1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
76                            bool &TrueIfSigned) {
77   switch (Pred) {
78   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
79     TrueIfSigned = true;
80     return RHS.isNullValue();
81   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
82     TrueIfSigned = true;
83     return RHS.isAllOnesValue();
84   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
85     TrueIfSigned = false;
86     return RHS.isAllOnesValue();
87   case ICmpInst::ICMP_UGT:
88     // True if LHS u> RHS and RHS == high-bit-mask - 1
89     TrueIfSigned = true;
90     return RHS.isMaxSignedValue();
91   case ICmpInst::ICMP_UGE:
92     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
93     TrueIfSigned = true;
94     return RHS.isSignMask();
95   default:
96     return false;
97   }
98 }
99 
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
105   if (!ICmpInst::isSigned(Pred))
106     return false;
107 
108   if (C.isNullValue())
109     return ICmpInst::isRelational(Pred);
110 
111   if (C.isOneValue()) {
112     if (Pred == ICmpInst::ICMP_SLT) {
113       Pred = ICmpInst::ICMP_SLE;
114       return true;
115     }
116   } else if (C.isAllOnesValue()) {
117     if (Pred == ICmpInst::ICMP_SGT) {
118       Pred = ICmpInst::ICMP_SGE;
119       return true;
120     }
121   }
122 
123   return false;
124 }
125 
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
131                                                    APInt &Min, APInt &Max) {
132   assert(Known.getBitWidth() == Min.getBitWidth() &&
133          Known.getBitWidth() == Max.getBitWidth() &&
134          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135   APInt UnknownBits = ~(Known.Zero|Known.One);
136 
137   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138   // bit if it is unknown.
139   Min = Known.One;
140   Max = Known.One|UnknownBits;
141 
142   if (UnknownBits.isNegative()) { // Sign bit is unknown
143     Min.setSignBit();
144     Max.clearSignBit();
145   }
146 }
147 
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
153                                                      APInt &Min, APInt &Max) {
154   assert(Known.getBitWidth() == Min.getBitWidth() &&
155          Known.getBitWidth() == Max.getBitWidth() &&
156          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157   APInt UnknownBits = ~(Known.Zero|Known.One);
158 
159   // The minimum value is when the unknown bits are all zeros.
160   Min = Known.One;
161   // The maximum value is when the unknown bits are all ones.
162   Max = Known.One|UnknownBits;
163 }
164 
165 /// This is called when we see this pattern:
166 ///   cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
170 ///
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
174                                                         GlobalVariable *GV,
175                                                         CmpInst &ICI,
176                                                         ConstantInt *AndCst) {
177   Constant *Init = GV->getInitializer();
178   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
179     return nullptr;
180 
181   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
182   // Don't blow up on huge arrays.
183   if (ArrayElementCount > MaxArraySizeForCombine)
184     return nullptr;
185 
186   // There are many forms of this optimization we can handle, for now, just do
187   // the simple index into a single-dimensional array.
188   //
189   // Require: GEP GV, 0, i {{, constant indices}}
190   if (GEP->getNumOperands() < 3 ||
191       !isa<ConstantInt>(GEP->getOperand(1)) ||
192       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
193       isa<Constant>(GEP->getOperand(2)))
194     return nullptr;
195 
196   // Check that indices after the variable are constants and in-range for the
197   // type they index.  Collect the indices.  This is typically for arrays of
198   // structs.
199   SmallVector<unsigned, 4> LaterIndices;
200 
201   Type *EltTy = Init->getType()->getArrayElementType();
202   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
203     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
204     if (!Idx) return nullptr;  // Variable index.
205 
206     uint64_t IdxVal = Idx->getZExtValue();
207     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
208 
209     if (StructType *STy = dyn_cast<StructType>(EltTy))
210       EltTy = STy->getElementType(IdxVal);
211     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
212       if (IdxVal >= ATy->getNumElements()) return nullptr;
213       EltTy = ATy->getElementType();
214     } else {
215       return nullptr; // Unknown type.
216     }
217 
218     LaterIndices.push_back(IdxVal);
219   }
220 
221   enum { Overdefined = -3, Undefined = -2 };
222 
223   // Variables for our state machines.
224 
225   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
228   // undefined, otherwise set to the first true element.  SecondTrueElement is
229   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
231 
232   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233   // form "i != 47 & i != 87".  Same state transitions as for true elements.
234   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
235 
236   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237   /// define a state machine that triggers for ranges of values that the index
238   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
239   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240   /// index in the range (inclusive).  We use -2 for undefined here because we
241   /// use relative comparisons and don't want 0-1 to match -1.
242   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
243 
244   // MagicBitvector - This is a magic bitvector where we set a bit if the
245   // comparison is true for element 'i'.  If there are 64 elements or less in
246   // the array, this will fully represent all the comparison results.
247   uint64_t MagicBitvector = 0;
248 
249   // Scan the array and see if one of our patterns matches.
250   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
251   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
252     Constant *Elt = Init->getAggregateElement(i);
253     if (!Elt) return nullptr;
254 
255     // If this is indexing an array of structures, get the structure element.
256     if (!LaterIndices.empty())
257       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
258 
259     // If the element is masked, handle it.
260     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
261 
262     // Find out if the comparison would be true or false for the i'th element.
263     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
264                                                   CompareRHS, DL, &TLI);
265     // If the result is undef for this element, ignore it.
266     if (isa<UndefValue>(C)) {
267       // Extend range state machines to cover this element in case there is an
268       // undef in the middle of the range.
269       if (TrueRangeEnd == (int)i-1)
270         TrueRangeEnd = i;
271       if (FalseRangeEnd == (int)i-1)
272         FalseRangeEnd = i;
273       continue;
274     }
275 
276     // If we can't compute the result for any of the elements, we have to give
277     // up evaluating the entire conditional.
278     if (!isa<ConstantInt>(C)) return nullptr;
279 
280     // Otherwise, we know if the comparison is true or false for this element,
281     // update our state machines.
282     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
283 
284     // State machine for single/double/range index comparison.
285     if (IsTrueForElt) {
286       // Update the TrueElement state machine.
287       if (FirstTrueElement == Undefined)
288         FirstTrueElement = TrueRangeEnd = i;  // First true element.
289       else {
290         // Update double-compare state machine.
291         if (SecondTrueElement == Undefined)
292           SecondTrueElement = i;
293         else
294           SecondTrueElement = Overdefined;
295 
296         // Update range state machine.
297         if (TrueRangeEnd == (int)i-1)
298           TrueRangeEnd = i;
299         else
300           TrueRangeEnd = Overdefined;
301       }
302     } else {
303       // Update the FalseElement state machine.
304       if (FirstFalseElement == Undefined)
305         FirstFalseElement = FalseRangeEnd = i; // First false element.
306       else {
307         // Update double-compare state machine.
308         if (SecondFalseElement == Undefined)
309           SecondFalseElement = i;
310         else
311           SecondFalseElement = Overdefined;
312 
313         // Update range state machine.
314         if (FalseRangeEnd == (int)i-1)
315           FalseRangeEnd = i;
316         else
317           FalseRangeEnd = Overdefined;
318       }
319     }
320 
321     // If this element is in range, update our magic bitvector.
322     if (i < 64 && IsTrueForElt)
323       MagicBitvector |= 1ULL << i;
324 
325     // If all of our states become overdefined, bail out early.  Since the
326     // predicate is expensive, only check it every 8 elements.  This is only
327     // really useful for really huge arrays.
328     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
329         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
330         FalseRangeEnd == Overdefined)
331       return nullptr;
332   }
333 
334   // Now that we've scanned the entire array, emit our new comparison(s).  We
335   // order the state machines in complexity of the generated code.
336   Value *Idx = GEP->getOperand(2);
337 
338   // If the index is larger than the pointer size of the target, truncate the
339   // index down like the GEP would do implicitly.  We don't have to do this for
340   // an inbounds GEP because the index can't be out of range.
341   if (!GEP->isInBounds()) {
342     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
343     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
344     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
345       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
346   }
347 
348   // If the comparison is only true for one or two elements, emit direct
349   // comparisons.
350   if (SecondTrueElement != Overdefined) {
351     // None true -> false.
352     if (FirstTrueElement == Undefined)
353       return replaceInstUsesWith(ICI, Builder.getFalse());
354 
355     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
356 
357     // True for one element -> 'i == 47'.
358     if (SecondTrueElement == Undefined)
359       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
360 
361     // True for two elements -> 'i == 47 | i == 72'.
362     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
363     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
364     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
365     return BinaryOperator::CreateOr(C1, C2);
366   }
367 
368   // If the comparison is only false for one or two elements, emit direct
369   // comparisons.
370   if (SecondFalseElement != Overdefined) {
371     // None false -> true.
372     if (FirstFalseElement == Undefined)
373       return replaceInstUsesWith(ICI, Builder.getTrue());
374 
375     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
376 
377     // False for one element -> 'i != 47'.
378     if (SecondFalseElement == Undefined)
379       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
380 
381     // False for two elements -> 'i != 47 & i != 72'.
382     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
383     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
384     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
385     return BinaryOperator::CreateAnd(C1, C2);
386   }
387 
388   // If the comparison can be replaced with a range comparison for the elements
389   // where it is true, emit the range check.
390   if (TrueRangeEnd != Overdefined) {
391     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
392 
393     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394     if (FirstTrueElement) {
395       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
396       Idx = Builder.CreateAdd(Idx, Offs);
397     }
398 
399     Value *End = ConstantInt::get(Idx->getType(),
400                                   TrueRangeEnd-FirstTrueElement+1);
401     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
402   }
403 
404   // False range check.
405   if (FalseRangeEnd != Overdefined) {
406     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
407     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408     if (FirstFalseElement) {
409       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
410       Idx = Builder.CreateAdd(Idx, Offs);
411     }
412 
413     Value *End = ConstantInt::get(Idx->getType(),
414                                   FalseRangeEnd-FirstFalseElement);
415     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
416   }
417 
418   // If a magic bitvector captures the entire comparison state
419   // of this load, replace it with computation that does:
420   //   ((magic_cst >> i) & 1) != 0
421   {
422     Type *Ty = nullptr;
423 
424     // Look for an appropriate type:
425     // - The type of Idx if the magic fits
426     // - The smallest fitting legal type
427     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
428       Ty = Idx->getType();
429     else
430       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
431 
432     if (Ty) {
433       Value *V = Builder.CreateIntCast(Idx, Ty, false);
434       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
435       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
436       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
437     }
438   }
439 
440   return nullptr;
441 }
442 
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
450 ///
451 /// If we can't emit an optimized form for this expression, this returns null.
452 ///
453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
454                                           const DataLayout &DL) {
455   gep_type_iterator GTI = gep_type_begin(GEP);
456 
457   // Check to see if this gep only has a single variable index.  If so, and if
458   // any constant indices are a multiple of its scale, then we can compute this
459   // in terms of the scale of the variable index.  For example, if the GEP
460   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461   // because the expression will cross zero at the same point.
462   unsigned i, e = GEP->getNumOperands();
463   int64_t Offset = 0;
464   for (i = 1; i != e; ++i, ++GTI) {
465     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
466       // Compute the aggregate offset of constant indices.
467       if (CI->isZero()) continue;
468 
469       // Handle a struct index, which adds its field offset to the pointer.
470       if (StructType *STy = GTI.getStructTypeOrNull()) {
471         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
472       } else {
473         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
474         Offset += Size*CI->getSExtValue();
475       }
476     } else {
477       // Found our variable index.
478       break;
479     }
480   }
481 
482   // If there are no variable indices, we must have a constant offset, just
483   // evaluate it the general way.
484   if (i == e) return nullptr;
485 
486   Value *VariableIdx = GEP->getOperand(i);
487   // Determine the scale factor of the variable element.  For example, this is
488   // 4 if the variable index is into an array of i32.
489   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
490 
491   // Verify that there are no other variable indices.  If so, emit the hard way.
492   for (++i, ++GTI; i != e; ++i, ++GTI) {
493     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
494     if (!CI) return nullptr;
495 
496     // Compute the aggregate offset of constant indices.
497     if (CI->isZero()) continue;
498 
499     // Handle a struct index, which adds its field offset to the pointer.
500     if (StructType *STy = GTI.getStructTypeOrNull()) {
501       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
502     } else {
503       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
504       Offset += Size*CI->getSExtValue();
505     }
506   }
507 
508   // Okay, we know we have a single variable index, which must be a
509   // pointer/array/vector index.  If there is no offset, life is simple, return
510   // the index.
511   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
512   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
513   if (Offset == 0) {
514     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
515     // we don't need to bother extending: the extension won't affect where the
516     // computation crosses zero.
517     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
518       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
519     }
520     return VariableIdx;
521   }
522 
523   // Otherwise, there is an index.  The computation we will do will be modulo
524   // the pointer size.
525   Offset = SignExtend64(Offset, IntPtrWidth);
526   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
527 
528   // To do this transformation, any constant index must be a multiple of the
529   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
530   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
531   // multiple of the variable scale.
532   int64_t NewOffs = Offset / (int64_t)VariableScale;
533   if (Offset != NewOffs*(int64_t)VariableScale)
534     return nullptr;
535 
536   // Okay, we can do this evaluation.  Start by converting the index to intptr.
537   if (VariableIdx->getType() != IntPtrTy)
538     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
539                                             true /*Signed*/);
540   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
541   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
542 }
543 
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
548                                   const DataLayout &DL,
549                                   SetVector<Value *> &Explored) {
550   SmallVector<Value *, 16> WorkList(1, Start);
551   Explored.insert(Base);
552 
553   // The following traversal gives us an order which can be used
554   // when doing the final transformation. Since in the final
555   // transformation we create the PHI replacement instructions first,
556   // we don't have to get them in any particular order.
557   //
558   // However, for other instructions we will have to traverse the
559   // operands of an instruction first, which means that we have to
560   // do a post-order traversal.
561   while (!WorkList.empty()) {
562     SetVector<PHINode *> PHIs;
563 
564     while (!WorkList.empty()) {
565       if (Explored.size() >= 100)
566         return false;
567 
568       Value *V = WorkList.back();
569 
570       if (Explored.count(V) != 0) {
571         WorkList.pop_back();
572         continue;
573       }
574 
575       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
576           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
577         // We've found some value that we can't explore which is different from
578         // the base. Therefore we can't do this transformation.
579         return false;
580 
581       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
582         auto *CI = dyn_cast<CastInst>(V);
583         if (!CI->isNoopCast(DL))
584           return false;
585 
586         if (Explored.count(CI->getOperand(0)) == 0)
587           WorkList.push_back(CI->getOperand(0));
588       }
589 
590       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
591         // We're limiting the GEP to having one index. This will preserve
592         // the original pointer type. We could handle more cases in the
593         // future.
594         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
595             GEP->getType() != Start->getType())
596           return false;
597 
598         if (Explored.count(GEP->getOperand(0)) == 0)
599           WorkList.push_back(GEP->getOperand(0));
600       }
601 
602       if (WorkList.back() == V) {
603         WorkList.pop_back();
604         // We've finished visiting this node, mark it as such.
605         Explored.insert(V);
606       }
607 
608       if (auto *PN = dyn_cast<PHINode>(V)) {
609         // We cannot transform PHIs on unsplittable basic blocks.
610         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
611           return false;
612         Explored.insert(PN);
613         PHIs.insert(PN);
614       }
615     }
616 
617     // Explore the PHI nodes further.
618     for (auto *PN : PHIs)
619       for (Value *Op : PN->incoming_values())
620         if (Explored.count(Op) == 0)
621           WorkList.push_back(Op);
622   }
623 
624   // Make sure that we can do this. Since we can't insert GEPs in a basic
625   // block before a PHI node, we can't easily do this transformation if
626   // we have PHI node users of transformed instructions.
627   for (Value *Val : Explored) {
628     for (Value *Use : Val->uses()) {
629 
630       auto *PHI = dyn_cast<PHINode>(Use);
631       auto *Inst = dyn_cast<Instruction>(Val);
632 
633       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
634           Explored.count(PHI) == 0)
635         continue;
636 
637       if (PHI->getParent() == Inst->getParent())
638         return false;
639     }
640   }
641   return true;
642 }
643 
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
647                               bool Before = true) {
648   if (auto *PHI = dyn_cast<PHINode>(V)) {
649     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
650     return;
651   }
652   if (auto *I = dyn_cast<Instruction>(V)) {
653     if (!Before)
654       I = &*std::next(I->getIterator());
655     Builder.SetInsertPoint(I);
656     return;
657   }
658   if (auto *A = dyn_cast<Argument>(V)) {
659     // Set the insertion point in the entry block.
660     BasicBlock &Entry = A->getParent()->getEntryBlock();
661     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
662     return;
663   }
664   // Otherwise, this is a constant and we don't need to set a new
665   // insertion point.
666   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
667 }
668 
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
670 /// pointer.
671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
672                                  const DataLayout &DL,
673                                  SetVector<Value *> &Explored) {
674   // Perform all the substitutions. This is a bit tricky because we can
675   // have cycles in our use-def chains.
676   // 1. Create the PHI nodes without any incoming values.
677   // 2. Create all the other values.
678   // 3. Add the edges for the PHI nodes.
679   // 4. Emit GEPs to get the original pointers.
680   // 5. Remove the original instructions.
681   Type *IndexType = IntegerType::get(
682       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
683 
684   DenseMap<Value *, Value *> NewInsts;
685   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
686 
687   // Create the new PHI nodes, without adding any incoming values.
688   for (Value *Val : Explored) {
689     if (Val == Base)
690       continue;
691     // Create empty phi nodes. This avoids cyclic dependencies when creating
692     // the remaining instructions.
693     if (auto *PHI = dyn_cast<PHINode>(Val))
694       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
695                                       PHI->getName() + ".idx", PHI);
696   }
697   IRBuilder<> Builder(Base->getContext());
698 
699   // Create all the other instructions.
700   for (Value *Val : Explored) {
701 
702     if (NewInsts.find(Val) != NewInsts.end())
703       continue;
704 
705     if (auto *CI = dyn_cast<CastInst>(Val)) {
706       NewInsts[CI] = NewInsts[CI->getOperand(0)];
707       continue;
708     }
709     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
710       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
711                                                   : GEP->getOperand(1);
712       setInsertionPoint(Builder, GEP);
713       // Indices might need to be sign extended. GEPs will magically do
714       // this, but we need to do it ourselves here.
715       if (Index->getType()->getScalarSizeInBits() !=
716           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
717         Index = Builder.CreateSExtOrTrunc(
718             Index, NewInsts[GEP->getOperand(0)]->getType(),
719             GEP->getOperand(0)->getName() + ".sext");
720       }
721 
722       auto *Op = NewInsts[GEP->getOperand(0)];
723       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
724         NewInsts[GEP] = Index;
725       else
726         NewInsts[GEP] = Builder.CreateNSWAdd(
727             Op, Index, GEP->getOperand(0)->getName() + ".add");
728       continue;
729     }
730     if (isa<PHINode>(Val))
731       continue;
732 
733     llvm_unreachable("Unexpected instruction type");
734   }
735 
736   // Add the incoming values to the PHI nodes.
737   for (Value *Val : Explored) {
738     if (Val == Base)
739       continue;
740     // All the instructions have been created, we can now add edges to the
741     // phi nodes.
742     if (auto *PHI = dyn_cast<PHINode>(Val)) {
743       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
744       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
745         Value *NewIncoming = PHI->getIncomingValue(I);
746 
747         if (NewInsts.find(NewIncoming) != NewInsts.end())
748           NewIncoming = NewInsts[NewIncoming];
749 
750         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
751       }
752     }
753   }
754 
755   for (Value *Val : Explored) {
756     if (Val == Base)
757       continue;
758 
759     // Depending on the type, for external users we have to emit
760     // a GEP or a GEP + ptrtoint.
761     setInsertionPoint(Builder, Val, false);
762 
763     // If required, create an inttoptr instruction for Base.
764     Value *NewBase = Base;
765     if (!Base->getType()->isPointerTy())
766       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
767                                                Start->getName() + "to.ptr");
768 
769     Value *GEP = Builder.CreateInBoundsGEP(
770         Start->getType()->getPointerElementType(), NewBase,
771         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
772 
773     if (!Val->getType()->isPointerTy()) {
774       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
775                                               Val->getName() + ".conv");
776       GEP = Cast;
777     }
778     Val->replaceAllUsesWith(GEP);
779   }
780 
781   return NewInsts[Start];
782 }
783 
784 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
785 /// the input Value as a constant indexed GEP. Returns a pair containing
786 /// the GEPs Pointer and Index.
787 static std::pair<Value *, Value *>
788 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
789   Type *IndexType = IntegerType::get(V->getContext(),
790                                      DL.getIndexTypeSizeInBits(V->getType()));
791 
792   Constant *Index = ConstantInt::getNullValue(IndexType);
793   while (true) {
794     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
795       // We accept only inbouds GEPs here to exclude the possibility of
796       // overflow.
