1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If the comparison is only true for one or two elements, emit direct
283   // comparisons.
284   if (SecondTrueElement != Overdefined) {
285     // None true -> false.
286     if (FirstTrueElement == Undefined)
287       return replaceInstUsesWith(ICI, Builder.getFalse());
288 
289     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
290 
291     // True for one element -> 'i == 47'.
292     if (SecondTrueElement == Undefined)
293       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
294 
295     // True for two elements -> 'i == 47 | i == 72'.
296     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
297     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
298     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
299     return BinaryOperator::CreateOr(C1, C2);
300   }
301 
302   // If the comparison is only false for one or two elements, emit direct
303   // comparisons.
304   if (SecondFalseElement != Overdefined) {
305     // None false -> true.
306     if (FirstFalseElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getTrue());
308 
309     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
310 
311     // False for one element -> 'i != 47'.
312     if (SecondFalseElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
314 
315     // False for two elements -> 'i != 47 & i != 72'.
316     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
317     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
318     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
319     return BinaryOperator::CreateAnd(C1, C2);
320   }
321 
322   // If the comparison can be replaced with a range comparison for the elements
323   // where it is true, emit the range check.
324   if (TrueRangeEnd != Overdefined) {
325     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
326 
327     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
328     if (FirstTrueElement) {
329       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
330       Idx = Builder.CreateAdd(Idx, Offs);
331     }
332 
333     Value *End = ConstantInt::get(Idx->getType(),
334                                   TrueRangeEnd-FirstTrueElement+1);
335     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
336   }
337 
338   // False range check.
339   if (FalseRangeEnd != Overdefined) {
340     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
341     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
342     if (FirstFalseElement) {
343       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
344       Idx = Builder.CreateAdd(Idx, Offs);
345     }
346 
347     Value *End = ConstantInt::get(Idx->getType(),
348                                   FalseRangeEnd-FirstFalseElement);
349     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
350   }
351 
352   // If a magic bitvector captures the entire comparison state
353   // of this load, replace it with computation that does:
354   //   ((magic_cst >> i) & 1) != 0
355   {
356     Type *Ty = nullptr;
357 
358     // Look for an appropriate type:
359     // - The type of Idx if the magic fits
360     // - The smallest fitting legal type
361     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
362       Ty = Idx->getType();
363     else
364       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
365 
366     if (Ty) {
367       Value *V = Builder.CreateIntCast(Idx, Ty, false);
368       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
369       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
370       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
371     }
372   }
373 
374   return nullptr;
375 }
376 
377 /// Return a value that can be used to compare the *offset* implied by a GEP to
378 /// zero. For example, if we have &A[i], we want to return 'i' for
379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
380 /// are involved. The above expression would also be legal to codegen as
381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
382 /// This latter form is less amenable to optimization though, and we are allowed
383 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
384 ///
385 /// If we can't emit an optimized form for this expression, this returns null.
386 ///
387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
388                                           const DataLayout &DL) {
389   gep_type_iterator GTI = gep_type_begin(GEP);
390 
391   // Check to see if this gep only has a single variable index.  If so, and if
392   // any constant indices are a multiple of its scale, then we can compute this
393   // in terms of the scale of the variable index.  For example, if the GEP
394   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
395   // because the expression will cross zero at the same point.
396   unsigned i, e = GEP->getNumOperands();
397   int64_t Offset = 0;
398   for (i = 1; i != e; ++i, ++GTI) {
399     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
400       // Compute the aggregate offset of constant indices.
401       if (CI->isZero()) continue;
402 
403       // Handle a struct index, which adds its field offset to the pointer.
404       if (StructType *STy = GTI.getStructTypeOrNull()) {
405         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
406       } else {
407         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
408         Offset += Size*CI->getSExtValue();
409       }
410     } else {
411       // Found our variable index.
412       break;
413     }
414   }
415 
416   // If there are no variable indices, we must have a constant offset, just
417   // evaluate it the general way.
418   if (i == e) return nullptr;
419 
420   Value *VariableIdx = GEP->getOperand(i);
421   // Determine the scale factor of the variable element.  For example, this is
422   // 4 if the variable index is into an array of i32.
423   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
424 
425   // Verify that there are no other variable indices.  If so, emit the hard way.
426   for (++i, ++GTI; i != e; ++i, ++GTI) {
427     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
428     if (!CI) return nullptr;
429 
430     // Compute the aggregate offset of constant indices.
431     if (CI->isZero()) continue;
432 
433     // Handle a struct index, which adds its field offset to the pointer.
434     if (StructType *STy = GTI.getStructTypeOrNull()) {
435       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
436     } else {
437       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
438       Offset += Size*CI->getSExtValue();
439     }
440   }
441 
442   // Okay, we know we have a single variable index, which must be a
443   // pointer/array/vector index.  If there is no offset, life is simple, return
444   // the index.
445   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
446   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
447   if (Offset == 0) {
448     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
449     // we don't need to bother extending: the extension won't affect where the
450     // computation crosses zero.
451     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
452         IntPtrWidth) {
453       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
454     }
455     return VariableIdx;
456   }
457 
458   // Otherwise, there is an index.  The computation we will do will be modulo
459   // the pointer size.
460   Offset = SignExtend64(Offset, IntPtrWidth);
461   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
462 
463   // To do this transformation, any constant index must be a multiple of the
464   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
465   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
466   // multiple of the variable scale.
467   int64_t NewOffs = Offset / (int64_t)VariableScale;
468   if (Offset != NewOffs*(int64_t)VariableScale)
469     return nullptr;
470 
471   // Okay, we can do this evaluation.  Start by converting the index to intptr.
472   if (VariableIdx->getType() != IntPtrTy)
473     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
474                                             true /*Signed*/);
475   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
476   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
477 }
478 
479 /// Returns true if we can rewrite Start as a GEP with pointer Base
480 /// and some integer offset. The nodes that need to be re-written
481 /// for this transformation will be added to Explored.
482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
483                                   const DataLayout &DL,
484                                   SetVector<Value *> &Explored) {
485   SmallVector<Value *, 16> WorkList(1, Start);
486   Explored.insert(Base);
487 
488   // The following traversal gives us an order which can be used
489   // when doing the final transformation. Since in the final
490   // transformation we create the PHI replacement instructions first,
491   // we don't have to get them in any particular order.
492   //
493   // However, for other instructions we will have to traverse the
494   // operands of an instruction first, which means that we have to
495   // do a post-order traversal.
496   while (!WorkList.empty()) {
497     SetVector<PHINode *> PHIs;
498 
499     while (!WorkList.empty()) {
500       if (Explored.size() >= 100)
501         return false;
502 
503       Value *V = WorkList.back();
504 
505       if (Explored.contains(V)) {
506         WorkList.pop_back();
507         continue;
508       }
509 
510       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
511           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
512         // We've found some value that we can't explore which is different from
513         // the base. Therefore we can't do this transformation.
514         return false;
515 
516       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
517         auto *CI = cast<CastInst>(V);
518         if (!CI->isNoopCast(DL))
519           return false;
520 
521         if (Explored.count(CI->getOperand(0)) == 0)
522           WorkList.push_back(CI->getOperand(0));
523       }
524 
525       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
526         // We're limiting the GEP to having one index. This will preserve
527         // the original pointer type. We could handle more cases in the
528         // future.
529         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
530             GEP->getType() != Start->getType())
531           return false;
532 
533         if (Explored.count(GEP->getOperand(0)) == 0)
534           WorkList.push_back(GEP->getOperand(0));
535       }
536 
537       if (WorkList.back() == V) {
538         WorkList.pop_back();
539         // We've finished visiting this node, mark it as such.
540         Explored.insert(V);
541       }
542 
543       if (auto *PN = dyn_cast<PHINode>(V)) {
544         // We cannot transform PHIs on unsplittable basic blocks.
545         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
546           return false;
547         Explored.insert(PN);
548         PHIs.insert(PN);
549       }
550     }
551 
552     // Explore the PHI nodes further.
553     for (auto *PN : PHIs)
554       for (Value *Op : PN->incoming_values())
555         if (Explored.count(Op) == 0)
556           WorkList.push_back(Op);
557   }
558 
559   // Make sure that we can do this. Since we can't insert GEPs in a basic
560   // block before a PHI node, we can't easily do this transformation if
561   // we have PHI node users of transformed instructions.
562   for (Value *Val : Explored) {
563     for (Value *Use : Val->uses()) {
564 
565       auto *PHI = dyn_cast<PHINode>(Use);
566       auto *Inst = dyn_cast<Instruction>(Val);
567 
568       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
569           Explored.count(PHI) == 0)
570         continue;
571 
572       if (PHI->getParent() == Inst->getParent())
573         return false;
574     }
575   }
576   return true;
577 }
578 
579 // Sets the appropriate insert point on Builder where we can add
580 // a replacement Instruction for V (if that is possible).
581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
582                               bool Before = true) {
583   if (auto *PHI = dyn_cast<PHINode>(V)) {
584     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
585     return;
586   }
587   if (auto *I = dyn_cast<Instruction>(V)) {
588     if (!Before)
589       I = &*std::next(I->getIterator());
590     Builder.SetInsertPoint(I);
591     return;
592   }
593   if (auto *A = dyn_cast<Argument>(V)) {
594     // Set the insertion point in the entry block.
595     BasicBlock &Entry = A->getParent()->getEntryBlock();
596     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
597     return;
598   }
599   // Otherwise, this is a constant and we don't need to set a new
600   // insertion point.
601   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
602 }
603 
604 /// Returns a re-written value of Start as an indexed GEP using Base as a
605 /// pointer.
606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
607                                  const DataLayout &DL,
608                                  SetVector<Value *> &Explored) {
609   // Perform all the substitutions. This is a bit tricky because we can
610   // have cycles in our use-def chains.
611   // 1. Create the PHI nodes without any incoming values.
612   // 2. Create all the other values.
613   // 3. Add the edges for the PHI nodes.
614   // 4. Emit GEPs to get the original pointers.
615   // 5. Remove the original instructions.
616   Type *IndexType = IntegerType::get(
617       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
618 
619   DenseMap<Value *, Value *> NewInsts;
620   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
621 
622   // Create the new PHI nodes, without adding any incoming values.
623   for (Value *Val : Explored) {
624     if (Val == Base)
625       continue;
626     // Create empty phi nodes. This avoids cyclic dependencies when creating
627     // the remaining instructions.
628     if (auto *PHI = dyn_cast<PHINode>(Val))
629       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
630                                       PHI->getName() + ".idx", PHI);
631   }
632   IRBuilder<> Builder(Base->getContext());
633 
634   // Create all the other instructions.
635   for (Value *Val : Explored) {
636 
637     if (NewInsts.find(Val) != NewInsts.end())
638       continue;
639 
640     if (auto *CI = dyn_cast<CastInst>(Val)) {
641       // Don't get rid of the intermediate variable here; the store can grow
642       // the map which will invalidate the reference to the input value.
643       Value *V = NewInsts[CI->getOperand(0)];
644       NewInsts[CI] = V;
645       continue;
646     }
647     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
648       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
649                                                   : GEP->getOperand(1);
650       setInsertionPoint(Builder, GEP);
651       // Indices might need to be sign extended. GEPs will magically do
652       // this, but we need to do it ourselves here.
653       if (Index->getType()->getScalarSizeInBits() !=
654           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
655         Index = Builder.CreateSExtOrTrunc(
656             Index, NewInsts[GEP->getOperand(0)]->getType(),
657             GEP->getOperand(0)->getName() + ".sext");
658       }
659 
660       auto *Op = NewInsts[GEP->getOperand(0)];
661       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
662         NewInsts[GEP] = Index;
663       else
664         NewInsts[GEP] = Builder.CreateNSWAdd(
665             Op, Index, GEP->getOperand(0)->getName() + ".add");
666       continue;
667     }
668     if (isa<PHINode>(Val))
669       continue;
670 
671     llvm_unreachable("Unexpected instruction type");
672   }
673 
674   // Add the incoming values to the PHI nodes.
675   for (Value *Val : Explored) {
676     if (Val == Base)
677       continue;
678     // All the instructions have been created, we can now add edges to the
679     // phi nodes.
680     if (auto *PHI = dyn_cast<PHINode>(Val)) {
681       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
682       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
683         Value *NewIncoming = PHI->getIncomingValue(I);
684 
685         if (NewInsts.find(NewIncoming) != NewInsts.end())
686           NewIncoming = NewInsts[NewIncoming];
687 
688         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
689       }
690     }
691   }
692 
693   for (Value *Val : Explored) {
694     if (Val == Base)
695       continue;
696 
697     // Depending on the type, for external users we have to emit
698     // a GEP or a GEP + ptrtoint.
699     setInsertionPoint(Builder, Val, false);
700 
701     // If required, create an inttoptr instruction for Base.
702     Value *NewBase = Base;
703     if (!Base->getType()->isPointerTy())
704       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
705                                                Start->getName() + "to.ptr");
706 
707     Value *GEP = Builder.CreateInBoundsGEP(
708         Start->getType()->getPointerElementType(), NewBase,
709         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
710 
711     if (!Val->getType()->isPointerTy()) {
712       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
713                                               Val->getName() + ".conv");
714       GEP = Cast;
715     }
716     Val->replaceAllUsesWith(GEP);
717   }
718 
719   return NewInsts[Start];
720 }
721 
722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
723 /// the input Value as a constant indexed GEP. Returns a pair containing
724 /// the GEPs Pointer and Index.
725 static std::pair<Value *, Value *>
726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
727   Type *IndexType = IntegerType::get(V->getContext(),
728                                      DL.getIndexTypeSizeInBits(V->getType()));
729 
730   Constant *Index = ConstantInt::getNullValue(IndexType);
731   while (true) {
732     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
733       // We accept only inbouds GEPs here to exclude the possibility of
734       // overflow.
735       if (!GEP->isInBounds())
736         break;
737       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
738           GEP->getType() == V->getType()) {
739         V = GEP->getOperand(0);
740         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
741         Index = ConstantExpr::getAdd(
742             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
743         continue;
744       }
745       break;
746     }
747     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
748       if (!CI->isNoopCast(DL))
749         break;
750       V = CI->getOperand(0);
751       continue;
752     }
753     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
754       if (!CI->isNoopCast(DL))
755         break;
756       V = CI->getOperand(0);
757       continue;
758     }
759     break;
760   }
761   return {V, Index};
762 }
763 
764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
765 /// We can look through PHIs, GEPs and casts in order to determine a common base
766 /// between GEPLHS and RHS.
767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
768                                               ICmpInst::Predicate Cond,
769                                               const DataLayout &DL) {
770   // FIXME: Support vector of pointers.
771   if (GEPLHS->getType()->isVectorTy())
772     return nullptr;
773 
774   if (!GEPLHS->hasAllConstantIndices())
775     return nullptr;
776 
777   // Make sure the pointers have the same type.
778   if (GEPLHS->getType() != RHS->getType())
779     return nullptr;
780 
781   Value *PtrBase, *Index;
782   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
783 
784   // The set of nodes that will take part in this transformation.
785   SetVector<Value *> Nodes;
786 
787   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
788     return nullptr;
789 
790   // We know we can re-write this as
791   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
792   // Since we've only looked through inbouds GEPs we know that we
793   // can't have overflow on either side. We can therefore re-write
794   // this as:
795   //   OFFSET1 cmp OFFSET2
796   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
797 
798   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
799   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
800   // offset. Since Index is the offset of LHS to the base pointer, we will now
801   // compare the offsets instead of comparing the pointers.
802   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
803 }
804 
805 /// Fold comparisons between a GEP instruction and something else. At this point
806 /// we know that the GEP is on the LHS of the comparison.
807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                                            ICmpInst::Predicate Cond,
809                                            Instruction &I) {
810   // Don't transform signed compares of GEPs into index compares. Even if the
811   // GEP is inbounds, the final add of the base pointer can have signed overflow
812   // and would change the result of the icmp.
813   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
814   // the maximum signed value for the pointer type.
815   if (ICmpInst::isSigned(Cond))
816     return nullptr;
817 
818   // Look through bitcasts and addrspacecasts. We do not however want to remove
819   // 0 GEPs.
820   if (!isa<GetElementPtrInst>(RHS))
821     RHS = RHS->stripPointerCasts();
822 
823   Value *PtrBase = GEPLHS->getOperand(0);
824   // FIXME: Support vector pointer GEPs.
825   if (PtrBase == RHS && GEPLHS->isInBounds() &&
826       !GEPLHS->getType()->isVectorTy()) {
827     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
828     // This transformation (ignoring the base and scales) is valid because we
829     // know pointers can't overflow since the gep is inbounds.  See if we can
830     // output an optimized form.
831     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
832 
833     // If not, synthesize the offset the hard way.
834     if (!Offset)
835       Offset = EmitGEPOffset(GEPLHS);
836     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
837                         Constant::getNullValue(Offset->getType()));
838   }
839 
840   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
841       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
842       !NullPointerIsDefined(I.getFunction(),
843                             RHS->getType()->getPointerAddressSpace())) {
844     // For most address spaces, an allocation can't be placed at null, but null
845     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
846     // the only valid inbounds address derived from null, is null itself.
847     // Thus, we have four cases to consider:
848     // 1) Base == nullptr, Offset == 0 -> inbounds, null
849     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
850     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
851     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
852     //
853     // (Note if we're indexing a type of size 0, that simply collapses into one
854     //  of the buckets above.)
855     //
856     // In general, we're allowed to make values less poison (i.e. remove
857     //   sources of full UB), so in this case, we just select between the two
858     //   non-poison cases (1 and 4 above).
859     //
860     // For vectors, we apply the same reasoning on a per-lane basis.
861     auto *Base = GEPLHS->getPointerOperand();
862     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
863       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
864       Base = Builder.CreateVectorSplat(EC, Base);
865     }
866     return new ICmpInst(Cond, Base,
867                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
868                             cast<Constant>(RHS), Base->getType()));
869   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
870     // If the base pointers are different, but the indices are the same, just
871     // compare the base pointer.
872     if (PtrBase != GEPRHS->getOperand(0)) {
873       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
874       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
875                         GEPRHS->getOperand(0)->getType();
876       if (IndicesTheSame)
877         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
878           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
879             IndicesTheSame = false;
880             break;
881           }
882 
883       // If all indices are the same, just compare the base pointers.
884       Type *BaseType = GEPLHS->getOperand(0)->getType();
885       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
886         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
887 
888       // If we're comparing GEPs with two base pointers that only differ in type
889       // and both GEPs have only constant indices or just one use, then fold
890       // the compare with the adjusted indices.
891       // FIXME: Support vector of pointers.
892       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
893           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
894           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
895           PtrBase->stripPointerCasts() ==
896               GEPRHS->getOperand(0)->stripPointerCasts() &&
897           !GEPLHS->getType()->isVectorTy()) {
898         Value *LOffset = EmitGEPOffset(GEPLHS);
899         Value *ROffset = EmitGEPOffset(GEPRHS);
900 
901         // If we looked through an addrspacecast between different sized address
902         // spaces, the LHS and RHS pointers are different sized
903         // integers. Truncate to the smaller one.
904         Type *LHSIndexTy = LOffset->getType();
905         Type *RHSIndexTy = ROffset->getType();
906         if (LHSIndexTy != RHSIndexTy) {
907           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
908               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
909             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
910           } else
911             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
912         }
913 
914         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
915                                         LOffset, ROffset);
916         return replaceInstUsesWith(I, Cmp);
917       }
918 
919       // Otherwise, the base pointers are different and the indices are
920       // different. Try convert this to an indexed compare by looking through
921       // PHIs/casts.
922       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
923     }
924 
925     // If one of the GEPs has all zero indices, recurse.
926     // FIXME: Handle vector of pointers.
927     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
928       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
929                          ICmpInst::getSwappedPredicate(Cond), I);
930 
931     // If the other GEP has all zero indices, recurse.
932     // FIXME: Handle vector of pointers.
933     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
934       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
935 
936     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
937     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
938       // If the GEPs only differ by one index, compare it.
939       unsigned NumDifferences = 0;  // Keep track of # differences.
940       unsigned DiffOperand = 0;     // The operand that differs.
941       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
942         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
943           Type *LHSType = GEPLHS->getOperand(i)->getType();
944           Type *RHSType = GEPRHS->getOperand(i)->getType();
945           // FIXME: Better support for vector of pointers.
946           if (LHSType->getPrimitiveSizeInBits() !=
947                    RHSType->getPrimitiveSizeInBits() ||
948               (GEPLHS->getType()->isVectorTy() &&
949                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
950             // Irreconcilable differences.
951             NumDifferences = 2;
952             break;
953           }
954 
955           if (NumDifferences++) break;
956           DiffOperand = i;
957         }
958 
959       if (NumDifferences == 0)   // SAME GEP?
960         return replaceInstUsesWith(I, // No comparison is needed here.
961           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
962 
963       else if (NumDifferences == 1 && GEPsInBounds) {
964         Value *LHSV = GEPLHS->getOperand(DiffOperand);
965         Value *RHSV = GEPRHS->getOperand(DiffOperand);
966         // Make sure we do a signed comparison here.
967         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
968       }
969     }
970 
971     // Only lower this if the icmp is the only user of the GEP or if we expect
972     // the result to fold to a constant!
973     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
974         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
975       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
976       Value *L = EmitGEPOffset(GEPLHS);
977       Value *R = EmitGEPOffset(GEPRHS);
978       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
979     }
980   }
981 
982   // Try convert this to an indexed compare by looking through PHIs/casts as a
983   // last resort.
984   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
985 }
986 
987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
988                                              const AllocaInst *Alloca,
989                                              const Value *Other) {
990   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
991 
992   // It would be tempting to fold away comparisons between allocas and any
993   // pointer not based on that alloca (e.g. an argument). However, even
994   // though such pointers cannot alias, they can still compare equal.
995   //
996   // But LLVM doesn't specify where allocas get their memory, so if the alloca
997   // doesn't escape we can argue that it's impossible to guess its value, and we
998   // can therefore act as if any such guesses are wrong.
999   //
1000   // The code below checks that the alloca doesn't escape, and that it's only
1001   // used in a comparison once (the current instruction). The
1002   // single-comparison-use condition ensures that we're trivially folding all
1003   // comparisons against the alloca consistently, and avoids the risk of
1004   // erroneously folding a comparison of the pointer with itself.
1005 
1006   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1007 
1008   SmallVector<const Use *, 32> Worklist;
1009   for (const Use &U : Alloca->uses()) {
1010     if (Worklist.size() >= MaxIter)
1011       return nullptr;
1012     Worklist.push_back(&U);
1013   }
1014 
1015   unsigned NumCmps = 0;
1016   while (!Worklist.empty()) {
1017     assert(Worklist.size() <= MaxIter);
1018     const Use *U = Worklist.pop_back_val();
1019     const Value *V = U->getUser();
1020     --MaxIter;
1021 
1022     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1023         isa<SelectInst>(V)) {
1024       // Track the uses.
