1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 707 continue; 708 } 709 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 710 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 711 : GEP->getOperand(1); 712 setInsertionPoint(Builder, GEP); 713 // Indices might need to be sign extended. GEPs will magically do 714 // this, but we need to do it ourselves here. 715 if (Index->getType()->getScalarSizeInBits() != 716 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 717 Index = Builder.CreateSExtOrTrunc( 718 Index, NewInsts[GEP->getOperand(0)]->getType(), 719 GEP->getOperand(0)->getName() + ".sext"); 720 } 721 722 auto *Op = NewInsts[GEP->getOperand(0)]; 723 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 724 NewInsts[GEP] = Index; 725 else 726 NewInsts[GEP] = Builder.CreateNSWAdd( 727 Op, Index, GEP->getOperand(0)->getName() + ".add"); 728 continue; 729 } 730 if (isa<PHINode>(Val)) 731 continue; 732 733 llvm_unreachable("Unexpected instruction type"); 734 } 735 736 // Add the incoming values to the PHI nodes. 737 for (Value *Val : Explored) { 738 if (Val == Base) 739 continue; 740 // All the instructions have been created, we can now add edges to the 741 // phi nodes. 742 if (auto *PHI = dyn_cast<PHINode>(Val)) { 743 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 744 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 745 Value *NewIncoming = PHI->getIncomingValue(I); 746 747 if (NewInsts.find(NewIncoming) != NewInsts.end()) 748 NewIncoming = NewInsts[NewIncoming]; 749 750 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 751 } 752 } 753 } 754 755 for (Value *Val : Explored) { 756 if (Val == Base) 757 continue; 758 759 // Depending on the type, for external users we have to emit 760 // a GEP or a GEP + ptrtoint. 761 setInsertionPoint(Builder, Val, false); 762 763 // If required, create an inttoptr instruction for Base. 764 Value *NewBase = Base; 765 if (!Base->getType()->isPointerTy()) 766 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 767 Start->getName() + "to.ptr"); 768 769 Value *GEP = Builder.CreateInBoundsGEP( 770 Start->getType()->getPointerElementType(), NewBase, 771 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 772 773 if (!Val->getType()->isPointerTy()) { 774 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 775 Val->getName() + ".conv"); 776 GEP = Cast; 777 } 778 Val->replaceAllUsesWith(GEP); 779 } 780 781 return NewInsts[Start]; 782 } 783 784 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 785 /// the input Value as a constant indexed GEP. Returns a pair containing 786 /// the GEPs Pointer and Index. 787 static std::pair<Value *, Value *> 788 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 789 Type *IndexType = IntegerType::get(V->getContext(), 790 DL.getIndexTypeSizeInBits(V->getType())); 791 792 Constant *Index = ConstantInt::getNullValue(IndexType); 793 while (true) { 794 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 795 // We accept only inbouds GEPs here to exclude the possibility of 796 // overflow. 797 if (!GEP->isInBounds()) 798 break; 799 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 800 GEP->getType() == V->getType()) { 801 V = GEP->getOperand(0); 802 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 803 Index = ConstantExpr::getAdd( 804 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 805 continue; 806 } 807 break; 808 } 809 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 810 if (!CI->isNoopCast(DL)) 811 break; 812 V = CI->getOperand(0); 813 continue; 814 } 815 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 816 if (!CI->isNoopCast(DL)) 817 break; 818 V = CI->getOperand(0); 819 continue; 820 } 821 break; 822 } 823 return {V, Index}; 824 } 825 826 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 827 /// We can look through PHIs, GEPs and casts in order to determine a common base 828 /// between GEPLHS and RHS. 829 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 830 ICmpInst::Predicate Cond, 831 const DataLayout &DL) { 832 if (!GEPLHS->hasAllConstantIndices()) 833 return nullptr; 834 835 // Make sure the pointers have the same type. 836 if (GEPLHS->getType() != RHS->getType()) 837 return nullptr; 838 839 Value *PtrBase, *Index; 840 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 841 842 // The set of nodes that will take part in this transformation. 843 SetVector<Value *> Nodes; 844 845 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 846 return nullptr; 847 848 // We know we can re-write this as 849 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 850 // Since we've only looked through inbouds GEPs we know that we 851 // can't have overflow on either side. We can therefore re-write 852 // this as: 853 // OFFSET1 cmp OFFSET2 854 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 855 856 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 857 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 858 // offset. Since Index is the offset of LHS to the base pointer, we will now 859 // compare the offsets instead of comparing the pointers. 860 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 861 } 862 863 /// Fold comparisons between a GEP instruction and something else. At this point 864 /// we know that the GEP is on the LHS of the comparison. 865 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 866 ICmpInst::Predicate Cond, 867 Instruction &I) { 868 // Don't transform signed compares of GEPs into index compares. Even if the 869 // GEP is inbounds, the final add of the base pointer can have signed overflow 870 // and would change the result of the icmp. 871 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 872 // the maximum signed value for the pointer type. 873 if (ICmpInst::isSigned(Cond)) 874 return nullptr; 875 876 // Look through bitcasts and addrspacecasts. We do not however want to remove 877 // 0 GEPs. 878 if (!isa<GetElementPtrInst>(RHS)) 879 RHS = RHS->stripPointerCasts(); 880 881 Value *PtrBase = GEPLHS->getOperand(0); 882 if (PtrBase == RHS && GEPLHS->isInBounds()) { 883 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 884 // This transformation (ignoring the base and scales) is valid because we 885 // know pointers can't overflow since the gep is inbounds. See if we can 886 // output an optimized form. 887 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 888 889 // If not, synthesize the offset the hard way. 890 if (!Offset) 891 Offset = EmitGEPOffset(GEPLHS); 892 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 893 Constant::getNullValue(Offset->getType())); 894 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 895 // If the base pointers are different, but the indices are the same, just 896 // compare the base pointer. 897 if (PtrBase != GEPRHS->getOperand(0)) { 898 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 899 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 900 GEPRHS->getOperand(0)->getType(); 901 if (IndicesTheSame) 902 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 903 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 904 IndicesTheSame = false; 905 break; 906 } 907 908 // If all indices are the same, just compare the base pointers. 909 Type *BaseType = GEPLHS->getOperand(0)->getType(); 910 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 911 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 912 913 // If we're comparing GEPs with two base pointers that only differ in type 914 // and both GEPs have only constant indices or just one use, then fold 915 // the compare with the adjusted indices. 916 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 917 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 918 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 919 PtrBase->stripPointerCasts() == 920 GEPRHS->getOperand(0)->stripPointerCasts()) { 921 Value *LOffset = EmitGEPOffset(GEPLHS); 922 Value *ROffset = EmitGEPOffset(GEPRHS); 923 924 // If we looked through an addrspacecast between different sized address 925 // spaces, the LHS and RHS pointers are different sized 926 // integers. Truncate to the smaller one. 927 Type *LHSIndexTy = LOffset->getType(); 928 Type *RHSIndexTy = ROffset->getType(); 929 if (LHSIndexTy != RHSIndexTy) { 930 if (LHSIndexTy->getPrimitiveSizeInBits() < 931 RHSIndexTy->getPrimitiveSizeInBits()) { 932 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 933 } else 934 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 935 } 936 937 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 938 LOffset, ROffset); 939 return replaceInstUsesWith(I, Cmp); 940 } 941 942 // Otherwise, the base pointers are different and the indices are 943 // different. Try convert this to an indexed compare by looking through 944 // PHIs/casts. 945 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 946 } 947 948 // If one of the GEPs has all zero indices, recurse. 949 if (GEPLHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 951 ICmpInst::getSwappedPredicate(Cond), I); 952 953 // If the other GEP has all zero indices, recurse. 954 if (GEPRHS->hasAllZeroIndices()) 955 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 956 957 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 958 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 959 // If the GEPs only differ by one index, compare it. 960 unsigned NumDifferences = 0; // Keep track of # differences. 961 unsigned DiffOperand = 0; // The operand that differs. 962 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 963 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 964 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 965 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 966 // Irreconcilable differences. 967 NumDifferences = 2; 968 break; 969 } else { 970 if (NumDifferences++) break; 971 DiffOperand = i; 972 } 973 } 974 975 if (NumDifferences == 0) // SAME GEP? 976 return replaceInstUsesWith(I, // No comparison is needed here. 977 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 978 979 else if (NumDifferences == 1 && GEPsInBounds) { 980 Value *LHSV = GEPLHS->getOperand(DiffOperand); 981 Value *RHSV = GEPRHS->getOperand(DiffOperand); 982 // Make sure we do a signed comparison here. 983 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 984 } 985 } 986 987 // Only lower this if the icmp is the only user of the GEP or if we expect 988 // the result to fold to a constant! 989 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 990 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 991 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 992 Value *L = EmitGEPOffset(GEPLHS); 993 Value *R = EmitGEPOffset(GEPRHS); 994 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 995 } 996 } 997 998 // Try convert this to an indexed compare by looking through PHIs/casts as a 999 // last resort. 1000 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1001 } 1002 1003 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1004 const AllocaInst *Alloca, 1005 const Value *Other) { 1006 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1007 1008 // It would be tempting to fold away comparisons between allocas and any 1009 // pointer not based on that alloca (e.g. an argument). However, even 1010 // though such pointers cannot alias, they can still compare equal. 1011 // 1012 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1013 // doesn't escape we can argue that it's impossible to guess its value, and we 1014 // can therefore act as if any such guesses are wrong. 1015 // 1016 // The code below checks that the alloca doesn't escape, and that it's only 1017 // used in a comparison once (the current instruction). The 1018 // single-comparison-use condition ensures that we're trivially folding all 1019 // comparisons against the alloca consistently, and avoids the risk of 1020 // erroneously folding a comparison of the pointer with itself. 1021 1022 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1023 1024 SmallVector<const Use *, 32> Worklist; 1025 for (const Use &U : Alloca->uses()) { 1026 if (Worklist.size() >= MaxIter) 1027 return nullptr; 1028 Worklist.push_back(&U); 1029 } 1030 1031 unsigned NumCmps = 0; 1032 while (!Worklist.empty()) { 1033 assert(Worklist.size() <= MaxIter); 1034 const Use *U = Worklist.pop_back_val(); 1035 const Value *V = U->getUser(); 1036 --MaxIter; 1037 1038 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1039 isa<SelectInst>(V)) { 1040 // Track the uses. 1041 } else if (isa<LoadInst>(V)) { 1042 // Loading from the pointer doesn't escape it. 1043 continue; 1044 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1045 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1046 if (SI->getValueOperand() == U->get()) 1047 return nullptr; 1048 continue; 1049 } else if (isa<ICmpInst>(V)) { 1050 if (NumCmps++) 1051 return nullptr; // Found more than one cmp. 1052 continue; 1053 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1054 switch (Intrin->getIntrinsicID()) { 1055 // These intrinsics don't escape or compare the pointer. Memset is safe 1056 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1057 // we don't allow stores, so src cannot point to V. 1058 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1059 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1060 continue; 1061 default: 1062 return nullptr; 1063 } 1064 } else { 1065 return nullptr; 1066 } 1067 for (const Use &U : V->uses()) { 1068 if (Worklist.size() >= MaxIter) 1069 return nullptr; 1070 Worklist.push_back(&U); 1071 } 1072 } 1073 1074 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1075 return replaceInstUsesWith( 1076 ICI, 1077 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1078 } 1079 1080 /// Fold "icmp pred (X+C), X". 1081 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1082 ICmpInst::Predicate Pred) { 1083 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1084 // so the values can never be equal. Similarly for all other "or equals" 1085 // operators. 1086 assert(!!C && "C should not be zero!"); 1087 1088 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1089 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1090 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1091 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1092 Constant *R = ConstantInt::get(X->getType(), 1093 APInt::getMaxValue(C.getBitWidth()) - C); 1094 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1095 } 1096 1097 // (X+1) >u X --> X <u (0-1) --> X != 255 1098 // (X+2) >u X --> X <u (0-2) --> X <u 254 1099 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1100 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1101 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1102 ConstantInt::get(X->getType(), -C)); 1103 1104 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1105 1106 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1107 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1108 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1109 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1110 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1111 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1112 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1113 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1114 ConstantInt::get(X->getType(), SMax - C)); 1115 1116 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1117 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1118 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1119 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1120 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1121 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1122 1123 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1124 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1125 ConstantInt::get(X->getType(), SMax - (C - 1))); 1126 } 1127 1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1129 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1131 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1132 const APInt &AP1, 1133 const APInt &AP2) { 1134 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1135 1136 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1137 if (I.getPredicate() == I.ICMP_NE) 1138 Pred = CmpInst::getInversePredicate(Pred); 1139 return new ICmpInst(Pred, LHS, RHS); 1140 }; 1141 1142 // Don't bother doing any work for cases which InstSimplify handles. 1143 if (AP2.isNullValue()) 1144 return nullptr; 1145 1146 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1147 if (IsAShr) { 1148 if (AP2.isAllOnesValue()) 1149 return nullptr; 1150 if (AP2.isNegative() != AP1.isNegative()) 1151 return nullptr; 1152 if (AP2.sgt(AP1)) 1153 return nullptr; 1154 } 1155 1156 if (!AP1) 1157 // 'A' must be large enough to shift out the highest set bit. 1158 return getICmp(I.ICMP_UGT, A, 1159 ConstantInt::get(A->getType(), AP2.logBase2())); 1160 1161 if (AP1 == AP2) 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1163 1164 int Shift; 1165 if (IsAShr && AP1.isNegative()) 1166 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1167 else 1168 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1169 1170 if (Shift > 0) { 1171 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1172 // There are multiple solutions if we are comparing against -1 and the LHS 1173 // of the ashr is not a power of two. 1174 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1175 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1176 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1177 } else if (AP1 == AP2.lshr(Shift)) { 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } 1180 } 1181 1182 // Shifting const2 will never be equal to const1. 1183 // FIXME: This should always be handled by InstSimplify? 1184 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1185 return replaceInstUsesWith(I, TorF); 1186 } 1187 1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1190 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1191 const APInt &AP1, 1192 const APInt &AP2) { 1193 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1194 1195 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1196 if (I.getPredicate() == I.ICMP_NE) 1197 Pred = CmpInst::getInversePredicate(Pred); 1198 return new ICmpInst(Pred, LHS, RHS); 1199 }; 1200 1201 // Don't bother doing any work for cases which InstSimplify handles. 1202 if (AP2.isNullValue()) 1203 return nullptr; 1204 1205 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1206 1207 if (!AP1 && AP2TrailingZeros != 0) 1208 return getICmp( 1209 I.ICMP_UGE, A, 1210 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1211 1212 if (AP1 == AP2) 1213 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1214 1215 // Get the distance between the lowest bits that are set. 1216 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1217 1218 if (Shift > 0 && AP2.shl(Shift) == AP1) 1219 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1220 1221 // Shifting const2 will never be equal to const1. 1222 // FIXME: This should always be handled by InstSimplify? 1223 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1224 return replaceInstUsesWith(I, TorF); 1225 } 1226 1227 /// The caller has matched a pattern of the form: 1228 /// I = icmp ugt (add (add A, B), CI2), CI1 1229 /// If this is of the form: 1230 /// sum = a + b 1231 /// if (sum+128 >u 255) 1232 /// Then replace it with llvm.sadd.with.overflow.i8. 1233 /// 1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1235 ConstantInt *CI2, ConstantInt *CI1, 1236 InstCombiner &IC) { 1237 // The transformation we're trying to do here is to transform this into an 1238 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1239 // with a narrower add, and discard the add-with-constant that is part of the 1240 // range check (if we can't eliminate it, this isn't profitable). 1241 1242 // In order to eliminate the add-with-constant, the compare can be its only 1243 // use. 1244 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1245 if (!AddWithCst->hasOneUse()) 1246 return nullptr; 1247 1248 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1249 if (!CI2->getValue().isPowerOf2()) 1250 return nullptr; 1251 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1252 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1253 return nullptr; 1254 1255 // The width of the new add formed is 1 more than the bias. 1256 ++NewWidth; 1257 1258 // Check to see that CI1 is an all-ones value with NewWidth bits. 1259 if (CI1->getBitWidth() == NewWidth || 1260 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1261 return nullptr; 1262 1263 // This is only really a signed overflow check if the inputs have been 1264 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1265 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1266 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1267 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1268 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1269 return nullptr; 1270 1271 // In order to replace the original add with a narrower 1272 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1273 // and truncates that discard the high bits of the add. Verify that this is 1274 // the case. 1275 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1276 for (User *U : OrigAdd->users()) { 1277 if (U == AddWithCst) 1278 continue; 1279 1280 // Only accept truncates for now. We would really like a nice recursive 1281 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1282 // chain to see which bits of a value are actually demanded. If the 1283 // original add had another add which was then immediately truncated, we 1284 // could still do the transformation. 1285 TruncInst *TI = dyn_cast<TruncInst>(U); 1286 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1287 return nullptr; 1288 } 1289 1290 // If the pattern matches, truncate the inputs to the narrower type and 1291 // use the sadd_with_overflow intrinsic to efficiently compute both the 1292 // result and the overflow bit. 1293 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1294 Function *F = Intrinsic::getDeclaration( 1295 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1296 1297 InstCombiner::BuilderTy &Builder = IC.Builder; 1298 1299 // Put the new code above the original add, in case there are any uses of the 1300 // add between the add and the compare. 1301 Builder.SetInsertPoint(OrigAdd); 1302 1303 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1304 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1305 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1306 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1307 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1308 1309 // The inner add was the result of the narrow add, zero extended to the 1310 // wider type. Replace it with the result computed by the intrinsic. 1311 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1312 1313 // The original icmp gets replaced with the overflow value. 