1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *
109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
110                                                GlobalVariable *GV, CmpInst &ICI,
111                                                ConstantInt *AndCst) {
112   Constant *Init = GV->getInitializer();
113   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
114     return nullptr;
115 
116   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
117   // Don't blow up on huge arrays.
118   if (ArrayElementCount > MaxArraySizeForCombine)
119     return nullptr;
120 
121   // There are many forms of this optimization we can handle, for now, just do
122   // the simple index into a single-dimensional array.
123   //
124   // Require: GEP GV, 0, i {{, constant indices}}
125   if (GEP->getNumOperands() < 3 ||
126       !isa<ConstantInt>(GEP->getOperand(1)) ||
127       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
128       isa<Constant>(GEP->getOperand(2)))
129     return nullptr;
130 
131   // Check that indices after the variable are constants and in-range for the
132   // type they index.  Collect the indices.  This is typically for arrays of
133   // structs.
134   SmallVector<unsigned, 4> LaterIndices;
135 
136   Type *EltTy = Init->getType()->getArrayElementType();
137   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
138     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
139     if (!Idx) return nullptr;  // Variable index.
140 
141     uint64_t IdxVal = Idx->getZExtValue();
142     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
143 
144     if (StructType *STy = dyn_cast<StructType>(EltTy))
145       EltTy = STy->getElementType(IdxVal);
146     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
147       if (IdxVal >= ATy->getNumElements()) return nullptr;
148       EltTy = ATy->getElementType();
149     } else {
150       return nullptr; // Unknown type.
151     }
152 
153     LaterIndices.push_back(IdxVal);
154   }
155 
156   enum { Overdefined = -3, Undefined = -2 };
157 
158   // Variables for our state machines.
159 
160   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
161   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
162   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
163   // undefined, otherwise set to the first true element.  SecondTrueElement is
164   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
165   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
166 
167   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
168   // form "i != 47 & i != 87".  Same state transitions as for true elements.
169   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
170 
171   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
172   /// define a state machine that triggers for ranges of values that the index
173   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
174   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
175   /// index in the range (inclusive).  We use -2 for undefined here because we
176   /// use relative comparisons and don't want 0-1 to match -1.
177   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
178 
179   // MagicBitvector - This is a magic bitvector where we set a bit if the
180   // comparison is true for element 'i'.  If there are 64 elements or less in
181   // the array, this will fully represent all the comparison results.
182   uint64_t MagicBitvector = 0;
183 
184   // Scan the array and see if one of our patterns matches.
185   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
186   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
187     Constant *Elt = Init->getAggregateElement(i);
188     if (!Elt) return nullptr;
189 
190     // If this is indexing an array of structures, get the structure element.
191     if (!LaterIndices.empty())
192       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
193 
194     // If the element is masked, handle it.
195     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
196 
197     // Find out if the comparison would be true or false for the i'th element.
198     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
199                                                   CompareRHS, DL, &TLI);
200     // If the result is undef for this element, ignore it.
201     if (isa<UndefValue>(C)) {
202       // Extend range state machines to cover this element in case there is an
203       // undef in the middle of the range.
204       if (TrueRangeEnd == (int)i-1)
205         TrueRangeEnd = i;
206       if (FalseRangeEnd == (int)i-1)
207         FalseRangeEnd = i;
208       continue;
209     }
210 
211     // If we can't compute the result for any of the elements, we have to give
212     // up evaluating the entire conditional.
213     if (!isa<ConstantInt>(C)) return nullptr;
214 
215     // Otherwise, we know if the comparison is true or false for this element,
216     // update our state machines.
217     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
218 
219     // State machine for single/double/range index comparison.
220     if (IsTrueForElt) {
221       // Update the TrueElement state machine.
222       if (FirstTrueElement == Undefined)
223         FirstTrueElement = TrueRangeEnd = i;  // First true element.
224       else {
225         // Update double-compare state machine.
226         if (SecondTrueElement == Undefined)
227           SecondTrueElement = i;
228         else
229           SecondTrueElement = Overdefined;
230 
231         // Update range state machine.
232         if (TrueRangeEnd == (int)i-1)
233           TrueRangeEnd = i;
234         else
235           TrueRangeEnd = Overdefined;
236       }
237     } else {
238       // Update the FalseElement state machine.
239       if (FirstFalseElement == Undefined)
240         FirstFalseElement = FalseRangeEnd = i; // First false element.
241       else {
242         // Update double-compare state machine.
243         if (SecondFalseElement == Undefined)
244           SecondFalseElement = i;
245         else
246           SecondFalseElement = Overdefined;
247 
248         // Update range state machine.
249         if (FalseRangeEnd == (int)i-1)
250           FalseRangeEnd = i;
251         else
252           FalseRangeEnd = Overdefined;
253       }
254     }
255 
256     // If this element is in range, update our magic bitvector.
257     if (i < 64 && IsTrueForElt)
258       MagicBitvector |= 1ULL << i;
259 
260     // If all of our states become overdefined, bail out early.  Since the
261     // predicate is expensive, only check it every 8 elements.  This is only
262     // really useful for really huge arrays.
263     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
264         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
265         FalseRangeEnd == Overdefined)
266       return nullptr;
267   }
268 
269   // Now that we've scanned the entire array, emit our new comparison(s).  We
270   // order the state machines in complexity of the generated code.
271   Value *Idx = GEP->getOperand(2);
272 
273   // If the index is larger than the pointer size of the target, truncate the
274   // index down like the GEP would do implicitly.  We don't have to do this for
275   // an inbounds GEP because the index can't be out of range.
276   if (!GEP->isInBounds()) {
277     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
278     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
279     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
280       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
281   }
282 
283   // If inbounds keyword is not present, Idx * ElementSize can overflow.
284   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
285   // Then, there are two possible values for Idx to match offset 0:
286   // 0x00..00, 0x80..00.
287   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
288   // comparison is false if Idx was 0x80..00.
289   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
290   unsigned ElementSize =
291       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
292   auto MaskIdx = [&](Value* Idx){
293     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
294       Value *Mask = ConstantInt::get(Idx->getType(), -1);
295       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
296       Idx = Builder.CreateAnd(Idx, Mask);
297     }
298     return Idx;
299   };
300 
301   // If the comparison is only true for one or two elements, emit direct
302   // comparisons.
303   if (SecondTrueElement != Overdefined) {
304     Idx = MaskIdx(Idx);
305     // None true -> false.
306     if (FirstTrueElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getFalse());
308 
309     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
310 
311     // True for one element -> 'i == 47'.
312     if (SecondTrueElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
314 
315     // True for two elements -> 'i == 47 | i == 72'.
316     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
317     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
318     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
319     return BinaryOperator::CreateOr(C1, C2);
320   }
321 
322   // If the comparison is only false for one or two elements, emit direct
323   // comparisons.
324   if (SecondFalseElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None false -> true.
327     if (FirstFalseElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getTrue());
329 
330     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
331 
332     // False for one element -> 'i != 47'.
333     if (SecondFalseElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
335 
336     // False for two elements -> 'i != 47 & i != 72'.
337     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
338     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
339     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
340     return BinaryOperator::CreateAnd(C1, C2);
341   }
342 
343   // If the comparison can be replaced with a range comparison for the elements
344   // where it is true, emit the range check.
345   if (TrueRangeEnd != Overdefined) {
346     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
347     Idx = MaskIdx(Idx);
348 
349     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
350     if (FirstTrueElement) {
351       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
352       Idx = Builder.CreateAdd(Idx, Offs);
353     }
354 
355     Value *End = ConstantInt::get(Idx->getType(),
356                                   TrueRangeEnd-FirstTrueElement+1);
357     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
358   }
359 
360   // False range check.
361   if (FalseRangeEnd != Overdefined) {
362     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
363     Idx = MaskIdx(Idx);
364     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
365     if (FirstFalseElement) {
366       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
367       Idx = Builder.CreateAdd(Idx, Offs);
368     }
369 
370     Value *End = ConstantInt::get(Idx->getType(),
371                                   FalseRangeEnd-FirstFalseElement);
372     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
373   }
374 
375   // If a magic bitvector captures the entire comparison state
376   // of this load, replace it with computation that does:
377   //   ((magic_cst >> i) & 1) != 0
378   {
379     Type *Ty = nullptr;
380 
381     // Look for an appropriate type:
382     // - The type of Idx if the magic fits
383     // - The smallest fitting legal type
384     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
385       Ty = Idx->getType();
386     else
387       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
388 
389     if (Ty) {
390       Idx = MaskIdx(Idx);
391       Value *V = Builder.CreateIntCast(Idx, Ty, false);
392       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
393       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
394       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
395     }
396   }
397 
398   return nullptr;
399 }
400 
401 /// Return a value that can be used to compare the *offset* implied by a GEP to
402 /// zero. For example, if we have &A[i], we want to return 'i' for
403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
404 /// are involved. The above expression would also be legal to codegen as
405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
406 /// This latter form is less amenable to optimization though, and we are allowed
407 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 ///
409 /// If we can't emit an optimized form for this expression, this returns null.
410 ///
411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
412                                           const DataLayout &DL) {
413   gep_type_iterator GTI = gep_type_begin(GEP);
414 
415   // Check to see if this gep only has a single variable index.  If so, and if
416   // any constant indices are a multiple of its scale, then we can compute this
417   // in terms of the scale of the variable index.  For example, if the GEP
418   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
419   // because the expression will cross zero at the same point.
420   unsigned i, e = GEP->getNumOperands();
421   int64_t Offset = 0;
422   for (i = 1; i != e; ++i, ++GTI) {
423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
424       // Compute the aggregate offset of constant indices.
425       if (CI->isZero()) continue;
426 
427       // Handle a struct index, which adds its field offset to the pointer.
428       if (StructType *STy = GTI.getStructTypeOrNull()) {
429         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
430       } else {
431         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
432         Offset += Size*CI->getSExtValue();
433       }
434     } else {
435       // Found our variable index.
436       break;
437     }
438   }
439 
440   // If there are no variable indices, we must have a constant offset, just
441   // evaluate it the general way.
442   if (i == e) return nullptr;
443 
444   Value *VariableIdx = GEP->getOperand(i);
445   // Determine the scale factor of the variable element.  For example, this is
446   // 4 if the variable index is into an array of i32.
447   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
448 
449   // Verify that there are no other variable indices.  If so, emit the hard way.
450   for (++i, ++GTI; i != e; ++i, ++GTI) {
451     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
452     if (!CI) return nullptr;
453 
454     // Compute the aggregate offset of constant indices.
455     if (CI->isZero()) continue;
456 
457     // Handle a struct index, which adds its field offset to the pointer.
458     if (StructType *STy = GTI.getStructTypeOrNull()) {
459       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
460     } else {
461       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
462       Offset += Size*CI->getSExtValue();
463     }
464   }
465 
466   // Okay, we know we have a single variable index, which must be a
467   // pointer/array/vector index.  If there is no offset, life is simple, return
468   // the index.
469   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
470   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
471   if (Offset == 0) {
472     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
473     // we don't need to bother extending: the extension won't affect where the
474     // computation crosses zero.
475     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
476         IntPtrWidth) {
477       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
478     }
479     return VariableIdx;
480   }
481 
482   // Otherwise, there is an index.  The computation we will do will be modulo
483   // the pointer size.
484   Offset = SignExtend64(Offset, IntPtrWidth);
485   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
486 
487   // To do this transformation, any constant index must be a multiple of the
488   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
489   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
490   // multiple of the variable scale.
491   int64_t NewOffs = Offset / (int64_t)VariableScale;
492   if (Offset != NewOffs*(int64_t)VariableScale)
493     return nullptr;
494 
495   // Okay, we can do this evaluation.  Start by converting the index to intptr.
496   if (VariableIdx->getType() != IntPtrTy)
497     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
498                                             true /*Signed*/);
499   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
500   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
501 }
502 
503 /// Returns true if we can rewrite Start as a GEP with pointer Base
504 /// and some integer offset. The nodes that need to be re-written
505 /// for this transformation will be added to Explored.
506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
507                                   const DataLayout &DL,
508                                   SetVector<Value *> &Explored) {
509   SmallVector<Value *, 16> WorkList(1, Start);
510   Explored.insert(Base);
511 
512   // The following traversal gives us an order which can be used
513   // when doing the final transformation. Since in the final
514   // transformation we create the PHI replacement instructions first,
515   // we don't have to get them in any particular order.
516   //
517   // However, for other instructions we will have to traverse the
518   // operands of an instruction first, which means that we have to
519   // do a post-order traversal.
520   while (!WorkList.empty()) {
521     SetVector<PHINode *> PHIs;
522 
523     while (!WorkList.empty()) {
524       if (Explored.size() >= 100)
525         return false;
526 
527       Value *V = WorkList.back();
528 
529       if (Explored.contains(V)) {
530         WorkList.pop_back();
531         continue;
532       }
533 
534       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
535           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
536         // We've found some value that we can't explore which is different from
537         // the base. Therefore we can't do this transformation.
538         return false;
539 
540       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
541         auto *CI = cast<CastInst>(V);
542         if (!CI->isNoopCast(DL))
543           return false;
544 
545         if (!Explored.contains(CI->getOperand(0)))
546           WorkList.push_back(CI->getOperand(0));
547       }
548 
549       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
550         // We're limiting the GEP to having one index. This will preserve
551         // the original pointer type. We could handle more cases in the
552         // future.
553         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
554             GEP->getSourceElementType() != ElemTy)
555           return false;
556 
557         if (!Explored.contains(GEP->getOperand(0)))
558           WorkList.push_back(GEP->getOperand(0));
559       }
560 
561       if (WorkList.back() == V) {
562         WorkList.pop_back();
563         // We've finished visiting this node, mark it as such.
564         Explored.insert(V);
565       }
566 
567       if (auto *PN = dyn_cast<PHINode>(V)) {
568         // We cannot transform PHIs on unsplittable basic blocks.
569         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
570           return false;
571         Explored.insert(PN);
572         PHIs.insert(PN);
573       }
574     }
575 
576     // Explore the PHI nodes further.
577     for (auto *PN : PHIs)
578       for (Value *Op : PN->incoming_values())
579         if (!Explored.contains(Op))
580           WorkList.push_back(Op);
581   }
582 
583   // Make sure that we can do this. Since we can't insert GEPs in a basic
584   // block before a PHI node, we can't easily do this transformation if
585   // we have PHI node users of transformed instructions.
586   for (Value *Val : Explored) {
587     for (Value *Use : Val->uses()) {
588 
589       auto *PHI = dyn_cast<PHINode>(Use);
590       auto *Inst = dyn_cast<Instruction>(Val);
591 
592       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
593           !Explored.contains(PHI))
594         continue;
595 
596       if (PHI->getParent() == Inst->getParent())
597         return false;
598     }
599   }
600   return true;
601 }
602 
603 // Sets the appropriate insert point on Builder where we can add
604 // a replacement Instruction for V (if that is possible).
605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
606                               bool Before = true) {
607   if (auto *PHI = dyn_cast<PHINode>(V)) {
608     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
609     return;
610   }
611   if (auto *I = dyn_cast<Instruction>(V)) {
612     if (!Before)
613       I = &*std::next(I->getIterator());
614     Builder.SetInsertPoint(I);
615     return;
616   }
617   if (auto *A = dyn_cast<Argument>(V)) {
618     // Set the insertion point in the entry block.
619     BasicBlock &Entry = A->getParent()->getEntryBlock();
620     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
621     return;
622   }
623   // Otherwise, this is a constant and we don't need to set a new
624   // insertion point.
625   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
626 }
627 
628 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 /// pointer.
630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
631                                  const DataLayout &DL,
632                                  SetVector<Value *> &Explored) {
633   // Perform all the substitutions. This is a bit tricky because we can
634   // have cycles in our use-def chains.
635   // 1. Create the PHI nodes without any incoming values.
636   // 2. Create all the other values.
637   // 3. Add the edges for the PHI nodes.
638   // 4. Emit GEPs to get the original pointers.
639   // 5. Remove the original instructions.
640   Type *IndexType = IntegerType::get(
641       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
642 
643   DenseMap<Value *, Value *> NewInsts;
644   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
645 
646   // Create the new PHI nodes, without adding any incoming values.
647   for (Value *Val : Explored) {
648     if (Val == Base)
649       continue;
650     // Create empty phi nodes. This avoids cyclic dependencies when creating
651     // the remaining instructions.
652     if (auto *PHI = dyn_cast<PHINode>(Val))
653       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
654                                       PHI->getName() + ".idx", PHI);
655   }
656   IRBuilder<> Builder(Base->getContext());
657 
658   // Create all the other instructions.
659   for (Value *Val : Explored) {
660 
661     if (NewInsts.find(Val) != NewInsts.end())
662       continue;
663 
664     if (auto *CI = dyn_cast<CastInst>(Val)) {
665       // Don't get rid of the intermediate variable here; the store can grow
666       // the map which will invalidate the reference to the input value.
667       Value *V = NewInsts[CI->getOperand(0)];
668       NewInsts[CI] = V;
669       continue;
670     }
671     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
672       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
673                                                   : GEP->getOperand(1);
674       setInsertionPoint(Builder, GEP);
675       // Indices might need to be sign extended. GEPs will magically do
676       // this, but we need to do it ourselves here.
677       if (Index->getType()->getScalarSizeInBits() !=
678           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
679         Index = Builder.CreateSExtOrTrunc(
680             Index, NewInsts[GEP->getOperand(0)]->getType(),
681             GEP->getOperand(0)->getName() + ".sext");
682       }
683 
684       auto *Op = NewInsts[GEP->getOperand(0)];
685       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
686         NewInsts[GEP] = Index;
687       else
688         NewInsts[GEP] = Builder.CreateNSWAdd(
689             Op, Index, GEP->getOperand(0)->getName() + ".add");
690       continue;
691     }
692     if (isa<PHINode>(Val))
693       continue;
694 
695     llvm_unreachable("Unexpected instruction type");
696   }
697 
698   // Add the incoming values to the PHI nodes.
699   for (Value *Val : Explored) {
700     if (Val == Base)
701       continue;
702     // All the instructions have been created, we can now add edges to the
703     // phi nodes.
704     if (auto *PHI = dyn_cast<PHINode>(Val)) {
705       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
706       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
707         Value *NewIncoming = PHI->getIncomingValue(I);
708 
709         if (NewInsts.find(NewIncoming) != NewInsts.end())
710           NewIncoming = NewInsts[NewIncoming];
711 
712         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
713       }
714     }
715   }
716 
717   PointerType *PtrTy =
718       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
719   for (Value *Val : Explored) {
720     if (Val == Base)
721       continue;
722 
723     // Depending on the type, for external users we have to emit
724     // a GEP or a GEP + ptrtoint.
725     setInsertionPoint(Builder, Val, false);
726 
727     // Cast base to the expected type.
728     Value *NewVal = Builder.CreateBitOrPointerCast(
729         Base, PtrTy, Start->getName() + "to.ptr");
730     NewVal = Builder.CreateInBoundsGEP(
731         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
732     NewVal = Builder.CreateBitOrPointerCast(
733         NewVal, Val->getType(), Val->getName() + ".conv");
734     Val->replaceAllUsesWith(NewVal);
735   }
736 
737   return NewInsts[Start];
738 }
739 
740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
741 /// the input Value as a constant indexed GEP. Returns a pair containing
742 /// the GEPs Pointer and Index.
743 static std::pair<Value *, Value *>
744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
745   Type *IndexType = IntegerType::get(V->getContext(),
746                                      DL.getIndexTypeSizeInBits(V->getType()));
747 
748   Constant *Index = ConstantInt::getNullValue(IndexType);
749   while (true) {
750     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
751       // We accept only inbouds GEPs here to exclude the possibility of
752       // overflow.
753       if (!GEP->isInBounds())
754         break;
755       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
756           GEP->getSourceElementType() == ElemTy) {
757         V = GEP->getOperand(0);
758         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
759         Index = ConstantExpr::getAdd(
760             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
761         continue;
762       }
763       break;
764     }
765     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
766       if (!CI->isNoopCast(DL))
767         break;
768       V = CI->getOperand(0);
769       continue;
770     }
771     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
772       if (!CI->isNoopCast(DL))
773         break;
774       V = CI->getOperand(0);
775       continue;
776     }
777     break;
778   }
779   return {V, Index};
780 }
781 
782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
783 /// We can look through PHIs, GEPs and casts in order to determine a common base
784 /// between GEPLHS and RHS.
785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
786                                               ICmpInst::Predicate Cond,
787                                               const DataLayout &DL) {
788   // FIXME: Support vector of pointers.
789   if (GEPLHS->getType()->isVectorTy())
790     return nullptr;
791 
792   if (!GEPLHS->hasAllConstantIndices())
793     return nullptr;
794 
795   Type *ElemTy = GEPLHS->getSourceElementType();
796   Value *PtrBase, *Index;
797   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
798 
799   // The set of nodes that will take part in this transformation.
800   SetVector<Value *> Nodes;
801 
802   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
803     return nullptr;
804 
805   // We know we can re-write this as
806   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
807   // Since we've only looked through inbouds GEPs we know that we
808   // can't have overflow on either side. We can therefore re-write
809   // this as:
810   //   OFFSET1 cmp OFFSET2
811   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
812 
813   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
814   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
815   // offset. Since Index is the offset of LHS to the base pointer, we will now
816   // compare the offsets instead of comparing the pointers.
817   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
818 }
819 
820 /// Fold comparisons between a GEP instruction and something else. At this point
821 /// we know that the GEP is on the LHS of the comparison.
822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
823                                            ICmpInst::Predicate Cond,
824                                            Instruction &I) {
825   // Don't transform signed compares of GEPs into index compares. Even if the
826   // GEP is inbounds, the final add of the base pointer can have signed overflow
827   // and would change the result of the icmp.
828   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
829   // the maximum signed value for the pointer type.
830   if (ICmpInst::isSigned(Cond))
831     return nullptr;
832 
833   // Look through bitcasts and addrspacecasts. We do not however want to remove
834   // 0 GEPs.
835   if (!isa<GetElementPtrInst>(RHS))
836     RHS = RHS->stripPointerCasts();
837 
838   Value *PtrBase = GEPLHS->getOperand(0);
839   // FIXME: Support vector pointer GEPs.
840   if (PtrBase == RHS && GEPLHS->isInBounds() &&
841       !GEPLHS->getType()->isVectorTy()) {
842     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
843     // This transformation (ignoring the base and scales) is valid because we
844     // know pointers can't overflow since the gep is inbounds.  See if we can
845     // output an optimized form.
846     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
847 
848     // If not, synthesize the offset the hard way.
849     if (!Offset)
850       Offset = EmitGEPOffset(GEPLHS);
851     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
852                         Constant::getNullValue(Offset->getType()));
853   }
854 
855   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
856       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
857       !NullPointerIsDefined(I.getFunction(),
858                             RHS->getType()->getPointerAddressSpace())) {
859     // For most address spaces, an allocation can't be placed at null, but null
860     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
861     // the only valid inbounds address derived from null, is null itself.
862     // Thus, we have four cases to consider:
863     // 1) Base == nullptr, Offset == 0 -> inbounds, null
864     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
865     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
866     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
867     //
868     // (Note if we're indexing a type of size 0, that simply collapses into one
869     //  of the buckets above.)
870     //
871     // In general, we're allowed to make values less poison (i.e. remove
872     //   sources of full UB), so in this case, we just select between the two
873     //   non-poison cases (1 and 4 above).
874     //
875     // For vectors, we apply the same reasoning on a per-lane basis.
876     auto *Base = GEPLHS->getPointerOperand();
877     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
878       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
879       Base = Builder.CreateVectorSplat(EC, Base);
880     }
881     return new ICmpInst(Cond, Base,
882                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
883                             cast<Constant>(RHS), Base->getType()));
884   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
885     // If the base pointers are different, but the indices are the same, just
886     // compare the base pointer.
887     if (PtrBase != GEPRHS->getOperand(0)) {
888       bool IndicesTheSame =
889           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
890           GEPLHS->getType() == GEPRHS->getType() &&
891           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
892       if (IndicesTheSame)
893         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
894           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
895             IndicesTheSame = false;
896             break;
897           }
898 
899       // If all indices are the same, just compare the base pointers.