1025     } else if (isa<LoadInst>(V)) {
1026       // Loading from the pointer doesn't escape it.
1027       continue;
1028     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1029       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1030       if (SI->getValueOperand() == U->get())
1031         return nullptr;
1032       continue;
1033     } else if (isa<ICmpInst>(V)) {
1034       if (NumCmps++)
1035         return nullptr; // Found more than one cmp.
1036       continue;
1037     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1038       switch (Intrin->getIntrinsicID()) {
1039         // These intrinsics don't escape or compare the pointer. Memset is safe
1040         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1041         // we don't allow stores, so src cannot point to V.
1042         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1043         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1044           continue;
1045         default:
1046           return nullptr;
1047       }
1048     } else {
1049       return nullptr;
1050     }
1051     for (const Use &U : V->uses()) {
1052       if (Worklist.size() >= MaxIter)
1053         return nullptr;
1054       Worklist.push_back(&U);
1055     }
1056   }
1057 
1058   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1059   return replaceInstUsesWith(
1060       ICI,
1061       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1062 }
1063 
1064 /// Fold "icmp pred (X+C), X".
1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1066                                                   ICmpInst::Predicate Pred) {
1067   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1068   // so the values can never be equal.  Similarly for all other "or equals"
1069   // operators.
1070   assert(!!C && "C should not be zero!");
1071 
1072   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1073   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1074   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1075   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1076     Constant *R = ConstantInt::get(X->getType(),
1077                                    APInt::getMaxValue(C.getBitWidth()) - C);
1078     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1079   }
1080 
1081   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1082   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1083   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1084   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1085     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1086                         ConstantInt::get(X->getType(), -C));
1087 
1088   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1089 
1090   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1091   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1092   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1093   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1094   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1095   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1096   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1097     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1098                         ConstantInt::get(X->getType(), SMax - C));
1099 
1100   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1101   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1102   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1103   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1104   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1105   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1106 
1107   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1108   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1109                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1110 }
1111 
1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1113 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1116                                                      const APInt &AP1,
1117                                                      const APInt &AP2) {
1118   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1119 
1120   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1121     if (I.getPredicate() == I.ICMP_NE)
1122       Pred = CmpInst::getInversePredicate(Pred);
1123     return new ICmpInst(Pred, LHS, RHS);
1124   };
1125 
1126   // Don't bother doing any work for cases which InstSimplify handles.
1127   if (AP2.isNullValue())
1128     return nullptr;
1129 
1130   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1131   if (IsAShr) {
1132     if (AP2.isAllOnesValue())
1133       return nullptr;
1134     if (AP2.isNegative() != AP1.isNegative())
1135       return nullptr;
1136     if (AP2.sgt(AP1))
1137       return nullptr;
1138   }
1139 
1140   if (!AP1)
1141     // 'A' must be large enough to shift out the highest set bit.
1142     return getICmp(I.ICMP_UGT, A,
1143                    ConstantInt::get(A->getType(), AP2.logBase2()));
1144 
1145   if (AP1 == AP2)
1146     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1147 
1148   int Shift;
1149   if (IsAShr && AP1.isNegative())
1150     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1151   else
1152     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1153 
1154   if (Shift > 0) {
1155     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1156       // There are multiple solutions if we are comparing against -1 and the LHS
1157       // of the ashr is not a power of two.
1158       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1159         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1160       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1161     } else if (AP1 == AP2.lshr(Shift)) {
1162       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1163     }
1164   }
1165 
1166   // Shifting const2 will never be equal to const1.
1167   // FIXME: This should always be handled by InstSimplify?
1168   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1169   return replaceInstUsesWith(I, TorF);
1170 }
1171 
1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1175                                                      const APInt &AP1,
1176                                                      const APInt &AP2) {
1177   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1178 
1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180     if (I.getPredicate() == I.ICMP_NE)
1181       Pred = CmpInst::getInversePredicate(Pred);
1182     return new ICmpInst(Pred, LHS, RHS);
1183   };
1184 
1185   // Don't bother doing any work for cases which InstSimplify handles.
1186   if (AP2.isNullValue())
1187     return nullptr;
1188 
1189   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1190 
1191   if (!AP1 && AP2TrailingZeros != 0)
1192     return getICmp(
1193         I.ICMP_UGE, A,
1194         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1195 
1196   if (AP1 == AP2)
1197     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1198 
1199   // Get the distance between the lowest bits that are set.
1200   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1201 
1202   if (Shift > 0 && AP2.shl(Shift) == AP1)
1203     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1204 
1205   // Shifting const2 will never be equal to const1.
1206   // FIXME: This should always be handled by InstSimplify?
1207   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208   return replaceInstUsesWith(I, TorF);
1209 }
1210 
1211 /// The caller has matched a pattern of the form:
1212 ///   I = icmp ugt (add (add A, B), CI2), CI1
1213 /// If this is of the form:
1214 ///   sum = a + b
1215 ///   if (sum+128 >u 255)
1216 /// Then replace it with llvm.sadd.with.overflow.i8.
1217 ///
1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1219                                           ConstantInt *CI2, ConstantInt *CI1,
1220                                           InstCombinerImpl &IC) {
1221   // The transformation we're trying to do here is to transform this into an
1222   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1223   // with a narrower add, and discard the add-with-constant that is part of the
1224   // range check (if we can't eliminate it, this isn't profitable).
1225 
1226   // In order to eliminate the add-with-constant, the compare can be its only
1227   // use.
1228   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1229   if (!AddWithCst->hasOneUse())
1230     return nullptr;
1231 
1232   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1233   if (!CI2->getValue().isPowerOf2())
1234     return nullptr;
1235   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1236   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1237     return nullptr;
1238 
1239   // The width of the new add formed is 1 more than the bias.
1240   ++NewWidth;
1241 
1242   // Check to see that CI1 is an all-ones value with NewWidth bits.
1243   if (CI1->getBitWidth() == NewWidth ||
1244       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1245     return nullptr;
1246 
1247   // This is only really a signed overflow check if the inputs have been
1248   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1249   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1250   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1251   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1252       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1253     return nullptr;
1254 
1255   // In order to replace the original add with a narrower
1256   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1257   // and truncates that discard the high bits of the add.  Verify that this is
1258   // the case.
1259   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1260   for (User *U : OrigAdd->users()) {
1261     if (U == AddWithCst)
1262       continue;
1263 
1264     // Only accept truncates for now.  We would really like a nice recursive
1265     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1266     // chain to see which bits of a value are actually demanded.  If the
1267     // original add had another add which was then immediately truncated, we
1268     // could still do the transformation.
1269     TruncInst *TI = dyn_cast<TruncInst>(U);
1270     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1271       return nullptr;
1272   }
1273 
1274   // If the pattern matches, truncate the inputs to the narrower type and
1275   // use the sadd_with_overflow intrinsic to efficiently compute both the
1276   // result and the overflow bit.
1277   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1278   Function *F = Intrinsic::getDeclaration(
1279       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1280 
1281   InstCombiner::BuilderTy &Builder = IC.Builder;
1282 
1283   // Put the new code above the original add, in case there are any uses of the
1284   // add between the add and the compare.
1285   Builder.SetInsertPoint(OrigAdd);
1286 
1287   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1288   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1289   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1290   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1291   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1292 
1293   // The inner add was the result of the narrow add, zero extended to the
1294   // wider type.  Replace it with the result computed by the intrinsic.
1295   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1296   IC.eraseInstFromFunction(*OrigAdd);
1297 
1298   // The original icmp gets replaced with the overflow value.
1299   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1300 }
1301 
1302 /// If we have:
1303 ///   icmp eq/ne (urem/srem %x, %y), 0
1304 /// iff %y is a power-of-two, we can replace this with a bit test:
1305 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1307   // This fold is only valid for equality predicates.
1308   if (!I.isEquality())
1309     return nullptr;
1310   ICmpInst::Predicate Pred;
1311   Value *X, *Y, *Zero;
1312   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1313                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1314     return nullptr;
1315   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1316     return nullptr;
1317   // This may increase instruction count, we don't enforce that Y is a constant.
1318   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1319   Value *Masked = Builder.CreateAnd(X, Mask);
1320   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1321 }
1322 
1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1324 /// by one-less-than-bitwidth into a sign test on the original value.
1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1326   Instruction *Val;
1327   ICmpInst::Predicate Pred;
1328   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1329     return nullptr;
1330 
1331   Value *X;
1332   Type *XTy;
1333 
1334   Constant *C;
1335   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1336     XTy = X->getType();
1337     unsigned XBitWidth = XTy->getScalarSizeInBits();
1338     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1339                                      APInt(XBitWidth, XBitWidth - 1))))
1340       return nullptr;
1341   } else if (isa<BinaryOperator>(Val) &&
1342              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1343                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1344                   /*AnalyzeForSignBitExtraction=*/true))) {
1345     XTy = X->getType();
1346   } else
1347     return nullptr;
1348 
1349   return ICmpInst::Create(Instruction::ICmp,
1350                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1351                                                     : ICmpInst::ICMP_SLT,
1352                           X, ConstantInt::getNullValue(XTy));
1353 }
1354 
1355 // Handle  icmp pred X, 0
1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1357   CmpInst::Predicate Pred = Cmp.getPredicate();
1358   if (!match(Cmp.getOperand(1), m_Zero()))
1359     return nullptr;
1360 
1361   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1362   if (Pred == ICmpInst::ICMP_SGT) {
1363     Value *A, *B;
1364     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1365     if (SPR.Flavor == SPF_SMIN) {
1366       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1367         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1368       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1369         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1370     }
1371   }
1372 
1373   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1374     return New;
1375 
1376   // Given:
1377   //   icmp eq/ne (urem %x, %y), 0
1378   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1379   //   icmp eq/ne %x, 0
1380   Value *X, *Y;
1381   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1382       ICmpInst::isEquality(Pred)) {
1383     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1384     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1385     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1386       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 /// Fold icmp Pred X, C.
1393 /// TODO: This code structure does not make sense. The saturating add fold
1394 /// should be moved to some other helper and extended as noted below (it is also
1395 /// possible that code has been made unnecessary - do we canonicalize IR to
1396 /// overflow/saturating intrinsics or not?).
1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1398   // Match the following pattern, which is a common idiom when writing
1399   // overflow-safe integer arithmetic functions. The source performs an addition
1400   // in wider type and explicitly checks for overflow using comparisons against
1401   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1402   //
1403   // TODO: This could probably be generalized to handle other overflow-safe
1404   // operations if we worked out the formulas to compute the appropriate magic
1405   // constants.
1406   //
1407   // sum = a + b
1408   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1409   CmpInst::Predicate Pred = Cmp.getPredicate();
1410   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1411   Value *A, *B;
1412   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1413   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1414       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1415     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1416       return Res;
1417 
1418   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1419   Constant *C = dyn_cast<Constant>(Op1);
1420   if (!C)
1421     return nullptr;
1422 
1423   if (auto *Phi = dyn_cast<PHINode>(Op0))
1424     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1425       Type *Ty = Cmp.getType();
1426       Builder.SetInsertPoint(Phi);
1427       PHINode *NewPhi =
1428           Builder.CreatePHI(Ty, Phi->getNumOperands());
1429       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1430         auto *Input =
1431             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1432         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1433         NewPhi->addIncoming(BoolInput, Predecessor);
1434       }
1435       NewPhi->takeName(&Cmp);
1436       return replaceInstUsesWith(Cmp, NewPhi);
1437     }
1438 
1439   return nullptr;
1440 }
1441 
1442 /// Canonicalize icmp instructions based on dominating conditions.
1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1444   // This is a cheap/incomplete check for dominance - just match a single
1445   // predecessor with a conditional branch.
1446   BasicBlock *CmpBB = Cmp.getParent();
1447   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1448   if (!DomBB)
1449     return nullptr;
1450 
1451   Value *DomCond;
1452   BasicBlock *TrueBB, *FalseBB;
1453   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1454     return nullptr;
1455 
1456   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1457          "Predecessor block does not point to successor?");
1458 
1459   // The branch should get simplified. Don't bother simplifying this condition.
1460   if (TrueBB == FalseBB)
1461     return nullptr;
1462 
1463   // Try to simplify this compare to T/F based on the dominating condition.
1464   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1465   if (Imp)
1466     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1467 
1468   CmpInst::Predicate Pred = Cmp.getPredicate();
1469   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1470   ICmpInst::Predicate DomPred;
1471   const APInt *C, *DomC;
1472   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1473       match(Y, m_APInt(C))) {
1474     // We have 2 compares of a variable with constants. Calculate the constant
1475     // ranges of those compares to see if we can transform the 2nd compare:
1476     // DomBB:
1477     //   DomCond = icmp DomPred X, DomC
1478     //   br DomCond, CmpBB, FalseBB
1479     // CmpBB:
1480     //   Cmp = icmp Pred X, C
1481     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1482     ConstantRange DominatingCR =
1483         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1484                           : ConstantRange::makeExactICmpRegion(
1485                                 CmpInst::getInversePredicate(DomPred), *DomC);
1486     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1487     ConstantRange Difference = DominatingCR.difference(CR);
1488     if (Intersection.isEmptySet())
1489       return replaceInstUsesWith(Cmp, Builder.getFalse());
1490     if (Difference.isEmptySet())
1491       return replaceInstUsesWith(Cmp, Builder.getTrue());
1492 
1493     // Canonicalizing a sign bit comparison that gets used in a branch,
1494     // pessimizes codegen by generating branch on zero instruction instead
1495     // of a test and branch. So we avoid canonicalizing in such situations
1496     // because test and branch instruction has better branch displacement
1497     // than compare and branch instruction.
1498     bool UnusedBit;
1499     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1500     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1501       return nullptr;
1502 
1503     // Avoid an infinite loop with min/max canonicalization.
1504     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1505     if (Cmp.hasOneUse() &&
1506         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1507       return nullptr;
1508 
1509     if (const APInt *EqC = Intersection.getSingleElement())
1510       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1511     if (const APInt *NeC = Difference.getSingleElement())
1512       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1513   }
1514 
1515   return nullptr;
1516 }
1517 
1518 /// Fold icmp (trunc X, Y), C.
1519 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1520                                                      TruncInst *Trunc,
1521                                                      const APInt &C) {
1522   ICmpInst::Predicate Pred = Cmp.getPredicate();
1523   Value *X = Trunc->getOperand(0);
1524   if (C.isOneValue() && C.getBitWidth() > 1) {
1525     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1526     Value *V = nullptr;
1527     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1528       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1529                           ConstantInt::get(V->getType(), 1));
1530   }
1531 
1532   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1533            SrcBits = X->getType()->getScalarSizeInBits();
1534   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1535     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1536     // of the high bits truncated out of x are known.
1537     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1538 
1539     // If all the high bits are known, we can do this xform.
1540     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1541       // Pull in the high bits from known-ones set.
1542       APInt NewRHS = C.zext(SrcBits);
1543       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1544       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1545     }
1546   }
1547 
1548   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1549   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1550   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1551   Value *ShOp;
1552   const APInt *ShAmtC;
1553   bool TrueIfSigned;
1554   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1555       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1556       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1557     return TrueIfSigned
1558                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1559                               ConstantInt::getNullValue(X->getType()))
1560                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1561                               ConstantInt::getAllOnesValue(X->getType()));
1562   }
1563 
1564   return nullptr;
1565 }
1566 
1567 /// Fold icmp (xor X, Y), C.
1568 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1569                                                    BinaryOperator *Xor,
1570                                                    const APInt &C) {
1571   Value *X = Xor->getOperand(0);
1572   Value *Y = Xor->getOperand(1);
1573   const APInt *XorC;
1574   if (!match(Y, m_APInt(XorC)))
1575     return nullptr;
1576 
1577   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1578   // fold the xor.
1579   ICmpInst::Predicate Pred = Cmp.getPredicate();
1580   bool TrueIfSigned = false;
1581   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1582 
1583     // If the sign bit of the XorCst is not set, there is no change to
1584     // the operation, just stop using the Xor.
1585     if (!XorC->isNegative())
1586       return replaceOperand(Cmp, 0, X);
1587 
1588     // Emit the opposite comparison.
1589     if (TrueIfSigned)
1590       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1591                           ConstantInt::getAllOnesValue(X->getType()));
1592     else
1593       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1594                           ConstantInt::getNullValue(X->getType()));
1595   }
1596 
1597   if (Xor->hasOneUse()) {
1598     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1599     if (!Cmp.isEquality() && XorC->isSignMask()) {
1600       Pred = Cmp.getFlippedSignednessPredicate();
1601       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1602     }
1603 
1604     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1605     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1606       Pred = Cmp.getFlippedSignednessPredicate();
1607       Pred = Cmp.getSwappedPredicate(Pred);
1608       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1609     }
1610   }
1611 
1612   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1613   if (Pred == ICmpInst::ICMP_UGT) {
1614     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1615     if (*XorC == ~C && (C + 1).isPowerOf2())
1616       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1617     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1618     if (*XorC == C && (C + 1).isPowerOf2())
1619       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1620   }
1621   if (Pred == ICmpInst::ICMP_ULT) {
1622     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1623     if (*XorC == -C && C.isPowerOf2())
1624       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1625                           ConstantInt::get(X->getType(), ~C));
1626     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1627     if (*XorC == C && (-C).isPowerOf2())
1628       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1629                           ConstantInt::get(X->getType(), ~C));
1630   }
1631   return nullptr;
1632 }
1633 
1634 /// Fold icmp (and (sh X, Y), C2), C1.
1635 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1636                                                 BinaryOperator *And,
1637                                                 const APInt &C1,
1638                                                 const APInt &C2) {
1639   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1640   if (!Shift || !Shift->isShift())
1641     return nullptr;
1642 
1643   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1644   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1645   // code produced by the clang front-end, for bitfield access.
1646   // This seemingly simple opportunity to fold away a shift turns out to be
1647   // rather complicated. See PR17827 for details.
1648   unsigned ShiftOpcode = Shift->getOpcode();
1649   bool IsShl = ShiftOpcode == Instruction::Shl;
1650   const APInt *C3;
1651   if (match(Shift->getOperand(1), m_APInt(C3))) {
1652     APInt NewAndCst, NewCmpCst;
1653     bool AnyCmpCstBitsShiftedOut;
1654     if (ShiftOpcode == Instruction::Shl) {
1655       // For a left shift, we can fold if the comparison is not signed. We can
1656       // also fold a signed comparison if the mask value and comparison value
1657       // are not negative. These constraints may not be obvious, but we can
1658       // prove that they are correct using an SMT solver.
1659       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1660         return nullptr;
1661 
1662       NewCmpCst = C1.lshr(*C3);
1663       NewAndCst = C2.lshr(*C3);
1664       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1665     } else if (ShiftOpcode == Instruction::LShr) {
1666       // For a logical right shift, we can fold if the comparison is not signed.
1667       // We can also fold a signed comparison if the shifted mask value and the
1668       // shifted comparison value are not negative. These constraints may not be
1669       // obvious, but we can prove that they are correct using an SMT solver.
1670       NewCmpCst = C1.shl(*C3);
1671       NewAndCst = C2.shl(*C3);
1672       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1673       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1674         return nullptr;
1675     } else {
1676       // For an arithmetic shift, check that both constants don't use (in a
1677       // signed sense) the top bits being shifted out.
1678       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1679       NewCmpCst = C1.shl(*C3);
1680       NewAndCst = C2.shl(*C3);
1681       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1682       if (NewAndCst.ashr(*C3) != C2)
1683         return nullptr;
1684     }
1685 
1686     if (AnyCmpCstBitsShiftedOut) {
1687       // If we shifted bits out, the fold is not going to work out. As a
1688       // special case, check to see if this means that the result is always
1689       // true or false now.
1690       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1691         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1692       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1693         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1694     } else {
1695       Value *NewAnd = Builder.CreateAnd(
1696           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1697       return new ICmpInst(Cmp.getPredicate(),
1698           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1699     }
1700   }
1701 
1702   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1703   // preferable because it allows the C2 << Y expression to be hoisted out of a
1704   // loop if Y is invariant and X is not.
1705   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1706       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1707     // Compute C2 << Y.
1708     Value *NewShift =
1709         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1710               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1711 
1712     // Compute X & (C2 << Y).
1713     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1714     return replaceOperand(Cmp, 0, NewAnd);
1715   }
1716 
1717   return nullptr;
1718 }
1719 
1720 /// Fold icmp (and X, C2), C1.
1721 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1722                                                      BinaryOperator *And,
1723                                                      const APInt &C1) {
1724   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1725 
1726   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1727   // TODO: We canonicalize to the longer form for scalars because we have
1728   // better analysis/folds for icmp, and codegen may be better with icmp.
1729   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1730       match(And->getOperand(1), m_One()))
1731     return new TruncInst(And->getOperand(0), Cmp.getType());
1732 
1733   const APInt *C2;
1734   Value *X;
1735   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1736     return nullptr;
1737 
1738   // Don't perform the following transforms if the AND has multiple uses
1739   if (!And->hasOneUse())
1740     return nullptr;
1741 
1742   if (Cmp.isEquality() && C1.isNullValue()) {
1743     // Restrict this fold to single-use 'and' (PR10267).
1744     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1745     if (C2->isSignMask()) {
1746       Constant *Zero = Constant::getNullValue(X->getType());
1747       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1748       return new ICmpInst(NewPred, X, Zero);
1749     }
1750 
1751     // Restrict this fold only for single-use 'and' (PR10267).
1752     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1753     if ((~(*C2) + 1).isPowerOf2()) {
1754       Constant *NegBOC =
1755           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1756       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1757       return new ICmpInst(NewPred, X, NegBOC);
1758     }
1759   }
1760 
1761   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1762   // the input width without changing the value produced, eliminate the cast:
1763   //
1764   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1765   //
1766   // We can do this transformation if the constants do not have their sign bits
1767   // set or if it is an equality comparison. Extending a relational comparison
1768   // when we're checking the sign bit would not work.
1769   Value *W;
1770   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1771       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1772     // TODO: Is this a good transform for vectors? Wider types may reduce
1773     // throughput. Should this transform be limited (even for scalars) by using
1774     // shouldChangeType()?