1314 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1315 } 1316 1317 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1318 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1319 CmpInst::Predicate Pred = Cmp.getPredicate(); 1320 Value *X = Cmp.getOperand(0); 1321 1322 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1323 Value *A, *B; 1324 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1325 if (SPR.Flavor == SPF_SMIN) { 1326 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1327 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1328 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1329 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1330 } 1331 } 1332 return nullptr; 1333 } 1334 1335 /// Fold icmp Pred X, C. 1336 /// TODO: This code structure does not make sense. The saturating add fold 1337 /// should be moved to some other helper and extended as noted below (it is also 1338 /// possible that code has been made unnecessary - do we canonicalize IR to 1339 /// overflow/saturating intrinsics or not?). 1340 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1341 // Match the following pattern, which is a common idiom when writing 1342 // overflow-safe integer arithmetic functions. The source performs an addition 1343 // in wider type and explicitly checks for overflow using comparisons against 1344 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1345 // 1346 // TODO: This could probably be generalized to handle other overflow-safe 1347 // operations if we worked out the formulas to compute the appropriate magic 1348 // constants. 1349 // 1350 // sum = a + b 1351 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1352 CmpInst::Predicate Pred = Cmp.getPredicate(); 1353 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1354 Value *A, *B; 1355 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1356 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1357 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1358 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1359 return Res; 1360 1361 return nullptr; 1362 } 1363 1364 /// Canonicalize icmp instructions based on dominating conditions. 1365 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1366 // This is a cheap/incomplete check for dominance - just match a single 1367 // predecessor with a conditional branch. 1368 BasicBlock *CmpBB = Cmp.getParent(); 1369 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1370 if (!DomBB) 1371 return nullptr; 1372 1373 Value *DomCond; 1374 BasicBlock *TrueBB, *FalseBB; 1375 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1376 return nullptr; 1377 1378 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1379 "Predecessor block does not point to successor?"); 1380 1381 // The branch should get simplified. Don't bother simplifying this condition. 1382 if (TrueBB == FalseBB) 1383 return nullptr; 1384 1385 // Try to simplify this compare to T/F based on the dominating condition. 1386 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1387 if (Imp) 1388 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1389 1390 CmpInst::Predicate Pred = Cmp.getPredicate(); 1391 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1392 ICmpInst::Predicate DomPred; 1393 const APInt *C, *DomC; 1394 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1395 match(Y, m_APInt(C))) { 1396 // We have 2 compares of a variable with constants. Calculate the constant 1397 // ranges of those compares to see if we can transform the 2nd compare: 1398 // DomBB: 1399 // DomCond = icmp DomPred X, DomC 1400 // br DomCond, CmpBB, FalseBB 1401 // CmpBB: 1402 // Cmp = icmp Pred X, C 1403 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1404 ConstantRange DominatingCR = 1405 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1406 : ConstantRange::makeExactICmpRegion( 1407 CmpInst::getInversePredicate(DomPred), *DomC); 1408 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1409 ConstantRange Difference = DominatingCR.difference(CR); 1410 if (Intersection.isEmptySet()) 1411 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1412 if (Difference.isEmptySet()) 1413 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1414 1415 // Canonicalizing a sign bit comparison that gets used in a branch, 1416 // pessimizes codegen by generating branch on zero instruction instead 1417 // of a test and branch. So we avoid canonicalizing in such situations 1418 // because test and branch instruction has better branch displacement 1419 // than compare and branch instruction. 1420 bool UnusedBit; 1421 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1422 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1423 return nullptr; 1424 1425 if (const APInt *EqC = Intersection.getSingleElement()) 1426 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1427 if (const APInt *NeC = Difference.getSingleElement()) 1428 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1429 } 1430 1431 return nullptr; 1432 } 1433 1434 /// Fold icmp (trunc X, Y), C. 1435 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1436 TruncInst *Trunc, 1437 const APInt &C) { 1438 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1439 Value *X = Trunc->getOperand(0); 1440 if (C.isOneValue() && C.getBitWidth() > 1) { 1441 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1442 Value *V = nullptr; 1443 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1444 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1445 ConstantInt::get(V->getType(), 1)); 1446 } 1447 1448 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1449 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1450 // of the high bits truncated out of x are known. 1451 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1452 SrcBits = X->getType()->getScalarSizeInBits(); 1453 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1454 1455 // If all the high bits are known, we can do this xform. 1456 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1457 // Pull in the high bits from known-ones set. 1458 APInt NewRHS = C.zext(SrcBits); 1459 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1460 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1461 } 1462 } 1463 1464 return nullptr; 1465 } 1466 1467 /// Fold icmp (xor X, Y), C. 1468 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1469 BinaryOperator *Xor, 1470 const APInt &C) { 1471 Value *X = Xor->getOperand(0); 1472 Value *Y = Xor->getOperand(1); 1473 const APInt *XorC; 1474 if (!match(Y, m_APInt(XorC))) 1475 return nullptr; 1476 1477 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1478 // fold the xor. 1479 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1480 bool TrueIfSigned = false; 1481 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1482 1483 // If the sign bit of the XorCst is not set, there is no change to 1484 // the operation, just stop using the Xor. 1485 if (!XorC->isNegative()) { 1486 Cmp.setOperand(0, X); 1487 Worklist.Add(Xor); 1488 return &Cmp; 1489 } 1490 1491 // Emit the opposite comparison. 1492 if (TrueIfSigned) 1493 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1494 ConstantInt::getAllOnesValue(X->getType())); 1495 else 1496 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1497 ConstantInt::getNullValue(X->getType())); 1498 } 1499 1500 if (Xor->hasOneUse()) { 1501 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1502 if (!Cmp.isEquality() && XorC->isSignMask()) { 1503 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1504 : Cmp.getSignedPredicate(); 1505 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1506 } 1507 1508 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1509 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1510 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1511 : Cmp.getSignedPredicate(); 1512 Pred = Cmp.getSwappedPredicate(Pred); 1513 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1514 } 1515 } 1516 1517 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1518 if (Pred == ICmpInst::ICMP_UGT) { 1519 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1520 if (*XorC == ~C && (C + 1).isPowerOf2()) 1521 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1522 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1523 if (*XorC == C && (C + 1).isPowerOf2()) 1524 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1525 } 1526 if (Pred == ICmpInst::ICMP_ULT) { 1527 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1528 if (*XorC == -C && C.isPowerOf2()) 1529 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1530 ConstantInt::get(X->getType(), ~C)); 1531 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1532 if (*XorC == C && (-C).isPowerOf2()) 1533 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1534 ConstantInt::get(X->getType(), ~C)); 1535 } 1536 return nullptr; 1537 } 1538 1539 /// Fold icmp (and (sh X, Y), C2), C1. 1540 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1541 const APInt &C1, const APInt &C2) { 1542 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1543 if (!Shift || !Shift->isShift()) 1544 return nullptr; 1545 1546 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1547 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1548 // code produced by the clang front-end, for bitfield access. 1549 // This seemingly simple opportunity to fold away a shift turns out to be 1550 // rather complicated. See PR17827 for details. 1551 unsigned ShiftOpcode = Shift->getOpcode(); 1552 bool IsShl = ShiftOpcode == Instruction::Shl; 1553 const APInt *C3; 1554 if (match(Shift->getOperand(1), m_APInt(C3))) { 1555 bool CanFold = false; 1556 if (ShiftOpcode == Instruction::Shl) { 1557 // For a left shift, we can fold if the comparison is not signed. We can 1558 // also fold a signed comparison if the mask value and comparison value 1559 // are not negative. These constraints may not be obvious, but we can 1560 // prove that they are correct using an SMT solver. 1561 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1562 CanFold = true; 1563 } else { 1564 bool IsAshr = ShiftOpcode == Instruction::AShr; 1565 // For a logical right shift, we can fold if the comparison is not signed. 1566 // We can also fold a signed comparison if the shifted mask value and the 1567 // shifted comparison value are not negative. These constraints may not be 1568 // obvious, but we can prove that they are correct using an SMT solver. 1569 // For an arithmetic shift right we can do the same, if we ensure 1570 // the And doesn't use any bits being shifted in. Normally these would 1571 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1572 // additional user. 1573 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1574 if (!Cmp.isSigned() || 1575 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1576 CanFold = true; 1577 } 1578 } 1579 1580 if (CanFold) { 1581 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1582 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1583 // Check to see if we are shifting out any of the bits being compared. 1584 if (SameAsC1 != C1) { 1585 // If we shifted bits out, the fold is not going to work out. As a 1586 // special case, check to see if this means that the result is always 1587 // true or false now. 1588 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1589 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1590 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1591 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1592 } else { 1593 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1594 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1595 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1596 And->setOperand(0, Shift->getOperand(0)); 1597 Worklist.Add(Shift); // Shift is dead. 1598 return &Cmp; 1599 } 1600 } 1601 } 1602 1603 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1604 // preferable because it allows the C2 << Y expression to be hoisted out of a 1605 // loop if Y is invariant and X is not. 1606 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1607 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1608 // Compute C2 << Y. 1609 Value *NewShift = 1610 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1611 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1612 1613 // Compute X & (C2 << Y). 1614 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1615 Cmp.setOperand(0, NewAnd); 1616 return &Cmp; 1617 } 1618 1619 return nullptr; 1620 } 1621 1622 /// Fold icmp (and X, C2), C1. 1623 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1624 BinaryOperator *And, 1625 const APInt &C1) { 1626 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1627 // TODO: We canonicalize to the longer form for scalars because we have 1628 // better analysis/folds for icmp, and codegen may be better with icmp. 1629 if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && 1630 C1.isNullValue() && match(And->getOperand(1), m_One())) 1631 return new TruncInst(And->getOperand(0), Cmp.getType()); 1632 1633 const APInt *C2; 1634 if (!match(And->getOperand(1), m_APInt(C2))) 1635 return nullptr; 1636 1637 if (!And->hasOneUse()) 1638 return nullptr; 1639 1640 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1641 // the input width without changing the value produced, eliminate the cast: 1642 // 1643 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1644 // 1645 // We can do this transformation if the constants do not have their sign bits 1646 // set or if it is an equality comparison. Extending a relational comparison 1647 // when we're checking the sign bit would not work. 1648 Value *W; 1649 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1650 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1651 // TODO: Is this a good transform for vectors? Wider types may reduce 1652 // throughput. Should this transform be limited (even for scalars) by using 1653 // shouldChangeType()? 1654 if (!Cmp.getType()->isVectorTy()) { 1655 Type *WideType = W->getType(); 1656 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1657 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1658 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1659 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1660 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1661 } 1662 } 1663 1664 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1665 return I; 1666 1667 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1668 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1669 // 1670 // iff pred isn't signed 1671 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1672 match(And->getOperand(1), m_One())) { 1673 Constant *One = cast<Constant>(And->getOperand(1)); 1674 Value *Or = And->getOperand(0); 1675 Value *A, *B, *LShr; 1676 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1677 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1678 unsigned UsesRemoved = 0; 1679 if (And->hasOneUse()) 1680 ++UsesRemoved; 1681 if (Or->hasOneUse()) 1682 ++UsesRemoved; 1683 if (LShr->hasOneUse()) 1684 ++UsesRemoved; 1685 1686 // Compute A & ((1 << B) | 1) 1687 Value *NewOr = nullptr; 1688 if (auto *C = dyn_cast<Constant>(B)) { 1689 if (UsesRemoved >= 1) 1690 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1691 } else { 1692 if (UsesRemoved >= 3) 1693 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1694 /*HasNUW=*/true), 1695 One, Or->getName()); 1696 } 1697 if (NewOr) { 1698 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1699 Cmp.setOperand(0, NewAnd); 1700 return &Cmp; 1701 } 1702 } 1703 } 1704 1705 return nullptr; 1706 } 1707 1708 /// Fold icmp (and X, Y), C. 1709 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1710 BinaryOperator *And, 1711 const APInt &C) { 1712 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1713 return I; 1714 1715 // TODO: These all require that Y is constant too, so refactor with the above. 1716 1717 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1718 Value *X = And->getOperand(0); 1719 Value *Y = And->getOperand(1); 1720 if (auto *LI = dyn_cast<LoadInst>(X)) 1721 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1722 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1723 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1724 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1725 ConstantInt *C2 = cast<ConstantInt>(Y); 1726 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1727 return Res; 1728 } 1729 1730 if (!Cmp.isEquality()) 1731 return nullptr; 1732 1733 // X & -C == -C -> X > u ~C 1734 // X & -C != -C -> X <= u ~C 1735 // iff C is a power of 2 1736 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1737 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1738 : CmpInst::ICMP_ULE; 1739 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1740 } 1741 1742 // (X & C2) == 0 -> (trunc X) >= 0 1743 // (X & C2) != 0 -> (trunc X) < 0 1744 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1745 const APInt *C2; 1746 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1747 int32_t ExactLogBase2 = C2->exactLogBase2(); 1748 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1749 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1750 if (And->getType()->isVectorTy()) 1751 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1752 Value *Trunc = Builder.CreateTrunc(X, NTy); 1753 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1754 : CmpInst::ICMP_SLT; 1755 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1756 } 1757 } 1758 1759 return nullptr; 1760 } 1761 1762 /// Fold icmp (or X, Y), C. 1763 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1764 const APInt &C) { 1765 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1766 if (C.isOneValue()) { 1767 // icmp slt signum(V) 1 --> icmp slt V, 1 1768 Value *V = nullptr; 1769 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1770 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1771 ConstantInt::get(V->getType(), 1)); 1772 } 1773 1774 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1775 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1776 // X | C == C --> X <=u C 1777 // X | C != C --> X >u C 1778 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1779 if ((C + 1).isPowerOf2()) { 1780 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1781 return new ICmpInst(Pred, OrOp0, OrOp1); 1782 } 1783 // More general: are all bits outside of a mask constant set or not set? 1784 // X | C == C --> (X & ~C) == 0 1785 // X | C != C --> (X & ~C) != 0 1786 if (Or->hasOneUse()) { 1787 Value *A = Builder.CreateAnd(OrOp0, ~C); 1788 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1789 } 1790 } 1791 1792 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1793 return nullptr; 1794 1795 Value *P, *Q; 1796 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1797 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1798 // -> and (icmp eq P, null), (icmp eq Q, null). 1799 Value *CmpP = 1800 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1801 Value *CmpQ = 1802 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1803 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1804 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1805 } 1806 1807 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1808 // a shorter form that has more potential to be folded even further. 1809 Value *X1, *X2, *X3, *X4; 1810 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1811 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1812 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1813 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1814 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1815 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1816 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1817 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1818 } 1819 1820 return nullptr; 1821 } 1822 1823 /// Fold icmp (mul X, Y), C. 1824 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1825 BinaryOperator *Mul, 1826 const APInt &C) { 1827 const APInt *MulC; 1828 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1829 return nullptr; 1830 1831 // If this is a test of the sign bit and the multiply is sign-preserving with 1832 // a constant operand, use the multiply LHS operand instead. 1833 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1834 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1835 if (MulC->isNegative()) 1836 Pred = ICmpInst::getSwappedPredicate(Pred); 1837 return new ICmpInst(Pred, Mul->getOperand(0), 1838 Constant::getNullValue(Mul->getType())); 1839 } 1840 1841 return nullptr; 1842 } 1843 1844 /// Fold icmp (shl 1, Y), C. 1845 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1846 const APInt &C) { 1847 Value *Y; 1848 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1849 return nullptr; 1850 1851 Type *ShiftType = Shl->getType(); 1852 unsigned TypeBits = C.getBitWidth(); 1853 bool CIsPowerOf2 = C.isPowerOf2(); 1854 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1855 if (Cmp.isUnsigned()) { 1856 // (1 << Y) pred C -> Y pred Log2(C) 1857 if (!CIsPowerOf2) { 1858 // (1 << Y) < 30 -> Y <= 4 1859 // (1 << Y) <= 30 -> Y <= 4 1860 // (1 << Y) >= 30 -> Y > 4 1861 // (1 << Y) > 30 -> Y > 4 1862 if (Pred == ICmpInst::ICMP_ULT) 1863 Pred = ICmpInst::ICMP_ULE; 1864 else if (Pred == ICmpInst::ICMP_UGE) 1865 Pred = ICmpInst::ICMP_UGT; 1866 } 1867 1868 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1869 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1870 unsigned CLog2 = C.logBase2(); 1871 if (CLog2 == TypeBits - 1) { 1872 if (Pred == ICmpInst::ICMP_UGE) 1873 Pred = ICmpInst::ICMP_EQ; 1874 else if (Pred == ICmpInst::ICMP_ULT) 1875 Pred = ICmpInst::ICMP_NE; 1876 } 1877 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1878 } else if (Cmp.isSigned()) { 1879 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1880 if (C.isAllOnesValue()) { 1881 // (1 << Y) <= -1 -> Y == 31 1882 if (Pred == ICmpInst::ICMP_SLE) 1883 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1884 1885 // (1 << Y) > -1 -> Y != 31 1886 if (Pred == ICmpInst::ICMP_SGT) 1887 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1888 } else if (!C) { 1889 // (1 << Y) < 0 -> Y == 31 1890 // (1 << Y) <= 0 -> Y == 31 1891 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1892 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1893 1894 // (1 << Y) >= 0 -> Y != 31 1895 // (1 << Y) > 0 -> Y != 31 1896 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1897 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1898 } 1899 } else if (Cmp.isEquality() && CIsPowerOf2) { 1900 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1901 } 1902 1903 return nullptr; 1904 } 1905 1906 /// Fold icmp (shl X, Y), C. 1907 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1908 BinaryOperator *Shl, 1909 const APInt &C) { 1910 const APInt *ShiftVal; 1911 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1912 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1913 1914 const APInt *ShiftAmt; 1915 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1916 return foldICmpShlOne(Cmp, Shl, C); 1917 1918 // Check that the shift amount is in range. If not, don't perform undefined 1919 // shifts. When the shift is visited, it will be simplified. 