797       if (!GEP->isInBounds())
798         break;
799       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
800           GEP->getType() == V->getType()) {
801         V = GEP->getOperand(0);
802         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
803         Index = ConstantExpr::getAdd(
804             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
805         continue;
806       }
807       break;
808     }
809     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
810       if (!CI->isNoopCast(DL))
811         break;
812       V = CI->getOperand(0);
813       continue;
814     }
815     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
816       if (!CI->isNoopCast(DL))
817         break;
818       V = CI->getOperand(0);
819       continue;
820     }
821     break;
822   }
823   return {V, Index};
824 }
825 
826 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
827 /// We can look through PHIs, GEPs and casts in order to determine a common base
828 /// between GEPLHS and RHS.
829 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
830                                               ICmpInst::Predicate Cond,
831                                               const DataLayout &DL) {
832   if (!GEPLHS->hasAllConstantIndices())
833     return nullptr;
834 
835   // Make sure the pointers have the same type.
836   if (GEPLHS->getType() != RHS->getType())
837     return nullptr;
838 
839   Value *PtrBase, *Index;
840   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
841 
842   // The set of nodes that will take part in this transformation.
843   SetVector<Value *> Nodes;
844 
845   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
846     return nullptr;
847 
848   // We know we can re-write this as
849   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
850   // Since we've only looked through inbouds GEPs we know that we
851   // can't have overflow on either side. We can therefore re-write
852   // this as:
853   //   OFFSET1 cmp OFFSET2
854   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
855 
856   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
857   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
858   // offset. Since Index is the offset of LHS to the base pointer, we will now
859   // compare the offsets instead of comparing the pointers.
860   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
861 }
862 
863 /// Fold comparisons between a GEP instruction and something else. At this point
864 /// we know that the GEP is on the LHS of the comparison.
865 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
866                                        ICmpInst::Predicate Cond,
867                                        Instruction &I) {
868   // Don't transform signed compares of GEPs into index compares. Even if the
869   // GEP is inbounds, the final add of the base pointer can have signed overflow
870   // and would change the result of the icmp.
871   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
872   // the maximum signed value for the pointer type.
873   if (ICmpInst::isSigned(Cond))
874     return nullptr;
875 
876   // Look through bitcasts and addrspacecasts. We do not however want to remove
877   // 0 GEPs.
878   if (!isa<GetElementPtrInst>(RHS))
879     RHS = RHS->stripPointerCasts();
880 
881   Value *PtrBase = GEPLHS->getOperand(0);
882   if (PtrBase == RHS && GEPLHS->isInBounds()) {
883     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
884     // This transformation (ignoring the base and scales) is valid because we
885     // know pointers can't overflow since the gep is inbounds.  See if we can
886     // output an optimized form.
887     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
888 
889     // If not, synthesize the offset the hard way.
890     if (!Offset)
891       Offset = EmitGEPOffset(GEPLHS);
892     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
893                         Constant::getNullValue(Offset->getType()));
894   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
895     // If the base pointers are different, but the indices are the same, just
896     // compare the base pointer.
897     if (PtrBase != GEPRHS->getOperand(0)) {
898       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
899       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
900                         GEPRHS->getOperand(0)->getType();
901       if (IndicesTheSame)
902         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
903           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
904             IndicesTheSame = false;
905             break;
906           }
907 
908       // If all indices are the same, just compare the base pointers.
909       Type *BaseType = GEPLHS->getOperand(0)->getType();
910       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
911         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
912 
913       // If we're comparing GEPs with two base pointers that only differ in type
914       // and both GEPs have only constant indices or just one use, then fold
915       // the compare with the adjusted indices.
916       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
917           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
918           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
919           PtrBase->stripPointerCasts() ==
920               GEPRHS->getOperand(0)->stripPointerCasts()) {
921         Value *LOffset = EmitGEPOffset(GEPLHS);
922         Value *ROffset = EmitGEPOffset(GEPRHS);
923 
924         // If we looked through an addrspacecast between different sized address
925         // spaces, the LHS and RHS pointers are different sized
926         // integers. Truncate to the smaller one.
927         Type *LHSIndexTy = LOffset->getType();
928         Type *RHSIndexTy = ROffset->getType();
929         if (LHSIndexTy != RHSIndexTy) {
930           if (LHSIndexTy->getPrimitiveSizeInBits() <
931               RHSIndexTy->getPrimitiveSizeInBits()) {
932             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
933           } else
934             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
935         }
936 
937         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
938                                         LOffset, ROffset);
939         return replaceInstUsesWith(I, Cmp);
940       }
941 
942       // Otherwise, the base pointers are different and the indices are
943       // different. Try convert this to an indexed compare by looking through
944       // PHIs/casts.
945       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
946     }
947 
948     // If one of the GEPs has all zero indices, recurse.
949     if (GEPLHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
951                          ICmpInst::getSwappedPredicate(Cond), I);
952 
953     // If the other GEP has all zero indices, recurse.
954     if (GEPRHS->hasAllZeroIndices())
955       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
956 
957     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
958     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
959       // If the GEPs only differ by one index, compare it.
960       unsigned NumDifferences = 0;  // Keep track of # differences.
961       unsigned DiffOperand = 0;     // The operand that differs.
962       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
963         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
964           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
965                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
966             // Irreconcilable differences.
967             NumDifferences = 2;
968             break;
969           } else {
970             if (NumDifferences++) break;
971             DiffOperand = i;
972           }
973         }
974 
975       if (NumDifferences == 0)   // SAME GEP?
976         return replaceInstUsesWith(I, // No comparison is needed here.
977           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
978 
979       else if (NumDifferences == 1 && GEPsInBounds) {
980         Value *LHSV = GEPLHS->getOperand(DiffOperand);
981         Value *RHSV = GEPRHS->getOperand(DiffOperand);
982         // Make sure we do a signed comparison here.
983         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
984       }
985     }
986 
987     // Only lower this if the icmp is the only user of the GEP or if we expect
988     // the result to fold to a constant!
989     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
990         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
991       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
992       Value *L = EmitGEPOffset(GEPLHS);
993       Value *R = EmitGEPOffset(GEPRHS);
994       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
995     }
996   }
997 
998   // Try convert this to an indexed compare by looking through PHIs/casts as a
999   // last resort.
1000   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1001 }
1002 
1003 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1004                                          const AllocaInst *Alloca,
1005                                          const Value *Other) {
1006   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1007 
1008   // It would be tempting to fold away comparisons between allocas and any
1009   // pointer not based on that alloca (e.g. an argument). However, even
1010   // though such pointers cannot alias, they can still compare equal.
1011   //
1012   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1013   // doesn't escape we can argue that it's impossible to guess its value, and we
1014   // can therefore act as if any such guesses are wrong.
1015   //
1016   // The code below checks that the alloca doesn't escape, and that it's only
1017   // used in a comparison once (the current instruction). The
1018   // single-comparison-use condition ensures that we're trivially folding all
1019   // comparisons against the alloca consistently, and avoids the risk of
1020   // erroneously folding a comparison of the pointer with itself.
1021 
1022   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1023 
1024   SmallVector<const Use *, 32> Worklist;
1025   for (const Use &U : Alloca->uses()) {
1026     if (Worklist.size() >= MaxIter)
1027       return nullptr;
1028     Worklist.push_back(&U);
1029   }
1030 
1031   unsigned NumCmps = 0;
1032   while (!Worklist.empty()) {
1033     assert(Worklist.size() <= MaxIter);
1034     const Use *U = Worklist.pop_back_val();
1035     const Value *V = U->getUser();
1036     --MaxIter;
1037 
1038     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1039         isa<SelectInst>(V)) {
1040       // Track the uses.
1041     } else if (isa<LoadInst>(V)) {
1042       // Loading from the pointer doesn't escape it.
1043       continue;
1044     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1045       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1046       if (SI->getValueOperand() == U->get())
1047         return nullptr;
1048       continue;
1049     } else if (isa<ICmpInst>(V)) {
1050       if (NumCmps++)
1051         return nullptr; // Found more than one cmp.
1052       continue;
1053     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1054       switch (Intrin->getIntrinsicID()) {
1055         // These intrinsics don't escape or compare the pointer. Memset is safe
1056         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1057         // we don't allow stores, so src cannot point to V.
1058         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1059         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1060           continue;
1061         default:
1062           return nullptr;
1063       }
1064     } else {
1065       return nullptr;
1066     }
1067     for (const Use &U : V->uses()) {
1068       if (Worklist.size() >= MaxIter)
1069         return nullptr;
1070       Worklist.push_back(&U);
1071     }
1072   }
1073 
1074   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1075   return replaceInstUsesWith(
1076       ICI,
1077       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1078 }
1079 
1080 /// Fold "icmp pred (X+C), X".
1081 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1082                                               ICmpInst::Predicate Pred) {
1083   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1084   // so the values can never be equal.  Similarly for all other "or equals"
1085   // operators.
1086   assert(!!C && "C should not be zero!");
1087 
1088   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1089   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1090   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1091   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1092     Constant *R = ConstantInt::get(X->getType(),
1093                                    APInt::getMaxValue(C.getBitWidth()) - C);
1094     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1095   }
1096 
1097   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1098   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1099   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1100   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1101     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1102                         ConstantInt::get(X->getType(), -C));
1103 
1104   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1105 
1106   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1107   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1108   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1109   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1110   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1111   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1112   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1113     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1114                         ConstantInt::get(X->getType(), SMax - C));
1115 
1116   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1117   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1118   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1119   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1120   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1121   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1122 
1123   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1124   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1125                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1126 }
1127 
1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1129 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1131 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1132                                                  const APInt &AP1,
1133                                                  const APInt &AP2) {
1134   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1135 
1136   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1137     if (I.getPredicate() == I.ICMP_NE)
1138       Pred = CmpInst::getInversePredicate(Pred);
1139     return new ICmpInst(Pred, LHS, RHS);
1140   };
1141 
1142   // Don't bother doing any work for cases which InstSimplify handles.
1143   if (AP2.isNullValue())
1144     return nullptr;
1145 
1146   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1147   if (IsAShr) {
1148     if (AP2.isAllOnesValue())
1149       return nullptr;
1150     if (AP2.isNegative() != AP1.isNegative())
1151       return nullptr;
1152     if (AP2.sgt(AP1))
1153       return nullptr;
1154   }
1155 
1156   if (!AP1)
1157     // 'A' must be large enough to shift out the highest set bit.
1158     return getICmp(I.ICMP_UGT, A,
1159                    ConstantInt::get(A->getType(), AP2.logBase2()));
1160 
1161   if (AP1 == AP2)
1162     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1163 
1164   int Shift;
1165   if (IsAShr && AP1.isNegative())
1166     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1167   else
1168     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1169 
1170   if (Shift > 0) {
1171     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1172       // There are multiple solutions if we are comparing against -1 and the LHS
1173       // of the ashr is not a power of two.
1174       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1175         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1176       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1177     } else if (AP1 == AP2.lshr(Shift)) {
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     }
1180   }
1181 
1182   // Shifting const2 will never be equal to const1.
1183   // FIXME: This should always be handled by InstSimplify?
1184   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1185   return replaceInstUsesWith(I, TorF);
1186 }
1187 
1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1190 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1191                                                  const APInt &AP1,
1192                                                  const APInt &AP2) {
1193   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1194 
1195   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1196     if (I.getPredicate() == I.ICMP_NE)
1197       Pred = CmpInst::getInversePredicate(Pred);
1198     return new ICmpInst(Pred, LHS, RHS);
1199   };
1200 
1201   // Don't bother doing any work for cases which InstSimplify handles.
1202   if (AP2.isNullValue())
1203     return nullptr;
1204 
1205   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1206 
1207   if (!AP1 && AP2TrailingZeros != 0)
1208     return getICmp(
1209         I.ICMP_UGE, A,
1210         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1211 
1212   if (AP1 == AP2)
1213     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1214 
1215   // Get the distance between the lowest bits that are set.
1216   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1217 
1218   if (Shift > 0 && AP2.shl(Shift) == AP1)
1219     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1220 
1221   // Shifting const2 will never be equal to const1.
1222   // FIXME: This should always be handled by InstSimplify?
1223   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1224   return replaceInstUsesWith(I, TorF);
1225 }
1226 
1227 /// The caller has matched a pattern of the form:
1228 ///   I = icmp ugt (add (add A, B), CI2), CI1
1229 /// If this is of the form:
1230 ///   sum = a + b
1231 ///   if (sum+128 >u 255)
1232 /// Then replace it with llvm.sadd.with.overflow.i8.
1233 ///
1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1235                                           ConstantInt *CI2, ConstantInt *CI1,
1236                                           InstCombiner &IC) {
1237   // The transformation we're trying to do here is to transform this into an
1238   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1239   // with a narrower add, and discard the add-with-constant that is part of the
1240   // range check (if we can't eliminate it, this isn't profitable).
1241 
1242   // In order to eliminate the add-with-constant, the compare can be its only
1243   // use.
1244   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1245   if (!AddWithCst->hasOneUse())
1246     return nullptr;
1247 
1248   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1249   if (!CI2->getValue().isPowerOf2())
1250     return nullptr;
1251   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1252   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1253     return nullptr;
1254 
1255   // The width of the new add formed is 1 more than the bias.
1256   ++NewWidth;
1257 
1258   // Check to see that CI1 is an all-ones value with NewWidth bits.
1259   if (CI1->getBitWidth() == NewWidth ||
1260       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1261     return nullptr;
1262 
1263   // This is only really a signed overflow check if the inputs have been
1264   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1265   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1266   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1267   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1268       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1269     return nullptr;
1270 
1271   // In order to replace the original add with a narrower
1272   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1273   // and truncates that discard the high bits of the add.  Verify that this is
1274   // the case.
1275   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1276   for (User *U : OrigAdd->users()) {
1277     if (U == AddWithCst)
1278       continue;
1279 
1280     // Only accept truncates for now.  We would really like a nice recursive
1281     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1282     // chain to see which bits of a value are actually demanded.  If the
1283     // original add had another add which was then immediately truncated, we
1284     // could still do the transformation.
1285     TruncInst *TI = dyn_cast<TruncInst>(U);
1286     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1287       return nullptr;
1288   }
1289 
1290   // If the pattern matches, truncate the inputs to the narrower type and
1291   // use the sadd_with_overflow intrinsic to efficiently compute both the
1292   // result and the overflow bit.
1293   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1294   Function *F = Intrinsic::getDeclaration(
1295       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1296 
1297   InstCombiner::BuilderTy &Builder = IC.Builder;
1298 
1299   // Put the new code above the original add, in case there are any uses of the
1300   // add between the add and the compare.
1301   Builder.SetInsertPoint(OrigAdd);
1302 
1303   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1304   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1305   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1306   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1307   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1308 
1309   // The inner add was the result of the narrow add, zero extended to the
1310   // wider type.  Replace it with the result computed by the intrinsic.
1311   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1312 
1313   // The original icmp gets replaced with the overflow value.
1314   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1315 }
1316 
1317 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1318 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1319   CmpInst::Predicate Pred = Cmp.getPredicate();
1320   Value *X = Cmp.getOperand(0);
1321 
1322   if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) {
1323     Value *A, *B;
1324     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1325     if (SPR.Flavor == SPF_SMIN) {
1326       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1327         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1328       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1329         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1330     }
1331   }
1332   return nullptr;
1333 }
1334 
1335 /// Fold icmp Pred X, C.
1336 /// TODO: This code structure does not make sense. The saturating add fold
1337 /// should be moved to some other helper and extended as noted below (it is also
1338 /// possible that code has been made unnecessary - do we canonicalize IR to
1339 /// overflow/saturating intrinsics or not?).
1340 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1341   // Match the following pattern, which is a common idiom when writing
1342   // overflow-safe integer arithmetic functions. The source performs an addition
1343   // in wider type and explicitly checks for overflow using comparisons against
1344   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1345   //
1346   // TODO: This could probably be generalized to handle other overflow-safe
1347   // operations if we worked out the formulas to compute the appropriate magic
1348   // constants.
1349   //
1350   // sum = a + b
1351   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1352   CmpInst::Predicate Pred = Cmp.getPredicate();
1353   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1354   Value *A, *B;
1355   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1356   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1357       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1358     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1359       return Res;
1360 
1361   return nullptr;
1362 }
1363 
1364 /// Canonicalize icmp instructions based on dominating conditions.
1365 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1366   // This is a cheap/incomplete check for dominance - just match a single
1367   // predecessor with a conditional branch.
1368   BasicBlock *CmpBB = Cmp.getParent();
1369   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1370   if (!DomBB)
1371     return nullptr;
1372 
1373   Value *DomCond;
1374   BasicBlock *TrueBB, *FalseBB;
1375   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1376     return nullptr;
1377 
1378   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1379          "Predecessor block does not point to successor?");
1380 
1381   // The branch should get simplified. Don't bother simplifying this condition.
1382   if (TrueBB == FalseBB)
1383     return nullptr;
1384 
1385   // Try to simplify this compare to T/F based on the dominating condition.
1386   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1387   if (Imp)
1388     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1389 
1390   CmpInst::Predicate Pred = Cmp.getPredicate();
1391   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1392   ICmpInst::Predicate DomPred;
1393   const APInt *C, *DomC;
1394   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1395       match(Y, m_APInt(C))) {
1396     // We have 2 compares of a variable with constants. Calculate the constant
1397     // ranges of those compares to see if we can transform the 2nd compare:
1398     // DomBB:
1399     //   DomCond = icmp DomPred X, DomC
1400     //   br DomCond, CmpBB, FalseBB
1401     // CmpBB:
1402     //   Cmp = icmp Pred X, C
1403     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1404     ConstantRange DominatingCR =
1405         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1406                           : ConstantRange::makeExactICmpRegion(
1407                                 CmpInst::getInversePredicate(DomPred), *DomC);
1408     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1409     ConstantRange Difference = DominatingCR.difference(CR);
1410     if (Intersection.isEmptySet())
1411       return replaceInstUsesWith(Cmp, Builder.getFalse());
1412     if (Difference.isEmptySet())
1413       return replaceInstUsesWith(Cmp, Builder.getTrue());
1414 
1415     // Canonicalizing a sign bit comparison that gets used in a branch,
1416     // pessimizes codegen by generating branch on zero instruction instead
1417     // of a test and branch. So we avoid canonicalizing in such situations
1418     // because test and branch instruction has better branch displacement
1419     // than compare and branch instruction.
1420     bool UnusedBit;
1421     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1422     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1423       return nullptr;
1424 
1425     if (const APInt *EqC = Intersection.getSingleElement())
1426       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1427     if (const APInt *NeC = Difference.getSingleElement())
1428       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1429   }
1430 
1431   return nullptr;
1432 }
1433 
1434 /// Fold icmp (trunc X, Y), C.
1435 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1436                                                  TruncInst *Trunc,
1437                                                  const APInt &C) {
1438   ICmpInst::Predicate Pred = Cmp.getPredicate();
1439   Value *X = Trunc->getOperand(0);
1440   if (C.isOneValue() && C.getBitWidth() > 1) {
1441     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1442     Value *V = nullptr;
1443     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1444       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1445                           ConstantInt::get(V->getType(), 1));
1446   }
1447 
1448   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1449     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1450     // of the high bits truncated out of x are known.
1451     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1452              SrcBits = X->getType()->getScalarSizeInBits();
1453     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1454 
1455     // If all the high bits are known, we can do this xform.
1456     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1457       // Pull in the high bits from known-ones set.
1458       APInt NewRHS = C.zext(SrcBits);
1459       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1460       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1461     }
1462   }
1463 
1464   return nullptr;
1465 }
1466 
1467 /// Fold icmp (xor X, Y), C.
1468 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1469                                                BinaryOperator *Xor,
1470                                                const APInt &C) {
1471   Value *X = Xor->getOperand(0);
1472   Value *Y = Xor->getOperand(1);
1473   const APInt *XorC;
1474   if (!match(Y, m_APInt(XorC)))
1475     return nullptr;
1476 
1477   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1478   // fold the xor.
1479   ICmpInst::Predicate Pred = Cmp.getPredicate();
1480   bool TrueIfSigned = false;
1481   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1482 
1483     // If the sign bit of the XorCst is not set, there is no change to
1484     // the operation, just stop using the Xor.
1485     if (!XorC->isNegative()) {
1486       Cmp.setOperand(0, X);
1487       Worklist.Add(Xor);
1488       return &Cmp;
1489     }
1490 
1491     // Emit the opposite comparison.
1492     if (TrueIfSigned)
1493       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1494                           ConstantInt::getAllOnesValue(X->getType()));
1495     else
1496       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1497                           ConstantInt::getNullValue(X->getType()));
1498   }
1499 
1500   if (Xor->hasOneUse()) {
1501     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1502     if (!Cmp.isEquality() && XorC->isSignMask()) {
1503       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1504                             : Cmp.getSignedPredicate();
1505       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1506     }
1507 
1508     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1509     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1510       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1511                             : Cmp.getSignedPredicate();
1512       Pred = Cmp.getSwappedPredicate(Pred);
1513       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1514     }
1515   }
1516 
1517   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1518   if (Pred == ICmpInst::ICMP_UGT) {
1519     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1520     if (*XorC == ~C && (C + 1).isPowerOf2())
1521       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1522     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1523     if (*XorC == C && (C + 1).isPowerOf2())
1524       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1525   }
1526   if (Pred == ICmpInst::ICMP_ULT) {
1527     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1528     if (*XorC == -C && C.isPowerOf2())
1529       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1530                           ConstantInt::get(X->getType(), ~C));
1531     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1532     if (*XorC == C && (-C).isPowerOf2())
1533       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1534                           ConstantInt::get(X->getType(), ~C));
1535   }
1536   return nullptr;
1537 }
1538 
1539 /// Fold icmp (and (sh X, Y), C2), C1.