900       Type *BaseType = GEPLHS->getOperand(0)->getType();
901       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
902         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
903 
904       // If we're comparing GEPs with two base pointers that only differ in type
905       // and both GEPs have only constant indices or just one use, then fold
906       // the compare with the adjusted indices.
907       // FIXME: Support vector of pointers.
908       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
909           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
910           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
911           PtrBase->stripPointerCasts() ==
912               GEPRHS->getOperand(0)->stripPointerCasts() &&
913           !GEPLHS->getType()->isVectorTy()) {
914         Value *LOffset = EmitGEPOffset(GEPLHS);
915         Value *ROffset = EmitGEPOffset(GEPRHS);
916 
917         // If we looked through an addrspacecast between different sized address
918         // spaces, the LHS and RHS pointers are different sized
919         // integers. Truncate to the smaller one.
920         Type *LHSIndexTy = LOffset->getType();
921         Type *RHSIndexTy = ROffset->getType();
922         if (LHSIndexTy != RHSIndexTy) {
923           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
924               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
925             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
926           } else
927             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
928         }
929 
930         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
931                                         LOffset, ROffset);
932         return replaceInstUsesWith(I, Cmp);
933       }
934 
935       // Otherwise, the base pointers are different and the indices are
936       // different. Try convert this to an indexed compare by looking through
937       // PHIs/casts.
938       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
939     }
940 
941     // If one of the GEPs has all zero indices, recurse.
942     // FIXME: Handle vector of pointers.
943     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
944       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
945                          ICmpInst::getSwappedPredicate(Cond), I);
946 
947     // If the other GEP has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
951 
952     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
953     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
954       // If the GEPs only differ by one index, compare it.
955       unsigned NumDifferences = 0;  // Keep track of # differences.
956       unsigned DiffOperand = 0;     // The operand that differs.
957       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
958         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
959           Type *LHSType = GEPLHS->getOperand(i)->getType();
960           Type *RHSType = GEPRHS->getOperand(i)->getType();
961           // FIXME: Better support for vector of pointers.
962           if (LHSType->getPrimitiveSizeInBits() !=
963                    RHSType->getPrimitiveSizeInBits() ||
964               (GEPLHS->getType()->isVectorTy() &&
965                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
966             // Irreconcilable differences.
967             NumDifferences = 2;
968             break;
969           }
970 
971           if (NumDifferences++) break;
972           DiffOperand = i;
973         }
974 
975       if (NumDifferences == 0)   // SAME GEP?
976         return replaceInstUsesWith(I, // No comparison is needed here.
977           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
978 
979       else if (NumDifferences == 1 && GEPsInBounds) {
980         Value *LHSV = GEPLHS->getOperand(DiffOperand);
981         Value *RHSV = GEPRHS->getOperand(DiffOperand);
982         // Make sure we do a signed comparison here.
983         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
984       }
985     }
986 
987     // Only lower this if the icmp is the only user of the GEP or if we expect
988     // the result to fold to a constant!
989     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
990         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
991       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
992       Value *L = EmitGEPOffset(GEPLHS);
993       Value *R = EmitGEPOffset(GEPRHS);
994       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
995     }
996   }
997 
998   // Try convert this to an indexed compare by looking through PHIs/casts as a
999   // last resort.
1000   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1001 }
1002 
1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1004                                              const AllocaInst *Alloca,
1005                                              const Value *Other) {
1006   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1007 
1008   // It would be tempting to fold away comparisons between allocas and any
1009   // pointer not based on that alloca (e.g. an argument). However, even
1010   // though such pointers cannot alias, they can still compare equal.
1011   //
1012   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1013   // doesn't escape we can argue that it's impossible to guess its value, and we
1014   // can therefore act as if any such guesses are wrong.
1015   //
1016   // The code below checks that the alloca doesn't escape, and that it's only
1017   // used in a comparison once (the current instruction). The
1018   // single-comparison-use condition ensures that we're trivially folding all
1019   // comparisons against the alloca consistently, and avoids the risk of
1020   // erroneously folding a comparison of the pointer with itself.
1021 
1022   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1023 
1024   SmallVector<const Use *, 32> Worklist;
1025   for (const Use &U : Alloca->uses()) {
1026     if (Worklist.size() >= MaxIter)
1027       return nullptr;
1028     Worklist.push_back(&U);
1029   }
1030 
1031   unsigned NumCmps = 0;
1032   while (!Worklist.empty()) {
1033     assert(Worklist.size() <= MaxIter);
1034     const Use *U = Worklist.pop_back_val();
1035     const Value *V = U->getUser();
1036     --MaxIter;
1037 
1038     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1039         isa<SelectInst>(V)) {
1040       // Track the uses.
1041     } else if (isa<LoadInst>(V)) {
1042       // Loading from the pointer doesn't escape it.
1043       continue;
1044     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1045       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1046       if (SI->getValueOperand() == U->get())
1047         return nullptr;
1048       continue;
1049     } else if (isa<ICmpInst>(V)) {
1050       if (NumCmps++)
1051         return nullptr; // Found more than one cmp.
1052       continue;
1053     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1054       switch (Intrin->getIntrinsicID()) {
1055         // These intrinsics don't escape or compare the pointer. Memset is safe
1056         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1057         // we don't allow stores, so src cannot point to V.
1058         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1059         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1060           continue;
1061         default:
1062           return nullptr;
1063       }
1064     } else {
1065       return nullptr;
1066     }
1067     for (const Use &U : V->uses()) {
1068       if (Worklist.size() >= MaxIter)
1069         return nullptr;
1070       Worklist.push_back(&U);
1071     }
1072   }
1073 
1074   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1075   return replaceInstUsesWith(
1076       ICI,
1077       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1078 }
1079 
1080 /// Fold "icmp pred (X+C), X".
1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1082                                                   ICmpInst::Predicate Pred) {
1083   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1084   // so the values can never be equal.  Similarly for all other "or equals"
1085   // operators.
1086   assert(!!C && "C should not be zero!");
1087 
1088   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1089   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1090   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1091   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1092     Constant *R = ConstantInt::get(X->getType(),
1093                                    APInt::getMaxValue(C.getBitWidth()) - C);
1094     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1095   }
1096 
1097   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1098   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1099   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1100   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1101     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1102                         ConstantInt::get(X->getType(), -C));
1103 
1104   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1105 
1106   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1107   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1108   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1109   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1110   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1111   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1112   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1113     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1114                         ConstantInt::get(X->getType(), SMax - C));
1115 
1116   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1117   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1118   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1119   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1120   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1121   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1122 
1123   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1124   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1125                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1126 }
1127 
1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1129 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1132                                                      const APInt &AP1,
1133                                                      const APInt &AP2) {
1134   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1135 
1136   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1137     if (I.getPredicate() == I.ICMP_NE)
1138       Pred = CmpInst::getInversePredicate(Pred);
1139     return new ICmpInst(Pred, LHS, RHS);
1140   };
1141 
1142   // Don't bother doing any work for cases which InstSimplify handles.
1143   if (AP2.isZero())
1144     return nullptr;
1145 
1146   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1147   if (IsAShr) {
1148     if (AP2.isAllOnes())
1149       return nullptr;
1150     if (AP2.isNegative() != AP1.isNegative())
1151       return nullptr;
1152     if (AP2.sgt(AP1))
1153       return nullptr;
1154   }
1155 
1156   if (!AP1)
1157     // 'A' must be large enough to shift out the highest set bit.
1158     return getICmp(I.ICMP_UGT, A,
1159                    ConstantInt::get(A->getType(), AP2.logBase2()));
1160 
1161   if (AP1 == AP2)
1162     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1163 
1164   int Shift;
1165   if (IsAShr && AP1.isNegative())
1166     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1167   else
1168     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1169 
1170   if (Shift > 0) {
1171     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1172       // There are multiple solutions if we are comparing against -1 and the LHS
1173       // of the ashr is not a power of two.
1174       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1175         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1176       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1177     } else if (AP1 == AP2.lshr(Shift)) {
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     }
1180   }
1181 
1182   // Shifting const2 will never be equal to const1.
1183   // FIXME: This should always be handled by InstSimplify?
1184   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1185   return replaceInstUsesWith(I, TorF);
1186 }
1187 
1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1191                                                      const APInt &AP1,
1192                                                      const APInt &AP2) {
1193   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1194 
1195   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1196     if (I.getPredicate() == I.ICMP_NE)
1197       Pred = CmpInst::getInversePredicate(Pred);
1198     return new ICmpInst(Pred, LHS, RHS);
1199   };
1200 
1201   // Don't bother doing any work for cases which InstSimplify handles.
1202   if (AP2.isZero())
1203     return nullptr;
1204 
1205   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1206 
1207   if (!AP1 && AP2TrailingZeros != 0)
1208     return getICmp(
1209         I.ICMP_UGE, A,
1210         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1211 
1212   if (AP1 == AP2)
1213     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1214 
1215   // Get the distance between the lowest bits that are set.
1216   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1217 
1218   if (Shift > 0 && AP2.shl(Shift) == AP1)
1219     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1220 
1221   // Shifting const2 will never be equal to const1.
1222   // FIXME: This should always be handled by InstSimplify?
1223   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1224   return replaceInstUsesWith(I, TorF);
1225 }
1226 
1227 /// The caller has matched a pattern of the form:
1228 ///   I = icmp ugt (add (add A, B), CI2), CI1
1229 /// If this is of the form:
1230 ///   sum = a + b
1231 ///   if (sum+128 >u 255)
1232 /// Then replace it with llvm.sadd.with.overflow.i8.
1233 ///
1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1235                                           ConstantInt *CI2, ConstantInt *CI1,
1236                                           InstCombinerImpl &IC) {
1237   // The transformation we're trying to do here is to transform this into an
1238   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1239   // with a narrower add, and discard the add-with-constant that is part of the
1240   // range check (if we can't eliminate it, this isn't profitable).
1241 
1242   // In order to eliminate the add-with-constant, the compare can be its only
1243   // use.
1244   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1245   if (!AddWithCst->hasOneUse())
1246     return nullptr;
1247 
1248   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1249   if (!CI2->getValue().isPowerOf2())
1250     return nullptr;
1251   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1252   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1253     return nullptr;
1254 
1255   // The width of the new add formed is 1 more than the bias.
1256   ++NewWidth;
1257 
1258   // Check to see that CI1 is an all-ones value with NewWidth bits.
1259   if (CI1->getBitWidth() == NewWidth ||
1260       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1261     return nullptr;
1262 
1263   // This is only really a signed overflow check if the inputs have been
1264   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1265   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1266   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1267       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1268     return nullptr;
1269 
1270   // In order to replace the original add with a narrower
1271   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1272   // and truncates that discard the high bits of the add.  Verify that this is
1273   // the case.
1274   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1275   for (User *U : OrigAdd->users()) {
1276     if (U == AddWithCst)
1277       continue;
1278 
1279     // Only accept truncates for now.  We would really like a nice recursive
1280     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1281     // chain to see which bits of a value are actually demanded.  If the
1282     // original add had another add which was then immediately truncated, we
1283     // could still do the transformation.
1284     TruncInst *TI = dyn_cast<TruncInst>(U);
1285     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1286       return nullptr;
1287   }
1288 
1289   // If the pattern matches, truncate the inputs to the narrower type and
1290   // use the sadd_with_overflow intrinsic to efficiently compute both the
1291   // result and the overflow bit.
1292   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1293   Function *F = Intrinsic::getDeclaration(
1294       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1295 
1296   InstCombiner::BuilderTy &Builder = IC.Builder;
1297 
1298   // Put the new code above the original add, in case there are any uses of the
1299   // add between the add and the compare.
1300   Builder.SetInsertPoint(OrigAdd);
1301 
1302   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1303   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1304   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1305   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1306   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1307 
1308   // The inner add was the result of the narrow add, zero extended to the
1309   // wider type.  Replace it with the result computed by the intrinsic.
1310   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1311   IC.eraseInstFromFunction(*OrigAdd);
1312 
1313   // The original icmp gets replaced with the overflow value.
1314   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1315 }
1316 
1317 /// If we have:
1318 ///   icmp eq/ne (urem/srem %x, %y), 0
1319 /// iff %y is a power-of-two, we can replace this with a bit test:
1320 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1322   // This fold is only valid for equality predicates.
1323   if (!I.isEquality())
1324     return nullptr;
1325   ICmpInst::Predicate Pred;
1326   Value *X, *Y, *Zero;
1327   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1328                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1329     return nullptr;
1330   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1331     return nullptr;
1332   // This may increase instruction count, we don't enforce that Y is a constant.
1333   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1334   Value *Masked = Builder.CreateAnd(X, Mask);
1335   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1336 }
1337 
1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1339 /// by one-less-than-bitwidth into a sign test on the original value.
1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1341   Instruction *Val;
1342   ICmpInst::Predicate Pred;
1343   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1344     return nullptr;
1345 
1346   Value *X;
1347   Type *XTy;
1348 
1349   Constant *C;
1350   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1351     XTy = X->getType();
1352     unsigned XBitWidth = XTy->getScalarSizeInBits();
1353     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1354                                      APInt(XBitWidth, XBitWidth - 1))))
1355       return nullptr;
1356   } else if (isa<BinaryOperator>(Val) &&
1357              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1358                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1359                   /*AnalyzeForSignBitExtraction=*/true))) {
1360     XTy = X->getType();
1361   } else
1362     return nullptr;
1363 
1364   return ICmpInst::Create(Instruction::ICmp,
1365                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1366                                                     : ICmpInst::ICMP_SLT,
1367                           X, ConstantInt::getNullValue(XTy));
1368 }
1369 
1370 // Handle  icmp pred X, 0
1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1372   CmpInst::Predicate Pred = Cmp.getPredicate();
1373   if (!match(Cmp.getOperand(1), m_Zero()))
1374     return nullptr;
1375 
1376   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1377   if (Pred == ICmpInst::ICMP_SGT) {
1378     Value *A, *B;
1379     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1380     if (SPR.Flavor == SPF_SMIN) {
1381       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1382         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1383       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1384         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1385     }
1386   }
1387 
1388   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1389     return New;
1390 
1391   // Given:
1392   //   icmp eq/ne (urem %x, %y), 0
1393   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1394   //   icmp eq/ne %x, 0
1395   Value *X, *Y;
1396   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1397       ICmpInst::isEquality(Pred)) {
1398     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1399     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1400     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1401       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Fold icmp Pred X, C.
1408 /// TODO: This code structure does not make sense. The saturating add fold
1409 /// should be moved to some other helper and extended as noted below (it is also
1410 /// possible that code has been made unnecessary - do we canonicalize IR to
1411 /// overflow/saturating intrinsics or not?).
1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1413   // Match the following pattern, which is a common idiom when writing
1414   // overflow-safe integer arithmetic functions. The source performs an addition
1415   // in wider type and explicitly checks for overflow using comparisons against
1416   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1417   //
1418   // TODO: This could probably be generalized to handle other overflow-safe
1419   // operations if we worked out the formulas to compute the appropriate magic
1420   // constants.
1421   //
1422   // sum = a + b
1423   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1424   CmpInst::Predicate Pred = Cmp.getPredicate();
1425   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1426   Value *A, *B;
1427   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1428   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1429       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1430     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1431       return Res;
1432 
1433   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1434   Constant *C = dyn_cast<Constant>(Op1);
1435   if (!C || C->canTrap())
1436     return nullptr;
1437 
1438   if (auto *Phi = dyn_cast<PHINode>(Op0))
1439     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1440       Type *Ty = Cmp.getType();
1441       Builder.SetInsertPoint(Phi);
1442       PHINode *NewPhi =
1443           Builder.CreatePHI(Ty, Phi->getNumOperands());
1444       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1445         auto *Input =
1446             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1447         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1448         NewPhi->addIncoming(BoolInput, Predecessor);
1449       }
1450       NewPhi->takeName(&Cmp);
1451       return replaceInstUsesWith(Cmp, NewPhi);
1452     }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     // Avoid an infinite loop with min/max canonicalization.
1519     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1520     if (Cmp.hasOneUse() &&
1521         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1522       return nullptr;
1523 
1524     if (const APInt *EqC = Intersection.getSingleElement())
1525       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1526     if (const APInt *NeC = Difference.getSingleElement())
1527       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1528   }
1529 
1530   return nullptr;
1531 }
1532 
1533 /// Fold icmp (trunc X, Y), C.
1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1535                                                      TruncInst *Trunc,
1536                                                      const APInt &C) {
1537   ICmpInst::Predicate Pred = Cmp.getPredicate();
1538   Value *X = Trunc->getOperand(0);
1539   if (C.isOne() && C.getBitWidth() > 1) {
1540     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1541     Value *V = nullptr;
1542     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1543       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1544                           ConstantInt::get(V->getType(), 1));
1545   }
1546 
1547   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1548            SrcBits = X->getType()->getScalarSizeInBits();
1549   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1550     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1551     // of the high bits truncated out of x are known.
1552     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1553 
1554     // If all the high bits are known, we can do this xform.
1555     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1556       // Pull in the high bits from known-ones set.
1557       APInt NewRHS = C.zext(SrcBits);
1558       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1559       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1560     }
1561   }
1562 
1563   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1564   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1565   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1566   Value *ShOp;
1567   const APInt *ShAmtC;
1568   bool TrueIfSigned;
1569   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1570       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1571       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1572     return TrueIfSigned
1573                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1574                               ConstantInt::getNullValue(X->getType()))
1575                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1576                               ConstantInt::getAllOnesValue(X->getType()));
1577   }
1578 
1579   return nullptr;
1580 }
1581 
1582 /// Fold icmp (xor X, Y), C.
1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1584                                                    BinaryOperator *Xor,
1585                                                    const APInt &C) {
1586   Value *X = Xor->getOperand(0);
1587   Value *Y = Xor->getOperand(1);
1588   const APInt *XorC;
1589   if (!match(Y, m_APInt(XorC)))
1590     return nullptr;
1591 
1592   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593   // fold the xor.
1594   ICmpInst::Predicate Pred = Cmp.getPredicate();
1595   bool TrueIfSigned = false;
1596   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597 
1598     // If the sign bit of the XorCst is not set, there is no change to
1599     // the operation, just stop using the Xor.
1600     if (!XorC->isNegative())
1601       return replaceOperand(Cmp, 0, X);
1602 
1603     // Emit the opposite comparison.
1604     if (TrueIfSigned)
1605       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                           ConstantInt::getAllOnesValue(X->getType()));
1607     else
1608       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                           ConstantInt::getNullValue(X->getType()));
1610   }
1611 
1612   if (Xor->hasOneUse()) {
1613     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614     if (!Cmp.isEquality() && XorC->isSignMask()) {
1615       Pred = Cmp.getFlippedSignednessPredicate();
1616       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1617     }
1618 
1619     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1620     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1621       Pred = Cmp.getFlippedSignednessPredicate();
1622       Pred = Cmp.getSwappedPredicate(Pred);
1623       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1624     }
1625   }
1626 
1627   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1628   if (Pred == ICmpInst::ICMP_UGT) {
1629     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1630     if (*XorC == ~C && (C + 1).isPowerOf2())
1631       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1632     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1633     if (*XorC == C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1635   }
1636   if (Pred == ICmpInst::ICMP_ULT) {
1637     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1638     if (*XorC == -C && C.isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1640                           ConstantInt::get(X->getType(), ~C));
1641     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1642     if (*XorC == C && (-C).isPowerOf2())
1643       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1644                           ConstantInt::get(X->getType(), ~C));
1645   }
1646   return nullptr;
1647 }
1648 
1649 /// Fold icmp (and (sh X, Y), C2), C1.
1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1651                                                 BinaryOperator *And,
1652                                                 const APInt &C1,
1653                                                 const APInt &C2) {
1654   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655   if (!Shift || !Shift->isShift())
1656     return nullptr;
1657 
1658   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660   // code produced by the clang front-end, for bitfield access.
1661   // This seemingly simple opportunity to fold away a shift turns out to be
1662   // rather complicated. See PR17827 for details.
1663   unsigned ShiftOpcode = Shift->getOpcode();
1664   bool IsShl = ShiftOpcode == Instruction::Shl;
1665   const APInt *C3;
1666   if (match(Shift->getOperand(1), m_APInt(C3))) {
1667     APInt NewAndCst, NewCmpCst;
1668     bool AnyCmpCstBitsShiftedOut;
1669     if (ShiftOpcode == Instruction::Shl) {
1670       // For a left shift, we can fold if the comparison is not signed. We can
1671       // also fold a signed comparison if the mask value and comparison value
1672       // are not negative. These constraints may not be obvious, but we can
1673       // prove that they are correct using an SMT solver.
1674       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675         return nullptr;
1676 
1677       NewCmpCst = C1.lshr(*C3);
1678       NewAndCst = C2.lshr(*C3);
1679       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680     } else if (ShiftOpcode == Instruction::LShr) {
1681       // For a logical right shift, we can fold if the comparison is not signed.
1682       // We can also fold a signed comparison if the shifted mask value and the
1683       // shifted comparison value are not negative. These constraints may not be
1684       // obvious, but we can prove that they are correct using an SMT solver.
1685       NewCmpCst = C1.shl(*C3);
1686       NewAndCst = C2.shl(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689         return nullptr;
1690     } else {
1691       // For an arithmetic shift, check that both constants don't use (in a
1692       // signed sense) the top bits being shifted out.
1693       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694       NewCmpCst = C1.shl(*C3);
1695       NewAndCst = C2.shl(*C3);
1696       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697       if (NewAndCst.ashr(*C3) != C2)
1698         return nullptr;
1699     }
1700 
1701     if (AnyCmpCstBitsShiftedOut) {
1702       // If we shifted bits out, the fold is not going to work out. As a
1703       // special case, check to see if this means that the result is always
1704       // true or false now.
1705       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709     } else {
1710       Value *NewAnd = Builder.CreateAnd(
1711           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712       return new ICmpInst(Cmp.getPredicate(),
1713           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714     }
1715   }
1716 
1717   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718   // preferable because it allows the C2 << Y expression to be hoisted out of a
1719   // loop if Y is invariant and X is not.
1720   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1721       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722     // Compute C2 << Y.
1723     Value *NewShift =
1724         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726 
1727     // Compute X & (C2 << Y).
1728     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729     return replaceOperand(Cmp, 0, NewAnd);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Fold icmp (and X, C2), C1.
1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                      BinaryOperator *And,
1738                                                      const APInt &C1) {
1739   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740 
1741   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742   // TODO: We canonicalize to the longer form for scalars because we have
1743   // better analysis/folds for icmp, and codegen may be better with icmp.
1744   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1745       match(And->getOperand(1), m_One()))
1746     return new TruncInst(And->getOperand(0), Cmp.getType());
1747 
1748   const APInt *C2;
1749   Value *X;
1750   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751     return nullptr;
1752 
1753   // Don't perform the following transforms if the AND has multiple uses
1754   if (!And->hasOneUse())
1755     return nullptr;
1756 
1757   if (Cmp.isEquality() && C1.isZero()) {
1758     // Restrict this fold to single-use 'and' (PR10267).
1759     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760     if (C2->isSignMask()) {
1761       Constant *Zero = Constant::getNullValue(X->getType());
1762       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763       return new ICmpInst(NewPred, X, Zero);
1764     }
1765 
1766     // Restrict this fold only for single-use 'and' (PR10267).
1767     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768     if ((~(*C2) + 1).isPowerOf2()) {
1769       Constant *NegBOC =
1770           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772       return new ICmpInst(NewPred, X, NegBOC);
1773     }
1774   }
1775 
1776   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777   // the input width without changing the value produced, eliminate the cast:
1778   //
1779   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780   //
1781   // We can do this transformation if the constants do not have their sign bits
1782   // set or if it is an equality comparison. Extending a relational comparison
1783   // when we're checking the sign bit would not work.
1784   Value *W;
1785   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787     // TODO: Is this a good transform for vectors? Wider types may reduce
1788     // throughput. Should this transform be limited (even for scalars) by using
1789     // shouldChangeType()?