1920 unsigned TypeBits = C.getBitWidth(); 1921 if (ShiftAmt->uge(TypeBits)) 1922 return nullptr; 1923 1924 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1925 Value *X = Shl->getOperand(0); 1926 Type *ShType = Shl->getType(); 1927 1928 // NSW guarantees that we are only shifting out sign bits from the high bits, 1929 // so we can ASHR the compare constant without needing a mask and eliminate 1930 // the shift. 1931 if (Shl->hasNoSignedWrap()) { 1932 if (Pred == ICmpInst::ICMP_SGT) { 1933 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1934 APInt ShiftedC = C.ashr(*ShiftAmt); 1935 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1936 } 1937 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1938 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1939 APInt ShiftedC = C.ashr(*ShiftAmt); 1940 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1941 } 1942 if (Pred == ICmpInst::ICMP_SLT) { 1943 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1944 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1945 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1946 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1947 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1948 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1949 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1950 } 1951 // If this is a signed comparison to 0 and the shift is sign preserving, 1952 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1953 // do that if we're sure to not continue on in this function. 1954 if (isSignTest(Pred, C)) 1955 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1956 } 1957 1958 // NUW guarantees that we are only shifting out zero bits from the high bits, 1959 // so we can LSHR the compare constant without needing a mask and eliminate 1960 // the shift. 1961 if (Shl->hasNoUnsignedWrap()) { 1962 if (Pred == ICmpInst::ICMP_UGT) { 1963 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1964 APInt ShiftedC = C.lshr(*ShiftAmt); 1965 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1966 } 1967 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1968 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1969 APInt ShiftedC = C.lshr(*ShiftAmt); 1970 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1971 } 1972 if (Pred == ICmpInst::ICMP_ULT) { 1973 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1974 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1975 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1976 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1977 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1978 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1979 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1980 } 1981 } 1982 1983 if (Cmp.isEquality() && Shl->hasOneUse()) { 1984 // Strength-reduce the shift into an 'and'. 1985 Constant *Mask = ConstantInt::get( 1986 ShType, 1987 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1988 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1989 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 1990 return new ICmpInst(Pred, And, LShrC); 1991 } 1992 1993 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1994 bool TrueIfSigned = false; 1995 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 1996 // (X << 31) <s 0 --> (X & 1) != 0 1997 Constant *Mask = ConstantInt::get( 1998 ShType, 1999 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2000 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2001 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2002 And, Constant::getNullValue(ShType)); 2003 } 2004 2005 // Transform (icmp pred iM (shl iM %v, N), C) 2006 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2007 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2008 // This enables us to get rid of the shift in favor of a trunc that may be 2009 // free on the target. It has the additional benefit of comparing to a 2010 // smaller constant that may be more target-friendly. 2011 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2012 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2013 DL.isLegalInteger(TypeBits - Amt)) { 2014 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2015 if (ShType->isVectorTy()) 2016 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2017 Constant *NewC = 2018 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2019 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2020 } 2021 2022 return nullptr; 2023 } 2024 2025 /// Fold icmp ({al}shr X, Y), C. 2026 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2027 BinaryOperator *Shr, 2028 const APInt &C) { 2029 // An exact shr only shifts out zero bits, so: 2030 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2031 Value *X = Shr->getOperand(0); 2032 CmpInst::Predicate Pred = Cmp.getPredicate(); 2033 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2034 C.isNullValue()) 2035 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2036 2037 const APInt *ShiftVal; 2038 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2039 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2040 2041 const APInt *ShiftAmt; 2042 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2043 return nullptr; 2044 2045 // Check that the shift amount is in range. If not, don't perform undefined 2046 // shifts. When the shift is visited it will be simplified. 2047 unsigned TypeBits = C.getBitWidth(); 2048 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2049 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2050 return nullptr; 2051 2052 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2053 bool IsExact = Shr->isExact(); 2054 Type *ShrTy = Shr->getType(); 2055 // TODO: If we could guarantee that InstSimplify would handle all of the 2056 // constant-value-based preconditions in the folds below, then we could assert 2057 // those conditions rather than checking them. This is difficult because of 2058 // undef/poison (PR34838). 2059 if (IsAShr) { 2060 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2061 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2062 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2063 APInt ShiftedC = C.shl(ShAmtVal); 2064 if (ShiftedC.ashr(ShAmtVal) == C) 2065 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2066 } 2067 if (Pred == CmpInst::ICMP_SGT) { 2068 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2069 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2070 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2071 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2072 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2073 } 2074 } else { 2075 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2076 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2077 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2078 APInt ShiftedC = C.shl(ShAmtVal); 2079 if (ShiftedC.lshr(ShAmtVal) == C) 2080 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2081 } 2082 if (Pred == CmpInst::ICMP_UGT) { 2083 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2084 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2085 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2086 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2087 } 2088 } 2089 2090 if (!Cmp.isEquality()) 2091 return nullptr; 2092 2093 // Handle equality comparisons of shift-by-constant. 2094 2095 // If the comparison constant changes with the shift, the comparison cannot 2096 // succeed (bits of the comparison constant cannot match the shifted value). 2097 // This should be known by InstSimplify and already be folded to true/false. 2098 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2099 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2100 "Expected icmp+shr simplify did not occur."); 2101 2102 // If the bits shifted out are known zero, compare the unshifted value: 2103 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2104 if (Shr->isExact()) 2105 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2106 2107 if (Shr->hasOneUse()) { 2108 // Canonicalize the shift into an 'and': 2109 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2110 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2111 Constant *Mask = ConstantInt::get(ShrTy, Val); 2112 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2113 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 /// Fold icmp (udiv X, Y), C. 2120 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2121 BinaryOperator *UDiv, 2122 const APInt &C) { 2123 const APInt *C2; 2124 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2125 return nullptr; 2126 2127 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2128 2129 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2130 Value *Y = UDiv->getOperand(1); 2131 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2132 assert(!C.isMaxValue() && 2133 "icmp ugt X, UINT_MAX should have been simplified already."); 2134 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2135 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2136 } 2137 2138 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2139 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2140 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2141 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2142 ConstantInt::get(Y->getType(), C2->udiv(C))); 2143 } 2144 2145 return nullptr; 2146 } 2147 2148 /// Fold icmp ({su}div X, Y), C. 2149 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2150 BinaryOperator *Div, 2151 const APInt &C) { 2152 // Fold: icmp pred ([us]div X, C2), C -> range test 2153 // Fold this div into the comparison, producing a range check. 2154 // Determine, based on the divide type, what the range is being 2155 // checked. If there is an overflow on the low or high side, remember 2156 // it, otherwise compute the range [low, hi) bounding the new value. 2157 // See: InsertRangeTest above for the kinds of replacements possible. 2158 const APInt *C2; 2159 if (!match(Div->getOperand(1), m_APInt(C2))) 2160 return nullptr; 2161 2162 // FIXME: If the operand types don't match the type of the divide 2163 // then don't attempt this transform. The code below doesn't have the 2164 // logic to deal with a signed divide and an unsigned compare (and 2165 // vice versa). This is because (x /s C2) <s C produces different 2166 // results than (x /s C2) <u C or (x /u C2) <s C or even 2167 // (x /u C2) <u C. Simply casting the operands and result won't 2168 // work. :( The if statement below tests that condition and bails 2169 // if it finds it. 2170 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2171 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2172 return nullptr; 2173 2174 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2175 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2176 // division-by-constant cases should be present, we can not assert that they 2177 // have happened before we reach this icmp instruction. 2178 if (C2->isNullValue() || C2->isOneValue() || 2179 (DivIsSigned && C2->isAllOnesValue())) 2180 return nullptr; 2181 2182 // Compute Prod = C * C2. We are essentially solving an equation of 2183 // form X / C2 = C. We solve for X by multiplying C2 and C. 2184 // By solving for X, we can turn this into a range check instead of computing 2185 // a divide. 2186 APInt Prod = C * *C2; 2187 2188 // Determine if the product overflows by seeing if the product is not equal to 2189 // the divide. Make sure we do the same kind of divide as in the LHS 2190 // instruction that we're folding. 2191 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2192 2193 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2194 2195 // If the division is known to be exact, then there is no remainder from the 2196 // divide, so the covered range size is unit, otherwise it is the divisor. 2197 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2198 2199 // Figure out the interval that is being checked. For example, a comparison 2200 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2201 // Compute this interval based on the constants involved and the signedness of 2202 // the compare/divide. This computes a half-open interval, keeping track of 2203 // whether either value in the interval overflows. After analysis each 2204 // overflow variable is set to 0 if it's corresponding bound variable is valid 2205 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2206 int LoOverflow = 0, HiOverflow = 0; 2207 APInt LoBound, HiBound; 2208 2209 if (!DivIsSigned) { // udiv 2210 // e.g. X/5 op 3 --> [15, 20) 2211 LoBound = Prod; 2212 HiOverflow = LoOverflow = ProdOV; 2213 if (!HiOverflow) { 2214 // If this is not an exact divide, then many values in the range collapse 2215 // to the same result value. 2216 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2217 } 2218 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2219 if (C.isNullValue()) { // (X / pos) op 0 2220 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2221 LoBound = -(RangeSize - 1); 2222 HiBound = RangeSize; 2223 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2224 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2225 HiOverflow = LoOverflow = ProdOV; 2226 if (!HiOverflow) 2227 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2228 } else { // (X / pos) op neg 2229 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2230 HiBound = Prod + 1; 2231 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2232 if (!LoOverflow) { 2233 APInt DivNeg = -RangeSize; 2234 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2235 } 2236 } 2237 } else if (C2->isNegative()) { // Divisor is < 0. 2238 if (Div->isExact()) 2239 RangeSize.negate(); 2240 if (C.isNullValue()) { // (X / neg) op 0 2241 // e.g. X/-5 op 0 --> [-4, 5) 2242 LoBound = RangeSize + 1; 2243 HiBound = -RangeSize; 2244 if (HiBound == *C2) { // -INTMIN = INTMIN 2245 HiOverflow = 1; // [INTMIN+1, overflow) 2246 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2247 } 2248 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2249 // e.g. X/-5 op 3 --> [-19, -14) 2250 HiBound = Prod + 1; 2251 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2252 if (!LoOverflow) 2253 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2254 } else { // (X / neg) op neg 2255 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2256 LoOverflow = HiOverflow = ProdOV; 2257 if (!HiOverflow) 2258 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2259 } 2260 2261 // Dividing by a negative swaps the condition. LT <-> GT 2262 Pred = ICmpInst::getSwappedPredicate(Pred); 2263 } 2264 2265 Value *X = Div->getOperand(0); 2266 switch (Pred) { 2267 default: llvm_unreachable("Unhandled icmp opcode!"); 2268 case ICmpInst::ICMP_EQ: 2269 if (LoOverflow && HiOverflow) 2270 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2271 if (HiOverflow) 2272 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2273 ICmpInst::ICMP_UGE, X, 2274 ConstantInt::get(Div->getType(), LoBound)); 2275 if (LoOverflow) 2276 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2277 ICmpInst::ICMP_ULT, X, 2278 ConstantInt::get(Div->getType(), HiBound)); 2279 return replaceInstUsesWith( 2280 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2281 case ICmpInst::ICMP_NE: 2282 if (LoOverflow && HiOverflow) 2283 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2284 if (HiOverflow) 2285 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2286 ICmpInst::ICMP_ULT, X, 2287 ConstantInt::get(Div->getType(), LoBound)); 2288 if (LoOverflow) 2289 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2290 ICmpInst::ICMP_UGE, X, 2291 ConstantInt::get(Div->getType(), HiBound)); 2292 return replaceInstUsesWith(Cmp, 2293 insertRangeTest(X, LoBound, HiBound, 2294 DivIsSigned, false)); 2295 case ICmpInst::ICMP_ULT: 2296 case ICmpInst::ICMP_SLT: 2297 if (LoOverflow == +1) // Low bound is greater than input range. 2298 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2299 if (LoOverflow == -1) // Low bound is less than input range. 2300 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2301 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2302 case ICmpInst::ICMP_UGT: 2303 case ICmpInst::ICMP_SGT: 2304 if (HiOverflow == +1) // High bound greater than input range. 2305 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2306 if (HiOverflow == -1) // High bound less than input range. 2307 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2308 if (Pred == ICmpInst::ICMP_UGT) 2309 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2310 ConstantInt::get(Div->getType(), HiBound)); 2311 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2312 ConstantInt::get(Div->getType(), HiBound)); 2313 } 2314 2315 return nullptr; 2316 } 2317 2318 /// Fold icmp (sub X, Y), C. 2319 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2320 BinaryOperator *Sub, 2321 const APInt &C) { 2322 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2323 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2324 const APInt *C2; 2325 APInt SubResult; 2326 2327 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2328 if (match(X, m_APInt(C2)) && 2329 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2330 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2331 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2332 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2333 ConstantInt::get(Y->getType(), SubResult)); 2334 2335 // The following transforms are only worth it if the only user of the subtract 2336 // is the icmp. 2337 if (!Sub->hasOneUse()) 2338 return nullptr; 2339 2340 if (Sub->hasNoSignedWrap()) { 2341 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2342 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2343 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2344 2345 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2346 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2347 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2348 2349 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2350 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2351 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2352 2353 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2354 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2355 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2356 } 2357 2358 if (!match(X, m_APInt(C2))) 2359 return nullptr; 2360 2361 // C2 - Y <u C -> (Y | (C - 1)) == C2 2362 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2363 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2364 (*C2 & (C - 1)) == (C - 1)) 2365 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2366 2367 // C2 - Y >u C -> (Y | C) != C2 2368 // iff C2 & C == C and C + 1 is a power of 2 2369 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2370 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2371 2372 return nullptr; 2373 } 2374 2375 /// Fold icmp (add X, Y), C. 2376 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2377 BinaryOperator *Add, 2378 const APInt &C) { 2379 Value *Y = Add->getOperand(1); 2380 const APInt *C2; 2381 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2382 return nullptr; 2383 2384 // Fold icmp pred (add X, C2), C. 2385 Value *X = Add->getOperand(0); 2386 Type *Ty = Add->getType(); 2387 CmpInst::Predicate Pred = Cmp.getPredicate(); 2388 2389 if (!Add->hasOneUse()) 2390 return nullptr; 2391 2392 // If the add does not wrap, we can always adjust the compare by subtracting 2393 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2394 // are canonicalized to SGT/SLT/UGT/ULT. 2395 if ((Add->hasNoSignedWrap() && 2396 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2397 (Add->hasNoUnsignedWrap() && 2398 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2399 bool Overflow; 2400 APInt NewC = 2401 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2402 // If there is overflow, the result must be true or false. 2403 // TODO: Can we assert there is no overflow because InstSimplify always 2404 // handles those cases? 2405 if (!Overflow) 2406 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2407 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2408 } 2409 2410 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2411 const APInt &Upper = CR.getUpper(); 2412 const APInt &Lower = CR.getLower(); 2413 if (Cmp.isSigned()) { 2414 if (Lower.isSignMask()) 2415 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2416 if (Upper.isSignMask()) 2417 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2418 } else { 2419 if (Lower.isMinValue()) 2420 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2421 if (Upper.isMinValue()) 2422 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2423 } 2424 2425 // X+C <u C2 -> (X & -C2) == C 2426 // iff C & (C2-1) == 0 2427 // C2 is a power of 2 2428 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2429 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2430 ConstantExpr::getNeg(cast<Constant>(Y))); 2431 2432 // X+C >u C2 -> (X & ~C2) != C 2433 // iff C & C2 == 0 2434 // C2+1 is a power of 2 2435 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2436 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2437 ConstantExpr::getNeg(cast<Constant>(Y))); 2438 2439 return nullptr; 2440 } 2441 2442 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2443 Value *&RHS, ConstantInt *&Less, 2444 ConstantInt *&Equal, 2445 ConstantInt *&Greater) { 2446 // TODO: Generalize this to work with other comparison idioms or ensure 2447 // they get canonicalized into this form. 2448 2449 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2450 // Greater), where Equal, Less and Greater are placeholders for any three 2451 // constants. 2452 ICmpInst::Predicate PredA, PredB; 2453 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2454 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2455 PredA == ICmpInst::ICMP_EQ && 2456 match(SI->getFalseValue(), 2457 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2458 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2459 PredB == ICmpInst::ICMP_SLT) { 2460 return true; 2461 } 2462 return false; 2463 } 2464 2465 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2466 SelectInst *Select, 2467 ConstantInt *C) { 2468 2469 assert(C && "Cmp RHS should be a constant int!"); 2470 // If we're testing a constant value against the result of a three way 2471 // comparison, the result can be expressed directly in terms of the 2472 // original values being compared. Note: We could possibly be more 2473 // aggressive here and remove the hasOneUse test. The original select is 2474 // really likely to simplify or sink when we remove a test of the result. 