1540 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1541                                             const APInt &C1, const APInt &C2) {
1542   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1543   if (!Shift || !Shift->isShift())
1544     return nullptr;
1545 
1546   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1547   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1548   // code produced by the clang front-end, for bitfield access.
1549   // This seemingly simple opportunity to fold away a shift turns out to be
1550   // rather complicated. See PR17827 for details.
1551   unsigned ShiftOpcode = Shift->getOpcode();
1552   bool IsShl = ShiftOpcode == Instruction::Shl;
1553   const APInt *C3;
1554   if (match(Shift->getOperand(1), m_APInt(C3))) {
1555     bool CanFold = false;
1556     if (ShiftOpcode == Instruction::Shl) {
1557       // For a left shift, we can fold if the comparison is not signed. We can
1558       // also fold a signed comparison if the mask value and comparison value
1559       // are not negative. These constraints may not be obvious, but we can
1560       // prove that they are correct using an SMT solver.
1561       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1562         CanFold = true;
1563     } else {
1564       bool IsAshr = ShiftOpcode == Instruction::AShr;
1565       // For a logical right shift, we can fold if the comparison is not signed.
1566       // We can also fold a signed comparison if the shifted mask value and the
1567       // shifted comparison value are not negative. These constraints may not be
1568       // obvious, but we can prove that they are correct using an SMT solver.
1569       // For an arithmetic shift right we can do the same, if we ensure
1570       // the And doesn't use any bits being shifted in. Normally these would
1571       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1572       // additional user.
1573       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1574         if (!Cmp.isSigned() ||
1575             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1576           CanFold = true;
1577       }
1578     }
1579 
1580     if (CanFold) {
1581       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1582       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1583       // Check to see if we are shifting out any of the bits being compared.
1584       if (SameAsC1 != C1) {
1585         // If we shifted bits out, the fold is not going to work out. As a
1586         // special case, check to see if this means that the result is always
1587         // true or false now.
1588         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1589           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1590         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1591           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1592       } else {
1593         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1594         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1595         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1596         And->setOperand(0, Shift->getOperand(0));
1597         Worklist.Add(Shift); // Shift is dead.
1598         return &Cmp;
1599       }
1600     }
1601   }
1602 
1603   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1604   // preferable because it allows the C2 << Y expression to be hoisted out of a
1605   // loop if Y is invariant and X is not.
1606   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1607       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1608     // Compute C2 << Y.
1609     Value *NewShift =
1610         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1611               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1612 
1613     // Compute X & (C2 << Y).
1614     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1615     Cmp.setOperand(0, NewAnd);
1616     return &Cmp;
1617   }
1618 
1619   return nullptr;
1620 }
1621 
1622 /// Fold icmp (and X, C2), C1.
1623 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1624                                                  BinaryOperator *And,
1625                                                  const APInt &C1) {
1626   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1627   // TODO: We canonicalize to the longer form for scalars because we have
1628   // better analysis/folds for icmp, and codegen may be better with icmp.
1629   if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() &&
1630       C1.isNullValue() && match(And->getOperand(1), m_One()))
1631     return new TruncInst(And->getOperand(0), Cmp.getType());
1632 
1633   const APInt *C2;
1634   if (!match(And->getOperand(1), m_APInt(C2)))
1635     return nullptr;
1636 
1637   if (!And->hasOneUse())
1638     return nullptr;
1639 
1640   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1641   // the input width without changing the value produced, eliminate the cast:
1642   //
1643   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1644   //
1645   // We can do this transformation if the constants do not have their sign bits
1646   // set or if it is an equality comparison. Extending a relational comparison
1647   // when we're checking the sign bit would not work.
1648   Value *W;
1649   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1650       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1651     // TODO: Is this a good transform for vectors? Wider types may reduce
1652     // throughput. Should this transform be limited (even for scalars) by using
1653     // shouldChangeType()?
1654     if (!Cmp.getType()->isVectorTy()) {
1655       Type *WideType = W->getType();
1656       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1657       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1658       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1659       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1660       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1661     }
1662   }
1663 
1664   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1665     return I;
1666 
1667   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1668   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1669   //
1670   // iff pred isn't signed
1671   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1672       match(And->getOperand(1), m_One())) {
1673     Constant *One = cast<Constant>(And->getOperand(1));
1674     Value *Or = And->getOperand(0);
1675     Value *A, *B, *LShr;
1676     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1677         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1678       unsigned UsesRemoved = 0;
1679       if (And->hasOneUse())
1680         ++UsesRemoved;
1681       if (Or->hasOneUse())
1682         ++UsesRemoved;
1683       if (LShr->hasOneUse())
1684         ++UsesRemoved;
1685 
1686       // Compute A & ((1 << B) | 1)
1687       Value *NewOr = nullptr;
1688       if (auto *C = dyn_cast<Constant>(B)) {
1689         if (UsesRemoved >= 1)
1690           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1691       } else {
1692         if (UsesRemoved >= 3)
1693           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1694                                                      /*HasNUW=*/true),
1695                                    One, Or->getName());
1696       }
1697       if (NewOr) {
1698         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1699         Cmp.setOperand(0, NewAnd);
1700         return &Cmp;
1701       }
1702     }
1703   }
1704 
1705   return nullptr;
1706 }
1707 
1708 /// Fold icmp (and X, Y), C.
1709 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1710                                                BinaryOperator *And,
1711                                                const APInt &C) {
1712   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1713     return I;
1714 
1715   // TODO: These all require that Y is constant too, so refactor with the above.
1716 
1717   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1718   Value *X = And->getOperand(0);
1719   Value *Y = And->getOperand(1);
1720   if (auto *LI = dyn_cast<LoadInst>(X))
1721     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1722       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1723         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1724             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1725           ConstantInt *C2 = cast<ConstantInt>(Y);
1726           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1727             return Res;
1728         }
1729 
1730   if (!Cmp.isEquality())
1731     return nullptr;
1732 
1733   // X & -C == -C -> X >  u ~C
1734   // X & -C != -C -> X <= u ~C
1735   //   iff C is a power of 2
1736   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1737     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1738                                                           : CmpInst::ICMP_ULE;
1739     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1740   }
1741 
1742   // (X & C2) == 0 -> (trunc X) >= 0
1743   // (X & C2) != 0 -> (trunc X) <  0
1744   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1745   const APInt *C2;
1746   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1747     int32_t ExactLogBase2 = C2->exactLogBase2();
1748     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1749       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1750       if (And->getType()->isVectorTy())
1751         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1752       Value *Trunc = Builder.CreateTrunc(X, NTy);
1753       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1754                                                             : CmpInst::ICMP_SLT;
1755       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1756     }
1757   }
1758 
1759   return nullptr;
1760 }
1761 
1762 /// Fold icmp (or X, Y), C.
1763 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1764                                               const APInt &C) {
1765   ICmpInst::Predicate Pred = Cmp.getPredicate();
1766   if (C.isOneValue()) {
1767     // icmp slt signum(V) 1 --> icmp slt V, 1
1768     Value *V = nullptr;
1769     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1770       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1771                           ConstantInt::get(V->getType(), 1));
1772   }
1773 
1774   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1775   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1776     // X | C == C --> X <=u C
1777     // X | C != C --> X  >u C
1778     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1779     if ((C + 1).isPowerOf2()) {
1780       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1781       return new ICmpInst(Pred, OrOp0, OrOp1);
1782     }
1783     // More general: are all bits outside of a mask constant set or not set?
1784     // X | C == C --> (X & ~C) == 0
1785     // X | C != C --> (X & ~C) != 0
1786     if (Or->hasOneUse()) {
1787       Value *A = Builder.CreateAnd(OrOp0, ~C);
1788       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1789     }
1790   }
1791 
1792   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1793     return nullptr;
1794 
1795   Value *P, *Q;
1796   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1797     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1798     // -> and (icmp eq P, null), (icmp eq Q, null).
1799     Value *CmpP =
1800         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1801     Value *CmpQ =
1802         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1803     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1804     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1805   }
1806 
1807   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1808   // a shorter form that has more potential to be folded even further.
1809   Value *X1, *X2, *X3, *X4;
1810   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1811       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1812     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1813     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1814     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1815     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1816     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1817     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1818   }
1819 
1820   return nullptr;
1821 }
1822 
1823 /// Fold icmp (mul X, Y), C.
1824 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1825                                                BinaryOperator *Mul,
1826                                                const APInt &C) {
1827   const APInt *MulC;
1828   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1829     return nullptr;
1830 
1831   // If this is a test of the sign bit and the multiply is sign-preserving with
1832   // a constant operand, use the multiply LHS operand instead.
1833   ICmpInst::Predicate Pred = Cmp.getPredicate();
1834   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1835     if (MulC->isNegative())
1836       Pred = ICmpInst::getSwappedPredicate(Pred);
1837     return new ICmpInst(Pred, Mul->getOperand(0),
1838                         Constant::getNullValue(Mul->getType()));
1839   }
1840 
1841   return nullptr;
1842 }
1843 
1844 /// Fold icmp (shl 1, Y), C.
1845 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1846                                    const APInt &C) {
1847   Value *Y;
1848   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1849     return nullptr;
1850 
1851   Type *ShiftType = Shl->getType();
1852   unsigned TypeBits = C.getBitWidth();
1853   bool CIsPowerOf2 = C.isPowerOf2();
1854   ICmpInst::Predicate Pred = Cmp.getPredicate();
1855   if (Cmp.isUnsigned()) {
1856     // (1 << Y) pred C -> Y pred Log2(C)
1857     if (!CIsPowerOf2) {
1858       // (1 << Y) <  30 -> Y <= 4
1859       // (1 << Y) <= 30 -> Y <= 4
1860       // (1 << Y) >= 30 -> Y >  4
1861       // (1 << Y) >  30 -> Y >  4
1862       if (Pred == ICmpInst::ICMP_ULT)
1863         Pred = ICmpInst::ICMP_ULE;
1864       else if (Pred == ICmpInst::ICMP_UGE)
1865         Pred = ICmpInst::ICMP_UGT;
1866     }
1867 
1868     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1869     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1870     unsigned CLog2 = C.logBase2();
1871     if (CLog2 == TypeBits - 1) {
1872       if (Pred == ICmpInst::ICMP_UGE)
1873         Pred = ICmpInst::ICMP_EQ;
1874       else if (Pred == ICmpInst::ICMP_ULT)
1875         Pred = ICmpInst::ICMP_NE;
1876     }
1877     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1878   } else if (Cmp.isSigned()) {
1879     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1880     if (C.isAllOnesValue()) {
1881       // (1 << Y) <= -1 -> Y == 31
1882       if (Pred == ICmpInst::ICMP_SLE)
1883         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1884 
1885       // (1 << Y) >  -1 -> Y != 31
1886       if (Pred == ICmpInst::ICMP_SGT)
1887         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1888     } else if (!C) {
1889       // (1 << Y) <  0 -> Y == 31
1890       // (1 << Y) <= 0 -> Y == 31
1891       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1892         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1893 
1894       // (1 << Y) >= 0 -> Y != 31
1895       // (1 << Y) >  0 -> Y != 31
1896       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1897         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1898     }
1899   } else if (Cmp.isEquality() && CIsPowerOf2) {
1900     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
1901   }
1902 
1903   return nullptr;
1904 }
1905 
1906 /// Fold icmp (shl X, Y), C.
1907 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1908                                                BinaryOperator *Shl,
1909                                                const APInt &C) {
1910   const APInt *ShiftVal;
1911   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1912     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
1913 
1914   const APInt *ShiftAmt;
1915   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1916     return foldICmpShlOne(Cmp, Shl, C);
1917 
1918   // Check that the shift amount is in range. If not, don't perform undefined
1919   // shifts. When the shift is visited, it will be simplified.
1920   unsigned TypeBits = C.getBitWidth();
1921   if (ShiftAmt->uge(TypeBits))
1922     return nullptr;
1923 
1924   ICmpInst::Predicate Pred = Cmp.getPredicate();
1925   Value *X = Shl->getOperand(0);
1926   Type *ShType = Shl->getType();
1927 
1928   // NSW guarantees that we are only shifting out sign bits from the high bits,
1929   // so we can ASHR the compare constant without needing a mask and eliminate
1930   // the shift.
1931   if (Shl->hasNoSignedWrap()) {
1932     if (Pred == ICmpInst::ICMP_SGT) {
1933       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1934       APInt ShiftedC = C.ashr(*ShiftAmt);
1935       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1936     }
1937     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1938         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
1939       APInt ShiftedC = C.ashr(*ShiftAmt);
1940       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1941     }
1942     if (Pred == ICmpInst::ICMP_SLT) {
1943       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1944       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1945       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1946       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1947       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
1948       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
1949       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1950     }
1951     // If this is a signed comparison to 0 and the shift is sign preserving,
1952     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1953     // do that if we're sure to not continue on in this function.
1954     if (isSignTest(Pred, C))
1955       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1956   }
1957 
1958   // NUW guarantees that we are only shifting out zero bits from the high bits,
1959   // so we can LSHR the compare constant without needing a mask and eliminate
1960   // the shift.
1961   if (Shl->hasNoUnsignedWrap()) {
1962     if (Pred == ICmpInst::ICMP_UGT) {
1963       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1964       APInt ShiftedC = C.lshr(*ShiftAmt);
1965       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1966     }
1967     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1968         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
1969       APInt ShiftedC = C.lshr(*ShiftAmt);
1970       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1971     }
1972     if (Pred == ICmpInst::ICMP_ULT) {
1973       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1974       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1975       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1976       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1977       assert(C.ugt(0) && "ult 0 should have been eliminated");
1978       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
1979       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1980     }
1981   }
1982 
1983   if (Cmp.isEquality() && Shl->hasOneUse()) {
1984     // Strength-reduce the shift into an 'and'.
1985     Constant *Mask = ConstantInt::get(
1986         ShType,
1987         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1988     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
1989     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
1990     return new ICmpInst(Pred, And, LShrC);
1991   }
1992 
1993   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1994   bool TrueIfSigned = false;
1995   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
1996     // (X << 31) <s 0  --> (X & 1) != 0
1997     Constant *Mask = ConstantInt::get(
1998         ShType,
1999         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2000     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2001     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2002                         And, Constant::getNullValue(ShType));
2003   }
2004 
2005   // Transform (icmp pred iM (shl iM %v, N), C)
2006   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2007   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2008   // This enables us to get rid of the shift in favor of a trunc that may be
2009   // free on the target. It has the additional benefit of comparing to a
2010   // smaller constant that may be more target-friendly.
2011   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2012   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2013       DL.isLegalInteger(TypeBits - Amt)) {
2014     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2015     if (ShType->isVectorTy())
2016       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2017     Constant *NewC =
2018         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2019     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2020   }
2021 
2022   return nullptr;
2023 }
2024 
2025 /// Fold icmp ({al}shr X, Y), C.
2026 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2027                                                BinaryOperator *Shr,
2028                                                const APInt &C) {
2029   // An exact shr only shifts out zero bits, so:
2030   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2031   Value *X = Shr->getOperand(0);
2032   CmpInst::Predicate Pred = Cmp.getPredicate();
2033   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2034       C.isNullValue())
2035     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2036 
2037   const APInt *ShiftVal;
2038   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2039     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2040 
2041   const APInt *ShiftAmt;
2042   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2043     return nullptr;
2044 
2045   // Check that the shift amount is in range. If not, don't perform undefined
2046   // shifts. When the shift is visited it will be simplified.
2047   unsigned TypeBits = C.getBitWidth();
2048   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2049   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2050     return nullptr;
2051 
2052   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2053   bool IsExact = Shr->isExact();
2054   Type *ShrTy = Shr->getType();
2055   // TODO: If we could guarantee that InstSimplify would handle all of the
2056   // constant-value-based preconditions in the folds below, then we could assert
2057   // those conditions rather than checking them. This is difficult because of
2058   // undef/poison (PR34838).
2059   if (IsAShr) {
2060     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2061       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2062       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2063       APInt ShiftedC = C.shl(ShAmtVal);
2064       if (ShiftedC.ashr(ShAmtVal) == C)
2065         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2066     }
2067     if (Pred == CmpInst::ICMP_SGT) {
2068       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2069       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2070       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2071           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2072         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2073     }
2074   } else {
2075     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2076       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2077       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2078       APInt ShiftedC = C.shl(ShAmtVal);
2079       if (ShiftedC.lshr(ShAmtVal) == C)
2080         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2081     }
2082     if (Pred == CmpInst::ICMP_UGT) {
2083       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2084       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2085       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2086         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2087     }
2088   }
2089 
2090   if (!Cmp.isEquality())
2091     return nullptr;
2092 
2093   // Handle equality comparisons of shift-by-constant.
2094 
2095   // If the comparison constant changes with the shift, the comparison cannot
2096   // succeed (bits of the comparison constant cannot match the shifted value).
2097   // This should be known by InstSimplify and already be folded to true/false.
2098   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2099           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2100          "Expected icmp+shr simplify did not occur.");
2101 
2102   // If the bits shifted out are known zero, compare the unshifted value:
2103   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2104   if (Shr->isExact())
2105     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2106 
2107   if (Shr->hasOneUse()) {
2108     // Canonicalize the shift into an 'and':
2109     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2110     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2111     Constant *Mask = ConstantInt::get(ShrTy, Val);
2112     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2113     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2114   }
2115 
2116   return nullptr;
2117 }
2118 
2119 /// Fold icmp (udiv X, Y), C.
2120 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2121                                                 BinaryOperator *UDiv,
2122                                                 const APInt &C) {
2123   const APInt *C2;
2124   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2125     return nullptr;
2126 
2127   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2128 
2129   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2130   Value *Y = UDiv->getOperand(1);
2131   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2132     assert(!C.isMaxValue() &&
2133            "icmp ugt X, UINT_MAX should have been simplified already.");
2134     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2135                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2136   }
2137 
2138   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2139   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2140     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2141     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2142                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2143   }
2144 
2145   return nullptr;
2146 }
2147 
2148 /// Fold icmp ({su}div X, Y), C.
2149 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2150                                                BinaryOperator *Div,
2151                                                const APInt &C) {
2152   // Fold: icmp pred ([us]div X, C2), C -> range test
2153   // Fold this div into the comparison, producing a range check.
2154   // Determine, based on the divide type, what the range is being
2155   // checked.  If there is an overflow on the low or high side, remember
2156   // it, otherwise compute the range [low, hi) bounding the new value.
2157   // See: InsertRangeTest above for the kinds of replacements possible.
2158   const APInt *C2;
2159   if (!match(Div->getOperand(1), m_APInt(C2)))
2160     return nullptr;
2161 
2162   // FIXME: If the operand types don't match the type of the divide
2163   // then don't attempt this transform. The code below doesn't have the
2164   // logic to deal with a signed divide and an unsigned compare (and
2165   // vice versa). This is because (x /s C2) <s C  produces different
2166   // results than (x /s C2) <u C or (x /u C2) <s C or even
2167   // (x /u C2) <u C.  Simply casting the operands and result won't
2168   // work. :(  The if statement below tests that condition and bails
2169   // if it finds it.
2170   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2171   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2172     return nullptr;
2173 
2174   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2175   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2176   // division-by-constant cases should be present, we can not assert that they
2177   // have happened before we reach this icmp instruction.
2178   if (C2->isNullValue() || C2->isOneValue() ||
2179       (DivIsSigned && C2->isAllOnesValue()))
2180     return nullptr;
2181 
2182   // Compute Prod = C * C2. We are essentially solving an equation of
2183   // form X / C2 = C. We solve for X by multiplying C2 and C.
2184   // By solving for X, we can turn this into a range check instead of computing
2185   // a divide.
2186   APInt Prod = C * *C2;
2187 
2188   // Determine if the product overflows by seeing if the product is not equal to
2189   // the divide. Make sure we do the same kind of divide as in the LHS
2190   // instruction that we're folding.
2191   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2192 
2193   ICmpInst::Predicate Pred = Cmp.getPredicate();
2194 
2195   // If the division is known to be exact, then there is no remainder from the
2196   // divide, so the covered range size is unit, otherwise it is the divisor.
2197   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2198 
2199   // Figure out the interval that is being checked.  For example, a comparison
2200   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2201   // Compute this interval based on the constants involved and the signedness of
2202   // the compare/divide.  This computes a half-open interval, keeping track of
2203   // whether either value in the interval overflows.  After analysis each
2204   // overflow variable is set to 0 if it's corresponding bound variable is valid
2205   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2206   int LoOverflow = 0, HiOverflow = 0;
2207   APInt LoBound, HiBound;
2208 
2209   if (!DivIsSigned) {  // udiv
2210     // e.g. X/5 op 3  --> [15, 20)
2211     LoBound = Prod;
2212     HiOverflow = LoOverflow = ProdOV;
2213     if (!HiOverflow) {
2214       // If this is not an exact divide, then many values in the range collapse
2215       // to the same result value.