1790     if (!Cmp.getType()->isVectorTy()) {
1791       Type *WideType = W->getType();
1792       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797     }
1798   }
1799 
1800   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801     return I;
1802 
1803   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805   //
1806   // iff pred isn't signed
1807   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1808       match(And->getOperand(1), m_One())) {
1809     Constant *One = cast<Constant>(And->getOperand(1));
1810     Value *Or = And->getOperand(0);
1811     Value *A, *B, *LShr;
1812     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814       unsigned UsesRemoved = 0;
1815       if (And->hasOneUse())
1816         ++UsesRemoved;
1817       if (Or->hasOneUse())
1818         ++UsesRemoved;
1819       if (LShr->hasOneUse())
1820         ++UsesRemoved;
1821 
1822       // Compute A & ((1 << B) | 1)
1823       Value *NewOr = nullptr;
1824       if (auto *C = dyn_cast<Constant>(B)) {
1825         if (UsesRemoved >= 1)
1826           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827       } else {
1828         if (UsesRemoved >= 3)
1829           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                      /*HasNUW=*/true),
1831                                    One, Or->getName());
1832       }
1833       if (NewOr) {
1834         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835         return replaceOperand(Cmp, 0, NewAnd);
1836       }
1837     }
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 /// Fold icmp (and X, Y), C.
1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1845                                                    BinaryOperator *And,
1846                                                    const APInt &C) {
1847   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848     return I;
1849 
1850   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1851   bool TrueIfNeg;
1852   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1853     // ((X - 1) & ~X) <  0 --> X == 0
1854     // ((X - 1) & ~X) >= 0 --> X != 0
1855     Value *X;
1856     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1857         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1858       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1859       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1860     }
1861   }
1862 
1863   // TODO: These all require that Y is constant too, so refactor with the above.
1864 
1865   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1866   Value *X = And->getOperand(0);
1867   Value *Y = And->getOperand(1);
1868   if (auto *LI = dyn_cast<LoadInst>(X))
1869     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1870       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1871         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1872             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1873           ConstantInt *C2 = cast<ConstantInt>(Y);
1874           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1875             return Res;
1876         }
1877 
1878   if (!Cmp.isEquality())
1879     return nullptr;
1880 
1881   // X & -C == -C -> X >  u ~C
1882   // X & -C != -C -> X <= u ~C
1883   //   iff C is a power of 2
1884   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1885     auto NewPred =
1886         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1887     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (or X, Y), C.
1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1895                                                   BinaryOperator *Or,
1896                                                   const APInt &C) {
1897   ICmpInst::Predicate Pred = Cmp.getPredicate();
1898   if (C.isOne()) {
1899     // icmp slt signum(V) 1 --> icmp slt V, 1
1900     Value *V = nullptr;
1901     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1902       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1903                           ConstantInt::get(V->getType(), 1));
1904   }
1905 
1906   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1907   const APInt *MaskC;
1908   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1909     if (*MaskC == C && (C + 1).isPowerOf2()) {
1910       // X | C == C --> X <=u C
1911       // X | C != C --> X  >u C
1912       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1913       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1914       return new ICmpInst(Pred, OrOp0, OrOp1);
1915     }
1916 
1917     // More general: canonicalize 'equality with set bits mask' to
1918     // 'equality with clear bits mask'.
1919     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1920     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1921     if (Or->hasOneUse()) {
1922       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1923       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1924       return new ICmpInst(Pred, And, NewC);
1925     }
1926   }
1927 
1928   // (X | (X-1)) s<  0 --> X s< 1
1929   // (X | (X-1)) s> -1 --> X s> 0
1930   Value *X;
1931   bool TrueIfSigned;
1932   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1933       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1934     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1935     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1936     return new ICmpInst(NewPred, X, NewC);
1937   }
1938 
1939   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1940     return nullptr;
1941 
1942   Value *P, *Q;
1943   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1944     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1945     // -> and (icmp eq P, null), (icmp eq Q, null).
1946     Value *CmpP =
1947         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1948     Value *CmpQ =
1949         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1950     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1951     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1952   }
1953 
1954   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1955   // a shorter form that has more potential to be folded even further.
1956   Value *X1, *X2, *X3, *X4;
1957   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1958       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1959     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1960     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1961     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1962     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1963     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1964     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1965   }
1966 
1967   return nullptr;
1968 }
1969 
1970 /// Fold icmp (mul X, Y), C.
1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1972                                                    BinaryOperator *Mul,
1973                                                    const APInt &C) {
1974   const APInt *MulC;
1975   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1976     return nullptr;
1977 
1978   // If this is a test of the sign bit and the multiply is sign-preserving with
1979   // a constant operand, use the multiply LHS operand instead.
1980   ICmpInst::Predicate Pred = Cmp.getPredicate();
1981   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1982     if (MulC->isNegative())
1983       Pred = ICmpInst::getSwappedPredicate(Pred);
1984     return new ICmpInst(Pred, Mul->getOperand(0),
1985                         Constant::getNullValue(Mul->getType()));
1986   }
1987 
1988   // If the multiply does not wrap, try to divide the compare constant by the
1989   // multiplication factor.
1990   if (Cmp.isEquality() && !MulC->isZero()) {
1991     // (mul nsw X, MulC) == C --> X == C /s MulC
1992     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1993       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1994       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1995     }
1996     // (mul nuw X, MulC) == C --> X == C /u MulC
1997     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1998       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1999       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2000     }
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 /// Fold icmp (shl 1, Y), C.
2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2008                                    const APInt &C) {
2009   Value *Y;
2010   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2011     return nullptr;
2012 
2013   Type *ShiftType = Shl->getType();
2014   unsigned TypeBits = C.getBitWidth();
2015   bool CIsPowerOf2 = C.isPowerOf2();
2016   ICmpInst::Predicate Pred = Cmp.getPredicate();
2017   if (Cmp.isUnsigned()) {
2018     // (1 << Y) pred C -> Y pred Log2(C)
2019     if (!CIsPowerOf2) {
2020       // (1 << Y) <  30 -> Y <= 4
2021       // (1 << Y) <= 30 -> Y <= 4
2022       // (1 << Y) >= 30 -> Y >  4
2023       // (1 << Y) >  30 -> Y >  4
2024       if (Pred == ICmpInst::ICMP_ULT)
2025         Pred = ICmpInst::ICMP_ULE;
2026       else if (Pred == ICmpInst::ICMP_UGE)
2027         Pred = ICmpInst::ICMP_UGT;
2028     }
2029 
2030     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2031     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2032     unsigned CLog2 = C.logBase2();
2033     if (CLog2 == TypeBits - 1) {
2034       if (Pred == ICmpInst::ICMP_UGE)
2035         Pred = ICmpInst::ICMP_EQ;
2036       else if (Pred == ICmpInst::ICMP_ULT)
2037         Pred = ICmpInst::ICMP_NE;
2038     }
2039     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2040   } else if (Cmp.isSigned()) {
2041     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2042     if (C.isAllOnes()) {
2043       // (1 << Y) <= -1 -> Y == 31
2044       if (Pred == ICmpInst::ICMP_SLE)
2045         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2046 
2047       // (1 << Y) >  -1 -> Y != 31
2048       if (Pred == ICmpInst::ICMP_SGT)
2049         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2050     } else if (!C) {
2051       // (1 << Y) <  0 -> Y == 31
2052       // (1 << Y) <= 0 -> Y == 31
2053       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2054         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2055 
2056       // (1 << Y) >= 0 -> Y != 31
2057       // (1 << Y) >  0 -> Y != 31
2058       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2059         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2060     }
2061   } else if (Cmp.isEquality() && CIsPowerOf2) {
2062     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Fold icmp (shl X, Y), C.
2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2070                                                    BinaryOperator *Shl,
2071                                                    const APInt &C) {
2072   const APInt *ShiftVal;
2073   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2074     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2075 
2076   const APInt *ShiftAmt;
2077   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2078     return foldICmpShlOne(Cmp, Shl, C);
2079 
2080   // Check that the shift amount is in range. If not, don't perform undefined
2081   // shifts. When the shift is visited, it will be simplified.
2082   unsigned TypeBits = C.getBitWidth();
2083   if (ShiftAmt->uge(TypeBits))
2084     return nullptr;
2085 
2086   ICmpInst::Predicate Pred = Cmp.getPredicate();
2087   Value *X = Shl->getOperand(0);
2088   Type *ShType = Shl->getType();
2089 
2090   // NSW guarantees that we are only shifting out sign bits from the high bits,
2091   // so we can ASHR the compare constant without needing a mask and eliminate
2092   // the shift.
2093   if (Shl->hasNoSignedWrap()) {
2094     if (Pred == ICmpInst::ICMP_SGT) {
2095       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2096       APInt ShiftedC = C.ashr(*ShiftAmt);
2097       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2098     }
2099     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2100         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2101       APInt ShiftedC = C.ashr(*ShiftAmt);
2102       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2103     }
2104     if (Pred == ICmpInst::ICMP_SLT) {
2105       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2106       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2107       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2108       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2109       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2110       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     // If this is a signed comparison to 0 and the shift is sign preserving,
2114     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2115     // do that if we're sure to not continue on in this function.
2116     if (isSignTest(Pred, C))
2117       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2118   }
2119 
2120   // NUW guarantees that we are only shifting out zero bits from the high bits,
2121   // so we can LSHR the compare constant without needing a mask and eliminate
2122   // the shift.
2123   if (Shl->hasNoUnsignedWrap()) {
2124     if (Pred == ICmpInst::ICMP_UGT) {
2125       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2126       APInt ShiftedC = C.lshr(*ShiftAmt);
2127       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2128     }
2129     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2130         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2131       APInt ShiftedC = C.lshr(*ShiftAmt);
2132       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2133     }
2134     if (Pred == ICmpInst::ICMP_ULT) {
2135       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2136       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2137       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2138       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2139       assert(C.ugt(0) && "ult 0 should have been eliminated");
2140       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143   }
2144 
2145   if (Cmp.isEquality() && Shl->hasOneUse()) {
2146     // Strength-reduce the shift into an 'and'.
2147     Constant *Mask = ConstantInt::get(
2148         ShType,
2149         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2150     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2151     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2152     return new ICmpInst(Pred, And, LShrC);
2153   }
2154 
2155   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2156   bool TrueIfSigned = false;
2157   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2158     // (X << 31) <s 0  --> (X & 1) != 0
2159     Constant *Mask = ConstantInt::get(
2160         ShType,
2161         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2162     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2163     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2164                         And, Constant::getNullValue(ShType));
2165   }
2166 
2167   // Simplify 'shl' inequality test into 'and' equality test.
2168   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2169     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2170     if ((C + 1).isPowerOf2() &&
2171         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2172       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2173       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2174                                                      : ICmpInst::ICMP_NE,
2175                           And, Constant::getNullValue(ShType));
2176     }
2177     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2178     if (C.isPowerOf2() &&
2179         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2180       Value *And =
2181           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2182       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2183                                                      : ICmpInst::ICMP_NE,
2184                           And, Constant::getNullValue(ShType));
2185     }
2186   }
2187 
2188   // Transform (icmp pred iM (shl iM %v, N), C)
2189   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2190   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2191   // This enables us to get rid of the shift in favor of a trunc that may be
2192   // free on the target. It has the additional benefit of comparing to a
2193   // smaller constant that may be more target-friendly.
2194   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2195   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2196       DL.isLegalInteger(TypeBits - Amt)) {
2197     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2198     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2199       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2200     Constant *NewC =
2201         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2202     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2203   }
2204 
2205   return nullptr;
2206 }
2207 
2208 /// Fold icmp ({al}shr X, Y), C.
2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2210                                                    BinaryOperator *Shr,
2211                                                    const APInt &C) {
2212   // An exact shr only shifts out zero bits, so:
2213   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2214   Value *X = Shr->getOperand(0);
2215   CmpInst::Predicate Pred = Cmp.getPredicate();
2216   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero())
2217     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2218 
2219   const APInt *ShiftVal;
2220   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2221     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2222 
2223   const APInt *ShiftAmt;
2224   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2225     return nullptr;
2226 
2227   // Check that the shift amount is in range. If not, don't perform undefined
2228   // shifts. When the shift is visited it will be simplified.
2229   unsigned TypeBits = C.getBitWidth();
2230   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2231   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2232     return nullptr;
2233 
2234   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2235   bool IsExact = Shr->isExact();
2236   Type *ShrTy = Shr->getType();
2237   // TODO: If we could guarantee that InstSimplify would handle all of the
2238   // constant-value-based preconditions in the folds below, then we could assert
2239   // those conditions rather than checking them. This is difficult because of
2240   // undef/poison (PR34838).
2241   if (IsAShr) {
2242     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2243       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2244       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2245       APInt ShiftedC = C.shl(ShAmtVal);
2246       if (ShiftedC.ashr(ShAmtVal) == C)
2247         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2248     }
2249     if (Pred == CmpInst::ICMP_SGT) {
2250       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2251       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2252       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2253           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2254         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2255     }
2256 
2257     // If the compare constant has significant bits above the lowest sign-bit,
2258     // then convert an unsigned cmp to a test of the sign-bit:
2259     // (ashr X, ShiftC) u> C --> X s< 0
2260     // (ashr X, ShiftC) u< C --> X s> -1
2261     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2262       if (Pred == CmpInst::ICMP_UGT) {
2263         return new ICmpInst(CmpInst::ICMP_SLT, X,
2264                             ConstantInt::getNullValue(ShrTy));
2265       }
2266       if (Pred == CmpInst::ICMP_ULT) {
2267         return new ICmpInst(CmpInst::ICMP_SGT, X,
2268                             ConstantInt::getAllOnesValue(ShrTy));
2269       }
2270     }
2271   } else {
2272     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2273       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2274       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2275       APInt ShiftedC = C.shl(ShAmtVal);
2276       if (ShiftedC.lshr(ShAmtVal) == C)
2277         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2278     }
2279     if (Pred == CmpInst::ICMP_UGT) {
2280       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2281       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2282       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2283         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2284     }
2285   }
2286 
2287   if (!Cmp.isEquality())
2288     return nullptr;
2289 
2290   // Handle equality comparisons of shift-by-constant.
2291 
2292   // If the comparison constant changes with the shift, the comparison cannot
2293   // succeed (bits of the comparison constant cannot match the shifted value).
2294   // This should be known by InstSimplify and already be folded to true/false.
2295   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2296           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2297          "Expected icmp+shr simplify did not occur.");
2298 
2299   // If the bits shifted out are known zero, compare the unshifted value:
2300   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2301   if (Shr->isExact())
2302     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2303 
2304   if (C.isZero()) {
2305     // == 0 is u< 1.
2306     if (Pred == CmpInst::ICMP_EQ)
2307       return new ICmpInst(CmpInst::ICMP_ULT, X,
2308                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2309     else
2310       return new ICmpInst(CmpInst::ICMP_UGT, X,
2311                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2312   }
2313 
2314   if (Shr->hasOneUse()) {
2315     // Canonicalize the shift into an 'and':
2316     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2317     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2318     Constant *Mask = ConstantInt::get(ShrTy, Val);
2319     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2320     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2321   }
2322 
2323   return nullptr;
2324 }
2325 
2326 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2327                                                     BinaryOperator *SRem,
2328                                                     const APInt &C) {
2329   // Match an 'is positive' or 'is negative' comparison of remainder by a
2330   // constant power-of-2 value:
2331   // (X % pow2C) sgt/slt 0
2332   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2333   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2334     return nullptr;
2335 
2336   // TODO: The one-use check is standard because we do not typically want to
2337   //       create longer instruction sequences, but this might be a special-case
2338   //       because srem is not good for analysis or codegen.
2339   if (!SRem->hasOneUse())
2340     return nullptr;
2341 
2342   const APInt *DivisorC;
2343   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2344     return nullptr;
2345 
2346   // Mask off the sign bit and the modulo bits (low-bits).
2347   Type *Ty = SRem->getType();
2348   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2349   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2350   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2351 
2352   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2353   // bit is set. Example:
2354   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2355   if (Pred == ICmpInst::ICMP_SGT)
2356     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2357 
2358   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2359   // bit is set. Example:
2360   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2361   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2362 }
2363 
2364 /// Fold icmp (udiv X, Y), C.
2365 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2366                                                     BinaryOperator *UDiv,
2367                                                     const APInt &C) {
2368   const APInt *C2;
2369   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2370     return nullptr;
2371 
2372   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2373 
2374   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2375   Value *Y = UDiv->getOperand(1);
2376   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2377     assert(!C.isMaxValue() &&
2378            "icmp ugt X, UINT_MAX should have been simplified already.");
2379     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2380                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2381   }
2382 
2383   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2384   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2385     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2386     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2387                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2388   }
2389 
2390   return nullptr;
2391 }
2392 
2393 /// Fold icmp ({su}div X, Y), C.
2394 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2395                                                    BinaryOperator *Div,
2396                                                    const APInt &C) {
2397   // Fold: icmp pred ([us]div X, C2), C -> range test
2398   // Fold this div into the comparison, producing a range check.
2399   // Determine, based on the divide type, what the range is being
2400   // checked.  If there is an overflow on the low or high side, remember
2401   // it, otherwise compute the range [low, hi) bounding the new value.
2402   // See: InsertRangeTest above for the kinds of replacements possible.
2403   const APInt *C2;
2404   if (!match(Div->getOperand(1), m_APInt(C2)))
2405     return nullptr;
2406 
2407   // FIXME: If the operand types don't match the type of the divide
2408   // then don't attempt this transform. The code below doesn't have the
2409   // logic to deal with a signed divide and an unsigned compare (and
2410   // vice versa). This is because (x /s C2) <s C  produces different
2411   // results than (x /s C2) <u C or (x /u C2) <s C or even
2412   // (x /u C2) <u C.  Simply casting the operands and result won't
2413   // work. :(  The if statement below tests that condition and bails
2414   // if it finds it.
2415   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2416   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2417     return nullptr;
2418 
2419   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2420   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2421   // division-by-constant cases should be present, we can not assert that they
2422   // have happened before we reach this icmp instruction.
2423   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2424     return nullptr;
2425 
2426   // Compute Prod = C * C2. We are essentially solving an equation of
2427   // form X / C2 = C. We solve for X by multiplying C2 and C.
2428   // By solving for X, we can turn this into a range check instead of computing
2429   // a divide.
2430   APInt Prod = C * *C2;
2431 
2432   // Determine if the product overflows by seeing if the product is not equal to
2433   // the divide. Make sure we do the same kind of divide as in the LHS
2434   // instruction that we're folding.
2435   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2436 
2437   ICmpInst::Predicate Pred = Cmp.getPredicate();
2438 
2439   // If the division is known to be exact, then there is no remainder from the
2440   // divide, so the covered range size is unit, otherwise it is the divisor.
2441   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2442 
2443   // Figure out the interval that is being checked.  For example, a comparison
2444   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2445   // Compute this interval based on the constants involved and the signedness of
2446   // the compare/divide.  This computes a half-open interval, keeping track of
2447   // whether either value in the interval overflows.  After analysis each
2448   // overflow variable is set to 0 if it's corresponding bound variable is valid
2449   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2450   int LoOverflow = 0, HiOverflow = 0;
2451   APInt LoBound, HiBound;
2452 
2453   if (!DivIsSigned) {  // udiv
2454     // e.g. X/5 op 3  --> [15, 20)
2455     LoBound = Prod;
2456     HiOverflow = LoOverflow = ProdOV;
2457     if (!HiOverflow) {
2458       // If this is not an exact divide, then many values in the range collapse
2459       // to the same result value.
2460       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2461     }
2462   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2463     if (C.isZero()) {                    // (X / pos) op 0
2464       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2465       LoBound = -(RangeSize - 1);
2466       HiBound = RangeSize;
2467     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2468       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2469       HiOverflow = LoOverflow = ProdOV;
2470       if (!HiOverflow)
2471         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2472     } else { // (X / pos) op neg
2473       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2474       HiBound = Prod + 1;
2475       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2476       if (!LoOverflow) {
2477         APInt DivNeg = -RangeSize;
2478         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2479       }
2480     }
2481   } else if (C2->isNegative()) { // Divisor is < 0.
2482     if (Div->isExact())
2483       RangeSize.negate();
2484     if (C.isZero()) { // (X / neg) op 0
2485       // e.g. X/-5 op 0  --> [-4, 5)
2486       LoBound = RangeSize + 1;
2487       HiBound = -RangeSize;
2488       if (HiBound == *C2) {        // -INTMIN = INTMIN
2489         HiOverflow = 1;            // [INTMIN+1, overflow)
2490         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2491       }
2492     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2493       // e.g. X/-5 op 3  --> [-19, -14)
2494       HiBound = Prod + 1;
2495       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2496       if (!LoOverflow)
2497         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2498     } else {                // (X / neg) op neg
2499       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2500       LoOverflow = HiOverflow = ProdOV;
2501       if (!HiOverflow)
2502         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2503     }
2504 
2505     // Dividing by a negative swaps the condition.  LT <-> GT
2506     Pred = ICmpInst::getSwappedPredicate(Pred);
2507   }
2508 
2509   Value *X = Div->getOperand(0);
2510   switch (Pred) {
2511     default: llvm_unreachable("Unhandled icmp opcode!");
2512     case ICmpInst::ICMP_EQ:
2513       if (LoOverflow && HiOverflow)
2514         return replaceInstUsesWith(Cmp, Builder.getFalse());
2515       if (HiOverflow)
2516         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2517                             ICmpInst::ICMP_UGE, X,
2518                             ConstantInt::get(Div->getType(), LoBound));
2519       if (LoOverflow)
2520         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2521                             ICmpInst::ICMP_ULT, X,
2522                             ConstantInt::get(Div->getType(), HiBound));
2523       return replaceInstUsesWith(
2524           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2525     case ICmpInst::ICMP_NE:
2526       if (LoOverflow && HiOverflow)
2527         return replaceInstUsesWith(Cmp, Builder.getTrue());
2528       if (HiOverflow)
2529         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2530                             ICmpInst::ICMP_ULT, X,
2531                             ConstantInt::get(Div->getType(), LoBound));
2532       if (LoOverflow)
2533         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2534                             ICmpInst::ICMP_UGE, X,
2535                             ConstantInt::get(Div->getType(), HiBound));
2536       return replaceInstUsesWith(Cmp,
2537                                  insertRangeTest(X, LoBound, HiBound,
2538                                                  DivIsSigned, false));
2539     case ICmpInst::ICMP_ULT:
2540     case ICmpInst::ICMP_SLT:
2541       if (LoOverflow == +1)   // Low bound is greater than input range.
2542         return replaceInstUsesWith(Cmp, Builder.getTrue());
2543       if (LoOverflow == -1)   // Low bound is less than input range.
2544         return replaceInstUsesWith(Cmp, Builder.getFalse());
2545       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2546     case ICmpInst::ICMP_UGT:
2547     case ICmpInst::ICMP_SGT:
2548       if (HiOverflow == +1)       // High bound greater than input range.
2549         return replaceInstUsesWith(Cmp, Builder.getFalse());
2550       if (HiOverflow == -1)       // High bound less than input range.
2551         return replaceInstUsesWith(Cmp, Builder.getTrue());
2552       if (Pred == ICmpInst::ICMP_UGT)
2553         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2554                             ConstantInt::get(Div->getType(), HiBound));
2555       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2556                           ConstantInt::get(Div->getType(), HiBound));
2557   }
2558 
2559   return nullptr;
2560 }
2561 
2562 /// Fold icmp (sub X, Y), C.
2563 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2564                                                    BinaryOperator *Sub,
2565                                                    const APInt &C) {
2566   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2567   ICmpInst::Predicate Pred = Cmp.getPredicate();
2568   Type *Ty = Sub->getType();
2569 
2570   // (SubC - Y) == C) --> Y == (SubC - C)
2571   // (SubC - Y) != C) --> Y != (SubC - C)
2572   Constant *SubC;
2573   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2574     return new ICmpInst(Pred, Y,
2575                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2576   }
2577 
2578   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2579   const APInt *C2;
2580   APInt SubResult;
2581   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2582   bool HasNSW = Sub->hasNoSignedWrap();
2583   bool HasNUW = Sub->hasNoUnsignedWrap();
2584   if (match(X, m_APInt(C2)) &&
2585       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2586       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2587     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2588 
2589   // The following transforms are only worth it if the only user of the subtract
2590   // is the icmp.