2475 Value *OrigLHS, *OrigRHS; 2476 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2477 if (Cmp.hasOneUse() && 2478 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2479 C3GreaterThan)) { 2480 assert(C1LessThan && C2Equal && C3GreaterThan); 2481 2482 bool TrueWhenLessThan = 2483 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2484 ->isAllOnesValue(); 2485 bool TrueWhenEqual = 2486 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2487 ->isAllOnesValue(); 2488 bool TrueWhenGreaterThan = 2489 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2490 ->isAllOnesValue(); 2491 2492 // This generates the new instruction that will replace the original Cmp 2493 // Instruction. Instead of enumerating the various combinations when 2494 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2495 // false, we rely on chaining of ORs and future passes of InstCombine to 2496 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2497 2498 // When none of the three constants satisfy the predicate for the RHS (C), 2499 // the entire original Cmp can be simplified to a false. 2500 Value *Cond = Builder.getFalse(); 2501 if (TrueWhenLessThan) 2502 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2503 OrigLHS, OrigRHS)); 2504 if (TrueWhenEqual) 2505 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2506 OrigLHS, OrigRHS)); 2507 if (TrueWhenGreaterThan) 2508 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2509 OrigLHS, OrigRHS)); 2510 2511 return replaceInstUsesWith(Cmp, Cond); 2512 } 2513 return nullptr; 2514 } 2515 2516 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2517 InstCombiner::BuilderTy &Builder) { 2518 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2519 if (!Bitcast) 2520 return nullptr; 2521 2522 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2523 Value *Op1 = Cmp.getOperand(1); 2524 Value *BCSrcOp = Bitcast->getOperand(0); 2525 2526 // Make sure the bitcast doesn't change the number of vector elements. 2527 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2528 Bitcast->getDestTy()->getScalarSizeInBits()) { 2529 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2530 Value *X; 2531 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2532 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2533 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2534 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2535 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2536 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2537 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2538 match(Op1, m_Zero())) 2539 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2540 2541 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2542 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2543 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2544 2545 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2546 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2547 return new ICmpInst(Pred, X, 2548 ConstantInt::getAllOnesValue(X->getType())); 2549 } 2550 2551 // Zero-equality checks are preserved through unsigned floating-point casts: 2552 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2553 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2554 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2555 if (Cmp.isEquality() && match(Op1, m_Zero())) 2556 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2557 } 2558 2559 // Test to see if the operands of the icmp are casted versions of other 2560 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2561 if (Bitcast->getType()->isPointerTy() && 2562 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2563 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2564 // so eliminate it as well. 2565 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2566 Op1 = BC2->getOperand(0); 2567 2568 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2569 return new ICmpInst(Pred, BCSrcOp, Op1); 2570 } 2571 2572 // Folding: icmp <pred> iN X, C 2573 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2574 // and C is a splat of a K-bit pattern 2575 // and SC is a constant vector = <C', C', C', ..., C'> 2576 // Into: 2577 // %E = extractelement <M x iK> %vec, i32 C' 2578 // icmp <pred> iK %E, trunc(C) 2579 const APInt *C; 2580 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2581 !Bitcast->getType()->isIntegerTy() || 2582 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2583 return nullptr; 2584 2585 Value *Vec; 2586 Constant *Mask; 2587 if (match(BCSrcOp, 2588 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2589 // Check whether every element of Mask is the same constant 2590 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2591 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2592 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2593 if (C->isSplat(EltTy->getBitWidth())) { 2594 // Fold the icmp based on the value of C 2595 // If C is M copies of an iK sized bit pattern, 2596 // then: 2597 // => %E = extractelement <N x iK> %vec, i32 Elem 2598 // icmp <pred> iK %SplatVal, <pattern> 2599 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2600 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2601 return new ICmpInst(Pred, Extract, NewC); 2602 } 2603 } 2604 } 2605 return nullptr; 2606 } 2607 2608 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2609 /// where X is some kind of instruction. 2610 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2611 const APInt *C; 2612 if (!match(Cmp.getOperand(1), m_APInt(C))) 2613 return nullptr; 2614 2615 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2616 switch (BO->getOpcode()) { 2617 case Instruction::Xor: 2618 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2619 return I; 2620 break; 2621 case Instruction::And: 2622 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2623 return I; 2624 break; 2625 case Instruction::Or: 2626 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2627 return I; 2628 break; 2629 case Instruction::Mul: 2630 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2631 return I; 2632 break; 2633 case Instruction::Shl: 2634 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2635 return I; 2636 break; 2637 case Instruction::LShr: 2638 case Instruction::AShr: 2639 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2640 return I; 2641 break; 2642 case Instruction::UDiv: 2643 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2644 return I; 2645 LLVM_FALLTHROUGH; 2646 case Instruction::SDiv: 2647 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2648 return I; 2649 break; 2650 case Instruction::Sub: 2651 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2652 return I; 2653 break; 2654 case Instruction::Add: 2655 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2656 return I; 2657 break; 2658 default: 2659 break; 2660 } 2661 // TODO: These folds could be refactored to be part of the above calls. 2662 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2663 return I; 2664 } 2665 2666 // Match against CmpInst LHS being instructions other than binary operators. 2667 2668 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2669 // For now, we only support constant integers while folding the 2670 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2671 // similar to the cases handled by binary ops above. 2672 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2673 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2674 return I; 2675 } 2676 2677 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2678 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2679 return I; 2680 } 2681 2682 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2683 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2684 return I; 2685 2686 return nullptr; 2687 } 2688 2689 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2690 /// icmp eq/ne BO, C. 2691 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2692 BinaryOperator *BO, 2693 const APInt &C) { 2694 // TODO: Some of these folds could work with arbitrary constants, but this 2695 // function is limited to scalar and vector splat constants. 2696 if (!Cmp.isEquality()) 2697 return nullptr; 2698 2699 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2700 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2701 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2702 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2703 2704 switch (BO->getOpcode()) { 2705 case Instruction::SRem: 2706 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2707 if (C.isNullValue() && BO->hasOneUse()) { 2708 const APInt *BOC; 2709 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2710 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2711 return new ICmpInst(Pred, NewRem, 2712 Constant::getNullValue(BO->getType())); 2713 } 2714 } 2715 break; 2716 case Instruction::Add: { 2717 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2718 const APInt *BOC; 2719 if (match(BOp1, m_APInt(BOC))) { 2720 if (BO->hasOneUse()) { 2721 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2722 return new ICmpInst(Pred, BOp0, SubC); 2723 } 2724 } else if (C.isNullValue()) { 2725 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2726 // efficiently invertible, or if the add has just this one use. 2727 if (Value *NegVal = dyn_castNegVal(BOp1)) 2728 return new ICmpInst(Pred, BOp0, NegVal); 2729 if (Value *NegVal = dyn_castNegVal(BOp0)) 2730 return new ICmpInst(Pred, NegVal, BOp1); 2731 if (BO->hasOneUse()) { 2732 Value *Neg = Builder.CreateNeg(BOp1); 2733 Neg->takeName(BO); 2734 return new ICmpInst(Pred, BOp0, Neg); 2735 } 2736 } 2737 break; 2738 } 2739 case Instruction::Xor: 2740 if (BO->hasOneUse()) { 2741 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2742 // For the xor case, we can xor two constants together, eliminating 2743 // the explicit xor. 2744 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2745 } else if (C.isNullValue()) { 2746 // Replace ((xor A, B) != 0) with (A != B) 2747 return new ICmpInst(Pred, BOp0, BOp1); 2748 } 2749 } 2750 break; 2751 case Instruction::Sub: 2752 if (BO->hasOneUse()) { 2753 const APInt *BOC; 2754 if (match(BOp0, m_APInt(BOC))) { 2755 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2756 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2757 return new ICmpInst(Pred, BOp1, SubC); 2758 } else if (C.isNullValue()) { 2759 // Replace ((sub A, B) != 0) with (A != B). 2760 return new ICmpInst(Pred, BOp0, BOp1); 2761 } 2762 } 2763 break; 2764 case Instruction::Or: { 2765 const APInt *BOC; 2766 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2767 // Comparing if all bits outside of a constant mask are set? 2768 // Replace (X | C) == -1 with (X & ~C) == ~C. 2769 // This removes the -1 constant. 2770 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2771 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2772 return new ICmpInst(Pred, And, NotBOC); 2773 } 2774 break; 2775 } 2776 case Instruction::And: { 2777 const APInt *BOC; 2778 if (match(BOp1, m_APInt(BOC))) { 2779 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2780 if (C == *BOC && C.isPowerOf2()) 2781 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2782 BO, Constant::getNullValue(RHS->getType())); 2783 2784 // Don't perform the following transforms if the AND has multiple uses 2785 if (!BO->hasOneUse()) 2786 break; 2787 2788 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2789 if (BOC->isSignMask()) { 2790 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2791 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2792 return new ICmpInst(NewPred, BOp0, Zero); 2793 } 2794 2795 // ((X & ~7) == 0) --> X < 8 2796 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2797 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2798 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2799 return new ICmpInst(NewPred, BOp0, NegBOC); 2800 } 2801 } 2802 break; 2803 } 2804 case Instruction::Mul: 2805 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2806 const APInt *BOC; 2807 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2808 // The trivial case (mul X, 0) is handled by InstSimplify. 2809 // General case : (mul X, C) != 0 iff X != 0 2810 // (mul X, C) == 0 iff X == 0 2811 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2812 } 2813 } 2814 break; 2815 case Instruction::UDiv: 2816 if (C.isNullValue()) { 2817 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2818 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2819 return new ICmpInst(NewPred, BOp1, BOp0); 2820 } 2821 break; 2822 default: 2823 break; 2824 } 2825 return nullptr; 2826 } 2827 2828 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2829 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2830 IntrinsicInst *II, 2831 const APInt &C) { 2832 Type *Ty = II->getType(); 2833 unsigned BitWidth = C.getBitWidth(); 2834 switch (II->getIntrinsicID()) { 2835 case Intrinsic::bswap: 2836 Worklist.Add(II); 2837 Cmp.setOperand(0, II->getArgOperand(0)); 2838 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2839 return &Cmp; 2840 2841 case Intrinsic::ctlz: 2842 case Intrinsic::cttz: { 2843 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2844 if (C == BitWidth) { 2845 Worklist.Add(II); 2846 Cmp.setOperand(0, II->getArgOperand(0)); 2847 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2848 return &Cmp; 2849 } 2850 2851 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2852 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2853 // Limit to one use to ensure we don't increase instruction count. 2854 unsigned Num = C.getLimitedValue(BitWidth); 2855 if (Num != BitWidth && II->hasOneUse()) { 2856 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2857 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2858 : APInt::getHighBitsSet(BitWidth, Num + 1); 2859 APInt Mask2 = IsTrailing 2860 ? APInt::getOneBitSet(BitWidth, Num) 2861 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2862 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2863 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2864 Worklist.Add(II); 2865 return &Cmp; 2866 } 2867 break; 2868 } 2869 2870 case Intrinsic::ctpop: { 2871 // popcount(A) == 0 -> A == 0 and likewise for != 2872 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2873 bool IsZero = C.isNullValue(); 2874 if (IsZero || C == BitWidth) { 2875 Worklist.Add(II); 2876 Cmp.setOperand(0, II->getArgOperand(0)); 2877 auto *NewOp = 2878 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2879 Cmp.setOperand(1, NewOp); 2880 return &Cmp; 2881 } 2882 break; 2883 } 2884 default: 2885 break; 2886 } 2887 2888 return nullptr; 2889 } 2890 2891 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2892 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2893 IntrinsicInst *II, 2894 const APInt &C) { 2895 if (Cmp.isEquality()) 2896 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2897 2898 Type *Ty = II->getType(); 2899 unsigned BitWidth = C.getBitWidth(); 2900 switch (II->getIntrinsicID()) { 2901 case Intrinsic::ctlz: { 2902 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2903 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2904 unsigned Num = C.getLimitedValue(); 2905 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2906 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2907 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2908 } 2909 2910 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2911 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2912 C.uge(1) && C.ule(BitWidth)) { 2913 unsigned Num = C.getLimitedValue(); 2914 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2915 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2916 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2917 } 2918 break; 2919 } 2920 case Intrinsic::cttz: { 2921 // Limit to one use to ensure we don't increase instruction count. 2922 if (!II->hasOneUse()) 2923 return nullptr; 2924 2925 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2926 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2927 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2928 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2929 Builder.CreateAnd(II->getArgOperand(0), Mask), 2930 ConstantInt::getNullValue(Ty)); 2931 } 2932 2933 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 2934 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2935 C.uge(1) && C.ule(BitWidth)) { 2936 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 2937 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 2938 Builder.CreateAnd(II->getArgOperand(0), Mask), 2939 ConstantInt::getNullValue(Ty)); 2940 } 2941 break; 2942 } 2943 default: 2944 break; 2945 } 2946 2947 return nullptr; 2948 } 2949 2950 /// Handle icmp with constant (but not simple integer constant) RHS. 2951 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2952 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2953 Constant *RHSC = dyn_cast<Constant>(Op1); 2954 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2955 if (!RHSC || !LHSI) 2956 return nullptr; 2957 2958 switch (LHSI->getOpcode()) { 2959 case Instruction::GetElementPtr: 2960 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2961 if (RHSC->isNullValue() && 2962 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2963 return new ICmpInst( 2964 I.getPredicate(), LHSI->getOperand(0), 2965 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2966 break; 2967 case Instruction::PHI: 2968 // Only fold icmp into the PHI if the phi and icmp are in the same 2969 // block. If in the same block, we're encouraging jump threading. If 2970 // not, we are just pessimizing the code by making an i1 phi. 2971 if (LHSI->getParent() == I.getParent()) 2972 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2973 return NV; 2974 break; 2975 case Instruction::Select: { 2976 // If either operand of the select is a constant, we can fold the 2977 // comparison into the select arms, which will cause one to be 2978 // constant folded and the select turned into a bitwise or. 2979 Value *Op1 = nullptr, *Op2 = nullptr; 2980 ConstantInt *CI = nullptr; 2981 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2982 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2983 CI = dyn_cast<ConstantInt>(Op1); 2984 } 2985 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2986 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2987 CI = dyn_cast<ConstantInt>(Op2); 2988 } 2989 2990 // We only want to perform this transformation if it will not lead to 2991 // additional code. This is true if either both sides of the select 2992 // fold to a constant (in which case the icmp is replaced with a select 2993 // which will usually simplify) or this is the only user of the 2994 // select (in which case we are trading a select+icmp for a simpler 2995 // select+icmp) or all uses of the select can be replaced based on 2996 // dominance information ("Global cases"). 2997 bool Transform = false; 2998 if (Op1 && Op2) 2999 Transform = true; 3000 else if (Op1 || Op2) { 3001 // Local case 3002 if (LHSI->hasOneUse()) 3003 Transform = true; 3004 // Global cases 3005 else if (CI && !CI->isZero()) 3006 // When Op1 is constant try replacing select with second operand. 3007 // Otherwise Op2 is constant and try replacing select with first 3008 // operand. 3009 Transform = 3010 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3011 } 3012 if (Transform) { 3013 if (!Op1) 3014 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3015 I.getName()); 3016 if (!Op2) 3017 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3018 I.getName()); 3019 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3020 } 3021 break; 3022 } 3023 case Instruction::IntToPtr: 3024 // icmp pred inttoptr(X), null -> icmp pred X, 0 3025 if (RHSC->isNullValue() && 3026 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3027 return new ICmpInst( 3028 I.getPredicate(), LHSI->getOperand(0), 3029 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3030 break; 3031 3032 case Instruction::Load: 3033 // Try to optimize things like "A[i] > 4" to index computations. 3034 if (GetElementPtrInst *GEP = 3035 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3036 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3037 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3038 !cast<LoadInst>(LHSI)->isVolatile()) 3039 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3040 return Res; 3041 } 3042 break; 3043 } 3044 3045 return nullptr; 3046 } 3047 3048 /// Some comparisons can be simplified. 3049 /// In this case, we are looking for comparisons that look like 3050 /// a check for a lossy truncation. 3051 /// Folds: 3052 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3053 /// Where Mask is some pattern that produces all-ones in low bits: 3054 /// (-1 >> y) 3055 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3056 /// ~(-1 << y) 3057 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3058 /// The Mask can be a constant, too. 3059 /// For some predicates, the operands are commutative. 3060 /// For others, x can only be on a specific side. 3061 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3062 InstCombiner::BuilderTy &Builder) { 3063 ICmpInst::Predicate SrcPred; 3064 Value *X, *M, *Y; 3065 auto m_VariableMask = m_CombineOr( 3066 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3067 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3068 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3069 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3070 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3071 if (!match(&I, m_c_ICmp(SrcPred, 3072 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3073 m_Deferred(X)))) 3074 return nullptr; 3075 3076 ICmpInst::Predicate DstPred; 3077 switch (SrcPred) { 3078 case ICmpInst::Predicate::ICMP_EQ: 3079 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3080 DstPred = ICmpInst::Predicate::ICMP_ULE; 3081 break; 3082 case ICmpInst::Predicate::ICMP_NE: 3083 // x & (-1 >> y) != x -> x u> (-1 >> y) 3084 DstPred = ICmpInst::Predicate::ICMP_UGT; 3085 break; 3086 case ICmpInst::Predicate::ICMP_UGT: 3087 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3088 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3089 DstPred = ICmpInst::Predicate::ICMP_UGT; 3090 break; 3091 case ICmpInst::Predicate::ICMP_UGE: 3092 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3093 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3094 DstPred = ICmpInst::Predicate::ICMP_ULE; 3095 break; 3096 case ICmpInst::Predicate::ICMP_ULT: 3097 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3098 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3099 DstPred = ICmpInst::Predicate::ICMP_UGT; 3100 break; 3101 case ICmpInst::Predicate::ICMP_ULE: 3102 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3103 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3104 DstPred = ICmpInst::Predicate::ICMP_ULE; 3105 break; 3106 case ICmpInst::Predicate::ICMP_SGT: 3107 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3108 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3109 return nullptr; // Ignore the other case. 3110 DstPred = ICmpInst::Predicate::ICMP_SGT; 3111 break; 3112 case ICmpInst::Predicate::ICMP_SGE: 3113 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3114 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3115 return nullptr; // Ignore the other case. 3116 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3117 return nullptr; 3118 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3119 return nullptr; 3120 DstPred = ICmpInst::Predicate::ICMP_SLE; 3121 break; 3122 case ICmpInst::Predicate::ICMP_SLT: 3123 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3124 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3125 return nullptr; // Ignore the other case. 3126 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3127 return nullptr; 3128 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3129 return nullptr; 3130 DstPred = ICmpInst::Predicate::ICMP_SGT; 3131 break; 3132 case ICmpInst::Predicate::ICMP_SLE: 3133 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3134 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3135 return nullptr; // Ignore the other case. 3136 DstPred = ICmpInst::Predicate::ICMP_SLE; 3137 break; 3138 default: 3139 llvm_unreachable("All possible folds are handled."); 3140 } 3141 3142 return Builder.CreateICmp(DstPred, X, M); 3143 } 3144 3145 /// Some comparisons can be simplified. 