1775     if (!Cmp.getType()->isVectorTy()) {
1776       Type *WideType = W->getType();
1777       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1778       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1779       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1780       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1781       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1782     }
1783   }
1784 
1785   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1786     return I;
1787 
1788   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1789   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1790   //
1791   // iff pred isn't signed
1792   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1793       match(And->getOperand(1), m_One())) {
1794     Constant *One = cast<Constant>(And->getOperand(1));
1795     Value *Or = And->getOperand(0);
1796     Value *A, *B, *LShr;
1797     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1798         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1799       unsigned UsesRemoved = 0;
1800       if (And->hasOneUse())
1801         ++UsesRemoved;
1802       if (Or->hasOneUse())
1803         ++UsesRemoved;
1804       if (LShr->hasOneUse())
1805         ++UsesRemoved;
1806 
1807       // Compute A & ((1 << B) | 1)
1808       Value *NewOr = nullptr;
1809       if (auto *C = dyn_cast<Constant>(B)) {
1810         if (UsesRemoved >= 1)
1811           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1812       } else {
1813         if (UsesRemoved >= 3)
1814           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1815                                                      /*HasNUW=*/true),
1816                                    One, Or->getName());
1817       }
1818       if (NewOr) {
1819         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1820         return replaceOperand(Cmp, 0, NewAnd);
1821       }
1822     }
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 /// Fold icmp (and X, Y), C.
1829 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1830                                                    BinaryOperator *And,
1831                                                    const APInt &C) {
1832   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1833     return I;
1834 
1835   // TODO: These all require that Y is constant too, so refactor with the above.
1836 
1837   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1838   Value *X = And->getOperand(0);
1839   Value *Y = And->getOperand(1);
1840   if (auto *LI = dyn_cast<LoadInst>(X))
1841     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1842       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1843         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1844             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1845           ConstantInt *C2 = cast<ConstantInt>(Y);
1846           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1847             return Res;
1848         }
1849 
1850   if (!Cmp.isEquality())
1851     return nullptr;
1852 
1853   // X & -C == -C -> X >  u ~C
1854   // X & -C != -C -> X <= u ~C
1855   //   iff C is a power of 2
1856   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1857     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1858                                                           : CmpInst::ICMP_ULE;
1859     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1860   }
1861 
1862   // (X & C2) == 0 -> (trunc X) >= 0
1863   // (X & C2) != 0 -> (trunc X) <  0
1864   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1865   const APInt *C2;
1866   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1867     int32_t ExactLogBase2 = C2->exactLogBase2();
1868     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1869       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1870       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1871         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1872       Value *Trunc = Builder.CreateTrunc(X, NTy);
1873       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1874                                                             : CmpInst::ICMP_SLT;
1875       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1876     }
1877   }
1878 
1879   return nullptr;
1880 }
1881 
1882 /// Fold icmp (or X, Y), C.
1883 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1884                                                   BinaryOperator *Or,
1885                                                   const APInt &C) {
1886   ICmpInst::Predicate Pred = Cmp.getPredicate();
1887   if (C.isOneValue()) {
1888     // icmp slt signum(V) 1 --> icmp slt V, 1
1889     Value *V = nullptr;
1890     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1891       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1892                           ConstantInt::get(V->getType(), 1));
1893   }
1894 
1895   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1896   const APInt *MaskC;
1897   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1898     if (*MaskC == C && (C + 1).isPowerOf2()) {
1899       // X | C == C --> X <=u C
1900       // X | C != C --> X  >u C
1901       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1902       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1903       return new ICmpInst(Pred, OrOp0, OrOp1);
1904     }
1905 
1906     // More general: canonicalize 'equality with set bits mask' to
1907     // 'equality with clear bits mask'.
1908     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1909     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1910     if (Or->hasOneUse()) {
1911       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1912       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1913       return new ICmpInst(Pred, And, NewC);
1914     }
1915   }
1916 
1917   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1918     return nullptr;
1919 
1920   Value *P, *Q;
1921   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1922     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1923     // -> and (icmp eq P, null), (icmp eq Q, null).
1924     Value *CmpP =
1925         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1926     Value *CmpQ =
1927         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1928     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1929     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1930   }
1931 
1932   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1933   // a shorter form that has more potential to be folded even further.
1934   Value *X1, *X2, *X3, *X4;
1935   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1936       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1937     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1938     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1939     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1940     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1941     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1942     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1943   }
1944 
1945   return nullptr;
1946 }
1947 
1948 /// Fold icmp (mul X, Y), C.
1949 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1950                                                    BinaryOperator *Mul,
1951                                                    const APInt &C) {
1952   const APInt *MulC;
1953   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1954     return nullptr;
1955 
1956   // If this is a test of the sign bit and the multiply is sign-preserving with
1957   // a constant operand, use the multiply LHS operand instead.
1958   ICmpInst::Predicate Pred = Cmp.getPredicate();
1959   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1960     if (MulC->isNegative())
1961       Pred = ICmpInst::getSwappedPredicate(Pred);
1962     return new ICmpInst(Pred, Mul->getOperand(0),
1963                         Constant::getNullValue(Mul->getType()));
1964   }
1965 
1966   // If the multiply does not wrap, try to divide the compare constant by the
1967   // multiplication factor.
1968   if (Cmp.isEquality() && !MulC->isNullValue()) {
1969     // (mul nsw X, MulC) == C --> X == C /s MulC
1970     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1971       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1972       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1973     }
1974     // (mul nuw X, MulC) == C --> X == C /u MulC
1975     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1976       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1977       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1978     }
1979   }
1980 
1981   return nullptr;
1982 }
1983 
1984 /// Fold icmp (shl 1, Y), C.
1985 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1986                                    const APInt &C) {
1987   Value *Y;
1988   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1989     return nullptr;
1990 
1991   Type *ShiftType = Shl->getType();
1992   unsigned TypeBits = C.getBitWidth();
1993   bool CIsPowerOf2 = C.isPowerOf2();
1994   ICmpInst::Predicate Pred = Cmp.getPredicate();
1995   if (Cmp.isUnsigned()) {
1996     // (1 << Y) pred C -> Y pred Log2(C)
1997     if (!CIsPowerOf2) {
1998       // (1 << Y) <  30 -> Y <= 4
1999       // (1 << Y) <= 30 -> Y <= 4
2000       // (1 << Y) >= 30 -> Y >  4
2001       // (1 << Y) >  30 -> Y >  4
2002       if (Pred == ICmpInst::ICMP_ULT)
2003         Pred = ICmpInst::ICMP_ULE;
2004       else if (Pred == ICmpInst::ICMP_UGE)
2005         Pred = ICmpInst::ICMP_UGT;
2006     }
2007 
2008     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2009     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2010     unsigned CLog2 = C.logBase2();
2011     if (CLog2 == TypeBits - 1) {
2012       if (Pred == ICmpInst::ICMP_UGE)
2013         Pred = ICmpInst::ICMP_EQ;
2014       else if (Pred == ICmpInst::ICMP_ULT)
2015         Pred = ICmpInst::ICMP_NE;
2016     }
2017     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2018   } else if (Cmp.isSigned()) {
2019     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2020     if (C.isAllOnesValue()) {
2021       // (1 << Y) <= -1 -> Y == 31
2022       if (Pred == ICmpInst::ICMP_SLE)
2023         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2024 
2025       // (1 << Y) >  -1 -> Y != 31
2026       if (Pred == ICmpInst::ICMP_SGT)
2027         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2028     } else if (!C) {
2029       // (1 << Y) <  0 -> Y == 31
2030       // (1 << Y) <= 0 -> Y == 31
2031       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2032         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2033 
2034       // (1 << Y) >= 0 -> Y != 31
2035       // (1 << Y) >  0 -> Y != 31
2036       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2037         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2038     }
2039   } else if (Cmp.isEquality() && CIsPowerOf2) {
2040     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2041   }
2042 
2043   return nullptr;
2044 }
2045 
2046 /// Fold icmp (shl X, Y), C.
2047 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2048                                                    BinaryOperator *Shl,
2049                                                    const APInt &C) {
2050   const APInt *ShiftVal;
2051   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2052     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2053 
2054   const APInt *ShiftAmt;
2055   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2056     return foldICmpShlOne(Cmp, Shl, C);
2057 
2058   // Check that the shift amount is in range. If not, don't perform undefined
2059   // shifts. When the shift is visited, it will be simplified.
2060   unsigned TypeBits = C.getBitWidth();
2061   if (ShiftAmt->uge(TypeBits))
2062     return nullptr;
2063 
2064   ICmpInst::Predicate Pred = Cmp.getPredicate();
2065   Value *X = Shl->getOperand(0);
2066   Type *ShType = Shl->getType();
2067 
2068   // NSW guarantees that we are only shifting out sign bits from the high bits,
2069   // so we can ASHR the compare constant without needing a mask and eliminate
2070   // the shift.
2071   if (Shl->hasNoSignedWrap()) {
2072     if (Pred == ICmpInst::ICMP_SGT) {
2073       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2074       APInt ShiftedC = C.ashr(*ShiftAmt);
2075       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2076     }
2077     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2078         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2079       APInt ShiftedC = C.ashr(*ShiftAmt);
2080       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2081     }
2082     if (Pred == ICmpInst::ICMP_SLT) {
2083       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2084       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2085       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2086       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2087       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2088       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2089       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2090     }
2091     // If this is a signed comparison to 0 and the shift is sign preserving,
2092     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2093     // do that if we're sure to not continue on in this function.
2094     if (isSignTest(Pred, C))
2095       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2096   }
2097 
2098   // NUW guarantees that we are only shifting out zero bits from the high bits,
2099   // so we can LSHR the compare constant without needing a mask and eliminate
2100   // the shift.
2101   if (Shl->hasNoUnsignedWrap()) {
2102     if (Pred == ICmpInst::ICMP_UGT) {
2103       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2104       APInt ShiftedC = C.lshr(*ShiftAmt);
2105       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2106     }
2107     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2108         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2109       APInt ShiftedC = C.lshr(*ShiftAmt);
2110       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111     }
2112     if (Pred == ICmpInst::ICMP_ULT) {
2113       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2114       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2115       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2116       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2117       assert(C.ugt(0) && "ult 0 should have been eliminated");
2118       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2119       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120     }
2121   }
2122 
2123   if (Cmp.isEquality() && Shl->hasOneUse()) {
2124     // Strength-reduce the shift into an 'and'.
2125     Constant *Mask = ConstantInt::get(
2126         ShType,
2127         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2128     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2129     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2130     return new ICmpInst(Pred, And, LShrC);
2131   }
2132 
2133   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2134   bool TrueIfSigned = false;
2135   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2136     // (X << 31) <s 0  --> (X & 1) != 0
2137     Constant *Mask = ConstantInt::get(
2138         ShType,
2139         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2140     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2141     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2142                         And, Constant::getNullValue(ShType));
2143   }
2144 
2145   // Simplify 'shl' inequality test into 'and' equality test.
2146   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2147     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2148     if ((C + 1).isPowerOf2() &&
2149         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2150       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2151       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2152                                                      : ICmpInst::ICMP_NE,
2153                           And, Constant::getNullValue(ShType));
2154     }
2155     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2156     if (C.isPowerOf2() &&
2157         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2158       Value *And =
2159           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2160       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2161                                                      : ICmpInst::ICMP_NE,
2162                           And, Constant::getNullValue(ShType));
2163     }
2164   }
2165 
2166   // Transform (icmp pred iM (shl iM %v, N), C)
2167   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2168   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2169   // This enables us to get rid of the shift in favor of a trunc that may be
2170   // free on the target. It has the additional benefit of comparing to a
2171   // smaller constant that may be more target-friendly.
2172   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2173   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2174       DL.isLegalInteger(TypeBits - Amt)) {
2175     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2176     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2177       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2178     Constant *NewC =
2179         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2180     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2181   }
2182 
2183   return nullptr;
2184 }
2185 
2186 /// Fold icmp ({al}shr X, Y), C.
2187 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2188                                                    BinaryOperator *Shr,
2189                                                    const APInt &C) {
2190   // An exact shr only shifts out zero bits, so:
2191   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2192   Value *X = Shr->getOperand(0);
2193   CmpInst::Predicate Pred = Cmp.getPredicate();
2194   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2195       C.isNullValue())
2196     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2197 
2198   const APInt *ShiftVal;
2199   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2200     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2201 
2202   const APInt *ShiftAmt;
2203   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2204     return nullptr;
2205 
2206   // Check that the shift amount is in range. If not, don't perform undefined
2207   // shifts. When the shift is visited it will be simplified.
2208   unsigned TypeBits = C.getBitWidth();
2209   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2210   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2211     return nullptr;
2212 
2213   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2214   bool IsExact = Shr->isExact();
2215   Type *ShrTy = Shr->getType();
2216   // TODO: If we could guarantee that InstSimplify would handle all of the
2217   // constant-value-based preconditions in the folds below, then we could assert
2218   // those conditions rather than checking them. This is difficult because of
2219   // undef/poison (PR34838).
2220   if (IsAShr) {
2221     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2222       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2223       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2224       APInt ShiftedC = C.shl(ShAmtVal);
2225       if (ShiftedC.ashr(ShAmtVal) == C)
2226         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2227     }
2228     if (Pred == CmpInst::ICMP_SGT) {
2229       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2230       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2231       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2232           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2233         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2234     }
2235 
2236     // If the compare constant has significant bits above the lowest sign-bit,
2237     // then convert an unsigned cmp to a test of the sign-bit:
2238     // (ashr X, ShiftC) u> C --> X s< 0
2239     // (ashr X, ShiftC) u< C --> X s> -1
2240     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2241       if (Pred == CmpInst::ICMP_UGT) {
2242         return new ICmpInst(CmpInst::ICMP_SLT, X,
2243                             ConstantInt::getNullValue(ShrTy));
2244       }
2245       if (Pred == CmpInst::ICMP_ULT) {
2246         return new ICmpInst(CmpInst::ICMP_SGT, X,
2247                             ConstantInt::getAllOnesValue(ShrTy));
2248       }
2249     }
2250   } else {
2251     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2252       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2253       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2254       APInt ShiftedC = C.shl(ShAmtVal);
2255       if (ShiftedC.lshr(ShAmtVal) == C)
2256         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2257     }
2258     if (Pred == CmpInst::ICMP_UGT) {
2259       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2260       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2261       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2262         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263     }
2264   }
2265 
2266   if (!Cmp.isEquality())
2267     return nullptr;
2268 
2269   // Handle equality comparisons of shift-by-constant.
2270 
2271   // If the comparison constant changes with the shift, the comparison cannot
2272   // succeed (bits of the comparison constant cannot match the shifted value).
2273   // This should be known by InstSimplify and already be folded to true/false.
2274   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2275           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2276          "Expected icmp+shr simplify did not occur.");
2277 
2278   // If the bits shifted out are known zero, compare the unshifted value:
2279   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2280   if (Shr->isExact())
2281     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2282 
2283   if (Shr->hasOneUse()) {
2284     // Canonicalize the shift into an 'and':
2285     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2286     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2287     Constant *Mask = ConstantInt::get(ShrTy, Val);
2288     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2289     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2290   }
2291 
2292   return nullptr;
2293 }
2294 
2295 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2296                                                     BinaryOperator *SRem,
2297                                                     const APInt &C) {
2298   // Match an 'is positive' or 'is negative' comparison of remainder by a
2299   // constant power-of-2 value:
2300   // (X % pow2C) sgt/slt 0
2301   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2302   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2303     return nullptr;
2304 
2305   // TODO: The one-use check is standard because we do not typically want to
2306   //       create longer instruction sequences, but this might be a special-case
2307   //       because srem is not good for analysis or codegen.
2308   if (!SRem->hasOneUse())
2309     return nullptr;
2310 
2311   const APInt *DivisorC;
2312   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2313     return nullptr;
2314 
2315   // Mask off the sign bit and the modulo bits (low-bits).
2316   Type *Ty = SRem->getType();
2317   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2318   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2319   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2320 
2321   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2322   // bit is set. Example:
2323   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2324   if (Pred == ICmpInst::ICMP_SGT)
2325     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2326 
2327   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2328   // bit is set. Example:
2329   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2330   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2331 }
2332 
2333 /// Fold icmp (udiv X, Y), C.
2334 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2335                                                     BinaryOperator *UDiv,
2336                                                     const APInt &C) {
2337   const APInt *C2;
2338   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2339     return nullptr;
2340 
2341   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2342 
2343   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2344   Value *Y = UDiv->getOperand(1);
2345   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2346     assert(!C.isMaxValue() &&
2347            "icmp ugt X, UINT_MAX should have been simplified already.");
2348     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2349                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2350   }
2351 
2352   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2353   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2354     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2355     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2356                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2357   }
2358 
2359   return nullptr;
2360 }
2361 
2362 /// Fold icmp ({su}div X, Y), C.
2363 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2364                                                    BinaryOperator *Div,
2365                                                    const APInt &C) {
2366   // Fold: icmp pred ([us]div X, C2), C -> range test
2367   // Fold this div into the comparison, producing a range check.
2368   // Determine, based on the divide type, what the range is being
2369   // checked.  If there is an overflow on the low or high side, remember
2370   // it, otherwise compute the range [low, hi) bounding the new value.
2371   // See: InsertRangeTest above for the kinds of replacements possible.
2372   const APInt *C2;
2373   if (!match(Div->getOperand(1), m_APInt(C2)))
2374     return nullptr;
2375 
2376   // FIXME: If the operand types don't match the type of the divide
2377   // then don't attempt this transform. The code below doesn't have the
2378   // logic to deal with a signed divide and an unsigned compare (and
2379   // vice versa). This is because (x /s C2) <s C  produces different
2380   // results than (x /s C2) <u C or (x /u C2) <s C or even
2381   // (x /u C2) <u C.  Simply casting the operands and result won't
2382   // work. :(  The if statement below tests that condition and bails
2383   // if it finds it.
2384   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2385   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2386     return nullptr;
2387 
2388   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2389   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2390   // division-by-constant cases should be present, we can not assert that they
2391   // have happened before we reach this icmp instruction.
2392   if (C2->isNullValue() || C2->isOneValue() ||
2393       (DivIsSigned && C2->isAllOnesValue()))
2394     return nullptr;
2395 
2396   // Compute Prod = C * C2. We are essentially solving an equation of
2397   // form X / C2 = C. We solve for X by multiplying C2 and C.
2398   // By solving for X, we can turn this into a range check instead of computing
2399   // a divide.
2400   APInt Prod = C * *C2;
2401 
2402   // Determine if the product overflows by seeing if the product is not equal to
2403   // the divide. Make sure we do the same kind of divide as in the LHS
2404   // instruction that we're folding.
2405   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2406 
2407   ICmpInst::Predicate Pred = Cmp.getPredicate();
2408 
2409   // If the division is known to be exact, then there is no remainder from the
2410   // divide, so the covered range size is unit, otherwise it is the divisor.
2411   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2412 
2413   // Figure out the interval that is being checked.  For example, a comparison
2414   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2415   // Compute this interval based on the constants involved and the signedness of
2416   // the compare/divide.  This computes a half-open interval, keeping track of
2417   // whether either value in the interval overflows.  After analysis each
2418   // overflow variable is set to 0 if it's corresponding bound variable is valid
2419   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2420   int LoOverflow = 0, HiOverflow = 0;
2421   APInt LoBound, HiBound;
2422 
2423   if (!DivIsSigned) {  // udiv
2424     // e.g. X/5 op 3  --> [15, 20)
2425     LoBound = Prod;
2426     HiOverflow = LoOverflow = ProdOV;
2427     if (!HiOverflow) {
2428       // If this is not an exact divide, then many values in the range collapse
2429       // to the same result value.
2430       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2431     }
2432   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2433     if (C.isNullValue()) {       // (X / pos) op 0
2434       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2435       LoBound = -(RangeSize - 1);
2436       HiBound = RangeSize;
2437     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2438       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2439       HiOverflow = LoOverflow = ProdOV;
2440       if (!HiOverflow)
2441         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2442     } else {                       // (X / pos) op neg
2443       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2444       HiBound = Prod + 1;
2445       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2446       if (!LoOverflow) {
2447         APInt DivNeg = -RangeSize;
2448         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2449       }
2450     }
2451   } else if (C2->isNegative()) { // Divisor is < 0.
2452     if (Div->isExact())
2453       RangeSize.negate();
2454     if (C.isNullValue()) { // (X / neg) op 0
2455       // e.g. X/-5 op 0  --> [-4, 5)
2456       LoBound = RangeSize + 1;
2457       HiBound = -RangeSize;
2458       if (HiBound == *C2) {        // -INTMIN = INTMIN
2459         HiOverflow = 1;            // [INTMIN+1, overflow)
2460         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2461       }
2462     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2463       // e.g. X/-5 op 3  --> [-19, -14)
2464       HiBound = Prod + 1;
2465       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2466       if (!LoOverflow)
2467         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2468     } else {                       // (X / neg) op neg
2469       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2470       LoOverflow = HiOverflow = ProdOV;
2471       if (!HiOverflow)
2472         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2473     }
2474 
2475     // Dividing by a negative swaps the condition.  LT <-> GT
2476     Pred = ICmpInst::getSwappedPredicate(Pred);
2477   }
2478 
2479   Value *X = Div->getOperand(0);
2480   switch (Pred) {
2481     default: llvm_unreachable("Unhandled icmp opcode!");
2482     case ICmpInst::ICMP_EQ:
2483       if (LoOverflow && HiOverflow)
2484         return replaceInstUsesWith(Cmp, Builder.getFalse());
2485       if (HiOverflow)
2486         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2487                             ICmpInst::ICMP_UGE, X,
2488                             ConstantInt::get(Div->getType(), LoBound));
2489       if (LoOverflow)
2490         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2491                             ICmpInst::ICMP_ULT, X,
2492                             ConstantInt::get(Div->getType(), HiBound));
2493       return replaceInstUsesWith(
2494           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2495     case ICmpInst::ICMP_NE:
2496       if (LoOverflow && HiOverflow)
2497         return replaceInstUsesWith(Cmp, Builder.getTrue());
2498       if (HiOverflow)
2499         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2500                             ICmpInst::ICMP_ULT, X,
2501                             ConstantInt::get(Div->getType(), LoBound));
2502       if (LoOverflow)
2503         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2504                             ICmpInst::ICMP_UGE, X,
2505                             ConstantInt::get(Div->getType(), HiBound));
2506       return replaceInstUsesWith(Cmp,
2507                                  insertRangeTest(X, LoBound, HiBound,
2508                                                  DivIsSigned, false));
2509     case ICmpInst::ICMP_ULT:
2510     case ICmpInst::ICMP_SLT:
2511       if (LoOverflow == +1)   // Low bound is greater than input range.
2512         return replaceInstUsesWith(Cmp, Builder.getTrue());
2513       if (LoOverflow == -1)   // Low bound is less than input range.
2514         return replaceInstUsesWith(Cmp, Builder.getFalse());
2515       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2516     case ICmpInst::ICMP_UGT:
2517     case ICmpInst::ICMP_SGT:
2518       if (HiOverflow == +1)       // High bound greater than input range.