2216       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2217     }
2218   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2219     if (C.isNullValue()) {       // (X / pos) op 0
2220       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2221       LoBound = -(RangeSize - 1);
2222       HiBound = RangeSize;
2223     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2224       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2225       HiOverflow = LoOverflow = ProdOV;
2226       if (!HiOverflow)
2227         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2228     } else {                       // (X / pos) op neg
2229       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2230       HiBound = Prod + 1;
2231       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2232       if (!LoOverflow) {
2233         APInt DivNeg = -RangeSize;
2234         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2235       }
2236     }
2237   } else if (C2->isNegative()) { // Divisor is < 0.
2238     if (Div->isExact())
2239       RangeSize.negate();
2240     if (C.isNullValue()) { // (X / neg) op 0
2241       // e.g. X/-5 op 0  --> [-4, 5)
2242       LoBound = RangeSize + 1;
2243       HiBound = -RangeSize;
2244       if (HiBound == *C2) {        // -INTMIN = INTMIN
2245         HiOverflow = 1;            // [INTMIN+1, overflow)
2246         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2247       }
2248     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2249       // e.g. X/-5 op 3  --> [-19, -14)
2250       HiBound = Prod + 1;
2251       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2252       if (!LoOverflow)
2253         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2254     } else {                       // (X / neg) op neg
2255       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2256       LoOverflow = HiOverflow = ProdOV;
2257       if (!HiOverflow)
2258         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2259     }
2260 
2261     // Dividing by a negative swaps the condition.  LT <-> GT
2262     Pred = ICmpInst::getSwappedPredicate(Pred);
2263   }
2264 
2265   Value *X = Div->getOperand(0);
2266   switch (Pred) {
2267     default: llvm_unreachable("Unhandled icmp opcode!");
2268     case ICmpInst::ICMP_EQ:
2269       if (LoOverflow && HiOverflow)
2270         return replaceInstUsesWith(Cmp, Builder.getFalse());
2271       if (HiOverflow)
2272         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2273                             ICmpInst::ICMP_UGE, X,
2274                             ConstantInt::get(Div->getType(), LoBound));
2275       if (LoOverflow)
2276         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2277                             ICmpInst::ICMP_ULT, X,
2278                             ConstantInt::get(Div->getType(), HiBound));
2279       return replaceInstUsesWith(
2280           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2281     case ICmpInst::ICMP_NE:
2282       if (LoOverflow && HiOverflow)
2283         return replaceInstUsesWith(Cmp, Builder.getTrue());
2284       if (HiOverflow)
2285         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2286                             ICmpInst::ICMP_ULT, X,
2287                             ConstantInt::get(Div->getType(), LoBound));
2288       if (LoOverflow)
2289         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2290                             ICmpInst::ICMP_UGE, X,
2291                             ConstantInt::get(Div->getType(), HiBound));
2292       return replaceInstUsesWith(Cmp,
2293                                  insertRangeTest(X, LoBound, HiBound,
2294                                                  DivIsSigned, false));
2295     case ICmpInst::ICMP_ULT:
2296     case ICmpInst::ICMP_SLT:
2297       if (LoOverflow == +1)   // Low bound is greater than input range.
2298         return replaceInstUsesWith(Cmp, Builder.getTrue());
2299       if (LoOverflow == -1)   // Low bound is less than input range.
2300         return replaceInstUsesWith(Cmp, Builder.getFalse());
2301       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2302     case ICmpInst::ICMP_UGT:
2303     case ICmpInst::ICMP_SGT:
2304       if (HiOverflow == +1)       // High bound greater than input range.
2305         return replaceInstUsesWith(Cmp, Builder.getFalse());
2306       if (HiOverflow == -1)       // High bound less than input range.
2307         return replaceInstUsesWith(Cmp, Builder.getTrue());
2308       if (Pred == ICmpInst::ICMP_UGT)
2309         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2310                             ConstantInt::get(Div->getType(), HiBound));
2311       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2312                           ConstantInt::get(Div->getType(), HiBound));
2313   }
2314 
2315   return nullptr;
2316 }
2317 
2318 /// Fold icmp (sub X, Y), C.
2319 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2320                                                BinaryOperator *Sub,
2321                                                const APInt &C) {
2322   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2323   ICmpInst::Predicate Pred = Cmp.getPredicate();
2324   const APInt *C2;
2325   APInt SubResult;
2326 
2327   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2328   if (match(X, m_APInt(C2)) &&
2329       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2330        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2331       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2332     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2333                         ConstantInt::get(Y->getType(), SubResult));
2334 
2335   // The following transforms are only worth it if the only user of the subtract
2336   // is the icmp.
2337   if (!Sub->hasOneUse())
2338     return nullptr;
2339 
2340   if (Sub->hasNoSignedWrap()) {
2341     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2342     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2343       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2344 
2345     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2346     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2347       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2348 
2349     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2350     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2351       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2352 
2353     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2354     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2355       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2356   }
2357 
2358   if (!match(X, m_APInt(C2)))
2359     return nullptr;
2360 
2361   // C2 - Y <u C -> (Y | (C - 1)) == C2
2362   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2363   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2364       (*C2 & (C - 1)) == (C - 1))
2365     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2366 
2367   // C2 - Y >u C -> (Y | C) != C2
2368   //   iff C2 & C == C and C + 1 is a power of 2
2369   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2370     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2371 
2372   return nullptr;
2373 }
2374 
2375 /// Fold icmp (add X, Y), C.
2376 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2377                                                BinaryOperator *Add,
2378                                                const APInt &C) {
2379   Value *Y = Add->getOperand(1);
2380   const APInt *C2;
2381   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2382     return nullptr;
2383 
2384   // Fold icmp pred (add X, C2), C.
2385   Value *X = Add->getOperand(0);
2386   Type *Ty = Add->getType();
2387   CmpInst::Predicate Pred = Cmp.getPredicate();
2388 
2389   if (!Add->hasOneUse())
2390     return nullptr;
2391 
2392   // If the add does not wrap, we can always adjust the compare by subtracting
2393   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2394   // are canonicalized to SGT/SLT/UGT/ULT.
2395   if ((Add->hasNoSignedWrap() &&
2396        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2397       (Add->hasNoUnsignedWrap() &&
2398        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2399     bool Overflow;
2400     APInt NewC =
2401         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2402     // If there is overflow, the result must be true or false.
2403     // TODO: Can we assert there is no overflow because InstSimplify always
2404     // handles those cases?
2405     if (!Overflow)
2406       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2407       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2408   }
2409 
2410   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2411   const APInt &Upper = CR.getUpper();
2412   const APInt &Lower = CR.getLower();
2413   if (Cmp.isSigned()) {
2414     if (Lower.isSignMask())
2415       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2416     if (Upper.isSignMask())
2417       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2418   } else {
2419     if (Lower.isMinValue())
2420       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2421     if (Upper.isMinValue())
2422       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2423   }
2424 
2425   // X+C <u C2 -> (X & -C2) == C
2426   //   iff C & (C2-1) == 0
2427   //       C2 is a power of 2
2428   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2429     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2430                         ConstantExpr::getNeg(cast<Constant>(Y)));
2431 
2432   // X+C >u C2 -> (X & ~C2) != C
2433   //   iff C & C2 == 0
2434   //       C2+1 is a power of 2
2435   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2436     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2437                         ConstantExpr::getNeg(cast<Constant>(Y)));
2438 
2439   return nullptr;
2440 }
2441 
2442 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2443                                            Value *&RHS, ConstantInt *&Less,
2444                                            ConstantInt *&Equal,
2445                                            ConstantInt *&Greater) {
2446   // TODO: Generalize this to work with other comparison idioms or ensure
2447   // they get canonicalized into this form.
2448 
2449   // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
2450   // Greater), where Equal, Less and Greater are placeholders for any three
2451   // constants.
2452   ICmpInst::Predicate PredA, PredB;
2453   if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
2454       match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
2455       PredA == ICmpInst::ICMP_EQ &&
2456       match(SI->getFalseValue(),
2457             m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
2458                      m_ConstantInt(Less), m_ConstantInt(Greater))) &&
2459       PredB == ICmpInst::ICMP_SLT) {
2460     return true;
2461   }
2462   return false;
2463 }
2464 
2465 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2466                                                   SelectInst *Select,
2467                                                   ConstantInt *C) {
2468 
2469   assert(C && "Cmp RHS should be a constant int!");
2470   // If we're testing a constant value against the result of a three way
2471   // comparison, the result can be expressed directly in terms of the
2472   // original values being compared.  Note: We could possibly be more
2473   // aggressive here and remove the hasOneUse test. The original select is
2474   // really likely to simplify or sink when we remove a test of the result.
2475   Value *OrigLHS, *OrigRHS;
2476   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2477   if (Cmp.hasOneUse() &&
2478       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2479                               C3GreaterThan)) {
2480     assert(C1LessThan && C2Equal && C3GreaterThan);
2481 
2482     bool TrueWhenLessThan =
2483         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2484             ->isAllOnesValue();
2485     bool TrueWhenEqual =
2486         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2487             ->isAllOnesValue();
2488     bool TrueWhenGreaterThan =
2489         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2490             ->isAllOnesValue();
2491 
2492     // This generates the new instruction that will replace the original Cmp
2493     // Instruction. Instead of enumerating the various combinations when
2494     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2495     // false, we rely on chaining of ORs and future passes of InstCombine to
2496     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2497 
2498     // When none of the three constants satisfy the predicate for the RHS (C),
2499     // the entire original Cmp can be simplified to a false.
2500     Value *Cond = Builder.getFalse();
2501     if (TrueWhenLessThan)
2502       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2503                                                        OrigLHS, OrigRHS));
2504     if (TrueWhenEqual)
2505       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2506                                                        OrigLHS, OrigRHS));
2507     if (TrueWhenGreaterThan)
2508       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2509                                                        OrigLHS, OrigRHS));
2510 
2511     return replaceInstUsesWith(Cmp, Cond);
2512   }
2513   return nullptr;
2514 }
2515 
2516 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2517                                     InstCombiner::BuilderTy &Builder) {
2518   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2519   if (!Bitcast)
2520     return nullptr;
2521 
2522   ICmpInst::Predicate Pred = Cmp.getPredicate();
2523   Value *Op1 = Cmp.getOperand(1);
2524   Value *BCSrcOp = Bitcast->getOperand(0);
2525 
2526   // Make sure the bitcast doesn't change the number of vector elements.
2527   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2528           Bitcast->getDestTy()->getScalarSizeInBits()) {
2529     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2530     Value *X;
2531     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2532       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2533       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2534       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2535       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2536       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2537            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2538           match(Op1, m_Zero()))
2539         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2540 
2541       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2542       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2543         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2544 
2545       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2546       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2547         return new ICmpInst(Pred, X,
2548                             ConstantInt::getAllOnesValue(X->getType()));
2549     }
2550 
2551     // Zero-equality checks are preserved through unsigned floating-point casts:
2552     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2553     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2554     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2555       if (Cmp.isEquality() && match(Op1, m_Zero()))
2556         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2557   }
2558 
2559   // Test to see if the operands of the icmp are casted versions of other
2560   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2561   if (Bitcast->getType()->isPointerTy() &&
2562       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2563     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2564     // so eliminate it as well.
2565     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2566       Op1 = BC2->getOperand(0);
2567 
2568     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2569     return new ICmpInst(Pred, BCSrcOp, Op1);
2570   }
2571 
2572   // Folding: icmp <pred> iN X, C
2573   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2574   //    and C is a splat of a K-bit pattern
2575   //    and SC is a constant vector = <C', C', C', ..., C'>
2576   // Into:
2577   //   %E = extractelement <M x iK> %vec, i32 C'
2578   //   icmp <pred> iK %E, trunc(C)
2579   const APInt *C;
2580   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2581       !Bitcast->getType()->isIntegerTy() ||
2582       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2583     return nullptr;
2584 
2585   Value *Vec;
2586   Constant *Mask;
2587   if (match(BCSrcOp,
2588             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2589     // Check whether every element of Mask is the same constant
2590     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2591       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2592       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2593       if (C->isSplat(EltTy->getBitWidth())) {
2594         // Fold the icmp based on the value of C
2595         // If C is M copies of an iK sized bit pattern,
2596         // then:
2597         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2598         //       icmp <pred> iK %SplatVal, <pattern>
2599         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2600         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2601         return new ICmpInst(Pred, Extract, NewC);
2602       }
2603     }
2604   }
2605   return nullptr;
2606 }
2607 
2608 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2609 /// where X is some kind of instruction.
2610 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2611   const APInt *C;
2612   if (!match(Cmp.getOperand(1), m_APInt(C)))
2613     return nullptr;
2614 
2615   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2616     switch (BO->getOpcode()) {
2617     case Instruction::Xor:
2618       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2619         return I;
2620       break;
2621     case Instruction::And:
2622       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2623         return I;
2624       break;
2625     case Instruction::Or:
2626       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2627         return I;
2628       break;
2629     case Instruction::Mul:
2630       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2631         return I;
2632       break;
2633     case Instruction::Shl:
2634       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2635         return I;
2636       break;
2637     case Instruction::LShr:
2638     case Instruction::AShr:
2639       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2640         return I;
2641       break;
2642     case Instruction::UDiv:
2643       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2644         return I;
2645       LLVM_FALLTHROUGH;
2646     case Instruction::SDiv:
2647       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2648         return I;
2649       break;
2650     case Instruction::Sub:
2651       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2652         return I;
2653       break;
2654     case Instruction::Add:
2655       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2656         return I;
2657       break;
2658     default:
2659       break;
2660     }
2661     // TODO: These folds could be refactored to be part of the above calls.
2662     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2663       return I;
2664   }
2665 
2666   // Match against CmpInst LHS being instructions other than binary operators.
2667 
2668   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2669     // For now, we only support constant integers while folding the
2670     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2671     // similar to the cases handled by binary ops above.
2672     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2673       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2674         return I;
2675   }
2676 
2677   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2678     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2679       return I;
2680   }
2681 
2682   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2683     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2684       return I;
2685 
2686   return nullptr;
2687 }
2688 
2689 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2690 /// icmp eq/ne BO, C.
2691 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2692                                                              BinaryOperator *BO,
2693                                                              const APInt &C) {
2694   // TODO: Some of these folds could work with arbitrary constants, but this
2695   // function is limited to scalar and vector splat constants.
2696   if (!Cmp.isEquality())
2697     return nullptr;
2698 
2699   ICmpInst::Predicate Pred = Cmp.getPredicate();
2700   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2701   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2702   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2703 
2704   switch (BO->getOpcode()) {
2705   case Instruction::SRem:
2706     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2707     if (C.isNullValue() && BO->hasOneUse()) {
2708       const APInt *BOC;
2709       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2710         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2711         return new ICmpInst(Pred, NewRem,
2712                             Constant::getNullValue(BO->getType()));
2713       }
2714     }
2715     break;
2716   case Instruction::Add: {
2717     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2718     const APInt *BOC;
2719     if (match(BOp1, m_APInt(BOC))) {
2720       if (BO->hasOneUse()) {
2721         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2722         return new ICmpInst(Pred, BOp0, SubC);
2723       }
2724     } else if (C.isNullValue()) {
2725       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2726       // efficiently invertible, or if the add has just this one use.
2727       if (Value *NegVal = dyn_castNegVal(BOp1))
2728         return new ICmpInst(Pred, BOp0, NegVal);
2729       if (Value *NegVal = dyn_castNegVal(BOp0))
2730         return new ICmpInst(Pred, NegVal, BOp1);
2731       if (BO->hasOneUse()) {
2732         Value *Neg = Builder.CreateNeg(BOp1);
2733         Neg->takeName(BO);
2734         return new ICmpInst(Pred, BOp0, Neg);
2735       }
2736     }
2737     break;
2738   }
2739   case Instruction::Xor:
2740     if (BO->hasOneUse()) {
2741       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2742         // For the xor case, we can xor two constants together, eliminating
2743         // the explicit xor.
2744         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2745       } else if (C.isNullValue()) {
2746         // Replace ((xor A, B) != 0) with (A != B)
2747         return new ICmpInst(Pred, BOp0, BOp1);
2748       }
2749     }
2750     break;
2751   case Instruction::Sub:
2752     if (BO->hasOneUse()) {
2753       const APInt *BOC;
2754       if (match(BOp0, m_APInt(BOC))) {
2755         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2756         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2757         return new ICmpInst(Pred, BOp1, SubC);
2758       } else if (C.isNullValue()) {
2759         // Replace ((sub A, B) != 0) with (A != B).
2760         return new ICmpInst(Pred, BOp0, BOp1);
2761       }
2762     }
2763     break;
2764   case Instruction::Or: {
2765     const APInt *BOC;
2766     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2767       // Comparing if all bits outside of a constant mask are set?
2768       // Replace (X | C) == -1 with (X & ~C) == ~C.
2769       // This removes the -1 constant.
2770       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2771       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2772       return new ICmpInst(Pred, And, NotBOC);
2773     }
2774     break;
2775   }
2776   case Instruction::And: {
2777     const APInt *BOC;
2778     if (match(BOp1, m_APInt(BOC))) {
2779       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2780       if (C == *BOC && C.isPowerOf2())
2781         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2782                             BO, Constant::getNullValue(RHS->getType()));
2783 
2784       // Don't perform the following transforms if the AND has multiple uses
2785       if (!BO->hasOneUse())
2786         break;
2787 
2788       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2789       if (BOC->isSignMask()) {
2790         Constant *Zero = Constant::getNullValue(BOp0->getType());
2791         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2792         return new ICmpInst(NewPred, BOp0, Zero);
2793       }
2794 
2795       // ((X & ~7) == 0) --> X < 8
2796       if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) {
2797         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2798         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2799         return new ICmpInst(NewPred, BOp0, NegBOC);
2800       }
2801     }
2802     break;
2803   }
2804   case Instruction::Mul:
2805     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2806       const APInt *BOC;
2807       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2808         // The trivial case (mul X, 0) is handled by InstSimplify.
2809         // General case : (mul X, C) != 0 iff X != 0
2810         //                (mul X, C) == 0 iff X == 0
2811         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2812       }
2813     }
2814     break;
2815   case Instruction::UDiv:
2816     if (C.isNullValue()) {
2817       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2818       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2819       return new ICmpInst(NewPred, BOp1, BOp0);
2820     }
2821     break;
2822   default:
2823     break;
2824   }
2825   return nullptr;
2826 }
2827 
2828 /// Fold an equality icmp with LLVM intrinsic and constant operand.
2829 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
2830                                                            IntrinsicInst *II,
2831                                                            const APInt &C) {
2832   Type *Ty = II->getType();
2833   unsigned BitWidth = C.getBitWidth();
2834   switch (II->getIntrinsicID()) {
2835   case Intrinsic::bswap:
2836     Worklist.Add(II);
2837     Cmp.setOperand(0, II->getArgOperand(0));
2838     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
2839     return &Cmp;
2840 
2841   case Intrinsic::ctlz:
2842   case Intrinsic::cttz: {
2843     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2844     if (C == BitWidth) {
2845       Worklist.Add(II);
2846       Cmp.setOperand(0, II->getArgOperand(0));
2847       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
2848       return &Cmp;
2849     }
2850 
2851     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
2852     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
2853     // Limit to one use to ensure we don't increase instruction count.
2854     unsigned Num = C.getLimitedValue(BitWidth);
2855     if (Num != BitWidth && II->hasOneUse()) {
2856       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
2857       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
2858                                : APInt::getHighBitsSet(BitWidth, Num + 1);
2859       APInt Mask2 = IsTrailing
2860         ? APInt::getOneBitSet(BitWidth, Num)
2861         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2862       Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
2863       Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
2864       Worklist.Add(II);
2865       return &Cmp;
2866     }
2867     break;
2868   }
2869 
2870   case Intrinsic::ctpop: {
2871     // popcount(A) == 0  ->  A == 0 and likewise for !=
2872     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2873     bool IsZero = C.isNullValue();
2874     if (IsZero || C == BitWidth) {
2875       Worklist.Add(II);
2876       Cmp.setOperand(0, II->getArgOperand(0));
2877       auto *NewOp =
2878           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
2879       Cmp.setOperand(1, NewOp);
2880       return &Cmp;
2881     }
2882     break;
2883   }
2884   default:
2885     break;
2886   }
2887 
2888   return nullptr;
2889 }
2890 
2891 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2892 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2893                                                          IntrinsicInst *II,
2894                                                          const APInt &C) {
2895   if (Cmp.isEquality())
2896     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
2897 
2898   Type *Ty = II->getType();
2899   unsigned BitWidth = C.getBitWidth();
2900   switch (II->getIntrinsicID()) {
2901   case Intrinsic::ctlz: {
2902     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
2903     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2904       unsigned Num = C.getLimitedValue();
2905       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2906       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
2907                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2908     }
2909 
2910     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
2911     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2912         C.uge(1) && C.ule(BitWidth)) {
2913       unsigned Num = C.getLimitedValue();
2914       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
2915       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
2916                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2917     }
2918     break;
2919   }
2920   case Intrinsic::cttz: {
2921     // Limit to one use to ensure we don't increase instruction count.