3146 /// In this case, we are looking for comparisons that look like 3147 /// a check for a lossy signed truncation. 3148 /// Folds: (MaskedBits is a constant.) 3149 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3150 /// Into: 3151 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3152 /// Where KeptBits = bitwidth(%x) - MaskedBits 3153 static Value * 3154 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3155 InstCombiner::BuilderTy &Builder) { 3156 ICmpInst::Predicate SrcPred; 3157 Value *X; 3158 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3159 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3160 if (!match(&I, m_c_ICmp(SrcPred, 3161 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3162 m_APInt(C1))), 3163 m_Deferred(X)))) 3164 return nullptr; 3165 3166 // Potential handling of non-splats: for each element: 3167 // * if both are undef, replace with constant 0. 3168 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3169 // * if both are not undef, and are different, bailout. 3170 // * else, only one is undef, then pick the non-undef one. 3171 3172 // The shift amount must be equal. 3173 if (*C0 != *C1) 3174 return nullptr; 3175 const APInt &MaskedBits = *C0; 3176 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3177 3178 ICmpInst::Predicate DstPred; 3179 switch (SrcPred) { 3180 case ICmpInst::Predicate::ICMP_EQ: 3181 // ((%x << MaskedBits) a>> MaskedBits) == %x 3182 // => 3183 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3184 DstPred = ICmpInst::Predicate::ICMP_ULT; 3185 break; 3186 case ICmpInst::Predicate::ICMP_NE: 3187 // ((%x << MaskedBits) a>> MaskedBits) != %x 3188 // => 3189 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3190 DstPred = ICmpInst::Predicate::ICMP_UGE; 3191 break; 3192 // FIXME: are more folds possible? 3193 default: 3194 return nullptr; 3195 } 3196 3197 auto *XType = X->getType(); 3198 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3199 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3200 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3201 3202 // KeptBits = bitwidth(%x) - MaskedBits 3203 const APInt KeptBits = BitWidth - MaskedBits; 3204 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3205 // ICmpCst = (1 << KeptBits) 3206 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3207 assert(ICmpCst.isPowerOf2()); 3208 // AddCst = (1 << (KeptBits-1)) 3209 const APInt AddCst = ICmpCst.lshr(1); 3210 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3211 3212 // T0 = add %x, AddCst 3213 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3214 // T1 = T0 DstPred ICmpCst 3215 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3216 3217 return T1; 3218 } 3219 3220 /// Try to fold icmp (binop), X or icmp X, (binop). 3221 /// TODO: A large part of this logic is duplicated in InstSimplify's 3222 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3223 /// duplication. 3224 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3225 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3226 3227 // Special logic for binary operators. 3228 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3229 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3230 if (!BO0 && !BO1) 3231 return nullptr; 3232 3233 const CmpInst::Predicate Pred = I.getPredicate(); 3234 Value *X; 3235 3236 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3237 // (Op1 + X) <u Op1 --> ~Op1 <u X 3238 // Op0 >u (Op0 + X) --> X >u ~Op0 3239 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3240 Pred == ICmpInst::ICMP_ULT) 3241 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3242 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3243 Pred == ICmpInst::ICMP_UGT) 3244 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3245 3246 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3247 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3248 NoOp0WrapProblem = 3249 ICmpInst::isEquality(Pred) || 3250 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3251 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3252 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3253 NoOp1WrapProblem = 3254 ICmpInst::isEquality(Pred) || 3255 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3256 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3257 3258 // Analyze the case when either Op0 or Op1 is an add instruction. 3259 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3260 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3261 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3262 A = BO0->getOperand(0); 3263 B = BO0->getOperand(1); 3264 } 3265 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3266 C = BO1->getOperand(0); 3267 D = BO1->getOperand(1); 3268 } 3269 3270 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3271 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3272 return new ICmpInst(Pred, A == Op1 ? B : A, 3273 Constant::getNullValue(Op1->getType())); 3274 3275 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3276 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3277 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3278 C == Op0 ? D : C); 3279 3280 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3281 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3282 NoOp1WrapProblem && 3283 // Try not to increase register pressure. 3284 BO0->hasOneUse() && BO1->hasOneUse()) { 3285 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3286 Value *Y, *Z; 3287 if (A == C) { 3288 // C + B == C + D -> B == D 3289 Y = B; 3290 Z = D; 3291 } else if (A == D) { 3292 // D + B == C + D -> B == C 3293 Y = B; 3294 Z = C; 3295 } else if (B == C) { 3296 // A + C == C + D -> A == D 3297 Y = A; 3298 Z = D; 3299 } else { 3300 assert(B == D); 3301 // A + D == C + D -> A == C 3302 Y = A; 3303 Z = C; 3304 } 3305 return new ICmpInst(Pred, Y, Z); 3306 } 3307 3308 // icmp slt (X + -1), Y -> icmp sle X, Y 3309 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3310 match(B, m_AllOnes())) 3311 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3312 3313 // icmp sge (X + -1), Y -> icmp sgt X, Y 3314 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3315 match(B, m_AllOnes())) 3316 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3317 3318 // icmp sle (X + 1), Y -> icmp slt X, Y 3319 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3320 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3321 3322 // icmp sgt (X + 1), Y -> icmp sge X, Y 3323 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3324 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3325 3326 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3327 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3328 match(D, m_AllOnes())) 3329 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3330 3331 // icmp sle X, (Y + -1) -> icmp slt X, Y 3332 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3333 match(D, m_AllOnes())) 3334 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3335 3336 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3337 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3338 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3339 3340 // icmp slt X, (Y + 1) -> icmp sle X, Y 3341 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3342 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3343 3344 // TODO: The subtraction-related identities shown below also hold, but 3345 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3346 // wouldn't happen even if they were implemented. 3347 // 3348 // icmp ult (X - 1), Y -> icmp ule X, Y 3349 // icmp uge (X - 1), Y -> icmp ugt X, Y 3350 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3351 // icmp ule X, (Y - 1) -> icmp ult X, Y 3352 3353 // icmp ule (X + 1), Y -> icmp ult X, Y 3354 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3355 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3356 3357 // icmp ugt (X + 1), Y -> icmp uge X, Y 3358 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3359 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3360 3361 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3362 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3363 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3364 3365 // icmp ult X, (Y + 1) -> icmp ule X, Y 3366 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3367 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3368 3369 // if C1 has greater magnitude than C2: 3370 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3371 // s.t. C3 = C1 - C2 3372 // 3373 // if C2 has greater magnitude than C1: 3374 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3375 // s.t. C3 = C2 - C1 3376 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3377 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3378 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3379 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3380 const APInt &AP1 = C1->getValue(); 3381 const APInt &AP2 = C2->getValue(); 3382 if (AP1.isNegative() == AP2.isNegative()) { 3383 APInt AP1Abs = C1->getValue().abs(); 3384 APInt AP2Abs = C2->getValue().abs(); 3385 if (AP1Abs.uge(AP2Abs)) { 3386 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3387 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3388 return new ICmpInst(Pred, NewAdd, C); 3389 } else { 3390 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3391 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3392 return new ICmpInst(Pred, A, NewAdd); 3393 } 3394 } 3395 } 3396 3397 // Analyze the case when either Op0 or Op1 is a sub instruction. 3398 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3399 A = nullptr; 3400 B = nullptr; 3401 C = nullptr; 3402 D = nullptr; 3403 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3404 A = BO0->getOperand(0); 3405 B = BO0->getOperand(1); 3406 } 3407 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3408 C = BO1->getOperand(0); 3409 D = BO1->getOperand(1); 3410 } 3411 3412 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3413 if (A == Op1 && NoOp0WrapProblem) 3414 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3415 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3416 if (C == Op0 && NoOp1WrapProblem) 3417 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3418 3419 // (A - B) >u A --> A <u B 3420 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3421 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3422 // C <u (C - D) --> C <u D 3423 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3424 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3425 3426 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3427 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3428 // Try not to increase register pressure. 3429 BO0->hasOneUse() && BO1->hasOneUse()) 3430 return new ICmpInst(Pred, A, C); 3431 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3432 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3433 // Try not to increase register pressure. 3434 BO0->hasOneUse() && BO1->hasOneUse()) 3435 return new ICmpInst(Pred, D, B); 3436 3437 // icmp (0-X) < cst --> x > -cst 3438 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3439 Value *X; 3440 if (match(BO0, m_Neg(m_Value(X)))) 3441 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3442 if (RHSC->isNotMinSignedValue()) 3443 return new ICmpInst(I.getSwappedPredicate(), X, 3444 ConstantExpr::getNeg(RHSC)); 3445 } 3446 3447 BinaryOperator *SRem = nullptr; 3448 // icmp (srem X, Y), Y 3449 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3450 SRem = BO0; 3451 // icmp Y, (srem X, Y) 3452 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3453 Op0 == BO1->getOperand(1)) 3454 SRem = BO1; 3455 if (SRem) { 3456 // We don't check hasOneUse to avoid increasing register pressure because 3457 // the value we use is the same value this instruction was already using. 3458 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3459 default: 3460 break; 3461 case ICmpInst::ICMP_EQ: 3462 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3463 case ICmpInst::ICMP_NE: 3464 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3465 case ICmpInst::ICMP_SGT: 3466 case ICmpInst::ICMP_SGE: 3467 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3468 Constant::getAllOnesValue(SRem->getType())); 3469 case ICmpInst::ICMP_SLT: 3470 case ICmpInst::ICMP_SLE: 3471 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3472 Constant::getNullValue(SRem->getType())); 3473 } 3474 } 3475 3476 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3477 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3478 switch (BO0->getOpcode()) { 3479 default: 3480 break; 3481 case Instruction::Add: 3482 case Instruction::Sub: 3483 case Instruction::Xor: { 3484 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3485 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3486 3487 const APInt *C; 3488 if (match(BO0->getOperand(1), m_APInt(C))) { 3489 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3490 if (C->isSignMask()) { 3491 ICmpInst::Predicate NewPred = 3492 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3493 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3494 } 3495 3496 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3497 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3498 ICmpInst::Predicate NewPred = 3499 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3500 NewPred = I.getSwappedPredicate(NewPred); 3501 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3502 } 3503 } 3504 break; 3505 } 3506 case Instruction::Mul: { 3507 if (!I.isEquality()) 3508 break; 3509 3510 const APInt *C; 3511 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3512 !C->isOneValue()) { 3513 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3514 // Mask = -1 >> count-trailing-zeros(C). 3515 if (unsigned TZs = C->countTrailingZeros()) { 3516 Constant *Mask = ConstantInt::get( 3517 BO0->getType(), 3518 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3519 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3520 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3521 return new ICmpInst(Pred, And1, And2); 3522 } 3523 // If there are no trailing zeros in the multiplier, just eliminate 3524 // the multiplies (no masking is needed): 3525 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3526 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3527 } 3528 break; 3529 } 3530 case Instruction::UDiv: 3531 case Instruction::LShr: 3532 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3533 break; 3534 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3535 3536 case Instruction::SDiv: 3537 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3538 break; 3539 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3540 3541 case Instruction::AShr: 3542 if (!BO0->isExact() || !BO1->isExact()) 3543 break; 3544 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3545 3546 case Instruction::Shl: { 3547 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3548 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3549 if (!NUW && !NSW) 3550 break; 3551 if (!NSW && I.isSigned()) 3552 break; 3553 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3554 } 3555 } 3556 } 3557 3558 if (BO0) { 3559 // Transform A & (L - 1) `ult` L --> L != 0 3560 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3561 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3562 3563 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3564 auto *Zero = Constant::getNullValue(BO0->getType()); 3565 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3566 } 3567 } 3568 3569 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3570 return replaceInstUsesWith(I, V); 3571 3572 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3573 return replaceInstUsesWith(I, V); 3574 3575 return nullptr; 3576 } 3577 3578 /// Fold icmp Pred min|max(X, Y), X. 3579 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3580 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3581 Value *Op0 = Cmp.getOperand(0); 3582 Value *X = Cmp.getOperand(1); 3583 3584 // Canonicalize minimum or maximum operand to LHS of the icmp. 3585 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3586 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3587 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3588 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3589 std::swap(Op0, X); 3590 Pred = Cmp.getSwappedPredicate(); 3591 } 3592 3593 Value *Y; 3594 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3595 // smin(X, Y) == X --> X s<= Y 3596 // smin(X, Y) s>= X --> X s<= Y 3597 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3598 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3599 3600 // smin(X, Y) != X --> X s> Y 3601 // smin(X, Y) s< X --> X s> Y 3602 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3603 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3604 3605 // These cases should be handled in InstSimplify: 3606 // smin(X, Y) s<= X --> true 3607 // smin(X, Y) s> X --> false 3608 return nullptr; 3609 } 3610 3611 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3612 // smax(X, Y) == X --> X s>= Y 3613 // smax(X, Y) s<= X --> X s>= Y 3614 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3615 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3616 3617 // smax(X, Y) != X --> X s< Y 3618 // smax(X, Y) s> X --> X s< Y 3619 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3620 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3621 3622 // These cases should be handled in InstSimplify: 3623 // smax(X, Y) s>= X --> true 3624 // smax(X, Y) s< X --> false 3625 return nullptr; 3626 } 3627 3628 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3629 // umin(X, Y) == X --> X u<= Y 3630 // umin(X, Y) u>= X --> X u<= Y 3631 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3632 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3633 3634 // umin(X, Y) != X --> X u> Y 3635 // umin(X, Y) u< X --> X u> Y 3636 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3637 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3638 3639 // These cases should be handled in InstSimplify: 3640 // umin(X, Y) u<= X --> true 3641 // umin(X, Y) u> X --> false 3642 return nullptr; 3643 } 3644 3645 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3646 // umax(X, Y) == X --> X u>= Y 3647 // umax(X, Y) u<= X --> X u>= Y 3648 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3649 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3650 3651 // umax(X, Y) != X --> X u< Y 3652 // umax(X, Y) u> X --> X u< Y 3653 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3654 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3655 3656 // These cases should be handled in InstSimplify: 3657 // umax(X, Y) u>= X --> true 3658 // umax(X, Y) u< X --> false 3659 return nullptr; 3660 } 3661 3662 return nullptr; 3663 } 3664 3665 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3666 if (!I.isEquality()) 3667 return nullptr; 3668 3669 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3670 const CmpInst::Predicate Pred = I.getPredicate(); 3671 Value *A, *B, *C, *D; 3672 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3673 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3674 Value *OtherVal = A == Op1 ? B : A; 3675 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3676 } 3677 3678 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3679 // A^c1 == C^c2 --> A == C^(c1^c2) 3680 ConstantInt *C1, *C2; 3681 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3682 Op1->hasOneUse()) { 3683 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3684 Value *Xor = Builder.CreateXor(C, NC); 3685 return new ICmpInst(Pred, A, Xor); 3686 } 3687 3688 // A^B == A^D -> B == D 3689 if (A == C) 3690 return new ICmpInst(Pred, B, D); 3691 if (A == D) 3692 return new ICmpInst(Pred, B, C); 3693 if (B == C) 3694 return new ICmpInst(Pred, A, D); 3695 if (B == D) 3696 return new ICmpInst(Pred, A, C); 3697 } 3698 } 3699 3700 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3701 // A == (A^B) -> B == 0 3702 Value *OtherVal = A == Op0 ? B : A; 3703 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3704 } 3705 3706 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3707 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3708 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3709 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3710 3711 if (A == C) { 3712 X = B; 3713 Y = D; 3714 Z = A; 3715 } else if (A == D) { 3716 X = B; 3717 Y = C; 3718 Z = A; 3719 } else if (B == C) { 3720 X = A; 3721 Y = D; 3722 Z = B; 3723 } else if (B == D) { 3724 X = A; 3725 Y = C; 3726 Z = B; 3727 } 3728 3729 if (X) { // Build (X^Y) & Z 3730 Op1 = Builder.CreateXor(X, Y); 3731 Op1 = Builder.CreateAnd(Op1, Z); 3732 I.setOperand(0, Op1); 3733 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3734 return &I; 3735 } 3736 } 3737 3738 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3739 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3740 ConstantInt *Cst1; 3741 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3742 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3743 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3744 match(Op1, m_ZExt(m_Value(A))))) { 3745 APInt Pow2 = Cst1->getValue() + 1; 3746 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3747 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3748 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3749 } 3750 3751 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3752 // For lshr and ashr pairs. 