2519         return replaceInstUsesWith(Cmp, Builder.getFalse());
2520       if (HiOverflow == -1)       // High bound less than input range.
2521         return replaceInstUsesWith(Cmp, Builder.getTrue());
2522       if (Pred == ICmpInst::ICMP_UGT)
2523         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2524                             ConstantInt::get(Div->getType(), HiBound));
2525       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2526                           ConstantInt::get(Div->getType(), HiBound));
2527   }
2528 
2529   return nullptr;
2530 }
2531 
2532 /// Fold icmp (sub X, Y), C.
2533 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2534                                                    BinaryOperator *Sub,
2535                                                    const APInt &C) {
2536   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2537   ICmpInst::Predicate Pred = Cmp.getPredicate();
2538   const APInt *C2;
2539   APInt SubResult;
2540 
2541   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2542   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2543     return new ICmpInst(Cmp.getPredicate(), Y,
2544                         ConstantInt::get(Y->getType(), 0));
2545 
2546   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2547   if (match(X, m_APInt(C2)) &&
2548       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2549        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2550       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2551     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2552                         ConstantInt::get(Y->getType(), SubResult));
2553 
2554   // The following transforms are only worth it if the only user of the subtract
2555   // is the icmp.
2556   if (!Sub->hasOneUse())
2557     return nullptr;
2558 
2559   if (Sub->hasNoSignedWrap()) {
2560     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2561     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2562       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2563 
2564     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2565     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2566       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2567 
2568     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2569     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2570       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2571 
2572     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2573     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2574       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2575   }
2576 
2577   if (!match(X, m_APInt(C2)))
2578     return nullptr;
2579 
2580   // C2 - Y <u C -> (Y | (C - 1)) == C2
2581   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2582   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2583       (*C2 & (C - 1)) == (C - 1))
2584     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2585 
2586   // C2 - Y >u C -> (Y | C) != C2
2587   //   iff C2 & C == C and C + 1 is a power of 2
2588   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2589     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2590 
2591   return nullptr;
2592 }
2593 
2594 /// Fold icmp (add X, Y), C.
2595 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2596                                                    BinaryOperator *Add,
2597                                                    const APInt &C) {
2598   Value *Y = Add->getOperand(1);
2599   const APInt *C2;
2600   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2601     return nullptr;
2602 
2603   // Fold icmp pred (add X, C2), C.
2604   Value *X = Add->getOperand(0);
2605   Type *Ty = Add->getType();
2606   CmpInst::Predicate Pred = Cmp.getPredicate();
2607 
2608   // If the add does not wrap, we can always adjust the compare by subtracting
2609   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2610   // are canonicalized to SGT/SLT/UGT/ULT.
2611   if ((Add->hasNoSignedWrap() &&
2612        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2613       (Add->hasNoUnsignedWrap() &&
2614        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2615     bool Overflow;
2616     APInt NewC =
2617         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2618     // If there is overflow, the result must be true or false.
2619     // TODO: Can we assert there is no overflow because InstSimplify always
2620     // handles those cases?
2621     if (!Overflow)
2622       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2623       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2624   }
2625 
2626   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2627   const APInt &Upper = CR.getUpper();
2628   const APInt &Lower = CR.getLower();
2629   if (Cmp.isSigned()) {
2630     if (Lower.isSignMask())
2631       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2632     if (Upper.isSignMask())
2633       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2634   } else {
2635     if (Lower.isMinValue())
2636       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2637     if (Upper.isMinValue())
2638       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2639   }
2640 
2641   if (!Add->hasOneUse())
2642     return nullptr;
2643 
2644   // X+C <u C2 -> (X & -C2) == C
2645   //   iff C & (C2-1) == 0
2646   //       C2 is a power of 2
2647   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2648     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2649                         ConstantExpr::getNeg(cast<Constant>(Y)));
2650 
2651   // X+C >u C2 -> (X & ~C2) != C
2652   //   iff C & C2 == 0
2653   //       C2+1 is a power of 2
2654   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2655     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2656                         ConstantExpr::getNeg(cast<Constant>(Y)));
2657 
2658   return nullptr;
2659 }
2660 
2661 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2662                                                Value *&RHS, ConstantInt *&Less,
2663                                                ConstantInt *&Equal,
2664                                                ConstantInt *&Greater) {
2665   // TODO: Generalize this to work with other comparison idioms or ensure
2666   // they get canonicalized into this form.
2667 
2668   // select i1 (a == b),
2669   //        i32 Equal,
2670   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2671   // where Equal, Less and Greater are placeholders for any three constants.
2672   ICmpInst::Predicate PredA;
2673   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2674       !ICmpInst::isEquality(PredA))
2675     return false;
2676   Value *EqualVal = SI->getTrueValue();
2677   Value *UnequalVal = SI->getFalseValue();
2678   // We still can get non-canonical predicate here, so canonicalize.
2679   if (PredA == ICmpInst::ICMP_NE)
2680     std::swap(EqualVal, UnequalVal);
2681   if (!match(EqualVal, m_ConstantInt(Equal)))
2682     return false;
2683   ICmpInst::Predicate PredB;
2684   Value *LHS2, *RHS2;
2685   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2686                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2687     return false;
2688   // We can get predicate mismatch here, so canonicalize if possible:
2689   // First, ensure that 'LHS' match.
2690   if (LHS2 != LHS) {
2691     // x sgt y <--> y slt x
2692     std::swap(LHS2, RHS2);
2693     PredB = ICmpInst::getSwappedPredicate(PredB);
2694   }
2695   if (LHS2 != LHS)
2696     return false;
2697   // We also need to canonicalize 'RHS'.
2698   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2699     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2700     auto FlippedStrictness =
2701         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2702             PredB, cast<Constant>(RHS2));
2703     if (!FlippedStrictness)
2704       return false;
2705     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2706     RHS2 = FlippedStrictness->second;
2707     // And kind-of perform the result swap.
2708     std::swap(Less, Greater);
2709     PredB = ICmpInst::ICMP_SLT;
2710   }
2711   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2712 }
2713 
2714 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2715                                                       SelectInst *Select,
2716                                                       ConstantInt *C) {
2717 
2718   assert(C && "Cmp RHS should be a constant int!");
2719   // If we're testing a constant value against the result of a three way
2720   // comparison, the result can be expressed directly in terms of the
2721   // original values being compared.  Note: We could possibly be more
2722   // aggressive here and remove the hasOneUse test. The original select is
2723   // really likely to simplify or sink when we remove a test of the result.
2724   Value *OrigLHS, *OrigRHS;
2725   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2726   if (Cmp.hasOneUse() &&
2727       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2728                               C3GreaterThan)) {
2729     assert(C1LessThan && C2Equal && C3GreaterThan);
2730 
2731     bool TrueWhenLessThan =
2732         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2733             ->isAllOnesValue();
2734     bool TrueWhenEqual =
2735         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2736             ->isAllOnesValue();
2737     bool TrueWhenGreaterThan =
2738         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2739             ->isAllOnesValue();
2740 
2741     // This generates the new instruction that will replace the original Cmp
2742     // Instruction. Instead of enumerating the various combinations when
2743     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2744     // false, we rely on chaining of ORs and future passes of InstCombine to
2745     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2746 
2747     // When none of the three constants satisfy the predicate for the RHS (C),
2748     // the entire original Cmp can be simplified to a false.
2749     Value *Cond = Builder.getFalse();
2750     if (TrueWhenLessThan)
2751       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2752                                                        OrigLHS, OrigRHS));
2753     if (TrueWhenEqual)
2754       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2755                                                        OrigLHS, OrigRHS));
2756     if (TrueWhenGreaterThan)
2757       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2758                                                        OrigLHS, OrigRHS));
2759 
2760     return replaceInstUsesWith(Cmp, Cond);
2761   }
2762   return nullptr;
2763 }
2764 
2765 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2766                                     InstCombiner::BuilderTy &Builder) {
2767   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2768   if (!Bitcast)
2769     return nullptr;
2770 
2771   ICmpInst::Predicate Pred = Cmp.getPredicate();
2772   Value *Op1 = Cmp.getOperand(1);
2773   Value *BCSrcOp = Bitcast->getOperand(0);
2774 
2775   // Make sure the bitcast doesn't change the number of vector elements.
2776   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2777           Bitcast->getDestTy()->getScalarSizeInBits()) {
2778     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2779     Value *X;
2780     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2781       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2782       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2783       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2784       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2785       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2786            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2787           match(Op1, m_Zero()))
2788         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2789 
2790       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2791       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2792         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2793 
2794       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2795       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2796         return new ICmpInst(Pred, X,
2797                             ConstantInt::getAllOnesValue(X->getType()));
2798     }
2799 
2800     // Zero-equality checks are preserved through unsigned floating-point casts:
2801     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2802     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2803     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2804       if (Cmp.isEquality() && match(Op1, m_Zero()))
2805         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2806 
2807     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2808     // the FP extend/truncate because that cast does not change the sign-bit.
2809     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2810     // The sign-bit is always the most significant bit in those types.
2811     const APInt *C;
2812     bool TrueIfSigned;
2813     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2814         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2815       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2816           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2817         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2818         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2819         Type *XType = X->getType();
2820 
2821         // We can't currently handle Power style floating point operations here.
2822         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2823 
2824           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2825           if (auto *XVTy = dyn_cast<VectorType>(XType))
2826             NewType = VectorType::get(NewType, XVTy->getElementCount());
2827           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2828           if (TrueIfSigned)
2829             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2830                                 ConstantInt::getNullValue(NewType));
2831           else
2832             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2833                                 ConstantInt::getAllOnesValue(NewType));
2834         }
2835       }
2836     }
2837   }
2838 
2839   // Test to see if the operands of the icmp are casted versions of other
2840   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2841   if (Bitcast->getType()->isPointerTy() &&
2842       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2843     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2844     // so eliminate it as well.
2845     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2846       Op1 = BC2->getOperand(0);
2847 
2848     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2849     return new ICmpInst(Pred, BCSrcOp, Op1);
2850   }
2851 
2852   // Folding: icmp <pred> iN X, C
2853   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2854   //    and C is a splat of a K-bit pattern
2855   //    and SC is a constant vector = <C', C', C', ..., C'>
2856   // Into:
2857   //   %E = extractelement <M x iK> %vec, i32 C'
2858   //   icmp <pred> iK %E, trunc(C)
2859   const APInt *C;
2860   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2861       !Bitcast->getType()->isIntegerTy() ||
2862       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2863     return nullptr;
2864 
2865   Value *Vec;
2866   ArrayRef<int> Mask;
2867   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2868     // Check whether every element of Mask is the same constant
2869     if (is_splat(Mask)) {
2870       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2871       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2872       if (C->isSplat(EltTy->getBitWidth())) {
2873         // Fold the icmp based on the value of C
2874         // If C is M copies of an iK sized bit pattern,
2875         // then:
2876         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2877         //       icmp <pred> iK %SplatVal, <pattern>
2878         Value *Elem = Builder.getInt32(Mask[0]);
2879         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2880         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2881         return new ICmpInst(Pred, Extract, NewC);
2882       }
2883     }
2884   }
2885   return nullptr;
2886 }
2887 
2888 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2889 /// where X is some kind of instruction.
2890 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2891   const APInt *C;
2892   if (!match(Cmp.getOperand(1), m_APInt(C)))
2893     return nullptr;
2894 
2895   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2896     switch (BO->getOpcode()) {
2897     case Instruction::Xor:
2898       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2899         return I;
2900       break;
2901     case Instruction::And:
2902       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2903         return I;
2904       break;
2905     case Instruction::Or:
2906       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2907         return I;
2908       break;
2909     case Instruction::Mul:
2910       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2911         return I;
2912       break;
2913     case Instruction::Shl:
2914       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2915         return I;
2916       break;
2917     case Instruction::LShr:
2918     case Instruction::AShr:
2919       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2920         return I;
2921       break;
2922     case Instruction::SRem:
2923       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2924         return I;
2925       break;
2926     case Instruction::UDiv:
2927       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2928         return I;
2929       LLVM_FALLTHROUGH;
2930     case Instruction::SDiv:
2931       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2932         return I;
2933       break;
2934     case Instruction::Sub:
2935       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2936         return I;
2937       break;
2938     case Instruction::Add:
2939       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2940         return I;
2941       break;
2942     default:
2943       break;
2944     }
2945     // TODO: These folds could be refactored to be part of the above calls.
2946     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2947       return I;
2948   }
2949 
2950   // Match against CmpInst LHS being instructions other than binary operators.
2951 
2952   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2953     // For now, we only support constant integers while folding the
2954     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2955     // similar to the cases handled by binary ops above.
2956     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2957       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2958         return I;
2959   }
2960 
2961   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2962     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2963       return I;
2964   }
2965 
2966   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2967     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2968       return I;
2969 
2970   return nullptr;
2971 }
2972 
2973 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2974 /// icmp eq/ne BO, C.
2975 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2976     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2977   // TODO: Some of these folds could work with arbitrary constants, but this
2978   // function is limited to scalar and vector splat constants.
2979   if (!Cmp.isEquality())
2980     return nullptr;
2981 
2982   ICmpInst::Predicate Pred = Cmp.getPredicate();
2983   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2984   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2985   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2986 
2987   switch (BO->getOpcode()) {
2988   case Instruction::SRem:
2989     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2990     if (C.isNullValue() && BO->hasOneUse()) {
2991       const APInt *BOC;
2992       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2993         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2994         return new ICmpInst(Pred, NewRem,
2995                             Constant::getNullValue(BO->getType()));
2996       }
2997     }
2998     break;
2999   case Instruction::Add: {
3000     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3001     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3002       if (BO->hasOneUse())
3003         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3004     } else if (C.isNullValue()) {
3005       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3006       // efficiently invertible, or if the add has just this one use.
3007       if (Value *NegVal = dyn_castNegVal(BOp1))
3008         return new ICmpInst(Pred, BOp0, NegVal);
3009       if (Value *NegVal = dyn_castNegVal(BOp0))
3010         return new ICmpInst(Pred, NegVal, BOp1);
3011       if (BO->hasOneUse()) {
3012         Value *Neg = Builder.CreateNeg(BOp1);
3013         Neg->takeName(BO);
3014         return new ICmpInst(Pred, BOp0, Neg);
3015       }
3016     }
3017     break;
3018   }
3019   case Instruction::Xor:
3020     if (BO->hasOneUse()) {
3021       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3022         // For the xor case, we can xor two constants together, eliminating
3023         // the explicit xor.
3024         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3025       } else if (C.isNullValue()) {
3026         // Replace ((xor A, B) != 0) with (A != B)
3027         return new ICmpInst(Pred, BOp0, BOp1);
3028       }
3029     }
3030     break;
3031   case Instruction::Sub:
3032     if (BO->hasOneUse()) {
3033       // Only check for constant LHS here, as constant RHS will be canonicalized
3034       // to add and use the fold above.
3035       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3036         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3037         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3038       } else if (C.isNullValue()) {
3039         // Replace ((sub A, B) != 0) with (A != B).
3040         return new ICmpInst(Pred, BOp0, BOp1);
3041       }
3042     }
3043     break;
3044   case Instruction::Or: {
3045     const APInt *BOC;
3046     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3047       // Comparing if all bits outside of a constant mask are set?
3048       // Replace (X | C) == -1 with (X & ~C) == ~C.
3049       // This removes the -1 constant.
3050       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3051       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3052       return new ICmpInst(Pred, And, NotBOC);
3053     }
3054     break;
3055   }
3056   case Instruction::And: {
3057     const APInt *BOC;
3058     if (match(BOp1, m_APInt(BOC))) {
3059       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3060       if (C == *BOC && C.isPowerOf2())
3061         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3062                             BO, Constant::getNullValue(RHS->getType()));
3063     }
3064     break;
3065   }
3066   case Instruction::UDiv:
3067     if (C.isNullValue()) {
3068       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3069       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3070       return new ICmpInst(NewPred, BOp1, BOp0);
3071     }
3072     break;
3073   default:
3074     break;
3075   }
3076   return nullptr;
3077 }
3078 
3079 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3080 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3081     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3082   Type *Ty = II->getType();
3083   unsigned BitWidth = C.getBitWidth();
3084   switch (II->getIntrinsicID()) {
3085   case Intrinsic::abs:
3086     // abs(A) == 0  ->  A == 0
3087     // abs(A) == INT_MIN  ->  A == INT_MIN
3088     if (C.isNullValue() || C.isMinSignedValue())
3089       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3090                           ConstantInt::get(Ty, C));
3091     break;
3092 
3093   case Intrinsic::bswap:
3094     // bswap(A) == C  ->  A == bswap(C)
3095     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3096                         ConstantInt::get(Ty, C.byteSwap()));
3097 
3098   case Intrinsic::ctlz:
3099   case Intrinsic::cttz: {
3100     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3101     if (C == BitWidth)
3102       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3103                           ConstantInt::getNullValue(Ty));
3104 
3105     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3106     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3107     // Limit to one use to ensure we don't increase instruction count.
3108     unsigned Num = C.getLimitedValue(BitWidth);
3109     if (Num != BitWidth && II->hasOneUse()) {
3110       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3111       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3112                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3113       APInt Mask2 = IsTrailing
3114         ? APInt::getOneBitSet(BitWidth, Num)
3115         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3116       return new ICmpInst(Cmp.getPredicate(),
3117           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3118           ConstantInt::get(Ty, Mask2));
3119     }
3120     break;
3121   }
3122 
3123   case Intrinsic::ctpop: {
3124     // popcount(A) == 0  ->  A == 0 and likewise for !=
3125     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3126     bool IsZero = C.isNullValue();
3127     if (IsZero || C == BitWidth)
3128       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3129           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3130 
3131     break;
3132   }
3133 
3134   case Intrinsic::uadd_sat: {
3135     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3136     if (C.isNullValue()) {
3137       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3138       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3139     }
3140     break;
3141   }
3142 
3143   case Intrinsic::usub_sat: {
3144     // usub.sat(a, b) == 0  ->  a <= b
3145     if (C.isNullValue()) {
3146       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3147           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3148       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3149     }
3150     break;
3151   }
3152   default:
3153     break;
3154   }
3155 
3156   return nullptr;
3157 }
3158 
3159 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3160 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3161                                                              IntrinsicInst *II,
3162                                                              const APInt &C) {
3163   if (Cmp.isEquality())
3164     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3165 
3166   Type *Ty = II->getType();
3167   unsigned BitWidth = C.getBitWidth();
3168   ICmpInst::Predicate Pred = Cmp.getPredicate();
3169   switch (II->getIntrinsicID()) {
3170   case Intrinsic::ctpop: {
3171     // (ctpop X > BitWidth - 1) --> X == -1
3172     Value *X = II->getArgOperand(0);
3173     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3174       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3175                              ConstantInt::getAllOnesValue(Ty));
3176     // (ctpop X < BitWidth) --> X != -1
3177     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3178       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3179                              ConstantInt::getAllOnesValue(Ty));
3180     break;
3181   }
3182   case Intrinsic::ctlz: {
3183     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3184     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3185       unsigned Num = C.getLimitedValue();
3186       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3187       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3188                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3189     }
3190 
3191     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3192     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3193       unsigned Num = C.getLimitedValue();
3194       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3195       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3196                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3197     }
3198     break;
3199   }
3200   case Intrinsic::cttz: {
3201     // Limit to one use to ensure we don't increase instruction count.
3202     if (!II->hasOneUse())
3203       return nullptr;
3204 
3205     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3206     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3207       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3208       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3209                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3210                              ConstantInt::getNullValue(Ty));
3211     }
3212 
3213     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3214     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3215       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3216       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3217                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3218                              ConstantInt::getNullValue(Ty));
3219     }
3220     break;
3221   }
3222   default:
3223     break;
3224   }
3225 
3226   return nullptr;
3227 }
3228 
3229 /// Handle icmp with constant (but not simple integer constant) RHS.
3230 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3231   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3232   Constant *RHSC = dyn_cast<Constant>(Op1);
3233   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3234   if (!RHSC || !LHSI)
3235     return nullptr;
3236 
3237   switch (LHSI->getOpcode()) {
3238   case Instruction::GetElementPtr:
3239     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3240     if (RHSC->isNullValue() &&
3241         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3242       return new ICmpInst(
3243           I.getPredicate(), LHSI->getOperand(0),
3244           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3245     break;
3246   case Instruction::PHI:
3247     // Only fold icmp into the PHI if the phi and icmp are in the same
3248     // block.  If in the same block, we're encouraging jump threading.  If
3249     // not, we are just pessimizing the code by making an i1 phi.
3250     if (LHSI->getParent() == I.getParent())
3251       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3252         return NV;
3253     break;
3254   case Instruction::Select: {
3255     // If either operand of the select is a constant, we can fold the
3256     // comparison into the select arms, which will cause one to be
3257     // constant folded and the select turned into a bitwise or.
3258     Value *Op1 = nullptr, *Op2 = nullptr;
3259     ConstantInt *CI = nullptr;
3260     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3261       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3262       CI = dyn_cast<ConstantInt>(Op1);
3263     }
3264     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3265       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3266       CI = dyn_cast<ConstantInt>(Op2);
3267     }
3268 
3269     // We only want to perform this transformation if it will not lead to
3270     // additional code. This is true if either both sides of the select
3271     // fold to a constant (in which case the icmp is replaced with a select
3272     // which will usually simplify) or this is the only user of the
3273     // select (in which case we are trading a select+icmp for a simpler
3274     // select+icmp) or all uses of the select can be replaced based on
3275     // dominance information ("Global cases").
3276     bool Transform = false;
3277     if (Op1 && Op2)
3278       Transform = true;
3279     else if (Op1 || Op2) {
3280       // Local case
3281       if (LHSI->hasOneUse())
3282         Transform = true;
3283       // Global cases
3284       else if (CI && !CI->isZero())
3285         // When Op1 is constant try replacing select with second operand.
3286         // Otherwise Op2 is constant and try replacing select with first
3287         // operand.
3288         Transform =
3289             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3290     }
3291     if (Transform) {
3292       if (!Op1)
3293         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3294                                  I.getName());
3295       if (!Op2)
3296         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3297                                  I.getName());
3298       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3299     }
3300     break;
3301   }
3302   case Instruction::IntToPtr:
3303     // icmp pred inttoptr(X), null -> icmp pred X, 0
3304     if (RHSC->isNullValue() &&
3305         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3306       return new ICmpInst(
3307           I.getPredicate(), LHSI->getOperand(0),
3308           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3309     break;
3310 
3311   case Instruction::Load:
3312     // Try to optimize things like "A[i] > 4" to index computations.