2922     if (!II->hasOneUse())
2923       return nullptr;
2924 
2925     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
2926     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2927       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
2928       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
2929                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2930                              ConstantInt::getNullValue(Ty));
2931     }
2932 
2933     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
2934     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2935         C.uge(1) && C.ule(BitWidth)) {
2936       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
2937       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
2938                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2939                              ConstantInt::getNullValue(Ty));
2940     }
2941     break;
2942   }
2943   default:
2944     break;
2945   }
2946 
2947   return nullptr;
2948 }
2949 
2950 /// Handle icmp with constant (but not simple integer constant) RHS.
2951 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2952   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2953   Constant *RHSC = dyn_cast<Constant>(Op1);
2954   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2955   if (!RHSC || !LHSI)
2956     return nullptr;
2957 
2958   switch (LHSI->getOpcode()) {
2959   case Instruction::GetElementPtr:
2960     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2961     if (RHSC->isNullValue() &&
2962         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2963       return new ICmpInst(
2964           I.getPredicate(), LHSI->getOperand(0),
2965           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2966     break;
2967   case Instruction::PHI:
2968     // Only fold icmp into the PHI if the phi and icmp are in the same
2969     // block.  If in the same block, we're encouraging jump threading.  If
2970     // not, we are just pessimizing the code by making an i1 phi.
2971     if (LHSI->getParent() == I.getParent())
2972       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
2973         return NV;
2974     break;
2975   case Instruction::Select: {
2976     // If either operand of the select is a constant, we can fold the
2977     // comparison into the select arms, which will cause one to be
2978     // constant folded and the select turned into a bitwise or.
2979     Value *Op1 = nullptr, *Op2 = nullptr;
2980     ConstantInt *CI = nullptr;
2981     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2982       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2983       CI = dyn_cast<ConstantInt>(Op1);
2984     }
2985     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2986       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2987       CI = dyn_cast<ConstantInt>(Op2);
2988     }
2989 
2990     // We only want to perform this transformation if it will not lead to
2991     // additional code. This is true if either both sides of the select
2992     // fold to a constant (in which case the icmp is replaced with a select
2993     // which will usually simplify) or this is the only user of the
2994     // select (in which case we are trading a select+icmp for a simpler
2995     // select+icmp) or all uses of the select can be replaced based on
2996     // dominance information ("Global cases").
2997     bool Transform = false;
2998     if (Op1 && Op2)
2999       Transform = true;
3000     else if (Op1 || Op2) {
3001       // Local case
3002       if (LHSI->hasOneUse())
3003         Transform = true;
3004       // Global cases
3005       else if (CI && !CI->isZero())
3006         // When Op1 is constant try replacing select with second operand.
3007         // Otherwise Op2 is constant and try replacing select with first
3008         // operand.
3009         Transform =
3010             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3011     }
3012     if (Transform) {
3013       if (!Op1)
3014         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3015                                  I.getName());
3016       if (!Op2)
3017         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3018                                  I.getName());
3019       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3020     }
3021     break;
3022   }
3023   case Instruction::IntToPtr:
3024     // icmp pred inttoptr(X), null -> icmp pred X, 0
3025     if (RHSC->isNullValue() &&
3026         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3027       return new ICmpInst(
3028           I.getPredicate(), LHSI->getOperand(0),
3029           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3030     break;
3031 
3032   case Instruction::Load:
3033     // Try to optimize things like "A[i] > 4" to index computations.
3034     if (GetElementPtrInst *GEP =
3035             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3036       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3037         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3038             !cast<LoadInst>(LHSI)->isVolatile())
3039           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3040             return Res;
3041     }
3042     break;
3043   }
3044 
3045   return nullptr;
3046 }
3047 
3048 /// Some comparisons can be simplified.
3049 /// In this case, we are looking for comparisons that look like
3050 /// a check for a lossy truncation.
3051 /// Folds:
3052 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3053 /// Where Mask is some pattern that produces all-ones in low bits:
3054 ///    (-1 >> y)
3055 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3056 ///   ~(-1 << y)
3057 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3058 /// The Mask can be a constant, too.
3059 /// For some predicates, the operands are commutative.
3060 /// For others, x can only be on a specific side.
3061 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3062                                           InstCombiner::BuilderTy &Builder) {
3063   ICmpInst::Predicate SrcPred;
3064   Value *X, *M, *Y;
3065   auto m_VariableMask = m_CombineOr(
3066       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3067                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3068       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3069                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3070   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3071   if (!match(&I, m_c_ICmp(SrcPred,
3072                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3073                           m_Deferred(X))))
3074     return nullptr;
3075 
3076   ICmpInst::Predicate DstPred;
3077   switch (SrcPred) {
3078   case ICmpInst::Predicate::ICMP_EQ:
3079     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3080     DstPred = ICmpInst::Predicate::ICMP_ULE;
3081     break;
3082   case ICmpInst::Predicate::ICMP_NE:
3083     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3084     DstPred = ICmpInst::Predicate::ICMP_UGT;
3085     break;
3086   case ICmpInst::Predicate::ICMP_UGT:
3087     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3088     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3089     DstPred = ICmpInst::Predicate::ICMP_UGT;
3090     break;
3091   case ICmpInst::Predicate::ICMP_UGE:
3092     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3093     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3094     DstPred = ICmpInst::Predicate::ICMP_ULE;
3095     break;
3096   case ICmpInst::Predicate::ICMP_ULT:
3097     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3098     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3099     DstPred = ICmpInst::Predicate::ICMP_UGT;
3100     break;
3101   case ICmpInst::Predicate::ICMP_ULE:
3102     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3103     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3104     DstPred = ICmpInst::Predicate::ICMP_ULE;
3105     break;
3106   case ICmpInst::Predicate::ICMP_SGT:
3107     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3108     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3109       return nullptr;         // Ignore the other case.
3110     DstPred = ICmpInst::Predicate::ICMP_SGT;
3111     break;
3112   case ICmpInst::Predicate::ICMP_SGE:
3113     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3114     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3115       return nullptr;         // Ignore the other case.
3116     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3117       return nullptr;
3118     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3119       return nullptr;
3120     DstPred = ICmpInst::Predicate::ICMP_SLE;
3121     break;
3122   case ICmpInst::Predicate::ICMP_SLT:
3123     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3124     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3125       return nullptr;         // Ignore the other case.
3126     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3127       return nullptr;
3128     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3129       return nullptr;
3130     DstPred = ICmpInst::Predicate::ICMP_SGT;
3131     break;
3132   case ICmpInst::Predicate::ICMP_SLE:
3133     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3134     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3135       return nullptr;         // Ignore the other case.
3136     DstPred = ICmpInst::Predicate::ICMP_SLE;
3137     break;
3138   default:
3139     llvm_unreachable("All possible folds are handled.");
3140   }
3141 
3142   return Builder.CreateICmp(DstPred, X, M);
3143 }
3144 
3145 /// Some comparisons can be simplified.
3146 /// In this case, we are looking for comparisons that look like
3147 /// a check for a lossy signed truncation.
3148 /// Folds:   (MaskedBits is a constant.)
3149 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3150 /// Into:
3151 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3152 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3153 static Value *
3154 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3155                                  InstCombiner::BuilderTy &Builder) {
3156   ICmpInst::Predicate SrcPred;
3157   Value *X;
3158   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3159   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3160   if (!match(&I, m_c_ICmp(SrcPred,
3161                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3162                                           m_APInt(C1))),
3163                           m_Deferred(X))))
3164     return nullptr;
3165 
3166   // Potential handling of non-splats: for each element:
3167   //  * if both are undef, replace with constant 0.
3168   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3169   //  * if both are not undef, and are different, bailout.
3170   //  * else, only one is undef, then pick the non-undef one.
3171 
3172   // The shift amount must be equal.
3173   if (*C0 != *C1)
3174     return nullptr;
3175   const APInt &MaskedBits = *C0;
3176   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3177 
3178   ICmpInst::Predicate DstPred;
3179   switch (SrcPred) {
3180   case ICmpInst::Predicate::ICMP_EQ:
3181     // ((%x << MaskedBits) a>> MaskedBits) == %x
3182     //   =>
3183     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3184     DstPred = ICmpInst::Predicate::ICMP_ULT;
3185     break;
3186   case ICmpInst::Predicate::ICMP_NE:
3187     // ((%x << MaskedBits) a>> MaskedBits) != %x
3188     //   =>
3189     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3190     DstPred = ICmpInst::Predicate::ICMP_UGE;
3191     break;
3192   // FIXME: are more folds possible?
3193   default:
3194     return nullptr;
3195   }
3196 
3197   auto *XType = X->getType();
3198   const unsigned XBitWidth = XType->getScalarSizeInBits();
3199   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3200   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3201 
3202   // KeptBits = bitwidth(%x) - MaskedBits
3203   const APInt KeptBits = BitWidth - MaskedBits;
3204   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3205   // ICmpCst = (1 << KeptBits)
3206   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3207   assert(ICmpCst.isPowerOf2());
3208   // AddCst = (1 << (KeptBits-1))
3209   const APInt AddCst = ICmpCst.lshr(1);
3210   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3211 
3212   // T0 = add %x, AddCst
3213   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3214   // T1 = T0 DstPred ICmpCst
3215   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3216 
3217   return T1;
3218 }
3219 
3220 /// Try to fold icmp (binop), X or icmp X, (binop).
3221 /// TODO: A large part of this logic is duplicated in InstSimplify's
3222 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3223 /// duplication.
3224 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3225   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3226 
3227   // Special logic for binary operators.
3228   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3229   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3230   if (!BO0 && !BO1)
3231     return nullptr;
3232 
3233   const CmpInst::Predicate Pred = I.getPredicate();
3234   Value *X;
3235 
3236   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3237   // (Op1 + X) <u Op1 --> ~Op1 <u X
3238   // Op0 >u (Op0 + X) --> X >u ~Op0
3239   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3240       Pred == ICmpInst::ICMP_ULT)
3241     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3242   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3243       Pred == ICmpInst::ICMP_UGT)
3244     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3245 
3246   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3247   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3248     NoOp0WrapProblem =
3249         ICmpInst::isEquality(Pred) ||
3250         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3251         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3252   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3253     NoOp1WrapProblem =
3254         ICmpInst::isEquality(Pred) ||
3255         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3256         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3257 
3258   // Analyze the case when either Op0 or Op1 is an add instruction.
3259   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3260   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3261   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3262     A = BO0->getOperand(0);
3263     B = BO0->getOperand(1);
3264   }
3265   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3266     C = BO1->getOperand(0);
3267     D = BO1->getOperand(1);
3268   }
3269 
3270   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3271   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3272     return new ICmpInst(Pred, A == Op1 ? B : A,
3273                         Constant::getNullValue(Op1->getType()));
3274 
3275   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3276   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3277     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3278                         C == Op0 ? D : C);
3279 
3280   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3281   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3282       NoOp1WrapProblem &&
3283       // Try not to increase register pressure.
3284       BO0->hasOneUse() && BO1->hasOneUse()) {
3285     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3286     Value *Y, *Z;
3287     if (A == C) {
3288       // C + B == C + D  ->  B == D
3289       Y = B;
3290       Z = D;
3291     } else if (A == D) {
3292       // D + B == C + D  ->  B == C
3293       Y = B;
3294       Z = C;
3295     } else if (B == C) {
3296       // A + C == C + D  ->  A == D
3297       Y = A;
3298       Z = D;
3299     } else {
3300       assert(B == D);
3301       // A + D == C + D  ->  A == C
3302       Y = A;
3303       Z = C;
3304     }
3305     return new ICmpInst(Pred, Y, Z);
3306   }
3307 
3308   // icmp slt (X + -1), Y -> icmp sle X, Y
3309   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3310       match(B, m_AllOnes()))
3311     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3312 
3313   // icmp sge (X + -1), Y -> icmp sgt X, Y
3314   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3315       match(B, m_AllOnes()))
3316     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3317 
3318   // icmp sle (X + 1), Y -> icmp slt X, Y
3319   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3320     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3321 
3322   // icmp sgt (X + 1), Y -> icmp sge X, Y
3323   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3324     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3325 
3326   // icmp sgt X, (Y + -1) -> icmp sge X, Y
3327   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3328       match(D, m_AllOnes()))
3329     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3330 
3331   // icmp sle X, (Y + -1) -> icmp slt X, Y
3332   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3333       match(D, m_AllOnes()))
3334     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3335 
3336   // icmp sge X, (Y + 1) -> icmp sgt X, Y
3337   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3338     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3339 
3340   // icmp slt X, (Y + 1) -> icmp sle X, Y
3341   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3342     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3343 
3344   // TODO: The subtraction-related identities shown below also hold, but
3345   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3346   // wouldn't happen even if they were implemented.
3347   //
3348   // icmp ult (X - 1), Y -> icmp ule X, Y
3349   // icmp uge (X - 1), Y -> icmp ugt X, Y
3350   // icmp ugt X, (Y - 1) -> icmp uge X, Y
3351   // icmp ule X, (Y - 1) -> icmp ult X, Y
3352 
3353   // icmp ule (X + 1), Y -> icmp ult X, Y
3354   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3355     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3356 
3357   // icmp ugt (X + 1), Y -> icmp uge X, Y
3358   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3359     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3360 
3361   // icmp uge X, (Y + 1) -> icmp ugt X, Y
3362   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3363     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3364 
3365   // icmp ult X, (Y + 1) -> icmp ule X, Y
3366   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3367     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3368 
3369   // if C1 has greater magnitude than C2:
3370   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3371   //  s.t. C3 = C1 - C2
3372   //
3373   // if C2 has greater magnitude than C1:
3374   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3375   //  s.t. C3 = C2 - C1
3376   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3377       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3378     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3379       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3380         const APInt &AP1 = C1->getValue();
3381         const APInt &AP2 = C2->getValue();
3382         if (AP1.isNegative() == AP2.isNegative()) {
3383           APInt AP1Abs = C1->getValue().abs();
3384           APInt AP2Abs = C2->getValue().abs();
3385           if (AP1Abs.uge(AP2Abs)) {
3386             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3387             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3388             return new ICmpInst(Pred, NewAdd, C);
3389           } else {
3390             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3391             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3392             return new ICmpInst(Pred, A, NewAdd);
3393           }
3394         }
3395       }
3396 
3397   // Analyze the case when either Op0 or Op1 is a sub instruction.
3398   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3399   A = nullptr;
3400   B = nullptr;
3401   C = nullptr;
3402   D = nullptr;
3403   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3404     A = BO0->getOperand(0);
3405     B = BO0->getOperand(1);
3406   }
3407   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3408     C = BO1->getOperand(0);
3409     D = BO1->getOperand(1);
3410   }
3411 
3412   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3413   if (A == Op1 && NoOp0WrapProblem)
3414     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3415   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3416   if (C == Op0 && NoOp1WrapProblem)
3417     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3418 
3419   // (A - B) >u A --> A <u B
3420   if (A == Op1 && Pred == ICmpInst::ICMP_UGT)
3421     return new ICmpInst(ICmpInst::ICMP_ULT, A, B);
3422   // C <u (C - D) --> C <u D
3423   if (C == Op0 && Pred == ICmpInst::ICMP_ULT)
3424     return new ICmpInst(ICmpInst::ICMP_ULT, C, D);
3425 
3426   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3427   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3428       // Try not to increase register pressure.
3429       BO0->hasOneUse() && BO1->hasOneUse())
3430     return new ICmpInst(Pred, A, C);
3431   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3432   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3433       // Try not to increase register pressure.
3434       BO0->hasOneUse() && BO1->hasOneUse())
3435     return new ICmpInst(Pred, D, B);
3436 
3437   // icmp (0-X) < cst --> x > -cst
3438   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3439     Value *X;
3440     if (match(BO0, m_Neg(m_Value(X))))
3441       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3442         if (RHSC->isNotMinSignedValue())
3443           return new ICmpInst(I.getSwappedPredicate(), X,
3444                               ConstantExpr::getNeg(RHSC));
3445   }
3446 
3447   BinaryOperator *SRem = nullptr;
3448   // icmp (srem X, Y), Y
3449   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3450     SRem = BO0;
3451   // icmp Y, (srem X, Y)
3452   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3453            Op0 == BO1->getOperand(1))
3454     SRem = BO1;
3455   if (SRem) {
3456     // We don't check hasOneUse to avoid increasing register pressure because
3457     // the value we use is the same value this instruction was already using.
3458     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3459     default:
3460       break;
3461     case ICmpInst::ICMP_EQ:
3462       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3463     case ICmpInst::ICMP_NE:
3464       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3465     case ICmpInst::ICMP_SGT:
3466     case ICmpInst::ICMP_SGE:
3467       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3468                           Constant::getAllOnesValue(SRem->getType()));
3469     case ICmpInst::ICMP_SLT:
3470     case ICmpInst::ICMP_SLE:
3471       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3472                           Constant::getNullValue(SRem->getType()));
3473     }
3474   }
3475 
3476   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3477       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3478     switch (BO0->getOpcode()) {
3479     default:
3480       break;
3481     case Instruction::Add:
3482     case Instruction::Sub:
3483     case Instruction::Xor: {
3484       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3485         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3486 
3487       const APInt *C;
3488       if (match(BO0->getOperand(1), m_APInt(C))) {
3489         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3490         if (C->isSignMask()) {
3491           ICmpInst::Predicate NewPred =
3492               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3493           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3494         }
3495 
3496         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3497         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3498           ICmpInst::Predicate NewPred =
3499               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3500           NewPred = I.getSwappedPredicate(NewPred);
3501           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3502         }
3503       }
3504       break;
3505     }
3506     case Instruction::Mul: {
3507       if (!I.isEquality())
3508         break;
3509 
3510       const APInt *C;
3511       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3512           !C->isOneValue()) {
3513         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3514         // Mask = -1 >> count-trailing-zeros(C).
3515         if (unsigned TZs = C->countTrailingZeros()) {
3516           Constant *Mask = ConstantInt::get(
3517               BO0->getType(),
3518               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3519           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3520           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3521           return new ICmpInst(Pred, And1, And2);
3522         }
3523         // If there are no trailing zeros in the multiplier, just eliminate
3524         // the multiplies (no masking is needed):
3525         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3526         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3527       }
3528       break;
3529     }
3530     case Instruction::UDiv:
3531     case Instruction::LShr:
3532       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3533         break;
3534       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3535 
3536     case Instruction::SDiv:
3537       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3538         break;
3539       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3540 
3541     case Instruction::AShr:
3542       if (!BO0->isExact() || !BO1->isExact())
3543         break;
3544       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3545 
3546     case Instruction::Shl: {
3547       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3548       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3549       if (!NUW && !NSW)
3550         break;
3551       if (!NSW && I.isSigned())
3552         break;
3553       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3554     }
3555     }
3556   }
3557 
3558   if (BO0) {
3559     // Transform  A & (L - 1) `ult` L --> L != 0
3560     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3561     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3562 
3563     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3564       auto *Zero = Constant::getNullValue(BO0->getType());
3565       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3566     }
3567   }
3568 
3569   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3570     return replaceInstUsesWith(I, V);
3571 
3572   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3573     return replaceInstUsesWith(I, V);
3574 
3575   return nullptr;
3576 }
3577 
3578 /// Fold icmp Pred min|max(X, Y), X.
3579 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3580   ICmpInst::Predicate Pred = Cmp.getPredicate();
3581   Value *Op0 = Cmp.getOperand(0);
3582   Value *X = Cmp.getOperand(1);
3583 
3584   // Canonicalize minimum or maximum operand to LHS of the icmp.