3753 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3754 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3755 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3756 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3757 unsigned TypeBits = Cst1->getBitWidth(); 3758 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3759 if (ShAmt < TypeBits && ShAmt != 0) { 3760 ICmpInst::Predicate NewPred = 3761 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3762 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3763 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3764 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3765 } 3766 } 3767 3768 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3769 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3770 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3771 unsigned TypeBits = Cst1->getBitWidth(); 3772 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3773 if (ShAmt < TypeBits && ShAmt != 0) { 3774 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3775 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3776 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3777 I.getName() + ".mask"); 3778 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3779 } 3780 } 3781 3782 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3783 // "icmp (and X, mask), cst" 3784 uint64_t ShAmt = 0; 3785 if (Op0->hasOneUse() && 3786 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3787 match(Op1, m_ConstantInt(Cst1)) && 3788 // Only do this when A has multiple uses. This is most important to do 3789 // when it exposes other optimizations. 3790 !A->hasOneUse()) { 3791 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3792 3793 if (ShAmt < ASize) { 3794 APInt MaskV = 3795 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3796 MaskV <<= ShAmt; 3797 3798 APInt CmpV = Cst1->getValue().zext(ASize); 3799 CmpV <<= ShAmt; 3800 3801 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3802 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3803 } 3804 } 3805 3806 // If both operands are byte-swapped or bit-reversed, just compare the 3807 // original values. 3808 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3809 // and handle more intrinsics. 3810 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3811 (match(Op0, m_BitReverse(m_Value(A))) && 3812 match(Op1, m_BitReverse(m_Value(B))))) 3813 return new ICmpInst(Pred, A, B); 3814 3815 return nullptr; 3816 } 3817 3818 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3819 /// far. 3820 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3821 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3822 Value *LHSCIOp = LHSCI->getOperand(0); 3823 Type *SrcTy = LHSCIOp->getType(); 3824 Type *DestTy = LHSCI->getType(); 3825 Value *RHSCIOp; 3826 3827 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3828 // integer type is the same size as the pointer type. 3829 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3830 if (isa<VectorType>(SrcTy)) { 3831 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3832 DestTy = cast<VectorType>(DestTy)->getElementType(); 3833 } 3834 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3835 }; 3836 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3837 CompatibleSizes(SrcTy, DestTy)) { 3838 Value *RHSOp = nullptr; 3839 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3840 Value *RHSCIOp = RHSC->getOperand(0); 3841 if (RHSCIOp->getType()->getPointerAddressSpace() == 3842 LHSCIOp->getType()->getPointerAddressSpace()) { 3843 RHSOp = RHSC->getOperand(0); 3844 // If the pointer types don't match, insert a bitcast. 3845 if (LHSCIOp->getType() != RHSOp->getType()) 3846 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3847 } 3848 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3849 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3850 } 3851 3852 if (RHSOp) 3853 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3854 } 3855 3856 // The code below only handles extension cast instructions, so far. 3857 // Enforce this. 3858 if (LHSCI->getOpcode() != Instruction::ZExt && 3859 LHSCI->getOpcode() != Instruction::SExt) 3860 return nullptr; 3861 3862 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3863 bool isSignedCmp = ICmp.isSigned(); 3864 3865 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3866 // Not an extension from the same type? 3867 RHSCIOp = CI->getOperand(0); 3868 if (RHSCIOp->getType() != LHSCIOp->getType()) 3869 return nullptr; 3870 3871 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3872 // and the other is a zext), then we can't handle this. 3873 if (CI->getOpcode() != LHSCI->getOpcode()) 3874 return nullptr; 3875 3876 // Deal with equality cases early. 3877 if (ICmp.isEquality()) 3878 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3879 3880 // A signed comparison of sign extended values simplifies into a 3881 // signed comparison. 3882 if (isSignedCmp && isSignedExt) 3883 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3884 3885 // The other three cases all fold into an unsigned comparison. 3886 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3887 } 3888 3889 // If we aren't dealing with a constant on the RHS, exit early. 3890 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3891 if (!C) 3892 return nullptr; 3893 3894 // Compute the constant that would happen if we truncated to SrcTy then 3895 // re-extended to DestTy. 3896 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3897 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3898 3899 // If the re-extended constant didn't change... 3900 if (Res2 == C) { 3901 // Deal with equality cases early. 3902 if (ICmp.isEquality()) 3903 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3904 3905 // A signed comparison of sign extended values simplifies into a 3906 // signed comparison. 3907 if (isSignedExt && isSignedCmp) 3908 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3909 3910 // The other three cases all fold into an unsigned comparison. 3911 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3912 } 3913 3914 // The re-extended constant changed, partly changed (in the case of a vector), 3915 // or could not be determined to be equal (in the case of a constant 3916 // expression), so the constant cannot be represented in the shorter type. 3917 // Consequently, we cannot emit a simple comparison. 3918 // All the cases that fold to true or false will have already been handled 3919 // by SimplifyICmpInst, so only deal with the tricky case. 3920 3921 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3922 return nullptr; 3923 3924 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3925 // should have been folded away previously and not enter in here. 3926 3927 // We're performing an unsigned comp with a sign extended value. 3928 // This is true if the input is >= 0. [aka >s -1] 3929 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3930 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3931 3932 // Finally, return the value computed. 3933 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3934 return replaceInstUsesWith(ICmp, Result); 3935 3936 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3937 return BinaryOperator::CreateNot(Result); 3938 } 3939 3940 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3941 Value *RHS, Instruction &OrigI, 3942 Value *&Result, Constant *&Overflow) { 3943 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3944 std::swap(LHS, RHS); 3945 3946 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3947 Result = OpResult; 3948 Overflow = OverflowVal; 3949 if (ReuseName) 3950 Result->takeName(&OrigI); 3951 return true; 3952 }; 3953 3954 // If the overflow check was an add followed by a compare, the insertion point 3955 // may be pointing to the compare. We want to insert the new instructions 3956 // before the add in case there are uses of the add between the add and the 3957 // compare. 3958 Builder.SetInsertPoint(&OrigI); 3959 3960 switch (OCF) { 3961 case OCF_INVALID: 3962 llvm_unreachable("bad overflow check kind!"); 3963 3964 case OCF_UNSIGNED_ADD: 3965 case OCF_SIGNED_ADD: { 3966 // X + 0 -> {X, false} 3967 if (match(RHS, m_Zero())) 3968 return SetResult(LHS, Builder.getFalse(), false); 3969 3970 OverflowResult OR; 3971 if (OCF == OCF_UNSIGNED_ADD) { 3972 OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3973 if (OR == OverflowResult::NeverOverflows) 3974 return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), 3975 true); 3976 } else { 3977 OR = computeOverflowForSignedAdd(LHS, RHS, &OrigI); 3978 if (OR == OverflowResult::NeverOverflows) 3979 return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), 3980 true); 3981 } 3982 3983 if (OR == OverflowResult::AlwaysOverflows) 3984 return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); 3985 break; 3986 } 3987 3988 case OCF_UNSIGNED_SUB: 3989 case OCF_SIGNED_SUB: { 3990 // X - 0 -> {X, false} 3991 if (match(RHS, m_Zero())) 3992 return SetResult(LHS, Builder.getFalse(), false); 3993 3994 OverflowResult OR; 3995 if (OCF == OCF_UNSIGNED_SUB) { 3996 OR = computeOverflowForUnsignedSub(LHS, RHS, &OrigI); 3997 if (OR == OverflowResult::NeverOverflows) 3998 return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), 3999 true); 4000 } else { 4001 OR = computeOverflowForSignedSub(LHS, RHS, &OrigI); 4002 if (OR == OverflowResult::NeverOverflows) 4003 return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), 4004 true); 4005 } 4006 4007 if (OR == OverflowResult::AlwaysOverflows) 4008 return SetResult(Builder.CreateSub(LHS, RHS), Builder.getTrue(), true); 4009 break; 4010 } 4011 4012 case OCF_UNSIGNED_MUL: 4013 case OCF_SIGNED_MUL: { 4014 // X * undef -> undef 4015 if (isa<UndefValue>(RHS)) 4016 return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); 4017 4018 // X * 0 -> {0, false} 4019 if (match(RHS, m_Zero())) 4020 return SetResult(RHS, Builder.getFalse(), false); 4021 4022 // X * 1 -> {X, false} 4023 if (match(RHS, m_One())) 4024 return SetResult(LHS, Builder.getFalse(), false); 4025 4026 OverflowResult OR; 4027 if (OCF == OCF_UNSIGNED_MUL) { 4028 OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 4029 if (OR == OverflowResult::NeverOverflows) 4030 return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), 4031 true); 4032 if (OR == OverflowResult::AlwaysOverflows) 4033 return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); 4034 } else { 4035 OR = computeOverflowForSignedMul(LHS, RHS, &OrigI); 4036 if (OR == OverflowResult::NeverOverflows) 4037 return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), 4038 true); 4039 } 4040 break; 4041 } 4042 } 4043 4044 return false; 4045 } 4046 4047 /// Recognize and process idiom involving test for multiplication 4048 /// overflow. 4049 /// 4050 /// The caller has matched a pattern of the form: 4051 /// I = cmp u (mul(zext A, zext B), V 4052 /// The function checks if this is a test for overflow and if so replaces 4053 /// multiplication with call to 'mul.with.overflow' intrinsic. 4054 /// 4055 /// \param I Compare instruction. 4056 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4057 /// the compare instruction. Must be of integer type. 4058 /// \param OtherVal The other argument of compare instruction. 4059 /// \returns Instruction which must replace the compare instruction, NULL if no 4060 /// replacement required. 4061 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4062 Value *OtherVal, InstCombiner &IC) { 4063 // Don't bother doing this transformation for pointers, don't do it for 4064 // vectors. 4065 if (!isa<IntegerType>(MulVal->getType())) 4066 return nullptr; 4067 4068 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4069 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4070 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4071 if (!MulInstr) 4072 return nullptr; 4073 assert(MulInstr->getOpcode() == Instruction::Mul); 4074 4075 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4076 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4077 assert(LHS->getOpcode() == Instruction::ZExt); 4078 assert(RHS->getOpcode() == Instruction::ZExt); 4079 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4080 4081 // Calculate type and width of the result produced by mul.with.overflow. 4082 Type *TyA = A->getType(), *TyB = B->getType(); 4083 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4084 WidthB = TyB->getPrimitiveSizeInBits(); 4085 unsigned MulWidth; 4086 Type *MulType; 4087 if (WidthB > WidthA) { 4088 MulWidth = WidthB; 4089 MulType = TyB; 4090 } else { 4091 MulWidth = WidthA; 4092 MulType = TyA; 4093 } 4094 4095 // In order to replace the original mul with a narrower mul.with.overflow, 4096 // all uses must ignore upper bits of the product. The number of used low 4097 // bits must be not greater than the width of mul.with.overflow. 4098 if (MulVal->hasNUsesOrMore(2)) 4099 for (User *U : MulVal->users()) { 4100 if (U == &I) 4101 continue; 4102 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4103 // Check if truncation ignores bits above MulWidth. 4104 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4105 if (TruncWidth > MulWidth) 4106 return nullptr; 4107 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4108 // Check if AND ignores bits above MulWidth. 4109 if (BO->getOpcode() != Instruction::And) 4110 return nullptr; 4111 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4112 const APInt &CVal = CI->getValue(); 4113 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4114 return nullptr; 4115 } else { 4116 // In this case we could have the operand of the binary operation 4117 // being defined in another block, and performing the replacement 4118 // could break the dominance relation. 4119 return nullptr; 4120 } 4121 } else { 4122 // Other uses prohibit this transformation. 4123 return nullptr; 4124 } 4125 } 4126 4127 // Recognize patterns 4128 switch (I.getPredicate()) { 4129 case ICmpInst::ICMP_EQ: 4130 case ICmpInst::ICMP_NE: 4131 // Recognize pattern: 4132 // mulval = mul(zext A, zext B) 4133 // cmp eq/neq mulval, zext trunc mulval 4134 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4135 if (Zext->hasOneUse()) { 4136 Value *ZextArg = Zext->getOperand(0); 4137 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4138 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4139 break; //Recognized 4140 } 4141 4142 // Recognize pattern: 4143 // mulval = mul(zext A, zext B) 4144 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4145 ConstantInt *CI; 4146 Value *ValToMask; 4147 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4148 if (ValToMask != MulVal) 4149 return nullptr; 4150 const APInt &CVal = CI->getValue() + 1; 4151 if (CVal.isPowerOf2()) { 4152 unsigned MaskWidth = CVal.logBase2(); 4153 if (MaskWidth == MulWidth) 4154 break; // Recognized 4155 } 4156 } 4157 return nullptr; 4158 4159 case ICmpInst::ICMP_UGT: 4160 // Recognize pattern: 4161 // mulval = mul(zext A, zext B) 4162 // cmp ugt mulval, max 4163 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4164 APInt MaxVal = APInt::getMaxValue(MulWidth); 4165 MaxVal = MaxVal.zext(CI->getBitWidth()); 4166 if (MaxVal.eq(CI->getValue())) 4167 break; // Recognized 4168 } 4169 return nullptr; 4170 4171 case ICmpInst::ICMP_UGE: 4172 // Recognize pattern: 4173 // mulval = mul(zext A, zext B) 4174 // cmp uge mulval, max+1 4175 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4176 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4177 if (MaxVal.eq(CI->getValue())) 4178 break; // Recognized 4179 } 4180 return nullptr; 4181 4182 case ICmpInst::ICMP_ULE: 4183 // Recognize pattern: 4184 // mulval = mul(zext A, zext B) 4185 // cmp ule mulval, max 4186 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4187 APInt MaxVal = APInt::getMaxValue(MulWidth); 4188 MaxVal = MaxVal.zext(CI->getBitWidth()); 4189 if (MaxVal.eq(CI->getValue())) 4190 break; // Recognized 4191 } 4192 return nullptr; 4193 4194 case ICmpInst::ICMP_ULT: 4195 // Recognize pattern: 4196 // mulval = mul(zext A, zext B) 4197 // cmp ule mulval, max + 1 4198 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4199 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4200 if (MaxVal.eq(CI->getValue())) 4201 break; // Recognized 4202 } 4203 return nullptr; 4204 4205 default: 4206 return nullptr; 4207 } 4208 4209 InstCombiner::BuilderTy &Builder = IC.Builder; 4210 Builder.SetInsertPoint(MulInstr); 4211 4212 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4213 Value *MulA = A, *MulB = B; 4214 if (WidthA < MulWidth) 4215 MulA = Builder.CreateZExt(A, MulType); 4216 if (WidthB < MulWidth) 4217 MulB = Builder.CreateZExt(B, MulType); 4218 Function *F = Intrinsic::getDeclaration( 4219 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4220 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4221 IC.Worklist.Add(MulInstr); 4222 4223 // If there are uses of mul result other than the comparison, we know that 4224 // they are truncation or binary AND. Change them to use result of 4225 // mul.with.overflow and adjust properly mask/size. 4226 if (MulVal->hasNUsesOrMore(2)) { 4227 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4228 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4229 User *U = *UI++; 4230 if (U == &I || U == OtherVal) 4231 continue; 4232 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4233 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4234 IC.replaceInstUsesWith(*TI, Mul); 4235 else 4236 TI->setOperand(0, Mul); 4237 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4238 assert(BO->getOpcode() == Instruction::And); 4239 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4240 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4241 APInt ShortMask = CI->getValue().trunc(MulWidth); 4242 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4243 Instruction *Zext = 4244 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4245 IC.Worklist.Add(Zext); 4246 IC.replaceInstUsesWith(*BO, Zext); 4247 } else { 4248 llvm_unreachable("Unexpected Binary operation"); 4249 } 4250 IC.Worklist.Add(cast<Instruction>(U)); 4251 } 4252 } 4253 if (isa<Instruction>(OtherVal)) 4254 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4255 4256 // The original icmp gets replaced with the overflow value, maybe inverted 4257 // depending on predicate. 4258 bool Inverse = false; 4259 switch (I.getPredicate()) { 4260 case ICmpInst::ICMP_NE: 4261 break; 4262 case ICmpInst::ICMP_EQ: 4263 Inverse = true; 4264 break; 4265 case ICmpInst::ICMP_UGT: 4266 case ICmpInst::ICMP_UGE: 4267 if (I.getOperand(0) == MulVal) 4268 break; 4269 Inverse = true; 4270 break; 4271 case ICmpInst::ICMP_ULT: 4272 case ICmpInst::ICMP_ULE: 4273 if (I.getOperand(1) == MulVal) 4274 break; 4275 Inverse = true; 4276 break; 4277 default: 4278 llvm_unreachable("Unexpected predicate"); 4279 } 4280 if (Inverse) { 4281 Value *Res = Builder.CreateExtractValue(Call, 1); 4282 return BinaryOperator::CreateNot(Res); 4283 } 4284 4285 return ExtractValueInst::Create(Call, 1); 4286 } 4287 4288 /// When performing a comparison against a constant, it is possible that not all 4289 /// the bits in the LHS are demanded. This helper method computes the mask that 4290 /// IS demanded. 4291 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4292 const APInt *RHS; 4293 if (!match(I.getOperand(1), m_APInt(RHS))) 4294 return APInt::getAllOnesValue(BitWidth); 4295 4296 // If this is a normal comparison, it demands all bits. If it is a sign bit 4297 // comparison, it only demands the sign bit. 4298 bool UnusedBit; 4299 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4300 return APInt::getSignMask(BitWidth); 4301 4302 switch (I.getPredicate()) { 4303 // For a UGT comparison, we don't care about any bits that 4304 // correspond to the trailing ones of the comparand. The value of these 4305 // bits doesn't impact the outcome of the comparison, because any value 4306 // greater than the RHS must differ in a bit higher than these due to carry. 4307 case ICmpInst::ICMP_UGT: 4308 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4309 4310 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4311 // Any value less than the RHS must differ in a higher bit because of carries. 4312 case ICmpInst::ICMP_ULT: 4313 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4314 4315 default: 4316 return APInt::getAllOnesValue(BitWidth); 4317 } 4318 } 4319 4320 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4321 /// should be swapped. 4322 /// The decision is based on how many times these two operands are reused 4323 /// as subtract operands and their positions in those instructions. 4324 /// The rationale is that several architectures use the same instruction for 4325 /// both subtract and cmp. Thus, it is better if the order of those operands 4326 /// match. 4327 /// \return true if Op0 and Op1 should be swapped. 4328 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4329 // Filter out pointer values as those cannot appear directly in subtract. 4330 // FIXME: we may want to go through inttoptrs or bitcasts. 4331 if (Op0->getType()->isPointerTy()) 4332 return false; 4333 // If a subtract already has the same operands as a compare, swapping would be 4334 // bad. If a subtract has the same operands as a compare but in reverse order, 4335 // then swapping is good. 4336 int GoodToSwap = 0; 4337 for (const User *U : Op0->users()) { 4338 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4339 GoodToSwap++; 4340 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4341 GoodToSwap--; 4342 } 4343 return GoodToSwap > 0; 4344 } 4345 4346 /// Check that one use is in the same block as the definition and all 4347 /// other uses are in blocks dominated by a given block. 4348 /// 4349 /// \param DI Definition 4350 /// \param UI Use 4351 /// \param DB Block that must dominate all uses of \p DI outside 4352 /// the parent block 4353 /// \return true when \p UI is the only use of \p DI in the parent block 4354 /// and all other uses of \p DI are in blocks dominated by \p DB. 4355 /// 4356 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4357 const Instruction *UI, 4358 const BasicBlock *DB) const { 4359 assert(DI && UI && "Instruction not defined\n"); 4360 // Ignore incomplete definitions. 4361 if (!DI->getParent()) 4362 return false; 4363 // DI and UI must be in the same block. 4364 if (DI->getParent() != UI->getParent()) 4365 return false; 4366 // Protect from self-referencing blocks. 4367 if (DI->getParent() == DB) 4368 return false; 4369 for (const User *U : DI->users()) { 4370 auto *Usr = cast<Instruction>(U); 4371 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4372 return false; 4373 } 4374 return true; 4375 } 4376 4377 /// Return true when the instruction sequence within a block is select-cmp-br. 4378 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4379 const BasicBlock *BB = SI->getParent(); 4380 if (!BB) 4381 return false; 4382 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4383 if (!BI || BI->getNumSuccessors() != 2) 4384 return false; 4385 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4386 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4387 return false; 4388 return true; 4389 } 4390 4391 /// True when a select result is replaced by one of its operands 4392 /// in select-icmp sequence. This will eventually result in the elimination 4393 /// of the select. 