3313     if (GetElementPtrInst *GEP =
3314             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3315       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3316         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3317             !cast<LoadInst>(LHSI)->isVolatile())
3318           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3319             return Res;
3320     }
3321     break;
3322   }
3323 
3324   return nullptr;
3325 }
3326 
3327 /// Some comparisons can be simplified.
3328 /// In this case, we are looking for comparisons that look like
3329 /// a check for a lossy truncation.
3330 /// Folds:
3331 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3332 /// Where Mask is some pattern that produces all-ones in low bits:
3333 ///    (-1 >> y)
3334 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3335 ///   ~(-1 << y)
3336 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3337 /// The Mask can be a constant, too.
3338 /// For some predicates, the operands are commutative.
3339 /// For others, x can only be on a specific side.
3340 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3341                                           InstCombiner::BuilderTy &Builder) {
3342   ICmpInst::Predicate SrcPred;
3343   Value *X, *M, *Y;
3344   auto m_VariableMask = m_CombineOr(
3345       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3346                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3347       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3348                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3349   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3350   if (!match(&I, m_c_ICmp(SrcPred,
3351                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3352                           m_Deferred(X))))
3353     return nullptr;
3354 
3355   ICmpInst::Predicate DstPred;
3356   switch (SrcPred) {
3357   case ICmpInst::Predicate::ICMP_EQ:
3358     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3359     DstPred = ICmpInst::Predicate::ICMP_ULE;
3360     break;
3361   case ICmpInst::Predicate::ICMP_NE:
3362     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3363     DstPred = ICmpInst::Predicate::ICMP_UGT;
3364     break;
3365   case ICmpInst::Predicate::ICMP_ULT:
3366     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3367     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3368     DstPred = ICmpInst::Predicate::ICMP_UGT;
3369     break;
3370   case ICmpInst::Predicate::ICMP_UGE:
3371     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3372     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3373     DstPred = ICmpInst::Predicate::ICMP_ULE;
3374     break;
3375   case ICmpInst::Predicate::ICMP_SLT:
3376     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3377     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3378     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3379       return nullptr;
3380     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3381       return nullptr;
3382     DstPred = ICmpInst::Predicate::ICMP_SGT;
3383     break;
3384   case ICmpInst::Predicate::ICMP_SGE:
3385     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3386     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3387     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3388       return nullptr;
3389     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3390       return nullptr;
3391     DstPred = ICmpInst::Predicate::ICMP_SLE;
3392     break;
3393   case ICmpInst::Predicate::ICMP_SGT:
3394   case ICmpInst::Predicate::ICMP_SLE:
3395     return nullptr;
3396   case ICmpInst::Predicate::ICMP_UGT:
3397   case ICmpInst::Predicate::ICMP_ULE:
3398     llvm_unreachable("Instsimplify took care of commut. variant");
3399     break;
3400   default:
3401     llvm_unreachable("All possible folds are handled.");
3402   }
3403 
3404   // The mask value may be a vector constant that has undefined elements. But it
3405   // may not be safe to propagate those undefs into the new compare, so replace
3406   // those elements by copying an existing, defined, and safe scalar constant.
3407   Type *OpTy = M->getType();
3408   auto *VecC = dyn_cast<Constant>(M);
3409   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3410   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3411     Constant *SafeReplacementConstant = nullptr;
3412     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3413       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3414         SafeReplacementConstant = VecC->getAggregateElement(i);
3415         break;
3416       }
3417     }
3418     assert(SafeReplacementConstant && "Failed to find undef replacement");
3419     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3420   }
3421 
3422   return Builder.CreateICmp(DstPred, X, M);
3423 }
3424 
3425 /// Some comparisons can be simplified.
3426 /// In this case, we are looking for comparisons that look like
3427 /// a check for a lossy signed truncation.
3428 /// Folds:   (MaskedBits is a constant.)
3429 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3430 /// Into:
3431 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3432 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3433 static Value *
3434 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3435                                  InstCombiner::BuilderTy &Builder) {
3436   ICmpInst::Predicate SrcPred;
3437   Value *X;
3438   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3439   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3440   if (!match(&I, m_c_ICmp(SrcPred,
3441                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3442                                           m_APInt(C1))),
3443                           m_Deferred(X))))
3444     return nullptr;
3445 
3446   // Potential handling of non-splats: for each element:
3447   //  * if both are undef, replace with constant 0.
3448   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3449   //  * if both are not undef, and are different, bailout.
3450   //  * else, only one is undef, then pick the non-undef one.
3451 
3452   // The shift amount must be equal.
3453   if (*C0 != *C1)
3454     return nullptr;
3455   const APInt &MaskedBits = *C0;
3456   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3457 
3458   ICmpInst::Predicate DstPred;
3459   switch (SrcPred) {
3460   case ICmpInst::Predicate::ICMP_EQ:
3461     // ((%x << MaskedBits) a>> MaskedBits) == %x
3462     //   =>
3463     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3464     DstPred = ICmpInst::Predicate::ICMP_ULT;
3465     break;
3466   case ICmpInst::Predicate::ICMP_NE:
3467     // ((%x << MaskedBits) a>> MaskedBits) != %x
3468     //   =>
3469     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3470     DstPred = ICmpInst::Predicate::ICMP_UGE;
3471     break;
3472   // FIXME: are more folds possible?
3473   default:
3474     return nullptr;
3475   }
3476 
3477   auto *XType = X->getType();
3478   const unsigned XBitWidth = XType->getScalarSizeInBits();
3479   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3480   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3481 
3482   // KeptBits = bitwidth(%x) - MaskedBits
3483   const APInt KeptBits = BitWidth - MaskedBits;
3484   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3485   // ICmpCst = (1 << KeptBits)
3486   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3487   assert(ICmpCst.isPowerOf2());
3488   // AddCst = (1 << (KeptBits-1))
3489   const APInt AddCst = ICmpCst.lshr(1);
3490   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3491 
3492   // T0 = add %x, AddCst
3493   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3494   // T1 = T0 DstPred ICmpCst
3495   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3496 
3497   return T1;
3498 }
3499 
3500 // Given pattern:
3501 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3502 // we should move shifts to the same hand of 'and', i.e. rewrite as
3503 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3504 // We are only interested in opposite logical shifts here.
3505 // One of the shifts can be truncated.
3506 // If we can, we want to end up creating 'lshr' shift.
3507 static Value *
3508 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3509                                            InstCombiner::BuilderTy &Builder) {
3510   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3511       !I.getOperand(0)->hasOneUse())
3512     return nullptr;
3513 
3514   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3515 
3516   // Look for an 'and' of two logical shifts, one of which may be truncated.
3517   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3518   Instruction *XShift, *MaybeTruncation, *YShift;
3519   if (!match(
3520           I.getOperand(0),
3521           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3522                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3523                                    m_AnyLogicalShift, m_Instruction(YShift))),
3524                                m_Instruction(MaybeTruncation)))))
3525     return nullptr;
3526 
3527   // We potentially looked past 'trunc', but only when matching YShift,
3528   // therefore YShift must have the widest type.
3529   Instruction *WidestShift = YShift;
3530   // Therefore XShift must have the shallowest type.
3531   // Or they both have identical types if there was no truncation.
3532   Instruction *NarrowestShift = XShift;
3533 
3534   Type *WidestTy = WidestShift->getType();
3535   Type *NarrowestTy = NarrowestShift->getType();
3536   assert(NarrowestTy == I.getOperand(0)->getType() &&
3537          "We did not look past any shifts while matching XShift though.");
3538   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3539 
3540   // If YShift is a 'lshr', swap the shifts around.
3541   if (match(YShift, m_LShr(m_Value(), m_Value())))
3542     std::swap(XShift, YShift);
3543 
3544   // The shifts must be in opposite directions.
3545   auto XShiftOpcode = XShift->getOpcode();
3546   if (XShiftOpcode == YShift->getOpcode())
3547     return nullptr; // Do not care about same-direction shifts here.
3548 
3549   Value *X, *XShAmt, *Y, *YShAmt;
3550   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3551   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3552 
3553   // If one of the values being shifted is a constant, then we will end with
3554   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3555   // however, we will need to ensure that we won't increase instruction count.
3556   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3557     // At least one of the hands of the 'and' should be one-use shift.
3558     if (!match(I.getOperand(0),
3559                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3560       return nullptr;
3561     if (HadTrunc) {
3562       // Due to the 'trunc', we will need to widen X. For that either the old
3563       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3564       if (!MaybeTruncation->hasOneUse() &&
3565           !NarrowestShift->getOperand(1)->hasOneUse())
3566         return nullptr;
3567     }
3568   }
3569 
3570   // We have two shift amounts from two different shifts. The types of those
3571   // shift amounts may not match. If that's the case let's bailout now.
3572   if (XShAmt->getType() != YShAmt->getType())
3573     return nullptr;
3574 
3575   // As input, we have the following pattern:
3576   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3577   // We want to rewrite that as:
3578   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3579   // While we know that originally (Q+K) would not overflow
3580   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3581   // shift amounts. so it may now overflow in smaller bitwidth.
3582   // To ensure that does not happen, we need to ensure that the total maximal
3583   // shift amount is still representable in that smaller bit width.
3584   unsigned MaximalPossibleTotalShiftAmount =
3585       (WidestTy->getScalarSizeInBits() - 1) +
3586       (NarrowestTy->getScalarSizeInBits() - 1);
3587   APInt MaximalRepresentableShiftAmount =
3588       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3589   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3590     return nullptr;
3591 
3592   // Can we fold (XShAmt+YShAmt) ?
3593   auto *NewShAmt = dyn_cast_or_null<Constant>(
3594       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3595                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3596   if (!NewShAmt)
3597     return nullptr;
3598   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3599   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3600 
3601   // Is the new shift amount smaller than the bit width?
3602   // FIXME: could also rely on ConstantRange.
3603   if (!match(NewShAmt,
3604              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3605                                 APInt(WidestBitWidth, WidestBitWidth))))
3606     return nullptr;
3607 
3608   // An extra legality check is needed if we had trunc-of-lshr.
3609   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3610     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3611                     WidestShift]() {
3612       // It isn't obvious whether it's worth it to analyze non-constants here.
3613       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3614       // If *any* of these preconditions matches we can perform the fold.
3615       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3616                                     ? NewShAmt->getSplatValue()
3617                                     : NewShAmt;
3618       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3619       if (NewShAmtSplat &&
3620           (NewShAmtSplat->isNullValue() ||
3621            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3622         return true;
3623       // We consider *min* leading zeros so a single outlier
3624       // blocks the transform as opposed to allowing it.
3625       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3626         KnownBits Known = computeKnownBits(C, SQ.DL);
3627         unsigned MinLeadZero = Known.countMinLeadingZeros();
3628         // If the value being shifted has at most lowest bit set we can fold.
3629         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3630         if (MaxActiveBits <= 1)
3631           return true;
3632         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3633         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3634           return true;
3635       }
3636       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3637         KnownBits Known = computeKnownBits(C, SQ.DL);
3638         unsigned MinLeadZero = Known.countMinLeadingZeros();
3639         // If the value being shifted has at most lowest bit set we can fold.
3640         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3641         if (MaxActiveBits <= 1)
3642           return true;
3643         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3644         if (NewShAmtSplat) {
3645           APInt AdjNewShAmt =
3646               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3647           if (AdjNewShAmt.ule(MinLeadZero))
3648             return true;
3649         }
3650       }
3651       return false; // Can't tell if it's ok.
3652     };
3653     if (!CanFold())
3654       return nullptr;
3655   }
3656 
3657   // All good, we can do this fold.
3658   X = Builder.CreateZExt(X, WidestTy);
3659   Y = Builder.CreateZExt(Y, WidestTy);
3660   // The shift is the same that was for X.
3661   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3662                   ? Builder.CreateLShr(X, NewShAmt)
3663                   : Builder.CreateShl(X, NewShAmt);
3664   Value *T1 = Builder.CreateAnd(T0, Y);
3665   return Builder.CreateICmp(I.getPredicate(), T1,
3666                             Constant::getNullValue(WidestTy));
3667 }
3668 
3669 /// Fold
3670 ///   (-1 u/ x) u< y
3671 ///   ((x * y) u/ x) != y
3672 /// to
3673 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3674 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3675 /// will mean that we are looking for the opposite answer.
3676 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3677   ICmpInst::Predicate Pred;
3678   Value *X, *Y;
3679   Instruction *Mul;
3680   bool NeedNegation;
3681   // Look for: (-1 u/ x) u</u>= y
3682   if (!I.isEquality() &&
3683       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3684                          m_Value(Y)))) {
3685     Mul = nullptr;
3686 
3687     // Are we checking that overflow does not happen, or does happen?
3688     switch (Pred) {
3689     case ICmpInst::Predicate::ICMP_ULT:
3690       NeedNegation = false;
3691       break; // OK
3692     case ICmpInst::Predicate::ICMP_UGE:
3693       NeedNegation = true;
3694       break; // OK
3695     default:
3696       return nullptr; // Wrong predicate.
3697     }
3698   } else // Look for: ((x * y) u/ x) !=/== y
3699       if (I.isEquality() &&
3700           match(&I, m_c_ICmp(Pred, m_Value(Y),
3701                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3702                                                                   m_Value(X)),
3703                                                           m_Instruction(Mul)),
3704                                              m_Deferred(X)))))) {
3705     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3706   } else
3707     return nullptr;
3708 
3709   BuilderTy::InsertPointGuard Guard(Builder);
3710   // If the pattern included (x * y), we'll want to insert new instructions
3711   // right before that original multiplication so that we can replace it.
3712   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3713   if (MulHadOtherUses)
3714     Builder.SetInsertPoint(Mul);
3715 
3716   Function *F = Intrinsic::getDeclaration(
3717       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3718   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3719 
3720   // If the multiplication was used elsewhere, to ensure that we don't leave
3721   // "duplicate" instructions, replace uses of that original multiplication
3722   // with the multiplication result from the with.overflow intrinsic.
3723   if (MulHadOtherUses)
3724     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3725 
3726   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3727   if (NeedNegation) // This technically increases instruction count.
3728     Res = Builder.CreateNot(Res, "umul.not.ov");
3729 
3730   // If we replaced the mul, erase it. Do this after all uses of Builder,
3731   // as the mul is used as insertion point.
3732   if (MulHadOtherUses)
3733     eraseInstFromFunction(*Mul);
3734 
3735   return Res;
3736 }
3737 
3738 static Instruction *foldICmpXNegX(ICmpInst &I) {
3739   CmpInst::Predicate Pred;
3740   Value *X;
3741   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3742     return nullptr;
3743 
3744   if (ICmpInst::isSigned(Pred))
3745     Pred = ICmpInst::getSwappedPredicate(Pred);
3746   else if (ICmpInst::isUnsigned(Pred))
3747     Pred = ICmpInst::getSignedPredicate(Pred);
3748   // else for equality-comparisons just keep the predicate.
3749 
3750   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3751                           Constant::getNullValue(X->getType()), I.getName());
3752 }
3753 
3754 /// Try to fold icmp (binop), X or icmp X, (binop).
3755 /// TODO: A large part of this logic is duplicated in InstSimplify's
3756 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3757 /// duplication.
3758 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3759                                              const SimplifyQuery &SQ) {
3760   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3761   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3762 
3763   // Special logic for binary operators.
3764   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3765   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3766   if (!BO0 && !BO1)
3767     return nullptr;
3768 
3769   if (Instruction *NewICmp = foldICmpXNegX(I))
3770     return NewICmp;
3771 
3772   const CmpInst::Predicate Pred = I.getPredicate();
3773   Value *X;
3774 
3775   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3776   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3777   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3778       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3779     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3780   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3781   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3782       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3783     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3784 
3785   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3786   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3787     NoOp0WrapProblem =
3788         ICmpInst::isEquality(Pred) ||
3789         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3790         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3791   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3792     NoOp1WrapProblem =
3793         ICmpInst::isEquality(Pred) ||
3794         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3795         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3796 
3797   // Analyze the case when either Op0 or Op1 is an add instruction.
3798   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3799   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3800   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3801     A = BO0->getOperand(0);
3802     B = BO0->getOperand(1);
3803   }
3804   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3805     C = BO1->getOperand(0);
3806     D = BO1->getOperand(1);
3807   }
3808 
3809   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3810   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3811   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3812     return new ICmpInst(Pred, A == Op1 ? B : A,
3813                         Constant::getNullValue(Op1->getType()));
3814 
3815   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3816   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3817   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3818     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3819                         C == Op0 ? D : C);
3820 
3821   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3822   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3823       NoOp1WrapProblem) {
3824     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3825     Value *Y, *Z;
3826     if (A == C) {
3827       // C + B == C + D  ->  B == D
3828       Y = B;
3829       Z = D;
3830     } else if (A == D) {
3831       // D + B == C + D  ->  B == C
3832       Y = B;
3833       Z = C;
3834     } else if (B == C) {
3835       // A + C == C + D  ->  A == D
3836       Y = A;
3837       Z = D;
3838     } else {
3839       assert(B == D);
3840       // A + D == C + D  ->  A == C
3841       Y = A;
3842       Z = C;
3843     }
3844     return new ICmpInst(Pred, Y, Z);
3845   }
3846 
3847   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3848   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3849       match(B, m_AllOnes()))
3850     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3851 
3852   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3853   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3854       match(B, m_AllOnes()))
3855     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3856 
3857   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3858   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3859     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3860 
3861   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3862   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3863     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3864 
3865   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3866   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3867       match(D, m_AllOnes()))
3868     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3869 
3870   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3871   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3872       match(D, m_AllOnes()))
3873     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3874 
3875   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3876   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3877     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3878 
3879   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3880   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3881     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3882 
3883   // TODO: The subtraction-related identities shown below also hold, but
3884   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3885   // wouldn't happen even if they were implemented.
3886   //
3887   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3888   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3889   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3890   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3891 
3892   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3893   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3894     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3895 
3896   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3897   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3898     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3899 
3900   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3901   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3902     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3903 
3904   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3905   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3906     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3907 
3908   // if C1 has greater magnitude than C2:
3909   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3910   //  s.t. C3 = C1 - C2
3911   //
3912   // if C2 has greater magnitude than C1:
3913   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3914   //  s.t. C3 = C2 - C1
3915   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3916       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3917     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3918       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3919         const APInt &AP1 = C1->getValue();
3920         const APInt &AP2 = C2->getValue();
3921         if (AP1.isNegative() == AP2.isNegative()) {
3922           APInt AP1Abs = C1->getValue().abs();
3923           APInt AP2Abs = C2->getValue().abs();
3924           if (AP1Abs.uge(AP2Abs)) {
3925             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3926             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
3927             bool HasNSW = BO0->hasNoSignedWrap();
3928             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
3929             return new ICmpInst(Pred, NewAdd, C);
3930           } else {
3931             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3932             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
3933             bool HasNSW = BO1->hasNoSignedWrap();
3934             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
3935             return new ICmpInst(Pred, A, NewAdd);
3936           }
3937         }
3938       }
3939 
3940   // Analyze the case when either Op0 or Op1 is a sub instruction.
3941   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3942   A = nullptr;
3943   B = nullptr;
3944   C = nullptr;
3945   D = nullptr;
3946   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3947     A = BO0->getOperand(0);
3948     B = BO0->getOperand(1);
3949   }
3950   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3951     C = BO1->getOperand(0);
3952     D = BO1->getOperand(1);
3953   }
3954 
3955   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3956   if (A == Op1 && NoOp0WrapProblem)
3957     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3958   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3959   if (C == Op0 && NoOp1WrapProblem)
3960     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3961 
3962   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3963   // (A - B) u>/u<= A --> B u>/u<= A
3964   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3965     return new ICmpInst(Pred, B, A);
3966   // C u</u>= (C - D) --> C u</u>= D
3967   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3968     return new ICmpInst(Pred, C, D);
3969   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3970   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3971       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3972     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3973   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3974   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3975       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3976     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3977 
3978   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3979   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3980     return new ICmpInst(Pred, A, C);
3981 
3982   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3983   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3984     return new ICmpInst(Pred, D, B);
3985 
3986   // icmp (0-X) < cst --> x > -cst
3987   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3988     Value *X;
3989     if (match(BO0, m_Neg(m_Value(X))))
3990       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3991         if (RHSC->isNotMinSignedValue())
3992           return new ICmpInst(I.getSwappedPredicate(), X,
3993                               ConstantExpr::getNeg(RHSC));
3994   }
3995 
3996   {
3997     // Try to remove shared constant multiplier from equality comparison:
3998     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
3999     Value *X, *Y;
4000     const APInt *C;
4001     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4002         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4003       if (!C->countTrailingZeros() ||
4004           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4005           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4006       return new ICmpInst(Pred, X, Y);
4007   }
4008 
4009   BinaryOperator *SRem = nullptr;
4010   // icmp (srem X, Y), Y
4011   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4012     SRem = BO0;
4013   // icmp Y, (srem X, Y)
4014   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4015            Op0 == BO1->getOperand(1))
4016     SRem = BO1;
4017   if (SRem) {
4018     // We don't check hasOneUse to avoid increasing register pressure because
4019     // the value we use is the same value this instruction was already using.
4020     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4021     default:
4022       break;
4023     case ICmpInst::ICMP_EQ:
4024       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4025     case ICmpInst::ICMP_NE:
4026       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4027     case ICmpInst::ICMP_SGT:
4028     case ICmpInst::ICMP_SGE:
4029       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4030                           Constant::getAllOnesValue(SRem->getType()));
4031     case ICmpInst::ICMP_SLT:
4032     case ICmpInst::ICMP_SLE:
4033       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4034                           Constant::getNullValue(SRem->getType()));
4035     }
4036   }
4037 
4038   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4039       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4040     switch (BO0->getOpcode()) {
4041     default:
4042       break;
4043     case Instruction::Add:
4044     case Instruction::Sub:
4045     case Instruction::Xor: {
4046       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4047         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4048 
4049       const APInt *C;
4050       if (match(BO0->getOperand(1), m_APInt(C))) {
4051         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4052         if (C->isSignMask()) {
4053           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4054           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4055         }
4056 
4057         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4058         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4059           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4060           NewPred = I.getSwappedPredicate(NewPred);
4061           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4062         }
4063       }
4064       break;
4065     }
4066     case Instruction::Mul: {
4067       if (!I.isEquality())
4068         break;
4069 
4070       const APInt *C;
4071       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4072           !C->isOneValue()) {
4073         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4074         // Mask = -1 >> count-trailing-zeros(C).