2591   // TODO: This is an artificial restriction for all of the transforms below
2592   //       that only need a single replacement icmp.
2593   if (!Sub->hasOneUse())
2594     return nullptr;
2595 
2596   // X - Y == 0 --> X == Y.
2597   // X - Y != 0 --> X != Y.
2598   if (Cmp.isEquality() && C.isZero())
2599     return new ICmpInst(Pred, X, Y);
2600 
2601   if (Sub->hasNoSignedWrap()) {
2602     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2603     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2604       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2605 
2606     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2607     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2608       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2609 
2610     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2611     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2612       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2613 
2614     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2615     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2616       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2617   }
2618 
2619   if (!match(X, m_APInt(C2)))
2620     return nullptr;
2621 
2622   // C2 - Y <u C -> (Y | (C - 1)) == C2
2623   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2624   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2625       (*C2 & (C - 1)) == (C - 1))
2626     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2627 
2628   // C2 - Y >u C -> (Y | C) != C2
2629   //   iff C2 & C == C and C + 1 is a power of 2
2630   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2631     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2632 
2633   // We have handled special cases that reduce.
2634   // Canonicalize any remaining sub to add as:
2635   // (C2 - Y) > C --> (Y + ~C2) < ~C
2636   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2637                                  HasNUW, HasNSW);
2638   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2639 }
2640 
2641 /// Fold icmp (add X, Y), C.
2642 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2643                                                    BinaryOperator *Add,
2644                                                    const APInt &C) {
2645   Value *Y = Add->getOperand(1);
2646   const APInt *C2;
2647   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2648     return nullptr;
2649 
2650   // Fold icmp pred (add X, C2), C.
2651   Value *X = Add->getOperand(0);
2652   Type *Ty = Add->getType();
2653   const CmpInst::Predicate Pred = Cmp.getPredicate();
2654 
2655   // If the add does not wrap, we can always adjust the compare by subtracting
2656   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2657   // are canonicalized to SGT/SLT/UGT/ULT.
2658   if ((Add->hasNoSignedWrap() &&
2659        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2660       (Add->hasNoUnsignedWrap() &&
2661        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2662     bool Overflow;
2663     APInt NewC =
2664         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2665     // If there is overflow, the result must be true or false.
2666     // TODO: Can we assert there is no overflow because InstSimplify always
2667     // handles those cases?
2668     if (!Overflow)
2669       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2670       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2671   }
2672 
2673   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2674   const APInt &Upper = CR.getUpper();
2675   const APInt &Lower = CR.getLower();
2676   if (Cmp.isSigned()) {
2677     if (Lower.isSignMask())
2678       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2679     if (Upper.isSignMask())
2680       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2681   } else {
2682     if (Lower.isMinValue())
2683       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2684     if (Upper.isMinValue())
2685       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2686   }
2687 
2688   // This set of folds is intentionally placed after folds that use no-wrapping
2689   // flags because those folds are likely better for later analysis/codegen.
2690   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2691   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2692 
2693   // Fold compare with offset to opposite sign compare if it eliminates offset:
2694   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2695   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2696     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2697 
2698   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2699   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2700     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2701 
2702   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2703   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2704     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2705 
2706   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2707   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2708     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2709 
2710   if (!Add->hasOneUse())
2711     return nullptr;
2712 
2713   // X+C <u C2 -> (X & -C2) == C
2714   //   iff C & (C2-1) == 0
2715   //       C2 is a power of 2
2716   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2717     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2718                         ConstantExpr::getNeg(cast<Constant>(Y)));
2719 
2720   // X+C >u C2 -> (X & ~C2) != C
2721   //   iff C & C2 == 0
2722   //       C2+1 is a power of 2
2723   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2724     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2725                         ConstantExpr::getNeg(cast<Constant>(Y)));
2726 
2727   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2728   // to the ult form.
2729   // X+C2 >u C -> X+(C2-C-1) <u ~C
2730   if (Pred == ICmpInst::ICMP_UGT)
2731     return new ICmpInst(ICmpInst::ICMP_ULT,
2732                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2733                         ConstantInt::get(Ty, ~C));
2734 
2735   return nullptr;
2736 }
2737 
2738 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2739                                                Value *&RHS, ConstantInt *&Less,
2740                                                ConstantInt *&Equal,
2741                                                ConstantInt *&Greater) {
2742   // TODO: Generalize this to work with other comparison idioms or ensure
2743   // they get canonicalized into this form.
2744 
2745   // select i1 (a == b),
2746   //        i32 Equal,
2747   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2748   // where Equal, Less and Greater are placeholders for any three constants.
2749   ICmpInst::Predicate PredA;
2750   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2751       !ICmpInst::isEquality(PredA))
2752     return false;
2753   Value *EqualVal = SI->getTrueValue();
2754   Value *UnequalVal = SI->getFalseValue();
2755   // We still can get non-canonical predicate here, so canonicalize.
2756   if (PredA == ICmpInst::ICMP_NE)
2757     std::swap(EqualVal, UnequalVal);
2758   if (!match(EqualVal, m_ConstantInt(Equal)))
2759     return false;
2760   ICmpInst::Predicate PredB;
2761   Value *LHS2, *RHS2;
2762   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2763                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2764     return false;
2765   // We can get predicate mismatch here, so canonicalize if possible:
2766   // First, ensure that 'LHS' match.
2767   if (LHS2 != LHS) {
2768     // x sgt y <--> y slt x
2769     std::swap(LHS2, RHS2);
2770     PredB = ICmpInst::getSwappedPredicate(PredB);
2771   }
2772   if (LHS2 != LHS)
2773     return false;
2774   // We also need to canonicalize 'RHS'.
2775   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2776     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2777     auto FlippedStrictness =
2778         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2779             PredB, cast<Constant>(RHS2));
2780     if (!FlippedStrictness)
2781       return false;
2782     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2783            "basic correctness failure");
2784     RHS2 = FlippedStrictness->second;
2785     // And kind-of perform the result swap.
2786     std::swap(Less, Greater);
2787     PredB = ICmpInst::ICMP_SLT;
2788   }
2789   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2790 }
2791 
2792 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2793                                                       SelectInst *Select,
2794                                                       ConstantInt *C) {
2795 
2796   assert(C && "Cmp RHS should be a constant int!");
2797   // If we're testing a constant value against the result of a three way
2798   // comparison, the result can be expressed directly in terms of the
2799   // original values being compared.  Note: We could possibly be more
2800   // aggressive here and remove the hasOneUse test. The original select is
2801   // really likely to simplify or sink when we remove a test of the result.
2802   Value *OrigLHS, *OrigRHS;
2803   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2804   if (Cmp.hasOneUse() &&
2805       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2806                               C3GreaterThan)) {
2807     assert(C1LessThan && C2Equal && C3GreaterThan);
2808 
2809     bool TrueWhenLessThan =
2810         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2811             ->isAllOnesValue();
2812     bool TrueWhenEqual =
2813         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2814             ->isAllOnesValue();
2815     bool TrueWhenGreaterThan =
2816         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2817             ->isAllOnesValue();
2818 
2819     // This generates the new instruction that will replace the original Cmp
2820     // Instruction. Instead of enumerating the various combinations when
2821     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2822     // false, we rely on chaining of ORs and future passes of InstCombine to
2823     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2824 
2825     // When none of the three constants satisfy the predicate for the RHS (C),
2826     // the entire original Cmp can be simplified to a false.
2827     Value *Cond = Builder.getFalse();
2828     if (TrueWhenLessThan)
2829       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2830                                                        OrigLHS, OrigRHS));
2831     if (TrueWhenEqual)
2832       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2833                                                        OrigLHS, OrigRHS));
2834     if (TrueWhenGreaterThan)
2835       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2836                                                        OrigLHS, OrigRHS));
2837 
2838     return replaceInstUsesWith(Cmp, Cond);
2839   }
2840   return nullptr;
2841 }
2842 
2843 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2844   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2845   if (!Bitcast)
2846     return nullptr;
2847 
2848   ICmpInst::Predicate Pred = Cmp.getPredicate();
2849   Value *Op1 = Cmp.getOperand(1);
2850   Value *BCSrcOp = Bitcast->getOperand(0);
2851 
2852   // Make sure the bitcast doesn't change the number of vector elements.
2853   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2854           Bitcast->getDestTy()->getScalarSizeInBits()) {
2855     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2856     Value *X;
2857     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2858       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2859       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2860       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2861       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2862       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2863            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2864           match(Op1, m_Zero()))
2865         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2866 
2867       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2868       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2869         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2870 
2871       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2872       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2873         return new ICmpInst(Pred, X,
2874                             ConstantInt::getAllOnesValue(X->getType()));
2875     }
2876 
2877     // Zero-equality checks are preserved through unsigned floating-point casts:
2878     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2879     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2880     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2881       if (Cmp.isEquality() && match(Op1, m_Zero()))
2882         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2883 
2884     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2885     // the FP extend/truncate because that cast does not change the sign-bit.
2886     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2887     // The sign-bit is always the most significant bit in those types.
2888     const APInt *C;
2889     bool TrueIfSigned;
2890     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2891         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2892       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2893           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2894         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2895         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2896         Type *XType = X->getType();
2897 
2898         // We can't currently handle Power style floating point operations here.
2899         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2900 
2901           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2902           if (auto *XVTy = dyn_cast<VectorType>(XType))
2903             NewType = VectorType::get(NewType, XVTy->getElementCount());
2904           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2905           if (TrueIfSigned)
2906             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2907                                 ConstantInt::getNullValue(NewType));
2908           else
2909             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2910                                 ConstantInt::getAllOnesValue(NewType));
2911         }
2912       }
2913     }
2914   }
2915 
2916   // Test to see if the operands of the icmp are casted versions of other
2917   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2918   if (Bitcast->getType()->isPointerTy() &&
2919       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2920     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2921     // so eliminate it as well.
2922     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2923       Op1 = BC2->getOperand(0);
2924 
2925     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2926     return new ICmpInst(Pred, BCSrcOp, Op1);
2927   }
2928 
2929   const APInt *C;
2930   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2931       !Bitcast->getType()->isIntegerTy() ||
2932       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2933     return nullptr;
2934 
2935   // If this is checking if all elements of a vector compare are set or not,
2936   // invert the casted vector equality compare and test if all compare
2937   // elements are clear or not. Compare against zero is generally easier for
2938   // analysis and codegen.
2939   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2940   // Example: are all elements equal? --> are zero elements not equal?
2941   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2942   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2943       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2944     Type *ScalarTy = Bitcast->getType();
2945     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2946     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2947   }
2948 
2949   // If this is checking if all elements of an extended vector are clear or not,
2950   // compare in a narrow type to eliminate the extend:
2951   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2952   Value *X;
2953   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2954       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2955     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2956       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2957       Value *NewCast = Builder.CreateBitCast(X, NewType);
2958       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2959     }
2960   }
2961 
2962   // Folding: icmp <pred> iN X, C
2963   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2964   //    and C is a splat of a K-bit pattern
2965   //    and SC is a constant vector = <C', C', C', ..., C'>
2966   // Into:
2967   //   %E = extractelement <M x iK> %vec, i32 C'
2968   //   icmp <pred> iK %E, trunc(C)
2969   Value *Vec;
2970   ArrayRef<int> Mask;
2971   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2972     // Check whether every element of Mask is the same constant
2973     if (is_splat(Mask)) {
2974       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2975       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2976       if (C->isSplat(EltTy->getBitWidth())) {
2977         // Fold the icmp based on the value of C
2978         // If C is M copies of an iK sized bit pattern,
2979         // then:
2980         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2981         //       icmp <pred> iK %SplatVal, <pattern>
2982         Value *Elem = Builder.getInt32(Mask[0]);
2983         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2984         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2985         return new ICmpInst(Pred, Extract, NewC);
2986       }
2987     }
2988   }
2989   return nullptr;
2990 }
2991 
2992 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2993 /// where X is some kind of instruction.
2994 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2995   const APInt *C;
2996   if (!match(Cmp.getOperand(1), m_APInt(C)))
2997     return nullptr;
2998 
2999   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3000     switch (BO->getOpcode()) {
3001     case Instruction::Xor:
3002       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3003         return I;
3004       break;
3005     case Instruction::And:
3006       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3007         return I;
3008       break;
3009     case Instruction::Or:
3010       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3011         return I;
3012       break;
3013     case Instruction::Mul:
3014       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3015         return I;
3016       break;
3017     case Instruction::Shl:
3018       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3019         return I;
3020       break;
3021     case Instruction::LShr:
3022     case Instruction::AShr:
3023       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3024         return I;
3025       break;
3026     case Instruction::SRem:
3027       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3028         return I;
3029       break;
3030     case Instruction::UDiv:
3031       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3032         return I;
3033       LLVM_FALLTHROUGH;
3034     case Instruction::SDiv:
3035       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3036         return I;
3037       break;
3038     case Instruction::Sub:
3039       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3040         return I;
3041       break;
3042     case Instruction::Add:
3043       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3044         return I;
3045       break;
3046     default:
3047       break;
3048     }
3049     // TODO: These folds could be refactored to be part of the above calls.
3050     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3051       return I;
3052   }
3053 
3054   // Match against CmpInst LHS being instructions other than binary operators.
3055 
3056   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3057     // For now, we only support constant integers while folding the
3058     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3059     // similar to the cases handled by binary ops above.
3060     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3061       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3062         return I;
3063   }
3064 
3065   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3066     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3067       return I;
3068   }
3069 
3070   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3071     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3072       return I;
3073 
3074   return nullptr;
3075 }
3076 
3077 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3078 /// icmp eq/ne BO, C.
3079 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3080     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3081   // TODO: Some of these folds could work with arbitrary constants, but this
3082   // function is limited to scalar and vector splat constants.
3083   if (!Cmp.isEquality())
3084     return nullptr;
3085 
3086   ICmpInst::Predicate Pred = Cmp.getPredicate();
3087   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3088   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3089   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3090 
3091   switch (BO->getOpcode()) {
3092   case Instruction::SRem:
3093     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3094     if (C.isZero() && BO->hasOneUse()) {
3095       const APInt *BOC;
3096       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3097         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3098         return new ICmpInst(Pred, NewRem,
3099                             Constant::getNullValue(BO->getType()));
3100       }
3101     }
3102     break;
3103   case Instruction::Add: {
3104     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3105     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3106       if (BO->hasOneUse())
3107         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3108     } else if (C.isZero()) {
3109       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3110       // efficiently invertible, or if the add has just this one use.
3111       if (Value *NegVal = dyn_castNegVal(BOp1))
3112         return new ICmpInst(Pred, BOp0, NegVal);
3113       if (Value *NegVal = dyn_castNegVal(BOp0))
3114         return new ICmpInst(Pred, NegVal, BOp1);
3115       if (BO->hasOneUse()) {
3116         Value *Neg = Builder.CreateNeg(BOp1);
3117         Neg->takeName(BO);
3118         return new ICmpInst(Pred, BOp0, Neg);
3119       }
3120     }
3121     break;
3122   }
3123   case Instruction::Xor:
3124     if (BO->hasOneUse()) {
3125       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3126         // For the xor case, we can xor two constants together, eliminating
3127         // the explicit xor.
3128         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3129       } else if (C.isZero()) {
3130         // Replace ((xor A, B) != 0) with (A != B)
3131         return new ICmpInst(Pred, BOp0, BOp1);
3132       }
3133     }
3134     break;
3135   case Instruction::Or: {
3136     const APInt *BOC;
3137     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3138       // Comparing if all bits outside of a constant mask are set?
3139       // Replace (X | C) == -1 with (X & ~C) == ~C.
3140       // This removes the -1 constant.
3141       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3142       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3143       return new ICmpInst(Pred, And, NotBOC);
3144     }
3145     break;
3146   }
3147   case Instruction::And: {
3148     const APInt *BOC;
3149     if (match(BOp1, m_APInt(BOC))) {
3150       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3151       if (C == *BOC && C.isPowerOf2())
3152         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3153                             BO, Constant::getNullValue(RHS->getType()));
3154     }
3155     break;
3156   }
3157   case Instruction::UDiv:
3158     if (C.isZero()) {
3159       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3160       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3161       return new ICmpInst(NewPred, BOp1, BOp0);
3162     }
3163     break;
3164   default:
3165     break;
3166   }
3167   return nullptr;
3168 }
3169 
3170 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3171 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3172     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3173   Type *Ty = II->getType();
3174   unsigned BitWidth = C.getBitWidth();
3175   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3176 
3177   switch (II->getIntrinsicID()) {
3178   case Intrinsic::abs:
3179     // abs(A) == 0  ->  A == 0
3180     // abs(A) == INT_MIN  ->  A == INT_MIN
3181     if (C.isZero() || C.isMinSignedValue())
3182       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3183     break;
3184 
3185   case Intrinsic::bswap:
3186     // bswap(A) == C  ->  A == bswap(C)
3187     return new ICmpInst(Pred, II->getArgOperand(0),
3188                         ConstantInt::get(Ty, C.byteSwap()));
3189 
3190   case Intrinsic::ctlz:
3191   case Intrinsic::cttz: {
3192     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3193     if (C == BitWidth)
3194       return new ICmpInst(Pred, II->getArgOperand(0),
3195                           ConstantInt::getNullValue(Ty));
3196 
3197     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3198     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3199     // Limit to one use to ensure we don't increase instruction count.
3200     unsigned Num = C.getLimitedValue(BitWidth);
3201     if (Num != BitWidth && II->hasOneUse()) {
3202       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3203       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3204                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3205       APInt Mask2 = IsTrailing
3206         ? APInt::getOneBitSet(BitWidth, Num)
3207         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3208       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3209                           ConstantInt::get(Ty, Mask2));
3210     }
3211     break;
3212   }
3213 
3214   case Intrinsic::ctpop: {
3215     // popcount(A) == 0  ->  A == 0 and likewise for !=
3216     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3217     bool IsZero = C.isZero();
3218     if (IsZero || C == BitWidth)
3219       return new ICmpInst(Pred, II->getArgOperand(0),
3220                           IsZero ? Constant::getNullValue(Ty)
3221                                  : Constant::getAllOnesValue(Ty));
3222 
3223     break;
3224   }
3225 
3226   case Intrinsic::fshl:
3227   case Intrinsic::fshr:
3228     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3229       // (rot X, ?) == 0/-1 --> X == 0/-1
3230       // TODO: This transform is safe to re-use undef elts in a vector, but
3231       //       the constant value passed in by the caller doesn't allow that.
3232       if (C.isZero() || C.isAllOnes())
3233         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3234 
3235       const APInt *RotAmtC;
3236       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3237       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3238       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3239         return new ICmpInst(Pred, II->getArgOperand(0),
3240                             II->getIntrinsicID() == Intrinsic::fshl
3241                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3242                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3243     }
3244     break;
3245 
3246   case Intrinsic::uadd_sat: {
3247     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3248     if (C.isZero()) {
3249       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3250       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3251     }
3252     break;
3253   }
3254 
3255   case Intrinsic::usub_sat: {
3256     // usub.sat(a, b) == 0  ->  a <= b
3257     if (C.isZero()) {
3258       ICmpInst::Predicate NewPred =
3259           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3260       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3261     }
3262     break;
3263   }
3264   default:
3265     break;
3266   }
3267 
3268   return nullptr;
3269 }
3270 
3271 /// Fold an icmp with LLVM intrinsics
3272 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3273   assert(Cmp.isEquality());
3274 
3275   ICmpInst::Predicate Pred = Cmp.getPredicate();
3276   Value *Op0 = Cmp.getOperand(0);
3277   Value *Op1 = Cmp.getOperand(1);
3278   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3279   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3280   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3281     return nullptr;
3282 
3283   switch (IIOp0->getIntrinsicID()) {
3284   case Intrinsic::bswap:
3285   case Intrinsic::bitreverse:
3286     // If both operands are byte-swapped or bit-reversed, just compare the
3287     // original values.
3288     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3289   case Intrinsic::fshl:
3290   case Intrinsic::fshr:
3291     // If both operands are rotated by same amount, just compare the
3292     // original values.
3293     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3294       break;
3295     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3296       break;
3297     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3298       break;
3299     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3300   default:
3301     break;
3302   }
3303 
3304   return nullptr;
3305 }
3306 
3307 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3308 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3309                                                              IntrinsicInst *II,
3310                                                              const APInt &C) {
3311   if (Cmp.isEquality())
3312     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3313 
3314   Type *Ty = II->getType();
3315   unsigned BitWidth = C.getBitWidth();
3316   ICmpInst::Predicate Pred = Cmp.getPredicate();
3317   switch (II->getIntrinsicID()) {
3318   case Intrinsic::ctpop: {
3319     // (ctpop X > BitWidth - 1) --> X == -1
3320     Value *X = II->getArgOperand(0);
3321     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3322       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3323                              ConstantInt::getAllOnesValue(Ty));
3324     // (ctpop X < BitWidth) --> X != -1
3325     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3326       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3327                              ConstantInt::getAllOnesValue(Ty));
3328     break;
3329   }
3330   case Intrinsic::ctlz: {
3331     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3332     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3333       unsigned Num = C.getLimitedValue();
3334       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3335       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3336                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3337     }
3338 
3339     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3340     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3341       unsigned Num = C.getLimitedValue();
3342       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3343       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3344                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3345     }
3346     break;
3347   }
3348   case Intrinsic::cttz: {
3349     // Limit to one use to ensure we don't increase instruction count.
3350     if (!II->hasOneUse())
3351       return nullptr;
3352 
3353     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3354     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3355       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3356       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3357                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3358                              ConstantInt::getNullValue(Ty));
3359     }
3360 
3361     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3362     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3363       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3364       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3365                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3366                              ConstantInt::getNullValue(Ty));
3367     }
3368     break;
3369   }
3370   default:
3371     break;
3372   }
3373 
3374   return nullptr;
3375 }
3376 
3377 /// Handle icmp with constant (but not simple integer constant) RHS.
3378 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3379   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3380   Constant *RHSC = dyn_cast<Constant>(Op1);
3381   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3382   if (!RHSC || !LHSI)
3383     return nullptr;
3384 
3385   switch (LHSI->getOpcode()) {
3386   case Instruction::GetElementPtr:
3387     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3388     if (RHSC->isNullValue() &&
3389         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3390       return new ICmpInst(
3391           I.getPredicate(), LHSI->getOperand(0),
3392           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3393     break;
3394   case Instruction::PHI:
3395     // Only fold icmp into the PHI if the phi and icmp are in the same
3396     // block.  If in the same block, we're encouraging jump threading.  If
3397     // not, we are just pessimizing the code by making an i1 phi.
3398     if (LHSI->getParent() == I.getParent())
3399       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3400         return NV;
3401     break;
3402   case Instruction::Select: {
3403     // If either operand of the select is a constant, we can fold the
3404     // comparison into the select arms, which will cause one to be
3405     // constant folded and the select turned into a bitwise or.
3406     Value *Op1 = nullptr, *Op2 = nullptr;
3407     ConstantInt *CI = nullptr;
3408 
3409     auto SimplifyOp = [&](Value *V) {
3410       Value *Op = nullptr;
3411       if (Constant *C = dyn_cast<Constant>(V)) {
3412         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3413       } else if (RHSC->isNullValue()) {
3414         // If null is being compared, check if it can be further simplified.
3415         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3416       }
3417       return Op;
3418     };
3419     Op1 = SimplifyOp(LHSI->getOperand(1));
3420     if (Op1)
3421       CI = dyn_cast<ConstantInt>(Op1);
3422 
3423     Op2 = SimplifyOp(LHSI->getOperand(2));
3424     if (Op2)
3425       CI = dyn_cast<ConstantInt>(Op2);
3426 
3427     // We only want to perform this transformation if it will not lead to
3428     // additional code. This is true if either both sides of the select
3429     // fold to a constant (in which case the icmp is replaced with a select
3430     // which will usually simplify) or this is the only user of the
3431     // select (in which case we are trading a select+icmp for a simpler
3432     // select+icmp) or all uses of the select can be replaced based on
3433     // dominance information ("Global cases").
