1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty()) {
194       Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
195       if (!Elt)
196         return nullptr;
197     }
198 
199     // If the element is masked, handle it.
200     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
201 
202     // Find out if the comparison would be true or false for the i'th element.
203     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
204                                                   CompareRHS, DL, &TLI);
205     // If the result is undef for this element, ignore it.
206     if (isa<UndefValue>(C)) {
207       // Extend range state machines to cover this element in case there is an
208       // undef in the middle of the range.
209       if (TrueRangeEnd == (int)i-1)
210         TrueRangeEnd = i;
211       if (FalseRangeEnd == (int)i-1)
212         FalseRangeEnd = i;
213       continue;
214     }
215 
216     // If we can't compute the result for any of the elements, we have to give
217     // up evaluating the entire conditional.
218     if (!isa<ConstantInt>(C)) return nullptr;
219 
220     // Otherwise, we know if the comparison is true or false for this element,
221     // update our state machines.
222     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
223 
224     // State machine for single/double/range index comparison.
225     if (IsTrueForElt) {
226       // Update the TrueElement state machine.
227       if (FirstTrueElement == Undefined)
228         FirstTrueElement = TrueRangeEnd = i;  // First true element.
229       else {
230         // Update double-compare state machine.
231         if (SecondTrueElement == Undefined)
232           SecondTrueElement = i;
233         else
234           SecondTrueElement = Overdefined;
235 
236         // Update range state machine.
237         if (TrueRangeEnd == (int)i-1)
238           TrueRangeEnd = i;
239         else
240           TrueRangeEnd = Overdefined;
241       }
242     } else {
243       // Update the FalseElement state machine.
244       if (FirstFalseElement == Undefined)
245         FirstFalseElement = FalseRangeEnd = i; // First false element.
246       else {
247         // Update double-compare state machine.
248         if (SecondFalseElement == Undefined)
249           SecondFalseElement = i;
250         else
251           SecondFalseElement = Overdefined;
252 
253         // Update range state machine.
254         if (FalseRangeEnd == (int)i-1)
255           FalseRangeEnd = i;
256         else
257           FalseRangeEnd = Overdefined;
258       }
259     }
260 
261     // If this element is in range, update our magic bitvector.
262     if (i < 64 && IsTrueForElt)
263       MagicBitvector |= 1ULL << i;
264 
265     // If all of our states become overdefined, bail out early.  Since the
266     // predicate is expensive, only check it every 8 elements.  This is only
267     // really useful for really huge arrays.
268     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
269         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
270         FalseRangeEnd == Overdefined)
271       return nullptr;
272   }
273 
274   // Now that we've scanned the entire array, emit our new comparison(s).  We
275   // order the state machines in complexity of the generated code.
276   Value *Idx = GEP->getOperand(2);
277 
278   // If the index is larger than the pointer size of the target, truncate the
279   // index down like the GEP would do implicitly.  We don't have to do this for
280   // an inbounds GEP because the index can't be out of range.
281   if (!GEP->isInBounds()) {
282     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
283     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
284     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
285       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
286   }
287 
288   // If inbounds keyword is not present, Idx * ElementSize can overflow.
289   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
290   // Then, there are two possible values for Idx to match offset 0:
291   // 0x00..00, 0x80..00.
292   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
293   // comparison is false if Idx was 0x80..00.
294   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
295   unsigned ElementSize =
296       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
297   auto MaskIdx = [&](Value* Idx){
298     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
299       Value *Mask = ConstantInt::get(Idx->getType(), -1);
300       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
301       Idx = Builder.CreateAnd(Idx, Mask);
302     }
303     return Idx;
304   };
305 
306   // If the comparison is only true for one or two elements, emit direct
307   // comparisons.
308   if (SecondTrueElement != Overdefined) {
309     Idx = MaskIdx(Idx);
310     // None true -> false.
311     if (FirstTrueElement == Undefined)
312       return replaceInstUsesWith(ICI, Builder.getFalse());
313 
314     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
315 
316     // True for one element -> 'i == 47'.
317     if (SecondTrueElement == Undefined)
318       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
319 
320     // True for two elements -> 'i == 47 | i == 72'.
321     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
322     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
323     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
324     return BinaryOperator::CreateOr(C1, C2);
325   }
326 
327   // If the comparison is only false for one or two elements, emit direct
328   // comparisons.
329   if (SecondFalseElement != Overdefined) {
330     Idx = MaskIdx(Idx);
331     // None false -> true.
332     if (FirstFalseElement == Undefined)
333       return replaceInstUsesWith(ICI, Builder.getTrue());
334 
335     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
336 
337     // False for one element -> 'i != 47'.
338     if (SecondFalseElement == Undefined)
339       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
340 
341     // False for two elements -> 'i != 47 & i != 72'.
342     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
343     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
344     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
345     return BinaryOperator::CreateAnd(C1, C2);
346   }
347 
348   // If the comparison can be replaced with a range comparison for the elements
349   // where it is true, emit the range check.
350   if (TrueRangeEnd != Overdefined) {
351     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
352     Idx = MaskIdx(Idx);
353 
354     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
355     if (FirstTrueElement) {
356       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
357       Idx = Builder.CreateAdd(Idx, Offs);
358     }
359 
360     Value *End = ConstantInt::get(Idx->getType(),
361                                   TrueRangeEnd-FirstTrueElement+1);
362     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
363   }
364 
365   // False range check.
366   if (FalseRangeEnd != Overdefined) {
367     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
368     Idx = MaskIdx(Idx);
369     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
370     if (FirstFalseElement) {
371       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
372       Idx = Builder.CreateAdd(Idx, Offs);
373     }
374 
375     Value *End = ConstantInt::get(Idx->getType(),
376                                   FalseRangeEnd-FirstFalseElement);
377     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
378   }
379 
380   // If a magic bitvector captures the entire comparison state
381   // of this load, replace it with computation that does:
382   //   ((magic_cst >> i) & 1) != 0
383   {
384     Type *Ty = nullptr;
385 
386     // Look for an appropriate type:
387     // - The type of Idx if the magic fits
388     // - The smallest fitting legal type
389     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
390       Ty = Idx->getType();
391     else
392       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
393 
394     if (Ty) {
395       Idx = MaskIdx(Idx);
396       Value *V = Builder.CreateIntCast(Idx, Ty, false);
397       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
398       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
399       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
400     }
401   }
402 
403   return nullptr;
404 }
405 
406 /// Return a value that can be used to compare the *offset* implied by a GEP to
407 /// zero. For example, if we have &A[i], we want to return 'i' for
408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
409 /// are involved. The above expression would also be legal to codegen as
410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
411 /// This latter form is less amenable to optimization though, and we are allowed
412 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
413 ///
414 /// If we can't emit an optimized form for this expression, this returns null.
415 ///
416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
417                                           const DataLayout &DL) {
418   gep_type_iterator GTI = gep_type_begin(GEP);
419 
420   // Check to see if this gep only has a single variable index.  If so, and if
421   // any constant indices are a multiple of its scale, then we can compute this
422   // in terms of the scale of the variable index.  For example, if the GEP
423   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
424   // because the expression will cross zero at the same point.
425   unsigned i, e = GEP->getNumOperands();
426   int64_t Offset = 0;
427   for (i = 1; i != e; ++i, ++GTI) {
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
429       // Compute the aggregate offset of constant indices.
430       if (CI->isZero()) continue;
431 
432       // Handle a struct index, which adds its field offset to the pointer.
433       if (StructType *STy = GTI.getStructTypeOrNull()) {
434         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
435       } else {
436         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
437         Offset += Size*CI->getSExtValue();
438       }
439     } else {
440       // Found our variable index.
441       break;
442     }
443   }
444 
445   // If there are no variable indices, we must have a constant offset, just
446   // evaluate it the general way.
447   if (i == e) return nullptr;
448 
449   Value *VariableIdx = GEP->getOperand(i);
450   // Determine the scale factor of the variable element.  For example, this is
451   // 4 if the variable index is into an array of i32.
452   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
453 
454   // Verify that there are no other variable indices.  If so, emit the hard way.
455   for (++i, ++GTI; i != e; ++i, ++GTI) {
456     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
457     if (!CI) return nullptr;
458 
459     // Compute the aggregate offset of constant indices.
460     if (CI->isZero()) continue;
461 
462     // Handle a struct index, which adds its field offset to the pointer.
463     if (StructType *STy = GTI.getStructTypeOrNull()) {
464       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
465     } else {
466       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
467       Offset += Size*CI->getSExtValue();
468     }
469   }
470 
471   // Okay, we know we have a single variable index, which must be a
472   // pointer/array/vector index.  If there is no offset, life is simple, return
473   // the index.
474   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
475   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
476   if (Offset == 0) {
477     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
478     // we don't need to bother extending: the extension won't affect where the
479     // computation crosses zero.
480     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
481         IntPtrWidth) {
482       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
483     }
484     return VariableIdx;
485   }
486 
487   // Otherwise, there is an index.  The computation we will do will be modulo
488   // the pointer size.
489   Offset = SignExtend64(Offset, IntPtrWidth);
490   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
491 
492   // To do this transformation, any constant index must be a multiple of the
493   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
494   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
495   // multiple of the variable scale.
496   int64_t NewOffs = Offset / (int64_t)VariableScale;
497   if (Offset != NewOffs*(int64_t)VariableScale)
498     return nullptr;
499 
500   // Okay, we can do this evaluation.  Start by converting the index to intptr.
501   if (VariableIdx->getType() != IntPtrTy)
502     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
503                                             true /*Signed*/);
504   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
505   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
506 }
507 
508 /// Returns true if we can rewrite Start as a GEP with pointer Base
509 /// and some integer offset. The nodes that need to be re-written
510 /// for this transformation will be added to Explored.
511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
512                                   const DataLayout &DL,
513                                   SetVector<Value *> &Explored) {
514   SmallVector<Value *, 16> WorkList(1, Start);
515   Explored.insert(Base);
516 
517   // The following traversal gives us an order which can be used
518   // when doing the final transformation. Since in the final
519   // transformation we create the PHI replacement instructions first,
520   // we don't have to get them in any particular order.
521   //
522   // However, for other instructions we will have to traverse the
523   // operands of an instruction first, which means that we have to
524   // do a post-order traversal.
525   while (!WorkList.empty()) {
526     SetVector<PHINode *> PHIs;
527 
528     while (!WorkList.empty()) {
529       if (Explored.size() >= 100)
530         return false;
531 
532       Value *V = WorkList.back();
533 
534       if (Explored.contains(V)) {
535         WorkList.pop_back();
536         continue;
537       }
538 
539       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
540           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
541         // We've found some value that we can't explore which is different from
542         // the base. Therefore we can't do this transformation.
543         return false;
544 
545       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
546         auto *CI = cast<CastInst>(V);
547         if (!CI->isNoopCast(DL))
548           return false;
549 
550         if (!Explored.contains(CI->getOperand(0)))
551           WorkList.push_back(CI->getOperand(0));
552       }
553 
554       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
555         // We're limiting the GEP to having one index. This will preserve
556         // the original pointer type. We could handle more cases in the
557         // future.
558         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
559             GEP->getSourceElementType() != ElemTy)
560           return false;
561 
562         if (!Explored.contains(GEP->getOperand(0)))
563           WorkList.push_back(GEP->getOperand(0));
564       }
565 
566       if (WorkList.back() == V) {
567         WorkList.pop_back();
568         // We've finished visiting this node, mark it as such.
569         Explored.insert(V);
570       }
571 
572       if (auto *PN = dyn_cast<PHINode>(V)) {
573         // We cannot transform PHIs on unsplittable basic blocks.
574         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
575           return false;
576         Explored.insert(PN);
577         PHIs.insert(PN);
578       }
579     }
580 
581     // Explore the PHI nodes further.
582     for (auto *PN : PHIs)
583       for (Value *Op : PN->incoming_values())
584         if (!Explored.contains(Op))
585           WorkList.push_back(Op);
586   }
587 
588   // Make sure that we can do this. Since we can't insert GEPs in a basic
589   // block before a PHI node, we can't easily do this transformation if
590   // we have PHI node users of transformed instructions.
591   for (Value *Val : Explored) {
592     for (Value *Use : Val->uses()) {
593 
594       auto *PHI = dyn_cast<PHINode>(Use);
595       auto *Inst = dyn_cast<Instruction>(Val);
596 
597       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
598           !Explored.contains(PHI))
599         continue;
600 
601       if (PHI->getParent() == Inst->getParent())
602         return false;
603     }
604   }
605   return true;
606 }
607 
608 // Sets the appropriate insert point on Builder where we can add
609 // a replacement Instruction for V (if that is possible).
610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
611                               bool Before = true) {
612   if (auto *PHI = dyn_cast<PHINode>(V)) {
613     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
614     return;
615   }
616   if (auto *I = dyn_cast<Instruction>(V)) {
617     if (!Before)
618       I = &*std::next(I->getIterator());
619     Builder.SetInsertPoint(I);
620     return;
621   }
622   if (auto *A = dyn_cast<Argument>(V)) {
623     // Set the insertion point in the entry block.
624     BasicBlock &Entry = A->getParent()->getEntryBlock();
625     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
626     return;
627   }
628   // Otherwise, this is a constant and we don't need to set a new
629   // insertion point.
630   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
631 }
632 
633 /// Returns a re-written value of Start as an indexed GEP using Base as a
634 /// pointer.
635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
636                                  const DataLayout &DL,
637                                  SetVector<Value *> &Explored) {
638   // Perform all the substitutions. This is a bit tricky because we can
639   // have cycles in our use-def chains.
640   // 1. Create the PHI nodes without any incoming values.
641   // 2. Create all the other values.
642   // 3. Add the edges for the PHI nodes.
643   // 4. Emit GEPs to get the original pointers.
644   // 5. Remove the original instructions.
645   Type *IndexType = IntegerType::get(
646       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
647 
648   DenseMap<Value *, Value *> NewInsts;
649   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
650 
651   // Create the new PHI nodes, without adding any incoming values.
652   for (Value *Val : Explored) {
653     if (Val == Base)
654       continue;
655     // Create empty phi nodes. This avoids cyclic dependencies when creating
656     // the remaining instructions.
657     if (auto *PHI = dyn_cast<PHINode>(Val))
658       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
659                                       PHI->getName() + ".idx", PHI);
660   }
661   IRBuilder<> Builder(Base->getContext());
662 
663   // Create all the other instructions.
664   for (Value *Val : Explored) {
665 
666     if (NewInsts.find(Val) != NewInsts.end())
667       continue;
668 
669     if (auto *CI = dyn_cast<CastInst>(Val)) {
670       // Don't get rid of the intermediate variable here; the store can grow
671       // the map which will invalidate the reference to the input value.
672       Value *V = NewInsts[CI->getOperand(0)];
673       NewInsts[CI] = V;
674       continue;
675     }
676     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
677       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
678                                                   : GEP->getOperand(1);
679       setInsertionPoint(Builder, GEP);
680       // Indices might need to be sign extended. GEPs will magically do
681       // this, but we need to do it ourselves here.
682       if (Index->getType()->getScalarSizeInBits() !=
683           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
684         Index = Builder.CreateSExtOrTrunc(
685             Index, NewInsts[GEP->getOperand(0)]->getType(),
686             GEP->getOperand(0)->getName() + ".sext");
687       }
688 
689       auto *Op = NewInsts[GEP->getOperand(0)];
690       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
691         NewInsts[GEP] = Index;
692       else
693         NewInsts[GEP] = Builder.CreateNSWAdd(
694             Op, Index, GEP->getOperand(0)->getName() + ".add");
695       continue;
696     }
697     if (isa<PHINode>(Val))
698       continue;
699 
700     llvm_unreachable("Unexpected instruction type");
701   }
702 
703   // Add the incoming values to the PHI nodes.
704   for (Value *Val : Explored) {
705     if (Val == Base)
706       continue;
707     // All the instructions have been created, we can now add edges to the
708     // phi nodes.
709     if (auto *PHI = dyn_cast<PHINode>(Val)) {
710       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
711       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
712         Value *NewIncoming = PHI->getIncomingValue(I);
713 
714         if (NewInsts.find(NewIncoming) != NewInsts.end())
715           NewIncoming = NewInsts[NewIncoming];
716 
717         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
718       }
719     }
720   }
721 
722   PointerType *PtrTy =
723       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
724   for (Value *Val : Explored) {
725     if (Val == Base)
726       continue;
727 
728     // Depending on the type, for external users we have to emit
729     // a GEP or a GEP + ptrtoint.
730     setInsertionPoint(Builder, Val, false);
731 
732     // Cast base to the expected type.
733     Value *NewVal = Builder.CreateBitOrPointerCast(
734         Base, PtrTy, Start->getName() + "to.ptr");
735     NewVal = Builder.CreateInBoundsGEP(
736         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
737     NewVal = Builder.CreateBitOrPointerCast(
738         NewVal, Val->getType(), Val->getName() + ".conv");
739     Val->replaceAllUsesWith(NewVal);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getSourceElementType() == ElemTy) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   Type *ElemTy = GEPLHS->getSourceElementType();
801   Value *PtrBase, *Index;
802   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
803 
804   // The set of nodes that will take part in this transformation.
805   SetVector<Value *> Nodes;
806 
807   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
808     return nullptr;
809 
810   // We know we can re-write this as
811   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
812   // Since we've only looked through inbouds GEPs we know that we
813   // can't have overflow on either side. We can therefore re-write
814   // this as:
815   //   OFFSET1 cmp OFFSET2
816   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
817 
818   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
819   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
820   // offset. Since Index is the offset of LHS to the base pointer, we will now
821   // compare the offsets instead of comparing the pointers.
822   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
823 }
824 
825 /// Fold comparisons between a GEP instruction and something else. At this point
826 /// we know that the GEP is on the LHS of the comparison.
827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
828                                            ICmpInst::Predicate Cond,
829                                            Instruction &I) {
830   // Don't transform signed compares of GEPs into index compares. Even if the
831   // GEP is inbounds, the final add of the base pointer can have signed overflow
832   // and would change the result of the icmp.
833   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
834   // the maximum signed value for the pointer type.
835   if (ICmpInst::isSigned(Cond))
836     return nullptr;
837 
838   // Look through bitcasts and addrspacecasts. We do not however want to remove
839   // 0 GEPs.
840   if (!isa<GetElementPtrInst>(RHS))
841     RHS = RHS->stripPointerCasts();
842 
843   Value *PtrBase = GEPLHS->getOperand(0);
844   // FIXME: Support vector pointer GEPs.
845   if (PtrBase == RHS && GEPLHS->isInBounds() &&
846       !GEPLHS->getType()->isVectorTy()) {
847     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
848     // This transformation (ignoring the base and scales) is valid because we
849     // know pointers can't overflow since the gep is inbounds.  See if we can
850     // output an optimized form.
851     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
852 
853     // If not, synthesize the offset the hard way.
854     if (!Offset)
855       Offset = EmitGEPOffset(GEPLHS);
856     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
857                         Constant::getNullValue(Offset->getType()));
858   }
859 
860   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
861       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
862       !NullPointerIsDefined(I.getFunction(),
863                             RHS->getType()->getPointerAddressSpace())) {
864     // For most address spaces, an allocation can't be placed at null, but null
865     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
866     // the only valid inbounds address derived from null, is null itself.
867     // Thus, we have four cases to consider:
868     // 1) Base == nullptr, Offset == 0 -> inbounds, null
869     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
870     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
871     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
872     //
873     // (Note if we're indexing a type of size 0, that simply collapses into one
874     //  of the buckets above.)
875     //
876     // In general, we're allowed to make values less poison (i.e. remove
877     //   sources of full UB), so in this case, we just select between the two
878     //   non-poison cases (1 and 4 above).
879     //
880     // For vectors, we apply the same reasoning on a per-lane basis.
881     auto *Base = GEPLHS->getPointerOperand();
882     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
883       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
884       Base = Builder.CreateVectorSplat(EC, Base);
885     }
886     return new ICmpInst(Cond, Base,
887                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
888                             cast<Constant>(RHS), Base->getType()));
889   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
890     // If the base pointers are different, but the indices are the same, just
891     // compare the base pointer.
892     if (PtrBase != GEPRHS->getOperand(0)) {
893       bool IndicesTheSame =
894           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
895           GEPLHS->getPointerOperand()->getType() ==
896               GEPRHS->getPointerOperand()->getType() &&
897           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
898       if (IndicesTheSame)
899         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
900           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
901             IndicesTheSame = false;
902             break;
903           }
904 
905       // If all indices are the same, just compare the base pointers.
906       Type *BaseType = GEPLHS->getOperand(0)->getType();
907       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
908         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
909 
910       // If we're comparing GEPs with two base pointers that only differ in type
911       // and both GEPs have only constant indices or just one use, then fold
912       // the compare with the adjusted indices.
913       // FIXME: Support vector of pointers.
914       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
915           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
916           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
917           PtrBase->stripPointerCasts() ==
918               GEPRHS->getOperand(0)->stripPointerCasts() &&
919           !GEPLHS->getType()->isVectorTy()) {
920         Value *LOffset = EmitGEPOffset(GEPLHS);
921         Value *ROffset = EmitGEPOffset(GEPRHS);
922 
923         // If we looked through an addrspacecast between different sized address
924         // spaces, the LHS and RHS pointers are different sized
925         // integers. Truncate to the smaller one.
926         Type *LHSIndexTy = LOffset->getType();
927         Type *RHSIndexTy = ROffset->getType();
928         if (LHSIndexTy != RHSIndexTy) {
929           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
930               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
931             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
932           } else
933             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
934         }
935 
936         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
937                                         LOffset, ROffset);
938         return replaceInstUsesWith(I, Cmp);
939       }
940 
941       // Otherwise, the base pointers are different and the indices are
942       // different. Try convert this to an indexed compare by looking through
943       // PHIs/casts.
944       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
945     }
946 
947     // If one of the GEPs has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
951                          ICmpInst::getSwappedPredicate(Cond), I);
952 
953     // If the other GEP has all zero indices, recurse.
954     // FIXME: Handle vector of pointers.
955     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
956       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
957 
958     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
959     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
960         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca) {
1012   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1013 
1014   // It would be tempting to fold away comparisons between allocas and any
1015   // pointer not based on that alloca (e.g. an argument). However, even
1016   // though such pointers cannot alias, they can still compare equal.
1017   //
1018   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1019   // doesn't escape we can argue that it's impossible to guess its value, and we
1020   // can therefore act as if any such guesses are wrong.
1021   //
1022   // The code below checks that the alloca doesn't escape, and that it's only
1023   // used in a comparison once (the current instruction). The
1024   // single-comparison-use condition ensures that we're trivially folding all
1025   // comparisons against the alloca consistently, and avoids the risk of
1026   // erroneously folding a comparison of the pointer with itself.
1027 
1028   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1029 
1030   SmallVector<const Use *, 32> Worklist;
1031   for (const Use &U : Alloca->uses()) {
1032     if (Worklist.size() >= MaxIter)
1033       return nullptr;
1034     Worklist.push_back(&U);
1035   }
1036 
1037   unsigned NumCmps = 0;
1038   while (!Worklist.empty()) {
1039     assert(Worklist.size() <= MaxIter);
1040     const Use *U = Worklist.pop_back_val();
1041     const Value *V = U->getUser();
1042     --MaxIter;
1043 
1044     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1045         isa<SelectInst>(V)) {
1046       // Track the uses.
1047     } else if (isa<LoadInst>(V)) {
1048       // Loading from the pointer doesn't escape it.
1049       continue;
1050     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1051       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1052       if (SI->getValueOperand() == U->get())
1053         return nullptr;
1054       continue;
1055     } else if (isa<ICmpInst>(V)) {
1056       if (NumCmps++)
1057         return nullptr; // Found more than one cmp.
1058       continue;
1059     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1060       switch (Intrin->getIntrinsicID()) {
1061         // These intrinsics don't escape or compare the pointer. Memset is safe
1062         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1063         // we don't allow stores, so src cannot point to V.
1064         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1065         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1066           continue;
1067         default:
1068           return nullptr;
1069       }
1070     } else {
1071       return nullptr;
1072     }
1073     for (const Use &U : V->uses()) {
1074       if (Worklist.size() >= MaxIter)
1075         return nullptr;
1076       Worklist.push_back(&U);
1077     }
1078   }
1079 
1080   auto *Res = ConstantInt::get(ICI.getType(),
1081                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1082   return replaceInstUsesWith(ICI, Res);
1083 }
1084 
1085 /// Fold "icmp pred (X+C), X".
1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1087                                                   ICmpInst::Predicate Pred) {
1088   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1089   // so the values can never be equal.  Similarly for all other "or equals"
1090   // operators.