4075         if (unsigned TZs = C->countTrailingZeros()) {
4076           Constant *Mask = ConstantInt::get(
4077               BO0->getType(),
4078               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4079           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4080           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4081           return new ICmpInst(Pred, And1, And2);
4082         }
4083       }
4084       break;
4085     }
4086     case Instruction::UDiv:
4087     case Instruction::LShr:
4088       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4089         break;
4090       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4091 
4092     case Instruction::SDiv:
4093       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4094         break;
4095       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4096 
4097     case Instruction::AShr:
4098       if (!BO0->isExact() || !BO1->isExact())
4099         break;
4100       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4101 
4102     case Instruction::Shl: {
4103       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4104       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4105       if (!NUW && !NSW)
4106         break;
4107       if (!NSW && I.isSigned())
4108         break;
4109       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4110     }
4111     }
4112   }
4113 
4114   if (BO0) {
4115     // Transform  A & (L - 1) `ult` L --> L != 0
4116     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4117     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4118 
4119     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4120       auto *Zero = Constant::getNullValue(BO0->getType());
4121       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4122     }
4123   }
4124 
4125   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4126     return replaceInstUsesWith(I, V);
4127 
4128   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4129     return replaceInstUsesWith(I, V);
4130 
4131   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4132     return replaceInstUsesWith(I, V);
4133 
4134   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4135     return replaceInstUsesWith(I, V);
4136 
4137   return nullptr;
4138 }
4139 
4140 /// Fold icmp Pred min|max(X, Y), X.
4141 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4142   ICmpInst::Predicate Pred = Cmp.getPredicate();
4143   Value *Op0 = Cmp.getOperand(0);
4144   Value *X = Cmp.getOperand(1);
4145 
4146   // Canonicalize minimum or maximum operand to LHS of the icmp.
4147   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4148       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4149       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4150       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4151     std::swap(Op0, X);
4152     Pred = Cmp.getSwappedPredicate();
4153   }
4154 
4155   Value *Y;
4156   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4157     // smin(X, Y)  == X --> X s<= Y
4158     // smin(X, Y) s>= X --> X s<= Y
4159     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4160       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4161 
4162     // smin(X, Y) != X --> X s> Y
4163     // smin(X, Y) s< X --> X s> Y
4164     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4165       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4166 
4167     // These cases should be handled in InstSimplify:
4168     // smin(X, Y) s<= X --> true
4169     // smin(X, Y) s> X --> false
4170     return nullptr;
4171   }
4172 
4173   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4174     // smax(X, Y)  == X --> X s>= Y
4175     // smax(X, Y) s<= X --> X s>= Y
4176     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4177       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4178 
4179     // smax(X, Y) != X --> X s< Y
4180     // smax(X, Y) s> X --> X s< Y
4181     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4182       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4183 
4184     // These cases should be handled in InstSimplify:
4185     // smax(X, Y) s>= X --> true
4186     // smax(X, Y) s< X --> false
4187     return nullptr;
4188   }
4189 
4190   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4191     // umin(X, Y)  == X --> X u<= Y
4192     // umin(X, Y) u>= X --> X u<= Y
4193     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4194       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4195 
4196     // umin(X, Y) != X --> X u> Y
4197     // umin(X, Y) u< X --> X u> Y
4198     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4199       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4200 
4201     // These cases should be handled in InstSimplify:
4202     // umin(X, Y) u<= X --> true
4203     // umin(X, Y) u> X --> false
4204     return nullptr;
4205   }
4206 
4207   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4208     // umax(X, Y)  == X --> X u>= Y
4209     // umax(X, Y) u<= X --> X u>= Y
4210     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4211       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4212 
4213     // umax(X, Y) != X --> X u< Y
4214     // umax(X, Y) u> X --> X u< Y
4215     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4216       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4217 
4218     // These cases should be handled in InstSimplify:
4219     // umax(X, Y) u>= X --> true
4220     // umax(X, Y) u< X --> false
4221     return nullptr;
4222   }
4223 
4224   return nullptr;
4225 }
4226 
4227 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4228   if (!I.isEquality())
4229     return nullptr;
4230 
4231   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4232   const CmpInst::Predicate Pred = I.getPredicate();
4233   Value *A, *B, *C, *D;
4234   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4235     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4236       Value *OtherVal = A == Op1 ? B : A;
4237       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4238     }
4239 
4240     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4241       // A^c1 == C^c2 --> A == C^(c1^c2)
4242       ConstantInt *C1, *C2;
4243       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4244           Op1->hasOneUse()) {
4245         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4246         Value *Xor = Builder.CreateXor(C, NC);
4247         return new ICmpInst(Pred, A, Xor);
4248       }
4249 
4250       // A^B == A^D -> B == D
4251       if (A == C)
4252         return new ICmpInst(Pred, B, D);
4253       if (A == D)
4254         return new ICmpInst(Pred, B, C);
4255       if (B == C)
4256         return new ICmpInst(Pred, A, D);
4257       if (B == D)
4258         return new ICmpInst(Pred, A, C);
4259     }
4260   }
4261 
4262   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4263     // A == (A^B)  ->  B == 0
4264     Value *OtherVal = A == Op0 ? B : A;
4265     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4266   }
4267 
4268   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4269   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4270       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4271     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4272 
4273     if (A == C) {
4274       X = B;
4275       Y = D;
4276       Z = A;
4277     } else if (A == D) {
4278       X = B;
4279       Y = C;
4280       Z = A;
4281     } else if (B == C) {
4282       X = A;
4283       Y = D;
4284       Z = B;
4285     } else if (B == D) {
4286       X = A;
4287       Y = C;
4288       Z = B;
4289     }
4290 
4291     if (X) { // Build (X^Y) & Z
4292       Op1 = Builder.CreateXor(X, Y);
4293       Op1 = Builder.CreateAnd(Op1, Z);
4294       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4295     }
4296   }
4297 
4298   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4299   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4300   ConstantInt *Cst1;
4301   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4302        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4303       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4304        match(Op1, m_ZExt(m_Value(A))))) {
4305     APInt Pow2 = Cst1->getValue() + 1;
4306     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4307         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4308       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4309   }
4310 
4311   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4312   // For lshr and ashr pairs.
4313   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4314        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4315       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4316        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4317     unsigned TypeBits = Cst1->getBitWidth();
4318     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4319     if (ShAmt < TypeBits && ShAmt != 0) {
4320       ICmpInst::Predicate NewPred =
4321           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4322       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4323       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4324       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4325     }
4326   }
4327 
4328   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4329   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4330       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4331     unsigned TypeBits = Cst1->getBitWidth();
4332     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4333     if (ShAmt < TypeBits && ShAmt != 0) {
4334       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4335       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4336       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4337                                       I.getName() + ".mask");
4338       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4339     }
4340   }
4341 
4342   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4343   // "icmp (and X, mask), cst"
4344   uint64_t ShAmt = 0;
4345   if (Op0->hasOneUse() &&
4346       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4347       match(Op1, m_ConstantInt(Cst1)) &&
4348       // Only do this when A has multiple uses.  This is most important to do
4349       // when it exposes other optimizations.
4350       !A->hasOneUse()) {
4351     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4352 
4353     if (ShAmt < ASize) {
4354       APInt MaskV =
4355           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4356       MaskV <<= ShAmt;
4357 
4358       APInt CmpV = Cst1->getValue().zext(ASize);
4359       CmpV <<= ShAmt;
4360 
4361       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4362       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4363     }
4364   }
4365 
4366   // If both operands are byte-swapped or bit-reversed, just compare the
4367   // original values.
4368   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4369   // and handle more intrinsics.
4370   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4371       (match(Op0, m_BitReverse(m_Value(A))) &&
4372        match(Op1, m_BitReverse(m_Value(B)))))
4373     return new ICmpInst(Pred, A, B);
4374 
4375   // Canonicalize checking for a power-of-2-or-zero value:
4376   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4377   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4378   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4379                                    m_Deferred(A)))) ||
4380       !match(Op1, m_ZeroInt()))
4381     A = nullptr;
4382 
4383   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4384   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4385   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4386     A = Op1;
4387   else if (match(Op1,
4388                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4389     A = Op0;
4390 
4391   if (A) {
4392     Type *Ty = A->getType();
4393     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4394     return Pred == ICmpInst::ICMP_EQ
4395         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4396         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4397   }
4398 
4399   return nullptr;
4400 }
4401 
4402 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4403                                            InstCombiner::BuilderTy &Builder) {
4404   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4405   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4406   Value *X;
4407   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4408     return nullptr;
4409 
4410   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4411   bool IsSignedCmp = ICmp.isSigned();
4412   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4413     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4414     // and the other is a zext), then we can't handle this.
4415     // TODO: This is too strict. We can handle some predicates (equality?).
4416     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4417       return nullptr;
4418 
4419     // Not an extension from the same type?
4420     Value *Y = CastOp1->getOperand(0);
4421     Type *XTy = X->getType(), *YTy = Y->getType();
4422     if (XTy != YTy) {
4423       // One of the casts must have one use because we are creating a new cast.
4424       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4425         return nullptr;
4426       // Extend the narrower operand to the type of the wider operand.
4427       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4428         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4429       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4430         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4431       else
4432         return nullptr;
4433     }
4434 
4435     // (zext X) == (zext Y) --> X == Y
4436     // (sext X) == (sext Y) --> X == Y
4437     if (ICmp.isEquality())
4438       return new ICmpInst(ICmp.getPredicate(), X, Y);
4439 
4440     // A signed comparison of sign extended values simplifies into a
4441     // signed comparison.
4442     if (IsSignedCmp && IsSignedExt)
4443       return new ICmpInst(ICmp.getPredicate(), X, Y);
4444 
4445     // The other three cases all fold into an unsigned comparison.
4446     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4447   }
4448 
4449   // Below here, we are only folding a compare with constant.
4450   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4451   if (!C)
4452     return nullptr;
4453 
4454   // Compute the constant that would happen if we truncated to SrcTy then
4455   // re-extended to DestTy.
4456   Type *SrcTy = CastOp0->getSrcTy();
4457   Type *DestTy = CastOp0->getDestTy();
4458   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4459   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4460 
4461   // If the re-extended constant didn't change...
4462   if (Res2 == C) {
4463     if (ICmp.isEquality())
4464       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4465 
4466     // A signed comparison of sign extended values simplifies into a
4467     // signed comparison.
4468     if (IsSignedExt && IsSignedCmp)
4469       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4470 
4471     // The other three cases all fold into an unsigned comparison.
4472     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4473   }
4474 
4475   // The re-extended constant changed, partly changed (in the case of a vector),
4476   // or could not be determined to be equal (in the case of a constant
4477   // expression), so the constant cannot be represented in the shorter type.
4478   // All the cases that fold to true or false will have already been handled
4479   // by SimplifyICmpInst, so only deal with the tricky case.
4480   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4481     return nullptr;
4482 
4483   // Is source op positive?
4484   // icmp ult (sext X), C --> icmp sgt X, -1
4485   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4486     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4487 
4488   // Is source op negative?
4489   // icmp ugt (sext X), C --> icmp slt X, 0
4490   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4491   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4492 }
4493 
4494 /// Handle icmp (cast x), (cast or constant).
4495 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4496   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4497   if (!CastOp0)
4498     return nullptr;
4499   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4500     return nullptr;
4501 
4502   Value *Op0Src = CastOp0->getOperand(0);
4503   Type *SrcTy = CastOp0->getSrcTy();
4504   Type *DestTy = CastOp0->getDestTy();
4505 
4506   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4507   // integer type is the same size as the pointer type.
4508   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4509     if (isa<VectorType>(SrcTy)) {
4510       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4511       DestTy = cast<VectorType>(DestTy)->getElementType();
4512     }
4513     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4514   };
4515   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4516       CompatibleSizes(SrcTy, DestTy)) {
4517     Value *NewOp1 = nullptr;
4518     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4519       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4520       if (PtrSrc->getType()->getPointerAddressSpace() ==
4521           Op0Src->getType()->getPointerAddressSpace()) {
4522         NewOp1 = PtrToIntOp1->getOperand(0);
4523         // If the pointer types don't match, insert a bitcast.
4524         if (Op0Src->getType() != NewOp1->getType())
4525           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4526       }
4527     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4528       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4529     }
4530 
4531     if (NewOp1)
4532       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4533   }
4534 
4535   return foldICmpWithZextOrSext(ICmp, Builder);
4536 }
4537 
4538 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4539   switch (BinaryOp) {
4540     default:
4541       llvm_unreachable("Unsupported binary op");
4542     case Instruction::Add:
4543     case Instruction::Sub:
4544       return match(RHS, m_Zero());
4545     case Instruction::Mul:
4546       return match(RHS, m_One());
4547   }
4548 }
4549 
4550 OverflowResult
4551 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4552                                   bool IsSigned, Value *LHS, Value *RHS,
4553                                   Instruction *CxtI) const {
4554   switch (BinaryOp) {
4555     default:
4556       llvm_unreachable("Unsupported binary op");
4557     case Instruction::Add:
4558       if (IsSigned)
4559         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4560       else
4561         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4562     case Instruction::Sub:
4563       if (IsSigned)
4564         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4565       else
4566         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4567     case Instruction::Mul:
4568       if (IsSigned)
4569         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4570       else
4571         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4572   }
4573 }
4574 
4575 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4576                                              bool IsSigned, Value *LHS,
4577                                              Value *RHS, Instruction &OrigI,
4578                                              Value *&Result,
4579                                              Constant *&Overflow) {
4580   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4581     std::swap(LHS, RHS);
4582 
4583   // If the overflow check was an add followed by a compare, the insertion point
4584   // may be pointing to the compare.  We want to insert the new instructions
4585   // before the add in case there are uses of the add between the add and the
4586   // compare.
4587   Builder.SetInsertPoint(&OrigI);
4588 
4589   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4590   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4591     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4592 
4593   if (isNeutralValue(BinaryOp, RHS)) {
4594     Result = LHS;
4595     Overflow = ConstantInt::getFalse(OverflowTy);
4596     return true;
4597   }
4598 
4599   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4600     case OverflowResult::MayOverflow:
4601       return false;
4602     case OverflowResult::AlwaysOverflowsLow:
4603     case OverflowResult::AlwaysOverflowsHigh:
4604       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4605       Result->takeName(&OrigI);
4606       Overflow = ConstantInt::getTrue(OverflowTy);
4607       return true;
4608     case OverflowResult::NeverOverflows:
4609       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4610       Result->takeName(&OrigI);
4611       Overflow = ConstantInt::getFalse(OverflowTy);
4612       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4613         if (IsSigned)
4614           Inst->setHasNoSignedWrap();
4615         else
4616           Inst->setHasNoUnsignedWrap();
4617       }
4618       return true;
4619   }
4620 
4621   llvm_unreachable("Unexpected overflow result");
4622 }
4623 
4624 /// Recognize and process idiom involving test for multiplication
4625 /// overflow.
4626 ///
4627 /// The caller has matched a pattern of the form:
4628 ///   I = cmp u (mul(zext A, zext B), V
4629 /// The function checks if this is a test for overflow and if so replaces
4630 /// multiplication with call to 'mul.with.overflow' intrinsic.
4631 ///
4632 /// \param I Compare instruction.
4633 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4634 ///               the compare instruction.  Must be of integer type.
4635 /// \param OtherVal The other argument of compare instruction.
4636 /// \returns Instruction which must replace the compare instruction, NULL if no
4637 ///          replacement required.
4638 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4639                                          Value *OtherVal,
4640                                          InstCombinerImpl &IC) {
4641   // Don't bother doing this transformation for pointers, don't do it for
4642   // vectors.
4643   if (!isa<IntegerType>(MulVal->getType()))
4644     return nullptr;
4645 
4646   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4647   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4648   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4649   if (!MulInstr)
4650     return nullptr;
4651   assert(MulInstr->getOpcode() == Instruction::Mul);
4652 
4653   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4654        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4655   assert(LHS->getOpcode() == Instruction::ZExt);
4656   assert(RHS->getOpcode() == Instruction::ZExt);
4657   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4658 
4659   // Calculate type and width of the result produced by mul.with.overflow.
4660   Type *TyA = A->getType(), *TyB = B->getType();
4661   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4662            WidthB = TyB->getPrimitiveSizeInBits();
4663   unsigned MulWidth;
4664   Type *MulType;
4665   if (WidthB > WidthA) {
4666     MulWidth = WidthB;
4667     MulType = TyB;
4668   } else {
4669     MulWidth = WidthA;
4670     MulType = TyA;
4671   }
4672 
4673   // In order to replace the original mul with a narrower mul.with.overflow,
4674   // all uses must ignore upper bits of the product.  The number of used low
4675   // bits must be not greater than the width of mul.with.overflow.
4676   if (MulVal->hasNUsesOrMore(2))
4677     for (User *U : MulVal->users()) {
4678       if (U == &I)
4679         continue;
4680       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4681         // Check if truncation ignores bits above MulWidth.
4682         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4683         if (TruncWidth > MulWidth)
4684           return nullptr;
4685       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4686         // Check if AND ignores bits above MulWidth.
4687         if (BO->getOpcode() != Instruction::And)
4688           return nullptr;
4689         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4690           const APInt &CVal = CI->getValue();
4691           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4692             return nullptr;
4693         } else {
4694           // In this case we could have the operand of the binary operation
4695           // being defined in another block, and performing the replacement
4696           // could break the dominance relation.
4697           return nullptr;
4698         }
4699       } else {
4700         // Other uses prohibit this transformation.
4701         return nullptr;
4702       }
4703     }
4704 
4705   // Recognize patterns
4706   switch (I.getPredicate()) {
4707   case ICmpInst::ICMP_EQ:
4708   case ICmpInst::ICMP_NE:
4709     // Recognize pattern:
4710     //   mulval = mul(zext A, zext B)
4711     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4712     ConstantInt *CI;
4713     Value *ValToMask;
4714     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4715       if (ValToMask != MulVal)
4716         return nullptr;
4717       const APInt &CVal = CI->getValue() + 1;
4718       if (CVal.isPowerOf2()) {
4719         unsigned MaskWidth = CVal.logBase2();
4720         if (MaskWidth == MulWidth)
4721           break; // Recognized
4722       }
4723     }
4724     return nullptr;
4725 
4726   case ICmpInst::ICMP_UGT:
4727     // Recognize pattern:
4728     //   mulval = mul(zext A, zext B)
4729     //   cmp ugt mulval, max
4730     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4731       APInt MaxVal = APInt::getMaxValue(MulWidth);
4732       MaxVal = MaxVal.zext(CI->getBitWidth());
4733       if (MaxVal.eq(CI->getValue()))
4734         break; // Recognized
4735     }
4736     return nullptr;
4737 
4738   case ICmpInst::ICMP_UGE:
4739     // Recognize pattern:
4740     //   mulval = mul(zext A, zext B)
4741     //   cmp uge mulval, max+1
4742     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4743       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4744       if (MaxVal.eq(CI->getValue()))
4745         break; // Recognized
4746     }
4747     return nullptr;
4748 
4749   case ICmpInst::ICMP_ULE:
4750     // Recognize pattern:
4751     //   mulval = mul(zext A, zext B)
4752     //   cmp ule mulval, max
4753     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4754       APInt MaxVal = APInt::getMaxValue(MulWidth);
4755       MaxVal = MaxVal.zext(CI->getBitWidth());
4756       if (MaxVal.eq(CI->getValue()))
4757         break; // Recognized
4758     }
4759     return nullptr;
4760 
4761   case ICmpInst::ICMP_ULT:
4762     // Recognize pattern:
4763     //   mulval = mul(zext A, zext B)
4764     //   cmp ule mulval, max + 1
4765     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4766       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4767       if (MaxVal.eq(CI->getValue()))
4768         break; // Recognized
4769     }
4770     return nullptr;
4771 
4772   default:
4773     return nullptr;
4774   }
4775 
4776   InstCombiner::BuilderTy &Builder = IC.Builder;
4777   Builder.SetInsertPoint(MulInstr);
4778 
4779   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4780   Value *MulA = A, *MulB = B;
4781   if (WidthA < MulWidth)
4782     MulA = Builder.CreateZExt(A, MulType);
4783   if (WidthB < MulWidth)
4784     MulB = Builder.CreateZExt(B, MulType);
4785   Function *F = Intrinsic::getDeclaration(
4786       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4787   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4788   IC.addToWorklist(MulInstr);
4789 
4790   // If there are uses of mul result other than the comparison, we know that
4791   // they are truncation or binary AND. Change them to use result of
4792   // mul.with.overflow and adjust properly mask/size.
4793   if (MulVal->hasNUsesOrMore(2)) {
4794     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4795     for (User *U : make_early_inc_range(MulVal->users())) {
4796       if (U == &I || U == OtherVal)
4797         continue;
4798       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4799         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4800           IC.replaceInstUsesWith(*TI, Mul);
4801         else
4802           TI->setOperand(0, Mul);
4803       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4804         assert(BO->getOpcode() == Instruction::And);
4805         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4806         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4807         APInt ShortMask = CI->getValue().trunc(MulWidth);
4808         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4809         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4810         IC.replaceInstUsesWith(*BO, Zext);
4811       } else {
4812         llvm_unreachable("Unexpected Binary operation");
4813       }
4814       IC.addToWorklist(cast<Instruction>(U));
4815     }
4816   }
4817   if (isa<Instruction>(OtherVal))
4818     IC.addToWorklist(cast<Instruction>(OtherVal));
4819 
4820   // The original icmp gets replaced with the overflow value, maybe inverted
4821   // depending on predicate.
4822   bool Inverse = false;
4823   switch (I.getPredicate()) {
4824   case ICmpInst::ICMP_NE:
4825     break;
4826   case ICmpInst::ICMP_EQ:
4827     Inverse = true;
4828     break;
4829   case ICmpInst::ICMP_UGT:
4830   case ICmpInst::ICMP_UGE:
4831     if (I.getOperand(0) == MulVal)
4832       break;
4833     Inverse = true;
4834     break;
4835   case ICmpInst::ICMP_ULT:
4836   case ICmpInst::ICMP_ULE:
4837     if (I.getOperand(1) == MulVal)
4838       break;
4839     Inverse = true;
4840     break;
4841   default:
4842     llvm_unreachable("Unexpected predicate");
4843   }
4844   if (Inverse) {
4845     Value *Res = Builder.CreateExtractValue(Call, 1);
4846     return BinaryOperator::CreateNot(Res);
4847   }
4848 
4849   return ExtractValueInst::Create(Call, 1);
4850 }
4851 
4852 /// When performing a comparison against a constant, it is possible that not all
4853 /// the bits in the LHS are demanded. This helper method computes the mask that
4854 /// IS demanded.
4855 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4856   const APInt *RHS;
4857   if (!match(I.getOperand(1), m_APInt(RHS)))
4858     return APInt::getAllOnesValue(BitWidth);
4859 
4860   // If this is a normal comparison, it demands all bits. If it is a sign bit
4861   // comparison, it only demands the sign bit.