3585   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3586       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3587       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3588       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3589     std::swap(Op0, X);
3590     Pred = Cmp.getSwappedPredicate();
3591   }
3592 
3593   Value *Y;
3594   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3595     // smin(X, Y)  == X --> X s<= Y
3596     // smin(X, Y) s>= X --> X s<= Y
3597     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3598       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3599 
3600     // smin(X, Y) != X --> X s> Y
3601     // smin(X, Y) s< X --> X s> Y
3602     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3603       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3604 
3605     // These cases should be handled in InstSimplify:
3606     // smin(X, Y) s<= X --> true
3607     // smin(X, Y) s> X --> false
3608     return nullptr;
3609   }
3610 
3611   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3612     // smax(X, Y)  == X --> X s>= Y
3613     // smax(X, Y) s<= X --> X s>= Y
3614     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3615       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3616 
3617     // smax(X, Y) != X --> X s< Y
3618     // smax(X, Y) s> X --> X s< Y
3619     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3620       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3621 
3622     // These cases should be handled in InstSimplify:
3623     // smax(X, Y) s>= X --> true
3624     // smax(X, Y) s< X --> false
3625     return nullptr;
3626   }
3627 
3628   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3629     // umin(X, Y)  == X --> X u<= Y
3630     // umin(X, Y) u>= X --> X u<= Y
3631     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3632       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3633 
3634     // umin(X, Y) != X --> X u> Y
3635     // umin(X, Y) u< X --> X u> Y
3636     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3637       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3638 
3639     // These cases should be handled in InstSimplify:
3640     // umin(X, Y) u<= X --> true
3641     // umin(X, Y) u> X --> false
3642     return nullptr;
3643   }
3644 
3645   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3646     // umax(X, Y)  == X --> X u>= Y
3647     // umax(X, Y) u<= X --> X u>= Y
3648     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3649       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3650 
3651     // umax(X, Y) != X --> X u< Y
3652     // umax(X, Y) u> X --> X u< Y
3653     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3654       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3655 
3656     // These cases should be handled in InstSimplify:
3657     // umax(X, Y) u>= X --> true
3658     // umax(X, Y) u< X --> false
3659     return nullptr;
3660   }
3661 
3662   return nullptr;
3663 }
3664 
3665 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3666   if (!I.isEquality())
3667     return nullptr;
3668 
3669   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3670   const CmpInst::Predicate Pred = I.getPredicate();
3671   Value *A, *B, *C, *D;
3672   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3673     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3674       Value *OtherVal = A == Op1 ? B : A;
3675       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3676     }
3677 
3678     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3679       // A^c1 == C^c2 --> A == C^(c1^c2)
3680       ConstantInt *C1, *C2;
3681       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3682           Op1->hasOneUse()) {
3683         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
3684         Value *Xor = Builder.CreateXor(C, NC);
3685         return new ICmpInst(Pred, A, Xor);
3686       }
3687 
3688       // A^B == A^D -> B == D
3689       if (A == C)
3690         return new ICmpInst(Pred, B, D);
3691       if (A == D)
3692         return new ICmpInst(Pred, B, C);
3693       if (B == C)
3694         return new ICmpInst(Pred, A, D);
3695       if (B == D)
3696         return new ICmpInst(Pred, A, C);
3697     }
3698   }
3699 
3700   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3701     // A == (A^B)  ->  B == 0
3702     Value *OtherVal = A == Op0 ? B : A;
3703     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3704   }
3705 
3706   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3707   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3708       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3709     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3710 
3711     if (A == C) {
3712       X = B;
3713       Y = D;
3714       Z = A;
3715     } else if (A == D) {
3716       X = B;
3717       Y = C;
3718       Z = A;
3719     } else if (B == C) {
3720       X = A;
3721       Y = D;
3722       Z = B;
3723     } else if (B == D) {
3724       X = A;
3725       Y = C;
3726       Z = B;
3727     }
3728 
3729     if (X) { // Build (X^Y) & Z
3730       Op1 = Builder.CreateXor(X, Y);
3731       Op1 = Builder.CreateAnd(Op1, Z);
3732       I.setOperand(0, Op1);
3733       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3734       return &I;
3735     }
3736   }
3737 
3738   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3739   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3740   ConstantInt *Cst1;
3741   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3742        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3743       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3744        match(Op1, m_ZExt(m_Value(A))))) {
3745     APInt Pow2 = Cst1->getValue() + 1;
3746     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3747         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3748       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
3749   }
3750 
3751   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3752   // For lshr and ashr pairs.
3753   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3754        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3755       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3756        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3757     unsigned TypeBits = Cst1->getBitWidth();
3758     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3759     if (ShAmt < TypeBits && ShAmt != 0) {
3760       ICmpInst::Predicate NewPred =
3761           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
3762       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3763       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3764       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
3765     }
3766   }
3767 
3768   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3769   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3770       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3771     unsigned TypeBits = Cst1->getBitWidth();
3772     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3773     if (ShAmt < TypeBits && ShAmt != 0) {
3774       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3775       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3776       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
3777                                       I.getName() + ".mask");
3778       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
3779     }
3780   }
3781 
3782   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3783   // "icmp (and X, mask), cst"
3784   uint64_t ShAmt = 0;
3785   if (Op0->hasOneUse() &&
3786       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3787       match(Op1, m_ConstantInt(Cst1)) &&
3788       // Only do this when A has multiple uses.  This is most important to do
3789       // when it exposes other optimizations.
3790       !A->hasOneUse()) {
3791     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3792 
3793     if (ShAmt < ASize) {
3794       APInt MaskV =
3795           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3796       MaskV <<= ShAmt;
3797 
3798       APInt CmpV = Cst1->getValue().zext(ASize);
3799       CmpV <<= ShAmt;
3800 
3801       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
3802       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
3803     }
3804   }
3805 
3806   // If both operands are byte-swapped or bit-reversed, just compare the
3807   // original values.
3808   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
3809   // and handle more intrinsics.
3810   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
3811       (match(Op0, m_BitReverse(m_Value(A))) &&
3812        match(Op1, m_BitReverse(m_Value(B)))))
3813     return new ICmpInst(Pred, A, B);
3814 
3815   return nullptr;
3816 }
3817 
3818 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3819 /// far.
3820 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3821   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3822   Value *LHSCIOp        = LHSCI->getOperand(0);
3823   Type *SrcTy     = LHSCIOp->getType();
3824   Type *DestTy    = LHSCI->getType();
3825   Value *RHSCIOp;
3826 
3827   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3828   // integer type is the same size as the pointer type.
3829   const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool {
3830     if (isa<VectorType>(SrcTy)) {
3831       SrcTy = cast<VectorType>(SrcTy)->getElementType();
3832       DestTy = cast<VectorType>(DestTy)->getElementType();
3833     }
3834     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
3835   };
3836   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3837       CompatibleSizes(SrcTy, DestTy)) {
3838     Value *RHSOp = nullptr;
3839     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3840       Value *RHSCIOp = RHSC->getOperand(0);
3841       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3842           LHSCIOp->getType()->getPointerAddressSpace()) {
3843         RHSOp = RHSC->getOperand(0);
3844         // If the pointer types don't match, insert a bitcast.
3845         if (LHSCIOp->getType() != RHSOp->getType())
3846           RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
3847       }
3848     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3849       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3850     }
3851 
3852     if (RHSOp)
3853       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3854   }
3855 
3856   // The code below only handles extension cast instructions, so far.
3857   // Enforce this.
3858   if (LHSCI->getOpcode() != Instruction::ZExt &&
3859       LHSCI->getOpcode() != Instruction::SExt)
3860     return nullptr;
3861 
3862   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3863   bool isSignedCmp = ICmp.isSigned();
3864 
3865   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3866     // Not an extension from the same type?
3867     RHSCIOp = CI->getOperand(0);
3868     if (RHSCIOp->getType() != LHSCIOp->getType())
3869       return nullptr;
3870 
3871     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3872     // and the other is a zext), then we can't handle this.
3873     if (CI->getOpcode() != LHSCI->getOpcode())
3874       return nullptr;
3875 
3876     // Deal with equality cases early.
3877     if (ICmp.isEquality())
3878       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3879 
3880     // A signed comparison of sign extended values simplifies into a
3881     // signed comparison.
3882     if (isSignedCmp && isSignedExt)
3883       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3884 
3885     // The other three cases all fold into an unsigned comparison.
3886     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3887   }
3888 
3889   // If we aren't dealing with a constant on the RHS, exit early.
3890   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3891   if (!C)
3892     return nullptr;
3893 
3894   // Compute the constant that would happen if we truncated to SrcTy then
3895   // re-extended to DestTy.
3896   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3897   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3898 
3899   // If the re-extended constant didn't change...
3900   if (Res2 == C) {
3901     // Deal with equality cases early.
3902     if (ICmp.isEquality())
3903       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3904 
3905     // A signed comparison of sign extended values simplifies into a
3906     // signed comparison.
3907     if (isSignedExt && isSignedCmp)
3908       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3909 
3910     // The other three cases all fold into an unsigned comparison.
3911     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3912   }
3913 
3914   // The re-extended constant changed, partly changed (in the case of a vector),
3915   // or could not be determined to be equal (in the case of a constant
3916   // expression), so the constant cannot be represented in the shorter type.
3917   // Consequently, we cannot emit a simple comparison.
3918   // All the cases that fold to true or false will have already been handled
3919   // by SimplifyICmpInst, so only deal with the tricky case.
3920 
3921   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3922     return nullptr;
3923 
3924   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3925   // should have been folded away previously and not enter in here.
3926 
3927   // We're performing an unsigned comp with a sign extended value.
3928   // This is true if the input is >= 0. [aka >s -1]
3929   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3930   Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3931 
3932   // Finally, return the value computed.
3933   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3934     return replaceInstUsesWith(ICmp, Result);
3935 
3936   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3937   return BinaryOperator::CreateNot(Result);
3938 }
3939 
3940 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3941                                          Value *RHS, Instruction &OrigI,
3942                                          Value *&Result, Constant *&Overflow) {
3943   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3944     std::swap(LHS, RHS);
3945 
3946   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3947     Result = OpResult;
3948     Overflow = OverflowVal;
3949     if (ReuseName)
3950       Result->takeName(&OrigI);
3951     return true;
3952   };
3953 
3954   // If the overflow check was an add followed by a compare, the insertion point
3955   // may be pointing to the compare.  We want to insert the new instructions
3956   // before the add in case there are uses of the add between the add and the
3957   // compare.
3958   Builder.SetInsertPoint(&OrigI);
3959 
3960   switch (OCF) {
3961   case OCF_INVALID:
3962     llvm_unreachable("bad overflow check kind!");
3963 
3964   case OCF_UNSIGNED_ADD:
3965   case OCF_SIGNED_ADD: {
3966     // X + 0 -> {X, false}
3967     if (match(RHS, m_Zero()))
3968       return SetResult(LHS, Builder.getFalse(), false);
3969 
3970     OverflowResult OR;
3971     if (OCF == OCF_UNSIGNED_ADD) {
3972       OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3973       if (OR == OverflowResult::NeverOverflows)
3974         return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(),
3975                          true);
3976     } else {
3977       OR = computeOverflowForSignedAdd(LHS, RHS, &OrigI);
3978       if (OR == OverflowResult::NeverOverflows)
3979         return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(),
3980                          true);
3981     }
3982 
3983     if (OR == OverflowResult::AlwaysOverflows)
3984       return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true);
3985     break;
3986   }
3987 
3988   case OCF_UNSIGNED_SUB:
3989   case OCF_SIGNED_SUB: {
3990     // X - 0 -> {X, false}
3991     if (match(RHS, m_Zero()))
3992       return SetResult(LHS, Builder.getFalse(), false);
3993 
3994     OverflowResult OR;
3995     if (OCF == OCF_UNSIGNED_SUB) {
3996       OR = computeOverflowForUnsignedSub(LHS, RHS, &OrigI);
3997       if (OR == OverflowResult::NeverOverflows)
3998         return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(),
3999                          true);
4000     } else {
4001       OR = computeOverflowForSignedSub(LHS, RHS, &OrigI);
4002       if (OR == OverflowResult::NeverOverflows)
4003         return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(),
4004                          true);
4005     }
4006 
4007     if (OR == OverflowResult::AlwaysOverflows)
4008       return SetResult(Builder.CreateSub(LHS, RHS), Builder.getTrue(), true);
4009     break;
4010   }
4011 
4012   case OCF_UNSIGNED_MUL:
4013   case OCF_SIGNED_MUL: {
4014     // X * undef -> undef
4015     if (isa<UndefValue>(RHS))
4016       return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false);
4017 
4018     // X * 0 -> {0, false}
4019     if (match(RHS, m_Zero()))
4020       return SetResult(RHS, Builder.getFalse(), false);
4021 
4022     // X * 1 -> {X, false}
4023     if (match(RHS, m_One()))
4024       return SetResult(LHS, Builder.getFalse(), false);
4025 
4026     OverflowResult OR;
4027     if (OCF == OCF_UNSIGNED_MUL) {
4028       OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
4029       if (OR == OverflowResult::NeverOverflows)
4030         return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(),
4031                          true);
4032       if (OR == OverflowResult::AlwaysOverflows)
4033         return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true);
4034     } else {
4035       OR = computeOverflowForSignedMul(LHS, RHS, &OrigI);
4036       if (OR == OverflowResult::NeverOverflows)
4037         return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(),
4038                          true);
4039     }
4040     break;
4041   }
4042   }
4043 
4044   return false;
4045 }
4046 
4047 /// Recognize and process idiom involving test for multiplication
4048 /// overflow.
4049 ///
4050 /// The caller has matched a pattern of the form:
4051 ///   I = cmp u (mul(zext A, zext B), V
4052 /// The function checks if this is a test for overflow and if so replaces
4053 /// multiplication with call to 'mul.with.overflow' intrinsic.
4054 ///
4055 /// \param I Compare instruction.
4056 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4057 ///               the compare instruction.  Must be of integer type.
4058 /// \param OtherVal The other argument of compare instruction.
4059 /// \returns Instruction which must replace the compare instruction, NULL if no
4060 ///          replacement required.
4061 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4062                                          Value *OtherVal, InstCombiner &IC) {
4063   // Don't bother doing this transformation for pointers, don't do it for
4064   // vectors.
4065   if (!isa<IntegerType>(MulVal->getType()))
4066     return nullptr;
4067 
4068   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4069   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4070   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4071   if (!MulInstr)
4072     return nullptr;
4073   assert(MulInstr->getOpcode() == Instruction::Mul);
4074 
4075   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4076        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4077   assert(LHS->getOpcode() == Instruction::ZExt);
4078   assert(RHS->getOpcode() == Instruction::ZExt);
4079   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4080 
4081   // Calculate type and width of the result produced by mul.with.overflow.
4082   Type *TyA = A->getType(), *TyB = B->getType();
4083   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4084            WidthB = TyB->getPrimitiveSizeInBits();
4085   unsigned MulWidth;
4086   Type *MulType;
4087   if (WidthB > WidthA) {
4088     MulWidth = WidthB;
4089     MulType = TyB;
4090   } else {
4091     MulWidth = WidthA;
4092     MulType = TyA;
4093   }
4094 
4095   // In order to replace the original mul with a narrower mul.with.overflow,
4096   // all uses must ignore upper bits of the product.  The number of used low
4097   // bits must be not greater than the width of mul.with.overflow.
4098   if (MulVal->hasNUsesOrMore(2))
4099     for (User *U : MulVal->users()) {
4100       if (U == &I)
4101         continue;
4102       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4103         // Check if truncation ignores bits above MulWidth.
4104         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4105         if (TruncWidth > MulWidth)
4106           return nullptr;
4107       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4108         // Check if AND ignores bits above MulWidth.
4109         if (BO->getOpcode() != Instruction::And)
4110           return nullptr;
4111         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4112           const APInt &CVal = CI->getValue();
4113           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4114             return nullptr;
4115         } else {
4116           // In this case we could have the operand of the binary operation
4117           // being defined in another block, and performing the replacement
4118           // could break the dominance relation.
4119           return nullptr;
4120         }
4121       } else {
4122         // Other uses prohibit this transformation.
4123         return nullptr;
4124       }
4125     }
4126 
4127   // Recognize patterns
4128   switch (I.getPredicate()) {
4129   case ICmpInst::ICMP_EQ:
4130   case ICmpInst::ICMP_NE:
4131     // Recognize pattern:
4132     //   mulval = mul(zext A, zext B)
4133     //   cmp eq/neq mulval, zext trunc mulval
4134     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4135       if (Zext->hasOneUse()) {
4136         Value *ZextArg = Zext->getOperand(0);
4137         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4138           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4139             break; //Recognized
4140       }
4141 
4142     // Recognize pattern:
4143     //   mulval = mul(zext A, zext B)
4144     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4145     ConstantInt *CI;
4146     Value *ValToMask;
4147     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4148       if (ValToMask != MulVal)
4149         return nullptr;
4150       const APInt &CVal = CI->getValue() + 1;
4151       if (CVal.isPowerOf2()) {
4152         unsigned MaskWidth = CVal.logBase2();
4153         if (MaskWidth == MulWidth)
4154           break; // Recognized
4155       }
4156     }
4157     return nullptr;
4158 
4159   case ICmpInst::ICMP_UGT:
4160     // Recognize pattern:
4161     //   mulval = mul(zext A, zext B)
4162     //   cmp ugt mulval, max
4163     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4164       APInt MaxVal = APInt::getMaxValue(MulWidth);
4165       MaxVal = MaxVal.zext(CI->getBitWidth());
4166       if (MaxVal.eq(CI->getValue()))
4167         break; // Recognized
4168     }
4169     return nullptr;
4170 
4171   case ICmpInst::ICMP_UGE:
4172     // Recognize pattern:
4173     //   mulval = mul(zext A, zext B)
4174     //   cmp uge mulval, max+1
4175     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4176       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4177       if (MaxVal.eq(CI->getValue()))
4178         break; // Recognized
4179     }
4180     return nullptr;
4181 
4182   case ICmpInst::ICMP_ULE:
4183     // Recognize pattern:
4184     //   mulval = mul(zext A, zext B)
4185     //   cmp ule mulval, max
4186     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4187       APInt MaxVal = APInt::getMaxValue(MulWidth);
4188       MaxVal = MaxVal.zext(CI->getBitWidth());
4189       if (MaxVal.eq(CI->getValue()))
4190         break; // Recognized
4191     }
4192     return nullptr;
4193 
4194   case ICmpInst::ICMP_ULT:
4195     // Recognize pattern:
4196     //   mulval = mul(zext A, zext B)
4197     //   cmp ule mulval, max + 1
4198     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4199       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4200       if (MaxVal.eq(CI->getValue()))
4201         break; // Recognized
4202     }
4203     return nullptr;
4204 
4205   default:
4206     return nullptr;
4207   }
4208 
4209   InstCombiner::BuilderTy &Builder = IC.Builder;
4210   Builder.SetInsertPoint(MulInstr);
4211 
4212   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4213   Value *MulA = A, *MulB = B;
4214   if (WidthA < MulWidth)
4215     MulA = Builder.CreateZExt(A, MulType);
4216   if (WidthB < MulWidth)
4217     MulB = Builder.CreateZExt(B, MulType);
4218   Function *F = Intrinsic::getDeclaration(
4219       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4220   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4221   IC.Worklist.Add(MulInstr);
4222 
4223   // If there are uses of mul result other than the comparison, we know that
4224   // they are truncation or binary AND. Change them to use result of
4225   // mul.with.overflow and adjust properly mask/size.
4226   if (MulVal->hasNUsesOrMore(2)) {
4227     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4228     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4229       User *U = *UI++;
4230       if (U == &I || U == OtherVal)
4231         continue;
4232       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4233         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4234           IC.replaceInstUsesWith(*TI, Mul);
4235         else
4236           TI->setOperand(0, Mul);
4237       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4238         assert(BO->getOpcode() == Instruction::And);
4239         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4240         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4241         APInt ShortMask = CI->getValue().trunc(MulWidth);
4242         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4243         Instruction *Zext =
4244             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4245         IC.Worklist.Add(Zext);
4246         IC.replaceInstUsesWith(*BO, Zext);
4247       } else {
4248         llvm_unreachable("Unexpected Binary operation");
4249       }
4250       IC.Worklist.Add(cast<Instruction>(U));
4251     }
4252   }
4253   if (isa<Instruction>(OtherVal))
4254     IC.Worklist.Add(cast<Instruction>(OtherVal));
4255 
4256   // The original icmp gets replaced with the overflow value, maybe inverted
4257   // depending on predicate.
4258   bool Inverse = false;
4259   switch (I.getPredicate()) {
4260   case ICmpInst::ICMP_NE:
4261     break;
4262   case ICmpInst::ICMP_EQ:
4263     Inverse = true;
4264     break;
4265   case ICmpInst::ICMP_UGT:
4266   case ICmpInst::ICMP_UGE:
4267     if (I.getOperand(0) == MulVal)
4268       break;
4269     Inverse = true;
4270     break;
4271   case ICmpInst::ICMP_ULT:
4272   case ICmpInst::ICMP_ULE:
4273     if (I.getOperand(1) == MulVal)
4274       break;
4275     Inverse = true;
4276     break;
4277   default:
4278     llvm_unreachable("Unexpected predicate");
4279   }
4280   if (Inverse) {
4281     Value *Res = Builder.CreateExtractValue(Call, 1);
4282     return BinaryOperator::CreateNot(Res);
4283   }
4284 
4285   return ExtractValueInst::Create(Call, 1);
4286 }
4287 
4288 /// When performing a comparison against a constant, it is possible that not all
4289 /// the bits in the LHS are demanded. This helper method computes the mask that
4290 /// IS demanded.
4291 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4292   const APInt *RHS;
4293   if (!match(I.getOperand(1), m_APInt(RHS)))
4294     return APInt::getAllOnesValue(BitWidth);
4295 
4296   // If this is a normal comparison, it demands all bits. If it is a sign bit
4297   // comparison, it only demands the sign bit.
4298   bool UnusedBit;
4299   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4300     return APInt::getSignMask(BitWidth);
4301 
4302   switch (I.getPredicate()) {
4303   // For a UGT comparison, we don't care about any bits that
4304   // correspond to the trailing ones of the comparand.  The value of these
4305   // bits doesn't impact the outcome of the comparison, because any value
4306   // greater than the RHS must differ in a bit higher than these due to carry.