4394 /// 4395 /// \param SI Select instruction 4396 /// \param Icmp Compare instruction 4397 /// \param SIOpd Operand that replaces the select 4398 /// 4399 /// Notes: 4400 /// - The replacement is global and requires dominator information 4401 /// - The caller is responsible for the actual replacement 4402 /// 4403 /// Example: 4404 /// 4405 /// entry: 4406 /// %4 = select i1 %3, %C* %0, %C* null 4407 /// %5 = icmp eq %C* %4, null 4408 /// br i1 %5, label %9, label %7 4409 /// ... 4410 /// ; <label>:7 ; preds = %entry 4411 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4412 /// ... 4413 /// 4414 /// can be transformed to 4415 /// 4416 /// %5 = icmp eq %C* %0, null 4417 /// %6 = select i1 %3, i1 %5, i1 true 4418 /// br i1 %6, label %9, label %7 4419 /// ... 4420 /// ; <label>:7 ; preds = %entry 4421 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4422 /// 4423 /// Similar when the first operand of the select is a constant or/and 4424 /// the compare is for not equal rather than equal. 4425 /// 4426 /// NOTE: The function is only called when the select and compare constants 4427 /// are equal, the optimization can work only for EQ predicates. This is not a 4428 /// major restriction since a NE compare should be 'normalized' to an equal 4429 /// compare, which usually happens in the combiner and test case 4430 /// select-cmp-br.ll checks for it. 4431 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4432 const ICmpInst *Icmp, 4433 const unsigned SIOpd) { 4434 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4435 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4436 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4437 // The check for the single predecessor is not the best that can be 4438 // done. But it protects efficiently against cases like when SI's 4439 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4440 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4441 // replaced can be reached on either path. So the uniqueness check 4442 // guarantees that the path all uses of SI (outside SI's parent) are on 4443 // is disjoint from all other paths out of SI. But that information 4444 // is more expensive to compute, and the trade-off here is in favor 4445 // of compile-time. It should also be noticed that we check for a single 4446 // predecessor and not only uniqueness. This to handle the situation when 4447 // Succ and Succ1 points to the same basic block. 4448 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4449 NumSel++; 4450 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4451 return true; 4452 } 4453 } 4454 return false; 4455 } 4456 4457 /// Try to fold the comparison based on range information we can get by checking 4458 /// whether bits are known to be zero or one in the inputs. 4459 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4460 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4461 Type *Ty = Op0->getType(); 4462 ICmpInst::Predicate Pred = I.getPredicate(); 4463 4464 // Get scalar or pointer size. 4465 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4466 ? Ty->getScalarSizeInBits() 4467 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4468 4469 if (!BitWidth) 4470 return nullptr; 4471 4472 KnownBits Op0Known(BitWidth); 4473 KnownBits Op1Known(BitWidth); 4474 4475 if (SimplifyDemandedBits(&I, 0, 4476 getDemandedBitsLHSMask(I, BitWidth), 4477 Op0Known, 0)) 4478 return &I; 4479 4480 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4481 Op1Known, 0)) 4482 return &I; 4483 4484 // Given the known and unknown bits, compute a range that the LHS could be 4485 // in. Compute the Min, Max and RHS values based on the known bits. For the 4486 // EQ and NE we use unsigned values. 4487 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4488 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4489 if (I.isSigned()) { 4490 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4491 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4492 } else { 4493 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4494 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4495 } 4496 4497 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4498 // out that the LHS or RHS is a constant. Constant fold this now, so that 4499 // code below can assume that Min != Max. 4500 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4501 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4502 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4503 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4504 4505 // Based on the range information we know about the LHS, see if we can 4506 // simplify this comparison. For example, (x&4) < 8 is always true. 4507 switch (Pred) { 4508 default: 4509 llvm_unreachable("Unknown icmp opcode!"); 4510 case ICmpInst::ICMP_EQ: 4511 case ICmpInst::ICMP_NE: { 4512 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4513 return Pred == CmpInst::ICMP_EQ 4514 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4515 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4516 } 4517 4518 // If all bits are known zero except for one, then we know at most one bit 4519 // is set. If the comparison is against zero, then this is a check to see if 4520 // *that* bit is set. 4521 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4522 if (Op1Known.isZero()) { 4523 // If the LHS is an AND with the same constant, look through it. 4524 Value *LHS = nullptr; 4525 const APInt *LHSC; 4526 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4527 *LHSC != Op0KnownZeroInverted) 4528 LHS = Op0; 4529 4530 Value *X; 4531 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4532 APInt ValToCheck = Op0KnownZeroInverted; 4533 Type *XTy = X->getType(); 4534 if (ValToCheck.isPowerOf2()) { 4535 // ((1 << X) & 8) == 0 -> X != 3 4536 // ((1 << X) & 8) != 0 -> X == 3 4537 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4538 auto NewPred = ICmpInst::getInversePredicate(Pred); 4539 return new ICmpInst(NewPred, X, CmpC); 4540 } else if ((++ValToCheck).isPowerOf2()) { 4541 // ((1 << X) & 7) == 0 -> X >= 3 4542 // ((1 << X) & 7) != 0 -> X < 3 4543 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4544 auto NewPred = 4545 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4546 return new ICmpInst(NewPred, X, CmpC); 4547 } 4548 } 4549 4550 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4551 const APInt *CI; 4552 if (Op0KnownZeroInverted.isOneValue() && 4553 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4554 // ((8 >>u X) & 1) == 0 -> X != 3 4555 // ((8 >>u X) & 1) != 0 -> X == 3 4556 unsigned CmpVal = CI->countTrailingZeros(); 4557 auto NewPred = ICmpInst::getInversePredicate(Pred); 4558 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4559 } 4560 } 4561 break; 4562 } 4563 case ICmpInst::ICMP_ULT: { 4564 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4565 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4566 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4567 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4568 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4569 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4570 4571 const APInt *CmpC; 4572 if (match(Op1, m_APInt(CmpC))) { 4573 // A <u C -> A == C-1 if min(A)+1 == C 4574 if (*CmpC == Op0Min + 1) 4575 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4576 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4577 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4578 // exceeds the log2 of C. 4579 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4580 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4581 Constant::getNullValue(Op1->getType())); 4582 } 4583 break; 4584 } 4585 case ICmpInst::ICMP_UGT: { 4586 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4587 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4588 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4589 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4590 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4591 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4592 4593 const APInt *CmpC; 4594 if (match(Op1, m_APInt(CmpC))) { 4595 // A >u C -> A == C+1 if max(a)-1 == C 4596 if (*CmpC == Op0Max - 1) 4597 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4598 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4599 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4600 // exceeds the log2 of C. 4601 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4602 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4603 Constant::getNullValue(Op1->getType())); 4604 } 4605 break; 4606 } 4607 case ICmpInst::ICMP_SLT: { 4608 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4609 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4610 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4611 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4612 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4613 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4614 const APInt *CmpC; 4615 if (match(Op1, m_APInt(CmpC))) { 4616 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4617 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4618 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4619 } 4620 break; 4621 } 4622 case ICmpInst::ICMP_SGT: { 4623 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4624 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4625 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4626 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4627 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4628 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4629 const APInt *CmpC; 4630 if (match(Op1, m_APInt(CmpC))) { 4631 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4632 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4633 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4634 } 4635 break; 4636 } 4637 case ICmpInst::ICMP_SGE: 4638 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4639 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4640 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4641 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4642 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4643 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4644 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4645 break; 4646 case ICmpInst::ICMP_SLE: 4647 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4648 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4649 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4650 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4651 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4652 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4653 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4654 break; 4655 case ICmpInst::ICMP_UGE: 4656 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4657 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4658 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4659 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4660 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4661 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4662 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4663 break; 4664 case ICmpInst::ICMP_ULE: 4665 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4666 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4667 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4668 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4669 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4670 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4671 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4672 break; 4673 } 4674 4675 // Turn a signed comparison into an unsigned one if both operands are known to 4676 // have the same sign. 4677 if (I.isSigned() && 4678 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4679 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4680 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4681 4682 return nullptr; 4683 } 4684 4685 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4686 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4687 /// allows them to be folded in visitICmpInst. 4688 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4689 ICmpInst::Predicate Pred = I.getPredicate(); 4690 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4691 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4692 return nullptr; 4693 4694 Value *Op0 = I.getOperand(0); 4695 Value *Op1 = I.getOperand(1); 4696 auto *Op1C = dyn_cast<Constant>(Op1); 4697 if (!Op1C) 4698 return nullptr; 4699 4700 // Check if the constant operand can be safely incremented/decremented without 4701 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4702 // the edge cases for us, so we just assert on them. For vectors, we must 4703 // handle the edge cases. 4704 Type *Op1Type = Op1->getType(); 4705 bool IsSigned = I.isSigned(); 4706 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4707 auto *CI = dyn_cast<ConstantInt>(Op1C); 4708 if (CI) { 4709 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4710 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4711 } else if (Op1Type->isVectorTy()) { 4712 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4713 // are for scalar, we could remove the min/max checks. However, to do that, 4714 // we would have to use insertelement/shufflevector to replace edge values. 4715 unsigned NumElts = Op1Type->getVectorNumElements(); 4716 for (unsigned i = 0; i != NumElts; ++i) { 4717 Constant *Elt = Op1C->getAggregateElement(i); 4718 if (!Elt) 4719 return nullptr; 4720 4721 if (isa<UndefValue>(Elt)) 4722 continue; 4723 4724 // Bail out if we can't determine if this constant is min/max or if we 4725 // know that this constant is min/max. 4726 auto *CI = dyn_cast<ConstantInt>(Elt); 4727 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4728 return nullptr; 4729 } 4730 } else { 4731 // ConstantExpr? 4732 return nullptr; 4733 } 4734 4735 // Increment or decrement the constant and set the new comparison predicate: 4736 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4737 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4738 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4739 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4740 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4741 } 4742 4743 /// Integer compare with boolean values can always be turned into bitwise ops. 4744 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4745 InstCombiner::BuilderTy &Builder) { 4746 Value *A = I.getOperand(0), *B = I.getOperand(1); 4747 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4748 4749 // A boolean compared to true/false can be simplified to Op0/true/false in 4750 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4751 // Cases not handled by InstSimplify are always 'not' of Op0. 4752 if (match(B, m_Zero())) { 4753 switch (I.getPredicate()) { 4754 case CmpInst::ICMP_EQ: // A == 0 -> !A 4755 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4756 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4757 return BinaryOperator::CreateNot(A); 4758 default: 4759 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4760 } 4761 } else if (match(B, m_One())) { 4762 switch (I.getPredicate()) { 4763 case CmpInst::ICMP_NE: // A != 1 -> !A 4764 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4765 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4766 return BinaryOperator::CreateNot(A); 4767 default: 4768 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4769 } 4770 } 4771 4772 switch (I.getPredicate()) { 4773 default: 4774 llvm_unreachable("Invalid icmp instruction!"); 4775 case ICmpInst::ICMP_EQ: 4776 // icmp eq i1 A, B -> ~(A ^ B) 4777 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4778 4779 case ICmpInst::ICMP_NE: 4780 // icmp ne i1 A, B -> A ^ B 4781 return BinaryOperator::CreateXor(A, B); 4782 4783 case ICmpInst::ICMP_UGT: 4784 // icmp ugt -> icmp ult 4785 std::swap(A, B); 4786 LLVM_FALLTHROUGH; 4787 case ICmpInst::ICMP_ULT: 4788 // icmp ult i1 A, B -> ~A & B 4789 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4790 4791 case ICmpInst::ICMP_SGT: 4792 // icmp sgt -> icmp slt 4793 std::swap(A, B); 4794 LLVM_FALLTHROUGH; 4795 case ICmpInst::ICMP_SLT: 4796 // icmp slt i1 A, B -> A & ~B 4797 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4798 4799 case ICmpInst::ICMP_UGE: 4800 // icmp uge -> icmp ule 4801 std::swap(A, B); 4802 LLVM_FALLTHROUGH; 4803 case ICmpInst::ICMP_ULE: 4804 // icmp ule i1 A, B -> ~A | B 4805 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4806 4807 case ICmpInst::ICMP_SGE: 4808 // icmp sge -> icmp sle 4809 std::swap(A, B); 4810 LLVM_FALLTHROUGH; 4811 case ICmpInst::ICMP_SLE: 4812 // icmp sle i1 A, B -> A | ~B 4813 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4814 } 4815 } 4816 4817 // Transform pattern like: 4818 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4819 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4820 // Into: 4821 // (X l>> Y) != 0 4822 // (X l>> Y) == 0 4823 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4824 InstCombiner::BuilderTy &Builder) { 4825 ICmpInst::Predicate Pred, NewPred; 4826 Value *X, *Y; 4827 if (match(&Cmp, 4828 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4829 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4830 if (Cmp.getOperand(0) == X) 4831 Pred = Cmp.getSwappedPredicate(); 4832 4833 switch (Pred) { 4834 case ICmpInst::ICMP_ULE: 4835 NewPred = ICmpInst::ICMP_NE; 4836 break; 4837 case ICmpInst::ICMP_UGT: 4838 NewPred = ICmpInst::ICMP_EQ; 4839 break; 4840 default: 4841 return nullptr; 4842 } 4843 } else if (match(&Cmp, m_c_ICmp(Pred, 4844 m_OneUse(m_CombineOr( 4845 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4846 m_Add(m_Shl(m_One(), m_Value(Y)), 4847 m_AllOnes()))), 4848 m_Value(X)))) { 4849 // The variant with 'add' is not canonical, (the variant with 'not' is) 4850 // we only get it because it has extra uses, and can't be canonicalized, 4851 4852 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4853 if (Cmp.getOperand(0) == X) 4854 Pred = Cmp.getSwappedPredicate(); 4855 4856 switch (Pred) { 4857 case ICmpInst::ICMP_ULT: 4858 NewPred = ICmpInst::ICMP_NE; 4859 break; 4860 case ICmpInst::ICMP_UGE: 4861 NewPred = ICmpInst::ICMP_EQ; 4862 break; 4863 default: 4864 return nullptr; 4865 } 4866 } else 4867 return nullptr; 4868 4869 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 4870 Constant *Zero = Constant::getNullValue(NewX->getType()); 4871 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 4872 } 4873 4874 static Instruction *foldVectorCmp(CmpInst &Cmp, 4875 InstCombiner::BuilderTy &Builder) { 4876 // If both arguments of the cmp are shuffles that use the same mask and 4877 // shuffle within a single vector, move the shuffle after the cmp. 4878 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 4879 Value *V1, *V2; 4880 Constant *M; 4881 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 4882 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 4883 V1->getType() == V2->getType() && 4884 (LHS->hasOneUse() || RHS->hasOneUse())) { 4885 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 4886 CmpInst::Predicate P = Cmp.getPredicate(); 4887 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 4888 : Builder.CreateFCmp(P, V1, V2); 4889 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 4890 } 4891 return nullptr; 4892 } 4893 4894 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4895 bool Changed = false; 4896 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4897 unsigned Op0Cplxity = getComplexity(Op0); 4898 unsigned Op1Cplxity = getComplexity(Op1); 4899 4900 /// Orders the operands of the compare so that they are listed from most 4901 /// complex to least complex. This puts constants before unary operators, 4902 /// before binary operators. 4903 if (Op0Cplxity < Op1Cplxity || 4904 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4905 I.swapOperands(); 4906 std::swap(Op0, Op1); 4907 Changed = true; 4908 } 4909 4910 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4911 SQ.getWithInstruction(&I))) 4912 return replaceInstUsesWith(I, V); 4913 4914 // Comparing -val or val with non-zero is the same as just comparing val 4915 // ie, abs(val) != 0 -> val != 0 4916 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4917 Value *Cond, *SelectTrue, *SelectFalse; 4918 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4919 m_Value(SelectFalse)))) { 4920 if (Value *V = dyn_castNegVal(SelectTrue)) { 4921 if (V == SelectFalse) 4922 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4923 } 4924 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4925 if (V == SelectTrue) 4926 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4927 } 4928 } 4929 } 4930 4931 if (Op0->getType()->isIntOrIntVectorTy(1)) 4932 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4933 return Res; 4934 4935 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4936 return NewICmp; 4937 4938 if (Instruction *Res = foldICmpWithConstant(I)) 4939 return Res; 4940 4941 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 4942 return Res; 4943 4944 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4945 return Res; 4946 4947 // Test if the ICmpInst instruction is used exclusively by a select as 4948 // part of a minimum or maximum operation. If so, refrain from doing 4949 // any other folding. This helps out other analyses which understand 4950 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4951 // and CodeGen. And in this case, at least one of the comparison 4952 // operands has at least one user besides the compare (the select), 4953 // which would often largely negate the benefit of folding anyway. 4954 // 4955 // Do the same for the other patterns recognized by matchSelectPattern. 4956 if (I.hasOneUse()) 4957 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4958 Value *A, *B; 4959 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4960 if (SPR.Flavor != SPF_UNKNOWN) 4961 return nullptr; 4962 } 4963 4964 // Do this after checking for min/max to prevent infinite looping. 4965 if (Instruction *Res = foldICmpWithZero(I)) 4966 return Res; 4967 4968 // FIXME: We only do this after checking for min/max to prevent infinite 4969 // looping caused by a reverse canonicalization of these patterns for min/max. 4970 // FIXME: The organization of folds is a mess. These would naturally go into 4971 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4972 // down here after the min/max restriction. 4973 ICmpInst::Predicate Pred = I.getPredicate(); 4974 const APInt *C; 4975 if (match(Op1, m_APInt(C))) { 4976 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4977 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4978 Constant *Zero = Constant::getNullValue(Op0->getType()); 4979 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4980 } 4981 4982 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4983 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4984 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4985 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4986 } 4987 } 4988 4989 if (Instruction *Res = foldICmpInstWithConstant(I)) 4990 return Res; 4991 4992 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4993 return Res; 4994 4995 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4996 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4997 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4998 return NI; 4999 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5000 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5001 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5002 return NI; 5003 5004 // Try to optimize equality comparisons against alloca-based pointers. 