4862   bool UnusedBit;
4863   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4864     return APInt::getSignMask(BitWidth);
4865 
4866   switch (I.getPredicate()) {
4867   // For a UGT comparison, we don't care about any bits that
4868   // correspond to the trailing ones of the comparand.  The value of these
4869   // bits doesn't impact the outcome of the comparison, because any value
4870   // greater than the RHS must differ in a bit higher than these due to carry.
4871   case ICmpInst::ICMP_UGT:
4872     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4873 
4874   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4875   // Any value less than the RHS must differ in a higher bit because of carries.
4876   case ICmpInst::ICMP_ULT:
4877     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4878 
4879   default:
4880     return APInt::getAllOnesValue(BitWidth);
4881   }
4882 }
4883 
4884 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4885 /// should be swapped.
4886 /// The decision is based on how many times these two operands are reused
4887 /// as subtract operands and their positions in those instructions.
4888 /// The rationale is that several architectures use the same instruction for
4889 /// both subtract and cmp. Thus, it is better if the order of those operands
4890 /// match.
4891 /// \return true if Op0 and Op1 should be swapped.
4892 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4893   // Filter out pointer values as those cannot appear directly in subtract.
4894   // FIXME: we may want to go through inttoptrs or bitcasts.
4895   if (Op0->getType()->isPointerTy())
4896     return false;
4897   // If a subtract already has the same operands as a compare, swapping would be
4898   // bad. If a subtract has the same operands as a compare but in reverse order,
4899   // then swapping is good.
4900   int GoodToSwap = 0;
4901   for (const User *U : Op0->users()) {
4902     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4903       GoodToSwap++;
4904     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4905       GoodToSwap--;
4906   }
4907   return GoodToSwap > 0;
4908 }
4909 
4910 /// Check that one use is in the same block as the definition and all
4911 /// other uses are in blocks dominated by a given block.
4912 ///
4913 /// \param DI Definition
4914 /// \param UI Use
4915 /// \param DB Block that must dominate all uses of \p DI outside
4916 ///           the parent block
4917 /// \return true when \p UI is the only use of \p DI in the parent block
4918 /// and all other uses of \p DI are in blocks dominated by \p DB.
4919 ///
4920 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4921                                         const Instruction *UI,
4922                                         const BasicBlock *DB) const {
4923   assert(DI && UI && "Instruction not defined\n");
4924   // Ignore incomplete definitions.
4925   if (!DI->getParent())
4926     return false;
4927   // DI and UI must be in the same block.
4928   if (DI->getParent() != UI->getParent())
4929     return false;
4930   // Protect from self-referencing blocks.
4931   if (DI->getParent() == DB)
4932     return false;
4933   for (const User *U : DI->users()) {
4934     auto *Usr = cast<Instruction>(U);
4935     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4936       return false;
4937   }
4938   return true;
4939 }
4940 
4941 /// Return true when the instruction sequence within a block is select-cmp-br.
4942 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4943   const BasicBlock *BB = SI->getParent();
4944   if (!BB)
4945     return false;
4946   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4947   if (!BI || BI->getNumSuccessors() != 2)
4948     return false;
4949   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4950   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4951     return false;
4952   return true;
4953 }
4954 
4955 /// True when a select result is replaced by one of its operands
4956 /// in select-icmp sequence. This will eventually result in the elimination
4957 /// of the select.
4958 ///
4959 /// \param SI    Select instruction
4960 /// \param Icmp  Compare instruction
4961 /// \param SIOpd Operand that replaces the select
4962 ///
4963 /// Notes:
4964 /// - The replacement is global and requires dominator information
4965 /// - The caller is responsible for the actual replacement
4966 ///
4967 /// Example:
4968 ///
4969 /// entry:
4970 ///  %4 = select i1 %3, %C* %0, %C* null
4971 ///  %5 = icmp eq %C* %4, null
4972 ///  br i1 %5, label %9, label %7
4973 ///  ...
4974 ///  ; <label>:7                                       ; preds = %entry
4975 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4976 ///  ...
4977 ///
4978 /// can be transformed to
4979 ///
4980 ///  %5 = icmp eq %C* %0, null
4981 ///  %6 = select i1 %3, i1 %5, i1 true
4982 ///  br i1 %6, label %9, label %7
4983 ///  ...
4984 ///  ; <label>:7                                       ; preds = %entry
4985 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4986 ///
4987 /// Similar when the first operand of the select is a constant or/and
4988 /// the compare is for not equal rather than equal.
4989 ///
4990 /// NOTE: The function is only called when the select and compare constants
4991 /// are equal, the optimization can work only for EQ predicates. This is not a
4992 /// major restriction since a NE compare should be 'normalized' to an equal
4993 /// compare, which usually happens in the combiner and test case
4994 /// select-cmp-br.ll checks for it.
4995 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4996                                                  const ICmpInst *Icmp,
4997                                                  const unsigned SIOpd) {
4998   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4999   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5000     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5001     // The check for the single predecessor is not the best that can be
5002     // done. But it protects efficiently against cases like when SI's
5003     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5004     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5005     // replaced can be reached on either path. So the uniqueness check
5006     // guarantees that the path all uses of SI (outside SI's parent) are on
5007     // is disjoint from all other paths out of SI. But that information
5008     // is more expensive to compute, and the trade-off here is in favor
5009     // of compile-time. It should also be noticed that we check for a single
5010     // predecessor and not only uniqueness. This to handle the situation when
5011     // Succ and Succ1 points to the same basic block.
5012     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5013       NumSel++;
5014       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5015       return true;
5016     }
5017   }
5018   return false;
5019 }
5020 
5021 /// Try to fold the comparison based on range information we can get by checking
5022 /// whether bits are known to be zero or one in the inputs.
5023 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5024   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5025   Type *Ty = Op0->getType();
5026   ICmpInst::Predicate Pred = I.getPredicate();
5027 
5028   // Get scalar or pointer size.
5029   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5030                           ? Ty->getScalarSizeInBits()
5031                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5032 
5033   if (!BitWidth)
5034     return nullptr;
5035 
5036   KnownBits Op0Known(BitWidth);
5037   KnownBits Op1Known(BitWidth);
5038 
5039   if (SimplifyDemandedBits(&I, 0,
5040                            getDemandedBitsLHSMask(I, BitWidth),
5041                            Op0Known, 0))
5042     return &I;
5043 
5044   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5045                            Op1Known, 0))
5046     return &I;
5047 
5048   // Given the known and unknown bits, compute a range that the LHS could be
5049   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5050   // EQ and NE we use unsigned values.
5051   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5052   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5053   if (I.isSigned()) {
5054     Op0Min = Op0Known.getSignedMinValue();
5055     Op0Max = Op0Known.getSignedMaxValue();
5056     Op1Min = Op1Known.getSignedMinValue();
5057     Op1Max = Op1Known.getSignedMaxValue();
5058   } else {
5059     Op0Min = Op0Known.getMinValue();
5060     Op0Max = Op0Known.getMaxValue();
5061     Op1Min = Op1Known.getMinValue();
5062     Op1Max = Op1Known.getMaxValue();
5063   }
5064 
5065   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5066   // out that the LHS or RHS is a constant. Constant fold this now, so that
5067   // code below can assume that Min != Max.
5068   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5069     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5070   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5071     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5072 
5073   // Based on the range information we know about the LHS, see if we can
5074   // simplify this comparison.  For example, (x&4) < 8 is always true.
5075   switch (Pred) {
5076   default:
5077     llvm_unreachable("Unknown icmp opcode!");
5078   case ICmpInst::ICMP_EQ:
5079   case ICmpInst::ICMP_NE: {
5080     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5081       return replaceInstUsesWith(
5082           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5083 
5084     // If all bits are known zero except for one, then we know at most one bit
5085     // is set. If the comparison is against zero, then this is a check to see if
5086     // *that* bit is set.
5087     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5088     if (Op1Known.isZero()) {
5089       // If the LHS is an AND with the same constant, look through it.
5090       Value *LHS = nullptr;
5091       const APInt *LHSC;
5092       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5093           *LHSC != Op0KnownZeroInverted)
5094         LHS = Op0;
5095 
5096       Value *X;
5097       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5098         APInt ValToCheck = Op0KnownZeroInverted;
5099         Type *XTy = X->getType();
5100         if (ValToCheck.isPowerOf2()) {
5101           // ((1 << X) & 8) == 0 -> X != 3
5102           // ((1 << X) & 8) != 0 -> X == 3
5103           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5104           auto NewPred = ICmpInst::getInversePredicate(Pred);
5105           return new ICmpInst(NewPred, X, CmpC);
5106         } else if ((++ValToCheck).isPowerOf2()) {
5107           // ((1 << X) & 7) == 0 -> X >= 3
5108           // ((1 << X) & 7) != 0 -> X  < 3
5109           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5110           auto NewPred =
5111               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5112           return new ICmpInst(NewPred, X, CmpC);
5113         }
5114       }
5115 
5116       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5117       const APInt *CI;
5118       if (Op0KnownZeroInverted.isOneValue() &&
5119           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5120         // ((8 >>u X) & 1) == 0 -> X != 3
5121         // ((8 >>u X) & 1) != 0 -> X == 3
5122         unsigned CmpVal = CI->countTrailingZeros();
5123         auto NewPred = ICmpInst::getInversePredicate(Pred);
5124         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5125       }
5126     }
5127     break;
5128   }
5129   case ICmpInst::ICMP_ULT: {
5130     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5131       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5132     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5133       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5134     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5135       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5136 
5137     const APInt *CmpC;
5138     if (match(Op1, m_APInt(CmpC))) {
5139       // A <u C -> A == C-1 if min(A)+1 == C
5140       if (*CmpC == Op0Min + 1)
5141         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5142                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5143       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5144       // exceeds the log2 of C.
5145       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5146         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5147                             Constant::getNullValue(Op1->getType()));
5148     }
5149     break;
5150   }
5151   case ICmpInst::ICMP_UGT: {
5152     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5153       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5154     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5155       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5156     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5157       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5158 
5159     const APInt *CmpC;
5160     if (match(Op1, m_APInt(CmpC))) {
5161       // A >u C -> A == C+1 if max(a)-1 == C
5162       if (*CmpC == Op0Max - 1)
5163         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5164                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5165       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5166       // exceeds the log2 of C.
5167       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5168         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5169                             Constant::getNullValue(Op1->getType()));
5170     }
5171     break;
5172   }
5173   case ICmpInst::ICMP_SLT: {
5174     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5175       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5176     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5177       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5178     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5179       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5180     const APInt *CmpC;
5181     if (match(Op1, m_APInt(CmpC))) {
5182       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5183         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5184                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5185     }
5186     break;
5187   }
5188   case ICmpInst::ICMP_SGT: {
5189     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5190       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5191     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5192       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5193     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5194       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5195     const APInt *CmpC;
5196     if (match(Op1, m_APInt(CmpC))) {
5197       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5198         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5199                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5200     }
5201     break;
5202   }
5203   case ICmpInst::ICMP_SGE:
5204     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5205     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5206       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5207     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5208       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5209     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5210       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5211     break;
5212   case ICmpInst::ICMP_SLE:
5213     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5214     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5215       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5216     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5217       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5218     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5219       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5220     break;
5221   case ICmpInst::ICMP_UGE:
5222     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5223     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5224       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5225     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5226       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5227     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5228       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5229     break;
5230   case ICmpInst::ICMP_ULE:
5231     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5232     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5233       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5234     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5235       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5236     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5237       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5238     break;
5239   }
5240 
5241   // Turn a signed comparison into an unsigned one if both operands are known to
5242   // have the same sign.
5243   if (I.isSigned() &&
5244       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5245        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5246     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5247 
5248   return nullptr;
5249 }
5250 
5251 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5252 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5253                                                        Constant *C) {
5254   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5255          "Only for relational integer predicates.");
5256 
5257   Type *Type = C->getType();
5258   bool IsSigned = ICmpInst::isSigned(Pred);
5259 
5260   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5261   bool WillIncrement =
5262       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5263 
5264   // Check if the constant operand can be safely incremented/decremented
5265   // without overflowing/underflowing.
5266   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5267     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5268   };
5269 
5270   Constant *SafeReplacementConstant = nullptr;
5271   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5272     // Bail out if the constant can't be safely incremented/decremented.
5273     if (!ConstantIsOk(CI))
5274       return llvm::None;
5275   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5276     unsigned NumElts = FVTy->getNumElements();
5277     for (unsigned i = 0; i != NumElts; ++i) {
5278       Constant *Elt = C->getAggregateElement(i);
5279       if (!Elt)
5280         return llvm::None;
5281 
5282       if (isa<UndefValue>(Elt))
5283         continue;
5284 
5285       // Bail out if we can't determine if this constant is min/max or if we
5286       // know that this constant is min/max.
5287       auto *CI = dyn_cast<ConstantInt>(Elt);
5288       if (!CI || !ConstantIsOk(CI))
5289         return llvm::None;
5290 
5291       if (!SafeReplacementConstant)
5292         SafeReplacementConstant = CI;
5293     }
5294   } else {
5295     // ConstantExpr?
5296     return llvm::None;
5297   }
5298 
5299   // It may not be safe to change a compare predicate in the presence of
5300   // undefined elements, so replace those elements with the first safe constant
5301   // that we found.
5302   // TODO: in case of poison, it is safe; let's replace undefs only.
5303   if (C->containsUndefOrPoisonElement()) {
5304     assert(SafeReplacementConstant && "Replacement constant not set");
5305     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5306   }
5307 
5308   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5309 
5310   // Increment or decrement the constant.
5311   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5312   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5313 
5314   return std::make_pair(NewPred, NewC);
5315 }
5316 
5317 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5318 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5319 /// allows them to be folded in visitICmpInst.
5320 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5321   ICmpInst::Predicate Pred = I.getPredicate();
5322   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5323       InstCombiner::isCanonicalPredicate(Pred))
5324     return nullptr;
5325 
5326   Value *Op0 = I.getOperand(0);
5327   Value *Op1 = I.getOperand(1);
5328   auto *Op1C = dyn_cast<Constant>(Op1);
5329   if (!Op1C)
5330     return nullptr;
5331 
5332   auto FlippedStrictness =
5333       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5334   if (!FlippedStrictness)
5335     return nullptr;
5336 
5337   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5338 }
5339 
5340 /// If we have a comparison with a non-canonical predicate, if we can update
5341 /// all the users, invert the predicate and adjust all the users.
5342 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5343   // Is the predicate already canonical?
5344   CmpInst::Predicate Pred = I.getPredicate();
5345   if (InstCombiner::isCanonicalPredicate(Pred))
5346     return nullptr;
5347 
5348   // Can all users be adjusted to predicate inversion?
5349   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5350     return nullptr;
5351 
5352   // Ok, we can canonicalize comparison!
5353   // Let's first invert the comparison's predicate.
5354   I.setPredicate(CmpInst::getInversePredicate(Pred));
5355   I.setName(I.getName() + ".not");
5356 
5357   // And, adapt users.
5358   freelyInvertAllUsersOf(&I);
5359 
5360   return &I;
5361 }
5362 
5363 /// Integer compare with boolean values can always be turned into bitwise ops.
5364 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5365                                          InstCombiner::BuilderTy &Builder) {
5366   Value *A = I.getOperand(0), *B = I.getOperand(1);
5367   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5368 
5369   // A boolean compared to true/false can be simplified to Op0/true/false in
5370   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5371   // Cases not handled by InstSimplify are always 'not' of Op0.
5372   if (match(B, m_Zero())) {
5373     switch (I.getPredicate()) {
5374       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5375       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5376       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5377         return BinaryOperator::CreateNot(A);
5378       default:
5379         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5380     }
5381   } else if (match(B, m_One())) {
5382     switch (I.getPredicate()) {
5383       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5384       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5385       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5386         return BinaryOperator::CreateNot(A);
5387       default:
5388         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5389     }
5390   }
5391 
5392   switch (I.getPredicate()) {
5393   default:
5394     llvm_unreachable("Invalid icmp instruction!");
5395   case ICmpInst::ICMP_EQ:
5396     // icmp eq i1 A, B -> ~(A ^ B)
5397     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5398 
5399   case ICmpInst::ICMP_NE:
5400     // icmp ne i1 A, B -> A ^ B
5401     return BinaryOperator::CreateXor(A, B);
5402 
5403   case ICmpInst::ICMP_UGT:
5404     // icmp ugt -> icmp ult
5405     std::swap(A, B);
5406     LLVM_FALLTHROUGH;
5407   case ICmpInst::ICMP_ULT:
5408     // icmp ult i1 A, B -> ~A & B
5409     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5410 
5411   case ICmpInst::ICMP_SGT:
5412     // icmp sgt -> icmp slt
5413     std::swap(A, B);
5414     LLVM_FALLTHROUGH;
5415   case ICmpInst::ICMP_SLT:
5416     // icmp slt i1 A, B -> A & ~B
5417     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5418 
5419   case ICmpInst::ICMP_UGE:
5420     // icmp uge -> icmp ule
5421     std::swap(A, B);
5422     LLVM_FALLTHROUGH;
5423   case ICmpInst::ICMP_ULE:
5424     // icmp ule i1 A, B -> ~A | B
5425     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5426 
5427   case ICmpInst::ICMP_SGE:
5428     // icmp sge -> icmp sle
5429     std::swap(A, B);
5430     LLVM_FALLTHROUGH;
5431   case ICmpInst::ICMP_SLE:
5432     // icmp sle i1 A, B -> A | ~B
5433     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5434   }
5435 }
5436 
5437 // Transform pattern like:
5438 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5439 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5440 // Into:
5441 //   (X l>> Y) != 0
5442 //   (X l>> Y) == 0
5443 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5444                                             InstCombiner::BuilderTy &Builder) {
5445   ICmpInst::Predicate Pred, NewPred;
5446   Value *X, *Y;
5447   if (match(&Cmp,
5448             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5449     switch (Pred) {
5450     case ICmpInst::ICMP_ULE:
5451       NewPred = ICmpInst::ICMP_NE;
5452       break;
5453     case ICmpInst::ICMP_UGT:
5454       NewPred = ICmpInst::ICMP_EQ;
5455       break;
5456     default:
5457       return nullptr;
5458     }
5459   } else if (match(&Cmp, m_c_ICmp(Pred,
5460                                   m_OneUse(m_CombineOr(
5461                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5462                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5463                                             m_AllOnes()))),
5464                                   m_Value(X)))) {
5465     // The variant with 'add' is not canonical, (the variant with 'not' is)
5466     // we only get it because it has extra uses, and can't be canonicalized,
5467 
5468     switch (Pred) {
5469     case ICmpInst::ICMP_ULT:
5470       NewPred = ICmpInst::ICMP_NE;
5471       break;
5472     case ICmpInst::ICMP_UGE:
5473       NewPred = ICmpInst::ICMP_EQ;
5474       break;
5475     default:
5476       return nullptr;
5477     }
5478   } else
5479     return nullptr;
5480 
5481   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5482   Constant *Zero = Constant::getNullValue(NewX->getType());
5483   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5484 }
5485 
5486 static Instruction *foldVectorCmp(CmpInst &Cmp,
5487                                   InstCombiner::BuilderTy &Builder) {
5488   const CmpInst::Predicate Pred = Cmp.getPredicate();
5489   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5490   Value *V1, *V2;
5491   ArrayRef<int> M;
5492   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5493     return nullptr;
5494 
5495   // If both arguments of the cmp are shuffles that use the same mask and
5496   // shuffle within a single vector, move the shuffle after the cmp:
5497   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5498   Type *V1Ty = V1->getType();
5499   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5500       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5501     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5502     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5503   }
5504 
5505   // Try to canonicalize compare with splatted operand and splat constant.
5506   // TODO: We could generalize this for more than splats. See/use the code in
5507   //       InstCombiner::foldVectorBinop().
5508   Constant *C;
5509   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5510     return nullptr;
5511 
5512   // Length-changing splats are ok, so adjust the constants as needed:
5513   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5514   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5515   int MaskSplatIndex;
5516   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5517     // We allow undefs in matching, but this transform removes those for safety.
5518     // Demanded elements analysis should be able to recover some/all of that.
5519     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5520                                  ScalarC);
5521     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5522     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5523     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5524                                  NewM);
5525   }
5526 
5527   return nullptr;
5528 }
5529 
5530 // extract(uadd.with.overflow(A, B), 0) ult A
5531 //  -> extract(uadd.with.overflow(A, B), 1)
5532 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5533   CmpInst::Predicate Pred = I.getPredicate();
5534   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5535 
5536   Value *UAddOv;
5537   Value *A, *B;
5538   auto UAddOvResultPat = m_ExtractValue<0>(
5539       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5540   if (match(Op0, UAddOvResultPat) &&
5541       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5542        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5543         (match(A, m_One()) || match(B, m_One()))) ||
5544        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5545         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5546     // extract(uadd.with.overflow(A, B), 0) < A
5547     // extract(uadd.with.overflow(A, 1), 0) == 0
5548     // extract(uadd.with.overflow(A, -1), 0) != -1
5549     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5550   else if (match(Op1, UAddOvResultPat) &&
5551            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5552     // A > extract(uadd.with.overflow(A, B), 0)
5553     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5554   else
5555     return nullptr;
5556 
5557   return ExtractValueInst::Create(UAddOv, 1);
5558 }
5559 
5560 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5561   bool Changed = false;
5562   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5563   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5564   unsigned Op0Cplxity = getComplexity(Op0);
5565   unsigned Op1Cplxity = getComplexity(Op1);
5566 
5567   /// Orders the operands of the compare so that they are listed from most
5568   /// complex to least complex.  This puts constants before unary operators,
5569   /// before binary operators.
5570   if (Op0Cplxity < Op1Cplxity ||
5571       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5572     I.swapOperands();
5573     std::swap(Op0, Op1);
5574     Changed = true;
5575   }
5576 
5577   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5578     return replaceInstUsesWith(I, V);
5579 
5580   // Comparing -val or val with non-zero is the same as just comparing val
5581   // ie, abs(val) != 0 -> val != 0
5582   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5583     Value *Cond, *SelectTrue, *SelectFalse;
5584     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5585                             m_Value(SelectFalse)))) {
5586       if (Value *V = dyn_castNegVal(SelectTrue)) {
5587         if (V == SelectFalse)
5588           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5589       }
5590       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5591         if (V == SelectTrue)
5592           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5593       }
5594     }
5595   }
5596 
5597   if (Op0->getType()->isIntOrIntVectorTy(1))
5598     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5599       return Res;
5600 
5601   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5602     return Res;
5603 
5604   if (Instruction *Res = canonicalizeICmpPredicate(I))
5605     return Res;
5606 
5607   if (Instruction *Res = foldICmpWithConstant(I))
5608     return Res;
5609 
5610   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5611     return Res;
5612 
5613   if (Instruction *Res = foldICmpBinOp(I, Q))
5614     return Res;
5615 
5616   if (Instruction *Res = foldICmpUsingKnownBits(I))
5617     return Res;
5618 
5619   // Test if the ICmpInst instruction is used exclusively by a select as
5620   // part of a minimum or maximum operation. If so, refrain from doing
5621   // any other folding. This helps out other analyses which understand
5622   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5623   // and CodeGen. And in this case, at least one of the comparison
5624   // operands has at least one user besides the compare (the select),
5625   // which would often largely negate the benefit of folding anyway.