4307   case ICmpInst::ICMP_UGT:
4308     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4309 
4310   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4311   // Any value less than the RHS must differ in a higher bit because of carries.
4312   case ICmpInst::ICMP_ULT:
4313     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4314 
4315   default:
4316     return APInt::getAllOnesValue(BitWidth);
4317   }
4318 }
4319 
4320 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4321 /// should be swapped.
4322 /// The decision is based on how many times these two operands are reused
4323 /// as subtract operands and their positions in those instructions.
4324 /// The rationale is that several architectures use the same instruction for
4325 /// both subtract and cmp. Thus, it is better if the order of those operands
4326 /// match.
4327 /// \return true if Op0 and Op1 should be swapped.
4328 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4329   // Filter out pointer values as those cannot appear directly in subtract.
4330   // FIXME: we may want to go through inttoptrs or bitcasts.
4331   if (Op0->getType()->isPointerTy())
4332     return false;
4333   // If a subtract already has the same operands as a compare, swapping would be
4334   // bad. If a subtract has the same operands as a compare but in reverse order,
4335   // then swapping is good.
4336   int GoodToSwap = 0;
4337   for (const User *U : Op0->users()) {
4338     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4339       GoodToSwap++;
4340     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4341       GoodToSwap--;
4342   }
4343   return GoodToSwap > 0;
4344 }
4345 
4346 /// Check that one use is in the same block as the definition and all
4347 /// other uses are in blocks dominated by a given block.
4348 ///
4349 /// \param DI Definition
4350 /// \param UI Use
4351 /// \param DB Block that must dominate all uses of \p DI outside
4352 ///           the parent block
4353 /// \return true when \p UI is the only use of \p DI in the parent block
4354 /// and all other uses of \p DI are in blocks dominated by \p DB.
4355 ///
4356 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4357                                     const Instruction *UI,
4358                                     const BasicBlock *DB) const {
4359   assert(DI && UI && "Instruction not defined\n");
4360   // Ignore incomplete definitions.
4361   if (!DI->getParent())
4362     return false;
4363   // DI and UI must be in the same block.
4364   if (DI->getParent() != UI->getParent())
4365     return false;
4366   // Protect from self-referencing blocks.
4367   if (DI->getParent() == DB)
4368     return false;
4369   for (const User *U : DI->users()) {
4370     auto *Usr = cast<Instruction>(U);
4371     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4372       return false;
4373   }
4374   return true;
4375 }
4376 
4377 /// Return true when the instruction sequence within a block is select-cmp-br.
4378 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4379   const BasicBlock *BB = SI->getParent();
4380   if (!BB)
4381     return false;
4382   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4383   if (!BI || BI->getNumSuccessors() != 2)
4384     return false;
4385   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4386   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4387     return false;
4388   return true;
4389 }
4390 
4391 /// True when a select result is replaced by one of its operands
4392 /// in select-icmp sequence. This will eventually result in the elimination
4393 /// of the select.
4394 ///
4395 /// \param SI    Select instruction
4396 /// \param Icmp  Compare instruction
4397 /// \param SIOpd Operand that replaces the select
4398 ///
4399 /// Notes:
4400 /// - The replacement is global and requires dominator information
4401 /// - The caller is responsible for the actual replacement
4402 ///
4403 /// Example:
4404 ///
4405 /// entry:
4406 ///  %4 = select i1 %3, %C* %0, %C* null
4407 ///  %5 = icmp eq %C* %4, null
4408 ///  br i1 %5, label %9, label %7
4409 ///  ...
4410 ///  ; <label>:7                                       ; preds = %entry
4411 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4412 ///  ...
4413 ///
4414 /// can be transformed to
4415 ///
4416 ///  %5 = icmp eq %C* %0, null
4417 ///  %6 = select i1 %3, i1 %5, i1 true
4418 ///  br i1 %6, label %9, label %7
4419 ///  ...
4420 ///  ; <label>:7                                       ; preds = %entry
4421 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4422 ///
4423 /// Similar when the first operand of the select is a constant or/and
4424 /// the compare is for not equal rather than equal.
4425 ///
4426 /// NOTE: The function is only called when the select and compare constants
4427 /// are equal, the optimization can work only for EQ predicates. This is not a
4428 /// major restriction since a NE compare should be 'normalized' to an equal
4429 /// compare, which usually happens in the combiner and test case
4430 /// select-cmp-br.ll checks for it.
4431 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4432                                              const ICmpInst *Icmp,
4433                                              const unsigned SIOpd) {
4434   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4435   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4436     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4437     // The check for the single predecessor is not the best that can be
4438     // done. But it protects efficiently against cases like when SI's
4439     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4440     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4441     // replaced can be reached on either path. So the uniqueness check
4442     // guarantees that the path all uses of SI (outside SI's parent) are on
4443     // is disjoint from all other paths out of SI. But that information
4444     // is more expensive to compute, and the trade-off here is in favor
4445     // of compile-time. It should also be noticed that we check for a single
4446     // predecessor and not only uniqueness. This to handle the situation when
4447     // Succ and Succ1 points to the same basic block.
4448     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4449       NumSel++;
4450       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4451       return true;
4452     }
4453   }
4454   return false;
4455 }
4456 
4457 /// Try to fold the comparison based on range information we can get by checking
4458 /// whether bits are known to be zero or one in the inputs.
4459 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4460   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4461   Type *Ty = Op0->getType();
4462   ICmpInst::Predicate Pred = I.getPredicate();
4463 
4464   // Get scalar or pointer size.
4465   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4466                           ? Ty->getScalarSizeInBits()
4467                           : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4468 
4469   if (!BitWidth)
4470     return nullptr;
4471 
4472   KnownBits Op0Known(BitWidth);
4473   KnownBits Op1Known(BitWidth);
4474 
4475   if (SimplifyDemandedBits(&I, 0,
4476                            getDemandedBitsLHSMask(I, BitWidth),
4477                            Op0Known, 0))
4478     return &I;
4479 
4480   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4481                            Op1Known, 0))
4482     return &I;
4483 
4484   // Given the known and unknown bits, compute a range that the LHS could be
4485   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4486   // EQ and NE we use unsigned values.
4487   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4488   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4489   if (I.isSigned()) {
4490     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4491     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4492   } else {
4493     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4494     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4495   }
4496 
4497   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4498   // out that the LHS or RHS is a constant. Constant fold this now, so that
4499   // code below can assume that Min != Max.
4500   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4501     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4502   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4503     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4504 
4505   // Based on the range information we know about the LHS, see if we can
4506   // simplify this comparison.  For example, (x&4) < 8 is always true.
4507   switch (Pred) {
4508   default:
4509     llvm_unreachable("Unknown icmp opcode!");
4510   case ICmpInst::ICMP_EQ:
4511   case ICmpInst::ICMP_NE: {
4512     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4513       return Pred == CmpInst::ICMP_EQ
4514                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4515                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4516     }
4517 
4518     // If all bits are known zero except for one, then we know at most one bit
4519     // is set. If the comparison is against zero, then this is a check to see if
4520     // *that* bit is set.
4521     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4522     if (Op1Known.isZero()) {
4523       // If the LHS is an AND with the same constant, look through it.
4524       Value *LHS = nullptr;
4525       const APInt *LHSC;
4526       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4527           *LHSC != Op0KnownZeroInverted)
4528         LHS = Op0;
4529 
4530       Value *X;
4531       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4532         APInt ValToCheck = Op0KnownZeroInverted;
4533         Type *XTy = X->getType();
4534         if (ValToCheck.isPowerOf2()) {
4535           // ((1 << X) & 8) == 0 -> X != 3
4536           // ((1 << X) & 8) != 0 -> X == 3
4537           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4538           auto NewPred = ICmpInst::getInversePredicate(Pred);
4539           return new ICmpInst(NewPred, X, CmpC);
4540         } else if ((++ValToCheck).isPowerOf2()) {
4541           // ((1 << X) & 7) == 0 -> X >= 3
4542           // ((1 << X) & 7) != 0 -> X  < 3
4543           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4544           auto NewPred =
4545               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4546           return new ICmpInst(NewPred, X, CmpC);
4547         }
4548       }
4549 
4550       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4551       const APInt *CI;
4552       if (Op0KnownZeroInverted.isOneValue() &&
4553           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4554         // ((8 >>u X) & 1) == 0 -> X != 3
4555         // ((8 >>u X) & 1) != 0 -> X == 3
4556         unsigned CmpVal = CI->countTrailingZeros();
4557         auto NewPred = ICmpInst::getInversePredicate(Pred);
4558         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4559       }
4560     }
4561     break;
4562   }
4563   case ICmpInst::ICMP_ULT: {
4564     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4565       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4566     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4567       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4568     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4569       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4570 
4571     const APInt *CmpC;
4572     if (match(Op1, m_APInt(CmpC))) {
4573       // A <u C -> A == C-1 if min(A)+1 == C
4574       if (*CmpC == Op0Min + 1)
4575         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4576                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4577       // X <u C --> X == 0, if the number of zero bits in the bottom of X
4578       // exceeds the log2 of C.
4579       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
4580         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4581                             Constant::getNullValue(Op1->getType()));
4582     }
4583     break;
4584   }
4585   case ICmpInst::ICMP_UGT: {
4586     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4587       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4588     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4589       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4590     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4591       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4592 
4593     const APInt *CmpC;
4594     if (match(Op1, m_APInt(CmpC))) {
4595       // A >u C -> A == C+1 if max(a)-1 == C
4596       if (*CmpC == Op0Max - 1)
4597         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4598                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4599       // X >u C --> X != 0, if the number of zero bits in the bottom of X
4600       // exceeds the log2 of C.
4601       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
4602         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
4603                             Constant::getNullValue(Op1->getType()));
4604     }
4605     break;
4606   }
4607   case ICmpInst::ICMP_SLT: {
4608     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4609       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4610     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4611       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4612     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4613       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4614     const APInt *CmpC;
4615     if (match(Op1, m_APInt(CmpC))) {
4616       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4617         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4618                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4619     }
4620     break;
4621   }
4622   case ICmpInst::ICMP_SGT: {
4623     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4624       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4625     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4626       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4627     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4628       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4629     const APInt *CmpC;
4630     if (match(Op1, m_APInt(CmpC))) {
4631       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4632         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4633                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4634     }
4635     break;
4636   }
4637   case ICmpInst::ICMP_SGE:
4638     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4639     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4640       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4641     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4642       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4643     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
4644       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4645     break;
4646   case ICmpInst::ICMP_SLE:
4647     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4648     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4649       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4650     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4651       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4652     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
4653       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4654     break;
4655   case ICmpInst::ICMP_UGE:
4656     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4657     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4658       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4659     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4660       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4661     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
4662       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4663     break;
4664   case ICmpInst::ICMP_ULE:
4665     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4666     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4667       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4668     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4669       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4670     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
4671       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4672     break;
4673   }
4674 
4675   // Turn a signed comparison into an unsigned one if both operands are known to
4676   // have the same sign.
4677   if (I.isSigned() &&
4678       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4679        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4680     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4681 
4682   return nullptr;
4683 }
4684 
4685 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4686 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4687 /// allows them to be folded in visitICmpInst.
4688 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4689   ICmpInst::Predicate Pred = I.getPredicate();
4690   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4691       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4692     return nullptr;
4693 
4694   Value *Op0 = I.getOperand(0);
4695   Value *Op1 = I.getOperand(1);
4696   auto *Op1C = dyn_cast<Constant>(Op1);
4697   if (!Op1C)
4698     return nullptr;
4699 
4700   // Check if the constant operand can be safely incremented/decremented without
4701   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4702   // the edge cases for us, so we just assert on them. For vectors, we must
4703   // handle the edge cases.
4704   Type *Op1Type = Op1->getType();
4705   bool IsSigned = I.isSigned();
4706   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4707   auto *CI = dyn_cast<ConstantInt>(Op1C);
4708   if (CI) {
4709     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4710     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4711   } else if (Op1Type->isVectorTy()) {
4712     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4713     // are for scalar, we could remove the min/max checks. However, to do that,
4714     // we would have to use insertelement/shufflevector to replace edge values.
4715     unsigned NumElts = Op1Type->getVectorNumElements();
4716     for (unsigned i = 0; i != NumElts; ++i) {
4717       Constant *Elt = Op1C->getAggregateElement(i);
4718       if (!Elt)
4719         return nullptr;
4720 
4721       if (isa<UndefValue>(Elt))
4722         continue;
4723 
4724       // Bail out if we can't determine if this constant is min/max or if we
4725       // know that this constant is min/max.
4726       auto *CI = dyn_cast<ConstantInt>(Elt);
4727       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4728         return nullptr;
4729     }
4730   } else {
4731     // ConstantExpr?
4732     return nullptr;
4733   }
4734 
4735   // Increment or decrement the constant and set the new comparison predicate:
4736   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4737   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4738   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4739   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4740   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4741 }
4742 
4743 /// Integer compare with boolean values can always be turned into bitwise ops.
4744 static Instruction *canonicalizeICmpBool(ICmpInst &I,
4745                                          InstCombiner::BuilderTy &Builder) {
4746   Value *A = I.getOperand(0), *B = I.getOperand(1);
4747   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
4748 
4749   // A boolean compared to true/false can be simplified to Op0/true/false in
4750   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4751   // Cases not handled by InstSimplify are always 'not' of Op0.
4752   if (match(B, m_Zero())) {
4753     switch (I.getPredicate()) {
4754       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
4755       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
4756       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
4757         return BinaryOperator::CreateNot(A);
4758       default:
4759         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4760     }
4761   } else if (match(B, m_One())) {
4762     switch (I.getPredicate()) {
4763       case CmpInst::ICMP_NE:  // A !=  1 -> !A
4764       case CmpInst::ICMP_ULT: // A <u  1 -> !A
4765       case CmpInst::ICMP_SGT: // A >s -1 -> !A
4766         return BinaryOperator::CreateNot(A);
4767       default:
4768         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4769     }
4770   }
4771 
4772   switch (I.getPredicate()) {
4773   default:
4774     llvm_unreachable("Invalid icmp instruction!");
4775   case ICmpInst::ICMP_EQ:
4776     // icmp eq i1 A, B -> ~(A ^ B)
4777     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4778 
4779   case ICmpInst::ICMP_NE:
4780     // icmp ne i1 A, B -> A ^ B
4781     return BinaryOperator::CreateXor(A, B);
4782 
4783   case ICmpInst::ICMP_UGT:
4784     // icmp ugt -> icmp ult
4785     std::swap(A, B);
4786     LLVM_FALLTHROUGH;
4787   case ICmpInst::ICMP_ULT:
4788     // icmp ult i1 A, B -> ~A & B
4789     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4790 
4791   case ICmpInst::ICMP_SGT:
4792     // icmp sgt -> icmp slt
4793     std::swap(A, B);
4794     LLVM_FALLTHROUGH;
4795   case ICmpInst::ICMP_SLT:
4796     // icmp slt i1 A, B -> A & ~B
4797     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4798 
4799   case ICmpInst::ICMP_UGE:
4800     // icmp uge -> icmp ule
4801     std::swap(A, B);
4802     LLVM_FALLTHROUGH;
4803   case ICmpInst::ICMP_ULE:
4804     // icmp ule i1 A, B -> ~A | B
4805     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4806 
4807   case ICmpInst::ICMP_SGE:
4808     // icmp sge -> icmp sle
4809     std::swap(A, B);
4810     LLVM_FALLTHROUGH;
4811   case ICmpInst::ICMP_SLE:
4812     // icmp sle i1 A, B -> A | ~B
4813     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4814   }
4815 }
4816 
4817 // Transform pattern like:
4818 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
4819 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
4820 // Into:
4821 //   (X l>> Y) != 0
4822 //   (X l>> Y) == 0
4823 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
4824                                             InstCombiner::BuilderTy &Builder) {
4825   ICmpInst::Predicate Pred, NewPred;
4826   Value *X, *Y;
4827   if (match(&Cmp,
4828             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
4829     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4830     if (Cmp.getOperand(0) == X)
4831       Pred = Cmp.getSwappedPredicate();
4832 
4833     switch (Pred) {
4834     case ICmpInst::ICMP_ULE:
4835       NewPred = ICmpInst::ICMP_NE;
4836       break;
4837     case ICmpInst::ICMP_UGT:
4838       NewPred = ICmpInst::ICMP_EQ;
4839       break;
4840     default:
4841       return nullptr;
4842     }
4843   } else if (match(&Cmp, m_c_ICmp(Pred,
4844                                   m_OneUse(m_CombineOr(
4845                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
4846                                       m_Add(m_Shl(m_One(), m_Value(Y)),
4847                                             m_AllOnes()))),
4848                                   m_Value(X)))) {
4849     // The variant with 'add' is not canonical, (the variant with 'not' is)
4850     // we only get it because it has extra uses, and can't be canonicalized,
4851 
4852     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4853     if (Cmp.getOperand(0) == X)
4854       Pred = Cmp.getSwappedPredicate();
4855 
4856     switch (Pred) {
4857     case ICmpInst::ICMP_ULT:
4858       NewPred = ICmpInst::ICMP_NE;
4859       break;
4860     case ICmpInst::ICMP_UGE:
4861       NewPred = ICmpInst::ICMP_EQ;
4862       break;
4863     default:
4864       return nullptr;
4865     }
4866   } else
4867     return nullptr;
4868 
4869   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
4870   Constant *Zero = Constant::getNullValue(NewX->getType());
4871   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
4872 }
4873 
4874 static Instruction *foldVectorCmp(CmpInst &Cmp,
4875                                   InstCombiner::BuilderTy &Builder) {
4876   // If both arguments of the cmp are shuffles that use the same mask and
4877   // shuffle within a single vector, move the shuffle after the cmp.
4878   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
4879   Value *V1, *V2;
4880   Constant *M;
4881   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
4882       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
4883       V1->getType() == V2->getType() &&
4884       (LHS->hasOneUse() || RHS->hasOneUse())) {
4885     // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
4886     CmpInst::Predicate P = Cmp.getPredicate();
4887     Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
4888                                        : Builder.CreateFCmp(P, V1, V2);
4889     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
4890   }
4891   return nullptr;
4892 }
4893 
4894 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4895   bool Changed = false;
4896   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4897   unsigned Op0Cplxity = getComplexity(Op0);
4898   unsigned Op1Cplxity = getComplexity(Op1);
4899 
4900   /// Orders the operands of the compare so that they are listed from most
4901   /// complex to least complex.  This puts constants before unary operators,
4902   /// before binary operators.
4903   if (Op0Cplxity < Op1Cplxity ||
4904       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4905     I.swapOperands();
4906     std::swap(Op0, Op1);
4907     Changed = true;
4908   }
4909 
4910   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
4911                                   SQ.getWithInstruction(&I)))
4912     return replaceInstUsesWith(I, V);
4913 
4914   // Comparing -val or val with non-zero is the same as just comparing val
4915   // ie, abs(val) != 0 -> val != 0
4916   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4917     Value *Cond, *SelectTrue, *SelectFalse;
4918     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4919                             m_Value(SelectFalse)))) {
4920       if (Value *V = dyn_castNegVal(SelectTrue)) {
4921         if (V == SelectFalse)
4922           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4923       }
4924       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4925         if (V == SelectTrue)
4926           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4927       }
4928     }
4929   }
4930 
4931   if (Op0->getType()->isIntOrIntVectorTy(1))
4932     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
4933       return Res;
4934 
4935   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4936     return NewICmp;
4937 
4938   if (Instruction *Res = foldICmpWithConstant(I))
4939     return Res;
4940 
4941   if (Instruction *Res = foldICmpWithDominatingICmp(I))
4942     return Res;
4943 
4944   if (Instruction *Res = foldICmpUsingKnownBits(I))
4945     return Res;
4946 
4947   // Test if the ICmpInst instruction is used exclusively by a select as
4948   // part of a minimum or maximum operation. If so, refrain from doing
4949   // any other folding. This helps out other analyses which understand
4950   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4951   // and CodeGen. And in this case, at least one of the comparison
4952   // operands has at least one user besides the compare (the select),
4953   // which would often largely negate the benefit of folding anyway.
4954   //
4955   // Do the same for the other patterns recognized by matchSelectPattern.
4956   if (I.hasOneUse())
4957     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
4958       Value *A, *B;
4959       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
4960       if (SPR.Flavor != SPF_UNKNOWN)
4961         return nullptr;
4962     }
4963 
4964   // Do this after checking for min/max to prevent infinite looping.
4965   if (Instruction *Res = foldICmpWithZero(I))
4966     return Res;
4967 
4968   // FIXME: We only do this after checking for min/max to prevent infinite
4969   // looping caused by a reverse canonicalization of these patterns for min/max.
4970   // FIXME: The organization of folds is a mess. These would naturally go into
4971   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4972   // down here after the min/max restriction.