3434     bool Transform = false;
3435     if (Op1 && Op2)
3436       Transform = true;
3437     else if (Op1 || Op2) {
3438       // Local case
3439       if (LHSI->hasOneUse())
3440         Transform = true;
3441       // Global cases
3442       else if (CI && !CI->isZero())
3443         // When Op1 is constant try replacing select with second operand.
3444         // Otherwise Op2 is constant and try replacing select with first
3445         // operand.
3446         Transform =
3447             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3448     }
3449     if (Transform) {
3450       if (!Op1)
3451         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3452                                  I.getName());
3453       if (!Op2)
3454         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3455                                  I.getName());
3456       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3457     }
3458     break;
3459   }
3460   case Instruction::IntToPtr:
3461     // icmp pred inttoptr(X), null -> icmp pred X, 0
3462     if (RHSC->isNullValue() &&
3463         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3464       return new ICmpInst(
3465           I.getPredicate(), LHSI->getOperand(0),
3466           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3467     break;
3468 
3469   case Instruction::Load:
3470     // Try to optimize things like "A[i] > 4" to index computations.
3471     if (GetElementPtrInst *GEP =
3472             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3473       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3474         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3475             !cast<LoadInst>(LHSI)->isVolatile())
3476           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3477             return Res;
3478     }
3479     break;
3480   }
3481 
3482   return nullptr;
3483 }
3484 
3485 /// Some comparisons can be simplified.
3486 /// In this case, we are looking for comparisons that look like
3487 /// a check for a lossy truncation.
3488 /// Folds:
3489 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3490 /// Where Mask is some pattern that produces all-ones in low bits:
3491 ///    (-1 >> y)
3492 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3493 ///   ~(-1 << y)
3494 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3495 /// The Mask can be a constant, too.
3496 /// For some predicates, the operands are commutative.
3497 /// For others, x can only be on a specific side.
3498 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3499                                           InstCombiner::BuilderTy &Builder) {
3500   ICmpInst::Predicate SrcPred;
3501   Value *X, *M, *Y;
3502   auto m_VariableMask = m_CombineOr(
3503       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3504                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3505       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3506                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3507   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3508   if (!match(&I, m_c_ICmp(SrcPred,
3509                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3510                           m_Deferred(X))))
3511     return nullptr;
3512 
3513   ICmpInst::Predicate DstPred;
3514   switch (SrcPred) {
3515   case ICmpInst::Predicate::ICMP_EQ:
3516     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3517     DstPred = ICmpInst::Predicate::ICMP_ULE;
3518     break;
3519   case ICmpInst::Predicate::ICMP_NE:
3520     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3521     DstPred = ICmpInst::Predicate::ICMP_UGT;
3522     break;
3523   case ICmpInst::Predicate::ICMP_ULT:
3524     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3525     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3526     DstPred = ICmpInst::Predicate::ICMP_UGT;
3527     break;
3528   case ICmpInst::Predicate::ICMP_UGE:
3529     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3530     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3531     DstPred = ICmpInst::Predicate::ICMP_ULE;
3532     break;
3533   case ICmpInst::Predicate::ICMP_SLT:
3534     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3535     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3536     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3537       return nullptr;
3538     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3539       return nullptr;
3540     DstPred = ICmpInst::Predicate::ICMP_SGT;
3541     break;
3542   case ICmpInst::Predicate::ICMP_SGE:
3543     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3544     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3545     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3546       return nullptr;
3547     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3548       return nullptr;
3549     DstPred = ICmpInst::Predicate::ICMP_SLE;
3550     break;
3551   case ICmpInst::Predicate::ICMP_SGT:
3552   case ICmpInst::Predicate::ICMP_SLE:
3553     return nullptr;
3554   case ICmpInst::Predicate::ICMP_UGT:
3555   case ICmpInst::Predicate::ICMP_ULE:
3556     llvm_unreachable("Instsimplify took care of commut. variant");
3557     break;
3558   default:
3559     llvm_unreachable("All possible folds are handled.");
3560   }
3561 
3562   // The mask value may be a vector constant that has undefined elements. But it
3563   // may not be safe to propagate those undefs into the new compare, so replace
3564   // those elements by copying an existing, defined, and safe scalar constant.
3565   Type *OpTy = M->getType();
3566   auto *VecC = dyn_cast<Constant>(M);
3567   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3568   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3569     Constant *SafeReplacementConstant = nullptr;
3570     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3571       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3572         SafeReplacementConstant = VecC->getAggregateElement(i);
3573         break;
3574       }
3575     }
3576     assert(SafeReplacementConstant && "Failed to find undef replacement");
3577     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3578   }
3579 
3580   return Builder.CreateICmp(DstPred, X, M);
3581 }
3582 
3583 /// Some comparisons can be simplified.
3584 /// In this case, we are looking for comparisons that look like
3585 /// a check for a lossy signed truncation.
3586 /// Folds:   (MaskedBits is a constant.)
3587 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3588 /// Into:
3589 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3590 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3591 static Value *
3592 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3593                                  InstCombiner::BuilderTy &Builder) {
3594   ICmpInst::Predicate SrcPred;
3595   Value *X;
3596   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3597   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3598   if (!match(&I, m_c_ICmp(SrcPred,
3599                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3600                                           m_APInt(C1))),
3601                           m_Deferred(X))))
3602     return nullptr;
3603 
3604   // Potential handling of non-splats: for each element:
3605   //  * if both are undef, replace with constant 0.
3606   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3607   //  * if both are not undef, and are different, bailout.
3608   //  * else, only one is undef, then pick the non-undef one.
3609 
3610   // The shift amount must be equal.
3611   if (*C0 != *C1)
3612     return nullptr;
3613   const APInt &MaskedBits = *C0;
3614   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3615 
3616   ICmpInst::Predicate DstPred;
3617   switch (SrcPred) {
3618   case ICmpInst::Predicate::ICMP_EQ:
3619     // ((%x << MaskedBits) a>> MaskedBits) == %x
3620     //   =>
3621     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3622     DstPred = ICmpInst::Predicate::ICMP_ULT;
3623     break;
3624   case ICmpInst::Predicate::ICMP_NE:
3625     // ((%x << MaskedBits) a>> MaskedBits) != %x
3626     //   =>
3627     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3628     DstPred = ICmpInst::Predicate::ICMP_UGE;
3629     break;
3630   // FIXME: are more folds possible?
3631   default:
3632     return nullptr;
3633   }
3634 
3635   auto *XType = X->getType();
3636   const unsigned XBitWidth = XType->getScalarSizeInBits();
3637   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3638   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3639 
3640   // KeptBits = bitwidth(%x) - MaskedBits
3641   const APInt KeptBits = BitWidth - MaskedBits;
3642   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3643   // ICmpCst = (1 << KeptBits)
3644   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3645   assert(ICmpCst.isPowerOf2());
3646   // AddCst = (1 << (KeptBits-1))
3647   const APInt AddCst = ICmpCst.lshr(1);
3648   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3649 
3650   // T0 = add %x, AddCst
3651   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3652   // T1 = T0 DstPred ICmpCst
3653   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3654 
3655   return T1;
3656 }
3657 
3658 // Given pattern:
3659 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3660 // we should move shifts to the same hand of 'and', i.e. rewrite as
3661 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3662 // We are only interested in opposite logical shifts here.
3663 // One of the shifts can be truncated.
3664 // If we can, we want to end up creating 'lshr' shift.
3665 static Value *
3666 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3667                                            InstCombiner::BuilderTy &Builder) {
3668   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3669       !I.getOperand(0)->hasOneUse())
3670     return nullptr;
3671 
3672   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3673 
3674   // Look for an 'and' of two logical shifts, one of which may be truncated.
3675   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3676   Instruction *XShift, *MaybeTruncation, *YShift;
3677   if (!match(
3678           I.getOperand(0),
3679           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3680                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3681                                    m_AnyLogicalShift, m_Instruction(YShift))),
3682                                m_Instruction(MaybeTruncation)))))
3683     return nullptr;
3684 
3685   // We potentially looked past 'trunc', but only when matching YShift,
3686   // therefore YShift must have the widest type.
3687   Instruction *WidestShift = YShift;
3688   // Therefore XShift must have the shallowest type.
3689   // Or they both have identical types if there was no truncation.
3690   Instruction *NarrowestShift = XShift;
3691 
3692   Type *WidestTy = WidestShift->getType();
3693   Type *NarrowestTy = NarrowestShift->getType();
3694   assert(NarrowestTy == I.getOperand(0)->getType() &&
3695          "We did not look past any shifts while matching XShift though.");
3696   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3697 
3698   // If YShift is a 'lshr', swap the shifts around.
3699   if (match(YShift, m_LShr(m_Value(), m_Value())))
3700     std::swap(XShift, YShift);
3701 
3702   // The shifts must be in opposite directions.
3703   auto XShiftOpcode = XShift->getOpcode();
3704   if (XShiftOpcode == YShift->getOpcode())
3705     return nullptr; // Do not care about same-direction shifts here.
3706 
3707   Value *X, *XShAmt, *Y, *YShAmt;
3708   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3709   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3710 
3711   // If one of the values being shifted is a constant, then we will end with
3712   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3713   // however, we will need to ensure that we won't increase instruction count.
3714   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3715     // At least one of the hands of the 'and' should be one-use shift.
3716     if (!match(I.getOperand(0),
3717                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3718       return nullptr;
3719     if (HadTrunc) {
3720       // Due to the 'trunc', we will need to widen X. For that either the old
3721       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3722       if (!MaybeTruncation->hasOneUse() &&
3723           !NarrowestShift->getOperand(1)->hasOneUse())
3724         return nullptr;
3725     }
3726   }
3727 
3728   // We have two shift amounts from two different shifts. The types of those
3729   // shift amounts may not match. If that's the case let's bailout now.
3730   if (XShAmt->getType() != YShAmt->getType())
3731     return nullptr;
3732 
3733   // As input, we have the following pattern:
3734   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3735   // We want to rewrite that as:
3736   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3737   // While we know that originally (Q+K) would not overflow
3738   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3739   // shift amounts. so it may now overflow in smaller bitwidth.
3740   // To ensure that does not happen, we need to ensure that the total maximal
3741   // shift amount is still representable in that smaller bit width.
3742   unsigned MaximalPossibleTotalShiftAmount =
3743       (WidestTy->getScalarSizeInBits() - 1) +
3744       (NarrowestTy->getScalarSizeInBits() - 1);
3745   APInt MaximalRepresentableShiftAmount =
3746       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3747   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3748     return nullptr;
3749 
3750   // Can we fold (XShAmt+YShAmt) ?
3751   auto *NewShAmt = dyn_cast_or_null<Constant>(
3752       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3753                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3754   if (!NewShAmt)
3755     return nullptr;
3756   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3757   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3758 
3759   // Is the new shift amount smaller than the bit width?
3760   // FIXME: could also rely on ConstantRange.
3761   if (!match(NewShAmt,
3762              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3763                                 APInt(WidestBitWidth, WidestBitWidth))))
3764     return nullptr;
3765 
3766   // An extra legality check is needed if we had trunc-of-lshr.
3767   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3768     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3769                     WidestShift]() {
3770       // It isn't obvious whether it's worth it to analyze non-constants here.
3771       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3772       // If *any* of these preconditions matches we can perform the fold.
3773       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3774                                     ? NewShAmt->getSplatValue()
3775                                     : NewShAmt;
3776       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3777       if (NewShAmtSplat &&
3778           (NewShAmtSplat->isNullValue() ||
3779            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3780         return true;
3781       // We consider *min* leading zeros so a single outlier
3782       // blocks the transform as opposed to allowing it.
3783       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3784         KnownBits Known = computeKnownBits(C, SQ.DL);
3785         unsigned MinLeadZero = Known.countMinLeadingZeros();
3786         // If the value being shifted has at most lowest bit set we can fold.
3787         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3788         if (MaxActiveBits <= 1)
3789           return true;
3790         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3791         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3792           return true;
3793       }
3794       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3795         KnownBits Known = computeKnownBits(C, SQ.DL);
3796         unsigned MinLeadZero = Known.countMinLeadingZeros();
3797         // If the value being shifted has at most lowest bit set we can fold.
3798         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3799         if (MaxActiveBits <= 1)
3800           return true;
3801         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3802         if (NewShAmtSplat) {
3803           APInt AdjNewShAmt =
3804               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3805           if (AdjNewShAmt.ule(MinLeadZero))
3806             return true;
3807         }
3808       }
3809       return false; // Can't tell if it's ok.
3810     };
3811     if (!CanFold())
3812       return nullptr;
3813   }
3814 
3815   // All good, we can do this fold.
3816   X = Builder.CreateZExt(X, WidestTy);
3817   Y = Builder.CreateZExt(Y, WidestTy);
3818   // The shift is the same that was for X.
3819   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3820                   ? Builder.CreateLShr(X, NewShAmt)
3821                   : Builder.CreateShl(X, NewShAmt);
3822   Value *T1 = Builder.CreateAnd(T0, Y);
3823   return Builder.CreateICmp(I.getPredicate(), T1,
3824                             Constant::getNullValue(WidestTy));
3825 }
3826 
3827 /// Fold
3828 ///   (-1 u/ x) u< y
3829 ///   ((x * y) ?/ x) != y
3830 /// to
3831 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3832 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3833 /// will mean that we are looking for the opposite answer.
3834 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3835   ICmpInst::Predicate Pred;
3836   Value *X, *Y;
3837   Instruction *Mul;
3838   Instruction *Div;
3839   bool NeedNegation;
3840   // Look for: (-1 u/ x) u</u>= y
3841   if (!I.isEquality() &&
3842       match(&I, m_c_ICmp(Pred,
3843                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3844                                       m_Instruction(Div)),
3845                          m_Value(Y)))) {
3846     Mul = nullptr;
3847 
3848     // Are we checking that overflow does not happen, or does happen?
3849     switch (Pred) {
3850     case ICmpInst::Predicate::ICMP_ULT:
3851       NeedNegation = false;
3852       break; // OK
3853     case ICmpInst::Predicate::ICMP_UGE:
3854       NeedNegation = true;
3855       break; // OK
3856     default:
3857       return nullptr; // Wrong predicate.
3858     }
3859   } else // Look for: ((x * y) / x) !=/== y
3860       if (I.isEquality() &&
3861           match(&I,
3862                 m_c_ICmp(Pred, m_Value(Y),
3863                          m_CombineAnd(
3864                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3865                                                                   m_Value(X)),
3866                                                           m_Instruction(Mul)),
3867                                              m_Deferred(X))),
3868                              m_Instruction(Div))))) {
3869     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3870   } else
3871     return nullptr;
3872 
3873   BuilderTy::InsertPointGuard Guard(Builder);
3874   // If the pattern included (x * y), we'll want to insert new instructions
3875   // right before that original multiplication so that we can replace it.
3876   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3877   if (MulHadOtherUses)
3878     Builder.SetInsertPoint(Mul);
3879 
3880   Function *F = Intrinsic::getDeclaration(I.getModule(),
3881                                           Div->getOpcode() == Instruction::UDiv
3882                                               ? Intrinsic::umul_with_overflow
3883                                               : Intrinsic::smul_with_overflow,
3884                                           X->getType());
3885   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3886 
3887   // If the multiplication was used elsewhere, to ensure that we don't leave
3888   // "duplicate" instructions, replace uses of that original multiplication
3889   // with the multiplication result from the with.overflow intrinsic.
3890   if (MulHadOtherUses)
3891     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3892 
3893   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3894   if (NeedNegation) // This technically increases instruction count.
3895     Res = Builder.CreateNot(Res, "mul.not.ov");
3896 
3897   // If we replaced the mul, erase it. Do this after all uses of Builder,
3898   // as the mul is used as insertion point.
3899   if (MulHadOtherUses)
3900     eraseInstFromFunction(*Mul);
3901 
3902   return Res;
3903 }
3904 
3905 static Instruction *foldICmpXNegX(ICmpInst &I) {
3906   CmpInst::Predicate Pred;
3907   Value *X;
3908   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3909     return nullptr;
3910 
3911   if (ICmpInst::isSigned(Pred))
3912     Pred = ICmpInst::getSwappedPredicate(Pred);
3913   else if (ICmpInst::isUnsigned(Pred))
3914     Pred = ICmpInst::getSignedPredicate(Pred);
3915   // else for equality-comparisons just keep the predicate.
3916 
3917   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3918                           Constant::getNullValue(X->getType()), I.getName());
3919 }
3920 
3921 /// Try to fold icmp (binop), X or icmp X, (binop).
3922 /// TODO: A large part of this logic is duplicated in InstSimplify's
3923 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3924 /// duplication.
3925 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3926                                              const SimplifyQuery &SQ) {
3927   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3928   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3929 
3930   // Special logic for binary operators.
3931   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3932   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3933   if (!BO0 && !BO1)
3934     return nullptr;
3935 
3936   if (Instruction *NewICmp = foldICmpXNegX(I))
3937     return NewICmp;
3938 
3939   const CmpInst::Predicate Pred = I.getPredicate();
3940   Value *X;
3941 
3942   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3943   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3944   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3945       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3946     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3947   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3948   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3949       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3950     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3951 
3952   {
3953     // Similar to above: an unsigned overflow comparison may use offset + mask:
3954     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3955     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3956     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3957     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3958     BinaryOperator *BO;
3959     const APInt *C;
3960     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3961         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3962         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3963       CmpInst::Predicate NewPred =
3964           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3965       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3966       return new ICmpInst(NewPred, Op1, Zero);
3967     }
3968 
3969     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
3970         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3971         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
3972       CmpInst::Predicate NewPred =
3973           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3974       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3975       return new ICmpInst(NewPred, Op0, Zero);
3976     }
3977   }
3978 
3979   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3980   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3981     NoOp0WrapProblem =
3982         ICmpInst::isEquality(Pred) ||
3983         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3984         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3985   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3986     NoOp1WrapProblem =
3987         ICmpInst::isEquality(Pred) ||
3988         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3989         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3990 
3991   // Analyze the case when either Op0 or Op1 is an add instruction.
3992   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3993   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3994   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3995     A = BO0->getOperand(0);
3996     B = BO0->getOperand(1);
3997   }
3998   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3999     C = BO1->getOperand(0);
4000     D = BO1->getOperand(1);
4001   }
4002 
4003   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4004   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4005   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4006     return new ICmpInst(Pred, A == Op1 ? B : A,
4007                         Constant::getNullValue(Op1->getType()));
4008 
4009   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4010   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4011   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4012     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4013                         C == Op0 ? D : C);
4014 
4015   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4016   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4017       NoOp1WrapProblem) {
4018     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4019     Value *Y, *Z;
4020     if (A == C) {
4021       // C + B == C + D  ->  B == D
4022       Y = B;
4023       Z = D;
4024     } else if (A == D) {
4025       // D + B == C + D  ->  B == C
4026       Y = B;
4027       Z = C;
4028     } else if (B == C) {
4029       // A + C == C + D  ->  A == D
4030       Y = A;
4031       Z = D;
4032     } else {
4033       assert(B == D);
4034       // A + D == C + D  ->  A == C
4035       Y = A;
4036       Z = C;
4037     }
4038     return new ICmpInst(Pred, Y, Z);
4039   }
4040 
4041   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4042   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4043       match(B, m_AllOnes()))
4044     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4045 
4046   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4047   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4048       match(B, m_AllOnes()))
4049     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4050 
4051   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4052   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4053     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4054 
4055   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4056   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4057     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4058 
4059   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4060   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4061       match(D, m_AllOnes()))
4062     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4063 
4064   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4065   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4066       match(D, m_AllOnes()))
4067     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4068 
4069   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4070   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4071     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4072 
4073   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4074   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4075     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4076 
4077   // TODO: The subtraction-related identities shown below also hold, but
4078   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4079   // wouldn't happen even if they were implemented.
4080   //
4081   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4082   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4083   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4084   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4085 
4086   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4087   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4088     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4089 
4090   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4091   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4092     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4093 
4094   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4095   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4096     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4097 
4098   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4099   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4100     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4101 
4102   // if C1 has greater magnitude than C2:
4103   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4104   //  s.t. C3 = C1 - C2
4105   //
4106   // if C2 has greater magnitude than C1:
4107   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4108   //  s.t. C3 = C2 - C1
4109   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4110       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4111     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4112       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4113         const APInt &AP1 = C1->getValue();
4114         const APInt &AP2 = C2->getValue();
4115         if (AP1.isNegative() == AP2.isNegative()) {
4116           APInt AP1Abs = C1->getValue().abs();
4117           APInt AP2Abs = C2->getValue().abs();
4118           if (AP1Abs.uge(AP2Abs)) {
4119             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4120             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4121             bool HasNSW = BO0->hasNoSignedWrap();
4122             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4123             return new ICmpInst(Pred, NewAdd, C);
4124           } else {
4125             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4126             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4127             bool HasNSW = BO1->hasNoSignedWrap();
4128             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4129             return new ICmpInst(Pred, A, NewAdd);
4130           }
4131         }
4132       }
4133 
4134   // Analyze the case when either Op0 or Op1 is a sub instruction.
4135   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4136   A = nullptr;
4137   B = nullptr;
4138   C = nullptr;
4139   D = nullptr;
4140   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4141     A = BO0->getOperand(0);
4142     B = BO0->getOperand(1);
4143   }
4144   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4145     C = BO1->getOperand(0);
4146     D = BO1->getOperand(1);
4147   }
4148 
4149   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4150   if (A == Op1 && NoOp0WrapProblem)
4151     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4152   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4153   if (C == Op0 && NoOp1WrapProblem)
4154     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4155 
4156   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4157   // (A - B) u>/u<= A --> B u>/u<= A
4158   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4159     return new ICmpInst(Pred, B, A);
4160   // C u</u>= (C - D) --> C u</u>= D
4161   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4162     return new ICmpInst(Pred, C, D);
4163   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4164   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4165       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4166     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4167   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4168   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4169       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4170     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4171 
4172   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4173   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4174     return new ICmpInst(Pred, A, C);
4175 
4176   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4177   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4178     return new ICmpInst(Pred, D, B);
4179 
4180   // icmp (0-X) < cst --> x > -cst
4181   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4182     Value *X;
4183     if (match(BO0, m_Neg(m_Value(X))))
4184       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4185         if (RHSC->isNotMinSignedValue())
4186           return new ICmpInst(I.getSwappedPredicate(), X,
4187                               ConstantExpr::getNeg(RHSC));
4188   }
4189 
4190   {
4191     // Try to remove shared constant multiplier from equality comparison:
4192     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4193     Value *X, *Y;
4194     const APInt *C;
4195     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4196         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4197       if (!C->countTrailingZeros() ||
4198           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4199           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4200       return new ICmpInst(Pred, X, Y);
4201   }
4202 
4203   BinaryOperator *SRem = nullptr;
4204   // icmp (srem X, Y), Y
4205   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4206     SRem = BO0;
4207   // icmp Y, (srem X, Y)
4208   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4209            Op0 == BO1->getOperand(1))
4210     SRem = BO1;
4211   if (SRem) {
4212     // We don't check hasOneUse to avoid increasing register pressure because
4213     // the value we use is the same value this instruction was already using.
4214     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4215     default:
4216       break;
4217     case ICmpInst::ICMP_EQ:
4218       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4219     case ICmpInst::ICMP_NE:
4220       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4221     case ICmpInst::ICMP_SGT:
4222     case ICmpInst::ICMP_SGE:
4223       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4224                           Constant::getAllOnesValue(SRem->getType()));
4225     case ICmpInst::ICMP_SLT:
4226     case ICmpInst::ICMP_SLE:
4227       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4228                           Constant::getNullValue(SRem->getType()));
4229     }
4230   }
4231 
4232   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4233       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4234     switch (BO0->getOpcode()) {
4235     default:
4236       break;
4237     case Instruction::Add:
4238     case Instruction::Sub:
4239     case Instruction::Xor: {
4240       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4241         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4242 
4243       const APInt *C;
4244       if (match(BO0->getOperand(1), m_APInt(C))) {
4245         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4246         if (C->isSignMask()) {
4247           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4248           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4249         }
4250 
4251         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4252         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4253           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4254           NewPred = I.getSwappedPredicate(NewPred);
4255           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4256         }
4257       }
4258       break;
4259     }
4260     case Instruction::Mul: {
4261       if (!I.isEquality())
4262         break;
4263 
4264       const APInt *C;
4265       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4266           !C->isOne()) {
4267         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4268         // Mask = -1 >> count-trailing-zeros(C).