5626   //
5627   // Do the same for the other patterns recognized by matchSelectPattern.
5628   if (I.hasOneUse())
5629     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5630       Value *A, *B;
5631       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5632       if (SPR.Flavor != SPF_UNKNOWN)
5633         return nullptr;
5634     }
5635 
5636   // Do this after checking for min/max to prevent infinite looping.
5637   if (Instruction *Res = foldICmpWithZero(I))
5638     return Res;
5639 
5640   // FIXME: We only do this after checking for min/max to prevent infinite
5641   // looping caused by a reverse canonicalization of these patterns for min/max.
5642   // FIXME: The organization of folds is a mess. These would naturally go into
5643   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5644   // down here after the min/max restriction.
5645   ICmpInst::Predicate Pred = I.getPredicate();
5646   const APInt *C;
5647   if (match(Op1, m_APInt(C))) {
5648     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5649     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5650       Constant *Zero = Constant::getNullValue(Op0->getType());
5651       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5652     }
5653 
5654     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5655     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5656       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5657       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5658     }
5659   }
5660 
5661   if (Instruction *Res = foldICmpInstWithConstant(I))
5662     return Res;
5663 
5664   // Try to match comparison as a sign bit test. Intentionally do this after
5665   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5666   if (Instruction *New = foldSignBitTest(I))
5667     return New;
5668 
5669   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5670     return Res;
5671 
5672   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5673   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5674     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5675       return NI;
5676   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5677     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5678                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5679       return NI;
5680 
5681   // Try to optimize equality comparisons against alloca-based pointers.
5682   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5683     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5684     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5685       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5686         return New;
5687     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5688       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5689         return New;
5690   }
5691 
5692   if (Instruction *Res = foldICmpBitCast(I, Builder))
5693     return Res;
5694 
5695   // TODO: Hoist this above the min/max bailout.
5696   if (Instruction *R = foldICmpWithCastOp(I))
5697     return R;
5698 
5699   if (Instruction *Res = foldICmpWithMinMax(I))
5700     return Res;
5701 
5702   {
5703     Value *A, *B;
5704     // Transform (A & ~B) == 0 --> (A & B) != 0
5705     // and       (A & ~B) != 0 --> (A & B) == 0
5706     // if A is a power of 2.
5707     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5708         match(Op1, m_Zero()) &&
5709         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5710       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5711                           Op1);
5712 
5713     // ~X < ~Y --> Y < X
5714     // ~X < C -->  X > ~C
5715     if (match(Op0, m_Not(m_Value(A)))) {
5716       if (match(Op1, m_Not(m_Value(B))))
5717         return new ICmpInst(I.getPredicate(), B, A);
5718 
5719       const APInt *C;
5720       if (match(Op1, m_APInt(C)))
5721         return new ICmpInst(I.getSwappedPredicate(), A,
5722                             ConstantInt::get(Op1->getType(), ~(*C)));
5723     }
5724 
5725     Instruction *AddI = nullptr;
5726     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5727                                      m_Instruction(AddI))) &&
5728         isa<IntegerType>(A->getType())) {
5729       Value *Result;
5730       Constant *Overflow;
5731       // m_UAddWithOverflow can match patterns that do not include  an explicit
5732       // "add" instruction, so check the opcode of the matched op.
5733       if (AddI->getOpcode() == Instruction::Add &&
5734           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5735                                 Result, Overflow)) {
5736         replaceInstUsesWith(*AddI, Result);
5737         eraseInstFromFunction(*AddI);
5738         return replaceInstUsesWith(I, Overflow);
5739       }
5740     }
5741 
5742     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5743     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5744       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5745         return R;
5746     }
5747     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5748       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5749         return R;
5750     }
5751   }
5752 
5753   if (Instruction *Res = foldICmpEquality(I))
5754     return Res;
5755 
5756   if (Instruction *Res = foldICmpOfUAddOv(I))
5757     return Res;
5758 
5759   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5760   // an i1 which indicates whether or not we successfully did the swap.
5761   //
5762   // Replace comparisons between the old value and the expected value with the
5763   // indicator that 'cmpxchg' returns.
5764   //
5765   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5766   // spuriously fail.  In those cases, the old value may equal the expected
5767   // value but it is possible for the swap to not occur.
5768   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5769     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5770       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5771         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5772             !ACXI->isWeak())
5773           return ExtractValueInst::Create(ACXI, 1);
5774 
5775   {
5776     Value *X;
5777     const APInt *C;
5778     // icmp X+Cst, X
5779     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5780       return foldICmpAddOpConst(X, *C, I.getPredicate());
5781 
5782     // icmp X, X+Cst
5783     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5784       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5785   }
5786 
5787   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5788     return Res;
5789 
5790   if (I.getType()->isVectorTy())
5791     if (Instruction *Res = foldVectorCmp(I, Builder))
5792       return Res;
5793 
5794   return Changed ? &I : nullptr;
5795 }
5796 
5797 /// Fold fcmp ([us]itofp x, cst) if possible.
5798 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5799                                                     Instruction *LHSI,
5800                                                     Constant *RHSC) {
5801   if (!isa<ConstantFP>(RHSC)) return nullptr;
5802   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5803 
5804   // Get the width of the mantissa.  We don't want to hack on conversions that
5805   // might lose information from the integer, e.g. "i64 -> float"
5806   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5807   if (MantissaWidth == -1) return nullptr;  // Unknown.
5808 
5809   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5810 
5811   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5812 
5813   if (I.isEquality()) {
5814     FCmpInst::Predicate P = I.getPredicate();
5815     bool IsExact = false;
5816     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5817     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5818 
5819     // If the floating point constant isn't an integer value, we know if we will
5820     // ever compare equal / not equal to it.
5821     if (!IsExact) {
5822       // TODO: Can never be -0.0 and other non-representable values
5823       APFloat RHSRoundInt(RHS);
5824       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5825       if (RHS != RHSRoundInt) {
5826         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5827           return replaceInstUsesWith(I, Builder.getFalse());
5828 
5829         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5830         return replaceInstUsesWith(I, Builder.getTrue());
5831       }
5832     }
5833 
5834     // TODO: If the constant is exactly representable, is it always OK to do
5835     // equality compares as integer?
5836   }
5837 
5838   // Check to see that the input is converted from an integer type that is small
5839   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5840   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5841   unsigned InputSize = IntTy->getScalarSizeInBits();
5842 
5843   // Following test does NOT adjust InputSize downwards for signed inputs,
5844   // because the most negative value still requires all the mantissa bits
5845   // to distinguish it from one less than that value.
5846   if ((int)InputSize > MantissaWidth) {
5847     // Conversion would lose accuracy. Check if loss can impact comparison.
5848     int Exp = ilogb(RHS);
5849     if (Exp == APFloat::IEK_Inf) {
5850       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5851       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5852         // Conversion could create infinity.
5853         return nullptr;
5854     } else {
5855       // Note that if RHS is zero or NaN, then Exp is negative
5856       // and first condition is trivially false.
5857       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5858         // Conversion could affect comparison.
5859         return nullptr;
5860     }
5861   }
5862 
5863   // Otherwise, we can potentially simplify the comparison.  We know that it
5864   // will always come through as an integer value and we know the constant is
5865   // not a NAN (it would have been previously simplified).
5866   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5867 
5868   ICmpInst::Predicate Pred;
5869   switch (I.getPredicate()) {
5870   default: llvm_unreachable("Unexpected predicate!");
5871   case FCmpInst::FCMP_UEQ:
5872   case FCmpInst::FCMP_OEQ:
5873     Pred = ICmpInst::ICMP_EQ;
5874     break;
5875   case FCmpInst::FCMP_UGT:
5876   case FCmpInst::FCMP_OGT:
5877     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5878     break;
5879   case FCmpInst::FCMP_UGE:
5880   case FCmpInst::FCMP_OGE:
5881     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5882     break;
5883   case FCmpInst::FCMP_ULT:
5884   case FCmpInst::FCMP_OLT:
5885     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5886     break;
5887   case FCmpInst::FCMP_ULE:
5888   case FCmpInst::FCMP_OLE:
5889     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5890     break;
5891   case FCmpInst::FCMP_UNE:
5892   case FCmpInst::FCMP_ONE:
5893     Pred = ICmpInst::ICMP_NE;
5894     break;
5895   case FCmpInst::FCMP_ORD:
5896     return replaceInstUsesWith(I, Builder.getTrue());
5897   case FCmpInst::FCMP_UNO:
5898     return replaceInstUsesWith(I, Builder.getFalse());
5899   }
5900 
5901   // Now we know that the APFloat is a normal number, zero or inf.
5902 
5903   // See if the FP constant is too large for the integer.  For example,
5904   // comparing an i8 to 300.0.
5905   unsigned IntWidth = IntTy->getScalarSizeInBits();
5906 
5907   if (!LHSUnsigned) {
5908     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5909     // and large values.
5910     APFloat SMax(RHS.getSemantics());
5911     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5912                           APFloat::rmNearestTiesToEven);
5913     if (SMax < RHS) { // smax < 13123.0
5914       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5915           Pred == ICmpInst::ICMP_SLE)
5916         return replaceInstUsesWith(I, Builder.getTrue());
5917       return replaceInstUsesWith(I, Builder.getFalse());
5918     }
5919   } else {
5920     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5921     // +INF and large values.
5922     APFloat UMax(RHS.getSemantics());
5923     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5924                           APFloat::rmNearestTiesToEven);
5925     if (UMax < RHS) { // umax < 13123.0
5926       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5927           Pred == ICmpInst::ICMP_ULE)
5928         return replaceInstUsesWith(I, Builder.getTrue());
5929       return replaceInstUsesWith(I, Builder.getFalse());
5930     }
5931   }
5932 
5933   if (!LHSUnsigned) {
5934     // See if the RHS value is < SignedMin.
5935     APFloat SMin(RHS.getSemantics());
5936     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5937                           APFloat::rmNearestTiesToEven);
5938     if (SMin > RHS) { // smin > 12312.0
5939       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5940           Pred == ICmpInst::ICMP_SGE)
5941         return replaceInstUsesWith(I, Builder.getTrue());
5942       return replaceInstUsesWith(I, Builder.getFalse());
5943     }
5944   } else {
5945     // See if the RHS value is < UnsignedMin.
5946     APFloat UMin(RHS.getSemantics());
5947     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5948                           APFloat::rmNearestTiesToEven);
5949     if (UMin > RHS) { // umin > 12312.0
5950       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5951           Pred == ICmpInst::ICMP_UGE)
5952         return replaceInstUsesWith(I, Builder.getTrue());
5953       return replaceInstUsesWith(I, Builder.getFalse());
5954     }
5955   }
5956 
5957   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5958   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5959   // casting the FP value to the integer value and back, checking for equality.
5960   // Don't do this for zero, because -0.0 is not fractional.
5961   Constant *RHSInt = LHSUnsigned
5962     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5963     : ConstantExpr::getFPToSI(RHSC, IntTy);
5964   if (!RHS.isZero()) {
5965     bool Equal = LHSUnsigned
5966       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5967       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5968     if (!Equal) {
5969       // If we had a comparison against a fractional value, we have to adjust
5970       // the compare predicate and sometimes the value.  RHSC is rounded towards
5971       // zero at this point.
5972       switch (Pred) {
5973       default: llvm_unreachable("Unexpected integer comparison!");
5974       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5975         return replaceInstUsesWith(I, Builder.getTrue());
5976       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5977         return replaceInstUsesWith(I, Builder.getFalse());
5978       case ICmpInst::ICMP_ULE:
5979         // (float)int <= 4.4   --> int <= 4
5980         // (float)int <= -4.4  --> false
5981         if (RHS.isNegative())
5982           return replaceInstUsesWith(I, Builder.getFalse());
5983         break;
5984       case ICmpInst::ICMP_SLE:
5985         // (float)int <= 4.4   --> int <= 4
5986         // (float)int <= -4.4  --> int < -4
5987         if (RHS.isNegative())
5988           Pred = ICmpInst::ICMP_SLT;
5989         break;
5990       case ICmpInst::ICMP_ULT:
5991         // (float)int < -4.4   --> false
5992         // (float)int < 4.4    --> int <= 4
5993         if (RHS.isNegative())
5994           return replaceInstUsesWith(I, Builder.getFalse());
5995         Pred = ICmpInst::ICMP_ULE;
5996         break;
5997       case ICmpInst::ICMP_SLT:
5998         // (float)int < -4.4   --> int < -4
5999         // (float)int < 4.4    --> int <= 4
6000         if (!RHS.isNegative())
6001           Pred = ICmpInst::ICMP_SLE;
6002         break;
6003       case ICmpInst::ICMP_UGT:
6004         // (float)int > 4.4    --> int > 4
6005         // (float)int > -4.4   --> true
6006         if (RHS.isNegative())
6007           return replaceInstUsesWith(I, Builder.getTrue());
6008         break;
6009       case ICmpInst::ICMP_SGT:
6010         // (float)int > 4.4    --> int > 4
6011         // (float)int > -4.4   --> int >= -4
6012         if (RHS.isNegative())
6013           Pred = ICmpInst::ICMP_SGE;
6014         break;
6015       case ICmpInst::ICMP_UGE:
6016         // (float)int >= -4.4   --> true
6017         // (float)int >= 4.4    --> int > 4
6018         if (RHS.isNegative())
6019           return replaceInstUsesWith(I, Builder.getTrue());
6020         Pred = ICmpInst::ICMP_UGT;
6021         break;
6022       case ICmpInst::ICMP_SGE:
6023         // (float)int >= -4.4   --> int >= -4
6024         // (float)int >= 4.4    --> int > 4
6025         if (!RHS.isNegative())
6026           Pred = ICmpInst::ICMP_SGT;
6027         break;
6028       }
6029     }
6030   }
6031 
6032   // Lower this FP comparison into an appropriate integer version of the
6033   // comparison.
6034   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6035 }
6036 
6037 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6038 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6039                                               Constant *RHSC) {
6040   // When C is not 0.0 and infinities are not allowed:
6041   // (C / X) < 0.0 is a sign-bit test of X
6042   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6043   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6044   //
6045   // Proof:
6046   // Multiply (C / X) < 0.0 by X * X / C.
6047   // - X is non zero, if it is the flag 'ninf' is violated.
6048   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6049   //   the predicate. C is also non zero by definition.
6050   //
6051   // Thus X * X / C is non zero and the transformation is valid. [qed]
6052 
6053   FCmpInst::Predicate Pred = I.getPredicate();
6054 
6055   // Check that predicates are valid.
6056   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6057       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6058     return nullptr;
6059 
6060   // Check that RHS operand is zero.
6061   if (!match(RHSC, m_AnyZeroFP()))
6062     return nullptr;
6063 
6064   // Check fastmath flags ('ninf').
6065   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6066     return nullptr;
6067 
6068   // Check the properties of the dividend. It must not be zero to avoid a
6069   // division by zero (see Proof).
6070   const APFloat *C;
6071   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6072     return nullptr;
6073 
6074   if (C->isZero())
6075     return nullptr;
6076 
6077   // Get swapped predicate if necessary.
6078   if (C->isNegative())
6079     Pred = I.getSwappedPredicate();
6080 
6081   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6082 }
6083 
6084 /// Optimize fabs(X) compared with zero.
6085 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6086   Value *X;
6087   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6088       !match(I.getOperand(1), m_PosZeroFP()))
6089     return nullptr;
6090 
6091   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6092     I->setPredicate(P);
6093     return IC.replaceOperand(*I, 0, X);
6094   };
6095 
6096   switch (I.getPredicate()) {
6097   case FCmpInst::FCMP_UGE:
6098   case FCmpInst::FCMP_OLT:
6099     // fabs(X) >= 0.0 --> true
6100     // fabs(X) <  0.0 --> false
6101     llvm_unreachable("fcmp should have simplified");
6102 
6103   case FCmpInst::FCMP_OGT:
6104     // fabs(X) > 0.0 --> X != 0.0
6105     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6106 
6107   case FCmpInst::FCMP_UGT:
6108     // fabs(X) u> 0.0 --> X u!= 0.0
6109     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6110 
6111   case FCmpInst::FCMP_OLE:
6112     // fabs(X) <= 0.0 --> X == 0.0
6113     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6114 
6115   case FCmpInst::FCMP_ULE:
6116     // fabs(X) u<= 0.0 --> X u== 0.0
6117     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6118 
6119   case FCmpInst::FCMP_OGE:
6120     // fabs(X) >= 0.0 --> !isnan(X)
6121     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6122     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6123 
6124   case FCmpInst::FCMP_ULT:
6125     // fabs(X) u< 0.0 --> isnan(X)
6126     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6127     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6128 
6129   case FCmpInst::FCMP_OEQ:
6130   case FCmpInst::FCMP_UEQ:
6131   case FCmpInst::FCMP_ONE:
6132   case FCmpInst::FCMP_UNE:
6133   case FCmpInst::FCMP_ORD:
6134   case FCmpInst::FCMP_UNO:
6135     // Look through the fabs() because it doesn't change anything but the sign.
6136     // fabs(X) == 0.0 --> X == 0.0,
6137     // fabs(X) != 0.0 --> X != 0.0
6138     // isnan(fabs(X)) --> isnan(X)
6139     // !isnan(fabs(X) --> !isnan(X)
6140     return replacePredAndOp0(&I, I.getPredicate(), X);
6141 
6142   default:
6143     return nullptr;
6144   }
6145 }
6146 
6147 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6148   bool Changed = false;
6149 
6150   /// Orders the operands of the compare so that they are listed from most
6151   /// complex to least complex.  This puts constants before unary operators,
6152   /// before binary operators.
6153   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6154     I.swapOperands();
6155     Changed = true;
6156   }
6157 
6158   const CmpInst::Predicate Pred = I.getPredicate();
6159   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6160   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6161                                   SQ.getWithInstruction(&I)))
6162     return replaceInstUsesWith(I, V);
6163 
6164   // Simplify 'fcmp pred X, X'
6165   Type *OpType = Op0->getType();
6166   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6167   if (Op0 == Op1) {
6168     switch (Pred) {
6169       default: break;
6170     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6171     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6172     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6173     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6174       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6175       I.setPredicate(FCmpInst::FCMP_UNO);
6176       I.setOperand(1, Constant::getNullValue(OpType));
6177       return &I;
6178 
6179     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6180     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6181     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6182     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6183       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6184       I.setPredicate(FCmpInst::FCMP_ORD);
6185       I.setOperand(1, Constant::getNullValue(OpType));
6186       return &I;
6187     }
6188   }
6189 
6190   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6191   // then canonicalize the operand to 0.0.
6192   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6193     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6194       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6195 
6196     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6197       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6198   }
6199 
6200   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6201   Value *X, *Y;
6202   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6203     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6204 
6205   // Test if the FCmpInst instruction is used exclusively by a select as
6206   // part of a minimum or maximum operation. If so, refrain from doing
6207   // any other folding. This helps out other analyses which understand
6208   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6209   // and CodeGen. And in this case, at least one of the comparison
6210   // operands has at least one user besides the compare (the select),
6211   // which would often largely negate the benefit of folding anyway.
6212   if (I.hasOneUse())
6213     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6214       Value *A, *B;
6215       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6216       if (SPR.Flavor != SPF_UNKNOWN)
6217         return nullptr;
6218     }
6219 
6220   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6221   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6222   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6223     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6224 
6225   // Handle fcmp with instruction LHS and constant RHS.
6226   Instruction *LHSI;
6227   Constant *RHSC;
6228   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6229     switch (LHSI->getOpcode()) {
6230     case Instruction::PHI:
6231       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6232       // block.  If in the same block, we're encouraging jump threading.  If
6233       // not, we are just pessimizing the code by making an i1 phi.
6234       if (LHSI->getParent() == I.getParent())
6235         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6236           return NV;
6237       break;
6238     case Instruction::SIToFP:
6239     case Instruction::UIToFP:
6240       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6241         return NV;
6242       break;
6243     case Instruction::FDiv:
6244       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6245         return NV;
6246       break;
6247     case Instruction::Load:
6248       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6249         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6250           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6251               !cast<LoadInst>(LHSI)->isVolatile())
6252             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6253               return Res;
6254       break;
6255   }
6256   }
6257 
6258   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6259     return R;
6260 
6261   if (match(Op0, m_FNeg(m_Value(X)))) {
6262     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6263     Constant *C;
6264     if (match(Op1, m_Constant(C))) {
6265       Constant *NegC = ConstantExpr::getFNeg(C);
6266       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6267     }
6268   }
6269 
6270   if (match(Op0, m_FPExt(m_Value(X)))) {
6271     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6272     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6273       return new FCmpInst(Pred, X, Y, "", &I);
6274 
6275     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6276     const APFloat *C;
6277     if (match(Op1, m_APFloat(C))) {
6278       const fltSemantics &FPSem =
6279           X->getType()->getScalarType()->getFltSemantics();
6280       bool Lossy;
6281       APFloat TruncC = *C;
6282       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6283 
6284       // Avoid lossy conversions and denormals.
6285       // Zero is a special case that's OK to convert.
6286       APFloat Fabs = TruncC;
6287       Fabs.clearSign();
6288       if (!Lossy &&
6289           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6290         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6291         return new FCmpInst(Pred, X, NewC, "", &I);
6292       }
6293     }
6294   }
6295 
6296   // Convert a sign-bit test of an FP value into a cast and integer compare.
6297   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6298   // TODO: Handle non-zero compare constants.
6299   // TODO: Handle other predicates.
6300   const APFloat *C;
6301   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6302                                                            m_Value(X)))) &&
6303       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6304     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6305     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6306       IntType = VectorType::get(IntType, VecTy->getElementCount());
6307 
6308     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6309     if (Pred == FCmpInst::FCMP_OLT) {
6310       Value *IntX = Builder.CreateBitCast(X, IntType);
6311       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6312                           ConstantInt::getNullValue(IntType));
6313     }
6314   }
6315 
6316   if (I.getType()->isVectorTy())
6317     if (Instruction *Res = foldVectorCmp(I, Builder))
6318       return Res;
6319 
6320   return Changed ? &I : nullptr;
6321 }
6322