4973   ICmpInst::Predicate Pred = I.getPredicate();
4974   const APInt *C;
4975   if (match(Op1, m_APInt(C))) {
4976     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
4977     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4978       Constant *Zero = Constant::getNullValue(Op0->getType());
4979       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4980     }
4981 
4982     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
4983     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4984       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4985       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4986     }
4987   }
4988 
4989   if (Instruction *Res = foldICmpInstWithConstant(I))
4990     return Res;
4991 
4992   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4993     return Res;
4994 
4995   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4996   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4997     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4998       return NI;
4999   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5000     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5001                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5002       return NI;
5003 
5004   // Try to optimize equality comparisons against alloca-based pointers.
5005   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5006     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5007     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5008       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5009         return New;
5010     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5011       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5012         return New;
5013   }
5014 
5015   if (Instruction *Res = foldICmpBitCast(I, Builder))
5016     return Res;
5017 
5018   if (isa<CastInst>(Op0)) {
5019     // Handle the special case of: icmp (cast bool to X), <cst>
5020     // This comes up when you have code like
5021     //   int X = A < B;
5022     //   if (X) ...
5023     // For generality, we handle any zero-extension of any operand comparison
5024     // with a constant or another cast from the same type.
5025     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
5026       if (Instruction *R = foldICmpWithCastAndCast(I))
5027         return R;
5028   }
5029 
5030   if (Instruction *Res = foldICmpBinOp(I))
5031     return Res;
5032 
5033   if (Instruction *Res = foldICmpWithMinMax(I))
5034     return Res;
5035 
5036   {
5037     Value *A, *B;
5038     // Transform (A & ~B) == 0 --> (A & B) != 0
5039     // and       (A & ~B) != 0 --> (A & B) == 0
5040     // if A is a power of 2.
5041     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5042         match(Op1, m_Zero()) &&
5043         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5044       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5045                           Op1);
5046 
5047     // ~X < ~Y --> Y < X
5048     // ~X < C -->  X > ~C
5049     if (match(Op0, m_Not(m_Value(A)))) {
5050       if (match(Op1, m_Not(m_Value(B))))
5051         return new ICmpInst(I.getPredicate(), B, A);
5052 
5053       const APInt *C;
5054       if (match(Op1, m_APInt(C)))
5055         return new ICmpInst(I.getSwappedPredicate(), A,
5056                             ConstantInt::get(Op1->getType(), ~(*C)));
5057     }
5058 
5059     Instruction *AddI = nullptr;
5060     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5061                                      m_Instruction(AddI))) &&
5062         isa<IntegerType>(A->getType())) {
5063       Value *Result;
5064       Constant *Overflow;
5065       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
5066                                 Overflow)) {
5067         replaceInstUsesWith(*AddI, Result);
5068         return replaceInstUsesWith(I, Overflow);
5069       }
5070     }
5071 
5072     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5073     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5074       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5075         return R;
5076     }
5077     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5078       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5079         return R;
5080     }
5081   }
5082 
5083   if (Instruction *Res = foldICmpEquality(I))
5084     return Res;
5085 
5086   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5087   // an i1 which indicates whether or not we successfully did the swap.
5088   //
5089   // Replace comparisons between the old value and the expected value with the
5090   // indicator that 'cmpxchg' returns.
5091   //
5092   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5093   // spuriously fail.  In those cases, the old value may equal the expected
5094   // value but it is possible for the swap to not occur.
5095   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5096     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5097       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5098         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5099             !ACXI->isWeak())
5100           return ExtractValueInst::Create(ACXI, 1);
5101 
5102   {
5103     Value *X;
5104     const APInt *C;
5105     // icmp X+Cst, X
5106     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5107       return foldICmpAddOpConst(X, *C, I.getPredicate());
5108 
5109     // icmp X, X+Cst
5110     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5111       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5112   }
5113 
5114   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5115     return Res;
5116 
5117   if (I.getType()->isVectorTy())
5118     if (Instruction *Res = foldVectorCmp(I, Builder))
5119       return Res;
5120 
5121   return Changed ? &I : nullptr;
5122 }
5123 
5124 /// Fold fcmp ([us]itofp x, cst) if possible.
5125 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5126                                                 Constant *RHSC) {
5127   if (!isa<ConstantFP>(RHSC)) return nullptr;
5128   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5129 
5130   // Get the width of the mantissa.  We don't want to hack on conversions that
5131   // might lose information from the integer, e.g. "i64 -> float"
5132   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5133   if (MantissaWidth == -1) return nullptr;  // Unknown.
5134 
5135   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5136 
5137   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5138 
5139   if (I.isEquality()) {
5140     FCmpInst::Predicate P = I.getPredicate();
5141     bool IsExact = false;
5142     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5143     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5144 
5145     // If the floating point constant isn't an integer value, we know if we will
5146     // ever compare equal / not equal to it.
5147     if (!IsExact) {
5148       // TODO: Can never be -0.0 and other non-representable values
5149       APFloat RHSRoundInt(RHS);
5150       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5151       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5152         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5153           return replaceInstUsesWith(I, Builder.getFalse());
5154 
5155         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5156         return replaceInstUsesWith(I, Builder.getTrue());
5157       }
5158     }
5159 
5160     // TODO: If the constant is exactly representable, is it always OK to do
5161     // equality compares as integer?
5162   }
5163 
5164   // Check to see that the input is converted from an integer type that is small
5165   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5166   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5167   unsigned InputSize = IntTy->getScalarSizeInBits();
5168 
5169   // Following test does NOT adjust InputSize downwards for signed inputs,
5170   // because the most negative value still requires all the mantissa bits
5171   // to distinguish it from one less than that value.
5172   if ((int)InputSize > MantissaWidth) {
5173     // Conversion would lose accuracy. Check if loss can impact comparison.
5174     int Exp = ilogb(RHS);
5175     if (Exp == APFloat::IEK_Inf) {
5176       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5177       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5178         // Conversion could create infinity.
5179         return nullptr;
5180     } else {
5181       // Note that if RHS is zero or NaN, then Exp is negative
5182       // and first condition is trivially false.
5183       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5184         // Conversion could affect comparison.
5185         return nullptr;
5186     }
5187   }
5188 
5189   // Otherwise, we can potentially simplify the comparison.  We know that it
5190   // will always come through as an integer value and we know the constant is
5191   // not a NAN (it would have been previously simplified).
5192   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5193 
5194   ICmpInst::Predicate Pred;
5195   switch (I.getPredicate()) {
5196   default: llvm_unreachable("Unexpected predicate!");
5197   case FCmpInst::FCMP_UEQ:
5198   case FCmpInst::FCMP_OEQ:
5199     Pred = ICmpInst::ICMP_EQ;
5200     break;
5201   case FCmpInst::FCMP_UGT:
5202   case FCmpInst::FCMP_OGT:
5203     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5204     break;
5205   case FCmpInst::FCMP_UGE:
5206   case FCmpInst::FCMP_OGE:
5207     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5208     break;
5209   case FCmpInst::FCMP_ULT:
5210   case FCmpInst::FCMP_OLT:
5211     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5212     break;
5213   case FCmpInst::FCMP_ULE:
5214   case FCmpInst::FCMP_OLE:
5215     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5216     break;
5217   case FCmpInst::FCMP_UNE:
5218   case FCmpInst::FCMP_ONE:
5219     Pred = ICmpInst::ICMP_NE;
5220     break;
5221   case FCmpInst::FCMP_ORD:
5222     return replaceInstUsesWith(I, Builder.getTrue());
5223   case FCmpInst::FCMP_UNO:
5224     return replaceInstUsesWith(I, Builder.getFalse());
5225   }
5226 
5227   // Now we know that the APFloat is a normal number, zero or inf.
5228 
5229   // See if the FP constant is too large for the integer.  For example,
5230   // comparing an i8 to 300.0.
5231   unsigned IntWidth = IntTy->getScalarSizeInBits();
5232 
5233   if (!LHSUnsigned) {
5234     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5235     // and large values.
5236     APFloat SMax(RHS.getSemantics());
5237     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5238                           APFloat::rmNearestTiesToEven);
5239     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5240       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5241           Pred == ICmpInst::ICMP_SLE)
5242         return replaceInstUsesWith(I, Builder.getTrue());
5243       return replaceInstUsesWith(I, Builder.getFalse());
5244     }
5245   } else {
5246     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5247     // +INF and large values.
5248     APFloat UMax(RHS.getSemantics());
5249     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5250                           APFloat::rmNearestTiesToEven);
5251     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5252       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5253           Pred == ICmpInst::ICMP_ULE)
5254         return replaceInstUsesWith(I, Builder.getTrue());
5255       return replaceInstUsesWith(I, Builder.getFalse());
5256     }
5257   }
5258 
5259   if (!LHSUnsigned) {
5260     // See if the RHS value is < SignedMin.
5261     APFloat SMin(RHS.getSemantics());
5262     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5263                           APFloat::rmNearestTiesToEven);
5264     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5265       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5266           Pred == ICmpInst::ICMP_SGE)
5267         return replaceInstUsesWith(I, Builder.getTrue());
5268       return replaceInstUsesWith(I, Builder.getFalse());
5269     }
5270   } else {
5271     // See if the RHS value is < UnsignedMin.
5272     APFloat SMin(RHS.getSemantics());
5273     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5274                           APFloat::rmNearestTiesToEven);
5275     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5276       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5277           Pred == ICmpInst::ICMP_UGE)
5278         return replaceInstUsesWith(I, Builder.getTrue());
5279       return replaceInstUsesWith(I, Builder.getFalse());
5280     }
5281   }
5282 
5283   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5284   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5285   // casting the FP value to the integer value and back, checking for equality.
5286   // Don't do this for zero, because -0.0 is not fractional.
5287   Constant *RHSInt = LHSUnsigned
5288     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5289     : ConstantExpr::getFPToSI(RHSC, IntTy);
5290   if (!RHS.isZero()) {
5291     bool Equal = LHSUnsigned
5292       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5293       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5294     if (!Equal) {
5295       // If we had a comparison against a fractional value, we have to adjust
5296       // the compare predicate and sometimes the value.  RHSC is rounded towards
5297       // zero at this point.
5298       switch (Pred) {
5299       default: llvm_unreachable("Unexpected integer comparison!");
5300       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5301         return replaceInstUsesWith(I, Builder.getTrue());
5302       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5303         return replaceInstUsesWith(I, Builder.getFalse());
5304       case ICmpInst::ICMP_ULE:
5305         // (float)int <= 4.4   --> int <= 4
5306         // (float)int <= -4.4  --> false
5307         if (RHS.isNegative())
5308           return replaceInstUsesWith(I, Builder.getFalse());
5309         break;
5310       case ICmpInst::ICMP_SLE:
5311         // (float)int <= 4.4   --> int <= 4
5312         // (float)int <= -4.4  --> int < -4
5313         if (RHS.isNegative())
5314           Pred = ICmpInst::ICMP_SLT;
5315         break;
5316       case ICmpInst::ICMP_ULT:
5317         // (float)int < -4.4   --> false
5318         // (float)int < 4.4    --> int <= 4
5319         if (RHS.isNegative())
5320           return replaceInstUsesWith(I, Builder.getFalse());
5321         Pred = ICmpInst::ICMP_ULE;
5322         break;
5323       case ICmpInst::ICMP_SLT:
5324         // (float)int < -4.4   --> int < -4
5325         // (float)int < 4.4    --> int <= 4
5326         if (!RHS.isNegative())
5327           Pred = ICmpInst::ICMP_SLE;
5328         break;
5329       case ICmpInst::ICMP_UGT:
5330         // (float)int > 4.4    --> int > 4
5331         // (float)int > -4.4   --> true
5332         if (RHS.isNegative())
5333           return replaceInstUsesWith(I, Builder.getTrue());
5334         break;
5335       case ICmpInst::ICMP_SGT:
5336         // (float)int > 4.4    --> int > 4
5337         // (float)int > -4.4   --> int >= -4
5338         if (RHS.isNegative())
5339           Pred = ICmpInst::ICMP_SGE;
5340         break;
5341       case ICmpInst::ICMP_UGE:
5342         // (float)int >= -4.4   --> true
5343         // (float)int >= 4.4    --> int > 4
5344         if (RHS.isNegative())
5345           return replaceInstUsesWith(I, Builder.getTrue());
5346         Pred = ICmpInst::ICMP_UGT;
5347         break;
5348       case ICmpInst::ICMP_SGE:
5349         // (float)int >= -4.4   --> int >= -4
5350         // (float)int >= 4.4    --> int > 4
5351         if (!RHS.isNegative())
5352           Pred = ICmpInst::ICMP_SGT;
5353         break;
5354       }
5355     }
5356   }
5357 
5358   // Lower this FP comparison into an appropriate integer version of the
5359   // comparison.
5360   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5361 }
5362 
5363 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5364 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5365                                               Constant *RHSC) {
5366   // When C is not 0.0 and infinities are not allowed:
5367   // (C / X) < 0.0 is a sign-bit test of X
5368   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5369   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5370   //
5371   // Proof:
5372   // Multiply (C / X) < 0.0 by X * X / C.
5373   // - X is non zero, if it is the flag 'ninf' is violated.
5374   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5375   //   the predicate. C is also non zero by definition.
5376   //
5377   // Thus X * X / C is non zero and the transformation is valid. [qed]
5378 
5379   FCmpInst::Predicate Pred = I.getPredicate();
5380 
5381   // Check that predicates are valid.
5382   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5383       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5384     return nullptr;
5385 
5386   // Check that RHS operand is zero.
5387   if (!match(RHSC, m_AnyZeroFP()))
5388     return nullptr;
5389 
5390   // Check fastmath flags ('ninf').
5391   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5392     return nullptr;
5393 
5394   // Check the properties of the dividend. It must not be zero to avoid a
5395   // division by zero (see Proof).
5396   const APFloat *C;
5397   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5398     return nullptr;
5399 
5400   if (C->isZero())
5401     return nullptr;
5402 
5403   // Get swapped predicate if necessary.
5404   if (C->isNegative())
5405     Pred = I.getSwappedPredicate();
5406 
5407   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5408 }
5409 
5410 /// Optimize fabs(X) compared with zero.
5411 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5412   Value *X;
5413   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5414       !match(I.getOperand(1), m_PosZeroFP()))
5415     return nullptr;
5416 
5417   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5418     I->setPredicate(P);
5419     I->setOperand(0, X);
5420     return I;
5421   };
5422 
5423   switch (I.getPredicate()) {
5424   case FCmpInst::FCMP_UGE:
5425   case FCmpInst::FCMP_OLT:
5426     // fabs(X) >= 0.0 --> true
5427     // fabs(X) <  0.0 --> false
5428     llvm_unreachable("fcmp should have simplified");
5429 
5430   case FCmpInst::FCMP_OGT:
5431     // fabs(X) > 0.0 --> X != 0.0
5432     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5433 
5434   case FCmpInst::FCMP_UGT:
5435     // fabs(X) u> 0.0 --> X u!= 0.0
5436     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5437 
5438   case FCmpInst::FCMP_OLE:
5439     // fabs(X) <= 0.0 --> X == 0.0
5440     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5441 
5442   case FCmpInst::FCMP_ULE:
5443     // fabs(X) u<= 0.0 --> X u== 0.0
5444     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5445 
5446   case FCmpInst::FCMP_OGE:
5447     // fabs(X) >= 0.0 --> !isnan(X)
5448     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5449     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5450 
5451   case FCmpInst::FCMP_ULT:
5452     // fabs(X) u< 0.0 --> isnan(X)
5453     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5454     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5455 
5456   case FCmpInst::FCMP_OEQ:
5457   case FCmpInst::FCMP_UEQ:
5458   case FCmpInst::FCMP_ONE:
5459   case FCmpInst::FCMP_UNE:
5460   case FCmpInst::FCMP_ORD:
5461   case FCmpInst::FCMP_UNO:
5462     // Look through the fabs() because it doesn't change anything but the sign.
5463     // fabs(X) == 0.0 --> X == 0.0,
5464     // fabs(X) != 0.0 --> X != 0.0
5465     // isnan(fabs(X)) --> isnan(X)
5466     // !isnan(fabs(X) --> !isnan(X)
5467     return replacePredAndOp0(&I, I.getPredicate(), X);
5468 
5469   default:
5470     return nullptr;
5471   }
5472 }
5473 
5474 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5475   bool Changed = false;
5476 
5477   /// Orders the operands of the compare so that they are listed from most
5478   /// complex to least complex.  This puts constants before unary operators,
5479   /// before binary operators.
5480   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5481     I.swapOperands();
5482     Changed = true;
5483   }
5484 
5485   const CmpInst::Predicate Pred = I.getPredicate();
5486   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5487   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5488                                   SQ.getWithInstruction(&I)))
5489     return replaceInstUsesWith(I, V);
5490 
5491   // Simplify 'fcmp pred X, X'
5492   if (Op0 == Op1) {
5493     switch (Pred) {
5494       default: break;
5495     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
5496     case FCmpInst::FCMP_ULT:    // True if unordered or less than
5497     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
5498     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
5499       // Canonicalize these to be 'fcmp uno %X, 0.0'.
5500       I.setPredicate(FCmpInst::FCMP_UNO);
5501       I.setOperand(1, Constant::getNullValue(Op0->getType()));
5502       return &I;
5503 
5504     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
5505     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
5506     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
5507     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
5508       // Canonicalize these to be 'fcmp ord %X, 0.0'.
5509       I.setPredicate(FCmpInst::FCMP_ORD);
5510       I.setOperand(1, Constant::getNullValue(Op0->getType()));
5511       return &I;
5512     }
5513   }
5514 
5515   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5516   // then canonicalize the operand to 0.0.
5517   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5518     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5519       I.setOperand(0, ConstantFP::getNullValue(Op0->getType()));
5520       return &I;
5521     }
5522     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5523       I.setOperand(1, ConstantFP::getNullValue(Op0->getType()));
5524       return &I;
5525     }
5526   }
5527 
5528   // Test if the FCmpInst instruction is used exclusively by a select as
5529   // part of a minimum or maximum operation. If so, refrain from doing
5530   // any other folding. This helps out other analyses which understand
5531   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5532   // and CodeGen. And in this case, at least one of the comparison
5533   // operands has at least one user besides the compare (the select),
5534   // which would often largely negate the benefit of folding anyway.
5535   if (I.hasOneUse())
5536     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5537       Value *A, *B;
5538       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5539       if (SPR.Flavor != SPF_UNKNOWN)
5540         return nullptr;
5541     }
5542 
5543   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5544   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5545   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5546     I.setOperand(1, ConstantFP::getNullValue(Op1->getType()));
5547     return &I;
5548   }
5549 
5550   // Handle fcmp with instruction LHS and constant RHS.
5551   Instruction *LHSI;
5552   Constant *RHSC;
5553   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
5554     switch (LHSI->getOpcode()) {
5555     case Instruction::PHI:
5556       // Only fold fcmp into the PHI if the phi and fcmp are in the same
5557       // block.  If in the same block, we're encouraging jump threading.  If
5558       // not, we are just pessimizing the code by making an i1 phi.
5559       if (LHSI->getParent() == I.getParent())
5560         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
5561           return NV;
5562       break;
5563     case Instruction::SIToFP:
5564     case Instruction::UIToFP:
5565       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
5566         return NV;
5567       break;
5568     case Instruction::FDiv:
5569       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
5570         return NV;
5571       break;
5572     case Instruction::Load:
5573       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
5574         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
5575           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
5576               !cast<LoadInst>(LHSI)->isVolatile())
5577             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
5578               return Res;
5579       break;
5580   }
5581   }
5582 
5583   if (Instruction *R = foldFabsWithFcmpZero(I))
5584     return R;
5585 
5586   Value *X, *Y;
5587   if (match(Op0, m_FNeg(m_Value(X)))) {
5588     // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5589     if (match(Op1, m_FNeg(m_Value(Y))))
5590       return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5591 
5592     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
5593     Constant *C;
5594     if (match(Op1, m_Constant(C))) {
5595       Constant *NegC = ConstantExpr::getFNeg(C);
5596       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
5597     }
5598   }
5599 
5600   if (match(Op0, m_FPExt(m_Value(X)))) {
5601     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
5602     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
5603       return new FCmpInst(Pred, X, Y, "", &I);
5604 
5605     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
5606     const APFloat *C;
5607     if (match(Op1, m_APFloat(C))) {
5608       const fltSemantics &FPSem =
5609           X->getType()->getScalarType()->getFltSemantics();
5610       bool Lossy;
5611       APFloat TruncC = *C;
5612       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
5613 
5614       // Avoid lossy conversions and denormals.
5615       // Zero is a special case that's OK to convert.
5616       APFloat Fabs = TruncC;
5617       Fabs.clearSign();
5618       if (!Lossy &&
5619           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
5620             APFloat::cmpLessThan) || Fabs.isZero())) {
5621         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
5622         return new FCmpInst(Pred, X, NewC, "", &I);
5623       }
5624     }
5625   }
5626 
5627   if (I.getType()->isVectorTy())
5628     if (Instruction *Res = foldVectorCmp(I, Builder))
5629       return Res;
5630 
5631   return Changed ? &I : nullptr;
5632 }
5633