4269         if (unsigned TZs = C->countTrailingZeros()) {
4270           Constant *Mask = ConstantInt::get(
4271               BO0->getType(),
4272               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4273           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4274           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4275           return new ICmpInst(Pred, And1, And2);
4276         }
4277       }
4278       break;
4279     }
4280     case Instruction::UDiv:
4281     case Instruction::LShr:
4282       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4283         break;
4284       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4285 
4286     case Instruction::SDiv:
4287       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4288         break;
4289       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4290 
4291     case Instruction::AShr:
4292       if (!BO0->isExact() || !BO1->isExact())
4293         break;
4294       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4295 
4296     case Instruction::Shl: {
4297       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4298       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4299       if (!NUW && !NSW)
4300         break;
4301       if (!NSW && I.isSigned())
4302         break;
4303       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4304     }
4305     }
4306   }
4307 
4308   if (BO0) {
4309     // Transform  A & (L - 1) `ult` L --> L != 0
4310     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4311     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4312 
4313     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4314       auto *Zero = Constant::getNullValue(BO0->getType());
4315       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4316     }
4317   }
4318 
4319   if (Value *V = foldMultiplicationOverflowCheck(I))
4320     return replaceInstUsesWith(I, V);
4321 
4322   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4323     return replaceInstUsesWith(I, V);
4324 
4325   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4326     return replaceInstUsesWith(I, V);
4327 
4328   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4329     return replaceInstUsesWith(I, V);
4330 
4331   return nullptr;
4332 }
4333 
4334 /// Fold icmp Pred min|max(X, Y), X.
4335 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4336   ICmpInst::Predicate Pred = Cmp.getPredicate();
4337   Value *Op0 = Cmp.getOperand(0);
4338   Value *X = Cmp.getOperand(1);
4339 
4340   // Canonicalize minimum or maximum operand to LHS of the icmp.
4341   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4342       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4343       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4344       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4345     std::swap(Op0, X);
4346     Pred = Cmp.getSwappedPredicate();
4347   }
4348 
4349   Value *Y;
4350   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4351     // smin(X, Y)  == X --> X s<= Y
4352     // smin(X, Y) s>= X --> X s<= Y
4353     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4354       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4355 
4356     // smin(X, Y) != X --> X s> Y
4357     // smin(X, Y) s< X --> X s> Y
4358     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4359       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4360 
4361     // These cases should be handled in InstSimplify:
4362     // smin(X, Y) s<= X --> true
4363     // smin(X, Y) s> X --> false
4364     return nullptr;
4365   }
4366 
4367   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4368     // smax(X, Y)  == X --> X s>= Y
4369     // smax(X, Y) s<= X --> X s>= Y
4370     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4371       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4372 
4373     // smax(X, Y) != X --> X s< Y
4374     // smax(X, Y) s> X --> X s< Y
4375     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4376       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4377 
4378     // These cases should be handled in InstSimplify:
4379     // smax(X, Y) s>= X --> true
4380     // smax(X, Y) s< X --> false
4381     return nullptr;
4382   }
4383 
4384   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4385     // umin(X, Y)  == X --> X u<= Y
4386     // umin(X, Y) u>= X --> X u<= Y
4387     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4388       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4389 
4390     // umin(X, Y) != X --> X u> Y
4391     // umin(X, Y) u< X --> X u> Y
4392     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4393       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4394 
4395     // These cases should be handled in InstSimplify:
4396     // umin(X, Y) u<= X --> true
4397     // umin(X, Y) u> X --> false
4398     return nullptr;
4399   }
4400 
4401   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4402     // umax(X, Y)  == X --> X u>= Y
4403     // umax(X, Y) u<= X --> X u>= Y
4404     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4405       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4406 
4407     // umax(X, Y) != X --> X u< Y
4408     // umax(X, Y) u> X --> X u< Y
4409     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4410       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4411 
4412     // These cases should be handled in InstSimplify:
4413     // umax(X, Y) u>= X --> true
4414     // umax(X, Y) u< X --> false
4415     return nullptr;
4416   }
4417 
4418   return nullptr;
4419 }
4420 
4421 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4422   if (!I.isEquality())
4423     return nullptr;
4424 
4425   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4426   const CmpInst::Predicate Pred = I.getPredicate();
4427   Value *A, *B, *C, *D;
4428   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4429     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4430       Value *OtherVal = A == Op1 ? B : A;
4431       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4432     }
4433 
4434     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4435       // A^c1 == C^c2 --> A == C^(c1^c2)
4436       ConstantInt *C1, *C2;
4437       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4438           Op1->hasOneUse()) {
4439         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4440         Value *Xor = Builder.CreateXor(C, NC);
4441         return new ICmpInst(Pred, A, Xor);
4442       }
4443 
4444       // A^B == A^D -> B == D
4445       if (A == C)
4446         return new ICmpInst(Pred, B, D);
4447       if (A == D)
4448         return new ICmpInst(Pred, B, C);
4449       if (B == C)
4450         return new ICmpInst(Pred, A, D);
4451       if (B == D)
4452         return new ICmpInst(Pred, A, C);
4453     }
4454   }
4455 
4456   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4457     // A == (A^B)  ->  B == 0
4458     Value *OtherVal = A == Op0 ? B : A;
4459     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4460   }
4461 
4462   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4463   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4464       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4465     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4466 
4467     if (A == C) {
4468       X = B;
4469       Y = D;
4470       Z = A;
4471     } else if (A == D) {
4472       X = B;
4473       Y = C;
4474       Z = A;
4475     } else if (B == C) {
4476       X = A;
4477       Y = D;
4478       Z = B;
4479     } else if (B == D) {
4480       X = A;
4481       Y = C;
4482       Z = B;
4483     }
4484 
4485     if (X) { // Build (X^Y) & Z
4486       Op1 = Builder.CreateXor(X, Y);
4487       Op1 = Builder.CreateAnd(Op1, Z);
4488       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4489     }
4490   }
4491 
4492   {
4493     // Similar to above, but specialized for constant because invert is needed:
4494     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4495     Value *X, *Y;
4496     Constant *C;
4497     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4498         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4499       Value *Xor = Builder.CreateXor(X, Y);
4500       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4501       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4502     }
4503   }
4504 
4505   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4506   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4507   ConstantInt *Cst1;
4508   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4509        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4510       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4511        match(Op1, m_ZExt(m_Value(A))))) {
4512     APInt Pow2 = Cst1->getValue() + 1;
4513     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4514         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4515       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4516   }
4517 
4518   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4519   // For lshr and ashr pairs.
4520   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4521        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4522       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4523        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4524     unsigned TypeBits = Cst1->getBitWidth();
4525     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4526     if (ShAmt < TypeBits && ShAmt != 0) {
4527       ICmpInst::Predicate NewPred =
4528           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4529       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4530       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4531       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4532     }
4533   }
4534 
4535   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4536   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4537       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4538     unsigned TypeBits = Cst1->getBitWidth();
4539     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4540     if (ShAmt < TypeBits && ShAmt != 0) {
4541       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4542       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4543       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4544                                       I.getName() + ".mask");
4545       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4546     }
4547   }
4548 
4549   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4550   // "icmp (and X, mask), cst"
4551   uint64_t ShAmt = 0;
4552   if (Op0->hasOneUse() &&
4553       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4554       match(Op1, m_ConstantInt(Cst1)) &&
4555       // Only do this when A has multiple uses.  This is most important to do
4556       // when it exposes other optimizations.
4557       !A->hasOneUse()) {
4558     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4559 
4560     if (ShAmt < ASize) {
4561       APInt MaskV =
4562           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4563       MaskV <<= ShAmt;
4564 
4565       APInt CmpV = Cst1->getValue().zext(ASize);
4566       CmpV <<= ShAmt;
4567 
4568       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4569       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4570     }
4571   }
4572 
4573   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4574     return ICmp;
4575 
4576   // Canonicalize checking for a power-of-2-or-zero value:
4577   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4578   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4579   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4580                                    m_Deferred(A)))) ||
4581       !match(Op1, m_ZeroInt()))
4582     A = nullptr;
4583 
4584   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4585   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4586   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4587     A = Op1;
4588   else if (match(Op1,
4589                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4590     A = Op0;
4591 
4592   if (A) {
4593     Type *Ty = A->getType();
4594     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4595     return Pred == ICmpInst::ICMP_EQ
4596         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4597         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4598   }
4599 
4600   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4601   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4602   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4603   // of instcombine.
4604   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4605   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4606       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4607       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4608       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4609     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4610     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4611     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4612                                                   : ICmpInst::ICMP_UGE,
4613                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4614   }
4615 
4616   return nullptr;
4617 }
4618 
4619 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4620                                       InstCombiner::BuilderTy &Builder) {
4621   ICmpInst::Predicate Pred = ICmp.getPredicate();
4622   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4623 
4624   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4625   // The trunc masks high bits while the compare may effectively mask low bits.
4626   Value *X;
4627   const APInt *C;
4628   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4629     return nullptr;
4630 
4631   // This matches patterns corresponding to tests of the signbit as well as:
4632   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4633   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4634   APInt Mask;
4635   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4636     Value *And = Builder.CreateAnd(X, Mask);
4637     Constant *Zero = ConstantInt::getNullValue(X->getType());
4638     return new ICmpInst(Pred, And, Zero);
4639   }
4640 
4641   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4642   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4643     // If C is a negative power-of-2 (high-bit mask):
4644     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4645     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4646     Value *And = Builder.CreateAnd(X, MaskC);
4647     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4648   }
4649 
4650   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4651     // If C is not-of-power-of-2 (one clear bit):
4652     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4653     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4654     Value *And = Builder.CreateAnd(X, MaskC);
4655     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4656   }
4657 
4658   return nullptr;
4659 }
4660 
4661 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4662                                            InstCombiner::BuilderTy &Builder) {
4663   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4664   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4665   Value *X;
4666   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4667     return nullptr;
4668 
4669   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4670   bool IsSignedCmp = ICmp.isSigned();
4671   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4672     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4673     // and the other is a zext), then we can't handle this.
4674     // TODO: This is too strict. We can handle some predicates (equality?).
4675     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4676       return nullptr;
4677 
4678     // Not an extension from the same type?
4679     Value *Y = CastOp1->getOperand(0);
4680     Type *XTy = X->getType(), *YTy = Y->getType();
4681     if (XTy != YTy) {
4682       // One of the casts must have one use because we are creating a new cast.
4683       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4684         return nullptr;
4685       // Extend the narrower operand to the type of the wider operand.
4686       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4687         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4688       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4689         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4690       else
4691         return nullptr;
4692     }
4693 
4694     // (zext X) == (zext Y) --> X == Y
4695     // (sext X) == (sext Y) --> X == Y
4696     if (ICmp.isEquality())
4697       return new ICmpInst(ICmp.getPredicate(), X, Y);
4698 
4699     // A signed comparison of sign extended values simplifies into a
4700     // signed comparison.
4701     if (IsSignedCmp && IsSignedExt)
4702       return new ICmpInst(ICmp.getPredicate(), X, Y);
4703 
4704     // The other three cases all fold into an unsigned comparison.
4705     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4706   }
4707 
4708   // Below here, we are only folding a compare with constant.
4709   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4710   if (!C)
4711     return nullptr;
4712 
4713   // Compute the constant that would happen if we truncated to SrcTy then
4714   // re-extended to DestTy.
4715   Type *SrcTy = CastOp0->getSrcTy();
4716   Type *DestTy = CastOp0->getDestTy();
4717   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4718   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4719 
4720   // If the re-extended constant didn't change...
4721   if (Res2 == C) {
4722     if (ICmp.isEquality())
4723       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4724 
4725     // A signed comparison of sign extended values simplifies into a
4726     // signed comparison.
4727     if (IsSignedExt && IsSignedCmp)
4728       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4729 
4730     // The other three cases all fold into an unsigned comparison.
4731     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4732   }
4733 
4734   // The re-extended constant changed, partly changed (in the case of a vector),
4735   // or could not be determined to be equal (in the case of a constant
4736   // expression), so the constant cannot be represented in the shorter type.
4737   // All the cases that fold to true or false will have already been handled
4738   // by SimplifyICmpInst, so only deal with the tricky case.
4739   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4740     return nullptr;
4741 
4742   // Is source op positive?
4743   // icmp ult (sext X), C --> icmp sgt X, -1
4744   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4745     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4746 
4747   // Is source op negative?
4748   // icmp ugt (sext X), C --> icmp slt X, 0
4749   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4750   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4751 }
4752 
4753 /// Handle icmp (cast x), (cast or constant).
4754 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4755   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4756   // icmp compares only pointer's value.
4757   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4758   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4759   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4760   if (SimplifiedOp0 || SimplifiedOp1)
4761     return new ICmpInst(ICmp.getPredicate(),
4762                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4763                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4764 
4765   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4766   if (!CastOp0)
4767     return nullptr;
4768   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4769     return nullptr;
4770 
4771   Value *Op0Src = CastOp0->getOperand(0);
4772   Type *SrcTy = CastOp0->getSrcTy();
4773   Type *DestTy = CastOp0->getDestTy();
4774 
4775   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4776   // integer type is the same size as the pointer type.
4777   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4778     if (isa<VectorType>(SrcTy)) {
4779       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4780       DestTy = cast<VectorType>(DestTy)->getElementType();
4781     }
4782     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4783   };
4784   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4785       CompatibleSizes(SrcTy, DestTy)) {
4786     Value *NewOp1 = nullptr;
4787     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4788       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4789       if (PtrSrc->getType()->getPointerAddressSpace() ==
4790           Op0Src->getType()->getPointerAddressSpace()) {
4791         NewOp1 = PtrToIntOp1->getOperand(0);
4792         // If the pointer types don't match, insert a bitcast.
4793         if (Op0Src->getType() != NewOp1->getType())
4794           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4795       }
4796     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4797       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4798     }
4799 
4800     if (NewOp1)
4801       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4802   }
4803 
4804   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4805     return R;
4806 
4807   return foldICmpWithZextOrSext(ICmp, Builder);
4808 }
4809 
4810 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4811   switch (BinaryOp) {
4812     default:
4813       llvm_unreachable("Unsupported binary op");
4814     case Instruction::Add:
4815     case Instruction::Sub:
4816       return match(RHS, m_Zero());
4817     case Instruction::Mul:
4818       return match(RHS, m_One());
4819   }
4820 }
4821 
4822 OverflowResult
4823 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4824                                   bool IsSigned, Value *LHS, Value *RHS,
4825                                   Instruction *CxtI) const {
4826   switch (BinaryOp) {
4827     default:
4828       llvm_unreachable("Unsupported binary op");
4829     case Instruction::Add:
4830       if (IsSigned)
4831         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4832       else
4833         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4834     case Instruction::Sub:
4835       if (IsSigned)
4836         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4837       else
4838         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4839     case Instruction::Mul:
4840       if (IsSigned)
4841         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4842       else
4843         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4844   }
4845 }
4846 
4847 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4848                                              bool IsSigned, Value *LHS,
4849                                              Value *RHS, Instruction &OrigI,
4850                                              Value *&Result,
4851                                              Constant *&Overflow) {
4852   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4853     std::swap(LHS, RHS);
4854 
4855   // If the overflow check was an add followed by a compare, the insertion point
4856   // may be pointing to the compare.  We want to insert the new instructions
4857   // before the add in case there are uses of the add between the add and the
4858   // compare.
4859   Builder.SetInsertPoint(&OrigI);
4860 
4861   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4862   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4863     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4864 
4865   if (isNeutralValue(BinaryOp, RHS)) {
4866     Result = LHS;
4867     Overflow = ConstantInt::getFalse(OverflowTy);
4868     return true;
4869   }
4870 
4871   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4872     case OverflowResult::MayOverflow:
4873       return false;
4874     case OverflowResult::AlwaysOverflowsLow:
4875     case OverflowResult::AlwaysOverflowsHigh:
4876       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4877       Result->takeName(&OrigI);
4878       Overflow = ConstantInt::getTrue(OverflowTy);
4879       return true;
4880     case OverflowResult::NeverOverflows:
4881       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4882       Result->takeName(&OrigI);
4883       Overflow = ConstantInt::getFalse(OverflowTy);
4884       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4885         if (IsSigned)
4886           Inst->setHasNoSignedWrap();
4887         else
4888           Inst->setHasNoUnsignedWrap();
4889       }
4890       return true;
4891   }
4892 
4893   llvm_unreachable("Unexpected overflow result");
4894 }
4895 
4896 /// Recognize and process idiom involving test for multiplication
4897 /// overflow.
4898 ///
4899 /// The caller has matched a pattern of the form:
4900 ///   I = cmp u (mul(zext A, zext B), V
4901 /// The function checks if this is a test for overflow and if so replaces
4902 /// multiplication with call to 'mul.with.overflow' intrinsic.
4903 ///
4904 /// \param I Compare instruction.
4905 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4906 ///               the compare instruction.  Must be of integer type.
4907 /// \param OtherVal The other argument of compare instruction.
4908 /// \returns Instruction which must replace the compare instruction, NULL if no
4909 ///          replacement required.
4910 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4911                                          Value *OtherVal,
4912                                          InstCombinerImpl &IC) {
4913   // Don't bother doing this transformation for pointers, don't do it for
4914   // vectors.
4915   if (!isa<IntegerType>(MulVal->getType()))
4916     return nullptr;
4917 
4918   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4919   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4920   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4921   if (!MulInstr)
4922     return nullptr;
4923   assert(MulInstr->getOpcode() == Instruction::Mul);
4924 
4925   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4926        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4927   assert(LHS->getOpcode() == Instruction::ZExt);
4928   assert(RHS->getOpcode() == Instruction::ZExt);
4929   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4930 
4931   // Calculate type and width of the result produced by mul.with.overflow.
4932   Type *TyA = A->getType(), *TyB = B->getType();
4933   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4934            WidthB = TyB->getPrimitiveSizeInBits();
4935   unsigned MulWidth;
4936   Type *MulType;
4937   if (WidthB > WidthA) {
4938     MulWidth = WidthB;
4939     MulType = TyB;
4940   } else {
4941     MulWidth = WidthA;
4942     MulType = TyA;
4943   }
4944 
4945   // In order to replace the original mul with a narrower mul.with.overflow,
4946   // all uses must ignore upper bits of the product.  The number of used low
4947   // bits must be not greater than the width of mul.with.overflow.
4948   if (MulVal->hasNUsesOrMore(2))
4949     for (User *U : MulVal->users()) {
4950       if (U == &I)
4951         continue;
4952       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4953         // Check if truncation ignores bits above MulWidth.
4954         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4955         if (TruncWidth > MulWidth)
4956           return nullptr;
4957       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4958         // Check if AND ignores bits above MulWidth.
4959         if (BO->getOpcode() != Instruction::And)
4960           return nullptr;
4961         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4962           const APInt &CVal = CI->getValue();
4963           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4964             return nullptr;
4965         } else {
4966           // In this case we could have the operand of the binary operation
4967           // being defined in another block, and performing the replacement
4968           // could break the dominance relation.
4969           return nullptr;
4970         }
4971       } else {
4972         // Other uses prohibit this transformation.
4973         return nullptr;
4974       }
4975     }
4976 
4977   // Recognize patterns
4978   switch (I.getPredicate()) {
4979   case ICmpInst::ICMP_EQ:
4980   case ICmpInst::ICMP_NE:
4981     // Recognize pattern:
4982     //   mulval = mul(zext A, zext B)
4983     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4984     ConstantInt *CI;
4985     Value *ValToMask;
4986     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4987       if (ValToMask != MulVal)
4988         return nullptr;
4989       const APInt &CVal = CI->getValue() + 1;
4990       if (CVal.isPowerOf2()) {
4991         unsigned MaskWidth = CVal.logBase2();
4992         if (MaskWidth == MulWidth)
4993           break; // Recognized
4994       }
4995     }
4996     return nullptr;
4997 
4998   case ICmpInst::ICMP_UGT:
4999     // Recognize pattern:
5000     //   mulval = mul(zext A, zext B)
5001     //   cmp ugt mulval, max
5002     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5003       APInt MaxVal = APInt::getMaxValue(MulWidth);
5004       MaxVal = MaxVal.zext(CI->getBitWidth());
5005       if (MaxVal.eq(CI->getValue()))
5006         break; // Recognized
5007     }
5008     return nullptr;
5009 
5010   case ICmpInst::ICMP_UGE:
5011     // Recognize pattern:
5012     //   mulval = mul(zext A, zext B)
5013     //   cmp uge mulval, max+1
5014     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5015       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5016       if (MaxVal.eq(CI->getValue()))
5017         break; // Recognized
5018     }
5019     return nullptr;
5020 
5021   case ICmpInst::ICMP_ULE:
5022     // Recognize pattern:
5023     //   mulval = mul(zext A, zext B)
5024     //   cmp ule mulval, max
5025     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5026       APInt MaxVal = APInt::getMaxValue(MulWidth);
5027       MaxVal = MaxVal.zext(CI->getBitWidth());
5028       if (MaxVal.eq(CI->getValue()))
5029         break; // Recognized
5030     }
5031     return nullptr;
5032 
5033   case ICmpInst::ICMP_ULT:
5034     // Recognize pattern:
5035     //   mulval = mul(zext A, zext B)
5036     //   cmp ule mulval, max + 1
5037     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5038       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5039       if (MaxVal.eq(CI->getValue()))
5040         break; // Recognized
5041     }
5042     return nullptr;
5043 
5044   default:
5045     return nullptr;
5046   }
5047 
5048   InstCombiner::BuilderTy &Builder = IC.Builder;
5049   Builder.SetInsertPoint(MulInstr);
5050 
5051   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5052   Value *MulA = A, *MulB = B;
5053   if (WidthA < MulWidth)
5054     MulA = Builder.CreateZExt(A, MulType);
5055   if (WidthB < MulWidth)
5056     MulB = Builder.CreateZExt(B, MulType);
5057   Function *F = Intrinsic::getDeclaration(
5058       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5059   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5060   IC.addToWorklist(MulInstr);
5061 
5062   // If there are uses of mul result other than the comparison, we know that
5063   // they are truncation or binary AND. Change them to use result of
5064   // mul.with.overflow and adjust properly mask/size.
5065   if (MulVal->hasNUsesOrMore(2)) {
5066     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5067     for (User *U : make_early_inc_range(MulVal->users())) {
5068       if (U == &I || U == OtherVal)
5069         continue;
5070       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5071         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5072           IC.replaceInstUsesWith(*TI, Mul);
5073         else
5074           TI->setOperand(0, Mul);
5075       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5076         assert(BO->getOpcode() == Instruction::And);
5077         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5078         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5079         APInt ShortMask = CI->getValue().trunc(MulWidth);
5080         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5081         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5082         IC.replaceInstUsesWith(*BO, Zext);
5083       } else {
5084         llvm_unreachable("Unexpected Binary operation");
5085       }
5086       IC.addToWorklist(cast<Instruction>(U));
5087     }
5088   }
5089   if (isa<Instruction>(OtherVal))
5090     IC.addToWorklist(cast<Instruction>(OtherVal));
5091 
5092   // The original icmp gets replaced with the overflow value, maybe inverted
5093   // depending on predicate.