5005 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5006 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5007 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5008 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5009 return New; 5010 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5011 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5012 return New; 5013 } 5014 5015 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5016 return Res; 5017 5018 if (isa<CastInst>(Op0)) { 5019 // Handle the special case of: icmp (cast bool to X), <cst> 5020 // This comes up when you have code like 5021 // int X = A < B; 5022 // if (X) ... 5023 // For generality, we handle any zero-extension of any operand comparison 5024 // with a constant or another cast from the same type. 5025 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5026 if (Instruction *R = foldICmpWithCastAndCast(I)) 5027 return R; 5028 } 5029 5030 if (Instruction *Res = foldICmpBinOp(I)) 5031 return Res; 5032 5033 if (Instruction *Res = foldICmpWithMinMax(I)) 5034 return Res; 5035 5036 { 5037 Value *A, *B; 5038 // Transform (A & ~B) == 0 --> (A & B) != 0 5039 // and (A & ~B) != 0 --> (A & B) == 0 5040 // if A is a power of 2. 5041 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5042 match(Op1, m_Zero()) && 5043 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5044 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5045 Op1); 5046 5047 // ~X < ~Y --> Y < X 5048 // ~X < C --> X > ~C 5049 if (match(Op0, m_Not(m_Value(A)))) { 5050 if (match(Op1, m_Not(m_Value(B)))) 5051 return new ICmpInst(I.getPredicate(), B, A); 5052 5053 const APInt *C; 5054 if (match(Op1, m_APInt(C))) 5055 return new ICmpInst(I.getSwappedPredicate(), A, 5056 ConstantInt::get(Op1->getType(), ~(*C))); 5057 } 5058 5059 Instruction *AddI = nullptr; 5060 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5061 m_Instruction(AddI))) && 5062 isa<IntegerType>(A->getType())) { 5063 Value *Result; 5064 Constant *Overflow; 5065 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 5066 Overflow)) { 5067 replaceInstUsesWith(*AddI, Result); 5068 return replaceInstUsesWith(I, Overflow); 5069 } 5070 } 5071 5072 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5073 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5074 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5075 return R; 5076 } 5077 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5078 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5079 return R; 5080 } 5081 } 5082 5083 if (Instruction *Res = foldICmpEquality(I)) 5084 return Res; 5085 5086 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5087 // an i1 which indicates whether or not we successfully did the swap. 5088 // 5089 // Replace comparisons between the old value and the expected value with the 5090 // indicator that 'cmpxchg' returns. 5091 // 5092 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5093 // spuriously fail. In those cases, the old value may equal the expected 5094 // value but it is possible for the swap to not occur. 5095 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5096 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5097 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5098 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5099 !ACXI->isWeak()) 5100 return ExtractValueInst::Create(ACXI, 1); 5101 5102 { 5103 Value *X; 5104 const APInt *C; 5105 // icmp X+Cst, X 5106 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5107 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5108 5109 // icmp X, X+Cst 5110 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5111 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5112 } 5113 5114 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5115 return Res; 5116 5117 if (I.getType()->isVectorTy()) 5118 if (Instruction *Res = foldVectorCmp(I, Builder)) 5119 return Res; 5120 5121 return Changed ? &I : nullptr; 5122 } 5123 5124 /// Fold fcmp ([us]itofp x, cst) if possible. 5125 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5126 Constant *RHSC) { 5127 if (!isa<ConstantFP>(RHSC)) return nullptr; 5128 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5129 5130 // Get the width of the mantissa. We don't want to hack on conversions that 5131 // might lose information from the integer, e.g. "i64 -> float" 5132 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5133 if (MantissaWidth == -1) return nullptr; // Unknown. 5134 5135 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5136 5137 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5138 5139 if (I.isEquality()) { 5140 FCmpInst::Predicate P = I.getPredicate(); 5141 bool IsExact = false; 5142 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5143 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5144 5145 // If the floating point constant isn't an integer value, we know if we will 5146 // ever compare equal / not equal to it. 5147 if (!IsExact) { 5148 // TODO: Can never be -0.0 and other non-representable values 5149 APFloat RHSRoundInt(RHS); 5150 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5151 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5152 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5153 return replaceInstUsesWith(I, Builder.getFalse()); 5154 5155 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5156 return replaceInstUsesWith(I, Builder.getTrue()); 5157 } 5158 } 5159 5160 // TODO: If the constant is exactly representable, is it always OK to do 5161 // equality compares as integer? 5162 } 5163 5164 // Check to see that the input is converted from an integer type that is small 5165 // enough that preserves all bits. TODO: check here for "known" sign bits. 5166 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5167 unsigned InputSize = IntTy->getScalarSizeInBits(); 5168 5169 // Following test does NOT adjust InputSize downwards for signed inputs, 5170 // because the most negative value still requires all the mantissa bits 5171 // to distinguish it from one less than that value. 5172 if ((int)InputSize > MantissaWidth) { 5173 // Conversion would lose accuracy. Check if loss can impact comparison. 5174 int Exp = ilogb(RHS); 5175 if (Exp == APFloat::IEK_Inf) { 5176 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5177 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5178 // Conversion could create infinity. 5179 return nullptr; 5180 } else { 5181 // Note that if RHS is zero or NaN, then Exp is negative 5182 // and first condition is trivially false. 5183 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5184 // Conversion could affect comparison. 5185 return nullptr; 5186 } 5187 } 5188 5189 // Otherwise, we can potentially simplify the comparison. We know that it 5190 // will always come through as an integer value and we know the constant is 5191 // not a NAN (it would have been previously simplified). 5192 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5193 5194 ICmpInst::Predicate Pred; 5195 switch (I.getPredicate()) { 5196 default: llvm_unreachable("Unexpected predicate!"); 5197 case FCmpInst::FCMP_UEQ: 5198 case FCmpInst::FCMP_OEQ: 5199 Pred = ICmpInst::ICMP_EQ; 5200 break; 5201 case FCmpInst::FCMP_UGT: 5202 case FCmpInst::FCMP_OGT: 5203 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5204 break; 5205 case FCmpInst::FCMP_UGE: 5206 case FCmpInst::FCMP_OGE: 5207 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5208 break; 5209 case FCmpInst::FCMP_ULT: 5210 case FCmpInst::FCMP_OLT: 5211 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5212 break; 5213 case FCmpInst::FCMP_ULE: 5214 case FCmpInst::FCMP_OLE: 5215 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5216 break; 5217 case FCmpInst::FCMP_UNE: 5218 case FCmpInst::FCMP_ONE: 5219 Pred = ICmpInst::ICMP_NE; 5220 break; 5221 case FCmpInst::FCMP_ORD: 5222 return replaceInstUsesWith(I, Builder.getTrue()); 5223 case FCmpInst::FCMP_UNO: 5224 return replaceInstUsesWith(I, Builder.getFalse()); 5225 } 5226 5227 // Now we know that the APFloat is a normal number, zero or inf. 5228 5229 // See if the FP constant is too large for the integer. For example, 5230 // comparing an i8 to 300.0. 5231 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5232 5233 if (!LHSUnsigned) { 5234 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5235 // and large values. 5236 APFloat SMax(RHS.getSemantics()); 5237 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5238 APFloat::rmNearestTiesToEven); 5239 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5240 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5241 Pred == ICmpInst::ICMP_SLE) 5242 return replaceInstUsesWith(I, Builder.getTrue()); 5243 return replaceInstUsesWith(I, Builder.getFalse()); 5244 } 5245 } else { 5246 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5247 // +INF and large values. 5248 APFloat UMax(RHS.getSemantics()); 5249 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5250 APFloat::rmNearestTiesToEven); 5251 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5252 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5253 Pred == ICmpInst::ICMP_ULE) 5254 return replaceInstUsesWith(I, Builder.getTrue()); 5255 return replaceInstUsesWith(I, Builder.getFalse()); 5256 } 5257 } 5258 5259 if (!LHSUnsigned) { 5260 // See if the RHS value is < SignedMin. 5261 APFloat SMin(RHS.getSemantics()); 5262 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5263 APFloat::rmNearestTiesToEven); 5264 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5265 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5266 Pred == ICmpInst::ICMP_SGE) 5267 return replaceInstUsesWith(I, Builder.getTrue()); 5268 return replaceInstUsesWith(I, Builder.getFalse()); 5269 } 5270 } else { 5271 // See if the RHS value is < UnsignedMin. 5272 APFloat SMin(RHS.getSemantics()); 5273 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5274 APFloat::rmNearestTiesToEven); 5275 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5276 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5277 Pred == ICmpInst::ICMP_UGE) 5278 return replaceInstUsesWith(I, Builder.getTrue()); 5279 return replaceInstUsesWith(I, Builder.getFalse()); 5280 } 5281 } 5282 5283 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5284 // [0, UMAX], but it may still be fractional. See if it is fractional by 5285 // casting the FP value to the integer value and back, checking for equality. 5286 // Don't do this for zero, because -0.0 is not fractional. 5287 Constant *RHSInt = LHSUnsigned 5288 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5289 : ConstantExpr::getFPToSI(RHSC, IntTy); 5290 if (!RHS.isZero()) { 5291 bool Equal = LHSUnsigned 5292 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5293 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5294 if (!Equal) { 5295 // If we had a comparison against a fractional value, we have to adjust 5296 // the compare predicate and sometimes the value. RHSC is rounded towards 5297 // zero at this point. 5298 switch (Pred) { 5299 default: llvm_unreachable("Unexpected integer comparison!"); 5300 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5301 return replaceInstUsesWith(I, Builder.getTrue()); 5302 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5303 return replaceInstUsesWith(I, Builder.getFalse()); 5304 case ICmpInst::ICMP_ULE: 5305 // (float)int <= 4.4 --> int <= 4 5306 // (float)int <= -4.4 --> false 5307 if (RHS.isNegative()) 5308 return replaceInstUsesWith(I, Builder.getFalse()); 5309 break; 5310 case ICmpInst::ICMP_SLE: 5311 // (float)int <= 4.4 --> int <= 4 5312 // (float)int <= -4.4 --> int < -4 5313 if (RHS.isNegative()) 5314 Pred = ICmpInst::ICMP_SLT; 5315 break; 5316 case ICmpInst::ICMP_ULT: 5317 // (float)int < -4.4 --> false 5318 // (float)int < 4.4 --> int <= 4 5319 if (RHS.isNegative()) 5320 return replaceInstUsesWith(I, Builder.getFalse()); 5321 Pred = ICmpInst::ICMP_ULE; 5322 break; 5323 case ICmpInst::ICMP_SLT: 5324 // (float)int < -4.4 --> int < -4 5325 // (float)int < 4.4 --> int <= 4 5326 if (!RHS.isNegative()) 5327 Pred = ICmpInst::ICMP_SLE; 5328 break; 5329 case ICmpInst::ICMP_UGT: 5330 // (float)int > 4.4 --> int > 4 5331 // (float)int > -4.4 --> true 5332 if (RHS.isNegative()) 5333 return replaceInstUsesWith(I, Builder.getTrue()); 5334 break; 5335 case ICmpInst::ICMP_SGT: 5336 // (float)int > 4.4 --> int > 4 5337 // (float)int > -4.4 --> int >= -4 5338 if (RHS.isNegative()) 5339 Pred = ICmpInst::ICMP_SGE; 5340 break; 5341 case ICmpInst::ICMP_UGE: 5342 // (float)int >= -4.4 --> true 5343 // (float)int >= 4.4 --> int > 4 5344 if (RHS.isNegative()) 5345 return replaceInstUsesWith(I, Builder.getTrue()); 5346 Pred = ICmpInst::ICMP_UGT; 5347 break; 5348 case ICmpInst::ICMP_SGE: 5349 // (float)int >= -4.4 --> int >= -4 5350 // (float)int >= 4.4 --> int > 4 5351 if (!RHS.isNegative()) 5352 Pred = ICmpInst::ICMP_SGT; 5353 break; 5354 } 5355 } 5356 } 5357 5358 // Lower this FP comparison into an appropriate integer version of the 5359 // comparison. 5360 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5361 } 5362 5363 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5364 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5365 Constant *RHSC) { 5366 // When C is not 0.0 and infinities are not allowed: 5367 // (C / X) < 0.0 is a sign-bit test of X 5368 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5369 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5370 // 5371 // Proof: 5372 // Multiply (C / X) < 0.0 by X * X / C. 5373 // - X is non zero, if it is the flag 'ninf' is violated. 5374 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5375 // the predicate. C is also non zero by definition. 5376 // 5377 // Thus X * X / C is non zero and the transformation is valid. [qed] 5378 5379 FCmpInst::Predicate Pred = I.getPredicate(); 5380 5381 // Check that predicates are valid. 5382 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5383 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5384 return nullptr; 5385 5386 // Check that RHS operand is zero. 5387 if (!match(RHSC, m_AnyZeroFP())) 5388 return nullptr; 5389 5390 // Check fastmath flags ('ninf'). 5391 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5392 return nullptr; 5393 5394 // Check the properties of the dividend. It must not be zero to avoid a 5395 // division by zero (see Proof). 5396 const APFloat *C; 5397 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5398 return nullptr; 5399 5400 if (C->isZero()) 5401 return nullptr; 5402 5403 // Get swapped predicate if necessary. 5404 if (C->isNegative()) 5405 Pred = I.getSwappedPredicate(); 5406 5407 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5408 } 5409 5410 /// Optimize fabs(X) compared with zero. 5411 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5412 Value *X; 5413 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5414 !match(I.getOperand(1), m_PosZeroFP())) 5415 return nullptr; 5416 5417 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5418 I->setPredicate(P); 5419 I->setOperand(0, X); 5420 return I; 5421 }; 5422 5423 switch (I.getPredicate()) { 5424 case FCmpInst::FCMP_UGE: 5425 case FCmpInst::FCMP_OLT: 5426 // fabs(X) >= 0.0 --> true 5427 // fabs(X) < 0.0 --> false 5428 llvm_unreachable("fcmp should have simplified"); 5429 5430 case FCmpInst::FCMP_OGT: 5431 // fabs(X) > 0.0 --> X != 0.0 5432 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5433 5434 case FCmpInst::FCMP_UGT: 5435 // fabs(X) u> 0.0 --> X u!= 0.0 5436 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5437 5438 case FCmpInst::FCMP_OLE: 5439 // fabs(X) <= 0.0 --> X == 0.0 5440 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5441 5442 case FCmpInst::FCMP_ULE: 5443 // fabs(X) u<= 0.0 --> X u== 0.0 5444 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5445 5446 case FCmpInst::FCMP_OGE: 5447 // fabs(X) >= 0.0 --> !isnan(X) 5448 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5449 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5450 5451 case FCmpInst::FCMP_ULT: 5452 // fabs(X) u< 0.0 --> isnan(X) 5453 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5454 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5455 5456 case FCmpInst::FCMP_OEQ: 5457 case FCmpInst::FCMP_UEQ: 5458 case FCmpInst::FCMP_ONE: 5459 case FCmpInst::FCMP_UNE: 5460 case FCmpInst::FCMP_ORD: 5461 case FCmpInst::FCMP_UNO: 5462 // Look through the fabs() because it doesn't change anything but the sign. 5463 // fabs(X) == 0.0 --> X == 0.0, 5464 // fabs(X) != 0.0 --> X != 0.0 5465 // isnan(fabs(X)) --> isnan(X) 5466 // !isnan(fabs(X) --> !isnan(X) 5467 return replacePredAndOp0(&I, I.getPredicate(), X); 5468 5469 default: 5470 return nullptr; 5471 } 5472 } 5473 5474 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5475 bool Changed = false; 5476 5477 /// Orders the operands of the compare so that they are listed from most 5478 /// complex to least complex. This puts constants before unary operators, 5479 /// before binary operators. 5480 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5481 I.swapOperands(); 5482 Changed = true; 5483 } 5484 5485 const CmpInst::Predicate Pred = I.getPredicate(); 5486 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5487 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5488 SQ.getWithInstruction(&I))) 5489 return replaceInstUsesWith(I, V); 5490 5491 // Simplify 'fcmp pred X, X' 5492 if (Op0 == Op1) { 5493 switch (Pred) { 5494 default: break; 5495 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5496 case FCmpInst::FCMP_ULT: // True if unordered or less than 5497 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5498 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5499 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5500 I.setPredicate(FCmpInst::FCMP_UNO); 5501 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5502 return &I; 5503 5504 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5505 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5506 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5507 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5508 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5509 I.setPredicate(FCmpInst::FCMP_ORD); 5510 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5511 return &I; 5512 } 5513 } 5514 5515 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5516 // then canonicalize the operand to 0.0. 5517 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5518 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5519 I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); 5520 return &I; 5521 } 5522 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5523 I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); 5524 return &I; 5525 } 5526 } 5527 5528 // Test if the FCmpInst instruction is used exclusively by a select as 5529 // part of a minimum or maximum operation. If so, refrain from doing 5530 // any other folding. This helps out other analyses which understand 5531 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5532 // and CodeGen. And in this case, at least one of the comparison 5533 // operands has at least one user besides the compare (the select), 5534 // which would often largely negate the benefit of folding anyway. 5535 if (I.hasOneUse()) 5536 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5537 Value *A, *B; 5538 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5539 if (SPR.Flavor != SPF_UNKNOWN) 5540 return nullptr; 5541 } 5542 5543 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5544 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5545 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5546 I.setOperand(1, ConstantFP::getNullValue(Op1->getType())); 5547 return &I; 5548 } 5549 5550 // Handle fcmp with instruction LHS and constant RHS. 5551 Instruction *LHSI; 5552 Constant *RHSC; 5553 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5554 switch (LHSI->getOpcode()) { 5555 case Instruction::PHI: 5556 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5557 // block. If in the same block, we're encouraging jump threading. If 5558 // not, we are just pessimizing the code by making an i1 phi. 5559 if (LHSI->getParent() == I.getParent()) 5560 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5561 return NV; 5562 break; 5563 case Instruction::SIToFP: 5564 case Instruction::UIToFP: 5565 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5566 return NV; 5567 break; 5568 case Instruction::FDiv: 5569 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5570 return NV; 5571 break; 5572 case Instruction::Load: 5573 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5574 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5575 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5576 !cast<LoadInst>(LHSI)->isVolatile()) 5577 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5578 return Res; 5579 break; 5580 } 5581 } 5582 5583 if (Instruction *R = foldFabsWithFcmpZero(I)) 5584 return R; 5585 5586 Value *X, *Y; 5587 if (match(Op0, m_FNeg(m_Value(X)))) { 5588 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5589 if (match(Op1, m_FNeg(m_Value(Y)))) 5590 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5591 5592 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5593 Constant *C; 5594 if (match(Op1, m_Constant(C))) { 5595 Constant *NegC = ConstantExpr::getFNeg(C); 5596 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5597 } 5598 } 5599 5600 if (match(Op0, m_FPExt(m_Value(X)))) { 5601 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5602 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5603 return new FCmpInst(Pred, X, Y, "", &I); 5604 5605 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5606 const APFloat *C; 5607 if (match(Op1, m_APFloat(C))) { 5608 const fltSemantics &FPSem = 5609 X->getType()->getScalarType()->getFltSemantics(); 5610 bool Lossy; 5611 APFloat TruncC = *C; 5612 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5613 5614 // Avoid lossy conversions and denormals. 5615 // Zero is a special case that's OK to convert. 5616 APFloat Fabs = TruncC; 5617 Fabs.clearSign(); 5618 if (!Lossy && 5619 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5620 APFloat::cmpLessThan) || Fabs.isZero())) { 5621 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5622 return new FCmpInst(Pred, X, NewC, "", &I); 5623 } 5624 } 5625 } 5626 5627 if (I.getType()->isVectorTy()) 5628 if (Instruction *Res = foldVectorCmp(I, Builder)) 5629 return Res; 5630 5631 return Changed ? &I : nullptr; 5632 } 5633