1091   assert(!!C && "C should not be zero!");
1092 
1093   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1094   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1095   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1096   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1097     Constant *R = ConstantInt::get(X->getType(),
1098                                    APInt::getMaxValue(C.getBitWidth()) - C);
1099     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1100   }
1101 
1102   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1103   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1104   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1105   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1106     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1107                         ConstantInt::get(X->getType(), -C));
1108 
1109   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1110 
1111   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1112   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1113   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1114   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1115   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1116   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1117   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1118     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1119                         ConstantInt::get(X->getType(), SMax - C));
1120 
1121   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1122   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1123   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1124   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1125   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1126   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1127 
1128   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1129   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1130                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1131 }
1132 
1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1134 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1137                                                      const APInt &AP1,
1138                                                      const APInt &AP2) {
1139   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1140 
1141   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1142     if (I.getPredicate() == I.ICMP_NE)
1143       Pred = CmpInst::getInversePredicate(Pred);
1144     return new ICmpInst(Pred, LHS, RHS);
1145   };
1146 
1147   // Don't bother doing any work for cases which InstSimplify handles.
1148   if (AP2.isZero())
1149     return nullptr;
1150 
1151   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1152   if (IsAShr) {
1153     if (AP2.isAllOnes())
1154       return nullptr;
1155     if (AP2.isNegative() != AP1.isNegative())
1156       return nullptr;
1157     if (AP2.sgt(AP1))
1158       return nullptr;
1159   }
1160 
1161   if (!AP1)
1162     // 'A' must be large enough to shift out the highest set bit.
1163     return getICmp(I.ICMP_UGT, A,
1164                    ConstantInt::get(A->getType(), AP2.logBase2()));
1165 
1166   if (AP1 == AP2)
1167     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1168 
1169   int Shift;
1170   if (IsAShr && AP1.isNegative())
1171     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1172   else
1173     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1174 
1175   if (Shift > 0) {
1176     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1177       // There are multiple solutions if we are comparing against -1 and the LHS
1178       // of the ashr is not a power of two.
1179       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1180         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     } else if (AP1 == AP2.lshr(Shift)) {
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     }
1185   }
1186 
1187   // Shifting const2 will never be equal to const1.
1188   // FIXME: This should always be handled by InstSimplify?
1189   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1190   return replaceInstUsesWith(I, TorF);
1191 }
1192 
1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1196                                                      const APInt &AP1,
1197                                                      const APInt &AP2) {
1198   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1199 
1200   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1201     if (I.getPredicate() == I.ICMP_NE)
1202       Pred = CmpInst::getInversePredicate(Pred);
1203     return new ICmpInst(Pred, LHS, RHS);
1204   };
1205 
1206   // Don't bother doing any work for cases which InstSimplify handles.
1207   if (AP2.isZero())
1208     return nullptr;
1209 
1210   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1211 
1212   if (!AP1 && AP2TrailingZeros != 0)
1213     return getICmp(
1214         I.ICMP_UGE, A,
1215         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1216 
1217   if (AP1 == AP2)
1218     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1219 
1220   // Get the distance between the lowest bits that are set.
1221   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1222 
1223   if (Shift > 0 && AP2.shl(Shift) == AP1)
1224     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225 
1226   // Shifting const2 will never be equal to const1.
1227   // FIXME: This should always be handled by InstSimplify?
1228   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1229   return replaceInstUsesWith(I, TorF);
1230 }
1231 
1232 /// The caller has matched a pattern of the form:
1233 ///   I = icmp ugt (add (add A, B), CI2), CI1
1234 /// If this is of the form:
1235 ///   sum = a + b
1236 ///   if (sum+128 >u 255)
1237 /// Then replace it with llvm.sadd.with.overflow.i8.
1238 ///
1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1240                                           ConstantInt *CI2, ConstantInt *CI1,
1241                                           InstCombinerImpl &IC) {
1242   // The transformation we're trying to do here is to transform this into an
1243   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1244   // with a narrower add, and discard the add-with-constant that is part of the
1245   // range check (if we can't eliminate it, this isn't profitable).
1246 
1247   // In order to eliminate the add-with-constant, the compare can be its only
1248   // use.
1249   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1250   if (!AddWithCst->hasOneUse())
1251     return nullptr;
1252 
1253   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1254   if (!CI2->getValue().isPowerOf2())
1255     return nullptr;
1256   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1257   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1258     return nullptr;
1259 
1260   // The width of the new add formed is 1 more than the bias.
1261   ++NewWidth;
1262 
1263   // Check to see that CI1 is an all-ones value with NewWidth bits.
1264   if (CI1->getBitWidth() == NewWidth ||
1265       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1266     return nullptr;
1267 
1268   // This is only really a signed overflow check if the inputs have been
1269   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1270   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1271   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1272       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1273     return nullptr;
1274 
1275   // In order to replace the original add with a narrower
1276   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1277   // and truncates that discard the high bits of the add.  Verify that this is
1278   // the case.
1279   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1280   for (User *U : OrigAdd->users()) {
1281     if (U == AddWithCst)
1282       continue;
1283 
1284     // Only accept truncates for now.  We would really like a nice recursive
1285     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1286     // chain to see which bits of a value are actually demanded.  If the
1287     // original add had another add which was then immediately truncated, we
1288     // could still do the transformation.
1289     TruncInst *TI = dyn_cast<TruncInst>(U);
1290     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1291       return nullptr;
1292   }
1293 
1294   // If the pattern matches, truncate the inputs to the narrower type and
1295   // use the sadd_with_overflow intrinsic to efficiently compute both the
1296   // result and the overflow bit.
1297   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1298   Function *F = Intrinsic::getDeclaration(
1299       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1300 
1301   InstCombiner::BuilderTy &Builder = IC.Builder;
1302 
1303   // Put the new code above the original add, in case there are any uses of the
1304   // add between the add and the compare.
1305   Builder.SetInsertPoint(OrigAdd);
1306 
1307   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1308   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1309   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1310   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1311   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1312 
1313   // The inner add was the result of the narrow add, zero extended to the
1314   // wider type.  Replace it with the result computed by the intrinsic.
1315   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1316   IC.eraseInstFromFunction(*OrigAdd);
1317 
1318   // The original icmp gets replaced with the overflow value.
1319   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1320 }
1321 
1322 /// If we have:
1323 ///   icmp eq/ne (urem/srem %x, %y), 0
1324 /// iff %y is a power-of-two, we can replace this with a bit test:
1325 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1327   // This fold is only valid for equality predicates.
1328   if (!I.isEquality())
1329     return nullptr;
1330   ICmpInst::Predicate Pred;
1331   Value *X, *Y, *Zero;
1332   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1333                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1334     return nullptr;
1335   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1336     return nullptr;
1337   // This may increase instruction count, we don't enforce that Y is a constant.
1338   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1339   Value *Masked = Builder.CreateAnd(X, Mask);
1340   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1341 }
1342 
1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1344 /// by one-less-than-bitwidth into a sign test on the original value.
1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1346   Instruction *Val;
1347   ICmpInst::Predicate Pred;
1348   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1349     return nullptr;
1350 
1351   Value *X;
1352   Type *XTy;
1353 
1354   Constant *C;
1355   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1356     XTy = X->getType();
1357     unsigned XBitWidth = XTy->getScalarSizeInBits();
1358     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1359                                      APInt(XBitWidth, XBitWidth - 1))))
1360       return nullptr;
1361   } else if (isa<BinaryOperator>(Val) &&
1362              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1363                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1364                   /*AnalyzeForSignBitExtraction=*/true))) {
1365     XTy = X->getType();
1366   } else
1367     return nullptr;
1368 
1369   return ICmpInst::Create(Instruction::ICmp,
1370                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1371                                                     : ICmpInst::ICMP_SLT,
1372                           X, ConstantInt::getNullValue(XTy));
1373 }
1374 
1375 // Handle  icmp pred X, 0
1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1377   CmpInst::Predicate Pred = Cmp.getPredicate();
1378   if (!match(Cmp.getOperand(1), m_Zero()))
1379     return nullptr;
1380 
1381   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1382   if (Pred == ICmpInst::ICMP_SGT) {
1383     Value *A, *B;
1384     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1385       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1386         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1387       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1388         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1389     }
1390   }
1391 
1392   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1393     return New;
1394 
1395   // Given:
1396   //   icmp eq/ne (urem %x, %y), 0
1397   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1398   //   icmp eq/ne %x, 0
1399   Value *X, *Y;
1400   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1401       ICmpInst::isEquality(Pred)) {
1402     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1403     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1404     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1405       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 /// Fold icmp Pred X, C.
1412 /// TODO: This code structure does not make sense. The saturating add fold
1413 /// should be moved to some other helper and extended as noted below (it is also
1414 /// possible that code has been made unnecessary - do we canonicalize IR to
1415 /// overflow/saturating intrinsics or not?).
1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1417   // Match the following pattern, which is a common idiom when writing
1418   // overflow-safe integer arithmetic functions. The source performs an addition
1419   // in wider type and explicitly checks for overflow using comparisons against
1420   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1421   //
1422   // TODO: This could probably be generalized to handle other overflow-safe
1423   // operations if we worked out the formulas to compute the appropriate magic
1424   // constants.
1425   //
1426   // sum = a + b
1427   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1428   CmpInst::Predicate Pred = Cmp.getPredicate();
1429   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1430   Value *A, *B;
1431   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1432   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1433       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1434     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1435       return Res;
1436 
1437   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1438   Constant *C = dyn_cast<Constant>(Op1);
1439   if (!C)
1440     return nullptr;
1441 
1442   if (auto *Phi = dyn_cast<PHINode>(Op0))
1443     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1444       Type *Ty = Cmp.getType();
1445       Builder.SetInsertPoint(Phi);
1446       PHINode *NewPhi =
1447           Builder.CreatePHI(Ty, Phi->getNumOperands());
1448       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1449         auto *Input =
1450             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1451         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1452         NewPhi->addIncoming(BoolInput, Predecessor);
1453       }
1454       NewPhi->takeName(&Cmp);
1455       return replaceInstUsesWith(Cmp, NewPhi);
1456     }
1457 
1458   return nullptr;
1459 }
1460 
1461 /// Canonicalize icmp instructions based on dominating conditions.
1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1463   // This is a cheap/incomplete check for dominance - just match a single
1464   // predecessor with a conditional branch.
1465   BasicBlock *CmpBB = Cmp.getParent();
1466   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1467   if (!DomBB)
1468     return nullptr;
1469 
1470   Value *DomCond;
1471   BasicBlock *TrueBB, *FalseBB;
1472   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1473     return nullptr;
1474 
1475   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1476          "Predecessor block does not point to successor?");
1477 
1478   // The branch should get simplified. Don't bother simplifying this condition.
1479   if (TrueBB == FalseBB)
1480     return nullptr;
1481 
1482   // Try to simplify this compare to T/F based on the dominating condition.
1483   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1484   if (Imp)
1485     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1486 
1487   CmpInst::Predicate Pred = Cmp.getPredicate();
1488   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1489   ICmpInst::Predicate DomPred;
1490   const APInt *C, *DomC;
1491   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1492       match(Y, m_APInt(C))) {
1493     // We have 2 compares of a variable with constants. Calculate the constant
1494     // ranges of those compares to see if we can transform the 2nd compare:
1495     // DomBB:
1496     //   DomCond = icmp DomPred X, DomC
1497     //   br DomCond, CmpBB, FalseBB
1498     // CmpBB:
1499     //   Cmp = icmp Pred X, C
1500     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1501     ConstantRange DominatingCR =
1502         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1503                           : ConstantRange::makeExactICmpRegion(
1504                                 CmpInst::getInversePredicate(DomPred), *DomC);
1505     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1506     ConstantRange Difference = DominatingCR.difference(CR);
1507     if (Intersection.isEmptySet())
1508       return replaceInstUsesWith(Cmp, Builder.getFalse());
1509     if (Difference.isEmptySet())
1510       return replaceInstUsesWith(Cmp, Builder.getTrue());
1511 
1512     // Canonicalizing a sign bit comparison that gets used in a branch,
1513     // pessimizes codegen by generating branch on zero instruction instead
1514     // of a test and branch. So we avoid canonicalizing in such situations
1515     // because test and branch instruction has better branch displacement
1516     // than compare and branch instruction.
1517     bool UnusedBit;
1518     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1519     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1520       return nullptr;
1521 
1522     // Avoid an infinite loop with min/max canonicalization.
1523     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1524     if (Cmp.hasOneUse() &&
1525         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1526       return nullptr;
1527 
1528     if (const APInt *EqC = Intersection.getSingleElement())
1529       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1530     if (const APInt *NeC = Difference.getSingleElement())
1531       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Fold icmp (trunc X), C.
1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1539                                                      TruncInst *Trunc,
1540                                                      const APInt &C) {
1541   ICmpInst::Predicate Pred = Cmp.getPredicate();
1542   Value *X = Trunc->getOperand(0);
1543   if (C.isOne() && C.getBitWidth() > 1) {
1544     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1545     Value *V = nullptr;
1546     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1547       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1548                           ConstantInt::get(V->getType(), 1));
1549   }
1550 
1551   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1552            SrcBits = X->getType()->getScalarSizeInBits();
1553   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1554     // Canonicalize to a mask and wider compare if the wide type is suitable:
1555     // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1556     if (!X->getType()->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1557       Constant *Mask = ConstantInt::get(X->getType(),
1558                                         APInt::getLowBitsSet(SrcBits, DstBits));
1559       Value *And = Builder.CreateAnd(X, Mask);
1560       Constant *WideC = ConstantInt::get(X->getType(), C.zext(SrcBits));
1561       return new ICmpInst(Pred, And, WideC);
1562     }
1563 
1564     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1565     // of the high bits truncated out of x are known.
1566     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1567 
1568     // If all the high bits are known, we can do this xform.
1569     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1570       // Pull in the high bits from known-ones set.
1571       APInt NewRHS = C.zext(SrcBits);
1572       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1573       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1574     }
1575   }
1576 
1577   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1578   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1579   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1580   Value *ShOp;
1581   const APInt *ShAmtC;
1582   bool TrueIfSigned;
1583   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1584       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1585       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1586     return TrueIfSigned
1587                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1588                               ConstantInt::getNullValue(X->getType()))
1589                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1590                               ConstantInt::getAllOnesValue(X->getType()));
1591   }
1592 
1593   return nullptr;
1594 }
1595 
1596 /// Fold icmp (xor X, Y), C.
1597 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1598                                                    BinaryOperator *Xor,
1599                                                    const APInt &C) {
1600   Value *X = Xor->getOperand(0);
1601   Value *Y = Xor->getOperand(1);
1602   const APInt *XorC;
1603   if (!match(Y, m_APInt(XorC)))
1604     return nullptr;
1605 
1606   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1607   // fold the xor.
1608   ICmpInst::Predicate Pred = Cmp.getPredicate();
1609   bool TrueIfSigned = false;
1610   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1611 
1612     // If the sign bit of the XorCst is not set, there is no change to
1613     // the operation, just stop using the Xor.
1614     if (!XorC->isNegative())
1615       return replaceOperand(Cmp, 0, X);
1616 
1617     // Emit the opposite comparison.
1618     if (TrueIfSigned)
1619       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1620                           ConstantInt::getAllOnesValue(X->getType()));
1621     else
1622       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1623                           ConstantInt::getNullValue(X->getType()));
1624   }
1625 
1626   if (Xor->hasOneUse()) {
1627     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1628     if (!Cmp.isEquality() && XorC->isSignMask()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1631     }
1632 
1633     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1634     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1635       Pred = Cmp.getFlippedSignednessPredicate();
1636       Pred = Cmp.getSwappedPredicate(Pred);
1637       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1638     }
1639   }
1640 
1641   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1642   if (Pred == ICmpInst::ICMP_UGT) {
1643     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1644     if (*XorC == ~C && (C + 1).isPowerOf2())
1645       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1646     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1647     if (*XorC == C && (C + 1).isPowerOf2())
1648       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1649   }
1650   if (Pred == ICmpInst::ICMP_ULT) {
1651     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1652     if (*XorC == -C && C.isPowerOf2())
1653       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1654                           ConstantInt::get(X->getType(), ~C));
1655     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1656     if (*XorC == C && (-C).isPowerOf2())
1657       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1658                           ConstantInt::get(X->getType(), ~C));
1659   }
1660   return nullptr;
1661 }
1662 
1663 /// Fold icmp (and (sh X, Y), C2), C1.
1664 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1665                                                 BinaryOperator *And,
1666                                                 const APInt &C1,
1667                                                 const APInt &C2) {
1668   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1669   if (!Shift || !Shift->isShift())
1670     return nullptr;
1671 
1672   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1673   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1674   // code produced by the clang front-end, for bitfield access.
1675   // This seemingly simple opportunity to fold away a shift turns out to be
1676   // rather complicated. See PR17827 for details.
1677   unsigned ShiftOpcode = Shift->getOpcode();
1678   bool IsShl = ShiftOpcode == Instruction::Shl;
1679   const APInt *C3;
1680   if (match(Shift->getOperand(1), m_APInt(C3))) {
1681     APInt NewAndCst, NewCmpCst;
1682     bool AnyCmpCstBitsShiftedOut;
1683     if (ShiftOpcode == Instruction::Shl) {
1684       // For a left shift, we can fold if the comparison is not signed. We can
1685       // also fold a signed comparison if the mask value and comparison value
1686       // are not negative. These constraints may not be obvious, but we can
1687       // prove that they are correct using an SMT solver.
1688       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1689         return nullptr;
1690 
1691       NewCmpCst = C1.lshr(*C3);
1692       NewAndCst = C2.lshr(*C3);
1693       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1694     } else if (ShiftOpcode == Instruction::LShr) {
1695       // For a logical right shift, we can fold if the comparison is not signed.
1696       // We can also fold a signed comparison if the shifted mask value and the
1697       // shifted comparison value are not negative. These constraints may not be
1698       // obvious, but we can prove that they are correct using an SMT solver.
1699       NewCmpCst = C1.shl(*C3);
1700       NewAndCst = C2.shl(*C3);
1701       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1702       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1703         return nullptr;
1704     } else {
1705       // For an arithmetic shift, check that both constants don't use (in a
1706       // signed sense) the top bits being shifted out.
1707       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1708       NewCmpCst = C1.shl(*C3);
1709       NewAndCst = C2.shl(*C3);
1710       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1711       if (NewAndCst.ashr(*C3) != C2)
1712         return nullptr;
1713     }
1714 
1715     if (AnyCmpCstBitsShiftedOut) {
1716       // If we shifted bits out, the fold is not going to work out. As a
1717       // special case, check to see if this means that the result is always
1718       // true or false now.
1719       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1720         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1721       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1722         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1723     } else {
1724       Value *NewAnd = Builder.CreateAnd(
1725           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1726       return new ICmpInst(Cmp.getPredicate(),
1727           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1728     }
1729   }
1730 
1731   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1732   // preferable because it allows the C2 << Y expression to be hoisted out of a
1733   // loop if Y is invariant and X is not.
1734   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1735       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1736     // Compute C2 << Y.
1737     Value *NewShift =
1738         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1739               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1740 
1741     // Compute X & (C2 << Y).
1742     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1743     return replaceOperand(Cmp, 0, NewAnd);
1744   }
1745 
1746   return nullptr;
1747 }
1748 
1749 /// Fold icmp (and X, C2), C1.
1750 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1751                                                      BinaryOperator *And,
1752                                                      const APInt &C1) {
1753   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1754 
1755   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1756   // TODO: We canonicalize to the longer form for scalars because we have
1757   // better analysis/folds for icmp, and codegen may be better with icmp.
1758   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1759       match(And->getOperand(1), m_One()))
1760     return new TruncInst(And->getOperand(0), Cmp.getType());
1761 
1762   const APInt *C2;
1763   Value *X;
1764   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1765     return nullptr;
1766 
1767   // Don't perform the following transforms if the AND has multiple uses
1768   if (!And->hasOneUse())
1769     return nullptr;
1770 
1771   if (Cmp.isEquality() && C1.isZero()) {
1772     // Restrict this fold to single-use 'and' (PR10267).
1773     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1774     if (C2->isSignMask()) {
1775       Constant *Zero = Constant::getNullValue(X->getType());
1776       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1777       return new ICmpInst(NewPred, X, Zero);
1778     }
1779 
1780     APInt NewC2 = *C2;
1781     KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1782     // Set high zeros of C2 to allow matching negated power-of-2.
1783     NewC2 = *C2 + APInt::getHighBitsSet(C2->getBitWidth(),
1784                                         Know.countMinLeadingZeros());
1785 
1786     // Restrict this fold only for single-use 'and' (PR10267).
1787     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1788     if (NewC2.isNegatedPowerOf2()) {
1789       Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1790       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1791       return new ICmpInst(NewPred, X, NegBOC);
1792     }
1793   }
1794 
1795   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1796   // the input width without changing the value produced, eliminate the cast:
1797   //
1798   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1799   //
1800   // We can do this transformation if the constants do not have their sign bits
1801   // set or if it is an equality comparison. Extending a relational comparison
1802   // when we're checking the sign bit would not work.
1803   Value *W;
1804   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1805       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1806     // TODO: Is this a good transform for vectors? Wider types may reduce
1807     // throughput. Should this transform be limited (even for scalars) by using
1808     // shouldChangeType()?
1809     if (!Cmp.getType()->isVectorTy()) {
1810       Type *WideType = W->getType();
1811       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1812       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1813       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1814       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1815       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1816     }
1817   }
1818 
1819   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1820     return I;
1821 
1822   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1823   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1824   //
1825   // iff pred isn't signed
1826   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1827       match(And->getOperand(1), m_One())) {
1828     Constant *One = cast<Constant>(And->getOperand(1));
1829     Value *Or = And->getOperand(0);
1830     Value *A, *B, *LShr;
1831     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1832         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1833       unsigned UsesRemoved = 0;
1834       if (And->hasOneUse())
1835         ++UsesRemoved;
1836       if (Or->hasOneUse())
1837         ++UsesRemoved;
1838       if (LShr->hasOneUse())
1839         ++UsesRemoved;
1840 
1841       // Compute A & ((1 << B) | 1)
1842       Value *NewOr = nullptr;
1843       if (auto *C = dyn_cast<Constant>(B)) {
1844         if (UsesRemoved >= 1)
1845           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1846       } else {
1847         if (UsesRemoved >= 3)
1848           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1849                                                      /*HasNUW=*/true),
1850                                    One, Or->getName());
1851       }
1852       if (NewOr) {
1853         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1854         return replaceOperand(Cmp, 0, NewAnd);
1855       }
1856     }
1857   }
1858 
1859   return nullptr;
1860 }
1861 
1862 /// Fold icmp (and X, Y), C.
1863 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1864                                                    BinaryOperator *And,
1865                                                    const APInt &C) {
1866   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1867     return I;
1868 
1869   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1870   bool TrueIfNeg;
1871   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1872     // ((X - 1) & ~X) <  0 --> X == 0
1873     // ((X - 1) & ~X) >= 0 --> X != 0
1874     Value *X;
1875     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1876         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1877       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1878       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1879     }
1880   }
1881 
1882   // TODO: These all require that Y is constant too, so refactor with the above.
1883 
1884   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1885   Value *X = And->getOperand(0);
1886   Value *Y = And->getOperand(1);
1887   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1888     if (auto *LI = dyn_cast<LoadInst>(X))
1889       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1890         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1891           if (Instruction *Res =
1892                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1893             return Res;
1894 
1895   if (!Cmp.isEquality())
1896     return nullptr;
1897 
1898   // X & -C == -C -> X >  u ~C
1899   // X & -C != -C -> X <= u ~C
1900   //   iff C is a power of 2
1901   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1902     auto NewPred =
1903         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1904     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1905   }
1906 
1907   return nullptr;
1908 }
1909 
1910 /// Fold icmp (or X, Y), C.
1911 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1912                                                   BinaryOperator *Or,
1913                                                   const APInt &C) {
1914   ICmpInst::Predicate Pred = Cmp.getPredicate();
1915   if (C.isOne()) {
1916     // icmp slt signum(V) 1 --> icmp slt V, 1
1917     Value *V = nullptr;
1918     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1919       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1920                           ConstantInt::get(V->getType(), 1));
1921   }
1922 
1923   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1924   const APInt *MaskC;
1925   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1926     if (*MaskC == C && (C + 1).isPowerOf2()) {
1927       // X | C == C --> X <=u C
1928       // X | C != C --> X  >u C
1929       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1930       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1931       return new ICmpInst(Pred, OrOp0, OrOp1);
1932     }
1933 
1934     // More general: canonicalize 'equality with set bits mask' to
1935     // 'equality with clear bits mask'.
1936     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1937     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1938     if (Or->hasOneUse()) {
1939       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1940       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1941       return new ICmpInst(Pred, And, NewC);
1942     }
1943   }
1944 
1945   // (X | (X-1)) s<  0 --> X s< 1
1946   // (X | (X-1)) s> -1 --> X s> 0
1947   Value *X;
1948   bool TrueIfSigned;
1949   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1950       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1951     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1952     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1953     return new ICmpInst(NewPred, X, NewC);
1954   }
1955 
1956   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1957     return nullptr;
1958 
1959   Value *P, *Q;
1960   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1961     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1962     // -> and (icmp eq P, null), (icmp eq Q, null).
1963     Value *CmpP =
1964         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1965     Value *CmpQ =
1966         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1967     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1968     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1969   }
1970 
1971   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1972   // a shorter form that has more potential to be folded even further.
1973   Value *X1, *X2, *X3, *X4;
1974   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1975       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1976     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1977     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1978     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1979     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1980     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1981     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1982   }
1983 
1984   return nullptr;
1985 }
1986 
1987 /// Fold icmp (mul X, Y), C.
1988 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1989                                                    BinaryOperator *Mul,
1990                                                    const APInt &C) {
1991   const APInt *MulC;
1992   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1993     return nullptr;
1994 
1995   // If this is a test of the sign bit and the multiply is sign-preserving with
1996   // a constant operand, use the multiply LHS operand instead.
1997   ICmpInst::Predicate Pred = Cmp.getPredicate();
1998   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1999     if (MulC->isNegative())
2000       Pred = ICmpInst::getSwappedPredicate(Pred);
2001     return new ICmpInst(Pred, Mul->getOperand(0),
2002                         Constant::getNullValue(Mul->getType()));
2003   }
2004 
2005   // If the multiply does not wrap, try to divide the compare constant by the
2006   // multiplication factor.
2007   if (Cmp.isEquality() && !MulC->isZero()) {
2008     // (mul nsw X, MulC) == C --> X == C /s MulC
2009     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2010       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2011       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2012     }
2013     // (mul nuw X, MulC) == C --> X == C /u MulC
2014     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2015       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2016       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2017     }
2018   }
2019 
2020   return nullptr;
2021 }
2022 
2023 /// Fold icmp (shl 1, Y), C.
2024 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2025                                    const APInt &C) {
2026   Value *Y;
2027   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2028     return nullptr;
2029 
2030   Type *ShiftType = Shl->getType();
2031   unsigned TypeBits = C.getBitWidth();
2032   bool CIsPowerOf2 = C.isPowerOf2();
2033   ICmpInst::Predicate Pred = Cmp.getPredicate();
2034   if (Cmp.isUnsigned()) {
2035     // (1 << Y) pred C -> Y pred Log2(C)
2036     if (!CIsPowerOf2) {
2037       // (1 << Y) <  30 -> Y <= 4
2038       // (1 << Y) <= 30 -> Y <= 4
2039       // (1 << Y) >= 30 -> Y >  4
2040       // (1 << Y) >  30 -> Y >  4
2041       if (Pred == ICmpInst::ICMP_ULT)
2042         Pred = ICmpInst::ICMP_ULE;
2043       else if (Pred == ICmpInst::ICMP_UGE)
2044         Pred = ICmpInst::ICMP_UGT;
2045     }
2046 
2047     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2048     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2049     unsigned CLog2 = C.logBase2();
2050     if (CLog2 == TypeBits - 1) {
2051       if (Pred == ICmpInst::ICMP_UGE)
2052         Pred = ICmpInst::ICMP_EQ;
2053       else if (Pred == ICmpInst::ICMP_ULT)
2054         Pred = ICmpInst::ICMP_NE;
2055     }
2056     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2057   } else if (Cmp.isSigned()) {
2058     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2059     if (C.isAllOnes()) {
2060       // (1 << Y) <= -1 -> Y == 31
2061       if (Pred == ICmpInst::ICMP_SLE)
2062         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2063 
2064       // (1 << Y) >  -1 -> Y != 31
2065       if (Pred == ICmpInst::ICMP_SGT)
2066         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2067     } else if (!C) {
2068       // (1 << Y) <  0 -> Y == 31
2069       // (1 << Y) <= 0 -> Y == 31
2070       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2071         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2072 
2073       // (1 << Y) >= 0 -> Y != 31
2074       // (1 << Y) >  0 -> Y != 31
2075       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2076         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2077     }
2078   } else if (Cmp.isEquality() && CIsPowerOf2) {
2079     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2080   }
2081 
2082   return nullptr;
2083 }
2084 
2085 /// Fold icmp (shl X, Y), C.
2086 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2087                                                    BinaryOperator *Shl,
2088                                                    const APInt &C) {
2089   const APInt *ShiftVal;
2090   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2091     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2092 
2093   const APInt *ShiftAmt;
2094   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2095     return foldICmpShlOne(Cmp, Shl, C);
2096 
2097   // Check that the shift amount is in range. If not, don't perform undefined
2098   // shifts. When the shift is visited, it will be simplified.
2099   unsigned TypeBits = C.getBitWidth();
2100   if (ShiftAmt->uge(TypeBits))
2101     return nullptr;
2102 
2103   ICmpInst::Predicate Pred = Cmp.getPredicate();
2104   Value *X = Shl->getOperand(0);
2105   Type *ShType = Shl->getType();
2106 
2107   // NSW guarantees that we are only shifting out sign bits from the high bits,
2108   // so we can ASHR the compare constant without needing a mask and eliminate
2109   // the shift.
2110   if (Shl->hasNoSignedWrap()) {
2111     if (Pred == ICmpInst::ICMP_SGT) {
2112       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2113       APInt ShiftedC = C.ashr(*ShiftAmt);
2114       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2115     }
2116     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2117         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2118       APInt ShiftedC = C.ashr(*ShiftAmt);
2119       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120     }
2121     if (Pred == ICmpInst::ICMP_SLT) {
2122       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2123       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2124       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2125       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2126       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2127       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2128       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2129     }
2130     // If this is a signed comparison to 0 and the shift is sign preserving,
2131     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2132     // do that if we're sure to not continue on in this function.
2133     if (isSignTest(Pred, C))
2134       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2135   }
2136 
2137   // NUW guarantees that we are only shifting out zero bits from the high bits,
2138   // so we can LSHR the compare constant without needing a mask and eliminate
2139   // the shift.
2140   if (Shl->hasNoUnsignedWrap()) {
2141     if (Pred == ICmpInst::ICMP_UGT) {
2142       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2143       APInt ShiftedC = C.lshr(*ShiftAmt);
2144       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2145     }
2146     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2147         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2148       APInt ShiftedC = C.lshr(*ShiftAmt);
2149       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2150     }
2151     if (Pred == ICmpInst::ICMP_ULT) {
2152       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2153       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2154       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2155       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2156       assert(C.ugt(0) && "ult 0 should have been eliminated");
2157       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2158       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2159     }
2160   }
2161 
2162   if (Cmp.isEquality() && Shl->hasOneUse()) {
2163     // Strength-reduce the shift into an 'and'.
2164     Constant *Mask = ConstantInt::get(
2165         ShType,
2166         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2167     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2168     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2169     return new ICmpInst(Pred, And, LShrC);
2170   }
2171 
2172   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2173   bool TrueIfSigned = false;
2174   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2175     // (X << 31) <s 0  --> (X & 1) != 0
2176     Constant *Mask = ConstantInt::get(
2177         ShType,
2178         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2179     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2180     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2181                         And, Constant::getNullValue(ShType));
2182   }
2183 
2184   // Simplify 'shl' inequality test into 'and' equality test.
2185   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2186     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2187     if ((C + 1).isPowerOf2() &&
2188         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2189       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2190       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2191                                                      : ICmpInst::ICMP_NE,
2192                           And, Constant::getNullValue(ShType));
2193     }
2194     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2195     if (C.isPowerOf2() &&
2196         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2197       Value *And =
2198           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2199       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2200                                                      : ICmpInst::ICMP_NE,
2201                           And, Constant::getNullValue(ShType));
2202     }
2203   }
2204 
2205   // Transform (icmp pred iM (shl iM %v, N), C)
2206   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2207   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2208   // This enables us to get rid of the shift in favor of a trunc that may be
2209   // free on the target. It has the additional benefit of comparing to a
2210   // smaller constant that may be more target-friendly.
2211   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2212   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2213       DL.isLegalInteger(TypeBits - Amt)) {
2214     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2215     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2216       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2217     Constant *NewC =
2218         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2219     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2220   }
2221 
2222   return nullptr;
2223 }
2224 
2225 /// Fold icmp ({al}shr X, Y), C.
2226 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2227                                                    BinaryOperator *Shr,
2228                                                    const APInt &C) {
2229   // An exact shr only shifts out zero bits, so:
2230   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2231   Value *X = Shr->getOperand(0);
2232   CmpInst::Predicate Pred = Cmp.getPredicate();
2233   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2234     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2235 
2236   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2237   const APInt *ShiftValC;
2238   if (match(X, m_APInt(ShiftValC))) {
2239     if (Cmp.isEquality())
2240       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2241 
2242     // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2243     // (ShiftValC >> Y) <s  0 --> Y == 0 with ShiftValC < 0
2244     bool TrueIfSigned;
2245     if (!IsAShr && ShiftValC->isNegative() &&
2246         isSignBitCheck(Pred, C, TrueIfSigned))
2247       return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
2248                           Shr->getOperand(1),
2249                           ConstantInt::getNullValue(X->getType()));
2250 
2251     // If the shifted constant is a power-of-2, test the shift amount directly:
2252     // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2253     // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2254     if (!IsAShr && ShiftValC->isPowerOf2() &&
2255         (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2256       bool IsUGT = Pred == CmpInst::ICMP_UGT;
2257       assert(ShiftValC->uge(C) && "Expected simplify of compare");
2258       assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2259 
2260       unsigned CmpLZ =
2261           IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros();
2262       unsigned ShiftLZ = ShiftValC->countLeadingZeros();
2263       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2264       auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2265       return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2266     }
2267   }
2268 
2269   const APInt *ShiftAmtC;
2270   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2271     return nullptr;
2272 
2273   // Check that the shift amount is in range. If not, don't perform undefined
2274   // shifts. When the shift is visited it will be simplified.
2275   unsigned TypeBits = C.getBitWidth();
2276   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2277   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2278     return nullptr;
2279 
2280   bool IsExact = Shr->isExact();
2281   Type *ShrTy = Shr->getType();
2282   // TODO: If we could guarantee that InstSimplify would handle all of the
2283   // constant-value-based preconditions in the folds below, then we could assert
2284   // those conditions rather than checking them. This is difficult because of
2285   // undef/poison (PR34838).
2286   if (IsAShr) {
2287     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2288       // When ShAmtC can be shifted losslessly:
2289       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2290       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2291       APInt ShiftedC = C.shl(ShAmtVal);
2292       if (ShiftedC.ashr(ShAmtVal) == C)
2293         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2294     }
2295     if (Pred == CmpInst::ICMP_SGT) {
2296       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2297       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2298       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2299           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2300         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2301     }
2302     if (Pred == CmpInst::ICMP_UGT) {
2303       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2304       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2305       // clause accounts for that pattern.
2306       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2307       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2308           (C + 1).shl(ShAmtVal).isMinSignedValue())
2309         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2310     }
2311 
2312     // If the compare constant has significant bits above the lowest sign-bit,
2313     // then convert an unsigned cmp to a test of the sign-bit:
2314     // (ashr X, ShiftC) u> C --> X s< 0
2315     // (ashr X, ShiftC) u< C --> X s> -1
2316     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2317       if (Pred == CmpInst::ICMP_UGT) {
2318         return new ICmpInst(CmpInst::ICMP_SLT, X,
2319                             ConstantInt::getNullValue(ShrTy));
2320       }
2321       if (Pred == CmpInst::ICMP_ULT) {
2322         return new ICmpInst(CmpInst::ICMP_SGT, X,
2323                             ConstantInt::getAllOnesValue(ShrTy));
2324       }
2325     }
2326   } else {
2327     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2328       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2329       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2330       APInt ShiftedC = C.shl(ShAmtVal);
2331       if (ShiftedC.lshr(ShAmtVal) == C)
2332         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2333     }
2334     if (Pred == CmpInst::ICMP_UGT) {
2335       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2336       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2337       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2338         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2339     }
2340   }
2341 
2342   if (!Cmp.isEquality())
2343     return nullptr;
2344 
2345   // Handle equality comparisons of shift-by-constant.
2346 
2347   // If the comparison constant changes with the shift, the comparison cannot
2348   // succeed (bits of the comparison constant cannot match the shifted value).
2349   // This should be known by InstSimplify and already be folded to true/false.
2350   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2351           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2352          "Expected icmp+shr simplify did not occur.");
2353 
2354   // If the bits shifted out are known zero, compare the unshifted value:
2355   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2356   if (Shr->isExact())
2357     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2358 
2359   if (C.isZero()) {
2360     // == 0 is u< 1.
2361     if (Pred == CmpInst::ICMP_EQ)
2362       return new ICmpInst(CmpInst::ICMP_ULT, X,
2363                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2364     else
2365       return new ICmpInst(CmpInst::ICMP_UGT, X,
2366                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2367   }
2368 
2369   if (Shr->hasOneUse()) {
2370     // Canonicalize the shift into an 'and':
2371     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2372     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2373     Constant *Mask = ConstantInt::get(ShrTy, Val);
2374     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2375     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2376   }
2377 
2378   return nullptr;
2379 }
2380 
2381 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2382                                                     BinaryOperator *SRem,
2383                                                     const APInt &C) {
2384   // Match an 'is positive' or 'is negative' comparison of remainder by a
2385   // constant power-of-2 value:
2386   // (X % pow2C) sgt/slt 0
2387   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2388   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2389       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2390     return nullptr;
2391 
2392   // TODO: The one-use check is standard because we do not typically want to
2393   //       create longer instruction sequences, but this might be a special-case
2394   //       because srem is not good for analysis or codegen.
2395   if (!SRem->hasOneUse())
2396     return nullptr;
2397 
2398   const APInt *DivisorC;
2399   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2400     return nullptr;
2401 
2402   // For cmp_sgt/cmp_slt only zero valued C is handled.
2403   // For cmp_eq/cmp_ne only positive valued C is handled.
2404   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2405        !C.isZero()) ||
2406       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2407        !C.isStrictlyPositive()))
2408     return nullptr;
2409 
2410   // Mask off the sign bit and the modulo bits (low-bits).
2411   Type *Ty = SRem->getType();
2412   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2413   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2414   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2415 
2416   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2417     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2418 
2419   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2420   // bit is set. Example:
2421   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2422   if (Pred == ICmpInst::ICMP_SGT)
2423     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2424 
2425   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2426   // bit is set. Example:
2427   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2428   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2429 }
2430 
2431 /// Fold icmp (udiv X, Y), C.
2432 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2433                                                     BinaryOperator *UDiv,
2434                                                     const APInt &C) {
2435   ICmpInst::Predicate Pred = Cmp.getPredicate();
2436   Value *X = UDiv->getOperand(0);
2437   Value *Y = UDiv->getOperand(1);
2438   Type *Ty = UDiv->getType();
2439 
2440   const APInt *C2;
2441   if (!match(X, m_APInt(C2)))
2442     return nullptr;
2443 
2444   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2445 
2446   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2447   if (Pred == ICmpInst::ICMP_UGT) {
2448     assert(!C.isMaxValue() &&
2449            "icmp ugt X, UINT_MAX should have been simplified already.");
2450     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2451                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2452   }
2453 
2454   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2455   if (Pred == ICmpInst::ICMP_ULT) {
2456     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2457     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2458                         ConstantInt::get(Ty, C2->udiv(C)));
2459   }
2460 
2461   return nullptr;
2462 }
2463 
2464 /// Fold icmp ({su}div X, Y), C.
2465 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2466                                                    BinaryOperator *Div,
2467                                                    const APInt &C) {
2468   ICmpInst::Predicate Pred = Cmp.getPredicate();
2469   Value *X = Div->getOperand(0);
2470   Value *Y = Div->getOperand(1);
2471   Type *Ty = Div->getType();
2472   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2473 
2474   // If unsigned division and the compare constant is bigger than
2475   // UMAX/2 (negative), there's only one pair of values that satisfies an
2476   // equality check, so eliminate the division:
2477   // (X u/ Y) == C --> (X == C) && (Y == 1)
2478   // (X u/ Y) != C --> (X != C) || (Y != 1)
2479   // Similarly, if signed division and the compare constant is exactly SMIN:
2480   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2481   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2482   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2483       (!DivIsSigned || C.isMinSignedValue()))   {
2484     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2485     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2486     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2487     return BinaryOperator::Create(Logic, XBig, YOne);
2488   }
2489 
2490   // Fold: icmp pred ([us]div X, C2), C -> range test
2491   // Fold this div into the comparison, producing a range check.
2492   // Determine, based on the divide type, what the range is being
2493   // checked.  If there is an overflow on the low or high side, remember
2494   // it, otherwise compute the range [low, hi) bounding the new value.
2495   // See: InsertRangeTest above for the kinds of replacements possible.
2496   const APInt *C2;
2497   if (!match(Y, m_APInt(C2)))
2498     return nullptr;
2499 
2500   // FIXME: If the operand types don't match the type of the divide
2501   // then don't attempt this transform. The code below doesn't have the
2502   // logic to deal with a signed divide and an unsigned compare (and
2503   // vice versa). This is because (x /s C2) <s C  produces different
2504   // results than (x /s C2) <u C or (x /u C2) <s C or even
2505   // (x /u C2) <u C.  Simply casting the operands and result won't
2506   // work. :(  The if statement below tests that condition and bails
2507   // if it finds it.
2508   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2509     return nullptr;
2510 
2511   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2512   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2513   // division-by-constant cases should be present, we can not assert that they
2514   // have happened before we reach this icmp instruction.
2515   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2516     return nullptr;
2517 
2518   // Compute Prod = C * C2. We are essentially solving an equation of
2519   // form X / C2 = C. We solve for X by multiplying C2 and C.
2520   // By solving for X, we can turn this into a range check instead of computing
2521   // a divide.
2522   APInt Prod = C * *C2;
2523 
2524   // Determine if the product overflows by seeing if the product is not equal to
2525   // the divide. Make sure we do the same kind of divide as in the LHS
2526   // instruction that we're folding.
2527   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2528 
2529   // If the division is known to be exact, then there is no remainder from the
2530   // divide, so the covered range size is unit, otherwise it is the divisor.
2531   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2532 
2533   // Figure out the interval that is being checked.  For example, a comparison
2534   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2535   // Compute this interval based on the constants involved and the signedness of
2536   // the compare/divide.  This computes a half-open interval, keeping track of
2537   // whether either value in the interval overflows.  After analysis each
2538   // overflow variable is set to 0 if it's corresponding bound variable is valid
2539   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2540   int LoOverflow = 0, HiOverflow = 0;
2541   APInt LoBound, HiBound;
2542 
2543   if (!DivIsSigned) { // udiv
2544     // e.g. X/5 op 3  --> [15, 20)
2545     LoBound = Prod;
2546     HiOverflow = LoOverflow = ProdOV;
2547     if (!HiOverflow) {
2548       // If this is not an exact divide, then many values in the range collapse
2549       // to the same result value.
2550       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2551     }
2552   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2553     if (C.isZero()) {                    // (X / pos) op 0
2554       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2555       LoBound = -(RangeSize - 1);
2556       HiBound = RangeSize;
2557     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2558       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2559       HiOverflow = LoOverflow = ProdOV;
2560       if (!HiOverflow)
2561         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2562     } else { // (X / pos) op neg
2563       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2564       HiBound = Prod + 1;
2565       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2566       if (!LoOverflow) {
2567         APInt DivNeg = -RangeSize;
2568         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2569       }
2570     }
2571   } else if (C2->isNegative()) { // Divisor is < 0.
2572     if (Div->isExact())
2573       RangeSize.negate();
2574     if (C.isZero()) { // (X / neg) op 0
2575       // e.g. X/-5 op 0  --> [-4, 5)
2576       LoBound = RangeSize + 1;
2577       HiBound = -RangeSize;
2578       if (HiBound == *C2) { // -INTMIN = INTMIN
2579         HiOverflow = 1;     // [INTMIN+1, overflow)
2580         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2581       }
2582     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2583       // e.g. X/-5 op 3  --> [-19, -14)
2584       HiBound = Prod + 1;
2585       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2586       if (!LoOverflow)
2587         LoOverflow =
2588             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2589     } else {          // (X / neg) op neg
2590       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2591       LoOverflow = HiOverflow = ProdOV;
2592       if (!HiOverflow)
2593         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2594     }
2595 
2596     // Dividing by a negative swaps the condition.  LT <-> GT
2597     Pred = ICmpInst::getSwappedPredicate(Pred);
2598   }
2599 
2600   switch (Pred) {
2601   default:
2602     llvm_unreachable("Unhandled icmp predicate!");
2603   case ICmpInst::ICMP_EQ:
2604     if (LoOverflow && HiOverflow)
2605       return replaceInstUsesWith(Cmp, Builder.getFalse());
2606     if (HiOverflow)
2607       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2608                           X, ConstantInt::get(Ty, LoBound));
2609     if (LoOverflow)
2610       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2611                           X, ConstantInt::get(Ty, HiBound));
2612     return replaceInstUsesWith(
2613         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2614   case ICmpInst::ICMP_NE:
2615     if (LoOverflow && HiOverflow)
2616       return replaceInstUsesWith(Cmp, Builder.getTrue());
2617     if (HiOverflow)
2618       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2619                           X, ConstantInt::get(Ty, LoBound));
2620     if (LoOverflow)
2621       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2622                           X, ConstantInt::get(Ty, HiBound));
2623     return replaceInstUsesWith(
2624         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2625   case ICmpInst::ICMP_ULT:
2626   case ICmpInst::ICMP_SLT:
2627     if (LoOverflow == +1) // Low bound is greater than input range.
2628       return replaceInstUsesWith(Cmp, Builder.getTrue());
2629     if (LoOverflow == -1) // Low bound is less than input range.
2630       return replaceInstUsesWith(Cmp, Builder.getFalse());
2631     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2632   case ICmpInst::ICMP_UGT:
2633   case ICmpInst::ICMP_SGT:
2634     if (HiOverflow == +1) // High bound greater than input range.
2635       return replaceInstUsesWith(Cmp, Builder.getFalse());
2636     if (HiOverflow == -1) // High bound less than input range.
2637       return replaceInstUsesWith(Cmp, Builder.getTrue());
2638     if (Pred == ICmpInst::ICMP_UGT)
2639       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2640     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2641   }
2642 
2643   return nullptr;
2644 }
2645 
2646 /// Fold icmp (sub X, Y), C.
2647 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2648                                                    BinaryOperator *Sub,
2649                                                    const APInt &C) {
2650   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2651   ICmpInst::Predicate Pred = Cmp.getPredicate();
2652   Type *Ty = Sub->getType();
2653 
2654   // (SubC - Y) == C) --> Y == (SubC - C)
2655   // (SubC - Y) != C) --> Y != (SubC - C)
2656   Constant *SubC;
2657   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2658     return new ICmpInst(Pred, Y,
2659                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2660   }
2661 
2662   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2663   const APInt *C2;
2664   APInt SubResult;
2665   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2666   bool HasNSW = Sub->hasNoSignedWrap();
2667   bool HasNUW = Sub->hasNoUnsignedWrap();
2668   if (match(X, m_APInt(C2)) &&
2669       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2670       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2671     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2672 
2673   // X - Y == 0 --> X == Y.
2674   // X - Y != 0 --> X != Y.
2675   // TODO: We allow this with multiple uses as long as the other uses are not
2676   //       in phis. The phi use check is guarding against a codegen regression
2677   //       for a loop test. If the backend could undo this (and possibly
2678   //       subsequent transforms), we would not need this hack.
2679   if (Cmp.isEquality() && C.isZero() &&
2680       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2681     return new ICmpInst(Pred, X, Y);
2682 
2683   // The following transforms are only worth it if the only user of the subtract
2684   // is the icmp.
2685   // TODO: This is an artificial restriction for all of the transforms below
2686   //       that only need a single replacement icmp. Can these use the phi test
2687   //       like the transform above here?
2688   if (!Sub->hasOneUse())
2689     return nullptr;
2690 
2691   if (Sub->hasNoSignedWrap()) {
2692     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2693     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2694       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2695 
2696     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2697     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2698       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2699 
2700     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2701     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2702       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2703 
2704     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2705     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2706       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2707   }
2708 
2709   if (!match(X, m_APInt(C2)))
2710     return nullptr;
2711 
2712   // C2 - Y <u C -> (Y | (C - 1)) == C2
2713   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2714   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2715       (*C2 & (C - 1)) == (C - 1))
2716     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2717 
2718   // C2 - Y >u C -> (Y | C) != C2
2719   //   iff C2 & C == C and C + 1 is a power of 2
2720   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2721     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2722 
2723   // We have handled special cases that reduce.
2724   // Canonicalize any remaining sub to add as:
2725   // (C2 - Y) > C --> (Y + ~C2) < ~C
2726   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2727                                  HasNUW, HasNSW);
2728   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2729 }
2730 
2731 /// Fold icmp (add X, Y), C.
2732 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2733                                                    BinaryOperator *Add,
2734                                                    const APInt &C) {
2735   Value *Y = Add->getOperand(1);
2736   const APInt *C2;
2737   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2738     return nullptr;
2739 
2740   // Fold icmp pred (add X, C2), C.
2741   Value *X = Add->getOperand(0);
2742   Type *Ty = Add->getType();
2743   const CmpInst::Predicate Pred = Cmp.getPredicate();
2744 
2745   // If the add does not wrap, we can always adjust the compare by subtracting
2746   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2747   // are canonicalized to SGT/SLT/UGT/ULT.
2748   if ((Add->hasNoSignedWrap() &&
2749        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2750       (Add->hasNoUnsignedWrap() &&
2751        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2752     bool Overflow;
2753     APInt NewC =
2754         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2755     // If there is overflow, the result must be true or false.
2756     // TODO: Can we assert there is no overflow because InstSimplify always
2757     // handles those cases?
2758     if (!Overflow)
2759       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2760       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2761   }
2762 
2763   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2764   const APInt &Upper = CR.getUpper();
2765   const APInt &Lower = CR.getLower();
2766   if (Cmp.isSigned()) {
2767     if (Lower.isSignMask())
2768       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2769     if (Upper.isSignMask())
2770       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2771   } else {
2772     if (Lower.isMinValue())
2773       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2774     if (Upper.isMinValue())
2775       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2776   }
2777 
2778   // This set of folds is intentionally placed after folds that use no-wrapping
2779   // flags because those folds are likely better for later analysis/codegen.
2780   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2781   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2782 
2783   // Fold compare with offset to opposite sign compare if it eliminates offset:
2784   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2785   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2786     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2787 
2788   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2789   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2790     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2791 
2792   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2793   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2794     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2795 
2796   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2797   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2798     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2799 
2800   if (!Add->hasOneUse())
2801     return nullptr;
2802 
2803   // X+C <u C2 -> (X & -C2) == C
2804   //   iff C & (C2-1) == 0
2805   //       C2 is a power of 2
2806   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2807     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2808                         ConstantExpr::getNeg(cast<Constant>(Y)));
2809 
2810   // X+C >u C2 -> (X & ~C2) != C
2811   //   iff C & C2 == 0
2812   //       C2+1 is a power of 2
2813   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2814     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2815                         ConstantExpr::getNeg(cast<Constant>(Y)));
2816 
2817   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2818   // to the ult form.
2819   // X+C2 >u C -> X+(C2-C-1) <u ~C
2820   if (Pred == ICmpInst::ICMP_UGT)
2821     return new ICmpInst(ICmpInst::ICMP_ULT,
2822                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2823                         ConstantInt::get(Ty, ~C));
2824 
2825   return nullptr;
2826 }
2827 
2828 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2829                                                Value *&RHS, ConstantInt *&Less,
2830                                                ConstantInt *&Equal,
2831                                                ConstantInt *&Greater) {
2832   // TODO: Generalize this to work with other comparison idioms or ensure
2833   // they get canonicalized into this form.
2834 
2835   // select i1 (a == b),
2836   //        i32 Equal,
2837   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2838   // where Equal, Less and Greater are placeholders for any three constants.
2839   ICmpInst::Predicate PredA;
2840   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2841       !ICmpInst::isEquality(PredA))
2842     return false;
2843   Value *EqualVal = SI->getTrueValue();
2844   Value *UnequalVal = SI->getFalseValue();
2845   // We still can get non-canonical predicate here, so canonicalize.
2846   if (PredA == ICmpInst::ICMP_NE)
2847     std::swap(EqualVal, UnequalVal);
2848   if (!match(EqualVal, m_ConstantInt(Equal)))
2849     return false;
2850   ICmpInst::Predicate PredB;
2851   Value *LHS2, *RHS2;
2852   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2853                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2854     return false;
2855   // We can get predicate mismatch here, so canonicalize if possible:
2856   // First, ensure that 'LHS' match.
2857   if (LHS2 != LHS) {
2858     // x sgt y <--> y slt x
2859     std::swap(LHS2, RHS2);
2860     PredB = ICmpInst::getSwappedPredicate(PredB);
2861   }
2862   if (LHS2 != LHS)
2863     return false;
2864   // We also need to canonicalize 'RHS'.
2865   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2866     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2867     auto FlippedStrictness =
2868         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2869             PredB, cast<Constant>(RHS2));
2870     if (!FlippedStrictness)
2871       return false;
2872     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2873            "basic correctness failure");
2874     RHS2 = FlippedStrictness->second;
2875     // And kind-of perform the result swap.
2876     std::swap(Less, Greater);
2877     PredB = ICmpInst::ICMP_SLT;
2878   }
2879   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2880 }
2881 
2882 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2883                                                       SelectInst *Select,
2884                                                       ConstantInt *C) {
2885 
2886   assert(C && "Cmp RHS should be a constant int!");
2887   // If we're testing a constant value against the result of a three way
2888   // comparison, the result can be expressed directly in terms of the
2889   // original values being compared.  Note: We could possibly be more
2890   // aggressive here and remove the hasOneUse test. The original select is
2891   // really likely to simplify or sink when we remove a test of the result.
2892   Value *OrigLHS, *OrigRHS;
2893   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2894   if (Cmp.hasOneUse() &&
2895       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2896                               C3GreaterThan)) {
2897     assert(C1LessThan && C2Equal && C3GreaterThan);
2898 
2899     bool TrueWhenLessThan =
2900         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2901             ->isAllOnesValue();
2902     bool TrueWhenEqual =
2903         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2904             ->isAllOnesValue();
2905     bool TrueWhenGreaterThan =
2906         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2907             ->isAllOnesValue();
2908 
2909     // This generates the new instruction that will replace the original Cmp
2910     // Instruction. Instead of enumerating the various combinations when
2911     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2912     // false, we rely on chaining of ORs and future passes of InstCombine to
2913     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2914 
2915     // When none of the three constants satisfy the predicate for the RHS (C),
2916     // the entire original Cmp can be simplified to a false.
2917     Value *Cond = Builder.getFalse();
2918     if (TrueWhenLessThan)
2919       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2920                                                        OrigLHS, OrigRHS));
2921     if (TrueWhenEqual)
2922       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2923                                                        OrigLHS, OrigRHS));
2924     if (TrueWhenGreaterThan)
2925       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2926                                                        OrigLHS, OrigRHS));
2927 
2928     return replaceInstUsesWith(Cmp, Cond);
2929   }
2930   return nullptr;
2931 }
2932 
2933 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2934   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2935   if (!Bitcast)
2936     return nullptr;
2937 
2938   ICmpInst::Predicate Pred = Cmp.getPredicate();
2939   Value *Op1 = Cmp.getOperand(1);
2940   Value *BCSrcOp = Bitcast->getOperand(0);
2941   Type *SrcType = Bitcast->getSrcTy();
2942   Type *DstType = Bitcast->getType();
2943 
2944   // Make sure the bitcast doesn't change between scalar and vector and
2945   // doesn't change the number of vector elements.
2946   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
2947       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
2948     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2949     Value *X;
2950     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2951       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2952       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2953       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2954       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2955       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2956            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2957           match(Op1, m_Zero()))
2958         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2959 
2960       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2961       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2962         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2963 
2964       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2965       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2966         return new ICmpInst(Pred, X,
2967                             ConstantInt::getAllOnesValue(X->getType()));
2968     }
2969 
2970     // Zero-equality checks are preserved through unsigned floating-point casts:
2971     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2972     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2973     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2974       if (Cmp.isEquality() && match(Op1, m_Zero()))
2975         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2976 
2977     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2978     // the FP extend/truncate because that cast does not change the sign-bit.
2979     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2980     // The sign-bit is always the most significant bit in those types.
2981     const APInt *C;
2982     bool TrueIfSigned;
2983     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2984         isSignBitCheck(Pred, *C, TrueIfSigned)) {
2985       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2986           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2987         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2988         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2989         Type *XType = X->getType();
2990 
2991         // We can't currently handle Power style floating point operations here.
2992         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
2993           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2994           if (auto *XVTy = dyn_cast<VectorType>(XType))
2995             NewType = VectorType::get(NewType, XVTy->getElementCount());
2996           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2997           if (TrueIfSigned)
2998             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2999                                 ConstantInt::getNullValue(NewType));
3000           else
3001             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
3002                                 ConstantInt::getAllOnesValue(NewType));
3003         }
3004       }
3005     }
3006   }
3007 
3008   // Test to see if the operands of the icmp are casted versions of other
3009   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
3010   if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3011     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3012     // so eliminate it as well.
3013     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
3014       Op1 = BC2->getOperand(0);
3015 
3016     Op1 = Builder.CreateBitCast(Op1, SrcType);
3017     return new ICmpInst(Pred, BCSrcOp, Op1);
3018   }
3019 
3020   const APInt *C;
3021   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3022       !SrcType->isIntOrIntVectorTy())
3023     return nullptr;
3024 
3025   // If this is checking if all elements of a vector compare are set or not,
3026   // invert the casted vector equality compare and test if all compare
3027   // elements are clear or not. Compare against zero is generally easier for
3028   // analysis and codegen.
3029   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3030   // Example: are all elements equal? --> are zero elements not equal?
3031   // TODO: Try harder to reduce compare of 2 freely invertible operands?
3032   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
3033       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
3034     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
3035     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3036   }
3037 
3038   // If this is checking if all elements of an extended vector are clear or not,
3039   // compare in a narrow type to eliminate the extend:
3040   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3041   Value *X;
3042   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3043       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3044     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3045       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3046       Value *NewCast = Builder.CreateBitCast(X, NewType);
3047       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3048     }
3049   }
3050 
3051   // Folding: icmp <pred> iN X, C
3052   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3053   //    and C is a splat of a K-bit pattern
3054   //    and SC is a constant vector = <C', C', C', ..., C'>
3055   // Into:
3056   //   %E = extractelement <M x iK> %vec, i32 C'
3057   //   icmp <pred> iK %E, trunc(C)
3058   Value *Vec;
3059   ArrayRef<int> Mask;
3060   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3061     // Check whether every element of Mask is the same constant
3062     if (is_splat(Mask)) {
3063       auto *VecTy = cast<VectorType>(SrcType);
3064       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3065       if (C->isSplat(EltTy->getBitWidth())) {
3066         // Fold the icmp based on the value of C
3067         // If C is M copies of an iK sized bit pattern,
3068         // then:
3069         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3070         //       icmp <pred> iK %SplatVal, <pattern>
3071         Value *Elem = Builder.getInt32(Mask[0]);
3072         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3073         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3074         return new ICmpInst(Pred, Extract, NewC);
3075       }
3076     }
3077   }
3078   return nullptr;
3079 }
3080 
3081 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3082 /// where X is some kind of instruction.
3083 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3084   const APInt *C;
3085 
3086   if (match(Cmp.getOperand(1), m_APInt(C))) {
3087     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3088       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3089         return I;
3090 
3091     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3092       // For now, we only support constant integers while folding the
3093       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3094       // similar to the cases handled by binary ops above.
3095       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3096         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3097           return I;
3098 
3099     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3100       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3101         return I;
3102 
3103     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3104       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3105         return I;
3106   }
3107 
3108   if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3109     return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3110 
3111   return nullptr;
3112 }
3113 
3114 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3115 /// icmp eq/ne BO, C.
3116 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3117     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3118   // TODO: Some of these folds could work with arbitrary constants, but this
3119   // function is limited to scalar and vector splat constants.
3120   if (!Cmp.isEquality())
3121     return nullptr;
3122 
3123   ICmpInst::Predicate Pred = Cmp.getPredicate();
3124   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3125   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3126   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3127 
3128   switch (BO->getOpcode()) {
3129   case Instruction::SRem:
3130     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3131     if (C.isZero() && BO->hasOneUse()) {
3132       const APInt *BOC;
3133       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3134         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3135         return new ICmpInst(Pred, NewRem,
3136                             Constant::getNullValue(BO->getType()));
3137       }
3138     }
3139     break;
3140   case Instruction::Add: {
3141     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3142     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3143       if (BO->hasOneUse())
3144         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3145     } else if (C.isZero()) {
3146       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3147       // efficiently invertible, or if the add has just this one use.
3148       if (Value *NegVal = dyn_castNegVal(BOp1))
3149         return new ICmpInst(Pred, BOp0, NegVal);
3150       if (Value *NegVal = dyn_castNegVal(BOp0))
3151         return new ICmpInst(Pred, NegVal, BOp1);
3152       if (BO->hasOneUse()) {
3153         Value *Neg = Builder.CreateNeg(BOp1);
3154         Neg->takeName(BO);
3155         return new ICmpInst(Pred, BOp0, Neg);
3156       }
3157     }
3158     break;
3159   }
3160   case Instruction::Xor:
3161     if (BO->hasOneUse()) {
3162       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3163         // For the xor case, we can xor two constants together, eliminating
3164         // the explicit xor.
3165         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3166       } else if (C.isZero()) {
3167         // Replace ((xor A, B) != 0) with (A != B)
3168         return new ICmpInst(Pred, BOp0, BOp1);
3169       }
3170     }
3171     break;
3172   case Instruction::Or: {
3173     const APInt *BOC;
3174     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3175       // Comparing if all bits outside of a constant mask are set?
3176       // Replace (X | C) == -1 with (X & ~C) == ~C.
3177       // This removes the -1 constant.
3178       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3179       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3180       return new ICmpInst(Pred, And, NotBOC);
3181     }
3182     break;
3183   }
3184   case Instruction::And: {
3185     const APInt *BOC;
3186     if (match(BOp1, m_APInt(BOC))) {
3187       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3188       if (C == *BOC && C.isPowerOf2())
3189         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3190                             BO, Constant::getNullValue(RHS->getType()));
3191     }
3192     break;
3193   }
3194   case Instruction::UDiv:
3195     if (C.isZero()) {
3196       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3197       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3198       return new ICmpInst(NewPred, BOp1, BOp0);
3199     }
3200     break;
3201   default:
3202     break;
3203   }
3204   return nullptr;
3205 }
3206 
3207 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3208 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3209     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3210   Type *Ty = II->getType();
3211   unsigned BitWidth = C.getBitWidth();
3212   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3213 
3214   switch (II->getIntrinsicID()) {
3215   case Intrinsic::abs:
3216     // abs(A) == 0  ->  A == 0
3217     // abs(A) == INT_MIN  ->  A == INT_MIN
3218     if (C.isZero() || C.isMinSignedValue())
3219       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3220     break;
3221 
3222   case Intrinsic::bswap:
3223     // bswap(A) == C  ->  A == bswap(C)
3224     return new ICmpInst(Pred, II->getArgOperand(0),
3225                         ConstantInt::get(Ty, C.byteSwap()));
3226 
3227   case Intrinsic::ctlz:
3228   case Intrinsic::cttz: {
3229     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3230     if (C == BitWidth)
3231       return new ICmpInst(Pred, II->getArgOperand(0),
3232                           ConstantInt::getNullValue(Ty));
3233 
3234     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3235     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3236     // Limit to one use to ensure we don't increase instruction count.
3237     unsigned Num = C.getLimitedValue(BitWidth);
3238     if (Num != BitWidth && II->hasOneUse()) {
3239       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3240       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3241                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3242       APInt Mask2 = IsTrailing
3243         ? APInt::getOneBitSet(BitWidth, Num)
3244         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3245       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3246                           ConstantInt::get(Ty, Mask2));
3247     }
3248     break;
3249   }
3250 
3251   case Intrinsic::ctpop: {
3252     // popcount(A) == 0  ->  A == 0 and likewise for !=
3253     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3254     bool IsZero = C.isZero();
3255     if (IsZero || C == BitWidth)
3256       return new ICmpInst(Pred, II->getArgOperand(0),
3257                           IsZero ? Constant::getNullValue(Ty)
3258                                  : Constant::getAllOnesValue(Ty));
3259 
3260     break;
3261   }
3262 
3263   case Intrinsic::fshl:
3264   case Intrinsic::fshr:
3265     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3266       const APInt *RotAmtC;
3267       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3268       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3269       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3270         return new ICmpInst(Pred, II->getArgOperand(0),
3271                             II->getIntrinsicID() == Intrinsic::fshl
3272                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3273                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3274     }
3275     break;
3276 
3277   case Intrinsic::uadd_sat: {
3278     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3279     if (C.isZero()) {
3280       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3281       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3282     }
3283     break;
3284   }
3285 
3286   case Intrinsic::usub_sat: {
3287     // usub.sat(a, b) == 0  ->  a <= b
3288     if (C.isZero()) {
3289       ICmpInst::Predicate NewPred =
3290           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3291       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3292     }
3293     break;
3294   }
3295   default:
3296     break;
3297   }
3298 
3299   return nullptr;
3300 }
3301 
3302 /// Fold an icmp with LLVM intrinsics
3303 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3304   assert(Cmp.isEquality());
3305 
3306   ICmpInst::Predicate Pred = Cmp.getPredicate();
3307   Value *Op0 = Cmp.getOperand(0);
3308   Value *Op1 = Cmp.getOperand(1);
3309   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3310   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3311   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3312     return nullptr;
3313 
3314   switch (IIOp0->getIntrinsicID()) {
3315   case Intrinsic::bswap:
3316   case Intrinsic::bitreverse:
3317     // If both operands are byte-swapped or bit-reversed, just compare the
3318     // original values.
3319     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3320   case Intrinsic::fshl:
3321   case Intrinsic::fshr:
3322     // If both operands are rotated by same amount, just compare the
3323     // original values.
3324     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3325       break;
3326     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3327       break;
3328     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3329       break;
3330     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3331   default:
3332     break;
3333   }
3334 
3335   return nullptr;
3336 }
3337 
3338 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3339 /// where X is some kind of instruction and C is AllowUndef.
3340 /// TODO: Move more folds which allow undef to this function.
3341 Instruction *
3342 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3343                                                      const APInt &C) {
3344   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3345   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3346     switch (II->getIntrinsicID()) {
3347     default:
3348       break;
3349     case Intrinsic::fshl:
3350     case Intrinsic::fshr:
3351       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3352         // (rot X, ?) == 0/-1 --> X == 0/-1
3353         if (C.isZero() || C.isAllOnes())
3354           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3355       }
3356       break;
3357     }
3358   }
3359 
3360   return nullptr;
3361 }
3362 
3363 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3364 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3365                                                          BinaryOperator *BO,
3366                                                          const APInt &C) {
3367   switch (BO->getOpcode()) {
3368   case Instruction::Xor:
3369     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3370       return I;
3371     break;
3372   case Instruction::And:
3373     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3374       return I;
3375     break;
3376   case Instruction::Or:
3377     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3378       return I;
3379     break;
3380   case Instruction::Mul:
3381     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3382       return I;
3383     break;
3384   case Instruction::Shl:
3385     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3386       return I;
3387     break;
3388   case Instruction::LShr:
3389   case Instruction::AShr:
3390     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3391       return I;
3392     break;
3393   case Instruction::SRem:
3394     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3395       return I;
3396     break;
3397   case Instruction::UDiv:
3398     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3399       return I;
3400     LLVM_FALLTHROUGH;
3401   case Instruction::SDiv:
3402     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3403       return I;
3404     break;
3405   case Instruction::Sub:
3406     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3407       return I;
3408     break;
3409   case Instruction::Add:
3410     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3411       return I;
3412     break;
3413   default:
3414     break;
3415   }
3416 
3417   // TODO: These folds could be refactored to be part of the above calls.
3418   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3419 }
3420 
3421 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3422 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3423                                                              IntrinsicInst *II,
3424                                                              const APInt &C) {
3425   if (Cmp.isEquality())
3426     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3427 
3428   Type *Ty = II->getType();
3429   unsigned BitWidth = C.getBitWidth();
3430   ICmpInst::Predicate Pred = Cmp.getPredicate();
3431   switch (II->getIntrinsicID()) {
3432   case Intrinsic::ctpop: {
3433     // (ctpop X > BitWidth - 1) --> X == -1
3434     Value *X = II->getArgOperand(0);
3435     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3436       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3437                              ConstantInt::getAllOnesValue(Ty));
3438     // (ctpop X < BitWidth) --> X != -1
3439     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3440       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3441                              ConstantInt::getAllOnesValue(Ty));
3442     break;
3443   }
3444   case Intrinsic::ctlz: {
3445     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3446     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3447       unsigned Num = C.getLimitedValue();
3448       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3449       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3450                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3451     }
3452 
3453     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3454     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3455       unsigned Num = C.getLimitedValue();
3456       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3457       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3458                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3459     }
3460     break;
3461   }
3462   case Intrinsic::cttz: {
3463     // Limit to one use to ensure we don't increase instruction count.
3464     if (!II->hasOneUse())
3465       return nullptr;
3466 
3467     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3468     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3469       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3470       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3471                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3472                              ConstantInt::getNullValue(Ty));
3473     }
3474 
3475     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3476     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3477       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3478       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3479                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3480                              ConstantInt::getNullValue(Ty));
3481     }
3482     break;
3483   }
3484   default:
3485     break;
3486   }
3487 
3488   return nullptr;
3489 }
3490 
3491 /// Handle icmp with constant (but not simple integer constant) RHS.
3492 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3493   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3494   Constant *RHSC = dyn_cast<Constant>(Op1);
3495   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3496   if (!RHSC || !LHSI)
3497     return nullptr;
3498 
3499   switch (LHSI->getOpcode()) {
3500   case Instruction::GetElementPtr:
3501     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3502     if (RHSC->isNullValue() &&
3503         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3504       return new ICmpInst(
3505           I.getPredicate(), LHSI->getOperand(0),
3506           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3507     break;
3508   case Instruction::PHI:
3509     // Only fold icmp into the PHI if the phi and icmp are in the same
3510     // block.  If in the same block, we're encouraging jump threading.  If
3511     // not, we are just pessimizing the code by making an i1 phi.
3512     if (LHSI->getParent() == I.getParent())
3513       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3514         return NV;
3515     break;
3516   case Instruction::IntToPtr:
3517     // icmp pred inttoptr(X), null -> icmp pred X, 0
3518     if (RHSC->isNullValue() &&
3519         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3520       return new ICmpInst(
3521           I.getPredicate(), LHSI->getOperand(0),
3522           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3523     break;
3524 
3525   case Instruction::Load:
3526     // Try to optimize things like "A[i] > 4" to index computations.
3527     if (GetElementPtrInst *GEP =
3528             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3529       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3530         if (Instruction *Res =
3531                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3532           return Res;
3533     break;
3534   }
3535 
3536   return nullptr;
3537 }
3538 
3539 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3540                                               SelectInst *SI, Value *RHS,
3541                                               const ICmpInst &I) {
3542   // Try to fold the comparison into the select arms, which will cause the
3543   // select to be converted into a logical and/or.
3544   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3545     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3546       return Res;
3547     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3548                                                  RHS, DL, SelectCondIsTrue))
3549       return ConstantInt::get(I.getType(), *Impl);
3550     return nullptr;
3551   };
3552 
3553   ConstantInt *CI = nullptr;
3554   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3555   if (Op1)
3556     CI = dyn_cast<ConstantInt>(Op1);
3557 
3558   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3559   if (Op2)
3560     CI = dyn_cast<ConstantInt>(Op2);
3561 
3562   // We only want to perform this transformation if it will not lead to
3563   // additional code. This is true if either both sides of the select
3564   // fold to a constant (in which case the icmp is replaced with a select
3565   // which will usually simplify) or this is the only user of the
3566   // select (in which case we are trading a select+icmp for a simpler
3567   // select+icmp) or all uses of the select can be replaced based on
3568   // dominance information ("Global cases").
3569   bool Transform = false;
3570   if (Op1 && Op2)
3571     Transform = true;
3572   else if (Op1 || Op2) {
3573     // Local case
3574     if (SI->hasOneUse())
3575       Transform = true;
3576     // Global cases
3577     else if (CI && !CI->isZero())
3578       // When Op1 is constant try replacing select with second operand.
3579       // Otherwise Op2 is constant and try replacing select with first
3580       // operand.
3581       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3582   }
3583   if (Transform) {
3584     if (!Op1)
3585       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3586     if (!Op2)
3587       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3588     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3589   }
3590 
3591   return nullptr;
3592 }
3593 
3594 /// Some comparisons can be simplified.
3595 /// In this case, we are looking for comparisons that look like
3596 /// a check for a lossy truncation.
3597 /// Folds:
3598 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3599 /// Where Mask is some pattern that produces all-ones in low bits:
3600 ///    (-1 >> y)
3601 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3602 ///   ~(-1 << y)
3603 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3604 /// The Mask can be a constant, too.
3605 /// For some predicates, the operands are commutative.
3606 /// For others, x can only be on a specific side.
3607 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3608                                           InstCombiner::BuilderTy &Builder) {
3609   ICmpInst::Predicate SrcPred;
3610   Value *X, *M, *Y;
3611   auto m_VariableMask = m_CombineOr(
3612       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3613                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3614       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3615                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3616   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3617   if (!match(&I, m_c_ICmp(SrcPred,
3618                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3619                           m_Deferred(X))))
3620     return nullptr;
3621 
3622   ICmpInst::Predicate DstPred;
3623   switch (SrcPred) {
3624   case ICmpInst::Predicate::ICMP_EQ:
3625     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3626     DstPred = ICmpInst::Predicate::ICMP_ULE;
3627     break;
3628   case ICmpInst::Predicate::ICMP_NE:
3629     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3630     DstPred = ICmpInst::Predicate::ICMP_UGT;
3631     break;
3632   case ICmpInst::Predicate::ICMP_ULT:
3633     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3634     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3635     DstPred = ICmpInst::Predicate::ICMP_UGT;
3636     break;
3637   case ICmpInst::Predicate::ICMP_UGE:
3638     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3639     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3640     DstPred = ICmpInst::Predicate::ICMP_ULE;
3641     break;
3642   case ICmpInst::Predicate::ICMP_SLT:
3643     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3644     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3645     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3646       return nullptr;
3647     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3648       return nullptr;
3649     DstPred = ICmpInst::Predicate::ICMP_SGT;
3650     break;
3651   case ICmpInst::Predicate::ICMP_SGE:
3652     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3653     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3654     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3655       return nullptr;
3656     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3657       return nullptr;
3658     DstPred = ICmpInst::Predicate::ICMP_SLE;
3659     break;
3660   case ICmpInst::Predicate::ICMP_SGT:
3661   case ICmpInst::Predicate::ICMP_SLE:
3662     return nullptr;
3663   case ICmpInst::Predicate::ICMP_UGT:
3664   case ICmpInst::Predicate::ICMP_ULE:
3665     llvm_unreachable("Instsimplify took care of commut. variant");
3666     break;
3667   default:
3668     llvm_unreachable("All possible folds are handled.");
3669   }
3670 
3671   // The mask value may be a vector constant that has undefined elements. But it
3672   // may not be safe to propagate those undefs into the new compare, so replace
3673   // those elements by copying an existing, defined, and safe scalar constant.
3674   Type *OpTy = M->getType();
3675   auto *VecC = dyn_cast<Constant>(M);
3676   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3677   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3678     Constant *SafeReplacementConstant = nullptr;
3679     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3680       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3681         SafeReplacementConstant = VecC->getAggregateElement(i);
3682         break;
3683       }
3684     }
3685     assert(SafeReplacementConstant && "Failed to find undef replacement");
3686     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3687   }
3688 
3689   return Builder.CreateICmp(DstPred, X, M);
3690 }
3691 
3692 /// Some comparisons can be simplified.
3693 /// In this case, we are looking for comparisons that look like
3694 /// a check for a lossy signed truncation.
3695 /// Folds:   (MaskedBits is a constant.)
3696 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3697 /// Into:
3698 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3699 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3700 static Value *
3701 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3702                                  InstCombiner::BuilderTy &Builder) {
3703   ICmpInst::Predicate SrcPred;
3704   Value *X;
3705   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3706   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3707   if (!match(&I, m_c_ICmp(SrcPred,
3708                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3709                                           m_APInt(C1))),
3710                           m_Deferred(X))))
3711     return nullptr;
3712 
3713   // Potential handling of non-splats: for each element:
3714   //  * if both are undef, replace with constant 0.
3715   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3716   //  * if both are not undef, and are different, bailout.
3717   //  * else, only one is undef, then pick the non-undef one.
3718 
3719   // The shift amount must be equal.
3720   if (*C0 != *C1)
3721     return nullptr;
3722   const APInt &MaskedBits = *C0;
3723   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3724 
3725   ICmpInst::Predicate DstPred;
3726   switch (SrcPred) {
3727   case ICmpInst::Predicate::ICMP_EQ:
3728     // ((%x << MaskedBits) a>> MaskedBits) == %x
3729     //   =>
3730     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3731     DstPred = ICmpInst::Predicate::ICMP_ULT;
3732     break;
3733   case ICmpInst::Predicate::ICMP_NE:
3734     // ((%x << MaskedBits) a>> MaskedBits) != %x
3735     //   =>
3736     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3737     DstPred = ICmpInst::Predicate::ICMP_UGE;
3738     break;
3739   // FIXME: are more folds possible?
3740   default:
3741     return nullptr;
3742   }
3743 
3744   auto *XType = X->getType();
3745   const unsigned XBitWidth = XType->getScalarSizeInBits();
3746   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3747   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3748 
3749   // KeptBits = bitwidth(%x) - MaskedBits
3750   const APInt KeptBits = BitWidth - MaskedBits;
3751   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3752   // ICmpCst = (1 << KeptBits)
3753   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3754   assert(ICmpCst.isPowerOf2());
3755   // AddCst = (1 << (KeptBits-1))
3756   const APInt AddCst = ICmpCst.lshr(1);
3757   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3758 
3759   // T0 = add %x, AddCst
3760   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3761   // T1 = T0 DstPred ICmpCst
3762   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3763 
3764   return T1;
3765 }
3766 
3767 // Given pattern:
3768 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3769 // we should move shifts to the same hand of 'and', i.e. rewrite as
3770 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3771 // We are only interested in opposite logical shifts here.
3772 // One of the shifts can be truncated.
3773 // If we can, we want to end up creating 'lshr' shift.
3774 static Value *
3775 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3776                                            InstCombiner::BuilderTy &Builder) {
3777   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3778       !I.getOperand(0)->hasOneUse())
3779     return nullptr;
3780 
3781   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3782 
3783   // Look for an 'and' of two logical shifts, one of which may be truncated.
3784   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3785   Instruction *XShift, *MaybeTruncation, *YShift;
3786   if (!match(
3787           I.getOperand(0),
3788           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3789                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3790                                    m_AnyLogicalShift, m_Instruction(YShift))),
3791                                m_Instruction(MaybeTruncation)))))
3792     return nullptr;
3793 
3794   // We potentially looked past 'trunc', but only when matching YShift,
3795   // therefore YShift must have the widest type.
3796   Instruction *WidestShift = YShift;
3797   // Therefore XShift must have the shallowest type.
3798   // Or they both have identical types if there was no truncation.
3799   Instruction *NarrowestShift = XShift;
3800 
3801   Type *WidestTy = WidestShift->getType();
3802   Type *NarrowestTy = NarrowestShift->getType();
3803   assert(NarrowestTy == I.getOperand(0)->getType() &&
3804          "We did not look past any shifts while matching XShift though.");
3805   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3806 
3807   // If YShift is a 'lshr', swap the shifts around.
3808   if (match(YShift, m_LShr(m_Value(), m_Value())))
3809     std::swap(XShift, YShift);
3810 
3811   // The shifts must be in opposite directions.
3812   auto XShiftOpcode = XShift->getOpcode();
3813   if (XShiftOpcode == YShift->getOpcode())
3814     return nullptr; // Do not care about same-direction shifts here.
3815 
3816   Value *X, *XShAmt, *Y, *YShAmt;
3817   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3818   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3819 
3820   // If one of the values being shifted is a constant, then we will end with
3821   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3822   // however, we will need to ensure that we won't increase instruction count.
3823   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3824     // At least one of the hands of the 'and' should be one-use shift.
3825     if (!match(I.getOperand(0),
3826                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3827       return nullptr;
3828     if (HadTrunc) {
3829       // Due to the 'trunc', we will need to widen X. For that either the old
3830       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3831       if (!MaybeTruncation->hasOneUse() &&
3832           !NarrowestShift->getOperand(1)->hasOneUse())
3833         return nullptr;
3834     }
3835   }
3836 
3837   // We have two shift amounts from two different shifts. The types of those
3838   // shift amounts may not match. If that's the case let's bailout now.
3839   if (XShAmt->getType() != YShAmt->getType())
3840     return nullptr;
3841 
3842   // As input, we have the following pattern:
3843   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3844   // We want to rewrite that as:
3845   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3846   // While we know that originally (Q+K) would not overflow
3847   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3848   // shift amounts. so it may now overflow in smaller bitwidth.
3849   // To ensure that does not happen, we need to ensure that the total maximal
3850   // shift amount is still representable in that smaller bit width.
3851   unsigned MaximalPossibleTotalShiftAmount =
3852       (WidestTy->getScalarSizeInBits() - 1) +
3853       (NarrowestTy->getScalarSizeInBits() - 1);
3854   APInt MaximalRepresentableShiftAmount =
3855       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3856   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3857     return nullptr;
3858 
3859   // Can we fold (XShAmt+YShAmt) ?
3860   auto *NewShAmt = dyn_cast_or_null<Constant>(
3861       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3862                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3863   if (!NewShAmt)
3864     return nullptr;
3865   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3866   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3867 
3868   // Is the new shift amount smaller than the bit width?
3869   // FIXME: could also rely on ConstantRange.
3870   if (!match(NewShAmt,
3871              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3872                                 APInt(WidestBitWidth, WidestBitWidth))))
3873     return nullptr;
3874 
3875   // An extra legality check is needed if we had trunc-of-lshr.
3876   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3877     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3878                     WidestShift]() {
3879       // It isn't obvious whether it's worth it to analyze non-constants here.
3880       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3881       // If *any* of these preconditions matches we can perform the fold.
3882       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3883                                     ? NewShAmt->getSplatValue()
3884                                     : NewShAmt;
3885       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3886       if (NewShAmtSplat &&
3887           (NewShAmtSplat->isNullValue() ||
3888            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3889         return true;
3890       // We consider *min* leading zeros so a single outlier
3891       // blocks the transform as opposed to allowing it.
3892       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3893         KnownBits Known = computeKnownBits(C, SQ.DL);
3894         unsigned MinLeadZero = Known.countMinLeadingZeros();
3895         // If the value being shifted has at most lowest bit set we can fold.
3896         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3897         if (MaxActiveBits <= 1)
3898           return true;
3899         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3900         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3901           return true;
3902       }
3903       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3904         KnownBits Known = computeKnownBits(C, SQ.DL);
3905         unsigned MinLeadZero = Known.countMinLeadingZeros();
3906         // If the value being shifted has at most lowest bit set we can fold.
3907         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3908         if (MaxActiveBits <= 1)
3909           return true;
3910         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3911         if (NewShAmtSplat) {
3912           APInt AdjNewShAmt =
3913               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3914           if (AdjNewShAmt.ule(MinLeadZero))
3915             return true;
3916         }
3917       }
3918       return false; // Can't tell if it's ok.
3919     };
3920     if (!CanFold())
3921       return nullptr;
3922   }
3923 
3924   // All good, we can do this fold.
3925   X = Builder.CreateZExt(X, WidestTy);
3926   Y = Builder.CreateZExt(Y, WidestTy);
3927   // The shift is the same that was for X.
3928   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3929                   ? Builder.CreateLShr(X, NewShAmt)
3930                   : Builder.CreateShl(X, NewShAmt);
3931   Value *T1 = Builder.CreateAnd(T0, Y);
3932   return Builder.CreateICmp(I.getPredicate(), T1,
3933                             Constant::getNullValue(WidestTy));
3934 }
3935 
3936 /// Fold
3937 ///   (-1 u/ x) u< y
3938 ///   ((x * y) ?/ x) != y
3939 /// to
3940 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3941 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3942 /// will mean that we are looking for the opposite answer.
3943 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3944   ICmpInst::Predicate Pred;
3945   Value *X, *Y;
3946   Instruction *Mul;
3947   Instruction *Div;
3948   bool NeedNegation;
3949   // Look for: (-1 u/ x) u</u>= y
3950   if (!I.isEquality() &&
3951       match(&I, m_c_ICmp(Pred,
3952                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3953                                       m_Instruction(Div)),
3954                          m_Value(Y)))) {
3955     Mul = nullptr;
3956 
3957     // Are we checking that overflow does not happen, or does happen?
3958     switch (Pred) {
3959     case ICmpInst::Predicate::ICMP_ULT:
3960       NeedNegation = false;
3961       break; // OK
3962     case ICmpInst::Predicate::ICMP_UGE:
3963       NeedNegation = true;
3964       break; // OK
3965     default:
3966       return nullptr; // Wrong predicate.
3967     }
3968   } else // Look for: ((x * y) / x) !=/== y
3969       if (I.isEquality() &&
3970           match(&I,
3971                 m_c_ICmp(Pred, m_Value(Y),
3972                          m_CombineAnd(
3973                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3974                                                                   m_Value(X)),
3975                                                           m_Instruction(Mul)),
3976                                              m_Deferred(X))),
3977                              m_Instruction(Div))))) {
3978     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3979   } else
3980     return nullptr;
3981 
3982   BuilderTy::InsertPointGuard Guard(Builder);
3983   // If the pattern included (x * y), we'll want to insert new instructions
3984   // right before that original multiplication so that we can replace it.
3985   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3986   if (MulHadOtherUses)
3987     Builder.SetInsertPoint(Mul);
3988 
3989   Function *F = Intrinsic::getDeclaration(I.getModule(),
3990                                           Div->getOpcode() == Instruction::UDiv
3991                                               ? Intrinsic::umul_with_overflow
3992                                               : Intrinsic::smul_with_overflow,
3993                                           X->getType());
3994   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3995 
3996   // If the multiplication was used elsewhere, to ensure that we don't leave
3997   // "duplicate" instructions, replace uses of that original multiplication
3998   // with the multiplication result from the with.overflow intrinsic.
3999   if (MulHadOtherUses)
4000     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
4001 
4002   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
4003   if (NeedNegation) // This technically increases instruction count.
4004     Res = Builder.CreateNot(Res, "mul.not.ov");
4005 
4006   // If we replaced the mul, erase it. Do this after all uses of Builder,
4007   // as the mul is used as insertion point.
4008   if (MulHadOtherUses)
4009     eraseInstFromFunction(*Mul);
4010 
4011   return Res;
4012 }
4013 
4014 static Instruction *foldICmpXNegX(ICmpInst &I) {
4015   CmpInst::Predicate Pred;
4016   Value *X;
4017   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
4018     return nullptr;
4019 
4020   if (ICmpInst::isSigned(Pred))
4021     Pred = ICmpInst::getSwappedPredicate(Pred);
4022   else if (ICmpInst::isUnsigned(Pred))
4023     Pred = ICmpInst::getSignedPredicate(Pred);
4024   // else for equality-comparisons just keep the predicate.
4025 
4026   return ICmpInst::Create(Instruction::ICmp, Pred, X,
4027                           Constant::getNullValue(X->getType()), I.getName());
4028 }
4029 
4030 /// Try to fold icmp (binop), X or icmp X, (binop).
4031 /// TODO: A large part of this logic is duplicated in InstSimplify's
4032 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4033 /// duplication.
4034 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4035                                              const SimplifyQuery &SQ) {
4036   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4037   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4038 
4039   // Special logic for binary operators.
4040   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4041   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4042   if (!BO0 && !BO1)
4043     return nullptr;
4044 
4045   if (Instruction *NewICmp = foldICmpXNegX(I))
4046     return NewICmp;
4047 
4048   const CmpInst::Predicate Pred = I.getPredicate();
4049   Value *X;
4050 
4051   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4052   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4053   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4054       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4055     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4056   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4057   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4058       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4059     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4060 
4061   {
4062     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4063     Constant *C;
4064     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4065                                   m_ImmConstant(C)))) &&
4066         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4067       Constant *C2 = ConstantExpr::getNot(C);
4068       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4069     }
4070     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4071     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4072                                   m_ImmConstant(C)))) &&
4073         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4074       Constant *C2 = ConstantExpr::getNot(C);
4075       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4076     }
4077   }
4078 
4079   {
4080     // Similar to above: an unsigned overflow comparison may use offset + mask:
4081     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4082     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4083     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4084     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4085     BinaryOperator *BO;
4086     const APInt *C;
4087     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4088         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4089         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4090       CmpInst::Predicate NewPred =
4091           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4092       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4093       return new ICmpInst(NewPred, Op1, Zero);
4094     }
4095 
4096     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4097         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4098         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4099       CmpInst::Predicate NewPred =
4100           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4101       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4102       return new ICmpInst(NewPred, Op0, Zero);
4103     }
4104   }
4105 
4106   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4107   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4108     NoOp0WrapProblem =
4109         ICmpInst::isEquality(Pred) ||
4110         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4111         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4112   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4113     NoOp1WrapProblem =
4114         ICmpInst::isEquality(Pred) ||
4115         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4116         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4117 
4118   // Analyze the case when either Op0 or Op1 is an add instruction.
4119   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4120   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4121   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4122     A = BO0->getOperand(0);
4123     B = BO0->getOperand(1);
4124   }
4125   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4126     C = BO1->getOperand(0);
4127     D = BO1->getOperand(1);
4128   }
4129 
4130   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4131   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4132   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4133     return new ICmpInst(Pred, A == Op1 ? B : A,
4134                         Constant::getNullValue(Op1->getType()));
4135 
4136   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4137   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4138   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4139     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4140                         C == Op0 ? D : C);
4141 
4142   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4143   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4144       NoOp1WrapProblem) {
4145     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4146     Value *Y, *Z;
4147     if (A == C) {
4148       // C + B == C + D  ->  B == D
4149       Y = B;
4150       Z = D;
4151     } else if (A == D) {
4152       // D + B == C + D  ->  B == C
4153       Y = B;
4154       Z = C;
4155     } else if (B == C) {
4156       // A + C == C + D  ->  A == D
4157       Y = A;
4158       Z = D;
4159     } else {
4160       assert(B == D);
4161       // A + D == C + D  ->  A == C
4162       Y = A;
4163       Z = C;
4164     }
4165     return new ICmpInst(Pred, Y, Z);
4166   }
4167 
4168   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4169   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4170       match(B, m_AllOnes()))
4171     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4172 
4173   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4174   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4175       match(B, m_AllOnes()))
4176     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4177 
4178   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4179   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4180     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4181 
4182   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4183   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4184     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4185 
4186   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4187   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4188       match(D, m_AllOnes()))
4189     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4190 
4191   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4192   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4193       match(D, m_AllOnes()))
4194     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4195 
4196   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4197   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4198     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4199 
4200   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4201   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4202     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4203 
4204   // TODO: The subtraction-related identities shown below also hold, but
4205   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4206   // wouldn't happen even if they were implemented.
4207   //
4208   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4209   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4210   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4211   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4212 
4213   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4214   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4215     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4216 
4217   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4218   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4219     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4220 
4221   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4222   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4223     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4224 
4225   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4226   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4227     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4228 
4229   // if C1 has greater magnitude than C2:
4230   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4231   //  s.t. C3 = C1 - C2
4232   //
4233   // if C2 has greater magnitude than C1:
4234   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4235   //  s.t. C3 = C2 - C1
4236   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4237       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4238     const APInt *AP1, *AP2;
4239     // TODO: Support non-uniform vectors.
4240     // TODO: Allow undef passthrough if B AND D's element is undef.
4241     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4242         AP1->isNegative() == AP2->isNegative()) {
4243       APInt AP1Abs = AP1->abs();
4244       APInt AP2Abs = AP2->abs();
4245       if (AP1Abs.uge(AP2Abs)) {
4246         APInt Diff = *AP1 - *AP2;
4247         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4248         bool HasNSW = BO0->hasNoSignedWrap();
4249         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4250         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4251         return new ICmpInst(Pred, NewAdd, C);
4252       } else {
4253         APInt Diff = *AP2 - *AP1;
4254         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4255         bool HasNSW = BO1->hasNoSignedWrap();
4256         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4257         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4258         return new ICmpInst(Pred, A, NewAdd);
4259       }
4260     }
4261     Constant *Cst1, *Cst2;
4262     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4263         ICmpInst::isEquality(Pred)) {
4264       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4265       Value *NewAdd = Builder.CreateAdd(C, Diff);
4266       return new ICmpInst(Pred, A, NewAdd);
4267     }
4268   }
4269 
4270   // Analyze the case when either Op0 or Op1 is a sub instruction.
4271   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4272   A = nullptr;
4273   B = nullptr;
4274   C = nullptr;
4275   D = nullptr;
4276   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4277     A = BO0->getOperand(0);
4278     B = BO0->getOperand(1);
4279   }
4280   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4281     C = BO1->getOperand(0);
4282     D = BO1->getOperand(1);
4283   }
4284 
4285   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4286   if (A == Op1 && NoOp0WrapProblem)
4287     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4288   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4289   if (C == Op0 && NoOp1WrapProblem)
4290     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4291 
4292   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4293   // (A - B) u>/u<= A --> B u>/u<= A
4294   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4295     return new ICmpInst(Pred, B, A);
4296   // C u</u>= (C - D) --> C u</u>= D
4297   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4298     return new ICmpInst(Pred, C, D);
4299   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4300   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4301       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4302     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4303   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4304   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4305       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4306     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4307 
4308   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4309   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4310     return new ICmpInst(Pred, A, C);
4311 
4312   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4313   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4314     return new ICmpInst(Pred, D, B);
4315 
4316   // icmp (0-X) < cst --> x > -cst
4317   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4318     Value *X;
4319     if (match(BO0, m_Neg(m_Value(X))))
4320       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4321         if (RHSC->isNotMinSignedValue())
4322           return new ICmpInst(I.getSwappedPredicate(), X,
4323                               ConstantExpr::getNeg(RHSC));
4324   }
4325 
4326   {
4327     // Try to remove shared constant multiplier from equality comparison:
4328     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4329     Value *X, *Y;
4330     const APInt *C;
4331     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4332         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4333       if (!C->countTrailingZeros() ||
4334           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4335           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4336       return new ICmpInst(Pred, X, Y);
4337   }
4338 
4339   BinaryOperator *SRem = nullptr;
4340   // icmp (srem X, Y), Y
4341   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4342     SRem = BO0;
4343   // icmp Y, (srem X, Y)
4344   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4345            Op0 == BO1->getOperand(1))
4346     SRem = BO1;
4347   if (SRem) {
4348     // We don't check hasOneUse to avoid increasing register pressure because
4349     // the value we use is the same value this instruction was already using.
4350     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4351     default:
4352       break;
4353     case ICmpInst::ICMP_EQ:
4354       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4355     case ICmpInst::ICMP_NE:
4356       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4357     case ICmpInst::ICMP_SGT:
4358     case ICmpInst::ICMP_SGE:
4359       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4360                           Constant::getAllOnesValue(SRem->getType()));
4361     case ICmpInst::ICMP_SLT:
4362     case ICmpInst::ICMP_SLE:
4363       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4364                           Constant::getNullValue(SRem->getType()));
4365     }
4366   }
4367 
4368   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4369       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4370     switch (BO0->getOpcode()) {
4371     default:
4372       break;
4373     case Instruction::Add:
4374     case Instruction::Sub:
4375     case Instruction::Xor: {
4376       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4377         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4378 
4379       const APInt *C;
4380       if (match(BO0->getOperand(1), m_APInt(C))) {
4381         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4382         if (C->isSignMask()) {
4383           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4384           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4385         }
4386 
4387         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4388         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4389           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4390           NewPred = I.getSwappedPredicate(NewPred);
4391           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4392         }
4393       }
4394       break;
4395     }
4396     case Instruction::Mul: {
4397       if (!I.isEquality())
4398         break;
4399 
4400       const APInt *C;
4401       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4402           !C->isOne()) {
4403         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4404         // Mask = -1 >> count-trailing-zeros(C).
4405         if (unsigned TZs = C->countTrailingZeros()) {
4406           Constant *Mask = ConstantInt::get(
4407               BO0->getType(),
4408               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4409           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4410           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4411           return new ICmpInst(Pred, And1, And2);
4412         }
4413       }
4414       break;
4415     }
4416     case Instruction::UDiv:
4417     case Instruction::LShr:
4418       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4419         break;
4420       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4421 
4422     case Instruction::SDiv:
4423       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4424         break;
4425       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4426 
4427     case Instruction::AShr:
4428       if (!BO0->isExact() || !BO1->isExact())
4429         break;
4430       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4431 
4432     case Instruction::Shl: {
4433       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4434       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4435       if (!NUW && !NSW)
4436         break;
4437       if (!NSW && I.isSigned())
4438         break;
4439       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4440     }
4441     }
4442   }
4443 
4444   if (BO0) {
4445     // Transform  A & (L - 1) `ult` L --> L != 0
4446     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4447     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4448 
4449     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4450       auto *Zero = Constant::getNullValue(BO0->getType());
4451       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4452     }
4453   }
4454 
4455   if (Value *V = foldMultiplicationOverflowCheck(I))
4456     return replaceInstUsesWith(I, V);
4457 
4458   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4459     return replaceInstUsesWith(I, V);
4460 
4461   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4462     return replaceInstUsesWith(I, V);
4463 
4464   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4465     return replaceInstUsesWith(I, V);
4466 
4467   return nullptr;
4468 }
4469 
4470 /// Fold icmp Pred min|max(X, Y), X.
4471 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4472   ICmpInst::Predicate Pred = Cmp.getPredicate();
4473   Value *Op0 = Cmp.getOperand(0);
4474   Value *X = Cmp.getOperand(1);
4475 
4476   // Canonicalize minimum or maximum operand to LHS of the icmp.
4477   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4478       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4479       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4480       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4481     std::swap(Op0, X);
4482     Pred = Cmp.getSwappedPredicate();
4483   }
4484 
4485   Value *Y;
4486   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4487     // smin(X, Y)  == X --> X s<= Y
4488     // smin(X, Y) s>= X --> X s<= Y
4489     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4490       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4491 
4492     // smin(X, Y) != X --> X s> Y
4493     // smin(X, Y) s< X --> X s> Y
4494     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4495       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4496 
4497     // These cases should be handled in InstSimplify:
4498     // smin(X, Y) s<= X --> true
4499     // smin(X, Y) s> X --> false
4500     return nullptr;
4501   }
4502 
4503   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4504     // smax(X, Y)  == X --> X s>= Y
4505     // smax(X, Y) s<= X --> X s>= Y
4506     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4507       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4508 
4509     // smax(X, Y) != X --> X s< Y
4510     // smax(X, Y) s> X --> X s< Y
4511     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4512       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4513 
4514     // These cases should be handled in InstSimplify:
4515     // smax(X, Y) s>= X --> true
4516     // smax(X, Y) s< X --> false
4517     return nullptr;
4518   }
4519 
4520   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4521     // umin(X, Y)  == X --> X u<= Y
4522     // umin(X, Y) u>= X --> X u<= Y
4523     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4524       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4525 
4526     // umin(X, Y) != X --> X u> Y
4527     // umin(X, Y) u< X --> X u> Y
4528     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4529       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4530 
4531     // These cases should be handled in InstSimplify:
4532     // umin(X, Y) u<= X --> true
4533     // umin(X, Y) u> X --> false
4534     return nullptr;
4535   }
4536 
4537   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4538     // umax(X, Y)  == X --> X u>= Y
4539     // umax(X, Y) u<= X --> X u>= Y
4540     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4541       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4542 
4543     // umax(X, Y) != X --> X u< Y
4544     // umax(X, Y) u> X --> X u< Y
4545     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4546       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4547 
4548     // These cases should be handled in InstSimplify:
4549     // umax(X, Y) u>= X --> true
4550     // umax(X, Y) u< X --> false
4551     return nullptr;
4552   }
4553 
4554   return nullptr;
4555 }
4556 
4557 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4558   if (!I.isEquality())
4559     return nullptr;
4560 
4561   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4562   const CmpInst::Predicate Pred = I.getPredicate();
4563   Value *A, *B, *C, *D;
4564   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4565     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4566       Value *OtherVal = A == Op1 ? B : A;
4567       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4568     }
4569 
4570     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4571       // A^c1 == C^c2 --> A == C^(c1^c2)
4572       ConstantInt *C1, *C2;
4573       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4574           Op1->hasOneUse()) {
4575         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4576         Value *Xor = Builder.CreateXor(C, NC);
4577         return new ICmpInst(Pred, A, Xor);
4578       }
4579 
4580       // A^B == A^D -> B == D
4581       if (A == C)
4582         return new ICmpInst(Pred, B, D);
4583       if (A == D)
4584         return new ICmpInst(Pred, B, C);
4585       if (B == C)
4586         return new ICmpInst(Pred, A, D);
4587       if (B == D)
4588         return new ICmpInst(Pred, A, C);
4589     }
4590   }
4591 
4592   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4593     // A == (A^B)  ->  B == 0
4594     Value *OtherVal = A == Op0 ? B : A;
4595     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4596   }
4597 
4598   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4599   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4600       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4601     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4602 
4603     if (A == C) {
4604       X = B;
4605       Y = D;
4606       Z = A;
4607     } else if (A == D) {
4608       X = B;
4609       Y = C;
4610       Z = A;
4611     } else if (B == C) {
4612       X = A;
4613       Y = D;
4614       Z = B;
4615     } else if (B == D) {
4616       X = A;
4617       Y = C;
4618       Z = B;
4619     }
4620 
4621     if (X) { // Build (X^Y) & Z
4622       Op1 = Builder.CreateXor(X, Y);
4623       Op1 = Builder.CreateAnd(Op1, Z);
4624       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4625     }
4626   }
4627 
4628   {
4629     // Similar to above, but specialized for constant because invert is needed:
4630     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4631     Value *X, *Y;
4632     Constant *C;
4633     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4634         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4635       Value *Xor = Builder.CreateXor(X, Y);
4636       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4637       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4638     }
4639   }
4640 
4641   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4642   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4643   ConstantInt *Cst1;
4644   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4645        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4646       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4647        match(Op1, m_ZExt(m_Value(A))))) {
4648     APInt Pow2 = Cst1->getValue() + 1;
4649     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4650         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4651       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4652   }
4653 
4654   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4655   // For lshr and ashr pairs.
4656   const APInt *AP1, *AP2;
4657   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4658        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
4659       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4660        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
4661     if (AP1 != AP2)
4662       return nullptr;
4663     unsigned TypeBits = AP1->getBitWidth();
4664     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
4665     if (ShAmt < TypeBits && ShAmt != 0) {
4666       ICmpInst::Predicate NewPred =
4667           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4668       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4669       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4670       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
4671     }
4672   }
4673 
4674   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4675   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4676       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4677     unsigned TypeBits = Cst1->getBitWidth();
4678     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4679     if (ShAmt < TypeBits && ShAmt != 0) {
4680       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4681       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4682       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4683                                       I.getName() + ".mask");
4684       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4685     }
4686   }
4687 
4688   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4689   // "icmp (and X, mask), cst"
4690   uint64_t ShAmt = 0;
4691   if (Op0->hasOneUse() &&
4692       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4693       match(Op1, m_ConstantInt(Cst1)) &&
4694       // Only do this when A has multiple uses.  This is most important to do
4695       // when it exposes other optimizations.
4696       !A->hasOneUse()) {
4697     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4698 
4699     if (ShAmt < ASize) {
4700       APInt MaskV =
4701           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4702       MaskV <<= ShAmt;
4703 
4704       APInt CmpV = Cst1->getValue().zext(ASize);
4705       CmpV <<= ShAmt;
4706 
4707       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4708       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4709     }
4710   }
4711 
4712   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4713     return ICmp;
4714 
4715   // Canonicalize checking for a power-of-2-or-zero value:
4716   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4717   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4718   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4719                                    m_Deferred(A)))) ||
4720       !match(Op1, m_ZeroInt()))
4721     A = nullptr;
4722 
4723   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4724   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4725   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4726     A = Op1;
4727   else if (match(Op1,
4728                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4729     A = Op0;
4730 
4731   if (A) {
4732     Type *Ty = A->getType();
4733     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4734     return Pred == ICmpInst::ICMP_EQ
4735         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4736         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4737   }
4738 
4739   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4740   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4741   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4742   // of instcombine.
4743   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4744   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4745       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4746       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4747       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4748     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4749     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4750     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4751                                                   : ICmpInst::ICMP_UGE,
4752                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4753   }
4754 
4755   return nullptr;
4756 }
4757 
4758 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4759                                       InstCombiner::BuilderTy &Builder) {
4760   ICmpInst::Predicate Pred = ICmp.getPredicate();
4761   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4762 
4763   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4764   // The trunc masks high bits while the compare may effectively mask low bits.
4765   Value *X;
4766   const APInt *C;
4767   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4768     return nullptr;
4769 
4770   // This matches patterns corresponding to tests of the signbit as well as:
4771   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4772   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4773   APInt Mask;
4774   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4775     Value *And = Builder.CreateAnd(X, Mask);
4776     Constant *Zero = ConstantInt::getNullValue(X->getType());
4777     return new ICmpInst(Pred, And, Zero);
4778   }
4779 
4780   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4781   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4782     // If C is a negative power-of-2 (high-bit mask):
4783     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4784     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4785     Value *And = Builder.CreateAnd(X, MaskC);
4786     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4787   }
4788 
4789   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4790     // If C is not-of-power-of-2 (one clear bit):
4791     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4792     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4793     Value *And = Builder.CreateAnd(X, MaskC);
4794     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4795   }
4796 
4797   return nullptr;
4798 }
4799 
4800 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4801   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4802   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4803   Value *X;
4804   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4805     return nullptr;
4806 
4807   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4808   bool IsSignedCmp = ICmp.isSigned();
4809 
4810   // icmp Pred (ext X), (ext Y)
4811   Value *Y;
4812   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4813     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4814     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4815 
4816     // If we have mismatched casts, treat the zext of a non-negative source as
4817     // a sext to simulate matching casts. Otherwise, we are done.
4818     // TODO: Can we handle some predicates (equality) without non-negative?
4819     if (IsZext0 != IsZext1) {
4820       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4821           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4822         IsSignedExt = true;
4823       else
4824         return nullptr;
4825     }
4826 
4827     // Not an extension from the same type?
4828     Type *XTy = X->getType(), *YTy = Y->getType();
4829     if (XTy != YTy) {
4830       // One of the casts must have one use because we are creating a new cast.
4831       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4832         return nullptr;
4833       // Extend the narrower operand to the type of the wider operand.
4834       CastInst::CastOps CastOpcode =
4835           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4836       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4837         X = Builder.CreateCast(CastOpcode, X, YTy);
4838       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4839         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4840       else
4841         return nullptr;
4842     }
4843 
4844     // (zext X) == (zext Y) --> X == Y
4845     // (sext X) == (sext Y) --> X == Y
4846     if (ICmp.isEquality())
4847       return new ICmpInst(ICmp.getPredicate(), X, Y);
4848 
4849     // A signed comparison of sign extended values simplifies into a
4850     // signed comparison.
4851     if (IsSignedCmp && IsSignedExt)
4852       return new ICmpInst(ICmp.getPredicate(), X, Y);
4853 
4854     // The other three cases all fold into an unsigned comparison.
4855     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4856   }
4857 
4858   // Below here, we are only folding a compare with constant.
4859   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4860   if (!C)
4861     return nullptr;
4862 
4863   // Compute the constant that would happen if we truncated to SrcTy then
4864   // re-extended to DestTy.
4865   Type *SrcTy = CastOp0->getSrcTy();
4866   Type *DestTy = CastOp0->getDestTy();
4867   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4868   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4869 
4870   // If the re-extended constant didn't change...
4871   if (Res2 == C) {
4872     if (ICmp.isEquality())
4873       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4874 
4875     // A signed comparison of sign extended values simplifies into a
4876     // signed comparison.
4877     if (IsSignedExt && IsSignedCmp)
4878       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4879 
4880     // The other three cases all fold into an unsigned comparison.
4881     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4882   }
4883 
4884   // The re-extended constant changed, partly changed (in the case of a vector),
4885   // or could not be determined to be equal (in the case of a constant
4886   // expression), so the constant cannot be represented in the shorter type.
4887   // All the cases that fold to true or false will have already been handled
4888   // by simplifyICmpInst, so only deal with the tricky case.
4889   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4890     return nullptr;
4891 
4892   // Is source op positive?
4893   // icmp ult (sext X), C --> icmp sgt X, -1
4894   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4895     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4896 
4897   // Is source op negative?
4898   // icmp ugt (sext X), C --> icmp slt X, 0
4899   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4900   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4901 }
4902 
4903 /// Handle icmp (cast x), (cast or constant).
4904 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4905   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4906   // icmp compares only pointer's value.
4907   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4908   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4909   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4910   if (SimplifiedOp0 || SimplifiedOp1)
4911     return new ICmpInst(ICmp.getPredicate(),
4912                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4913                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4914 
4915   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4916   if (!CastOp0)
4917     return nullptr;
4918   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4919     return nullptr;
4920 
4921   Value *Op0Src = CastOp0->getOperand(0);
4922   Type *SrcTy = CastOp0->getSrcTy();
4923   Type *DestTy = CastOp0->getDestTy();
4924 
4925   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4926   // integer type is the same size as the pointer type.
4927   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4928     if (isa<VectorType>(SrcTy)) {
4929       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4930       DestTy = cast<VectorType>(DestTy)->getElementType();
4931     }
4932     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4933   };
4934   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4935       CompatibleSizes(SrcTy, DestTy)) {
4936     Value *NewOp1 = nullptr;
4937     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4938       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4939       if (PtrSrc->getType()->getPointerAddressSpace() ==
4940           Op0Src->getType()->getPointerAddressSpace()) {
4941         NewOp1 = PtrToIntOp1->getOperand(0);
4942         // If the pointer types don't match, insert a bitcast.
4943         if (Op0Src->getType() != NewOp1->getType())
4944           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4945       }
4946     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4947       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4948     }
4949 
4950     if (NewOp1)
4951       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4952   }
4953 
4954   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4955     return R;
4956 
4957   return foldICmpWithZextOrSext(ICmp);
4958 }
4959 
4960 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4961   switch (BinaryOp) {
4962     default:
4963       llvm_unreachable("Unsupported binary op");
4964     case Instruction::Add:
4965     case Instruction::Sub:
4966       return match(RHS, m_Zero());
4967     case Instruction::Mul:
4968       return match(RHS, m_One());
4969   }
4970 }
4971 
4972 OverflowResult
4973 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4974                                   bool IsSigned, Value *LHS, Value *RHS,
4975                                   Instruction *CxtI) const {
4976   switch (BinaryOp) {
4977     default:
4978       llvm_unreachable("Unsupported binary op");
4979     case Instruction::Add:
4980       if (IsSigned)
4981         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4982       else
4983         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4984     case Instruction::Sub:
4985       if (IsSigned)
4986         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4987       else
4988         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4989     case Instruction::Mul:
4990       if (IsSigned)
4991         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4992       else
4993         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4994   }
4995 }
4996 
4997 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4998                                              bool IsSigned, Value *LHS,
4999                                              Value *RHS, Instruction &OrigI,
5000                                              Value *&Result,
5001                                              Constant *&Overflow) {
5002   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
5003     std::swap(LHS, RHS);
5004 
5005   // If the overflow check was an add followed by a compare, the insertion point
5006   // may be pointing to the compare.  We want to insert the new instructions
5007   // before the add in case there are uses of the add between the add and the
5008   // compare.
5009   Builder.SetInsertPoint(&OrigI);
5010 
5011   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
5012   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
5013     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
5014 
5015   if (isNeutralValue(BinaryOp, RHS)) {
5016     Result = LHS;
5017     Overflow = ConstantInt::getFalse(OverflowTy);
5018     return true;
5019   }
5020 
5021   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
5022     case OverflowResult::MayOverflow:
5023       return false;
5024     case OverflowResult::AlwaysOverflowsLow:
5025     case OverflowResult::AlwaysOverflowsHigh:
5026       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5027       Result->takeName(&OrigI);
5028       Overflow = ConstantInt::getTrue(OverflowTy);
5029       return true;
5030     case OverflowResult::NeverOverflows:
5031       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5032       Result->takeName(&OrigI);
5033       Overflow = ConstantInt::getFalse(OverflowTy);
5034       if (auto *Inst = dyn_cast<Instruction>(Result)) {
5035         if (IsSigned)
5036           Inst->setHasNoSignedWrap();
5037         else
5038           Inst->setHasNoUnsignedWrap();
5039       }
5040       return true;
5041   }
5042 
5043   llvm_unreachable("Unexpected overflow result");
5044 }
5045 
5046 /// Recognize and process idiom involving test for multiplication
5047 /// overflow.
5048 ///
5049 /// The caller has matched a pattern of the form:
5050 ///   I = cmp u (mul(zext A, zext B), V
5051 /// The function checks if this is a test for overflow and if so replaces
5052 /// multiplication with call to 'mul.with.overflow' intrinsic.
5053 ///
5054 /// \param I Compare instruction.
5055 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
5056 ///               the compare instruction.  Must be of integer type.
5057 /// \param OtherVal The other argument of compare instruction.
5058 /// \returns Instruction which must replace the compare instruction, NULL if no
5059 ///          replacement required.
5060 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5061                                          Value *OtherVal,
5062                                          InstCombinerImpl &IC) {
5063   // Don't bother doing this transformation for pointers, don't do it for
5064   // vectors.
5065   if (!isa<IntegerType>(MulVal->getType()))
5066     return nullptr;
5067 
5068   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
5069   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
5070   auto *MulInstr = dyn_cast<Instruction>(MulVal);
5071   if (!MulInstr)
5072     return nullptr;
5073   assert(MulInstr->getOpcode() == Instruction::Mul);
5074 
5075   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
5076        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
5077   assert(LHS->getOpcode() == Instruction::ZExt);
5078   assert(RHS->getOpcode() == Instruction::ZExt);
5079   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5080 
5081   // Calculate type and width of the result produced by mul.with.overflow.
5082   Type *TyA = A->getType(), *TyB = B->getType();
5083   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5084            WidthB = TyB->getPrimitiveSizeInBits();
5085   unsigned MulWidth;
5086   Type *MulType;
5087   if (WidthB > WidthA) {
5088     MulWidth = WidthB;
5089     MulType = TyB;
5090   } else {
5091     MulWidth = WidthA;
5092     MulType = TyA;
5093   }
5094 
5095   // In order to replace the original mul with a narrower mul.with.overflow,
5096   // all uses must ignore upper bits of the product.  The number of used low
5097   // bits must be not greater than the width of mul.with.overflow.
5098   if (MulVal->hasNUsesOrMore(2))
5099     for (User *U : MulVal->users()) {
5100       if (U == &I)
5101         continue;
5102       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5103         // Check if truncation ignores bits above MulWidth.
5104         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5105         if (TruncWidth > MulWidth)
5106           return nullptr;
5107       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5108         // Check if AND ignores bits above MulWidth.
5109         if (BO->getOpcode() != Instruction::And)
5110           return nullptr;
5111         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5112           const APInt &CVal = CI->getValue();
5113           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5114             return nullptr;
5115         } else {
5116           // In this case we could have the operand of the binary operation
5117           // being defined in another block, and performing the replacement
5118           // could break the dominance relation.
5119           return nullptr;
5120         }
5121       } else {
5122         // Other uses prohibit this transformation.
5123         return nullptr;
5124       }
5125     }
5126 
5127   // Recognize patterns
5128   switch (I.getPredicate()) {
5129   case ICmpInst::ICMP_EQ:
5130   case ICmpInst::ICMP_NE:
5131     // Recognize pattern:
5132     //   mulval = mul(zext A, zext B)
5133     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5134     ConstantInt *CI;
5135     Value *ValToMask;
5136     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5137       if (ValToMask != MulVal)
5138         return nullptr;
5139       const APInt &CVal = CI->getValue() + 1;
5140       if (CVal.isPowerOf2()) {
5141         unsigned MaskWidth = CVal.logBase2();
5142         if (MaskWidth == MulWidth)
5143           break; // Recognized
5144       }
5145     }
5146     return nullptr;
5147 
5148   case ICmpInst::ICMP_UGT:
5149     // Recognize pattern:
5150     //   mulval = mul(zext A, zext B)
5151     //   cmp ugt mulval, max
5152     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5153       APInt MaxVal = APInt::getMaxValue(MulWidth);
5154       MaxVal = MaxVal.zext(CI->getBitWidth());
5155       if (MaxVal.eq(CI->getValue()))
5156         break; // Recognized
5157     }
5158     return nullptr;
5159 
5160   case ICmpInst::ICMP_UGE:
5161     // Recognize pattern:
5162     //   mulval = mul(zext A, zext B)
5163     //   cmp uge mulval, max+1
5164     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5165       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5166       if (MaxVal.eq(CI->getValue()))
5167         break; // Recognized
5168     }
5169     return nullptr;
5170 
5171   case ICmpInst::ICMP_ULE:
5172     // Recognize pattern:
5173     //   mulval = mul(zext A, zext B)
5174     //   cmp ule mulval, max
5175     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5176       APInt MaxVal = APInt::getMaxValue(MulWidth);
5177       MaxVal = MaxVal.zext(CI->getBitWidth());
5178       if (MaxVal.eq(CI->getValue()))
5179         break; // Recognized
5180     }
5181     return nullptr;
5182 
5183   case ICmpInst::ICMP_ULT:
5184     // Recognize pattern:
5185     //   mulval = mul(zext A, zext B)
5186     //   cmp ule mulval, max + 1
5187     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5188       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5189       if (MaxVal.eq(CI->getValue()))
5190         break; // Recognized
5191     }
5192     return nullptr;
5193 
5194   default:
5195     return nullptr;
5196   }
5197 
5198   InstCombiner::BuilderTy &Builder = IC.Builder;
5199   Builder.SetInsertPoint(MulInstr);
5200 
5201   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5202   Value *MulA = A, *MulB = B;
5203   if (WidthA < MulWidth)
5204     MulA = Builder.CreateZExt(A, MulType);
5205   if (WidthB < MulWidth)
5206     MulB = Builder.CreateZExt(B, MulType);
5207   Function *F = Intrinsic::getDeclaration(
5208       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5209   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5210   IC.addToWorklist(MulInstr);
5211 
5212   // If there are uses of mul result other than the comparison, we know that
5213   // they are truncation or binary AND. Change them to use result of
5214   // mul.with.overflow and adjust properly mask/size.
5215   if (MulVal->hasNUsesOrMore(2)) {
5216     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5217     for (User *U : make_early_inc_range(MulVal->users())) {
5218       if (U == &I || U == OtherVal)
5219         continue;
5220       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5221         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5222           IC.replaceInstUsesWith(*TI, Mul);
5223         else
5224           TI->setOperand(0, Mul);
5225       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5226         assert(BO->getOpcode() == Instruction::And);
5227         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5228         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5229         APInt ShortMask = CI->getValue().trunc(MulWidth);
5230         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5231         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5232         IC.replaceInstUsesWith(*BO, Zext);
5233       } else {
5234         llvm_unreachable("Unexpected Binary operation");
5235       }
5236       IC.addToWorklist(cast<Instruction>(U));
5237     }
5238   }
5239   if (isa<Instruction>(OtherVal))
5240     IC.addToWorklist(cast<Instruction>(OtherVal));
5241 
5242   // The original icmp gets replaced with the overflow value, maybe inverted
5243   // depending on predicate.
5244   bool Inverse = false;
5245   switch (I.getPredicate()) {
5246   case ICmpInst::ICMP_NE:
5247     break;
5248   case ICmpInst::ICMP_EQ:
5249     Inverse = true;
5250     break;
5251   case ICmpInst::ICMP_UGT:
5252   case ICmpInst::ICMP_UGE:
5253     if (I.getOperand(0) == MulVal)
5254       break;
5255     Inverse = true;
5256     break;
5257   case ICmpInst::ICMP_ULT:
5258   case ICmpInst::ICMP_ULE:
5259     if (I.getOperand(1) == MulVal)
5260       break;
5261     Inverse = true;
5262     break;
5263   default:
5264     llvm_unreachable("Unexpected predicate");
5265   }
5266   if (Inverse) {
5267     Value *Res = Builder.CreateExtractValue(Call, 1);
5268     return BinaryOperator::CreateNot(Res);
5269   }
5270 
5271   return ExtractValueInst::Create(Call, 1);
5272 }
5273 
5274 /// When performing a comparison against a constant, it is possible that not all
5275 /// the bits in the LHS are demanded. This helper method computes the mask that
5276 /// IS demanded.
5277 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5278   const APInt *RHS;
5279   if (!match(I.getOperand(1), m_APInt(RHS)))
5280     return APInt::getAllOnes(BitWidth);
5281 
5282   // If this is a normal comparison, it demands all bits. If it is a sign bit
5283   // comparison, it only demands the sign bit.
5284   bool UnusedBit;
5285   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5286     return APInt::getSignMask(BitWidth);
5287 
5288   switch (I.getPredicate()) {
5289   // For a UGT comparison, we don't care about any bits that
5290   // correspond to the trailing ones of the comparand.  The value of these
5291   // bits doesn't impact the outcome of the comparison, because any value
5292   // greater than the RHS must differ in a bit higher than these due to carry.
5293   case ICmpInst::ICMP_UGT:
5294     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5295 
5296   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5297   // Any value less than the RHS must differ in a higher bit because of carries.
5298   case ICmpInst::ICMP_ULT:
5299     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5300 
5301   default:
5302     return APInt::getAllOnes(BitWidth);
5303   }
5304 }
5305 
5306 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5307 /// should be swapped.
5308 /// The decision is based on how many times these two operands are reused
5309 /// as subtract operands and their positions in those instructions.
5310 /// The rationale is that several architectures use the same instruction for
5311 /// both subtract and cmp. Thus, it is better if the order of those operands
5312 /// match.
5313 /// \return true if Op0 and Op1 should be swapped.
5314 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5315   // Filter out pointer values as those cannot appear directly in subtract.
5316   // FIXME: we may want to go through inttoptrs or bitcasts.
5317   if (Op0->getType()->isPointerTy())
5318     return false;
5319   // If a subtract already has the same operands as a compare, swapping would be
5320   // bad. If a subtract has the same operands as a compare but in reverse order,
5321   // then swapping is good.
5322   int GoodToSwap = 0;
5323   for (const User *U : Op0->users()) {
5324     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5325       GoodToSwap++;
5326     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5327       GoodToSwap--;
5328   }
5329   return GoodToSwap > 0;
5330 }
5331 
5332 /// Check that one use is in the same block as the definition and all
5333 /// other uses are in blocks dominated by a given block.
5334 ///
5335 /// \param DI Definition
5336 /// \param UI Use
5337 /// \param DB Block that must dominate all uses of \p DI outside
5338 ///           the parent block
5339 /// \return true when \p UI is the only use of \p DI in the parent block
5340 /// and all other uses of \p DI are in blocks dominated by \p DB.
5341 ///
5342 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5343                                         const Instruction *UI,
5344                                         const BasicBlock *DB) const {
5345   assert(DI && UI && "Instruction not defined\n");
5346   // Ignore incomplete definitions.
5347   if (!DI->getParent())
5348     return false;
5349   // DI and UI must be in the same block.
5350   if (DI->getParent() != UI->getParent())
5351     return false;
5352   // Protect from self-referencing blocks.
5353   if (DI->getParent() == DB)
5354     return false;
5355   for (const User *U : DI->users()) {
5356     auto *Usr = cast<Instruction>(U);
5357     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5358       return false;
5359   }
5360   return true;
5361 }
5362 
5363 /// Return true when the instruction sequence within a block is select-cmp-br.
5364 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5365   const BasicBlock *BB = SI->getParent();
5366   if (!BB)
5367     return false;
5368   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5369   if (!BI || BI->getNumSuccessors() != 2)
5370     return false;
5371   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5372   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5373     return false;
5374   return true;
5375 }
5376 
5377 /// True when a select result is replaced by one of its operands
5378 /// in select-icmp sequence. This will eventually result in the elimination
5379 /// of the select.
5380 ///
5381 /// \param SI    Select instruction
5382 /// \param Icmp  Compare instruction
5383 /// \param SIOpd Operand that replaces the select
5384 ///
5385 /// Notes:
5386 /// - The replacement is global and requires dominator information
5387 /// - The caller is responsible for the actual replacement
5388 ///
5389 /// Example:
5390 ///
5391 /// entry:
5392 ///  %4 = select i1 %3, %C* %0, %C* null
5393 ///  %5 = icmp eq %C* %4, null
5394 ///  br i1 %5, label %9, label %7
5395 ///  ...
5396 ///  ; <label>:7                                       ; preds = %entry
5397 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5398 ///  ...
5399 ///
5400 /// can be transformed to
5401 ///
5402 ///  %5 = icmp eq %C* %0, null
5403 ///  %6 = select i1 %3, i1 %5, i1 true
5404 ///  br i1 %6, label %9, label %7
5405 ///  ...
5406 ///  ; <label>:7                                       ; preds = %entry
5407 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5408 ///
5409 /// Similar when the first operand of the select is a constant or/and
5410 /// the compare is for not equal rather than equal.
5411 ///
5412 /// NOTE: The function is only called when the select and compare constants
5413 /// are equal, the optimization can work only for EQ predicates. This is not a
5414 /// major restriction since a NE compare should be 'normalized' to an equal
5415 /// compare, which usually happens in the combiner and test case
5416 /// select-cmp-br.ll checks for it.
5417 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5418                                                  const ICmpInst *Icmp,
5419                                                  const unsigned SIOpd) {
5420   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5421   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5422     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5423     // The check for the single predecessor is not the best that can be
5424     // done. But it protects efficiently against cases like when SI's
5425     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5426     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5427     // replaced can be reached on either path. So the uniqueness check
5428     // guarantees that the path all uses of SI (outside SI's parent) are on
5429     // is disjoint from all other paths out of SI. But that information
5430     // is more expensive to compute, and the trade-off here is in favor
5431     // of compile-time. It should also be noticed that we check for a single
5432     // predecessor and not only uniqueness. This to handle the situation when
5433     // Succ and Succ1 points to the same basic block.
5434     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5435       NumSel++;
5436       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5437       return true;
5438     }
5439   }
5440   return false;
5441 }
5442 
5443 /// Try to fold the comparison based on range information we can get by checking
5444 /// whether bits are known to be zero or one in the inputs.
5445 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5446   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5447   Type *Ty = Op0->getType();
5448   ICmpInst::Predicate Pred = I.getPredicate();
5449 
5450   // Get scalar or pointer size.
5451   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5452                           ? Ty->getScalarSizeInBits()
5453                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5454 
5455   if (!BitWidth)
5456     return nullptr;
5457 
5458   KnownBits Op0Known(BitWidth);
5459   KnownBits Op1Known(BitWidth);
5460 
5461   if (SimplifyDemandedBits(&I, 0,
5462                            getDemandedBitsLHSMask(I, BitWidth),
5463                            Op0Known, 0))
5464     return &I;
5465 
5466   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5467     return &I;
5468 
5469   // Given the known and unknown bits, compute a range that the LHS could be
5470   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5471   // EQ and NE we use unsigned values.
5472   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5473   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5474   if (I.isSigned()) {
5475     Op0Min = Op0Known.getSignedMinValue();
5476     Op0Max = Op0Known.getSignedMaxValue();
5477     Op1Min = Op1Known.getSignedMinValue();
5478     Op1Max = Op1Known.getSignedMaxValue();
5479   } else {
5480     Op0Min = Op0Known.getMinValue();
5481     Op0Max = Op0Known.getMaxValue();
5482     Op1Min = Op1Known.getMinValue();
5483     Op1Max = Op1Known.getMaxValue();
5484   }
5485 
5486   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5487   // out that the LHS or RHS is a constant. Constant fold this now, so that
5488   // code below can assume that Min != Max.
5489   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5490     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5491   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5492     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5493 
5494   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5495   // min/max canonical compare with some other compare. That could lead to
5496   // conflict with select canonicalization and infinite looping.
5497   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5498   auto isMinMaxCmp = [&](Instruction &Cmp) {
5499     if (!Cmp.hasOneUse())
5500       return false;
5501     Value *A, *B;
5502     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5503     if (!SelectPatternResult::isMinOrMax(SPF))
5504       return false;
5505     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5506            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5507   };
5508   if (!isMinMaxCmp(I)) {
5509     switch (Pred) {
5510     default:
5511       break;
5512     case ICmpInst::ICMP_ULT: {
5513       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5514         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5515       const APInt *CmpC;
5516       if (match(Op1, m_APInt(CmpC))) {
5517         // A <u C -> A == C-1 if min(A)+1 == C
5518         if (*CmpC == Op0Min + 1)
5519           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5520                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5521         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5522         // exceeds the log2 of C.
5523         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5524           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5525                               Constant::getNullValue(Op1->getType()));
5526       }
5527       break;
5528     }
5529     case ICmpInst::ICMP_UGT: {
5530       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5531         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5532       const APInt *CmpC;
5533       if (match(Op1, m_APInt(CmpC))) {
5534         // A >u C -> A == C+1 if max(a)-1 == C
5535         if (*CmpC == Op0Max - 1)
5536           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5537                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5538         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5539         // exceeds the log2 of C.
5540         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5541           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5542                               Constant::getNullValue(Op1->getType()));
5543       }
5544       break;
5545     }
5546     case ICmpInst::ICMP_SLT: {
5547       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5548         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5549       const APInt *CmpC;
5550       if (match(Op1, m_APInt(CmpC))) {
5551         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5552           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5553                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5554       }
5555       break;
5556     }
5557     case ICmpInst::ICMP_SGT: {
5558       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5559         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5560       const APInt *CmpC;
5561       if (match(Op1, m_APInt(CmpC))) {
5562         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5563           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5564                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5565       }
5566       break;
5567     }
5568     }
5569   }
5570 
5571   // Based on the range information we know about the LHS, see if we can
5572   // simplify this comparison.  For example, (x&4) < 8 is always true.
5573   switch (Pred) {
5574   default:
5575     llvm_unreachable("Unknown icmp opcode!");
5576   case ICmpInst::ICMP_EQ:
5577   case ICmpInst::ICMP_NE: {
5578     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5579       return replaceInstUsesWith(
5580           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5581 
5582     // If all bits are known zero except for one, then we know at most one bit
5583     // is set. If the comparison is against zero, then this is a check to see if
5584     // *that* bit is set.
5585     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5586     if (Op1Known.isZero()) {
5587       // If the LHS is an AND with the same constant, look through it.
5588       Value *LHS = nullptr;
5589       const APInt *LHSC;
5590       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5591           *LHSC != Op0KnownZeroInverted)
5592         LHS = Op0;
5593 
5594       Value *X;
5595       const APInt *C1;
5596       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
5597         Type *XTy = X->getType();
5598         unsigned Log2C1 = C1->countTrailingZeros();
5599         APInt C2 = Op0KnownZeroInverted;
5600         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
5601         if (C2Pow2.isPowerOf2()) {
5602           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
5603           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
5604           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
5605           unsigned Log2C2 = C2Pow2.countTrailingZeros();
5606           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
5607           auto NewPred =
5608               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5609           return new ICmpInst(NewPred, X, CmpC);
5610         }
5611       }
5612     }
5613     break;
5614   }
5615   case ICmpInst::ICMP_ULT: {
5616     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5617       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5618     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5619       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5620     break;
5621   }
5622   case ICmpInst::ICMP_UGT: {
5623     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5624       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5625     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5626       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5627     break;
5628   }
5629   case ICmpInst::ICMP_SLT: {
5630     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5631       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5632     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5633       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5634     break;
5635   }
5636   case ICmpInst::ICMP_SGT: {
5637     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5638       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5639     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5640       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5641     break;
5642   }
5643   case ICmpInst::ICMP_SGE:
5644     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5645     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5646       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5647     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5648       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5649     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5650       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5651     break;
5652   case ICmpInst::ICMP_SLE:
5653     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5654     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5655       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5656     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5657       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5658     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5659       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5660     break;
5661   case ICmpInst::ICMP_UGE:
5662     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5663     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5664       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5665     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5666       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5667     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5668       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5669     break;
5670   case ICmpInst::ICMP_ULE:
5671     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5672     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5673       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5674     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5675       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5676     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5677       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5678     break;
5679   }
5680 
5681   // Turn a signed comparison into an unsigned one if both operands are known to
5682   // have the same sign.
5683   if (I.isSigned() &&
5684       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5685        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5686     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5687 
5688   return nullptr;
5689 }
5690 
5691 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
5692 /// then try to reduce patterns based on that limit.
5693 static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
5694                                            InstCombiner::BuilderTy &Builder) {
5695   Value *X, *Y;
5696   ICmpInst::Predicate Pred;
5697 
5698   // X must be 0 and bool must be true for "ULT":
5699   // X <u (zext i1 Y) --> (X == 0) & Y
5700   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
5701       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
5702     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
5703 
5704   // X must be 0 or bool must be true for "ULE":
5705   // X <=u (sext i1 Y) --> (X == 0) | Y
5706   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
5707       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
5708     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
5709 
5710   return nullptr;
5711 }
5712 
5713 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5714 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5715                                                        Constant *C) {
5716   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5717          "Only for relational integer predicates.");
5718 
5719   Type *Type = C->getType();
5720   bool IsSigned = ICmpInst::isSigned(Pred);
5721 
5722   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5723   bool WillIncrement =
5724       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5725 
5726   // Check if the constant operand can be safely incremented/decremented
5727   // without overflowing/underflowing.
5728   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5729     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5730   };
5731 
5732   Constant *SafeReplacementConstant = nullptr;
5733   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5734     // Bail out if the constant can't be safely incremented/decremented.
5735     if (!ConstantIsOk(CI))
5736       return llvm::None;
5737   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5738     unsigned NumElts = FVTy->getNumElements();
5739     for (unsigned i = 0; i != NumElts; ++i) {
5740       Constant *Elt = C->getAggregateElement(i);
5741       if (!Elt)
5742         return llvm::None;
5743 
5744       if (isa<UndefValue>(Elt))
5745         continue;
5746 
5747       // Bail out if we can't determine if this constant is min/max or if we
5748       // know that this constant is min/max.
5749       auto *CI = dyn_cast<ConstantInt>(Elt);
5750       if (!CI || !ConstantIsOk(CI))
5751         return llvm::None;
5752 
5753       if (!SafeReplacementConstant)
5754         SafeReplacementConstant = CI;
5755     }
5756   } else {
5757     // ConstantExpr?
5758     return llvm::None;
5759   }
5760 
5761   // It may not be safe to change a compare predicate in the presence of
5762   // undefined elements, so replace those elements with the first safe constant
5763   // that we found.
5764   // TODO: in case of poison, it is safe; let's replace undefs only.
5765   if (C->containsUndefOrPoisonElement()) {
5766     assert(SafeReplacementConstant && "Replacement constant not set");
5767     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5768   }
5769 
5770   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5771 
5772   // Increment or decrement the constant.
5773   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5774   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5775 
5776   return std::make_pair(NewPred, NewC);
5777 }
5778 
5779 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5780 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5781 /// allows them to be folded in visitICmpInst.
5782 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5783   ICmpInst::Predicate Pred = I.getPredicate();
5784   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5785       InstCombiner::isCanonicalPredicate(Pred))
5786     return nullptr;
5787 
5788   Value *Op0 = I.getOperand(0);
5789   Value *Op1 = I.getOperand(1);
5790   auto *Op1C = dyn_cast<Constant>(Op1);
5791   if (!Op1C)
5792     return nullptr;
5793 
5794   auto FlippedStrictness =
5795       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5796   if (!FlippedStrictness)
5797     return nullptr;
5798 
5799   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5800 }
5801 
5802 /// If we have a comparison with a non-canonical predicate, if we can update
5803 /// all the users, invert the predicate and adjust all the users.
5804 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5805   // Is the predicate already canonical?
5806   CmpInst::Predicate Pred = I.getPredicate();
5807   if (InstCombiner::isCanonicalPredicate(Pred))
5808     return nullptr;
5809 
5810   // Can all users be adjusted to predicate inversion?
5811   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5812     return nullptr;
5813 
5814   // Ok, we can canonicalize comparison!
5815   // Let's first invert the comparison's predicate.
5816   I.setPredicate(CmpInst::getInversePredicate(Pred));
5817   I.setName(I.getName() + ".not");
5818 
5819   // And, adapt users.
5820   freelyInvertAllUsersOf(&I);
5821 
5822   return &I;
5823 }
5824 
5825 /// Integer compare with boolean values can always be turned into bitwise ops.
5826 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5827                                          InstCombiner::BuilderTy &Builder) {
5828   Value *A = I.getOperand(0), *B = I.getOperand(1);
5829   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5830 
5831   // A boolean compared to true/false can be simplified to Op0/true/false in
5832   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5833   // Cases not handled by InstSimplify are always 'not' of Op0.
5834   if (match(B, m_Zero())) {
5835     switch (I.getPredicate()) {
5836       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5837       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5838       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5839         return BinaryOperator::CreateNot(A);
5840       default:
5841         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5842     }
5843   } else if (match(B, m_One())) {
5844     switch (I.getPredicate()) {
5845       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5846       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5847       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5848         return BinaryOperator::CreateNot(A);
5849       default:
5850         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5851     }
5852   }
5853 
5854   switch (I.getPredicate()) {
5855   default:
5856     llvm_unreachable("Invalid icmp instruction!");
5857   case ICmpInst::ICMP_EQ:
5858     // icmp eq i1 A, B -> ~(A ^ B)
5859     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5860 
5861   case ICmpInst::ICMP_NE:
5862     // icmp ne i1 A, B -> A ^ B
5863     return BinaryOperator::CreateXor(A, B);
5864 
5865   case ICmpInst::ICMP_UGT:
5866     // icmp ugt -> icmp ult
5867     std::swap(A, B);
5868     LLVM_FALLTHROUGH;
5869   case ICmpInst::ICMP_ULT:
5870     // icmp ult i1 A, B -> ~A & B
5871     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5872 
5873   case ICmpInst::ICMP_SGT:
5874     // icmp sgt -> icmp slt
5875     std::swap(A, B);
5876     LLVM_FALLTHROUGH;
5877   case ICmpInst::ICMP_SLT:
5878     // icmp slt i1 A, B -> A & ~B
5879     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5880 
5881   case ICmpInst::ICMP_UGE:
5882     // icmp uge -> icmp ule
5883     std::swap(A, B);
5884     LLVM_FALLTHROUGH;
5885   case ICmpInst::ICMP_ULE:
5886     // icmp ule i1 A, B -> ~A | B
5887     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5888 
5889   case ICmpInst::ICMP_SGE:
5890     // icmp sge -> icmp sle
5891     std::swap(A, B);
5892     LLVM_FALLTHROUGH;
5893   case ICmpInst::ICMP_SLE:
5894     // icmp sle i1 A, B -> A | ~B
5895     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5896   }
5897 }
5898 
5899 // Transform pattern like:
5900 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5901 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5902 // Into:
5903 //   (X l>> Y) != 0
5904 //   (X l>> Y) == 0
5905 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5906                                             InstCombiner::BuilderTy &Builder) {
5907   ICmpInst::Predicate Pred, NewPred;
5908   Value *X, *Y;
5909   if (match(&Cmp,
5910             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5911     switch (Pred) {
5912     case ICmpInst::ICMP_ULE:
5913       NewPred = ICmpInst::ICMP_NE;
5914       break;
5915     case ICmpInst::ICMP_UGT:
5916       NewPred = ICmpInst::ICMP_EQ;
5917       break;
5918     default:
5919       return nullptr;
5920     }
5921   } else if (match(&Cmp, m_c_ICmp(Pred,
5922                                   m_OneUse(m_CombineOr(
5923                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5924                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5925                                             m_AllOnes()))),
5926                                   m_Value(X)))) {
5927     // The variant with 'add' is not canonical, (the variant with 'not' is)
5928     // we only get it because it has extra uses, and can't be canonicalized,
5929 
5930     switch (Pred) {
5931     case ICmpInst::ICMP_ULT:
5932       NewPred = ICmpInst::ICMP_NE;
5933       break;
5934     case ICmpInst::ICMP_UGE:
5935       NewPred = ICmpInst::ICMP_EQ;
5936       break;
5937     default:
5938       return nullptr;
5939     }
5940   } else
5941     return nullptr;
5942 
5943   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5944   Constant *Zero = Constant::getNullValue(NewX->getType());
5945   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5946 }
5947 
5948 static Instruction *foldVectorCmp(CmpInst &Cmp,
5949                                   InstCombiner::BuilderTy &Builder) {
5950   const CmpInst::Predicate Pred = Cmp.getPredicate();
5951   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5952   Value *V1, *V2;
5953   ArrayRef<int> M;
5954   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5955     return nullptr;
5956 
5957   // If both arguments of the cmp are shuffles that use the same mask and
5958   // shuffle within a single vector, move the shuffle after the cmp:
5959   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5960   Type *V1Ty = V1->getType();
5961   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5962       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5963     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5964     return new ShuffleVectorInst(NewCmp, M);
5965   }
5966 
5967   // Try to canonicalize compare with splatted operand and splat constant.
5968   // TODO: We could generalize this for more than splats. See/use the code in
5969   //       InstCombiner::foldVectorBinop().
5970   Constant *C;
5971   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5972     return nullptr;
5973 
5974   // Length-changing splats are ok, so adjust the constants as needed:
5975   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5976   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5977   int MaskSplatIndex;
5978   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5979     // We allow undefs in matching, but this transform removes those for safety.
5980     // Demanded elements analysis should be able to recover some/all of that.
5981     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5982                                  ScalarC);
5983     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5984     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5985     return new ShuffleVectorInst(NewCmp, NewM);
5986   }
5987 
5988   return nullptr;
5989 }
5990 
5991 // extract(uadd.with.overflow(A, B), 0) ult A
5992 //  -> extract(uadd.with.overflow(A, B), 1)
5993 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5994   CmpInst::Predicate Pred = I.getPredicate();
5995   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5996 
5997   Value *UAddOv;
5998   Value *A, *B;
5999   auto UAddOvResultPat = m_ExtractValue<0>(
6000       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
6001   if (match(Op0, UAddOvResultPat) &&
6002       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
6003        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
6004         (match(A, m_One()) || match(B, m_One()))) ||
6005        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
6006         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
6007     // extract(uadd.with.overflow(A, B), 0) < A
6008     // extract(uadd.with.overflow(A, 1), 0) == 0
6009     // extract(uadd.with.overflow(A, -1), 0) != -1
6010     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
6011   else if (match(Op1, UAddOvResultPat) &&
6012            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
6013     // A > extract(uadd.with.overflow(A, B), 0)
6014     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
6015   else
6016     return nullptr;
6017 
6018   return ExtractValueInst::Create(UAddOv, 1);
6019 }
6020 
6021 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
6022   if (!I.getOperand(0)->getType()->isPointerTy() ||
6023       NullPointerIsDefined(
6024           I.getParent()->getParent(),
6025           I.getOperand(0)->getType()->getPointerAddressSpace())) {
6026     return nullptr;
6027   }
6028   Instruction *Op;
6029   if (match(I.getOperand(0), m_Instruction(Op)) &&
6030       match(I.getOperand(1), m_Zero()) &&
6031       Op->isLaunderOrStripInvariantGroup()) {
6032     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6033                             Op->getOperand(0), I.getOperand(1));
6034   }
6035   return nullptr;
6036 }
6037 
6038 /// This function folds patterns produced by lowering of reduce idioms, such as
6039 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6040 /// attempts to generate fewer number of scalar comparisons instead of vector
6041 /// comparisons when possible.
6042 static Instruction *foldReductionIdiom(ICmpInst &I,
6043                                        InstCombiner::BuilderTy &Builder,
6044                                        const DataLayout &DL) {
6045   if (I.getType()->isVectorTy())
6046     return nullptr;
6047   ICmpInst::Predicate OuterPred, InnerPred;
6048   Value *LHS, *RHS;
6049 
6050   // Match lowering of @llvm.vector.reduce.and. Turn
6051   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6052   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6053   ///   %res = icmp <pred> i8 %scalar_ne, 0
6054   ///
6055   /// into
6056   ///
6057   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
6058   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
6059   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6060   ///
6061   /// for <pred> in {ne, eq}.
6062   if (!match(&I, m_ICmp(OuterPred,
6063                         m_OneUse(m_BitCast(m_OneUse(
6064                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6065                         m_Zero())))
6066     return nullptr;
6067   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6068   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6069     return nullptr;
6070   unsigned NumBits =
6071       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6072   // TODO: Relax this to "not wider than max legal integer type"?
6073   if (!DL.isLegalInteger(NumBits))
6074     return nullptr;
6075 
6076   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6077     auto *ScalarTy = Builder.getIntNTy(NumBits);
6078     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6079     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6080     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6081                             I.getName());
6082   }
6083 
6084   return nullptr;
6085 }
6086 
6087 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6088   bool Changed = false;
6089   const SimplifyQuery Q = SQ.getWithInstruction(&I);
6090   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6091   unsigned Op0Cplxity = getComplexity(Op0);
6092   unsigned Op1Cplxity = getComplexity(Op1);
6093 
6094   /// Orders the operands of the compare so that they are listed from most
6095   /// complex to least complex.  This puts constants before unary operators,
6096   /// before binary operators.
6097   if (Op0Cplxity < Op1Cplxity ||
6098       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
6099     I.swapOperands();
6100     std::swap(Op0, Op1);
6101     Changed = true;
6102   }
6103 
6104   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6105     return replaceInstUsesWith(I, V);
6106 
6107   // Comparing -val or val with non-zero is the same as just comparing val
6108   // ie, abs(val) != 0 -> val != 0
6109   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6110     Value *Cond, *SelectTrue, *SelectFalse;
6111     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6112                             m_Value(SelectFalse)))) {
6113       if (Value *V = dyn_castNegVal(SelectTrue)) {
6114         if (V == SelectFalse)
6115           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6116       }
6117       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6118         if (V == SelectTrue)
6119           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6120       }
6121     }
6122   }
6123 
6124   if (Op0->getType()->isIntOrIntVectorTy(1))
6125     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6126       return Res;
6127 
6128   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6129     return Res;
6130 
6131   if (Instruction *Res = canonicalizeICmpPredicate(I))
6132     return Res;
6133 
6134   if (Instruction *Res = foldICmpWithConstant(I))
6135     return Res;
6136 
6137   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6138     return Res;
6139 
6140   if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
6141     return Res;
6142 
6143   if (Instruction *Res = foldICmpUsingKnownBits(I))
6144     return Res;
6145 
6146   // Test if the ICmpInst instruction is used exclusively by a select as
6147   // part of a minimum or maximum operation. If so, refrain from doing
6148   // any other folding. This helps out other analyses which understand
6149   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6150   // and CodeGen. And in this case, at least one of the comparison
6151   // operands has at least one user besides the compare (the select),
6152   // which would often largely negate the benefit of folding anyway.
6153   //
6154   // Do the same for the other patterns recognized by matchSelectPattern.
6155   if (I.hasOneUse())
6156     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6157       Value *A, *B;
6158       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6159       if (SPR.Flavor != SPF_UNKNOWN)
6160         return nullptr;
6161     }
6162 
6163   // Do this after checking for min/max to prevent infinite looping.
6164   if (Instruction *Res = foldICmpWithZero(I))
6165     return Res;
6166 
6167   // FIXME: We only do this after checking for min/max to prevent infinite
6168   // looping caused by a reverse canonicalization of these patterns for min/max.
6169   // FIXME: The organization of folds is a mess. These would naturally go into
6170   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6171   // down here after the min/max restriction.
6172   ICmpInst::Predicate Pred = I.getPredicate();
6173   const APInt *C;
6174   if (match(Op1, m_APInt(C))) {
6175     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6176     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6177       Constant *Zero = Constant::getNullValue(Op0->getType());
6178       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6179     }
6180 
6181     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6182     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6183       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6184       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6185     }
6186   }
6187 
6188   // The folds in here may rely on wrapping flags and special constants, so
6189   // they can break up min/max idioms in some cases but not seemingly similar
6190   // patterns.
6191   // FIXME: It may be possible to enhance select folding to make this
6192   //        unnecessary. It may also be moot if we canonicalize to min/max
6193   //        intrinsics.
6194   if (Instruction *Res = foldICmpBinOp(I, Q))
6195     return Res;
6196 
6197   if (Instruction *Res = foldICmpInstWithConstant(I))
6198     return Res;
6199 
6200   // Try to match comparison as a sign bit test. Intentionally do this after
6201   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6202   if (Instruction *New = foldSignBitTest(I))
6203     return New;
6204 
6205   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6206     return Res;
6207 
6208   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6209   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6210     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6211       return NI;
6212   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6213     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6214       return NI;
6215 
6216   if (auto *SI = dyn_cast<SelectInst>(Op0))
6217     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6218       return NI;
6219   if (auto *SI = dyn_cast<SelectInst>(Op1))
6220     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6221       return NI;
6222 
6223   // Try to optimize equality comparisons against alloca-based pointers.
6224   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6225     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6226     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6227       if (Instruction *New = foldAllocaCmp(I, Alloca))
6228         return New;
6229     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6230       if (Instruction *New = foldAllocaCmp(I, Alloca))
6231         return New;
6232   }
6233 
6234   if (Instruction *Res = foldICmpBitCast(I))
6235     return Res;
6236 
6237   // TODO: Hoist this above the min/max bailout.
6238   if (Instruction *R = foldICmpWithCastOp(I))
6239     return R;
6240 
6241   if (Instruction *Res = foldICmpWithMinMax(I))
6242     return Res;
6243 
6244   {
6245     Value *A, *B;
6246     // Transform (A & ~B) == 0 --> (A & B) != 0
6247     // and       (A & ~B) != 0 --> (A & B) == 0
6248     // if A is a power of 2.
6249     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6250         match(Op1, m_Zero()) &&
6251         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6252       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6253                           Op1);
6254 
6255     // ~X < ~Y --> Y < X
6256     // ~X < C -->  X > ~C
6257     if (match(Op0, m_Not(m_Value(A)))) {
6258       if (match(Op1, m_Not(m_Value(B))))
6259         return new ICmpInst(I.getPredicate(), B, A);
6260 
6261       const APInt *C;
6262       if (match(Op1, m_APInt(C)))
6263         return new ICmpInst(I.getSwappedPredicate(), A,
6264                             ConstantInt::get(Op1->getType(), ~(*C)));
6265     }
6266 
6267     Instruction *AddI = nullptr;
6268     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6269                                      m_Instruction(AddI))) &&
6270         isa<IntegerType>(A->getType())) {
6271       Value *Result;
6272       Constant *Overflow;
6273       // m_UAddWithOverflow can match patterns that do not include  an explicit
6274       // "add" instruction, so check the opcode of the matched op.
6275       if (AddI->getOpcode() == Instruction::Add &&
6276           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6277                                 Result, Overflow)) {
6278         replaceInstUsesWith(*AddI, Result);
6279         eraseInstFromFunction(*AddI);
6280         return replaceInstUsesWith(I, Overflow);
6281       }
6282     }
6283 
6284     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6285     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6286       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6287         return R;
6288     }
6289     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6290       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6291         return R;
6292     }
6293   }
6294 
6295   if (Instruction *Res = foldICmpEquality(I))
6296     return Res;
6297 
6298   if (Instruction *Res = foldICmpOfUAddOv(I))
6299     return Res;
6300 
6301   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6302   // an i1 which indicates whether or not we successfully did the swap.
6303   //
6304   // Replace comparisons between the old value and the expected value with the
6305   // indicator that 'cmpxchg' returns.
6306   //
6307   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6308   // spuriously fail.  In those cases, the old value may equal the expected
6309   // value but it is possible for the swap to not occur.
6310   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6311     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6312       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6313         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6314             !ACXI->isWeak())
6315           return ExtractValueInst::Create(ACXI, 1);
6316 
6317   {
6318     Value *X;
6319     const APInt *C;
6320     // icmp X+Cst, X
6321     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6322       return foldICmpAddOpConst(X, *C, I.getPredicate());
6323 
6324     // icmp X, X+Cst
6325     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6326       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6327   }
6328 
6329   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6330     return Res;
6331 
6332   if (I.getType()->isVectorTy())
6333     if (Instruction *Res = foldVectorCmp(I, Builder))
6334       return Res;
6335 
6336   if (Instruction *Res = foldICmpInvariantGroup(I))
6337     return Res;
6338 
6339   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6340     return Res;
6341 
6342   return Changed ? &I : nullptr;
6343 }
6344 
6345 /// Fold fcmp ([us]itofp x, cst) if possible.
6346 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6347                                                     Instruction *LHSI,
6348                                                     Constant *RHSC) {
6349   if (!isa<ConstantFP>(RHSC)) return nullptr;
6350   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6351 
6352   // Get the width of the mantissa.  We don't want to hack on conversions that
6353   // might lose information from the integer, e.g. "i64 -> float"
6354   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6355   if (MantissaWidth == -1) return nullptr;  // Unknown.
6356 
6357   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6358 
6359   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6360 
6361   if (I.isEquality()) {
6362     FCmpInst::Predicate P = I.getPredicate();
6363     bool IsExact = false;
6364     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6365     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6366 
6367     // If the floating point constant isn't an integer value, we know if we will
6368     // ever compare equal / not equal to it.
6369     if (!IsExact) {
6370       // TODO: Can never be -0.0 and other non-representable values
6371       APFloat RHSRoundInt(RHS);
6372       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6373       if (RHS != RHSRoundInt) {
6374         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6375           return replaceInstUsesWith(I, Builder.getFalse());
6376 
6377         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6378         return replaceInstUsesWith(I, Builder.getTrue());
6379       }
6380     }
6381 
6382     // TODO: If the constant is exactly representable, is it always OK to do
6383     // equality compares as integer?
6384   }
6385 
6386   // Check to see that the input is converted from an integer type that is small
6387   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6388   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6389   unsigned InputSize = IntTy->getScalarSizeInBits();
6390 
6391   // Following test does NOT adjust InputSize downwards for signed inputs,
6392   // because the most negative value still requires all the mantissa bits
6393   // to distinguish it from one less than that value.
6394   if ((int)InputSize > MantissaWidth) {
6395     // Conversion would lose accuracy. Check if loss can impact comparison.
6396     int Exp = ilogb(RHS);
6397     if (Exp == APFloat::IEK_Inf) {
6398       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6399       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6400         // Conversion could create infinity.
6401         return nullptr;
6402     } else {
6403       // Note that if RHS is zero or NaN, then Exp is negative
6404       // and first condition is trivially false.
6405       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6406         // Conversion could affect comparison.
6407         return nullptr;
6408     }
6409   }
6410 
6411   // Otherwise, we can potentially simplify the comparison.  We know that it
6412   // will always come through as an integer value and we know the constant is
6413   // not a NAN (it would have been previously simplified).
6414   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6415 
6416   ICmpInst::Predicate Pred;
6417   switch (I.getPredicate()) {
6418   default: llvm_unreachable("Unexpected predicate!");
6419   case FCmpInst::FCMP_UEQ:
6420   case FCmpInst::FCMP_OEQ:
6421     Pred = ICmpInst::ICMP_EQ;
6422     break;
6423   case FCmpInst::FCMP_UGT:
6424   case FCmpInst::FCMP_OGT:
6425     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6426     break;
6427   case FCmpInst::FCMP_UGE:
6428   case FCmpInst::FCMP_OGE:
6429     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6430     break;
6431   case FCmpInst::FCMP_ULT:
6432   case FCmpInst::FCMP_OLT:
6433     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6434     break;
6435   case FCmpInst::FCMP_ULE:
6436   case FCmpInst::FCMP_OLE:
6437     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6438     break;
6439   case FCmpInst::FCMP_UNE:
6440   case FCmpInst::FCMP_ONE:
6441     Pred = ICmpInst::ICMP_NE;
6442     break;
6443   case FCmpInst::FCMP_ORD:
6444     return replaceInstUsesWith(I, Builder.getTrue());
6445   case FCmpInst::FCMP_UNO:
6446     return replaceInstUsesWith(I, Builder.getFalse());
6447   }
6448 
6449   // Now we know that the APFloat is a normal number, zero or inf.
6450 
6451   // See if the FP constant is too large for the integer.  For example,
6452   // comparing an i8 to 300.0.
6453   unsigned IntWidth = IntTy->getScalarSizeInBits();
6454 
6455   if (!LHSUnsigned) {
6456     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6457     // and large values.
6458     APFloat SMax(RHS.getSemantics());
6459     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6460                           APFloat::rmNearestTiesToEven);
6461     if (SMax < RHS) { // smax < 13123.0
6462       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6463           Pred == ICmpInst::ICMP_SLE)
6464         return replaceInstUsesWith(I, Builder.getTrue());
6465       return replaceInstUsesWith(I, Builder.getFalse());
6466     }
6467   } else {
6468     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6469     // +INF and large values.
6470     APFloat UMax(RHS.getSemantics());
6471     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6472                           APFloat::rmNearestTiesToEven);
6473     if (UMax < RHS) { // umax < 13123.0
6474       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6475           Pred == ICmpInst::ICMP_ULE)
6476         return replaceInstUsesWith(I, Builder.getTrue());
6477       return replaceInstUsesWith(I, Builder.getFalse());
6478     }
6479   }
6480 
6481   if (!LHSUnsigned) {
6482     // See if the RHS value is < SignedMin.
6483     APFloat SMin(RHS.getSemantics());
6484     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6485                           APFloat::rmNearestTiesToEven);
6486     if (SMin > RHS) { // smin > 12312.0
6487       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6488           Pred == ICmpInst::ICMP_SGE)
6489         return replaceInstUsesWith(I, Builder.getTrue());
6490       return replaceInstUsesWith(I, Builder.getFalse());
6491     }
6492   } else {
6493     // See if the RHS value is < UnsignedMin.
6494     APFloat UMin(RHS.getSemantics());
6495     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6496                           APFloat::rmNearestTiesToEven);
6497     if (UMin > RHS) { // umin > 12312.0
6498       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6499           Pred == ICmpInst::ICMP_UGE)
6500         return replaceInstUsesWith(I, Builder.getTrue());
6501       return replaceInstUsesWith(I, Builder.getFalse());
6502     }
6503   }
6504 
6505   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6506   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6507   // casting the FP value to the integer value and back, checking for equality.
6508   // Don't do this for zero, because -0.0 is not fractional.
6509   Constant *RHSInt = LHSUnsigned
6510     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6511     : ConstantExpr::getFPToSI(RHSC, IntTy);
6512   if (!RHS.isZero()) {
6513     bool Equal = LHSUnsigned
6514       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6515       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6516     if (!Equal) {
6517       // If we had a comparison against a fractional value, we have to adjust
6518       // the compare predicate and sometimes the value.  RHSC is rounded towards
6519       // zero at this point.
6520       switch (Pred) {
6521       default: llvm_unreachable("Unexpected integer comparison!");
6522       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6523         return replaceInstUsesWith(I, Builder.getTrue());
6524       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6525         return replaceInstUsesWith(I, Builder.getFalse());
6526       case ICmpInst::ICMP_ULE:
6527         // (float)int <= 4.4   --> int <= 4
6528         // (float)int <= -4.4  --> false
6529         if (RHS.isNegative())
6530           return replaceInstUsesWith(I, Builder.getFalse());
6531         break;
6532       case ICmpInst::ICMP_SLE:
6533         // (float)int <= 4.4   --> int <= 4
6534         // (float)int <= -4.4  --> int < -4
6535         if (RHS.isNegative())
6536           Pred = ICmpInst::ICMP_SLT;
6537         break;
6538       case ICmpInst::ICMP_ULT:
6539         // (float)int < -4.4   --> false
6540         // (float)int < 4.4    --> int <= 4
6541         if (RHS.isNegative())
6542           return replaceInstUsesWith(I, Builder.getFalse());
6543         Pred = ICmpInst::ICMP_ULE;
6544         break;
6545       case ICmpInst::ICMP_SLT:
6546         // (float)int < -4.4   --> int < -4
6547         // (float)int < 4.4    --> int <= 4
6548         if (!RHS.isNegative())
6549           Pred = ICmpInst::ICMP_SLE;
6550         break;
6551       case ICmpInst::ICMP_UGT:
6552         // (float)int > 4.4    --> int > 4
6553         // (float)int > -4.4   --> true
6554         if (RHS.isNegative())
6555           return replaceInstUsesWith(I, Builder.getTrue());
6556         break;
6557       case ICmpInst::ICMP_SGT:
6558         // (float)int > 4.4    --> int > 4
6559         // (float)int > -4.4   --> int >= -4
6560         if (RHS.isNegative())
6561           Pred = ICmpInst::ICMP_SGE;
6562         break;
6563       case ICmpInst::ICMP_UGE:
6564         // (float)int >= -4.4   --> true
6565         // (float)int >= 4.4    --> int > 4
6566         if (RHS.isNegative())
6567           return replaceInstUsesWith(I, Builder.getTrue());
6568         Pred = ICmpInst::ICMP_UGT;
6569         break;
6570       case ICmpInst::ICMP_SGE:
6571         // (float)int >= -4.4   --> int >= -4
6572         // (float)int >= 4.4    --> int > 4
6573         if (!RHS.isNegative())
6574           Pred = ICmpInst::ICMP_SGT;
6575         break;
6576       }
6577     }
6578   }
6579 
6580   // Lower this FP comparison into an appropriate integer version of the
6581   // comparison.
6582   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6583 }
6584 
6585 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6586 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6587                                               Constant *RHSC) {
6588   // When C is not 0.0 and infinities are not allowed:
6589   // (C / X) < 0.0 is a sign-bit test of X
6590   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6591   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6592   //
6593   // Proof:
6594   // Multiply (C / X) < 0.0 by X * X / C.
6595   // - X is non zero, if it is the flag 'ninf' is violated.
6596   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6597   //   the predicate. C is also non zero by definition.
6598   //
6599   // Thus X * X / C is non zero and the transformation is valid. [qed]
6600 
6601   FCmpInst::Predicate Pred = I.getPredicate();
6602 
6603   // Check that predicates are valid.
6604   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6605       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6606     return nullptr;
6607 
6608   // Check that RHS operand is zero.
6609   if (!match(RHSC, m_AnyZeroFP()))
6610     return nullptr;
6611 
6612   // Check fastmath flags ('ninf').
6613   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6614     return nullptr;
6615 
6616   // Check the properties of the dividend. It must not be zero to avoid a
6617   // division by zero (see Proof).
6618   const APFloat *C;
6619   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6620     return nullptr;
6621 
6622   if (C->isZero())
6623     return nullptr;
6624 
6625   // Get swapped predicate if necessary.
6626   if (C->isNegative())
6627     Pred = I.getSwappedPredicate();
6628 
6629   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6630 }
6631 
6632 /// Optimize fabs(X) compared with zero.
6633 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6634   Value *X;
6635   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6636       !match(I.getOperand(1), m_PosZeroFP()))
6637     return nullptr;
6638 
6639   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6640     I->setPredicate(P);
6641     return IC.replaceOperand(*I, 0, X);
6642   };
6643 
6644   switch (I.getPredicate()) {
6645   case FCmpInst::FCMP_UGE:
6646   case FCmpInst::FCMP_OLT:
6647     // fabs(X) >= 0.0 --> true
6648     // fabs(X) <  0.0 --> false
6649     llvm_unreachable("fcmp should have simplified");
6650 
6651   case FCmpInst::FCMP_OGT:
6652     // fabs(X) > 0.0 --> X != 0.0
6653     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6654 
6655   case FCmpInst::FCMP_UGT:
6656     // fabs(X) u> 0.0 --> X u!= 0.0
6657     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6658 
6659   case FCmpInst::FCMP_OLE:
6660     // fabs(X) <= 0.0 --> X == 0.0
6661     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6662 
6663   case FCmpInst::FCMP_ULE:
6664     // fabs(X) u<= 0.0 --> X u== 0.0
6665     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6666 
6667   case FCmpInst::FCMP_OGE:
6668     // fabs(X) >= 0.0 --> !isnan(X)
6669     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6670     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6671 
6672   case FCmpInst::FCMP_ULT:
6673     // fabs(X) u< 0.0 --> isnan(X)
6674     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6675     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6676 
6677   case FCmpInst::FCMP_OEQ:
6678   case FCmpInst::FCMP_UEQ:
6679   case FCmpInst::FCMP_ONE:
6680   case FCmpInst::FCMP_UNE:
6681   case FCmpInst::FCMP_ORD:
6682   case FCmpInst::FCMP_UNO:
6683     // Look through the fabs() because it doesn't change anything but the sign.
6684     // fabs(X) == 0.0 --> X == 0.0,
6685     // fabs(X) != 0.0 --> X != 0.0
6686     // isnan(fabs(X)) --> isnan(X)
6687     // !isnan(fabs(X) --> !isnan(X)
6688     return replacePredAndOp0(&I, I.getPredicate(), X);
6689 
6690   default:
6691     return nullptr;
6692   }
6693 }
6694 
6695 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6696   CmpInst::Predicate Pred = I.getPredicate();
6697   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6698 
6699   // Canonicalize fneg as Op1.
6700   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6701     std::swap(Op0, Op1);
6702     Pred = I.getSwappedPredicate();
6703   }
6704 
6705   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6706     return nullptr;
6707 
6708   // Replace the negated operand with 0.0:
6709   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6710   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6711   return new FCmpInst(Pred, Op0, Zero, "", &I);
6712 }
6713 
6714 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6715   bool Changed = false;
6716 
6717   /// Orders the operands of the compare so that they are listed from most
6718   /// complex to least complex.  This puts constants before unary operators,
6719   /// before binary operators.
6720   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6721     I.swapOperands();
6722     Changed = true;
6723   }
6724 
6725   const CmpInst::Predicate Pred = I.getPredicate();
6726   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6727   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6728                                   SQ.getWithInstruction(&I)))
6729     return replaceInstUsesWith(I, V);
6730 
6731   // Simplify 'fcmp pred X, X'
6732   Type *OpType = Op0->getType();
6733   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6734   if (Op0 == Op1) {
6735     switch (Pred) {
6736       default: break;
6737     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6738     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6739     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6740     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6741       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6742       I.setPredicate(FCmpInst::FCMP_UNO);
6743       I.setOperand(1, Constant::getNullValue(OpType));
6744       return &I;
6745 
6746     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6747     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6748     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6749     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6750       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6751       I.setPredicate(FCmpInst::FCMP_ORD);
6752       I.setOperand(1, Constant::getNullValue(OpType));
6753       return &I;
6754     }
6755   }
6756 
6757   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6758   // then canonicalize the operand to 0.0.
6759   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6760     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6761       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6762 
6763     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6764       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6765   }
6766 
6767   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6768   Value *X, *Y;
6769   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6770     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6771 
6772   if (Instruction *R = foldFCmpFNegCommonOp(I))
6773     return R;
6774 
6775   // Test if the FCmpInst instruction is used exclusively by a select as
6776   // part of a minimum or maximum operation. If so, refrain from doing
6777   // any other folding. This helps out other analyses which understand
6778   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6779   // and CodeGen. And in this case, at least one of the comparison
6780   // operands has at least one user besides the compare (the select),
6781   // which would often largely negate the benefit of folding anyway.
6782   if (I.hasOneUse())
6783     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6784       Value *A, *B;
6785       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6786       if (SPR.Flavor != SPF_UNKNOWN)
6787         return nullptr;
6788     }
6789 
6790   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6791   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6792   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6793     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6794 
6795   // Handle fcmp with instruction LHS and constant RHS.
6796   Instruction *LHSI;
6797   Constant *RHSC;
6798   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6799     switch (LHSI->getOpcode()) {
6800     case Instruction::PHI:
6801       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6802       // block.  If in the same block, we're encouraging jump threading.  If
6803       // not, we are just pessimizing the code by making an i1 phi.
6804       if (LHSI->getParent() == I.getParent())
6805         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6806           return NV;
6807       break;
6808     case Instruction::SIToFP:
6809     case Instruction::UIToFP:
6810       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6811         return NV;
6812       break;
6813     case Instruction::FDiv:
6814       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6815         return NV;
6816       break;
6817     case Instruction::Load:
6818       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6819         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6820           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6821                   cast<LoadInst>(LHSI), GEP, GV, I))
6822             return Res;
6823       break;
6824   }
6825   }
6826 
6827   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6828     return R;
6829 
6830   if (match(Op0, m_FNeg(m_Value(X)))) {
6831     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6832     Constant *C;
6833     if (match(Op1, m_Constant(C))) {
6834       Constant *NegC = ConstantExpr::getFNeg(C);
6835       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6836     }
6837   }
6838 
6839   if (match(Op0, m_FPExt(m_Value(X)))) {
6840     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6841     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6842       return new FCmpInst(Pred, X, Y, "", &I);
6843 
6844     const APFloat *C;
6845     if (match(Op1, m_APFloat(C))) {
6846       const fltSemantics &FPSem =
6847           X->getType()->getScalarType()->getFltSemantics();
6848       bool Lossy;
6849       APFloat TruncC = *C;
6850       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6851 
6852       if (Lossy) {
6853         // X can't possibly equal the higher-precision constant, so reduce any
6854         // equality comparison.
6855         // TODO: Other predicates can be handled via getFCmpCode().
6856         switch (Pred) {
6857         case FCmpInst::FCMP_OEQ:
6858           // X is ordered and equal to an impossible constant --> false
6859           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6860         case FCmpInst::FCMP_ONE:
6861           // X is ordered and not equal to an impossible constant --> ordered
6862           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6863                               ConstantFP::getNullValue(X->getType()));
6864         case FCmpInst::FCMP_UEQ:
6865           // X is unordered or equal to an impossible constant --> unordered
6866           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6867                               ConstantFP::getNullValue(X->getType()));
6868         case FCmpInst::FCMP_UNE:
6869           // X is unordered or not equal to an impossible constant --> true
6870           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6871         default:
6872           break;
6873         }
6874       }
6875 
6876       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6877       // Avoid lossy conversions and denormals.
6878       // Zero is a special case that's OK to convert.
6879       APFloat Fabs = TruncC;
6880       Fabs.clearSign();
6881       if (!Lossy &&
6882           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6883         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6884         return new FCmpInst(Pred, X, NewC, "", &I);
6885       }
6886     }
6887   }
6888 
6889   // Convert a sign-bit test of an FP value into a cast and integer compare.
6890   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6891   // TODO: Handle non-zero compare constants.
6892   // TODO: Handle other predicates.
6893   const APFloat *C;
6894   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6895                                                            m_Value(X)))) &&
6896       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6897     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6898     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6899       IntType = VectorType::get(IntType, VecTy->getElementCount());
6900 
6901     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6902     if (Pred == FCmpInst::FCMP_OLT) {
6903       Value *IntX = Builder.CreateBitCast(X, IntType);
6904       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6905                           ConstantInt::getNullValue(IntType));
6906     }
6907   }
6908 
6909   if (I.getType()->isVectorTy())
6910     if (Instruction *Res = foldVectorCmp(I, Builder))
6911       return Res;
6912 
6913   return Changed ? &I : nullptr;
6914 }
6915