5094   bool Inverse = false;
5095   switch (I.getPredicate()) {
5096   case ICmpInst::ICMP_NE:
5097     break;
5098   case ICmpInst::ICMP_EQ:
5099     Inverse = true;
5100     break;
5101   case ICmpInst::ICMP_UGT:
5102   case ICmpInst::ICMP_UGE:
5103     if (I.getOperand(0) == MulVal)
5104       break;
5105     Inverse = true;
5106     break;
5107   case ICmpInst::ICMP_ULT:
5108   case ICmpInst::ICMP_ULE:
5109     if (I.getOperand(1) == MulVal)
5110       break;
5111     Inverse = true;
5112     break;
5113   default:
5114     llvm_unreachable("Unexpected predicate");
5115   }
5116   if (Inverse) {
5117     Value *Res = Builder.CreateExtractValue(Call, 1);
5118     return BinaryOperator::CreateNot(Res);
5119   }
5120 
5121   return ExtractValueInst::Create(Call, 1);
5122 }
5123 
5124 /// When performing a comparison against a constant, it is possible that not all
5125 /// the bits in the LHS are demanded. This helper method computes the mask that
5126 /// IS demanded.
5127 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5128   const APInt *RHS;
5129   if (!match(I.getOperand(1), m_APInt(RHS)))
5130     return APInt::getAllOnes(BitWidth);
5131 
5132   // If this is a normal comparison, it demands all bits. If it is a sign bit
5133   // comparison, it only demands the sign bit.
5134   bool UnusedBit;
5135   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5136     return APInt::getSignMask(BitWidth);
5137 
5138   switch (I.getPredicate()) {
5139   // For a UGT comparison, we don't care about any bits that
5140   // correspond to the trailing ones of the comparand.  The value of these
5141   // bits doesn't impact the outcome of the comparison, because any value
5142   // greater than the RHS must differ in a bit higher than these due to carry.
5143   case ICmpInst::ICMP_UGT:
5144     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5145 
5146   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5147   // Any value less than the RHS must differ in a higher bit because of carries.
5148   case ICmpInst::ICMP_ULT:
5149     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5150 
5151   default:
5152     return APInt::getAllOnes(BitWidth);
5153   }
5154 }
5155 
5156 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5157 /// should be swapped.
5158 /// The decision is based on how many times these two operands are reused
5159 /// as subtract operands and their positions in those instructions.
5160 /// The rationale is that several architectures use the same instruction for
5161 /// both subtract and cmp. Thus, it is better if the order of those operands
5162 /// match.
5163 /// \return true if Op0 and Op1 should be swapped.
5164 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5165   // Filter out pointer values as those cannot appear directly in subtract.
5166   // FIXME: we may want to go through inttoptrs or bitcasts.
5167   if (Op0->getType()->isPointerTy())
5168     return false;
5169   // If a subtract already has the same operands as a compare, swapping would be
5170   // bad. If a subtract has the same operands as a compare but in reverse order,
5171   // then swapping is good.
5172   int GoodToSwap = 0;
5173   for (const User *U : Op0->users()) {
5174     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5175       GoodToSwap++;
5176     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5177       GoodToSwap--;
5178   }
5179   return GoodToSwap > 0;
5180 }
5181 
5182 /// Check that one use is in the same block as the definition and all
5183 /// other uses are in blocks dominated by a given block.
5184 ///
5185 /// \param DI Definition
5186 /// \param UI Use
5187 /// \param DB Block that must dominate all uses of \p DI outside
5188 ///           the parent block
5189 /// \return true when \p UI is the only use of \p DI in the parent block
5190 /// and all other uses of \p DI are in blocks dominated by \p DB.
5191 ///
5192 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5193                                         const Instruction *UI,
5194                                         const BasicBlock *DB) const {
5195   assert(DI && UI && "Instruction not defined\n");
5196   // Ignore incomplete definitions.
5197   if (!DI->getParent())
5198     return false;
5199   // DI and UI must be in the same block.
5200   if (DI->getParent() != UI->getParent())
5201     return false;
5202   // Protect from self-referencing blocks.
5203   if (DI->getParent() == DB)
5204     return false;
5205   for (const User *U : DI->users()) {
5206     auto *Usr = cast<Instruction>(U);
5207     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5208       return false;
5209   }
5210   return true;
5211 }
5212 
5213 /// Return true when the instruction sequence within a block is select-cmp-br.
5214 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5215   const BasicBlock *BB = SI->getParent();
5216   if (!BB)
5217     return false;
5218   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5219   if (!BI || BI->getNumSuccessors() != 2)
5220     return false;
5221   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5222   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5223     return false;
5224   return true;
5225 }
5226 
5227 /// True when a select result is replaced by one of its operands
5228 /// in select-icmp sequence. This will eventually result in the elimination
5229 /// of the select.
5230 ///
5231 /// \param SI    Select instruction
5232 /// \param Icmp  Compare instruction
5233 /// \param SIOpd Operand that replaces the select
5234 ///
5235 /// Notes:
5236 /// - The replacement is global and requires dominator information
5237 /// - The caller is responsible for the actual replacement
5238 ///
5239 /// Example:
5240 ///
5241 /// entry:
5242 ///  %4 = select i1 %3, %C* %0, %C* null
5243 ///  %5 = icmp eq %C* %4, null
5244 ///  br i1 %5, label %9, label %7
5245 ///  ...
5246 ///  ; <label>:7                                       ; preds = %entry
5247 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5248 ///  ...
5249 ///
5250 /// can be transformed to
5251 ///
5252 ///  %5 = icmp eq %C* %0, null
5253 ///  %6 = select i1 %3, i1 %5, i1 true
5254 ///  br i1 %6, label %9, label %7
5255 ///  ...
5256 ///  ; <label>:7                                       ; preds = %entry
5257 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5258 ///
5259 /// Similar when the first operand of the select is a constant or/and
5260 /// the compare is for not equal rather than equal.
5261 ///
5262 /// NOTE: The function is only called when the select and compare constants
5263 /// are equal, the optimization can work only for EQ predicates. This is not a
5264 /// major restriction since a NE compare should be 'normalized' to an equal
5265 /// compare, which usually happens in the combiner and test case
5266 /// select-cmp-br.ll checks for it.
5267 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5268                                                  const ICmpInst *Icmp,
5269                                                  const unsigned SIOpd) {
5270   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5271   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5272     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5273     // The check for the single predecessor is not the best that can be
5274     // done. But it protects efficiently against cases like when SI's
5275     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5276     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5277     // replaced can be reached on either path. So the uniqueness check
5278     // guarantees that the path all uses of SI (outside SI's parent) are on
5279     // is disjoint from all other paths out of SI. But that information
5280     // is more expensive to compute, and the trade-off here is in favor
5281     // of compile-time. It should also be noticed that we check for a single
5282     // predecessor and not only uniqueness. This to handle the situation when
5283     // Succ and Succ1 points to the same basic block.
5284     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5285       NumSel++;
5286       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5287       return true;
5288     }
5289   }
5290   return false;
5291 }
5292 
5293 /// Try to fold the comparison based on range information we can get by checking
5294 /// whether bits are known to be zero or one in the inputs.
5295 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5296   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5297   Type *Ty = Op0->getType();
5298   ICmpInst::Predicate Pred = I.getPredicate();
5299 
5300   // Get scalar or pointer size.
5301   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5302                           ? Ty->getScalarSizeInBits()
5303                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5304 
5305   if (!BitWidth)
5306     return nullptr;
5307 
5308   KnownBits Op0Known(BitWidth);
5309   KnownBits Op1Known(BitWidth);
5310 
5311   if (SimplifyDemandedBits(&I, 0,
5312                            getDemandedBitsLHSMask(I, BitWidth),
5313                            Op0Known, 0))
5314     return &I;
5315 
5316   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5317     return &I;
5318 
5319   // Given the known and unknown bits, compute a range that the LHS could be
5320   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5321   // EQ and NE we use unsigned values.
5322   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5323   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5324   if (I.isSigned()) {
5325     Op0Min = Op0Known.getSignedMinValue();
5326     Op0Max = Op0Known.getSignedMaxValue();
5327     Op1Min = Op1Known.getSignedMinValue();
5328     Op1Max = Op1Known.getSignedMaxValue();
5329   } else {
5330     Op0Min = Op0Known.getMinValue();
5331     Op0Max = Op0Known.getMaxValue();
5332     Op1Min = Op1Known.getMinValue();
5333     Op1Max = Op1Known.getMaxValue();
5334   }
5335 
5336   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5337   // out that the LHS or RHS is a constant. Constant fold this now, so that
5338   // code below can assume that Min != Max.
5339   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5340     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5341   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5342     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5343 
5344   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5345   // min/max canonical compare with some other compare. That could lead to
5346   // conflict with select canonicalization and infinite looping.
5347   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5348   auto isMinMaxCmp = [&](Instruction &Cmp) {
5349     if (!Cmp.hasOneUse())
5350       return false;
5351     Value *A, *B;
5352     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5353     if (!SelectPatternResult::isMinOrMax(SPF))
5354       return false;
5355     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5356            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5357   };
5358   if (!isMinMaxCmp(I)) {
5359     switch (Pred) {
5360     default:
5361       break;
5362     case ICmpInst::ICMP_ULT: {
5363       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5364         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5365       const APInt *CmpC;
5366       if (match(Op1, m_APInt(CmpC))) {
5367         // A <u C -> A == C-1 if min(A)+1 == C
5368         if (*CmpC == Op0Min + 1)
5369           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5370                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5371         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5372         // exceeds the log2 of C.
5373         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5374           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5375                               Constant::getNullValue(Op1->getType()));
5376       }
5377       break;
5378     }
5379     case ICmpInst::ICMP_UGT: {
5380       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5381         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5382       const APInt *CmpC;
5383       if (match(Op1, m_APInt(CmpC))) {
5384         // A >u C -> A == C+1 if max(a)-1 == C
5385         if (*CmpC == Op0Max - 1)
5386           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5387                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5388         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5389         // exceeds the log2 of C.
5390         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5391           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5392                               Constant::getNullValue(Op1->getType()));
5393       }
5394       break;
5395     }
5396     case ICmpInst::ICMP_SLT: {
5397       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5398         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5399       const APInt *CmpC;
5400       if (match(Op1, m_APInt(CmpC))) {
5401         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5402           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5403                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5404       }
5405       break;
5406     }
5407     case ICmpInst::ICMP_SGT: {
5408       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5409         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5410       const APInt *CmpC;
5411       if (match(Op1, m_APInt(CmpC))) {
5412         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5413           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5414                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5415       }
5416       break;
5417     }
5418     }
5419   }
5420 
5421   // Based on the range information we know about the LHS, see if we can
5422   // simplify this comparison.  For example, (x&4) < 8 is always true.
5423   switch (Pred) {
5424   default:
5425     llvm_unreachable("Unknown icmp opcode!");
5426   case ICmpInst::ICMP_EQ:
5427   case ICmpInst::ICMP_NE: {
5428     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5429       return replaceInstUsesWith(
5430           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5431 
5432     // If all bits are known zero except for one, then we know at most one bit
5433     // is set. If the comparison is against zero, then this is a check to see if
5434     // *that* bit is set.
5435     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5436     if (Op1Known.isZero()) {
5437       // If the LHS is an AND with the same constant, look through it.
5438       Value *LHS = nullptr;
5439       const APInt *LHSC;
5440       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5441           *LHSC != Op0KnownZeroInverted)
5442         LHS = Op0;
5443 
5444       Value *X;
5445       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5446         APInt ValToCheck = Op0KnownZeroInverted;
5447         Type *XTy = X->getType();
5448         if (ValToCheck.isPowerOf2()) {
5449           // ((1 << X) & 8) == 0 -> X != 3
5450           // ((1 << X) & 8) != 0 -> X == 3
5451           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5452           auto NewPred = ICmpInst::getInversePredicate(Pred);
5453           return new ICmpInst(NewPred, X, CmpC);
5454         } else if ((++ValToCheck).isPowerOf2()) {
5455           // ((1 << X) & 7) == 0 -> X >= 3
5456           // ((1 << X) & 7) != 0 -> X  < 3
5457           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5458           auto NewPred =
5459               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5460           return new ICmpInst(NewPred, X, CmpC);
5461         }
5462       }
5463 
5464       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5465       const APInt *CI;
5466       if (Op0KnownZeroInverted.isOne() &&
5467           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5468         // ((8 >>u X) & 1) == 0 -> X != 3
5469         // ((8 >>u X) & 1) != 0 -> X == 3
5470         unsigned CmpVal = CI->countTrailingZeros();
5471         auto NewPred = ICmpInst::getInversePredicate(Pred);
5472         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5473       }
5474     }
5475     break;
5476   }
5477   case ICmpInst::ICMP_ULT: {
5478     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5479       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5480     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5481       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5482     break;
5483   }
5484   case ICmpInst::ICMP_UGT: {
5485     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5486       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5487     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5488       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5489     break;
5490   }
5491   case ICmpInst::ICMP_SLT: {
5492     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5493       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5494     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5495       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5496     break;
5497   }
5498   case ICmpInst::ICMP_SGT: {
5499     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5500       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5501     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5502       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5503     break;
5504   }
5505   case ICmpInst::ICMP_SGE:
5506     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5507     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5508       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5509     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5510       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5511     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5512       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5513     break;
5514   case ICmpInst::ICMP_SLE:
5515     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5516     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5517       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5518     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5519       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5520     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5521       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5522     break;
5523   case ICmpInst::ICMP_UGE:
5524     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5525     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5526       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5527     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5528       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5529     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5530       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5531     break;
5532   case ICmpInst::ICMP_ULE:
5533     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5534     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5535       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5536     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5537       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5538     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5539       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5540     break;
5541   }
5542 
5543   // Turn a signed comparison into an unsigned one if both operands are known to
5544   // have the same sign.
5545   if (I.isSigned() &&
5546       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5547        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5548     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5549 
5550   return nullptr;
5551 }
5552 
5553 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5554 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5555                                                        Constant *C) {
5556   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5557          "Only for relational integer predicates.");
5558 
5559   Type *Type = C->getType();
5560   bool IsSigned = ICmpInst::isSigned(Pred);
5561 
5562   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5563   bool WillIncrement =
5564       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5565 
5566   // Check if the constant operand can be safely incremented/decremented
5567   // without overflowing/underflowing.
5568   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5569     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5570   };
5571 
5572   Constant *SafeReplacementConstant = nullptr;
5573   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5574     // Bail out if the constant can't be safely incremented/decremented.
5575     if (!ConstantIsOk(CI))
5576       return llvm::None;
5577   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5578     unsigned NumElts = FVTy->getNumElements();
5579     for (unsigned i = 0; i != NumElts; ++i) {
5580       Constant *Elt = C->getAggregateElement(i);
5581       if (!Elt)
5582         return llvm::None;
5583 
5584       if (isa<UndefValue>(Elt))
5585         continue;
5586 
5587       // Bail out if we can't determine if this constant is min/max or if we
5588       // know that this constant is min/max.
5589       auto *CI = dyn_cast<ConstantInt>(Elt);
5590       if (!CI || !ConstantIsOk(CI))
5591         return llvm::None;
5592 
5593       if (!SafeReplacementConstant)
5594         SafeReplacementConstant = CI;
5595     }
5596   } else {
5597     // ConstantExpr?
5598     return llvm::None;
5599   }
5600 
5601   // It may not be safe to change a compare predicate in the presence of
5602   // undefined elements, so replace those elements with the first safe constant
5603   // that we found.
5604   // TODO: in case of poison, it is safe; let's replace undefs only.
5605   if (C->containsUndefOrPoisonElement()) {
5606     assert(SafeReplacementConstant && "Replacement constant not set");
5607     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5608   }
5609 
5610   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5611 
5612   // Increment or decrement the constant.
5613   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5614   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5615 
5616   return std::make_pair(NewPred, NewC);
5617 }
5618 
5619 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5620 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5621 /// allows them to be folded in visitICmpInst.
5622 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5623   ICmpInst::Predicate Pred = I.getPredicate();
5624   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5625       InstCombiner::isCanonicalPredicate(Pred))
5626     return nullptr;
5627 
5628   Value *Op0 = I.getOperand(0);
5629   Value *Op1 = I.getOperand(1);
5630   auto *Op1C = dyn_cast<Constant>(Op1);
5631   if (!Op1C)
5632     return nullptr;
5633 
5634   auto FlippedStrictness =
5635       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5636   if (!FlippedStrictness)
5637     return nullptr;
5638 
5639   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5640 }
5641 
5642 /// If we have a comparison with a non-canonical predicate, if we can update
5643 /// all the users, invert the predicate and adjust all the users.
5644 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5645   // Is the predicate already canonical?
5646   CmpInst::Predicate Pred = I.getPredicate();
5647   if (InstCombiner::isCanonicalPredicate(Pred))
5648     return nullptr;
5649 
5650   // Can all users be adjusted to predicate inversion?
5651   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5652     return nullptr;
5653 
5654   // Ok, we can canonicalize comparison!
5655   // Let's first invert the comparison's predicate.
5656   I.setPredicate(CmpInst::getInversePredicate(Pred));
5657   I.setName(I.getName() + ".not");
5658 
5659   // And, adapt users.
5660   freelyInvertAllUsersOf(&I);
5661 
5662   return &I;
5663 }
5664 
5665 /// Integer compare with boolean values can always be turned into bitwise ops.
5666 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5667                                          InstCombiner::BuilderTy &Builder) {
5668   Value *A = I.getOperand(0), *B = I.getOperand(1);
5669   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5670 
5671   // A boolean compared to true/false can be simplified to Op0/true/false in
5672   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5673   // Cases not handled by InstSimplify are always 'not' of Op0.
5674   if (match(B, m_Zero())) {
5675     switch (I.getPredicate()) {
5676       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5677       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5678       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5679         return BinaryOperator::CreateNot(A);
5680       default:
5681         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5682     }
5683   } else if (match(B, m_One())) {
5684     switch (I.getPredicate()) {
5685       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5686       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5687       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5688         return BinaryOperator::CreateNot(A);
5689       default:
5690         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5691     }
5692   }
5693 
5694   switch (I.getPredicate()) {
5695   default:
5696     llvm_unreachable("Invalid icmp instruction!");
5697   case ICmpInst::ICMP_EQ:
5698     // icmp eq i1 A, B -> ~(A ^ B)
5699     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5700 
5701   case ICmpInst::ICMP_NE:
5702     // icmp ne i1 A, B -> A ^ B
5703     return BinaryOperator::CreateXor(A, B);
5704 
5705   case ICmpInst::ICMP_UGT:
5706     // icmp ugt -> icmp ult
5707     std::swap(A, B);
5708     LLVM_FALLTHROUGH;
5709   case ICmpInst::ICMP_ULT:
5710     // icmp ult i1 A, B -> ~A & B
5711     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5712 
5713   case ICmpInst::ICMP_SGT:
5714     // icmp sgt -> icmp slt
5715     std::swap(A, B);
5716     LLVM_FALLTHROUGH;
5717   case ICmpInst::ICMP_SLT:
5718     // icmp slt i1 A, B -> A & ~B
5719     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5720 
5721   case ICmpInst::ICMP_UGE:
5722     // icmp uge -> icmp ule
5723     std::swap(A, B);
5724     LLVM_FALLTHROUGH;
5725   case ICmpInst::ICMP_ULE:
5726     // icmp ule i1 A, B -> ~A | B
5727     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5728 
5729   case ICmpInst::ICMP_SGE:
5730     // icmp sge -> icmp sle
5731     std::swap(A, B);
5732     LLVM_FALLTHROUGH;
5733   case ICmpInst::ICMP_SLE:
5734     // icmp sle i1 A, B -> A | ~B
5735     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5736   }
5737 }
5738 
5739 // Transform pattern like:
5740 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5741 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5742 // Into:
5743 //   (X l>> Y) != 0
5744 //   (X l>> Y) == 0
5745 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5746                                             InstCombiner::BuilderTy &Builder) {
5747   ICmpInst::Predicate Pred, NewPred;
5748   Value *X, *Y;
5749   if (match(&Cmp,
5750             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5751     switch (Pred) {
5752     case ICmpInst::ICMP_ULE:
5753       NewPred = ICmpInst::ICMP_NE;
5754       break;
5755     case ICmpInst::ICMP_UGT:
5756       NewPred = ICmpInst::ICMP_EQ;
5757       break;
5758     default:
5759       return nullptr;
5760     }
5761   } else if (match(&Cmp, m_c_ICmp(Pred,
5762                                   m_OneUse(m_CombineOr(
5763                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5764                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5765                                             m_AllOnes()))),
5766                                   m_Value(X)))) {
5767     // The variant with 'add' is not canonical, (the variant with 'not' is)
5768     // we only get it because it has extra uses, and can't be canonicalized,
5769 
5770     switch (Pred) {
5771     case ICmpInst::ICMP_ULT:
5772       NewPred = ICmpInst::ICMP_NE;
5773       break;
5774     case ICmpInst::ICMP_UGE:
5775       NewPred = ICmpInst::ICMP_EQ;
5776       break;
5777     default:
5778       return nullptr;
5779     }
5780   } else
5781     return nullptr;
5782 
5783   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5784   Constant *Zero = Constant::getNullValue(NewX->getType());
5785   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5786 }
5787 
5788 static Instruction *foldVectorCmp(CmpInst &Cmp,
5789                                   InstCombiner::BuilderTy &Builder) {
5790   const CmpInst::Predicate Pred = Cmp.getPredicate();
5791   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5792   Value *V1, *V2;
5793   ArrayRef<int> M;
5794   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5795     return nullptr;
5796 
5797   // If both arguments of the cmp are shuffles that use the same mask and
5798   // shuffle within a single vector, move the shuffle after the cmp:
5799   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5800   Type *V1Ty = V1->getType();
5801   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5802       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5803     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5804     return new ShuffleVectorInst(NewCmp, M);
5805   }
5806 
5807   // Try to canonicalize compare with splatted operand and splat constant.
5808   // TODO: We could generalize this for more than splats. See/use the code in
5809   //       InstCombiner::foldVectorBinop().
5810   Constant *C;
5811   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5812     return nullptr;
5813 
5814   // Length-changing splats are ok, so adjust the constants as needed:
5815   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5816   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5817   int MaskSplatIndex;
5818   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5819     // We allow undefs in matching, but this transform removes those for safety.
5820     // Demanded elements analysis should be able to recover some/all of that.
5821     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5822                                  ScalarC);
5823     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5824     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5825     return new ShuffleVectorInst(NewCmp, NewM);
5826   }
5827 
5828   return nullptr;
5829 }
5830 
5831 // extract(uadd.with.overflow(A, B), 0) ult A
5832 //  -> extract(uadd.with.overflow(A, B), 1)
5833 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5834   CmpInst::Predicate Pred = I.getPredicate();
5835   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5836 
5837   Value *UAddOv;
5838   Value *A, *B;
5839   auto UAddOvResultPat = m_ExtractValue<0>(
5840       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5841   if (match(Op0, UAddOvResultPat) &&
5842       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5843        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5844         (match(A, m_One()) || match(B, m_One()))) ||
5845        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5846         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5847     // extract(uadd.with.overflow(A, B), 0) < A
5848     // extract(uadd.with.overflow(A, 1), 0) == 0
5849     // extract(uadd.with.overflow(A, -1), 0) != -1
5850     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5851   else if (match(Op1, UAddOvResultPat) &&
5852            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5853     // A > extract(uadd.with.overflow(A, B), 0)
5854     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5855   else
5856     return nullptr;
5857 
5858   return ExtractValueInst::Create(UAddOv, 1);
5859 }
5860 
5861 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5862   if (!I.getOperand(0)->getType()->isPointerTy() ||
5863       NullPointerIsDefined(
5864           I.getParent()->getParent(),
5865           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5866     return nullptr;
5867   }
5868   Instruction *Op;
5869   if (match(I.getOperand(0), m_Instruction(Op)) &&
5870       match(I.getOperand(1), m_Zero()) &&
5871       Op->isLaunderOrStripInvariantGroup()) {
5872     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5873                             Op->getOperand(0), I.getOperand(1));
5874   }
5875   return nullptr;
5876 }
5877 
5878 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5879   bool Changed = false;
5880   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5881   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5882   unsigned Op0Cplxity = getComplexity(Op0);
5883   unsigned Op1Cplxity = getComplexity(Op1);
5884 
5885   /// Orders the operands of the compare so that they are listed from most
5886   /// complex to least complex.  This puts constants before unary operators,
5887   /// before binary operators.
