1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 // Don't get rid of the intermediate variable here; the store can grow 707 // the map which will invalidate the reference to the input value. 708 Value *V = NewInsts[CI->getOperand(0)]; 709 NewInsts[CI] = V; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getIndexTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 if (!GEPLHS->hasAllConstantIndices()) 836 return nullptr; 837 838 // Make sure the pointers have the same type. 839 if (GEPLHS->getType() != RHS->getType()) 840 return nullptr; 841 842 Value *PtrBase, *Index; 843 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 844 845 // The set of nodes that will take part in this transformation. 846 SetVector<Value *> Nodes; 847 848 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 849 return nullptr; 850 851 // We know we can re-write this as 852 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 853 // Since we've only looked through inbouds GEPs we know that we 854 // can't have overflow on either side. We can therefore re-write 855 // this as: 856 // OFFSET1 cmp OFFSET2 857 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 858 859 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 860 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 861 // offset. Since Index is the offset of LHS to the base pointer, we will now 862 // compare the offsets instead of comparing the pointers. 863 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 864 } 865 866 /// Fold comparisons between a GEP instruction and something else. At this point 867 /// we know that the GEP is on the LHS of the comparison. 868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 869 ICmpInst::Predicate Cond, 870 Instruction &I) { 871 // Don't transform signed compares of GEPs into index compares. Even if the 872 // GEP is inbounds, the final add of the base pointer can have signed overflow 873 // and would change the result of the icmp. 874 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 875 // the maximum signed value for the pointer type. 876 if (ICmpInst::isSigned(Cond)) 877 return nullptr; 878 879 // Look through bitcasts and addrspacecasts. We do not however want to remove 880 // 0 GEPs. 881 if (!isa<GetElementPtrInst>(RHS)) 882 RHS = RHS->stripPointerCasts(); 883 884 Value *PtrBase = GEPLHS->getOperand(0); 885 if (PtrBase == RHS && GEPLHS->isInBounds()) { 886 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 887 // This transformation (ignoring the base and scales) is valid because we 888 // know pointers can't overflow since the gep is inbounds. See if we can 889 // output an optimized form. 890 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 891 892 // If not, synthesize the offset the hard way. 893 if (!Offset) 894 Offset = EmitGEPOffset(GEPLHS); 895 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 896 Constant::getNullValue(Offset->getType())); 897 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 898 // If the base pointers are different, but the indices are the same, just 899 // compare the base pointer. 900 if (PtrBase != GEPRHS->getOperand(0)) { 901 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 902 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 903 GEPRHS->getOperand(0)->getType(); 904 if (IndicesTheSame) 905 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 906 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 907 IndicesTheSame = false; 908 break; 909 } 910 911 // If all indices are the same, just compare the base pointers. 912 Type *BaseType = GEPLHS->getOperand(0)->getType(); 913 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 914 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 915 916 // If we're comparing GEPs with two base pointers that only differ in type 917 // and both GEPs have only constant indices or just one use, then fold 918 // the compare with the adjusted indices. 919 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 920 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 921 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 922 PtrBase->stripPointerCasts() == 923 GEPRHS->getOperand(0)->stripPointerCasts()) { 924 Value *LOffset = EmitGEPOffset(GEPLHS); 925 Value *ROffset = EmitGEPOffset(GEPRHS); 926 927 // If we looked through an addrspacecast between different sized address 928 // spaces, the LHS and RHS pointers are different sized 929 // integers. Truncate to the smaller one. 930 Type *LHSIndexTy = LOffset->getType(); 931 Type *RHSIndexTy = ROffset->getType(); 932 if (LHSIndexTy != RHSIndexTy) { 933 if (LHSIndexTy->getPrimitiveSizeInBits() < 934 RHSIndexTy->getPrimitiveSizeInBits()) { 935 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 936 } else 937 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 938 } 939 940 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 941 LOffset, ROffset); 942 return replaceInstUsesWith(I, Cmp); 943 } 944 945 // Otherwise, the base pointers are different and the indices are 946 // different. Try convert this to an indexed compare by looking through 947 // PHIs/casts. 948 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 949 } 950 951 // If one of the GEPs has all zero indices, recurse. 952 if (GEPLHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 954 ICmpInst::getSwappedPredicate(Cond), I); 955 956 // If the other GEP has all zero indices, recurse. 957 if (GEPRHS->hasAllZeroIndices()) 958 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 959 960 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 961 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 962 // If the GEPs only differ by one index, compare it. 963 unsigned NumDifferences = 0; // Keep track of # differences. 964 unsigned DiffOperand = 0; // The operand that differs. 965 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 966 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 967 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 968 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 969 // Irreconcilable differences. 970 NumDifferences = 2; 971 break; 972 } else { 973 if (NumDifferences++) break; 974 DiffOperand = i; 975 } 976 } 977 978 if (NumDifferences == 0) // SAME GEP? 979 return replaceInstUsesWith(I, // No comparison is needed here. 980 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 981 982 else if (NumDifferences == 1 && GEPsInBounds) { 983 Value *LHSV = GEPLHS->getOperand(DiffOperand); 984 Value *RHSV = GEPRHS->getOperand(DiffOperand); 985 // Make sure we do a signed comparison here. 986 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 987 } 988 } 989 990 // Only lower this if the icmp is the only user of the GEP or if we expect 991 // the result to fold to a constant! 992 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 993 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 994 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 995 Value *L = EmitGEPOffset(GEPLHS); 996 Value *R = EmitGEPOffset(GEPRHS); 997 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 998 } 999 } 1000 1001 // Try convert this to an indexed compare by looking through PHIs/casts as a 1002 // last resort. 1003 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1004 } 1005 1006 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1007 const AllocaInst *Alloca, 1008 const Value *Other) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1078 return replaceInstUsesWith( 1079 ICI, 1080 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1081 } 1082 1083 /// Fold "icmp pred (X+C), X". 1084 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1085 ICmpInst::Predicate Pred) { 1086 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1087 // so the values can never be equal. Similarly for all other "or equals" 1088 // operators. 1089 assert(!!C && "C should not be zero!"); 1090 1091 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1092 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1093 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1094 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1095 Constant *R = ConstantInt::get(X->getType(), 1096 APInt::getMaxValue(C.getBitWidth()) - C); 1097 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1098 } 1099 1100 // (X+1) >u X --> X <u (0-1) --> X != 255 1101 // (X+2) >u X --> X <u (0-2) --> X <u 254 1102 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1103 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1104 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1105 ConstantInt::get(X->getType(), -C)); 1106 1107 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1108 1109 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1110 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1111 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1112 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1113 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1114 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1115 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1116 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1117 ConstantInt::get(X->getType(), SMax - C)); 1118 1119 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1120 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1121 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1122 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1123 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1124 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1125 1126 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1127 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1128 ConstantInt::get(X->getType(), SMax - (C - 1))); 1129 } 1130 1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1132 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1134 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1135 const APInt &AP1, 1136 const APInt &AP2) { 1137 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1138 1139 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1140 if (I.getPredicate() == I.ICMP_NE) 1141 Pred = CmpInst::getInversePredicate(Pred); 1142 return new ICmpInst(Pred, LHS, RHS); 1143 }; 1144 1145 // Don't bother doing any work for cases which InstSimplify handles. 1146 if (AP2.isNullValue()) 1147 return nullptr; 1148 1149 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1150 if (IsAShr) { 1151 if (AP2.isAllOnesValue()) 1152 return nullptr; 1153 if (AP2.isNegative() != AP1.isNegative()) 1154 return nullptr; 1155 if (AP2.sgt(AP1)) 1156 return nullptr; 1157 } 1158 1159 if (!AP1) 1160 // 'A' must be large enough to shift out the highest set bit. 1161 return getICmp(I.ICMP_UGT, A, 1162 ConstantInt::get(A->getType(), AP2.logBase2())); 1163 1164 if (AP1 == AP2) 1165 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1166 1167 int Shift; 1168 if (IsAShr && AP1.isNegative()) 1169 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1170 else 1171 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1172 1173 if (Shift > 0) { 1174 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1175 // There are multiple solutions if we are comparing against -1 and the LHS 1176 // of the ashr is not a power of two. 1177 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1178 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } else if (AP1 == AP2.lshr(Shift)) { 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } 1183 } 1184 1185 // Shifting const2 will never be equal to const1. 1186 // FIXME: This should always be handled by InstSimplify? 1187 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1188 return replaceInstUsesWith(I, TorF); 1189 } 1190 1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1193 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1194 const APInt &AP1, 1195 const APInt &AP2) { 1196 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1197 1198 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1199 if (I.getPredicate() == I.ICMP_NE) 1200 Pred = CmpInst::getInversePredicate(Pred); 1201 return new ICmpInst(Pred, LHS, RHS); 1202 }; 1203 1204 // Don't bother doing any work for cases which InstSimplify handles. 1205 if (AP2.isNullValue()) 1206 return nullptr; 1207 1208 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1209 1210 if (!AP1 && AP2TrailingZeros != 0) 1211 return getICmp( 1212 I.ICMP_UGE, A, 1213 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1214 1215 if (AP1 == AP2) 1216 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1217 1218 // Get the distance between the lowest bits that are set. 1219 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1220 1221 if (Shift > 0 && AP2.shl(Shift) == AP1) 1222 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1223 1224 // Shifting const2 will never be equal to const1. 1225 // FIXME: This should always be handled by InstSimplify? 1226 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1227 return replaceInstUsesWith(I, TorF); 1228 } 1229 1230 /// The caller has matched a pattern of the form: 1231 /// I = icmp ugt (add (add A, B), CI2), CI1 1232 /// If this is of the form: 1233 /// sum = a + b 1234 /// if (sum+128 >u 255) 1235 /// Then replace it with llvm.sadd.with.overflow.i8. 1236 /// 1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1238 ConstantInt *CI2, ConstantInt *CI1, 1239 InstCombiner &IC) { 1240 // The transformation we're trying to do here is to transform this into an 1241 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1242 // with a narrower add, and discard the add-with-constant that is part of the 1243 // range check (if we can't eliminate it, this isn't profitable). 1244 1245 // In order to eliminate the add-with-constant, the compare can be its only 1246 // use. 1247 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1248 if (!AddWithCst->hasOneUse()) 1249 return nullptr; 1250 1251 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1252 if (!CI2->getValue().isPowerOf2()) 1253 return nullptr; 1254 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1255 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1256 return nullptr; 1257 1258 // The width of the new add formed is 1 more than the bias. 1259 ++NewWidth; 1260 1261 // Check to see that CI1 is an all-ones value with NewWidth bits. 1262 if (CI1->getBitWidth() == NewWidth || 1263 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1264 return nullptr; 1265 1266 // This is only really a signed overflow check if the inputs have been 1267 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1268 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1269 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1270 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1271 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1272 return nullptr; 1273 1274 // In order to replace the original add with a narrower 1275 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1276 // and truncates that discard the high bits of the add. Verify that this is 1277 // the case. 1278 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1279 for (User *U : OrigAdd->users()) { 1280 if (U == AddWithCst) 1281 continue; 1282 1283 // Only accept truncates for now. We would really like a nice recursive 1284 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1285 // chain to see which bits of a value are actually demanded. If the 1286 // original add had another add which was then immediately truncated, we 1287 // could still do the transformation. 1288 TruncInst *TI = dyn_cast<TruncInst>(U); 1289 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1290 return nullptr; 1291 } 1292 1293 // If the pattern matches, truncate the inputs to the narrower type and 1294 // use the sadd_with_overflow intrinsic to efficiently compute both the 1295 // result and the overflow bit. 1296 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1297 Function *F = Intrinsic::getDeclaration( 1298 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1299 1300 InstCombiner::BuilderTy &Builder = IC.Builder; 1301 1302 // Put the new code above the original add, in case there are any uses of the 1303 // add between the add and the compare. 1304 Builder.SetInsertPoint(OrigAdd); 1305 1306 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1307 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1308 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1309 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1310 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1311 1312 // The inner add was the result of the narrow add, zero extended to the 1313 // wider type. Replace it with the result computed by the intrinsic. 1314 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1315 1316 // The original icmp gets replaced with the overflow value. 1317 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1318 } 1319 1320 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1321 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1322 CmpInst::Predicate Pred = Cmp.getPredicate(); 1323 Value *X = Cmp.getOperand(0); 1324 1325 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1326 Value *A, *B; 1327 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1328 if (SPR.Flavor == SPF_SMIN) { 1329 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1330 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1331 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1332 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1333 } 1334 } 1335 return nullptr; 1336 } 1337 1338 /// Fold icmp Pred X, C. 1339 /// TODO: This code structure does not make sense. The saturating add fold 1340 /// should be moved to some other helper and extended as noted below (it is also 1341 /// possible that code has been made unnecessary - do we canonicalize IR to 1342 /// overflow/saturating intrinsics or not?). 1343 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1344 // Match the following pattern, which is a common idiom when writing 1345 // overflow-safe integer arithmetic functions. The source performs an addition 1346 // in wider type and explicitly checks for overflow using comparisons against 1347 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1348 // 1349 // TODO: This could probably be generalized to handle other overflow-safe 1350 // operations if we worked out the formulas to compute the appropriate magic 1351 // constants. 1352 // 1353 // sum = a + b 1354 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1355 CmpInst::Predicate Pred = Cmp.getPredicate(); 1356 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1357 Value *A, *B; 1358 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1359 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1360 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1361 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1362 return Res; 1363 1364 return nullptr; 1365 } 1366 1367 /// Canonicalize icmp instructions based on dominating conditions. 1368 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1369 // This is a cheap/incomplete check for dominance - just match a single 1370 // predecessor with a conditional branch. 1371 BasicBlock *CmpBB = Cmp.getParent(); 1372 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1373 if (!DomBB) 1374 return nullptr; 1375 1376 Value *DomCond; 1377 BasicBlock *TrueBB, *FalseBB; 1378 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1379 return nullptr; 1380 1381 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1382 "Predecessor block does not point to successor?"); 1383 1384 // The branch should get simplified. Don't bother simplifying this condition. 1385 if (TrueBB == FalseBB) 1386 return nullptr; 1387 1388 // Try to simplify this compare to T/F based on the dominating condition. 1389 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1390 if (Imp) 1391 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1392 1393 CmpInst::Predicate Pred = Cmp.getPredicate(); 1394 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1395 ICmpInst::Predicate DomPred; 1396 const APInt *C, *DomC; 1397 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1398 match(Y, m_APInt(C))) { 1399 // We have 2 compares of a variable with constants. Calculate the constant 1400 // ranges of those compares to see if we can transform the 2nd compare: 1401 // DomBB: 1402 // DomCond = icmp DomPred X, DomC 1403 // br DomCond, CmpBB, FalseBB 1404 // CmpBB: 1405 // Cmp = icmp Pred X, C 1406 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1407 ConstantRange DominatingCR = 1408 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1409 : ConstantRange::makeExactICmpRegion( 1410 CmpInst::getInversePredicate(DomPred), *DomC); 1411 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1412 ConstantRange Difference = DominatingCR.difference(CR); 1413 if (Intersection.isEmptySet()) 1414 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1415 if (Difference.isEmptySet()) 1416 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1417 1418 // Canonicalizing a sign bit comparison that gets used in a branch, 1419 // pessimizes codegen by generating branch on zero instruction instead 1420 // of a test and branch. So we avoid canonicalizing in such situations 1421 // because test and branch instruction has better branch displacement 1422 // than compare and branch instruction. 1423 bool UnusedBit; 1424 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1425 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1426 return nullptr; 1427 1428 if (const APInt *EqC = Intersection.getSingleElement()) 1429 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1430 if (const APInt *NeC = Difference.getSingleElement()) 1431 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1432 } 1433 1434 return nullptr; 1435 } 1436 1437 /// Fold icmp (trunc X, Y), C. 1438 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1439 TruncInst *Trunc, 1440 const APInt &C) { 1441 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1442 Value *X = Trunc->getOperand(0); 1443 if (C.isOneValue() && C.getBitWidth() > 1) { 1444 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1445 Value *V = nullptr; 1446 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1447 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1448 ConstantInt::get(V->getType(), 1)); 1449 } 1450 1451 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1452 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1453 // of the high bits truncated out of x are known. 1454 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1455 SrcBits = X->getType()->getScalarSizeInBits(); 1456 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1457 1458 // If all the high bits are known, we can do this xform. 1459 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1460 // Pull in the high bits from known-ones set. 1461 APInt NewRHS = C.zext(SrcBits); 1462 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1463 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1464 } 1465 } 1466 1467 return nullptr; 1468 } 1469 1470 /// Fold icmp (xor X, Y), C. 1471 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1472 BinaryOperator *Xor, 1473 const APInt &C) { 1474 Value *X = Xor->getOperand(0); 1475 Value *Y = Xor->getOperand(1); 1476 const APInt *XorC; 1477 if (!match(Y, m_APInt(XorC))) 1478 return nullptr; 1479 1480 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1481 // fold the xor. 1482 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1483 bool TrueIfSigned = false; 1484 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1485 1486 // If the sign bit of the XorCst is not set, there is no change to 1487 // the operation, just stop using the Xor. 1488 if (!XorC->isNegative()) { 1489 Cmp.setOperand(0, X); 1490 Worklist.Add(Xor); 1491 return &Cmp; 1492 } 1493 1494 // Emit the opposite comparison. 1495 if (TrueIfSigned) 1496 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1497 ConstantInt::getAllOnesValue(X->getType())); 1498 else 1499 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1500 ConstantInt::getNullValue(X->getType())); 1501 } 1502 1503 if (Xor->hasOneUse()) { 1504 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1505 if (!Cmp.isEquality() && XorC->isSignMask()) { 1506 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1507 : Cmp.getSignedPredicate(); 1508 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1509 } 1510 1511 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1512 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1513 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1514 : Cmp.getSignedPredicate(); 1515 Pred = Cmp.getSwappedPredicate(Pred); 1516 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1517 } 1518 } 1519 1520 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1521 if (Pred == ICmpInst::ICMP_UGT) { 1522 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1523 if (*XorC == ~C && (C + 1).isPowerOf2()) 1524 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1525 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1526 if (*XorC == C && (C + 1).isPowerOf2()) 1527 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1528 } 1529 if (Pred == ICmpInst::ICMP_ULT) { 1530 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1531 if (*XorC == -C && C.isPowerOf2()) 1532 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1533 ConstantInt::get(X->getType(), ~C)); 1534 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1535 if (*XorC == C && (-C).isPowerOf2()) 1536 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1537 ConstantInt::get(X->getType(), ~C)); 1538 } 1539 return nullptr; 1540 } 1541 1542 /// Fold icmp (and (sh X, Y), C2), C1. 1543 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1544 const APInt &C1, const APInt &C2) { 1545 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1546 if (!Shift || !Shift->isShift()) 1547 return nullptr; 1548 1549 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1550 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1551 // code produced by the clang front-end, for bitfield access. 1552 // This seemingly simple opportunity to fold away a shift turns out to be 1553 // rather complicated. See PR17827 for details. 1554 unsigned ShiftOpcode = Shift->getOpcode(); 1555 bool IsShl = ShiftOpcode == Instruction::Shl; 1556 const APInt *C3; 1557 if (match(Shift->getOperand(1), m_APInt(C3))) { 1558 bool CanFold = false; 1559 if (ShiftOpcode == Instruction::Shl) { 1560 // For a left shift, we can fold if the comparison is not signed. We can 1561 // also fold a signed comparison if the mask value and comparison value 1562 // are not negative. These constraints may not be obvious, but we can 1563 // prove that they are correct using an SMT solver. 1564 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1565 CanFold = true; 1566 } else { 1567 bool IsAshr = ShiftOpcode == Instruction::AShr; 1568 // For a logical right shift, we can fold if the comparison is not signed. 1569 // We can also fold a signed comparison if the shifted mask value and the 1570 // shifted comparison value are not negative. These constraints may not be 1571 // obvious, but we can prove that they are correct using an SMT solver. 1572 // For an arithmetic shift right we can do the same, if we ensure 1573 // the And doesn't use any bits being shifted in. Normally these would 1574 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1575 // additional user. 1576 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1577 if (!Cmp.isSigned() || 1578 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1579 CanFold = true; 1580 } 1581 } 1582 1583 if (CanFold) { 1584 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1585 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1586 // Check to see if we are shifting out any of the bits being compared. 1587 if (SameAsC1 != C1) { 1588 // If we shifted bits out, the fold is not going to work out. As a 1589 // special case, check to see if this means that the result is always 1590 // true or false now. 1591 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1592 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1593 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1594 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1595 } else { 1596 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1597 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1598 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1599 And->setOperand(0, Shift->getOperand(0)); 1600 Worklist.Add(Shift); // Shift is dead. 1601 return &Cmp; 1602 } 1603 } 1604 } 1605 1606 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1607 // preferable because it allows the C2 << Y expression to be hoisted out of a 1608 // loop if Y is invariant and X is not. 1609 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1610 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1611 // Compute C2 << Y. 1612 Value *NewShift = 1613 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1614 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1615 1616 // Compute X & (C2 << Y). 1617 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1618 Cmp.setOperand(0, NewAnd); 1619 return &Cmp; 1620 } 1621 1622 return nullptr; 1623 } 1624 1625 /// Fold icmp (and X, C2), C1. 1626 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1627 BinaryOperator *And, 1628 const APInt &C1) { 1629 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1630 // TODO: We canonicalize to the longer form for scalars because we have 1631 // better analysis/folds for icmp, and codegen may be better with icmp. 1632 if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && 1633 C1.isNullValue() && match(And->getOperand(1), m_One())) 1634 return new TruncInst(And->getOperand(0), Cmp.getType()); 1635 1636 const APInt *C2; 1637 if (!match(And->getOperand(1), m_APInt(C2))) 1638 return nullptr; 1639 1640 if (!And->hasOneUse()) 1641 return nullptr; 1642 1643 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1644 // the input width without changing the value produced, eliminate the cast: 1645 // 1646 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1647 // 1648 // We can do this transformation if the constants do not have their sign bits 1649 // set or if it is an equality comparison. Extending a relational comparison 1650 // when we're checking the sign bit would not work. 1651 Value *W; 1652 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1653 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1654 // TODO: Is this a good transform for vectors? Wider types may reduce 1655 // throughput. Should this transform be limited (even for scalars) by using 1656 // shouldChangeType()? 1657 if (!Cmp.getType()->isVectorTy()) { 1658 Type *WideType = W->getType(); 1659 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1660 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1661 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1662 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1663 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1664 } 1665 } 1666 1667 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1668 return I; 1669 1670 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1671 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1672 // 1673 // iff pred isn't signed 1674 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1675 match(And->getOperand(1), m_One())) { 1676 Constant *One = cast<Constant>(And->getOperand(1)); 1677 Value *Or = And->getOperand(0); 1678 Value *A, *B, *LShr; 1679 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1680 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1681 unsigned UsesRemoved = 0; 1682 if (And->hasOneUse()) 1683 ++UsesRemoved; 1684 if (Or->hasOneUse()) 1685 ++UsesRemoved; 1686 if (LShr->hasOneUse()) 1687 ++UsesRemoved; 1688 1689 // Compute A & ((1 << B) | 1) 1690 Value *NewOr = nullptr; 1691 if (auto *C = dyn_cast<Constant>(B)) { 1692 if (UsesRemoved >= 1) 1693 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1694 } else { 1695 if (UsesRemoved >= 3) 1696 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1697 /*HasNUW=*/true), 1698 One, Or->getName()); 1699 } 1700 if (NewOr) { 1701 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1702 Cmp.setOperand(0, NewAnd); 1703 return &Cmp; 1704 } 1705 } 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 /// Fold icmp (and X, Y), C. 1712 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1713 BinaryOperator *And, 1714 const APInt &C) { 1715 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1716 return I; 1717 1718 // TODO: These all require that Y is constant too, so refactor with the above. 1719 1720 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1721 Value *X = And->getOperand(0); 1722 Value *Y = And->getOperand(1); 1723 if (auto *LI = dyn_cast<LoadInst>(X)) 1724 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1725 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1726 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1727 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1728 ConstantInt *C2 = cast<ConstantInt>(Y); 1729 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1730 return Res; 1731 } 1732 1733 if (!Cmp.isEquality()) 1734 return nullptr; 1735 1736 // X & -C == -C -> X > u ~C 1737 // X & -C != -C -> X <= u ~C 1738 // iff C is a power of 2 1739 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1740 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1741 : CmpInst::ICMP_ULE; 1742 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1743 } 1744 1745 // (X & C2) == 0 -> (trunc X) >= 0 1746 // (X & C2) != 0 -> (trunc X) < 0 1747 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1748 const APInt *C2; 1749 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1750 int32_t ExactLogBase2 = C2->exactLogBase2(); 1751 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1752 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1753 if (And->getType()->isVectorTy()) 1754 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1755 Value *Trunc = Builder.CreateTrunc(X, NTy); 1756 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1757 : CmpInst::ICMP_SLT; 1758 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1759 } 1760 } 1761 1762 return nullptr; 1763 } 1764 1765 /// Fold icmp (or X, Y), C. 1766 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1767 const APInt &C) { 1768 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1769 if (C.isOneValue()) { 1770 // icmp slt signum(V) 1 --> icmp slt V, 1 1771 Value *V = nullptr; 1772 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1773 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1774 ConstantInt::get(V->getType(), 1)); 1775 } 1776 1777 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1778 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1779 // X | C == C --> X <=u C 1780 // X | C != C --> X >u C 1781 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1782 if ((C + 1).isPowerOf2()) { 1783 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1784 return new ICmpInst(Pred, OrOp0, OrOp1); 1785 } 1786 // More general: are all bits outside of a mask constant set or not set? 1787 // X | C == C --> (X & ~C) == 0 1788 // X | C != C --> (X & ~C) != 0 1789 if (Or->hasOneUse()) { 1790 Value *A = Builder.CreateAnd(OrOp0, ~C); 1791 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1792 } 1793 } 1794 1795 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1796 return nullptr; 1797 1798 Value *P, *Q; 1799 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1800 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1801 // -> and (icmp eq P, null), (icmp eq Q, null). 1802 Value *CmpP = 1803 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1804 Value *CmpQ = 1805 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1806 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1807 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1808 } 1809 1810 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1811 // a shorter form that has more potential to be folded even further. 1812 Value *X1, *X2, *X3, *X4; 1813 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1814 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1815 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1816 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1817 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1818 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1819 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1820 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1821 } 1822 1823 return nullptr; 1824 } 1825 1826 /// Fold icmp (mul X, Y), C. 1827 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1828 BinaryOperator *Mul, 1829 const APInt &C) { 1830 const APInt *MulC; 1831 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1832 return nullptr; 1833 1834 // If this is a test of the sign bit and the multiply is sign-preserving with 1835 // a constant operand, use the multiply LHS operand instead. 1836 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1837 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1838 if (MulC->isNegative()) 1839 Pred = ICmpInst::getSwappedPredicate(Pred); 1840 return new ICmpInst(Pred, Mul->getOperand(0), 1841 Constant::getNullValue(Mul->getType())); 1842 } 1843 1844 return nullptr; 1845 } 1846 1847 /// Fold icmp (shl 1, Y), C. 1848 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1849 const APInt &C) { 1850 Value *Y; 1851 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1852 return nullptr; 1853 1854 Type *ShiftType = Shl->getType(); 1855 unsigned TypeBits = C.getBitWidth(); 1856 bool CIsPowerOf2 = C.isPowerOf2(); 1857 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1858 if (Cmp.isUnsigned()) { 1859 // (1 << Y) pred C -> Y pred Log2(C) 1860 if (!CIsPowerOf2) { 1861 // (1 << Y) < 30 -> Y <= 4 1862 // (1 << Y) <= 30 -> Y <= 4 1863 // (1 << Y) >= 30 -> Y > 4 1864 // (1 << Y) > 30 -> Y > 4 1865 if (Pred == ICmpInst::ICMP_ULT) 1866 Pred = ICmpInst::ICMP_ULE; 1867 else if (Pred == ICmpInst::ICMP_UGE) 1868 Pred = ICmpInst::ICMP_UGT; 1869 } 1870 1871 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1872 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1873 unsigned CLog2 = C.logBase2(); 1874 if (CLog2 == TypeBits - 1) { 1875 if (Pred == ICmpInst::ICMP_UGE) 1876 Pred = ICmpInst::ICMP_EQ; 1877 else if (Pred == ICmpInst::ICMP_ULT) 1878 Pred = ICmpInst::ICMP_NE; 1879 } 1880 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1881 } else if (Cmp.isSigned()) { 1882 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1883 if (C.isAllOnesValue()) { 1884 // (1 << Y) <= -1 -> Y == 31 1885 if (Pred == ICmpInst::ICMP_SLE) 1886 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1887 1888 // (1 << Y) > -1 -> Y != 31 1889 if (Pred == ICmpInst::ICMP_SGT) 1890 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1891 } else if (!C) { 1892 // (1 << Y) < 0 -> Y == 31 1893 // (1 << Y) <= 0 -> Y == 31 1894 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1895 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1896 1897 // (1 << Y) >= 0 -> Y != 31 1898 // (1 << Y) > 0 -> Y != 31 1899 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1900 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1901 } 1902 } else if (Cmp.isEquality() && CIsPowerOf2) { 1903 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1904 } 1905 1906 return nullptr; 1907 } 1908 1909 /// Fold icmp (shl X, Y), C. 1910 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1911 BinaryOperator *Shl, 1912 const APInt &C) { 1913 const APInt *ShiftVal; 1914 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1915 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1916 1917 const APInt *ShiftAmt; 1918 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1919 return foldICmpShlOne(Cmp, Shl, C); 1920 1921 // Check that the shift amount is in range. If not, don't perform undefined 1922 // shifts. When the shift is visited, it will be simplified. 1923 unsigned TypeBits = C.getBitWidth(); 1924 if (ShiftAmt->uge(TypeBits)) 1925 return nullptr; 1926 1927 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1928 Value *X = Shl->getOperand(0); 1929 Type *ShType = Shl->getType(); 1930 1931 // NSW guarantees that we are only shifting out sign bits from the high bits, 1932 // so we can ASHR the compare constant without needing a mask and eliminate 1933 // the shift. 1934 if (Shl->hasNoSignedWrap()) { 1935 if (Pred == ICmpInst::ICMP_SGT) { 1936 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1937 APInt ShiftedC = C.ashr(*ShiftAmt); 1938 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1939 } 1940 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1941 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1942 APInt ShiftedC = C.ashr(*ShiftAmt); 1943 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1944 } 1945 if (Pred == ICmpInst::ICMP_SLT) { 1946 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1947 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1948 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1949 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1950 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1951 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1952 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1953 } 1954 // If this is a signed comparison to 0 and the shift is sign preserving, 1955 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1956 // do that if we're sure to not continue on in this function. 1957 if (isSignTest(Pred, C)) 1958 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1959 } 1960 1961 // NUW guarantees that we are only shifting out zero bits from the high bits, 1962 // so we can LSHR the compare constant without needing a mask and eliminate 1963 // the shift. 1964 if (Shl->hasNoUnsignedWrap()) { 1965 if (Pred == ICmpInst::ICMP_UGT) { 1966 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1967 APInt ShiftedC = C.lshr(*ShiftAmt); 1968 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1969 } 1970 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1971 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1972 APInt ShiftedC = C.lshr(*ShiftAmt); 1973 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1974 } 1975 if (Pred == ICmpInst::ICMP_ULT) { 1976 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1977 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1978 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1979 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1980 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1981 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1982 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1983 } 1984 } 1985 1986 if (Cmp.isEquality() && Shl->hasOneUse()) { 1987 // Strength-reduce the shift into an 'and'. 1988 Constant *Mask = ConstantInt::get( 1989 ShType, 1990 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1991 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1992 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 1993 return new ICmpInst(Pred, And, LShrC); 1994 } 1995 1996 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1997 bool TrueIfSigned = false; 1998 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 1999 // (X << 31) <s 0 --> (X & 1) != 0 2000 Constant *Mask = ConstantInt::get( 2001 ShType, 2002 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2003 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2004 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2005 And, Constant::getNullValue(ShType)); 2006 } 2007 2008 // Transform (icmp pred iM (shl iM %v, N), C) 2009 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2010 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2011 // This enables us to get rid of the shift in favor of a trunc that may be 2012 // free on the target. It has the additional benefit of comparing to a 2013 // smaller constant that may be more target-friendly. 2014 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2015 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2016 DL.isLegalInteger(TypeBits - Amt)) { 2017 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2018 if (ShType->isVectorTy()) 2019 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2020 Constant *NewC = 2021 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2022 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2023 } 2024 2025 return nullptr; 2026 } 2027 2028 /// Fold icmp ({al}shr X, Y), C. 2029 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2030 BinaryOperator *Shr, 2031 const APInt &C) { 2032 // An exact shr only shifts out zero bits, so: 2033 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2034 Value *X = Shr->getOperand(0); 2035 CmpInst::Predicate Pred = Cmp.getPredicate(); 2036 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2037 C.isNullValue()) 2038 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2039 2040 const APInt *ShiftVal; 2041 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2042 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2043 2044 const APInt *ShiftAmt; 2045 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2046 return nullptr; 2047 2048 // Check that the shift amount is in range. If not, don't perform undefined 2049 // shifts. When the shift is visited it will be simplified. 2050 unsigned TypeBits = C.getBitWidth(); 2051 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2052 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2053 return nullptr; 2054 2055 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2056 bool IsExact = Shr->isExact(); 2057 Type *ShrTy = Shr->getType(); 2058 // TODO: If we could guarantee that InstSimplify would handle all of the 2059 // constant-value-based preconditions in the folds below, then we could assert 2060 // those conditions rather than checking them. This is difficult because of 2061 // undef/poison (PR34838). 2062 if (IsAShr) { 2063 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2064 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2065 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2066 APInt ShiftedC = C.shl(ShAmtVal); 2067 if (ShiftedC.ashr(ShAmtVal) == C) 2068 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2069 } 2070 if (Pred == CmpInst::ICMP_SGT) { 2071 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2072 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2073 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2074 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2075 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2076 } 2077 } else { 2078 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2079 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2080 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2081 APInt ShiftedC = C.shl(ShAmtVal); 2082 if (ShiftedC.lshr(ShAmtVal) == C) 2083 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2084 } 2085 if (Pred == CmpInst::ICMP_UGT) { 2086 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2087 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2088 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2089 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2090 } 2091 } 2092 2093 if (!Cmp.isEquality()) 2094 return nullptr; 2095 2096 // Handle equality comparisons of shift-by-constant. 2097 2098 // If the comparison constant changes with the shift, the comparison cannot 2099 // succeed (bits of the comparison constant cannot match the shifted value). 2100 // This should be known by InstSimplify and already be folded to true/false. 2101 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2102 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2103 "Expected icmp+shr simplify did not occur."); 2104 2105 // If the bits shifted out are known zero, compare the unshifted value: 2106 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2107 if (Shr->isExact()) 2108 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2109 2110 if (Shr->hasOneUse()) { 2111 // Canonicalize the shift into an 'and': 2112 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2113 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2114 Constant *Mask = ConstantInt::get(ShrTy, Val); 2115 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2116 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2117 } 2118 2119 return nullptr; 2120 } 2121 2122 /// Fold icmp (udiv X, Y), C. 2123 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2124 BinaryOperator *UDiv, 2125 const APInt &C) { 2126 const APInt *C2; 2127 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2128 return nullptr; 2129 2130 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2131 2132 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2133 Value *Y = UDiv->getOperand(1); 2134 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2135 assert(!C.isMaxValue() && 2136 "icmp ugt X, UINT_MAX should have been simplified already."); 2137 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2138 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2139 } 2140 2141 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2142 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2143 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2144 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2145 ConstantInt::get(Y->getType(), C2->udiv(C))); 2146 } 2147 2148 return nullptr; 2149 } 2150 2151 /// Fold icmp ({su}div X, Y), C. 2152 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2153 BinaryOperator *Div, 2154 const APInt &C) { 2155 // Fold: icmp pred ([us]div X, C2), C -> range test 2156 // Fold this div into the comparison, producing a range check. 2157 // Determine, based on the divide type, what the range is being 2158 // checked. If there is an overflow on the low or high side, remember 2159 // it, otherwise compute the range [low, hi) bounding the new value. 2160 // See: InsertRangeTest above for the kinds of replacements possible. 2161 const APInt *C2; 2162 if (!match(Div->getOperand(1), m_APInt(C2))) 2163 return nullptr; 2164 2165 // FIXME: If the operand types don't match the type of the divide 2166 // then don't attempt this transform. The code below doesn't have the 2167 // logic to deal with a signed divide and an unsigned compare (and 2168 // vice versa). This is because (x /s C2) <s C produces different 2169 // results than (x /s C2) <u C or (x /u C2) <s C or even 2170 // (x /u C2) <u C. Simply casting the operands and result won't 2171 // work. :( The if statement below tests that condition and bails 2172 // if it finds it. 2173 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2174 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2175 return nullptr; 2176 2177 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2178 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2179 // division-by-constant cases should be present, we can not assert that they 2180 // have happened before we reach this icmp instruction. 2181 if (C2->isNullValue() || C2->isOneValue() || 2182 (DivIsSigned && C2->isAllOnesValue())) 2183 return nullptr; 2184 2185 // Compute Prod = C * C2. We are essentially solving an equation of 2186 // form X / C2 = C. We solve for X by multiplying C2 and C. 2187 // By solving for X, we can turn this into a range check instead of computing 2188 // a divide. 2189 APInt Prod = C * *C2; 2190 2191 // Determine if the product overflows by seeing if the product is not equal to 2192 // the divide. Make sure we do the same kind of divide as in the LHS 2193 // instruction that we're folding. 2194 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2195 2196 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2197 2198 // If the division is known to be exact, then there is no remainder from the 2199 // divide, so the covered range size is unit, otherwise it is the divisor. 2200 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2201 2202 // Figure out the interval that is being checked. For example, a comparison 2203 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2204 // Compute this interval based on the constants involved and the signedness of 2205 // the compare/divide. This computes a half-open interval, keeping track of 2206 // whether either value in the interval overflows. After analysis each 2207 // overflow variable is set to 0 if it's corresponding bound variable is valid 2208 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2209 int LoOverflow = 0, HiOverflow = 0; 2210 APInt LoBound, HiBound; 2211 2212 if (!DivIsSigned) { // udiv 2213 // e.g. X/5 op 3 --> [15, 20) 2214 LoBound = Prod; 2215 HiOverflow = LoOverflow = ProdOV; 2216 if (!HiOverflow) { 2217 // If this is not an exact divide, then many values in the range collapse 2218 // to the same result value. 2219 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2220 } 2221 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2222 if (C.isNullValue()) { // (X / pos) op 0 2223 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2224 LoBound = -(RangeSize - 1); 2225 HiBound = RangeSize; 2226 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2227 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2228 HiOverflow = LoOverflow = ProdOV; 2229 if (!HiOverflow) 2230 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2231 } else { // (X / pos) op neg 2232 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2233 HiBound = Prod + 1; 2234 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2235 if (!LoOverflow) { 2236 APInt DivNeg = -RangeSize; 2237 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2238 } 2239 } 2240 } else if (C2->isNegative()) { // Divisor is < 0. 2241 if (Div->isExact()) 2242 RangeSize.negate(); 2243 if (C.isNullValue()) { // (X / neg) op 0 2244 // e.g. X/-5 op 0 --> [-4, 5) 2245 LoBound = RangeSize + 1; 2246 HiBound = -RangeSize; 2247 if (HiBound == *C2) { // -INTMIN = INTMIN 2248 HiOverflow = 1; // [INTMIN+1, overflow) 2249 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2250 } 2251 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2252 // e.g. X/-5 op 3 --> [-19, -14) 2253 HiBound = Prod + 1; 2254 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2255 if (!LoOverflow) 2256 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2257 } else { // (X / neg) op neg 2258 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2259 LoOverflow = HiOverflow = ProdOV; 2260 if (!HiOverflow) 2261 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2262 } 2263 2264 // Dividing by a negative swaps the condition. LT <-> GT 2265 Pred = ICmpInst::getSwappedPredicate(Pred); 2266 } 2267 2268 Value *X = Div->getOperand(0); 2269 switch (Pred) { 2270 default: llvm_unreachable("Unhandled icmp opcode!"); 2271 case ICmpInst::ICMP_EQ: 2272 if (LoOverflow && HiOverflow) 2273 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2274 if (HiOverflow) 2275 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2276 ICmpInst::ICMP_UGE, X, 2277 ConstantInt::get(Div->getType(), LoBound)); 2278 if (LoOverflow) 2279 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2280 ICmpInst::ICMP_ULT, X, 2281 ConstantInt::get(Div->getType(), HiBound)); 2282 return replaceInstUsesWith( 2283 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2284 case ICmpInst::ICMP_NE: 2285 if (LoOverflow && HiOverflow) 2286 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2287 if (HiOverflow) 2288 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2289 ICmpInst::ICMP_ULT, X, 2290 ConstantInt::get(Div->getType(), LoBound)); 2291 if (LoOverflow) 2292 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2293 ICmpInst::ICMP_UGE, X, 2294 ConstantInt::get(Div->getType(), HiBound)); 2295 return replaceInstUsesWith(Cmp, 2296 insertRangeTest(X, LoBound, HiBound, 2297 DivIsSigned, false)); 2298 case ICmpInst::ICMP_ULT: 2299 case ICmpInst::ICMP_SLT: 2300 if (LoOverflow == +1) // Low bound is greater than input range. 2301 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2302 if (LoOverflow == -1) // Low bound is less than input range. 2303 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2304 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2305 case ICmpInst::ICMP_UGT: 2306 case ICmpInst::ICMP_SGT: 2307 if (HiOverflow == +1) // High bound greater than input range. 2308 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2309 if (HiOverflow == -1) // High bound less than input range. 2310 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2311 if (Pred == ICmpInst::ICMP_UGT) 2312 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2313 ConstantInt::get(Div->getType(), HiBound)); 2314 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2315 ConstantInt::get(Div->getType(), HiBound)); 2316 } 2317 2318 return nullptr; 2319 } 2320 2321 /// Fold icmp (sub X, Y), C. 2322 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2323 BinaryOperator *Sub, 2324 const APInt &C) { 2325 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2326 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2327 const APInt *C2; 2328 APInt SubResult; 2329 2330 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2331 if (match(X, m_APInt(C2)) && 2332 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2333 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2334 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2335 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2336 ConstantInt::get(Y->getType(), SubResult)); 2337 2338 // The following transforms are only worth it if the only user of the subtract 2339 // is the icmp. 2340 if (!Sub->hasOneUse()) 2341 return nullptr; 2342 2343 if (Sub->hasNoSignedWrap()) { 2344 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2345 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2346 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2347 2348 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2349 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2350 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2351 2352 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2353 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2354 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2355 2356 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2357 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2358 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2359 } 2360 2361 if (!match(X, m_APInt(C2))) 2362 return nullptr; 2363 2364 // C2 - Y <u C -> (Y | (C - 1)) == C2 2365 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2366 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2367 (*C2 & (C - 1)) == (C - 1)) 2368 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2369 2370 // C2 - Y >u C -> (Y | C) != C2 2371 // iff C2 & C == C and C + 1 is a power of 2 2372 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2373 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2374 2375 return nullptr; 2376 } 2377 2378 /// Fold icmp (add X, Y), C. 2379 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2380 BinaryOperator *Add, 2381 const APInt &C) { 2382 Value *Y = Add->getOperand(1); 2383 const APInt *C2; 2384 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2385 return nullptr; 2386 2387 // Fold icmp pred (add X, C2), C. 2388 Value *X = Add->getOperand(0); 2389 Type *Ty = Add->getType(); 2390 CmpInst::Predicate Pred = Cmp.getPredicate(); 2391 2392 if (!Add->hasOneUse()) 2393 return nullptr; 2394 2395 // If the add does not wrap, we can always adjust the compare by subtracting 2396 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2397 // are canonicalized to SGT/SLT/UGT/ULT. 2398 if ((Add->hasNoSignedWrap() && 2399 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2400 (Add->hasNoUnsignedWrap() && 2401 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2402 bool Overflow; 2403 APInt NewC = 2404 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2405 // If there is overflow, the result must be true or false. 2406 // TODO: Can we assert there is no overflow because InstSimplify always 2407 // handles those cases? 2408 if (!Overflow) 2409 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2410 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2411 } 2412 2413 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2414 const APInt &Upper = CR.getUpper(); 2415 const APInt &Lower = CR.getLower(); 2416 if (Cmp.isSigned()) { 2417 if (Lower.isSignMask()) 2418 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2419 if (Upper.isSignMask()) 2420 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2421 } else { 2422 if (Lower.isMinValue()) 2423 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2424 if (Upper.isMinValue()) 2425 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2426 } 2427 2428 // X+C <u C2 -> (X & -C2) == C 2429 // iff C & (C2-1) == 0 2430 // C2 is a power of 2 2431 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2432 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2433 ConstantExpr::getNeg(cast<Constant>(Y))); 2434 2435 // X+C >u C2 -> (X & ~C2) != C 2436 // iff C & C2 == 0 2437 // C2+1 is a power of 2 2438 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2439 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2440 ConstantExpr::getNeg(cast<Constant>(Y))); 2441 2442 return nullptr; 2443 } 2444 2445 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2446 Value *&RHS, ConstantInt *&Less, 2447 ConstantInt *&Equal, 2448 ConstantInt *&Greater) { 2449 // TODO: Generalize this to work with other comparison idioms or ensure 2450 // they get canonicalized into this form. 2451 2452 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2453 // Greater), where Equal, Less and Greater are placeholders for any three 2454 // constants. 2455 ICmpInst::Predicate PredA, PredB; 2456 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2457 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2458 PredA == ICmpInst::ICMP_EQ && 2459 match(SI->getFalseValue(), 2460 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2461 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2462 PredB == ICmpInst::ICMP_SLT) { 2463 return true; 2464 } 2465 return false; 2466 } 2467 2468 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2469 SelectInst *Select, 2470 ConstantInt *C) { 2471 2472 assert(C && "Cmp RHS should be a constant int!"); 2473 // If we're testing a constant value against the result of a three way 2474 // comparison, the result can be expressed directly in terms of the 2475 // original values being compared. Note: We could possibly be more 2476 // aggressive here and remove the hasOneUse test. The original select is 2477 // really likely to simplify or sink when we remove a test of the result. 2478 Value *OrigLHS, *OrigRHS; 2479 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2480 if (Cmp.hasOneUse() && 2481 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2482 C3GreaterThan)) { 2483 assert(C1LessThan && C2Equal && C3GreaterThan); 2484 2485 bool TrueWhenLessThan = 2486 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2487 ->isAllOnesValue(); 2488 bool TrueWhenEqual = 2489 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2490 ->isAllOnesValue(); 2491 bool TrueWhenGreaterThan = 2492 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2493 ->isAllOnesValue(); 2494 2495 // This generates the new instruction that will replace the original Cmp 2496 // Instruction. Instead of enumerating the various combinations when 2497 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2498 // false, we rely on chaining of ORs and future passes of InstCombine to 2499 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2500 2501 // When none of the three constants satisfy the predicate for the RHS (C), 2502 // the entire original Cmp can be simplified to a false. 2503 Value *Cond = Builder.getFalse(); 2504 if (TrueWhenLessThan) 2505 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2506 OrigLHS, OrigRHS)); 2507 if (TrueWhenEqual) 2508 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2509 OrigLHS, OrigRHS)); 2510 if (TrueWhenGreaterThan) 2511 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2512 OrigLHS, OrigRHS)); 2513 2514 return replaceInstUsesWith(Cmp, