 3552 case ICmpInst::Predicate::ICMP_SLE: 3553 return nullptr; 3554 case ICmpInst::Predicate::ICMP_UGT: 3555 case ICmpInst::Predicate::ICMP_ULE: 3556 llvm_unreachable("Instsimplify took care of commut. variant"); 3557 break; 3558 default: 3559 llvm_unreachable("All possible folds are handled."); 3560 } 3561 3562 // The mask value may be a vector constant that has undefined elements. But it 3563 // may not be safe to propagate those undefs into the new compare, so replace 3564 // those elements by copying an existing, defined, and safe scalar constant. 3565 Type *OpTy = M->getType(); 3566 auto *VecC = dyn_cast<Constant>(M); 3567 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3568 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3569 Constant *SafeReplacementConstant = nullptr; 3570 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3571 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3572 SafeReplacementConstant = VecC->getAggregateElement(i); 3573 break; 3574 } 3575 } 3576 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3577 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3578 } 3579 3580 return Builder.CreateICmp(DstPred, X, M); 3581 } 3582 3583 /// Some comparisons can be simplified. 3584 /// In this case, we are looking for comparisons that look like 3585 /// a check for a lossy signed truncation. 3586 /// Folds: (MaskedBits is a constant.) 3587 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3588 /// Into: 3589 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3590 /// Where KeptBits = bitwidth(%x) - MaskedBits 3591 static Value * 3592 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3593 InstCombiner::BuilderTy &Builder) { 3594 ICmpInst::Predicate SrcPred; 3595 Value *X; 3596 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3597 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3598 if (!match(&I, m_c_ICmp(SrcPred, 3599 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3600 m_APInt(C1))), 3601 m_Deferred(X)))) 3602 return nullptr; 3603 3604 // Potential handling of non-splats: for each element: 3605 // * if both are undef, replace with constant 0. 3606 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3607 // * if both are not undef, and are different, bailout. 3608 // * else, only one is undef, then pick the non-undef one. 3609 3610 // The shift amount must be equal. 3611 if (*C0 != *C1) 3612 return nullptr; 3613 const APInt &MaskedBits = *C0; 3614 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3615 3616 ICmpInst::Predicate DstPred; 3617 switch (SrcPred) { 3618 case ICmpInst::Predicate::ICMP_EQ: 3619 // ((%x << MaskedBits) a>> MaskedBits) == %x 3620 // => 3621 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3622 DstPred = ICmpInst::Predicate::ICMP_ULT; 3623 break; 3624 case ICmpInst::Predicate::ICMP_NE: 3625 // ((%x << MaskedBits) a>> MaskedBits) != %x 3626 // => 3627 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3628 DstPred = ICmpInst::Predicate::ICMP_UGE; 3629 break; 3630 // FIXME: are more folds possible? 3631 default: 3632 return nullptr; 3633 } 3634 3635 auto *XType = X->getType(); 3636 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3637 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3638 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3639 3640 // KeptBits = bitwidth(%x) - MaskedBits 3641 const APInt KeptBits = BitWidth - MaskedBits; 3642 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3643 // ICmpCst = (1 << KeptBits) 3644 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3645 assert(ICmpCst.isPowerOf2()); 3646 // AddCst = (1 << (KeptBits-1)) 3647 const APInt AddCst = ICmpCst.lshr(1); 3648 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3649 3650 // T0 = add %x, AddCst 3651 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3652 // T1 = T0 DstPred ICmpCst 3653 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3654 3655 return T1; 3656 } 3657 3658 // Given pattern: 3659 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3660 // we should move shifts to the same hand of 'and', i.e. rewrite as 3661 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3662 // We are only interested in opposite logical shifts here. 3663 // One of the shifts can be truncated. 3664 // If we can, we want to end up creating 'lshr' shift. 3665 static Value * 3666 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3667 InstCombiner::BuilderTy &Builder) { 3668 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3669 !I.getOperand(0)->hasOneUse()) 3670 return nullptr; 3671 3672 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3673 3674 // Look for an 'and' of two logical shifts, one of which may be truncated. 3675 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3676 Instruction *XShift, *MaybeTruncation, *YShift; 3677 if (!match( 3678 I.getOperand(0), 3679 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3680 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3681 m_AnyLogicalShift, m_Instruction(YShift))), 3682 m_Instruction(MaybeTruncation))))) 3683 return nullptr; 3684 3685 // We potentially looked past 'trunc', but only when matching YShift, 3686 // therefore YShift must have the widest type. 3687 Instruction *WidestShift = YShift; 3688 // Therefore XShift must have the shallowest type. 3689 // Or they both have identical types if there was no truncation. 3690 Instruction *NarrowestShift = XShift; 3691 3692 Type *WidestTy = WidestShift->getType(); 3693 Type *NarrowestTy = NarrowestShift->getType(); 3694 assert(NarrowestTy == I.getOperand(0)->getType() && 3695 "We did not look past any shifts while matching XShift though."); 3696 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3697 3698 // If YShift is a 'lshr', swap the shifts around. 3699 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3700 std::swap(XShift, YShift); 3701 3702 // The shifts must be in opposite directions. 3703 auto XShiftOpcode = XShift->getOpcode(); 3704 if (XShiftOpcode == YShift->getOpcode()) 3705 return nullptr; // Do not care about same-direction shifts here. 3706 3707 Value *X, *XShAmt, *Y, *YShAmt; 3708 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3709 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3710 3711 // If one of the values being shifted is a constant, then we will end with 3712 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3713 // however, we will need to ensure that we won't increase instruction count. 3714 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3715 // At least one of the hands of the 'and' should be one-use shift. 3716 if (!match(I.getOperand(0), 3717 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3718 return nullptr; 3719 if (HadTrunc) { 3720 // Due to the 'trunc', we will need to widen X. For that either the old 3721 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3722 if (!MaybeTruncation->hasOneUse() && 3723 !NarrowestShift->getOperand(1)->hasOneUse()) 3724 return nullptr; 3725 } 3726 } 3727 3728 // We have two shift amounts from two different shifts. The types of those 3729 // shift amounts may not match. If that's the case let's bailout now. 3730 if (XShAmt->getType() != YShAmt->getType()) 3731 return nullptr; 3732 3733 // As input, we have the following pattern: 3734 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3735 // We want to rewrite that as: 3736 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3737 // While we know that originally (Q+K) would not overflow 3738 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3739 // shift amounts. so it may now overflow in smaller bitwidth. 3740 // To ensure that does not happen, we need to ensure that the total maximal 3741 // shift amount is still representable in that smaller bit width. 3742 unsigned MaximalPossibleTotalShiftAmount = 3743 (WidestTy->getScalarSizeInBits() - 1) + 3744 (NarrowestTy->getScalarSizeInBits() - 1); 3745 APInt MaximalRepresentableShiftAmount = 3746 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3747 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3748 return nullptr; 3749 3750 // Can we fold (XShAmt+YShAmt) ? 3751 auto *NewShAmt = dyn_cast_or_null<Constant>( 3752 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3753 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3754 if (!NewShAmt) 3755 return nullptr; 3756 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3757 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3758 3759 // Is the new shift amount smaller than the bit width? 3760 // FIXME: could also rely on ConstantRange. 3761 if (!match(NewShAmt, 3762 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3763 APInt(WidestBitWidth, WidestBitWidth)))) 3764 return nullptr; 3765 3766 // An extra legality check is needed if we had trunc-of-lshr. 3767 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3768 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3769 WidestShift]() { 3770 // It isn't obvious whether it's worth it to analyze non-constants here. 3771 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3772 // If *any* of these preconditions matches we can perform the fold. 3773 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3774 ? NewShAmt->getSplatValue() 3775 : NewShAmt; 3776 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3777 if (NewShAmtSplat && 3778 (NewShAmtSplat->isNullValue() || 3779 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3780 return true; 3781 // We consider *min* leading zeros so a single outlier 3782 // blocks the transform as opposed to allowing it. 3783 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3784 KnownBits Known = computeKnownBits(C, SQ.DL); 3785 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3786 // If the value being shifted has at most lowest bit set we can fold. 3787 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3788 if (MaxActiveBits <= 1) 3789 return true; 3790 // Precondition: NewShAmt u<= countLeadingZeros(C) 3791 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3792 return true; 3793 } 3794 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3795 KnownBits Known = computeKnownBits(C, SQ.DL); 3796 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3797 // If the value being shifted has at most lowest bit set we can fold. 3798 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3799 if (MaxActiveBits <= 1) 3800 return true; 3801 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3802 if (NewShAmtSplat) { 3803 APInt AdjNewShAmt = 3804 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3805 if (AdjNewShAmt.ule(MinLeadZero)) 3806 return true; 3807 } 3808 } 3809 return false; // Can't tell if it's ok. 3810 }; 3811 if (!CanFold()) 3812 return nullptr; 3813 } 3814 3815 // All good, we can do this fold. 3816 X = Builder.CreateZExt(X, WidestTy); 3817 Y = Builder.CreateZExt(Y, WidestTy); 3818 // The shift is the same that was for X. 3819 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3820 ? Builder.CreateLShr(X, NewShAmt) 3821 : Builder.CreateShl(X, NewShAmt); 3822 Value *T1 = Builder.CreateAnd(T0, Y); 3823 return Builder.CreateICmp(I.getPredicate(), T1, 3824 Constant::getNullValue(WidestTy)); 3825 } 3826 3827 /// Fold 3828 /// (-1 u/ x) u< y 3829 /// ((x * y) ?/ x) != y 3830 /// to 3831 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3832 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3833 /// will mean that we are looking for the opposite answer. 3834 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3835 ICmpInst::Predicate Pred; 3836 Value *X, *Y; 3837 Instruction *Mul; 3838 Instruction *Div; 3839 bool NeedNegation; 3840 // Look for: (-1 u/ x) u</u>= y 3841 if (!I.isEquality() && 3842 match(&I, m_c_ICmp(Pred, 3843 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3844 m_Instruction(Div)), 3845 m_Value(Y)))) { 3846 Mul = nullptr; 3847 3848 // Are we checking that overflow does not happen, or does happen? 3849 switch (Pred) { 3850 case ICmpInst::Predicate::ICMP_ULT: 3851 NeedNegation = false; 3852 break; // OK 3853 case ICmpInst::Predicate::ICMP_UGE: 3854 NeedNegation = true; 3855 break; // OK 3856 default: 3857 return nullptr; // Wrong predicate. 3858 } 3859 } else // Look for: ((x * y) / x) !=/== y 3860 if (I.isEquality() && 3861 match(&I, 3862 m_c_ICmp(Pred, m_Value(Y), 3863 m_CombineAnd( 3864 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3865 m_Value(X)), 3866 m_Instruction(Mul)), 3867 m_Deferred(X))), 3868 m_Instruction(Div))))) { 3869 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3870 } else 3871 return nullptr; 3872 3873 BuilderTy::InsertPointGuard Guard(Builder); 3874 // If the pattern included (x * y), we'll want to insert new instructions 3875 // right before that original multiplication so that we can replace it. 3876 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3877 if (MulHadOtherUses) 3878 Builder.SetInsertPoint(Mul); 3879 3880 Function *F = Intrinsic::getDeclaration(I.getModule(), 3881 Div->getOpcode() == Instruction::UDiv 3882 ? Intrinsic::umul_with_overflow 3883 : Intrinsic::smul_with_overflow, 3884 X->getType()); 3885 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3886 3887 // If the multiplication was used elsewhere, to ensure that we don't leave 3888 // "duplicate" instructions, replace uses of that original multiplication 3889 // with the multiplication result from the with.overflow intrinsic. 3890 if (MulHadOtherUses) 3891 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3892 3893 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3894 if (NeedNegation) // This technically increases instruction count. 3895 Res = Builder.CreateNot(Res, "mul.not.ov"); 3896 3897 // If we replaced the mul, erase it. Do this after all uses of Builder, 3898 // as the mul is used as insertion point. 3899 if (MulHadOtherUses) 3900 eraseInstFromFunction(*Mul); 3901 3902 return Res; 3903 } 3904 3905 static Instruction *foldICmpXNegX(ICmpInst &I) { 3906 CmpInst::Predicate Pred; 3907 Value *X; 3908 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3909 return nullptr; 3910 3911 if (ICmpInst::isSigned(Pred)) 3912 Pred = ICmpInst::getSwappedPredicate(Pred); 3913 else if (ICmpInst::isUnsigned(Pred)) 3914 Pred = ICmpInst::getSignedPredicate(Pred); 3915 // else for equality-comparisons just keep the predicate. 3916 3917 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3918 Constant::getNullValue(X->getType()), I.getName()); 3919 } 3920 3921 /// Try to fold icmp (binop), X or icmp X, (binop). 3922 /// TODO: A large part of this logic is duplicated in InstSimplify's 3923 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3924 /// duplication. 3925 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3926 const SimplifyQuery &SQ) { 3927 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3928 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3929 3930 // Special logic for binary operators. 3931 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3932 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3933 if (!BO0 && !BO1) 3934 return nullptr; 3935 3936 if (Instruction *NewICmp = foldICmpXNegX(I)) 3937 return NewICmp; 3938 3939 const CmpInst::Predicate Pred = I.getPredicate(); 3940 Value *X; 3941 3942 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3943 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3944 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3945 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3946 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3947 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3948 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3949 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3950 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3951 3952 { 3953 // Similar to above: an unsigned overflow comparison may use offset + mask: 3954 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3955 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3956 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3957 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3958 BinaryOperator *BO; 3959 const APInt *C; 3960 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3961 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3962 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3963 CmpInst::Predicate NewPred = 3964 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3965 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3966 return new ICmpInst(NewPred, Op1, Zero); 3967 } 3968 3969 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 3970 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3971 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 3972 CmpInst::Predicate NewPred = 3973 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3974 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3975 return new ICmpInst(NewPred, Op0, Zero); 3976 } 3977 } 3978 3979 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3980 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3981 NoOp0WrapProblem = 3982 ICmpInst::isEquality(Pred) || 3983 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3984 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3985 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3986 NoOp1WrapProblem = 3987 ICmpInst::isEquality(Pred) || 3988 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3989 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3990 3991 // Analyze the case when either Op0 or Op1 is an add instruction. 3992 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3993 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3994 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3995 A = BO0->getOperand(0); 3996 B = BO0->getOperand(1); 3997 } 3998 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3999 C = BO1->getOperand(0); 4000 D = BO1->getOperand(1); 4001 } 4002 4003 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4004 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4005 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4006 return new ICmpInst(Pred, A == Op1 ? B : A, 4007 Constant::getNullValue(Op1->getType())); 4008 4009 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4010 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4011 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4012 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4013 C == Op0 ? D : C); 4014 4015 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4016 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4017 NoOp1WrapProblem) { 4018 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4019 Value *Y, *Z; 4020 if (A == C) { 4021 // C + B == C + D -> B == D 4022 Y = B; 4023 Z = D; 4024 } else if (A == D) { 4025 // D + B == C + D -> B == C 4026 Y = B; 4027 Z = C; 4028 } else if (B == C) { 4029 // A + C == C + D -> A == D 4030 Y = A; 4031 Z = D; 4032 } else { 4033 assert(B == D); 4034 // A + D == C + D -> A == C 4035 Y = A; 4036 Z = C; 4037 } 4038 return new ICmpInst(Pred, Y, Z); 4039 } 4040 4041 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4042 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4043 match(B, m_AllOnes())) 4044 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4045 4046 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4047 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4048 match(B, m_AllOnes())) 4049 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4050 4051 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4052 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4053 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4054 4055 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4056 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4057 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4058 4059 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4060 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4061 match(D, m_AllOnes())) 4062 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4063 4064 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4065 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4066 match(D, m_AllOnes())) 4067 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4068 4069 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4070 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4071 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4072 4073 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4074 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4075 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4076 4077 // TODO: The subtraction-related identities shown below also hold, but 4078 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4079 // wouldn't happen even if they were implemented. 4080 // 4081 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4082 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4083 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4084 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4085 4086 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4087 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4088 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4089 4090 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4091 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4092 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4093 4094 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4095 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4096 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4097 4098 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4099 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4100 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4101 4102 // if C1 has greater magnitude than C2: 4103 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4104 // s.t. C3 = C1 - C2 4105 // 4106 // if C2 has greater magnitude than C1: 4107 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4108 // s.t. C3 = C2 - C1 4109 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4110 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4111 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4112 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4113 const APInt &AP1 = C1->getValue(); 4114 const APInt &AP2 = C2->getValue(); 4115 if (AP1.isNegative() == AP2.isNegative()) { 4116 APInt AP1Abs = C1->getValue().abs(); 4117 APInt AP2Abs = C2->getValue().abs(); 4118 if (AP1Abs.uge(AP2Abs)) { 4119 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4120 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4121 bool HasNSW = BO0->hasNoSignedWrap(); 4122 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4123 return new ICmpInst(Pred, NewAdd, C); 4124 } else { 4125 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4126 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4127 bool HasNSW = BO1->hasNoSignedWrap(); 4128 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4129 return new ICmpInst(Pred, A, NewAdd); 4130 } 4131 } 4132 } 4133 4134 // Analyze the case when either Op0 or Op1 is a sub instruction. 4135 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4136 A = nullptr; 4137 B = nullptr; 4138 C = nullptr; 4139 D = nullptr; 4140 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4141 A = BO0->getOperand(0); 4142 B = BO0->getOperand(1); 4143 } 4144 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4145 C = BO1->getOperand(0); 4146 D = BO1->getOperand(1); 4147 } 4148 4149 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4150 if (A == Op1 && NoOp0WrapProblem) 4151 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4152 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4153 if (C == Op0 && NoOp1WrapProblem) 4154 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4155 4156 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4157 // (A - B) u>/u<= A --> B u>/u<= A 4158 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4159 return new ICmpInst(Pred, B, A); 4160 // C u</u>= (C - D) --> C u</u>= D 4161 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4162 return new ICmpInst(Pred, C, D); 4163 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4164 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4165 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4166 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4167 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4168 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4169 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4170 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4171 4172 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4173 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4174 return new ICmpInst(Pred, A, C); 4175 4176 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4177 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4178 return new ICmpInst(Pred, D, B); 4179 4180 // icmp (0-X) < cst --> x > -cst 4181 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4182 Value *X; 4183 if (match(BO0, m_Neg(m_Value(X)))) 4184 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4185 if (RHSC->isNotMinSignedValue()) 4186 return new ICmpInst(I.getSwappedPredicate(), X, 4187 ConstantExpr::getNeg(RHSC)); 4188 } 4189 4190 { 4191 // Try to remove shared constant multiplier from equality comparison: 4192 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4193 Value *X, *Y; 4194 const APInt *C; 4195 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4196 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4197 if (!C->countTrailingZeros() || 4198 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4199 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4200 return new ICmpInst(Pred, X, Y); 4201 } 4202 4203 BinaryOperator *SRem = nullptr; 4204 // icmp (srem X, Y), Y 4205 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4206 SRem = BO0; 4207 // icmp Y, (srem X, Y) 4208 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4209 Op0 == BO1->getOperand(1)) 4210 SRem = BO1; 4211 if (SRem) { 4212 // We don't check hasOneUse to avoid increasing register pressure because 4213 // the value we use is the same value this instruction was already using. 4214 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4215 default: 4216 break; 4217 case ICmpInst::ICMP_EQ: 4218 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4219 case ICmpInst::ICMP_NE: 4220 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4221 case ICmpInst::ICMP_SGT: 4222 case ICmpInst::ICMP_SGE: 4223 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4224 Constant::getAllOnesValue(SRem->getType())); 4225 case ICmpInst::ICMP_SLT: 4226 case ICmpInst::ICMP_SLE: 4227 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4228 Constant::getNullValue(SRem->getType())); 4229 } 4230 } 4231 4232 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4233 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4234 switch (BO0->getOpcode()) { 4235 default: 4236 break; 4237 case Instruction::Add: 4238 case Instruction::Sub: 4239 case Instruction::Xor: { 4240 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4241 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4242 4243 const APInt *C; 4244 if (match(BO0->getOperand(1), m_APInt(C))) { 4245 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4246 if (C->isSignMask()) { 4247 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4248 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4249 } 4250 4251 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4252 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4253 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4254 NewPred = I.getSwappedPredicate(NewPred); 4255 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4256 } 4257 } 4258 break; 4259 } 4260 case Instruction::Mul: { 4261 if (!I.isEquality()) 4262 break; 4263 4264 const APInt *C; 4265 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4266 !C->isOne()) { 4267 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4268 // Mask = -1 >> count-trailing-zeros(C). 4269 if (unsigned TZs = C->countTrailingZeros()) { 4270 Constant *Mask = ConstantInt::get( 4271 BO0->getType(), 4272 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4273 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4274 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4275 return new ICmpInst(Pred, And1, And2); 4276 } 4277 } 4278 break; 4279 } 4280 case Instruction::UDiv: 4281 case Instruction::LShr: 4282 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4283 break; 4284 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4285 4286 case Instruction::SDiv: 4287 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4288 break; 4289 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4290 4291 case Instruction::AShr: 4292 if (!BO0->isExact() || !BO1->isExact()) 4293 break; 4294 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4295 4296 case Instruction::Shl: { 4297 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4298 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4299 if (!NUW && !NSW) 4300 break; 4301 if (!NSW && I.isSigned()) 4302 break; 4303 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4304 } 4305 } 4306 } 4307 4308 if (BO0) { 4309 // Transform A & (L - 1) `ult` L --> L != 0 4310 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4311 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4312 4313 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4314 auto *Zero = Constant::getNullValue(BO0->getType()); 4315 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4316 } 4317 } 4318 4319 if (Value *V = foldMultiplicationOverflowCheck(I)) 4320 return replaceInstUsesWith(I, V); 4321 4322 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4323 return replaceInstUsesWith(I, V); 4324 4325 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4326 return replaceInstUsesWith(I, V); 4327 4328 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4329 return replaceInstUsesWith(I, V); 4330 4331 return nullptr; 4332 } 4333 4334 /// Fold icmp Pred min|max(X, Y), X. 4335 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4336 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4337 Value *Op0 = Cmp.getOperand(0); 4338 Value *X = Cmp.getOperand(1); 4339 4340 // Canonicalize minimum or maximum operand to LHS of the icmp. 4341 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4342 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4343 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4344 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4345 std::swap(Op0, X); 4346 Pred = Cmp.getSwappedPredicate(); 4347 } 4348 4349 Value *Y; 4350 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4351 // smin(X, Y) == X --> X s<= Y 4352 // smin(X, Y) s>= X --> X s<= Y 4353 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4354 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4355 4356 // smin(X, Y) != X --> X s> Y 4357 // smin(X, Y) s< X --> X s> Y 4358 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4359 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4360 4361 // These cases should be handled in InstSimplify: 4362 // smin(X, Y) s<= X --> true 4363 // smin(X, Y) s> X --> false 4364 return nullptr; 4365 } 4366 4367 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4368 // smax(X, Y) == X --> X s>= Y 4369 // smax(X, Y) s<= X --> X s>= Y 4370 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4371 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4372 4373 // smax(X, Y) != X --> X s< Y 4374 // smax(X, Y) s> X --> X s< Y 4375 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4376 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4377 4378 // These cases should be handled in InstSimplify: 4379 // smax(X, Y) s>= X --> true 4380 // smax(X, Y) s< X --> false 4381 return nullptr; 4382 } 4383 4384 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4385 // umin(X, Y) == X --> X u<= Y 4386 // umin(X, Y) u>= X --> X u<= Y 4387 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4388 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4389 4390 // umin(X, Y) != X --> X u> Y 4391 // umin(X, Y) u< X --> X u> Y 4392 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4393 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4394 4395 // These cases should be handled in InstSimplify: 4396 // umin(X, Y) u<= X --> true 4397 // umin(X, Y) u> X --> false 4398 return nullptr; 4399 } 4400 4401 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4402 // umax(X, Y) == X --> X u>= Y 4403 // umax(X, Y) u<= X --> X u>= Y 4404 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4405 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4406 4407 // umax(X, Y) != X --> X u< Y 4408 // umax(X, Y) u> X --> X u< Y 4409 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4410 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4411 4412 // These cases should be handled in InstSimplify: 4413 // umax(X, Y) u>= X --> true 4414 // umax(X, Y) u< X --> false 4415 return nullptr; 4416 } 4417 4418 return nullptr; 4419 } 4420 4421 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4422 if (!I.isEquality()) 4423 return nullptr; 4424 4425 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4426 const CmpInst::Predicate Pred = I.getPredicate(); 4427 Value *A, *B, *C, *D; 4428 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4429 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4430 Value *OtherVal = A == Op1 ? B : A; 4431 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4432 } 4433 4434 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4435 // A^c1 == C^c2 --> A == C^(c1^c2) 4436 ConstantInt *C1, *C2; 4437 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4438 Op1->hasOneUse()) { 4439 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4440 Value *Xor = Builder.CreateXor(C, NC); 4441 return new ICmpInst(Pred, A, Xor); 4442 } 4443 4444 // A^B == A^D -> B == D 4445 if (A == C) 4446 return new ICmpInst(Pred, B, D); 4447 if (A == D) 4448 return new ICmpInst(Pred, B, C); 4449 if (B == C) 4450 return new ICmpInst(Pred, A, D); 4451 if (B == D) 4452 return new ICmpInst(Pred, A, C); 4453 } 4454 } 4455 4456 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4457 // A == (A^B) -> B == 0 4458 Value *OtherVal = A == Op0 ? B : A; 4459 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4460 } 4461 4462 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4463 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4464 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4465 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4466 4467 if (A == C) { 4468 X = B; 4469 Y = D; 4470 Z = A; 4471 } else if (A == D) { 4472 X = B; 4473 Y = C; 4474 Z = A; 4475 } else if (B == C) { 4476 X = A; 4477 Y = D; 4478 Z = B; 4479 } else if (B == D) { 4480 X = A; 4481 Y = C; 4482 Z = B; 4483 } 4484 4485 if (X) { // Build (X^Y) & Z 4486 Op1 = Builder.CreateXor(X, Y); 4487 Op1 = Builder.CreateAnd(Op1, Z); 4488 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4489 } 4490 } 4491 4492 { 4493 // Similar to above, but specialized for constant because invert is needed: 4494 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4495 Value *X, *Y; 4496 Constant *C; 4497 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4498 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4499 Value *Xor = Builder.CreateXor(X, Y); 4500 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4501 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4502 } 4503 } 4504 4505 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4506 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4507 ConstantInt *Cst1; 4508 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4509 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4510 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4511 match(Op1, m_ZExt(m_Value(A))))) { 4512 APInt Pow2 = Cst1->getValue() + 1; 4513 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4514 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4515 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4516 } 4517 4518 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4519 // For lshr and ashr pairs. 4520 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4521 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4522 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4523 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4524 unsigned TypeBits = Cst1->getBitWidth(); 4525 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4526 if (ShAmt < TypeBits && ShAmt != 0) { 4527 ICmpInst::Predicate NewPred = 4528 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4529 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4530 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4531 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4532 } 4533 } 4534 4535 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4536 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4537 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4538 unsigned TypeBits = Cst1->getBitWidth(); 4539 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4540 if (ShAmt < TypeBits && ShAmt != 0) { 4541 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4542 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4543 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4544 I.getName() + ".mask"); 4545 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4546 } 4547 } 4548 4549 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4550 // "icmp (and X, mask), cst" 4551 uint64_t ShAmt = 0; 4552 if (Op0->hasOneUse() && 4553 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4554 match(Op1, m_ConstantInt(Cst1)) && 4555 // Only do this when A has multiple uses. This is most important to do 4556 // when it exposes other optimizations. 4557 !A->hasOneUse()) { 4558 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4559 4560 if (ShAmt < ASize) { 4561 APInt MaskV = 4562 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4563 MaskV <<= ShAmt; 4564 4565 APInt CmpV = Cst1->getValue().zext(ASize); 4566 CmpV <<= ShAmt; 4567 4568 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4569 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4570 } 4571 } 4572 4573 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4574 return ICmp; 4575 4576 // Canonicalize checking for a power-of-2-or-zero value: 4577 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4578 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4579 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4580 m_Deferred(A)))) || 4581 !match(Op1, m_ZeroInt())) 4582 A = nullptr; 4583 4584 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4585 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4586 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4587 A = Op1; 4588 else if (match(Op1, 4589 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4590 A = Op0; 4591 4592 if (A) { 4593 Type *Ty = A->getType(); 4594 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4595 return Pred == ICmpInst::ICMP_EQ 4596 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4597 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4598 } 4599 4600 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4601 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4602 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4603 // of instcombine. 4604 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4605 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4606 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4607 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4608 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4609 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4610 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4611 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4612 : ICmpInst::ICMP_UGE, 4613 Add, ConstantInt::get(A->getType(), C.shl(1))); 4614 } 4615 4616 return nullptr; 4617 } 4618 4619 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4620 InstCombiner::BuilderTy &Builder) { 4621 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4622 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4623 4624 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4625 // The trunc masks high bits while the compare may effectively mask low bits. 4626 Value *X; 4627 const APInt *C; 4628 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4629 return nullptr; 4630 4631 // This matches patterns corresponding to tests of the signbit as well as: 4632 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4633 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4634 APInt Mask; 4635 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4636 Value *And = Builder.CreateAnd(X, Mask); 4637 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4638 return new ICmpInst(Pred, And, Zero); 4639 } 4640 4641 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4642 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4643 // If C is a negative power-of-2 (high-bit mask): 4644 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4645 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4646 Value *And = Builder.CreateAnd(X, MaskC); 4647 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4648 } 4649 4650 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4651 // If C is not-of-power-of-2 (one clear bit): 4652 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4653 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4654 Value *And = Builder.CreateAnd(X, MaskC); 4655 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4656 } 4657 4658 return nullptr; 4659 } 4660 4661 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4662 InstCombiner::BuilderTy &Builder) { 4663 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4664 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4665 Value *X; 4666 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4667 return nullptr; 4668 4669 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4670 bool IsSignedCmp = ICmp.isSigned(); 4671 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4672 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4673 // and the other is a zext), then we can't handle this. 4674 // TODO: This is too strict. We can handle some predicates (equality?). 4675 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4676 return nullptr; 4677 4678 // Not an extension from the same type? 4679 Value *Y = CastOp1->getOperand(0); 4680 Type *XTy = X->getType(), *YTy = Y->getType(); 4681 if (XTy != YTy) { 4682 // One of the casts must have one use because we are creating a new cast. 4683 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4684 return nullptr; 4685 // Extend the narrower operand to the type of the wider operand. 4686 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4687 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4688 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4689 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4690 else 4691 return nullptr; 4692 } 4693 4694 // (zext X) == (zext Y) --> X == Y 4695 // (sext X) == (sext Y) --> X == Y 4696 if (ICmp.isEquality()) 4697 return new ICmpInst(ICmp.getPredicate(), X, Y); 4698 4699 // A signed comparison of sign extended values simplifies into a 4700 // signed comparison. 4701 if (IsSignedCmp && IsSignedExt) 4702 return new ICmpInst(ICmp.getPredicate(), X, Y); 4703 4704 // The other three cases all fold into an unsigned comparison. 4705 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4706 } 4707 4708 // Below here, we are only folding a compare with constant. 4709 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4710 if (!C) 4711 return nullptr; 4712 4713 // Compute the constant that would happen if we truncated to SrcTy then 4714 // re-extended to DestTy. 4715 Type *SrcTy = CastOp0->getSrcTy(); 4716 Type *DestTy = CastOp0->getDestTy(); 4717 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4718 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4719 4720 // If the re-extended constant didn't change... 4721 if (Res2 == C) { 4722 if (ICmp.isEquality()) 4723 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4724 4725 // A signed comparison of sign extended values simplifies into a 4726 // signed comparison. 4727 if (IsSignedExt && IsSignedCmp) 4728 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4729 4730 // The other three cases all fold into an unsigned comparison. 4731 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4732 } 4733 4734 // The re-extended constant changed, partly changed (in the case of a vector), 4735 // or could not be determined to be equal (in the case of a constant 4736 // expression), so the constant cannot be represented in the shorter type. 4737 // All the cases that fold to true or false will have already been handled 4738 // by SimplifyICmpInst, so only deal with the tricky case. 4739 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4740 return nullptr; 4741 4742 // Is source op positive? 4743 // icmp ult (sext X), C --> icmp sgt X, -1 4744 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4745 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4746 4747 // Is source op negative? 4748 // icmp ugt (sext X), C --> icmp slt X, 0 4749 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4750 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4751 } 4752 4753 /// Handle icmp (cast x), (cast or constant). 4754 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4755 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4756 // icmp compares only pointer's value. 4757 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4758 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4759 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4760 if (SimplifiedOp0 || SimplifiedOp1) 4761 return new ICmpInst(ICmp.getPredicate(), 4762 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4763 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4764 4765 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4766 if (!CastOp0) 4767 return nullptr; 4768 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4769 return nullptr; 4770 4771 Value *Op0Src = CastOp0->getOperand(0); 4772 Type *SrcTy = CastOp0->getSrcTy(); 4773 Type *DestTy = CastOp0->getDestTy(); 4774 4775 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4776 // integer type is the same size as the pointer type. 4777 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4778 if (isa<VectorType>(SrcTy)) { 4779 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4780 DestTy = cast<VectorType>(DestTy)->getElementType(); 4781 } 4782 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4783 }; 4784 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4785 CompatibleSizes(SrcTy, DestTy)) { 4786 Value *NewOp1 = nullptr; 4787 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4788 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4789 if (PtrSrc->getType()->getPointerAddressSpace() == 4790 Op0Src->getType()->getPointerAddressSpace()) { 4791 NewOp1 = PtrToIntOp1->getOperand(0); 4792 // If the pointer types don't match, insert a bitcast. 4793 if (Op0Src->getType() != NewOp1->getType()) 4794 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4795 } 4796 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4797 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4798 } 4799 4800 if (NewOp1) 4801 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4802 } 4803 4804 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4805 return R; 4806 4807 return foldICmpWithZextOrSext(ICmp, Builder); 4808 } 4809 4810 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4811 switch (BinaryOp) { 4812 default: 4813 llvm_unreachable("Unsupported binary op"); 4814 case Instruction::Add: 4815 case Instruction::Sub: 4816 return match(RHS, m_Zero()); 4817 case Instruction::Mul: 4818 return match(RHS, m_One()); 4819 } 4820 } 4821 4822 OverflowResult 4823 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4824 bool IsSigned, Value *LHS, Value *RHS, 4825 Instruction *CxtI) const { 4826 switch (BinaryOp) { 4827 default: 4828 llvm_unreachable("Unsupported binary op"); 4829 case Instruction::Add: 4830 if (IsSigned) 4831 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4832 else 4833 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4834 case Instruction::Sub: 4835 if (IsSigned) 4836 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4837 else 4838 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4839 case Instruction::Mul: 4840 if (IsSigned) 4841 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4842 else 4843 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4844 } 4845 } 4846 4847 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4848 bool IsSigned, Value *LHS, 4849 Value *RHS, Instruction &OrigI, 4850 Value *&Result, 4851 Constant *&Overflow) { 4852 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4853 std::swap(LHS, RHS); 4854 4855 // If the overflow check was an add followed by a compare, the insertion point 4856 // may be pointing to the compare. We want to insert the new instructions 4857 // before the add in case there are uses of the add between the add and the 4858 // compare. 4859 Builder.SetInsertPoint(&OrigI); 4860 4861 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4862 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4863 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4864 4865 if (isNeutralValue(BinaryOp, RHS)) { 4866 Result = LHS; 4867 Overflow = ConstantInt::getFalse(OverflowTy); 4868 return true; 4869 } 4870 4871 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4872 case OverflowResult::MayOverflow: 4873 return false; 4874 case OverflowResult::AlwaysOverflowsLow: 4875 case OverflowResult::AlwaysOverflowsHigh: 4876 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4877 Result->takeName(&OrigI); 4878 Overflow = ConstantInt::getTrue(OverflowTy); 4879 return true; 4880 case OverflowResult::NeverOverflows: 4881 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4882 Result->takeName(&OrigI); 4883 Overflow = ConstantInt::getFalse(OverflowTy); 4884 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4885 if (IsSigned) 4886 Inst->setHasNoSignedWrap(); 4887 else 4888 Inst->setHasNoUnsignedWrap(); 4889 } 4890 return true; 4891 } 4892 4893 llvm_unreachable("Unexpected overflow result"); 4894 } 4895 4896 /// Recognize and process idiom involving test for multiplication 4897 /// overflow. 4898 /// 4899 /// The caller has matched a pattern of the form: 4900 /// I = cmp u (mul(zext A, zext B), V 4901 /// The function checks if this is a test for overflow and if so replaces 4902 /// multiplication with call to 'mul.with.overflow' intrinsic. 4903 /// 4904 /// \param I Compare instruction. 4905 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4906 /// the compare instruction. Must be of integer type. 4907 /// \param OtherVal The other argument of compare instruction. 4908 /// \returns Instruction which must replace the compare instruction, NULL if no 4909 /// replacement required. 4910 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4911 Value *OtherVal, 4912 InstCombinerImpl &IC) { 4913 // Don't bother doing this transformation for pointers, don't do it for 4914 // vectors. 4915 if (!isa<IntegerType>(MulVal->getType())) 4916 return nullptr; 4917 4918 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4919 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4920 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4921 if (!MulInstr) 4922 return nullptr; 4923 assert(MulInstr->getOpcode() == Instruction::Mul); 4924 4925 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4926 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4927 assert(LHS->getOpcode() == Instruction::ZExt); 4928 assert(RHS->getOpcode() == Instruction::ZExt); 4929 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4930 4931 // Calculate type and width of the result produced by mul.with.overflow. 4932 Type *TyA = A->getType(), *TyB = B->getType(); 4933 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4934 WidthB = TyB->getPrimitiveSizeInBits(); 4935 unsigned MulWidth; 4936 Type *MulType; 4937 if (WidthB > WidthA) { 4938 MulWidth = WidthB; 4939 MulType = TyB; 4940 } else { 4941 MulWidth = WidthA; 4942 MulType = TyA; 4943 } 4944 4945 // In order to replace the original mul with a narrower mul.with.overflow, 4946 // all uses must ignore upper bits of the product. The number of used low 4947 // bits must be not greater than the width of mul.with.overflow. 4948 if (MulVal->hasNUsesOrMore(2)) 4949 for (User *U : MulVal->users()) { 4950 if (U == &I) 4951 continue; 4952 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4953 // Check if truncation ignores bits above MulWidth. 4954 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4955 if (TruncWidth > MulWidth) 4956 return nullptr; 4957 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4958 // Check if AND ignores bits above MulWidth. 4959 if (BO->getOpcode() != Instruction::And) 4960 return nullptr; 4961 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4962 const APInt &CVal = CI->getValue(); 4963 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4964 return nullptr; 4965 } else { 4966 // In this case we could have the operand of the binary operation 4967 // being defined in another block, and performing the replacement 4968 // could break the dominance relation. 4969 return nullptr; 4970 } 4971 } else { 4972 // Other uses prohibit this transformation. 4973 return nullptr; 4974 } 4975 } 4976 4977 // Recognize patterns 4978 switch (I.getPredicate()) { 4979 case ICmpInst::ICMP_EQ: 4980 case ICmpInst::ICMP_NE: 4981 // Recognize pattern: 4982 // mulval = mul(zext A, zext B) 4983 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4984 ConstantInt *CI; 4985 Value *ValToMask; 4986 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4987 if (ValToMask != MulVal) 4988 return nullptr; 4989 const APInt &CVal = CI->getValue() + 1; 4990 if (CVal.isPowerOf2()) { 4991 unsigned MaskWidth = CVal.logBase2(); 4992 if (MaskWidth == MulWidth) 4993 break; // Recognized 4994 } 4995 } 4996 return nullptr; 4997 4998 case ICmpInst::ICMP_UGT: 4999 // Recognize pattern: 5000 // mulval = mul(zext A, zext B) 5001 // cmp ugt mulval, max 5002 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5003 APInt MaxVal = APInt::getMaxValue(MulWidth); 5004 MaxVal = MaxVal.zext(CI->getBitWidth()); 5005 if (MaxVal.eq(CI->getValue())) 5006 break; // Recognized 5007 } 5008 return nullptr; 5009 5010 case ICmpInst::ICMP_UGE: 5011 // Recognize pattern: 5012 // mulval = mul(zext A, zext B) 5013 // cmp uge mulval, max+1 5014 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5015 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5016 if (MaxVal.eq(CI->getValue())) 5017 break; // Recognized 5018 } 5019 return nullptr; 5020 5021 case ICmpInst::ICMP_ULE: 5022 // Recognize pattern: 5023 // mulval = mul(zext A, zext B) 5024 // cmp ule mulval, max 5025 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5026 APInt MaxVal = APInt::getMaxValue(MulWidth); 5027 MaxVal = MaxVal.zext(CI->getBitWidth()); 5028 if (MaxVal.eq(CI->getValue())) 5029 break; // Recognized 5030 } 5031 return nullptr; 5032 5033 case ICmpInst::ICMP_ULT: 5034 // Recognize pattern: 5035 // mulval = mul(zext A, zext B) 5036 // cmp ule mulval, max + 1 5037 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5038 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5039 if (MaxVal.eq(CI->getValue())) 5040 break; // Recognized 5041 } 5042 return nullptr; 5043 5044 default: 5045 return nullptr; 5046 } 5047 5048 InstCombiner::BuilderTy &Builder = IC.Builder; 5049 Builder.SetInsertPoint(MulInstr); 5050 5051 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5052 Value *MulA = A, *MulB = B; 5053 if (WidthA < MulWidth) 5054 MulA = Builder.CreateZExt(A, MulType); 5055 if (WidthB < MulWidth) 5056 MulB = Builder.CreateZExt(B, MulType); 5057 Function *F = Intrinsic::getDeclaration( 5058 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5059 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5060 IC.addToWorklist(MulInstr); 5061 5062 // If there are uses of mul result other than the comparison, we know that 5063 // they are truncation or binary AND. Change them to use result of 5064 // mul.with.overflow and adjust properly mask/size. 5065 if (MulVal->hasNUsesOrMore(2)) { 5066 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5067 for (User *U : make_early_inc_range(MulVal->users())) { 5068 if (U == &I || U == OtherVal) 5069 continue; 5070 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5071 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5072 IC.replaceInstUsesWith(*TI, Mul); 5073 else 5074 TI->setOperand(0, Mul); 5075 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5076 assert(BO->getOpcode() == Instruction::And); 5077 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5078 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5079 APInt ShortMask = CI->getValue().trunc(MulWidth); 5080 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5081 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5082 IC.replaceInstUsesWith(*BO, Zext); 5083 } else { 5084 llvm_unreachable("Unexpected Binary operation"); 5085 } 5086 IC.addToWorklist(cast<Instruction>(U)); 5087 } 5088 } 5089 if (isa<Instruction>(OtherVal)) 5090 IC.addToWorklist(cast<Instruction>(OtherVal)); 5091 5092 // The original icmp gets replaced with the overflow value, maybe inverted 5093 // depending on predicate. 5094 bool Inverse = false; 5095 switch (I.getPredicate()) { 5096 case ICmpInst::ICMP_NE: 5097 break; 5098 case ICmpInst::ICMP_EQ: 5099 Inverse = true; 5100 break; 5101 case ICmpInst::ICMP_UGT: 5102 case ICmpInst::ICMP_UGE: 5103 if (I.getOperand(0) == MulVal) 5104 break; 5105 Inverse = true; 5106 break; 5107 case ICmpInst::ICMP_ULT: 5108 case ICmpInst::ICMP_ULE: 5109 if (I.getOperand(1) == MulVal) 5110 break; 5111 Inverse = true; 5112 break; 5113 default: 5114 llvm_unreachable("Unexpected predicate"); 5115 } 5116 if (Inverse) { 5117 Value *Res = Builder.CreateExtractValue(Call, 1); 5118 return BinaryOperator::CreateNot(Res); 5119 } 5120 5121 return ExtractValueInst::Create(Call, 1); 5122 } 5123 5124 /// When performing a comparison against a constant, it is possible that not all 5125 /// the bits in the LHS are demanded. This helper method computes the mask that 5126 /// IS demanded. 5127 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5128 const APInt *RHS; 5129 if (!match(I.getOperand(1), m_APInt(RHS))) 5130 return APInt::getAllOnes(BitWidth); 5131 5132 // If this is a normal comparison, it demands all bits. If it is a sign bit 5133 // comparison, it only demands the sign bit. 5134 bool UnusedBit; 5135 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5136 return APInt::getSignMask(BitWidth); 5137 5138 switch (I.getPredicate()) { 5139 // For a UGT comparison, we don't care about any bits that 5140 // correspond to the trailing ones of the comparand. The value of these 5141 // bits doesn't impact the outcome of the comparison, because any value 5142 // greater than the RHS must differ in a bit higher than these due to carry. 5143 case ICmpInst::ICMP_UGT: 5144 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5145 5146 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5147 // Any value less than the RHS must differ in a higher bit because of carries. 5148 case ICmpInst::ICMP_ULT: 5149 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5150 5151 default: 5152 return APInt::getAllOnes(BitWidth); 5153 } 5154 } 5155 5156 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5157 /// should be swapped. 5158 /// The decision is based on how many times these two operands are reused 5159 /// as subtract operands and their positions in those instructions. 5160 /// The rationale is that several architectures use the same instruction for 5161 /// both subtract and cmp. Thus, it is better if the order of those operands 5162 /// match. 5163 /// \return true if Op0 and Op1 should be swapped. 5164 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5165 // Filter out pointer values as those cannot appear directly in subtract. 5166 // FIXME: we may want to go through inttoptrs or bitcasts. 5167 if (Op0->getType()->isPointerTy()) 5168 return false; 5169 // If a subtract already has the same operands as a compare, swapping would be 5170 // bad. If a subtract has the same operands as a compare but in reverse order, 5171 // then swapping is good. 5172 int GoodToSwap = 0; 5173 for (const User *U : Op0->users()) { 5174 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5175 GoodToSwap++; 5176 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5177 GoodToSwap--; 5178 } 5179 return GoodToSwap > 0; 5180 } 5181 5182 /// Check that one use is in the same block as the definition and all 5183 /// other uses are in blocks dominated by a given block. 5184 /// 5185 /// \param DI Definition 5186 /// \param UI Use 5187 /// \param DB Block that must dominate all uses of \p DI outside 5188 /// the parent block 5189 /// \return true when \p UI is the only use of \p DI in the parent block 5190 /// and all other uses of \p DI are in blocks dominated by \p DB. 5191 /// 5192 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5193 const Instruction *UI, 5194 const BasicBlock *DB) const { 5195 assert(DI && UI && "Instruction not defined\n"); 5196 // Ignore incomplete definitions. 5197 if (!DI->getParent()) 5198 return false; 5199 // DI and UI must be in the same block. 5200 if (DI->getParent() != UI->getParent()) 5201 return false; 5202 // Protect from self-referencing blocks. 5203 if (DI->getParent() == DB) 5204 return false; 5205 for (const User *U : DI->users()) { 5206 auto *Usr = cast<Instruction>(U); 5207 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5208 return false; 5209 } 5210 return true; 5211 } 5212 5213 /// Return true when the instruction sequence within a block is select-cmp-br. 5214 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5215 const BasicBlock *BB = SI->getParent(); 5216 if (!BB) 5217 return false; 5218 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5219 if (!BI || BI->getNumSuccessors() != 2) 5220 return false; 5221 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5222 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5223 return false; 5224 return true; 5225 } 5226 5227 /// True when a select result is replaced by one of its operands 5228 /// in select-icmp sequence. This will eventually result in the elimination 5229 /// of the select. 5230 /// 5231 /// \param SI Select instruction 5232 /// \param Icmp Compare instruction 5233 /// \param SIOpd Operand that replaces the select 5234 /// 5235 /// Notes: 5236 /// - The replacement is global and requires dominator information 5237 /// - The caller is responsible for the actual replacement 5238 /// 5239 /// Example: 5240 /// 5241 /// entry: 5242 /// %4 = select i1 %3, %C* %0, %C* null 5243 /// %5 = icmp eq %C* %4, null 5244 /// br i1 %5, label %9, label %7 5245 /// ... 5246 /// ; <label>:7 ; preds = %entry 5247 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5248 /// ... 5249 /// 5250 /// can be transformed to 5251 /// 5252 /// %5 = icmp eq %C* %0, null 5253 /// %6 = select i1 %3, i1 %5, i1 true 5254 /// br i1 %6, label %9, label %7 5255 /// ... 5256 /// ; <label>:7 ; preds = %entry 5257 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5258 /// 5259 /// Similar when the first operand of the select is a constant or/and 5260 /// the compare is for not equal rather than equal. 5261 /// 5262 /// NOTE: The function is only called when the select and compare constants 5263 /// are equal, the optimization can work only for EQ predicates. This is not a 5264 /// major restriction since a NE compare should be 'normalized' to an equal 5265 /// compare, which usually happens in the combiner and test case 5266 /// select-cmp-br.ll checks for it. 5267 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5268 const ICmpInst *Icmp, 5269 const unsigned SIOpd) { 5270 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5271 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5272 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5273 // The check for the single predecessor is not the best that can be 5274 // done. But it protects efficiently against cases like when SI's 5275 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5276 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5277 // replaced can be reached on either path. So the uniqueness check 5278 // guarantees that the path all uses of SI (outside SI's parent) are on 5279 // is disjoint from all other paths out of SI. But that information 5280 // is more expensive to compute, and the trade-off here is in favor 5281 // of compile-time. It should also be noticed that we check for a single 5282 // predecessor and not only uniqueness. This to handle the situation when 5283 // Succ and Succ1 points to the same basic block. 5284 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5285 NumSel++; 5286 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5287 return true; 5288 } 5289 } 5290 return false; 5291 } 5292 5293 /// Try to fold the comparison based on range information we can get by checking 5294 /// whether bits are known to be zero or one in the inputs. 5295 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5296 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5297 Type *Ty = Op0->getType(); 5298 ICmpInst::Predicate Pred = I.getPredicate(); 5299 5300 // Get scalar or pointer size. 5301 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5302 ? Ty->getScalarSizeInBits() 5303 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5304 5305 if (!BitWidth) 5306 return nullptr; 5307 5308 KnownBits Op0Known(BitWidth); 5309 KnownBits Op1Known(BitWidth); 5310 5311 if (SimplifyDemandedBits(&I, 0, 5312 getDemandedBitsLHSMask(I, BitWidth), 5313 Op0Known, 0)) 5314 return &I; 5315 5316 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5317 return &I; 5318 5319 // Given the known and unknown bits, compute a range that the LHS could be 5320 // in. Compute the Min, Max and RHS values based on the known bits. For the 5321 // EQ and NE we use unsigned values. 5322 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5323 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5324 if (I.isSigned()) { 5325 Op0Min = Op0Known.getSignedMinValue(); 5326 Op0Max = Op0Known.getSignedMaxValue(); 5327 Op1Min = Op1Known.getSignedMinValue(); 5328 Op1Max = Op1Known.getSignedMaxValue(); 5329 } else { 5330 Op0Min = Op0Known.getMinValue(); 5331 Op0Max = Op0Known.getMaxValue(); 5332 Op1Min = Op1Known.getMinValue(); 5333 Op1Max = Op1Known.getMaxValue(); 5334 } 5335 5336 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5337 // out that the LHS or RHS is a constant. Constant fold this now, so that 5338 // code below can assume that Min != Max. 5339 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5340 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5341 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5342 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5343 5344 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5345 // min/max canonical compare with some other compare. That could lead to 5346 // conflict with select canonicalization and infinite looping. 5347 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5348 auto isMinMaxCmp = [&](Instruction &Cmp) { 5349 if (!Cmp.hasOneUse()) 5350 return false; 5351 Value *A, *B; 5352 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5353 if (!SelectPatternResult::isMinOrMax(SPF)) 5354 return false; 5355 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5356 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5357 }; 5358 if (!isMinMaxCmp(I)) { 5359 switch (Pred) { 5360 default: 5361 break; 5362 case ICmpInst::ICMP_ULT: { 5363 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5364 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5365 const APInt *CmpC; 5366 if (match(Op1, m_APInt(CmpC))) { 5367 // A <u C -> A == C-1 if min(A)+1 == C 5368 if (*CmpC == Op0Min + 1) 5369 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5370 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5371 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5372 // exceeds the log2 of C. 5373 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5374 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5375 Constant::getNullValue(Op1->getType())); 5376 } 5377 break; 5378 } 5379 case ICmpInst::ICMP_UGT: { 5380 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5381 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5382 const APInt *CmpC; 5383 if (match(Op1, m_APInt(CmpC))) { 5384 // A >u C -> A == C+1 if max(a)-1 == C 5385 if (*CmpC == Op0Max - 1) 5386 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5387 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5388 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5389 // exceeds the log2 of C. 5390 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5391 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5392 Constant::getNullValue(Op1->getType())); 5393 } 5394 break; 5395 } 5396 case ICmpInst::ICMP_SLT: { 5397 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5398 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5399 const APInt *CmpC; 5400 if (match(Op1, m_APInt(CmpC))) { 5401 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5402 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5403 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5404 } 5405 break; 5406 } 5407 case ICmpInst::ICMP_SGT: { 5408 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5409 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5410 const APInt *CmpC; 5411 if (match(Op1, m_APInt(CmpC))) { 5412 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5413 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5414 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5415 } 5416 break; 5417 } 5418 } 5419 } 5420 5421 // Based on the range information we know about the LHS, see if we can 5422 // simplify this comparison. For example, (x&4) < 8 is always true. 5423 switch (Pred) { 5424 default: 5425 llvm_unreachable("Unknown icmp opcode!"); 5426 case ICmpInst::ICMP_EQ: 5427 case ICmpInst::ICMP_NE: { 5428 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5429 return replaceInstUsesWith( 5430 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5431 5432 // If all bits are known zero except for one, then we know at most one bit 5433 // is set. If the comparison is against zero, then this is a check to see if 5434 // *that* bit is set. 5435 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5436 if (Op1Known.isZero()) { 5437 // If the LHS is an AND with the same constant, look through it. 5438 Value *LHS = nullptr; 5439 const APInt *LHSC; 5440 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5441 *LHSC != Op0KnownZeroInverted) 5442 LHS = Op0; 5443 5444 Value *X; 5445 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5446 APInt ValToCheck = Op0KnownZeroInverted; 5447 Type *XTy = X->getType(); 5448 if (ValToCheck.isPowerOf2()) { 5449 // ((1 << X) & 8) == 0 -> X != 3 5450 // ((1 << X) & 8) != 0 -> X == 3 5451 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5452 auto NewPred = ICmpInst::getInversePredicate(Pred); 5453 return new ICmpInst(NewPred, X, CmpC); 5454 } else if ((++ValToCheck).isPowerOf2()) { 5455 // ((1 << X) & 7) == 0 -> X >= 3 5456 // ((1 << X) & 7) != 0 -> X < 3 5457 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5458 auto NewPred = 5459 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5460 return new ICmpInst(NewPred, X, CmpC); 5461 } 5462 } 5463 5464 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5465 const APInt *CI; 5466 if (Op0KnownZeroInverted.isOne() && 5467 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5468 // ((8 >>u X) & 1) == 0 -> X != 3 5469 // ((8 >>u X) & 1) != 0 -> X == 3 5470 unsigned CmpVal = CI->countTrailingZeros(); 5471 auto NewPred = ICmpInst::getInversePredicate(Pred); 5472 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5473 } 5474 } 5475 break; 5476 } 5477 case ICmpInst::ICMP_ULT: { 5478 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5479 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5480 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5481 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5482 break; 5483 } 5484 case ICmpInst::ICMP_UGT: { 5485 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5486 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5487 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5488 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5489 break; 5490 } 5491 case ICmpInst::ICMP_SLT: { 5492 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5493 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5494 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5495 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5496 break; 5497 } 5498 case ICmpInst::ICMP_SGT: { 5499 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5500 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5501 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5502 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5503 break; 5504 } 5505 case ICmpInst::ICMP_SGE: 5506 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5507 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5508 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5509 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5510 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5511 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5512 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5513 break; 5514 case ICmpInst::ICMP_SLE: 5515 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5516 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5517 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5518 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5519 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5520 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5521 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5522 break; 5523 case ICmpInst::ICMP_UGE: 5524 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5525 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5526 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5527 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5528 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5529 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5530 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5531 break; 5532 case ICmpInst::ICMP_ULE: 5533 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5534 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5535 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5536 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5537 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5538 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5539 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5540 break; 5541 } 5542 5543 // Turn a signed comparison into an unsigned one if both operands are known to 5544 // have the same sign. 5545 if (I.isSigned() && 5546 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5547 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5548 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5549 5550 return nullptr; 5551 } 5552 5553 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5554 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5555 Constant *C) { 5556 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5557 "Only for relational integer predicates."); 5558 5559 Type *Type = C->getType(); 5560 bool IsSigned = ICmpInst::isSigned(Pred); 5561 5562 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5563 bool WillIncrement = 5564 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5565 5566 // Check if the constant operand can be safely incremented/decremented 5567 // without overflowing/underflowing. 5568 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5569 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5570 }; 5571 5572 Constant *SafeReplacementConstant = nullptr; 5573 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5574 // Bail out if the constant can't be safely incremented/decremented. 5575 if (!ConstantIsOk(CI)) 5576 return llvm::None; 5577 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5578 unsigned NumElts = FVTy->getNumElements(); 5579 for (unsigned i = 0; i != NumElts; ++i) { 5580 Constant *Elt = C->getAggregateElement(i); 5581 if (!Elt) 5582 return llvm::None; 5583 5584 if (isa<UndefValue>(Elt)) 5585 continue; 5586 5587 // Bail out if we can't determine if this constant is min/max or if we 5588 // know that this constant is min/max. 5589 auto *CI = dyn_cast<ConstantInt>(Elt); 5590 if (!CI || !ConstantIsOk(CI)) 5591 return llvm::None; 5592 5593 if (!SafeReplacementConstant) 5594 SafeReplacementConstant = CI; 5595 } 5596 } else { 5597 // ConstantExpr? 5598 return llvm::None; 5599 } 5600 5601 // It may not be safe to change a compare predicate in the presence of 5602 // undefined elements, so replace those elements with the first safe constant 5603 // that we found. 5604 // TODO: in case of poison, it is safe; let's replace undefs only. 5605 if (C->containsUndefOrPoisonElement()) { 5606 assert(SafeReplacementConstant && "Replacement constant not set"); 5607 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5608 } 5609 5610 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5611 5612 // Increment or decrement the constant. 5613 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5614 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5615 5616 return std::make_pair(NewPred, NewC); 5617 } 5618 5619 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5620 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5621 /// allows them to be folded in visitICmpInst. 5622 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5623 ICmpInst::Predicate Pred = I.getPredicate(); 5624 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5625 InstCombiner::isCanonicalPredicate(Pred)) 5626 return nullptr; 5627 5628 Value *Op0 = I.getOperand(0); 5629 Value *Op1 = I.getOperand(1); 5630 auto *Op1C = dyn_cast<Constant>(Op1); 5631 if (!Op1C) 5632 return nullptr; 5633 5634 auto FlippedStrictness = 5635 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5636 if (!FlippedStrictness) 5637 return nullptr; 5638 5639 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5640 } 5641 5642 /// If we have a comparison with a non-canonical predicate, if we can update 5643 /// all the users, invert the predicate and adjust all the users. 5644 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5645 // Is the predicate already canonical? 5646 CmpInst::Predicate Pred = I.getPredicate(); 5647 if (InstCombiner::isCanonicalPredicate(Pred)) 5648 return nullptr; 5649 5650 // Can all users be adjusted to predicate inversion? 5651 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5652 return nullptr; 5653 5654 // Ok, we can canonicalize comparison! 5655 // Let's first invert the comparison's predicate. 5656 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5657 I.setName(I.getName() + ".not"); 5658 5659 // And, adapt users. 5660 freelyInvertAllUsersOf(&I); 5661 5662 return &I; 5663 } 5664 5665 /// Integer compare with boolean values can always be turned into bitwise ops. 5666 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5667 InstCombiner::BuilderTy &Builder) { 5668 Value *A = I.getOperand(0), *B = I.getOperand(1); 5669 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5670 5671 // A boolean compared to true/false can be simplified to Op0/true/false in 5672 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5673 // Cases not handled by InstSimplify are always 'not' of Op0. 5674 if (match(B, m_Zero())) { 5675 switch (I.getPredicate()) { 5676 case CmpInst::ICMP_EQ: // A == 0 -> !A 5677 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5678 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5679 return BinaryOperator::CreateNot(A); 5680 default: 5681 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5682 } 5683 } else if (match(B, m_One())) { 5684 switch (I.getPredicate()) { 5685 case CmpInst::ICMP_NE: // A != 1 -> !A 5686 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5687 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5688 return BinaryOperator::CreateNot(A); 5689 default: 5690 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5691 } 5692 } 5693 5694 switch (I.getPredicate()) { 5695 default: 5696 llvm_unreachable("Invalid icmp instruction!"); 5697 case ICmpInst::ICMP_EQ: 5698 // icmp eq i1 A, B -> ~(A ^ B) 5699 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5700 5701 case ICmpInst::ICMP_NE: 5702 // icmp ne i1 A, B -> A ^ B 5703 return BinaryOperator::CreateXor(A, B); 5704 5705 case ICmpInst::ICMP_UGT: 5706 // icmp ugt -> icmp ult 5707 std::swap(A, B); 5708 LLVM_FALLTHROUGH; 5709 case ICmpInst::ICMP_ULT: 5710 // icmp ult i1 A, B -> ~A & B 5711 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5712 5713 case ICmpInst::ICMP_SGT: 5714 // icmp sgt -> icmp slt 5715 std::swap(A, B); 5716 LLVM_FALLTHROUGH; 5717 case ICmpInst::ICMP_SLT: 5718 // icmp slt i1 A, B -> A & ~B 5719 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5720 5721 case ICmpInst::ICMP_UGE: 5722 // icmp uge -> icmp ule 5723 std::swap(A, B); 5724 LLVM_FALLTHROUGH; 5725 case ICmpInst::ICMP_ULE: 5726 // icmp ule i1 A, B -> ~A | B 5727 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5728 5729 case ICmpInst::ICMP_SGE: 5730 // icmp sge -> icmp sle 5731 std::swap(A, B); 5732 LLVM_FALLTHROUGH; 5733 case ICmpInst::ICMP_SLE: 5734 // icmp sle i1 A, B -> A | ~B 5735 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5736 } 5737 } 5738 5739 // Transform pattern like: 5740 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5741 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5742 // Into: 5743 // (X l>> Y) != 0 5744 // (X l>> Y) == 0 5745 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5746 InstCombiner::BuilderTy &Builder) { 5747 ICmpInst::Predicate Pred, NewPred; 5748 Value *X, *Y; 5749 if (match(&Cmp, 5750 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5751 switch (Pred) { 5752 case ICmpInst::ICMP_ULE: 5753 NewPred = ICmpInst::ICMP_NE; 5754 break; 5755 case ICmpInst::ICMP_UGT: 5756 NewPred = ICmpInst::ICMP_EQ; 5757 break; 5758 default: 5759 return nullptr; 5760 } 5761 } else if (match(&Cmp, m_c_ICmp(Pred, 5762 m_OneUse(m_CombineOr( 5763 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5764 m_Add(m_Shl(m_One(), m_Value(Y)), 5765 m_AllOnes()))), 5766 m_Value(X)))) { 5767 // The variant with 'add' is not canonical, (the variant with 'not' is) 5768 // we only get it because it has extra uses, and can't be canonicalized, 5769 5770 switch (Pred) { 5771 case ICmpInst::ICMP_ULT: 5772 NewPred = ICmpInst::ICMP_NE; 5773 break; 5774 case ICmpInst::ICMP_UGE: 5775 NewPred = ICmpInst::ICMP_EQ; 5776 break; 5777 default: 5778 return nullptr; 5779 } 5780 } else 5781 return nullptr; 5782 5783 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5784 Constant *Zero = Constant::getNullValue(NewX->getType()); 5785 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5786 } 5787 5788 static Instruction *foldVectorCmp(CmpInst &Cmp, 5789 InstCombiner::BuilderTy &Builder) { 5790 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5791 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5792 Value *V1, *V2; 5793 ArrayRef<int> M; 5794 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5795 return nullptr; 5796 5797 // If both arguments of the cmp are shuffles that use the same mask and 5798 // shuffle within a single vector, move the shuffle after the cmp: 5799 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5800 Type *V1Ty = V1->getType(); 5801 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5802 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5803 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5804 return new ShuffleVectorInst(NewCmp, M); 5805 } 5806 5807 // Try to canonicalize compare with splatted operand and splat constant. 5808 // TODO: We could generalize this for more than splats. See/use the code in 5809 // InstCombiner::foldVectorBinop(). 5810 Constant *C; 5811 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5812 return nullptr; 5813 5814 // Length-changing splats are ok, so adjust the constants as needed: 5815 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5816 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5817 int MaskSplatIndex; 5818 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5819 // We allow undefs in matching, but this transform removes those for safety. 5820 // Demanded elements analysis should be able to recover some/all of that. 5821 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5822 ScalarC); 5823 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5824 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5825 return new ShuffleVectorInst(NewCmp, NewM); 5826 } 5827 5828 return nullptr; 5829 } 5830 5831 // extract(uadd.with.overflow(A, B), 0) ult A 5832 // -> extract(uadd.with.overflow(A, B), 1) 5833 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5834 CmpInst::Predicate Pred = I.getPredicate(); 5835 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5836 5837 Value *UAddOv; 5838 Value *A, *B; 5839 auto UAddOvResultPat = m_ExtractValue<0>( 5840 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5841 if (match(Op0, UAddOvResultPat) && 5842 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5843 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5844 (match(A, m_One()) || match(B, m_One()))) || 5845 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5846 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5847 // extract(uadd.with.overflow(A, B), 0) < A 5848 // extract(uadd.with.overflow(A, 1), 0) == 0 5849 // extract(uadd.with.overflow(A, -1), 0) != -1 5850 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5851 else if (match(Op1, UAddOvResultPat) && 5852 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5853 // A > extract(uadd.with.overflow(A, B), 0) 5854 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5855 else 5856 return nullptr; 5857 5858 return ExtractValueInst::Create(UAddOv, 1); 5859 } 5860 5861 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5862 if (!I.getOperand(0)->getType()->isPointerTy() || 5863 NullPointerIsDefined( 5864 I.getParent()->getParent(), 5865 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5866 return nullptr; 5867 } 5868 Instruction *Op; 5869 if (match(I.getOperand(0), m_Instruction(Op)) && 5870 match(I.getOperand(1), m_Zero()) && 5871 Op->isLaunderOrStripInvariantGroup()) { 5872 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5873 Op->getOperand(0), I.getOperand(1)); 5874 } 5875 return nullptr; 5876 } 5877 5878 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5879 bool Changed = false; 5880 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5881 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5882 unsigned Op0Cplxity = getComplexity(Op0); 5883 unsigned Op1Cplxity = getComplexity(Op1); 5884 5885 /// Orders the operands of the compare so that they are listed from most 5886 /// complex to least complex. This puts constants before unary operators, 5887 /// before binary operators. 5888 if (Op0Cplxity < Op1Cplxity || 5889 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5890 I.swapOperands(); 5891 std::swap(Op0, Op1); 5892 Changed = true; 5893 } 5894 5895 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5896 return replaceInstUsesWith(I, V); 5897 5898 // Comparing -val or val with non-zero is the same as just comparing val 5899 // ie, abs(val) != 0 -> val != 0 5900 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5901 Value *Cond, *SelectTrue, *SelectFalse; 5902 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5903 m_Value(SelectFalse)))) { 5904 if (Value *V = dyn_castNegVal(SelectTrue)) { 5905 if (V == SelectFalse) 5906 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5907 } 5908 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5909 if (V == SelectTrue) 5910 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5911 } 5912 } 5913 } 5914 5915 if (Op0->getType()->isIntOrIntVectorTy(1)) 5916 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5917 return Res; 5918 5919 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5920 return Res; 5921 5922 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5923 return Res; 5924 5925 if (Instruction *Res = foldICmpWithConstant(I)) 5926 return Res; 5927 5928 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5929 return Res; 5930 5931 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5932 return Res; 5933 5934 // Test if the ICmpInst instruction is used exclusively by a select as 5935 // part of a minimum or maximum operation. If so, refrain from doing 5936 // any other folding. This helps out other analyses which understand 5937 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5938 // and CodeGen. And in this case, at least one of the comparison 5939 // operands has at least one user besides the compare (the select), 5940 // which would often largely negate the benefit of folding anyway. 5941 // 5942 // Do the same for the other patterns recognized by matchSelectPattern. 5943 if (I.hasOneUse()) 5944 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5945 Value *A, *B; 5946 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5947 if (SPR.Flavor != SPF_UNKNOWN) 5948 return nullptr; 5949 } 5950 5951 // Do this after checking for min/max to prevent infinite looping. 5952 if (Instruction *Res = foldICmpWithZero(I)) 5953 return Res; 5954 5955 // FIXME: We only do this after checking for min/max to prevent infinite 5956 // looping caused by a reverse canonicalization of these patterns for min/max. 5957 // FIXME: The organization of folds is a mess. These would naturally go into 5958 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5959 // down here after the min/max restriction. 5960 ICmpInst::Predicate Pred = I.getPredicate(); 5961 const APInt *C; 5962 if (match(Op1, m_APInt(C))) { 5963 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5964 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5965 Constant *Zero = Constant::getNullValue(Op0->getType()); 5966 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5967 } 5968 5969 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5970 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5971 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5972 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5973 } 5974 } 5975 5976 // The folds in here may rely on wrapping flags and special constants, so 5977 // they can break up min/max idioms in some cases but not seemingly similar 5978 // patterns. 5979 // FIXME: It may be possible to enhance select folding to make this 5980 // unnecessary. It may also be moot if we canonicalize to min/max 5981 // intrinsics. 5982 if (Instruction *Res = foldICmpBinOp(I, Q)) 5983 return Res; 5984 5985 if (Instruction *Res = foldICmpInstWithConstant(I)) 5986 return Res; 5987 5988 // Try to match comparison as a sign bit test. Intentionally do this after 5989 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5990 if (Instruction *New = foldSignBitTest(I)) 5991 return New; 5992 5993 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5994 return Res; 5995 5996 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 5997 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 5998 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5999 return NI; 6000 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6001 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6002 return NI; 6003 6004 // Try to optimize equality comparisons against alloca-based pointers. 6005 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6006 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6007 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6008 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 6009 return New; 6010 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6011 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 6012 return New; 6013 } 6014 6015 if (Instruction *Res = foldICmpBitCast(I)) 6016 return Res; 6017 6018 // TODO: Hoist this above the min/max bailout. 6019 if (Instruction *R = foldICmpWithCastOp(I)) 6020 return R; 6021 6022 if (Instruction *Res = foldICmpWithMinMax(I)) 6023 return Res; 6024 6025 { 6026 Value *A, *B; 6027 // Transform (A & ~B) == 0 --> (A & B) != 0 6028 // and (A & ~B) != 0 --> (A & B) == 0 6029 // if A is a power of 2. 6030 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6031 match(Op1, m_Zero()) && 6032 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6033 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6034 Op1); 6035 6036 // ~X < ~Y --> Y < X 6037 // ~X < C --> X > ~C 6038 if (match(Op0, m_Not(m_Value(A)))) { 6039 if (match(Op1, m_Not(m_Value(B)))) 6040 return new ICmpInst(I.getPredicate(), B, A); 6041 6042 const APInt *C; 6043 if (match(Op1, m_APInt(C))) 6044 return new ICmpInst(I.getSwappedPredicate(), A, 6045 ConstantInt::get(Op1->getType(), ~(*C))); 6046 } 6047 6048 Instruction *AddI = nullptr; 6049 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6050 m_Instruction(AddI))) && 6051 isa<IntegerType>(A->getType())) { 6052 Value *Result; 6053 Constant *Overflow; 6054 // m_UAddWithOverflow can match patterns that do not include an explicit 6055 // "add" instruction, so check the opcode of the matched op. 6056 if (AddI->getOpcode() == Instruction::Add && 6057 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6058 Result, Overflow)) { 6059 replaceInstUsesWith(*AddI, Result); 6060 eraseInstFromFunction(*AddI); 6061 return replaceInstUsesWith(I, Overflow); 6062 } 6063 } 6064 6065 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6066 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6067 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6068 return R; 6069 } 6070 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6071 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6072 return R; 6073 } 6074 } 6075 6076 if (Instruction *Res = foldICmpEquality(I)) 6077 return Res; 6078 6079 if (Instruction *Res = foldICmpOfUAddOv(I)) 6080 return Res; 6081 6082 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6083 // an i1 which indicates whether or not we successfully did the swap. 6084 // 6085 // Replace comparisons between the old value and the expected value with the 6086 // indicator that 'cmpxchg' returns. 6087 // 6088 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6089 // spuriously fail. In those cases, the old value may equal the expected 6090 // value but it is possible for the swap to not occur. 6091 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6092 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6093 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6094 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6095 !ACXI->isWeak()) 6096 return ExtractValueInst::Create(ACXI, 1); 6097 6098 { 6099 Value *X; 6100 const APInt *C; 6101 // icmp X+Cst, X 6102 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6103 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6104 6105 // icmp X, X+Cst 6106 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6107 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6108 } 6109 6110 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6111 return Res; 6112 6113 if (I.getType()->isVectorTy()) 6114 if (Instruction *Res = foldVectorCmp(I, Builder)) 6115 return Res; 6116 6117 if (Instruction *Res = foldICmpInvariantGroup(I)) 6118 return Res; 6119 6120 return Changed ? &I : nullptr; 6121 } 6122 6123 /// Fold fcmp ([us]itofp x, cst) if possible. 6124 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6125 Instruction *LHSI, 6126 Constant *RHSC) { 6127 if (!isa<ConstantFP>(RHSC)) return nullptr; 6128 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6129 6130 // Get the width of the mantissa. We don't want to hack on conversions that 6131 // might lose information from the integer, e.g. "i64 -> float" 6132 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6133 if (MantissaWidth == -1) return nullptr; // Unknown. 6134 6135 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6136 6137 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6138 6139 if (I.isEquality()) { 6140 FCmpInst::Predicate P = I.getPredicate(); 6141 bool IsExact = false; 6142 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6143 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6144 6145 // If the floating point constant isn't an integer value, we know if we will 6146 // ever compare equal / not equal to it. 6147 if (!IsExact) { 6148 // TODO: Can never be -0.0 and other non-representable values 6149 APFloat RHSRoundInt(RHS); 6150 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6151 if (RHS != RHSRoundInt) { 6152 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6153 return replaceInstUsesWith(I, Builder.getFalse()); 6154 6155 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6156 return replaceInstUsesWith(I, Builder.getTrue()); 6157 } 6158 } 6159 6160 // TODO: If the constant is exactly representable, is it always OK to do 6161 // equality compares as integer? 6162 } 6163 6164 // Check to see that the input is converted from an integer type that is small 6165 // enough that preserves all bits. TODO: check here for "known" sign bits. 6166 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6167 unsigned InputSize = IntTy->getScalarSizeInBits(); 6168 6169 // Following test does NOT adjust InputSize downwards for signed inputs, 6170 // because the most negative value still requires all the mantissa bits 6171 // to distinguish it from one less than that value. 6172 if ((int)InputSize > MantissaWidth) { 6173 // Conversion would lose accuracy. Check if loss can impact comparison. 6174 int Exp = ilogb(RHS); 6175 if (Exp == APFloat::IEK_Inf) { 6176 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6177 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6178 // Conversion could create infinity. 6179 return nullptr; 6180 } else { 6181 // Note that if RHS is zero or NaN, then Exp is negative 6182 // and first condition is trivially false. 6183 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6184 // Conversion could affect comparison. 6185 return nullptr; 6186 } 6187 } 6188 6189 // Otherwise, we can potentially simplify the comparison. We know that it 6190 // will always come through as an integer value and we know the constant is 6191 // not a NAN (it would have been previously simplified). 6192 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6193 6194 ICmpInst::Predicate Pred; 6195 switch (I.getPredicate()) { 6196 default: llvm_unreachable("Unexpected predicate!"); 6197 case FCmpInst::FCMP_UEQ: 6198 case FCmpInst::FCMP_OEQ: 6199 Pred = ICmpInst::ICMP_EQ; 6200 break; 6201 case FCmpInst::FCMP_UGT: 6202 case FCmpInst::FCMP_OGT: 6203 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6204 break; 6205 case FCmpInst::FCMP_UGE: 6206 case FCmpInst::FCMP_OGE: 6207 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6208 break; 6209 case FCmpInst::FCMP_ULT: 6210 case FCmpInst::FCMP_OLT: 6211 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6212 break; 6213 case FCmpInst::FCMP_ULE: 6214 case FCmpInst::FCMP_OLE: 6215 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6216 break; 6217 case FCmpInst::FCMP_UNE: 6218 case FCmpInst::FCMP_ONE: 6219 Pred = ICmpInst::ICMP_NE; 6220 break; 6221 case FCmpInst::FCMP_ORD: 6222 return replaceInstUsesWith(I, Builder.getTrue()); 6223 case FCmpInst::FCMP_UNO: 6224 return replaceInstUsesWith(I, Builder.getFalse()); 6225 } 6226 6227 // Now we know that the APFloat is a normal number, zero or inf. 6228 6229 // See if the FP constant is too large for the integer. For example, 6230 // comparing an i8 to 300.0. 6231 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6232 6233 if (!LHSUnsigned) { 6234 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6235 // and large values. 6236 APFloat SMax(RHS.getSemantics()); 6237 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6238 APFloat::rmNearestTiesToEven); 6239 if (SMax < RHS) { // smax < 13123.0 6240 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6241 Pred == ICmpInst::ICMP_SLE) 6242 return replaceInstUsesWith(I, Builder.getTrue()); 6243 return replaceInstUsesWith(I, Builder.getFalse()); 6244 } 6245 } else { 6246 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6247 // +INF and large values. 6248 APFloat UMax(RHS.getSemantics()); 6249 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6250 APFloat::rmNearestTiesToEven); 6251 if (UMax < RHS) { // umax < 13123.0 6252 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6253 Pred == ICmpInst::ICMP_ULE) 6254 return replaceInstUsesWith(I, Builder.getTrue()); 6255 return replaceInstUsesWith(I, Builder.getFalse()); 6256 } 6257 } 6258 6259 if (!LHSUnsigned) { 6260 // See if the RHS value is < SignedMin. 6261 APFloat SMin(RHS.getSemantics()); 6262 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6263 APFloat::rmNearestTiesToEven); 6264 if (SMin > RHS) { // smin > 12312.0 6265 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6266 Pred == ICmpInst::ICMP_SGE) 6267 return replaceInstUsesWith(I, Builder.getTrue()); 6268 return replaceInstUsesWith(I, Builder.getFalse()); 6269 } 6270 } else { 6271 // See if the RHS value is < UnsignedMin. 6272 APFloat UMin(RHS.getSemantics()); 6273 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6274 APFloat::rmNearestTiesToEven); 6275 if (UMin > RHS) { // umin > 12312.0 6276 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6277 Pred == ICmpInst::ICMP_UGE) 6278 return replaceInstUsesWith(I, Builder.getTrue()); 6279 return replaceInstUsesWith(I, Builder.getFalse()); 6280 } 6281 } 6282 6283 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6284 // [0, UMAX], but it may still be fractional. See if it is fractional by 6285 // casting the FP value to the integer value and back, checking for equality. 6286 // Don't do this for zero, because -0.0 is not fractional. 6287 Constant *RHSInt = LHSUnsigned 6288 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6289 : ConstantExpr::getFPToSI(RHSC, IntTy); 6290 if (!RHS.isZero()) { 6291 bool Equal = LHSUnsigned 6292 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6293 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6294 if (!Equal) { 6295 // If we had a comparison against a fractional value, we have to adjust 6296 // the compare predicate and sometimes the value. RHSC is rounded towards 6297 // zero at this point. 6298 switch (Pred) { 6299 default: llvm_unreachable("Unexpected integer comparison!"); 6300 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6301 return replaceInstUsesWith(I, Builder.getTrue()); 6302 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6303 return replaceInstUsesWith(I, Builder.getFalse()); 6304 case ICmpInst::ICMP_ULE: 6305 // (float)int <= 4.4 --> int <= 4 6306 // (float)int <= -4.4 --> false 6307 if (RHS.isNegative()) 6308 return replaceInstUsesWith(I, Builder.getFalse()); 6309 break; 6310 case ICmpInst::ICMP_SLE: 6311 // (float)int <= 4.4 --> int <= 4 6312 // (float)int <= -4.4 --> int < -4 6313 if (RHS.isNegative()) 6314 Pred = ICmpInst::ICMP_SLT; 6315 break; 6316 case ICmpInst::ICMP_ULT: 6317 // (float)int < -4.4 --> false 6318 // (float)int < 4.4 --> int <= 4 6319 if (RHS.isNegative()) 6320 return replaceInstUsesWith(I, Builder.getFalse()); 6321 Pred = ICmpInst::ICMP_ULE; 6322 break; 6323 case ICmpInst::ICMP_SLT: 6324 // (float)int < -4.4 --> int < -4 6325 // (float)int < 4.4 --> int <= 4 6326 if (!RHS.isNegative()) 6327 Pred = ICmpInst::ICMP_SLE; 6328 break; 6329 case ICmpInst::ICMP_UGT: 6330 // (float)int > 4.4 --> int > 4 6331 // (float)int > -4.4 --> true 6332 if (RHS.isNegative()) 6333 return replaceInstUsesWith(I, Builder.getTrue()); 6334 break; 6335 case ICmpInst::ICMP_SGT: 6336 // (float)int > 4.4 --> int > 4 6337 // (float)int > -4.4 --> int >= -4 6338 if (RHS.isNegative()) 6339 Pred = ICmpInst::ICMP_SGE; 6340 break; 6341 case ICmpInst::ICMP_UGE: 6342 // (float)int >= -4.4 --> true 6343 // (float)int >= 4.4 --> int > 4 6344 if (RHS.isNegative()) 6345 return replaceInstUsesWith(I, Builder.getTrue()); 6346 Pred = ICmpInst::ICMP_UGT; 6347 break; 6348 case ICmpInst::ICMP_SGE: 6349 // (float)int >= -4.4 --> int >= -4 6350 // (float)int >= 4.4 --> int > 4 6351 if (!RHS.isNegative()) 6352 Pred = ICmpInst::ICMP_SGT; 6353 break; 6354 } 6355 } 6356 } 6357 6358 // Lower this FP comparison into an appropriate integer version of the 6359 // comparison. 6360 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6361 } 6362 6363 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6364 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6365 Constant *RHSC) { 6366 // When C is not 0.0 and infinities are not allowed: 6367 // (C / X) < 0.0 is a sign-bit test of X 6368 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6369 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6370 // 6371 // Proof: 6372 // Multiply (C / X) < 0.0 by X * X / C. 6373 // - X is non zero, if it is the flag 'ninf' is violated. 6374 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6375 // the predicate. C is also non zero by definition. 6376 // 6377 // Thus X * X / C is non zero and the transformation is valid. [qed] 6378 6379 FCmpInst::Predicate Pred = I.getPredicate(); 6380 6381 // Check that predicates are valid. 6382 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6383 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6384 return nullptr; 6385 6386 // Check that RHS operand is zero. 6387 if (!match(RHSC, m_AnyZeroFP())) 6388 return nullptr; 6389 6390 // Check fastmath flags ('ninf'). 6391 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6392 return nullptr; 6393 6394 // Check the properties of the dividend. It must not be zero to avoid a 6395 // division by zero (see Proof). 6396 const APFloat *C; 6397 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6398 return nullptr; 6399 6400 if (C->isZero()) 6401 return nullptr; 6402 6403 // Get swapped predicate if necessary. 6404 if (C->isNegative()) 6405 Pred = I.getSwappedPredicate(); 6406 6407 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6408 } 6409 6410 /// Optimize fabs(X) compared with zero. 6411 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6412 Value *X; 6413 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6414 !match(I.getOperand(1), m_PosZeroFP())) 6415 return nullptr; 6416 6417 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6418 I->setPredicate(P); 6419 return IC.replaceOperand(*I, 0, X); 6420 }; 6421 6422 switch (I.getPredicate()) { 6423 case FCmpInst::FCMP_UGE: 6424 case FCmpInst::FCMP_OLT: 6425 // fabs(X) >= 0.0 --> true 6426 // fabs(X) < 0.0 --> false 6427 llvm_unreachable("fcmp should have simplified"); 6428 6429 case FCmpInst::FCMP_OGT: 6430 // fabs(X) > 0.0 --> X != 0.0 6431 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6432 6433 case FCmpInst::FCMP_UGT: 6434 // fabs(X) u> 0.0 --> X u!= 0.0 6435 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6436 6437 case FCmpInst::FCMP_OLE: 6438 // fabs(X) <= 0.0 --> X == 0.0 6439 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6440 6441 case FCmpInst::FCMP_ULE: 6442 // fabs(X) u<= 0.0 --> X u== 0.0 6443 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6444 6445 case FCmpInst::FCMP_OGE: 6446 // fabs(X) >= 0.0 --> !isnan(X) 6447 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6448 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6449 6450 case FCmpInst::FCMP_ULT: 6451 // fabs(X) u< 0.0 --> isnan(X) 6452 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6453 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6454 6455 case FCmpInst::FCMP_OEQ: 6456 case FCmpInst::FCMP_UEQ: 6457 case FCmpInst::FCMP_ONE: 6458 case FCmpInst::FCMP_UNE: 6459 case FCmpInst::FCMP_ORD: 6460 case FCmpInst::FCMP_UNO: 6461 // Look through the fabs() because it doesn't change anything but the sign. 6462 // fabs(X) == 0.0 --> X == 0.0, 6463 // fabs(X) != 0.0 --> X != 0.0 6464 // isnan(fabs(X)) --> isnan(X) 6465 // !isnan(fabs(X) --> !isnan(X) 6466 return replacePredAndOp0(&I, I.getPredicate(), X); 6467 6468 default: 6469 return nullptr; 6470 } 6471 } 6472 6473 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6474 bool Changed = false; 6475 6476 /// Orders the operands of the compare so that they are listed from most 6477 /// complex to least complex. This puts constants before unary operators, 6478 /// before binary operators. 6479 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6480 I.swapOperands(); 6481 Changed = true; 6482 } 6483 6484 const CmpInst::Predicate Pred = I.getPredicate(); 6485 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6486 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6487 SQ.getWithInstruction(&I))) 6488 return replaceInstUsesWith(I, V); 6489 6490 // Simplify 'fcmp pred X, X' 6491 Type *OpType = Op0->getType(); 6492 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6493 if (Op0 == Op1) { 6494 switch (Pred) { 6495 default: break; 6496 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6497 case FCmpInst::FCMP_ULT: // True if unordered or less than 6498 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6499 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6500 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6501 I.setPredicate(FCmpInst::FCMP_UNO); 6502 I.setOperand(1, Constant::getNullValue(OpType)); 6503 return &I; 6504 6505 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6506 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6507 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6508 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6509 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6510 I.setPredicate(FCmpInst::FCMP_ORD); 6511 I.setOperand(1, Constant::getNullValue(OpType)); 6512 return &I; 6513 } 6514 } 6515 6516 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6517 // then canonicalize the operand to 0.0. 6518 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6519 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6520 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6521 6522 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6523 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6524 } 6525 6526 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6527 Value *X, *Y; 6528 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6529 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6530 6531 // Test if the FCmpInst instruction is used exclusively by a select as 6532 // part of a minimum or maximum operation. If so, refrain from doing 6533 // any other folding. This helps out other analyses which understand 6534 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6535 // and CodeGen. And in this case, at least one of the comparison 6536 // operands has at least one user besides the compare (the select), 6537 // which would often largely negate the benefit of folding anyway. 6538 if (I.hasOneUse()) 6539 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6540 Value *A, *B; 6541 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6542 if (SPR.Flavor != SPF_UNKNOWN) 6543 return nullptr; 6544 } 6545 6546 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6547 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6548 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6549 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6550 6551 // Handle fcmp with instruction LHS and constant RHS. 6552 Instruction *LHSI; 6553 Constant *RHSC; 6554 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6555 switch (LHSI->getOpcode()) { 6556 case Instruction::PHI: 6557 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6558 // block. If in the same block, we're encouraging jump threading. If 6559 // not, we are just pessimizing the code by making an i1 phi. 6560 if (LHSI->getParent() == I.getParent()) 6561 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6562 return NV; 6563 break; 6564 case Instruction::SIToFP: 6565 case Instruction::UIToFP: 6566 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6567 return NV; 6568 break; 6569 case Instruction::FDiv: 6570 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6571 return NV; 6572 break; 6573 case Instruction::Load: 6574 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6575 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6576 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6577 !cast<LoadInst>(LHSI)->isVolatile()) 6578 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6579 return Res; 6580 break; 6581 } 6582 } 6583 6584 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6585 return R; 6586 6587 if (match(Op0, m_FNeg(m_Value(X)))) { 6588 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6589 Constant *C; 6590 if (match(Op1, m_Constant(C))) { 6591 Constant *NegC = ConstantExpr::getFNeg(C); 6592 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6593 } 6594 } 6595 6596 if (match(Op0, m_FPExt(m_Value(X)))) { 6597 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6598 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6599 return new FCmpInst(Pred, X, Y, "", &I); 6600 6601 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6602 const APFloat *C; 6603 if (match(Op1, m_APFloat(C))) { 6604 const fltSemantics &FPSem = 6605 X->getType()->getScalarType()->getFltSemantics(); 6606 bool Lossy; 6607 APFloat TruncC = *C; 6608 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6609 6610 // Avoid lossy conversions and denormals. 6611 // Zero is a special case that's OK to convert. 6612 APFloat Fabs = TruncC; 6613 Fabs.clearSign(); 6614 if (!Lossy && 6615 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6616 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6617 return new FCmpInst(Pred, X, NewC, "", &I); 6618 } 6619 } 6620 } 6621 6622 // Convert a sign-bit test of an FP value into a cast and integer compare. 6623 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6624 // TODO: Handle non-zero compare constants. 6625 // TODO: Handle other predicates. 6626 const APFloat *C; 6627 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6628 m_Value(X)))) && 6629 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6630 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6631 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6632 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6633 6634 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6635 if (Pred == FCmpInst::FCMP_OLT) { 6636 Value *IntX = Builder.CreateBitCast(X, IntType); 6637 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6638 ConstantInt::getNullValue(IntType)); 6639 } 6640 } 6641 6642 if (I.getType()->isVectorTy()) 6643 if (Instruction *Res = foldVectorCmp(I, Builder)) 6644 return Res; 6645 6646 return Changed ? &I : nullptr; 6647 } 6648