5888   if (Op0Cplxity < Op1Cplxity ||
5889       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5890     I.swapOperands();
5891     std::swap(Op0, Op1);
5892     Changed = true;
5893   }
5894 
5895   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5896     return replaceInstUsesWith(I, V);
5897 
5898   // Comparing -val or val with non-zero is the same as just comparing val
5899   // ie, abs(val) != 0 -> val != 0
5900   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5901     Value *Cond, *SelectTrue, *SelectFalse;
5902     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5903                             m_Value(SelectFalse)))) {
5904       if (Value *V = dyn_castNegVal(SelectTrue)) {
5905         if (V == SelectFalse)
5906           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5907       }
5908       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5909         if (V == SelectTrue)
5910           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5911       }
5912     }
5913   }
5914 
5915   if (Op0->getType()->isIntOrIntVectorTy(1))
5916     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5917       return Res;
5918 
5919   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5920     return Res;
5921 
5922   if (Instruction *Res = canonicalizeICmpPredicate(I))
5923     return Res;
5924 
5925   if (Instruction *Res = foldICmpWithConstant(I))
5926     return Res;
5927 
5928   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5929     return Res;
5930 
5931   if (Instruction *Res = foldICmpUsingKnownBits(I))
5932     return Res;
5933 
5934   // Test if the ICmpInst instruction is used exclusively by a select as
5935   // part of a minimum or maximum operation. If so, refrain from doing
5936   // any other folding. This helps out other analyses which understand
5937   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5938   // and CodeGen. And in this case, at least one of the comparison
5939   // operands has at least one user besides the compare (the select),
5940   // which would often largely negate the benefit of folding anyway.
5941   //
5942   // Do the same for the other patterns recognized by matchSelectPattern.
5943   if (I.hasOneUse())
5944     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5945       Value *A, *B;
5946       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5947       if (SPR.Flavor != SPF_UNKNOWN)
5948         return nullptr;
5949     }
5950 
5951   // Do this after checking for min/max to prevent infinite looping.
5952   if (Instruction *Res = foldICmpWithZero(I))
5953     return Res;
5954 
5955   // FIXME: We only do this after checking for min/max to prevent infinite
5956   // looping caused by a reverse canonicalization of these patterns for min/max.
5957   // FIXME: The organization of folds is a mess. These would naturally go into
5958   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5959   // down here after the min/max restriction.
5960   ICmpInst::Predicate Pred = I.getPredicate();
5961   const APInt *C;
5962   if (match(Op1, m_APInt(C))) {
5963     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5964     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5965       Constant *Zero = Constant::getNullValue(Op0->getType());
5966       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5967     }
5968 
5969     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5970     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5971       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5972       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5973     }
5974   }
5975 
5976   // The folds in here may rely on wrapping flags and special constants, so
5977   // they can break up min/max idioms in some cases but not seemingly similar
5978   // patterns.
5979   // FIXME: It may be possible to enhance select folding to make this
5980   //        unnecessary. It may also be moot if we canonicalize to min/max
5981   //        intrinsics.
5982   if (Instruction *Res = foldICmpBinOp(I, Q))
5983     return Res;
5984 
5985   if (Instruction *Res = foldICmpInstWithConstant(I))
5986     return Res;
5987 
5988   // Try to match comparison as a sign bit test. Intentionally do this after
5989   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5990   if (Instruction *New = foldSignBitTest(I))
5991     return New;
5992 
5993   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5994     return Res;
5995 
5996   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
5997   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
5998     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5999       return NI;
6000   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6001     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6002       return NI;
6003 
6004   // Try to optimize equality comparisons against alloca-based pointers.
6005   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6006     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6007     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6008       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
6009         return New;
6010     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6011       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
6012         return New;
6013   }
6014 
6015   if (Instruction *Res = foldICmpBitCast(I))
6016     return Res;
6017 
6018   // TODO: Hoist this above the min/max bailout.
6019   if (Instruction *R = foldICmpWithCastOp(I))
6020     return R;
6021 
6022   if (Instruction *Res = foldICmpWithMinMax(I))
6023     return Res;
6024 
6025   {
6026     Value *A, *B;
6027     // Transform (A & ~B) == 0 --> (A & B) != 0
6028     // and       (A & ~B) != 0 --> (A & B) == 0
6029     // if A is a power of 2.
6030     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6031         match(Op1, m_Zero()) &&
6032         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6033       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6034                           Op1);
6035 
6036     // ~X < ~Y --> Y < X
6037     // ~X < C -->  X > ~C
6038     if (match(Op0, m_Not(m_Value(A)))) {
6039       if (match(Op1, m_Not(m_Value(B))))
6040         return new ICmpInst(I.getPredicate(), B, A);
6041 
6042       const APInt *C;
6043       if (match(Op1, m_APInt(C)))
6044         return new ICmpInst(I.getSwappedPredicate(), A,
6045                             ConstantInt::get(Op1->getType(), ~(*C)));
6046     }
6047 
6048     Instruction *AddI = nullptr;
6049     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6050                                      m_Instruction(AddI))) &&
6051         isa<IntegerType>(A->getType())) {
6052       Value *Result;
6053       Constant *Overflow;
6054       // m_UAddWithOverflow can match patterns that do not include  an explicit
6055       // "add" instruction, so check the opcode of the matched op.
6056       if (AddI->getOpcode() == Instruction::Add &&
6057           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6058                                 Result, Overflow)) {
6059         replaceInstUsesWith(*AddI, Result);
6060         eraseInstFromFunction(*AddI);
6061         return replaceInstUsesWith(I, Overflow);
6062       }
6063     }
6064 
6065     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6066     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6067       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6068         return R;
6069     }
6070     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6071       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6072         return R;
6073     }
6074   }
6075 
6076   if (Instruction *Res = foldICmpEquality(I))
6077     return Res;
6078 
6079   if (Instruction *Res = foldICmpOfUAddOv(I))
6080     return Res;
6081 
6082   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6083   // an i1 which indicates whether or not we successfully did the swap.
6084   //
6085   // Replace comparisons between the old value and the expected value with the
6086   // indicator that 'cmpxchg' returns.
6087   //
6088   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6089   // spuriously fail.  In those cases, the old value may equal the expected
6090   // value but it is possible for the swap to not occur.
6091   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6092     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6093       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6094         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6095             !ACXI->isWeak())
6096           return ExtractValueInst::Create(ACXI, 1);
6097 
6098   {
6099     Value *X;
6100     const APInt *C;
6101     // icmp X+Cst, X
6102     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6103       return foldICmpAddOpConst(X, *C, I.getPredicate());
6104 
6105     // icmp X, X+Cst
6106     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6107       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6108   }
6109 
6110   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6111     return Res;
6112 
6113   if (I.getType()->isVectorTy())
6114     if (Instruction *Res = foldVectorCmp(I, Builder))
6115       return Res;
6116 
6117   if (Instruction *Res = foldICmpInvariantGroup(I))
6118     return Res;
6119 
6120   return Changed ? &I : nullptr;
6121 }
6122 
6123 /// Fold fcmp ([us]itofp x, cst) if possible.
6124 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6125                                                     Instruction *LHSI,
6126                                                     Constant *RHSC) {
6127   if (!isa<ConstantFP>(RHSC)) return nullptr;
6128   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6129 
6130   // Get the width of the mantissa.  We don't want to hack on conversions that
6131   // might lose information from the integer, e.g. "i64 -> float"
6132   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6133   if (MantissaWidth == -1) return nullptr;  // Unknown.
6134 
6135   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6136 
6137   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6138 
6139   if (I.isEquality()) {
6140     FCmpInst::Predicate P = I.getPredicate();
6141     bool IsExact = false;
6142     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6143     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6144 
6145     // If the floating point constant isn't an integer value, we know if we will
6146     // ever compare equal / not equal to it.
6147     if (!IsExact) {
6148       // TODO: Can never be -0.0 and other non-representable values
6149       APFloat RHSRoundInt(RHS);
6150       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6151       if (RHS != RHSRoundInt) {
6152         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6153           return replaceInstUsesWith(I, Builder.getFalse());
6154 
6155         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6156         return replaceInstUsesWith(I, Builder.getTrue());
6157       }
6158     }
6159 
6160     // TODO: If the constant is exactly representable, is it always OK to do
6161     // equality compares as integer?
6162   }
6163 
6164   // Check to see that the input is converted from an integer type that is small
6165   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6166   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6167   unsigned InputSize = IntTy->getScalarSizeInBits();
6168 
6169   // Following test does NOT adjust InputSize downwards for signed inputs,
6170   // because the most negative value still requires all the mantissa bits
6171   // to distinguish it from one less than that value.
6172   if ((int)InputSize > MantissaWidth) {
6173     // Conversion would lose accuracy. Check if loss can impact comparison.
6174     int Exp = ilogb(RHS);
6175     if (Exp == APFloat::IEK_Inf) {
6176       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6177       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6178         // Conversion could create infinity.
6179         return nullptr;
6180     } else {
6181       // Note that if RHS is zero or NaN, then Exp is negative
6182       // and first condition is trivially false.
6183       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6184         // Conversion could affect comparison.
6185         return nullptr;
6186     }
6187   }
6188 
6189   // Otherwise, we can potentially simplify the comparison.  We know that it
6190   // will always come through as an integer value and we know the constant is
6191   // not a NAN (it would have been previously simplified).
6192   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6193 
6194   ICmpInst::Predicate Pred;
6195   switch (I.getPredicate()) {
6196   default: llvm_unreachable("Unexpected predicate!");
6197   case FCmpInst::FCMP_UEQ:
6198   case FCmpInst::FCMP_OEQ:
6199     Pred = ICmpInst::ICMP_EQ;
6200     break;
6201   case FCmpInst::FCMP_UGT:
6202   case FCmpInst::FCMP_OGT:
6203     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6204     break;
6205   case FCmpInst::FCMP_UGE:
6206   case FCmpInst::FCMP_OGE:
6207     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6208     break;
6209   case FCmpInst::FCMP_ULT:
6210   case FCmpInst::FCMP_OLT:
6211     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6212     break;
6213   case FCmpInst::FCMP_ULE:
6214   case FCmpInst::FCMP_OLE:
6215     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6216     break;
6217   case FCmpInst::FCMP_UNE:
6218   case FCmpInst::FCMP_ONE:
6219     Pred = ICmpInst::ICMP_NE;
6220     break;
6221   case FCmpInst::FCMP_ORD:
6222     return replaceInstUsesWith(I, Builder.getTrue());
6223   case FCmpInst::FCMP_UNO:
6224     return replaceInstUsesWith(I, Builder.getFalse());
6225   }
6226 
6227   // Now we know that the APFloat is a normal number, zero or inf.
6228 
6229   // See if the FP constant is too large for the integer.  For example,
6230   // comparing an i8 to 300.0.
6231   unsigned IntWidth = IntTy->getScalarSizeInBits();
6232 
6233   if (!LHSUnsigned) {
6234     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6235     // and large values.
6236     APFloat SMax(RHS.getSemantics());
6237     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6238                           APFloat::rmNearestTiesToEven);
6239     if (SMax < RHS) { // smax < 13123.0
6240       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6241           Pred == ICmpInst::ICMP_SLE)
6242         return replaceInstUsesWith(I, Builder.getTrue());
6243       return replaceInstUsesWith(I, Builder.getFalse());
6244     }
6245   } else {
6246     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6247     // +INF and large values.
6248     APFloat UMax(RHS.getSemantics());
6249     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6250                           APFloat::rmNearestTiesToEven);
6251     if (UMax < RHS) { // umax < 13123.0
6252       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6253           Pred == ICmpInst::ICMP_ULE)
6254         return replaceInstUsesWith(I, Builder.getTrue());
6255       return replaceInstUsesWith(I, Builder.getFalse());
6256     }
6257   }
6258 
6259   if (!LHSUnsigned) {
6260     // See if the RHS value is < SignedMin.
6261     APFloat SMin(RHS.getSemantics());
6262     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6263                           APFloat::rmNearestTiesToEven);
6264     if (SMin > RHS) { // smin > 12312.0
6265       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6266           Pred == ICmpInst::ICMP_SGE)
6267         return replaceInstUsesWith(I, Builder.getTrue());
6268       return replaceInstUsesWith(I, Builder.getFalse());
6269     }
6270   } else {
6271     // See if the RHS value is < UnsignedMin.
6272     APFloat UMin(RHS.getSemantics());
6273     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6274                           APFloat::rmNearestTiesToEven);
6275     if (UMin > RHS) { // umin > 12312.0
6276       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6277           Pred == ICmpInst::ICMP_UGE)
6278         return replaceInstUsesWith(I, Builder.getTrue());
6279       return replaceInstUsesWith(I, Builder.getFalse());
6280     }
6281   }
6282 
6283   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6284   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6285   // casting the FP value to the integer value and back, checking for equality.
6286   // Don't do this for zero, because -0.0 is not fractional.
6287   Constant *RHSInt = LHSUnsigned
6288     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6289     : ConstantExpr::getFPToSI(RHSC, IntTy);
6290   if (!RHS.isZero()) {
6291     bool Equal = LHSUnsigned
6292       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6293       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6294     if (!Equal) {
6295       // If we had a comparison against a fractional value, we have to adjust
6296       // the compare predicate and sometimes the value.  RHSC is rounded towards
6297       // zero at this point.
6298       switch (Pred) {
6299       default: llvm_unreachable("Unexpected integer comparison!");
6300       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6301         return replaceInstUsesWith(I, Builder.getTrue());
6302       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6303         return replaceInstUsesWith(I, Builder.getFalse());
6304       case ICmpInst::ICMP_ULE:
6305         // (float)int <= 4.4   --> int <= 4
6306         // (float)int <= -4.4  --> false
6307         if (RHS.isNegative())
6308           return replaceInstUsesWith(I, Builder.getFalse());
6309         break;
6310       case ICmpInst::ICMP_SLE:
6311         // (float)int <= 4.4   --> int <= 4
6312         // (float)int <= -4.4  --> int < -4
6313         if (RHS.isNegative())
6314           Pred = ICmpInst::ICMP_SLT;
6315         break;
6316       case ICmpInst::ICMP_ULT:
6317         // (float)int < -4.4   --> false
6318         // (float)int < 4.4    --> int <= 4
6319         if (RHS.isNegative())
6320           return replaceInstUsesWith(I, Builder.getFalse());
6321         Pred = ICmpInst::ICMP_ULE;
6322         break;
6323       case ICmpInst::ICMP_SLT:
6324         // (float)int < -4.4   --> int < -4
6325         // (float)int < 4.4    --> int <= 4
6326         if (!RHS.isNegative())
6327           Pred = ICmpInst::ICMP_SLE;
6328         break;
6329       case ICmpInst::ICMP_UGT:
6330         // (float)int > 4.4    --> int > 4
6331         // (float)int > -4.4   --> true
6332         if (RHS.isNegative())
6333           return replaceInstUsesWith(I, Builder.getTrue());
6334         break;
6335       case ICmpInst::ICMP_SGT:
6336         // (float)int > 4.4    --> int > 4
6337         // (float)int > -4.4   --> int >= -4
6338         if (RHS.isNegative())
6339           Pred = ICmpInst::ICMP_SGE;
6340         break;
6341       case ICmpInst::ICMP_UGE:
6342         // (float)int >= -4.4   --> true
6343         // (float)int >= 4.4    --> int > 4
6344         if (RHS.isNegative())
6345           return replaceInstUsesWith(I, Builder.getTrue());
6346         Pred = ICmpInst::ICMP_UGT;
6347         break;
6348       case ICmpInst::ICMP_SGE:
6349         // (float)int >= -4.4   --> int >= -4
6350         // (float)int >= 4.4    --> int > 4
6351         if (!RHS.isNegative())
6352           Pred = ICmpInst::ICMP_SGT;
6353         break;
6354       }
6355     }
6356   }
6357 
6358   // Lower this FP comparison into an appropriate integer version of the
6359   // comparison.
6360   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6361 }
6362 
6363 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6364 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6365                                               Constant *RHSC) {
6366   // When C is not 0.0 and infinities are not allowed:
6367   // (C / X) < 0.0 is a sign-bit test of X
6368   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6369   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6370   //
6371   // Proof:
6372   // Multiply (C / X) < 0.0 by X * X / C.
6373   // - X is non zero, if it is the flag 'ninf' is violated.
6374   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6375   //   the predicate. C is also non zero by definition.
6376   //
6377   // Thus X * X / C is non zero and the transformation is valid. [qed]
6378 
6379   FCmpInst::Predicate Pred = I.getPredicate();
6380 
6381   // Check that predicates are valid.
6382   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6383       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6384     return nullptr;
6385 
6386   // Check that RHS operand is zero.
6387   if (!match(RHSC, m_AnyZeroFP()))
6388     return nullptr;
6389 
6390   // Check fastmath flags ('ninf').
6391   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6392     return nullptr;
6393 
6394   // Check the properties of the dividend. It must not be zero to avoid a
6395   // division by zero (see Proof).
6396   const APFloat *C;
6397   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6398     return nullptr;
6399 
6400   if (C->isZero())
6401     return nullptr;
6402 
6403   // Get swapped predicate if necessary.
6404   if (C->isNegative())
6405     Pred = I.getSwappedPredicate();
6406 
6407   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6408 }
6409 
6410 /// Optimize fabs(X) compared with zero.
6411 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6412   Value *X;
6413   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6414       !match(I.getOperand(1), m_PosZeroFP()))
6415     return nullptr;
6416 
6417   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6418     I->setPredicate(P);
6419     return IC.replaceOperand(*I, 0, X);
6420   };
6421 
6422   switch (I.getPredicate()) {
6423   case FCmpInst::FCMP_UGE:
6424   case FCmpInst::FCMP_OLT:
6425     // fabs(X) >= 0.0 --> true
6426     // fabs(X) <  0.0 --> false
6427     llvm_unreachable("fcmp should have simplified");
6428 
6429   case FCmpInst::FCMP_OGT:
6430     // fabs(X) > 0.0 --> X != 0.0
6431     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6432 
6433   case FCmpInst::FCMP_UGT:
6434     // fabs(X) u> 0.0 --> X u!= 0.0
6435     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6436 
6437   case FCmpInst::FCMP_OLE:
6438     // fabs(X) <= 0.0 --> X == 0.0
6439     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6440 
6441   case FCmpInst::FCMP_ULE:
6442     // fabs(X) u<= 0.0 --> X u== 0.0
6443     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6444 
6445   case FCmpInst::FCMP_OGE:
6446     // fabs(X) >= 0.0 --> !isnan(X)
6447     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6448     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6449 
6450   case FCmpInst::FCMP_ULT:
6451     // fabs(X) u< 0.0 --> isnan(X)
6452     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6453     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6454 
6455   case FCmpInst::FCMP_OEQ:
6456   case FCmpInst::FCMP_UEQ:
6457   case FCmpInst::FCMP_ONE:
6458   case FCmpInst::FCMP_UNE:
6459   case FCmpInst::FCMP_ORD:
6460   case FCmpInst::FCMP_UNO:
6461     // Look through the fabs() because it doesn't change anything but the sign.
6462     // fabs(X) == 0.0 --> X == 0.0,
6463     // fabs(X) != 0.0 --> X != 0.0
6464     // isnan(fabs(X)) --> isnan(X)
6465     // !isnan(fabs(X) --> !isnan(X)
6466     return replacePredAndOp0(&I, I.getPredicate(), X);
6467 
6468   default:
6469     return nullptr;
6470   }
6471 }
6472 
6473 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6474   bool Changed = false;
6475 
6476   /// Orders the operands of the compare so that they are listed from most
6477   /// complex to least complex.  This puts constants before unary operators,
6478   /// before binary operators.
6479   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6480     I.swapOperands();
6481     Changed = true;
6482   }
6483 
6484   const CmpInst::Predicate Pred = I.getPredicate();
6485   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6486   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6487                                   SQ.getWithInstruction(&I)))
6488     return replaceInstUsesWith(I, V);
6489 
6490   // Simplify 'fcmp pred X, X'
6491   Type *OpType = Op0->getType();
6492   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6493   if (Op0 == Op1) {
6494     switch (Pred) {
6495       default: break;
6496     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6497     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6498     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6499     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6500       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6501       I.setPredicate(FCmpInst::FCMP_UNO);
6502       I.setOperand(1, Constant::getNullValue(OpType));
6503       return &I;
6504 
6505     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6506     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6507     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6508     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6509       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6510       I.setPredicate(FCmpInst::FCMP_ORD);
6511       I.setOperand(1, Constant::getNullValue(OpType));
6512       return &I;
6513     }
6514   }
6515 
6516   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6517   // then canonicalize the operand to 0.0.
6518   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6519     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6520       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6521 
6522     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6523       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6524   }
6525 
6526   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6527   Value *X, *Y;
6528   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6529     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6530 
6531   // Test if the FCmpInst instruction is used exclusively by a select as
6532   // part of a minimum or maximum operation. If so, refrain from doing
6533   // any other folding. This helps out other analyses which understand
6534   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6535   // and CodeGen. And in this case, at least one of the comparison
6536   // operands has at least one user besides the compare (the select),
6537   // which would often largely negate the benefit of folding anyway.
6538   if (I.hasOneUse())
6539     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6540       Value *A, *B;
6541       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6542       if (SPR.Flavor != SPF_UNKNOWN)
6543         return nullptr;
6544     }
6545 
6546   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6547   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6548   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6549     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6550 
6551   // Handle fcmp with instruction LHS and constant RHS.
6552   Instruction *LHSI;
6553   Constant *RHSC;
6554   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6555     switch (LHSI->getOpcode()) {
6556     case Instruction::PHI:
6557       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6558       // block.  If in the same block, we're encouraging jump threading.  If
6559       // not, we are just pessimizing the code by making an i1 phi.
6560       if (LHSI->getParent() == I.getParent())
6561         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6562           return NV;
6563       break;
6564     case Instruction::SIToFP:
6565     case Instruction::UIToFP:
6566       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6567         return NV;
6568       break;
6569     case Instruction::FDiv:
6570       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6571         return NV;
6572       break;
6573     case Instruction::Load:
6574       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6575         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6576           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6577               !cast<LoadInst>(LHSI)->isVolatile())
6578             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6579               return Res;
6580       break;
6581   }
6582   }
6583 
6584   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6585     return R;
6586 
6587   if (match(Op0, m_FNeg(m_Value(X)))) {
6588     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6589     Constant *C;
6590     if (match(Op1, m_Constant(C))) {
6591       Constant *NegC = ConstantExpr::getFNeg(C);
6592       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6593     }
6594   }
6595 
6596   if (match(Op0, m_FPExt(m_Value(X)))) {
6597     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6598     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6599       return new FCmpInst(Pred, X, Y, "", &I);
6600 
6601     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6602     const APFloat *C;
6603     if (match(Op1, m_APFloat(C))) {
6604       const fltSemantics &FPSem =
6605           X->getType()->getScalarType()->getFltSemantics();
6606       bool Lossy;
6607       APFloat TruncC = *C;
6608       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6609 
6610       // Avoid lossy conversions and denormals.
6611       // Zero is a special case that's OK to convert.
6612       APFloat Fabs = TruncC;
6613       Fabs.clearSign();
6614       if (!Lossy &&
6615           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6616         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6617         return new FCmpInst(Pred, X, NewC, "", &I);
6618       }
6619     }
6620   }
6621 
6622   // Convert a sign-bit test of an FP value into a cast and integer compare.
6623   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6624   // TODO: Handle non-zero compare constants.
6625   // TODO: Handle other predicates.
6626   const APFloat *C;
6627   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6628                                                            m_Value(X)))) &&
6629       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6630     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6631     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6632       IntType = VectorType::get(IntType, VecTy->getElementCount());
6633 
6634     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6635     if (Pred == FCmpInst::FCMP_OLT) {
6636       Value *IntX = Builder.CreateBitCast(X, IntType);
6637       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6638                           ConstantInt::getNullValue(IntType));
6639     }
6640   }
6641 
6642   if (I.getType()->isVectorTy())
6643     if (Instruction *Res = foldVectorCmp(I, Builder))
6644       return Res;
6645 
6646   return Changed ? &I : nullptr;
6647 }
6648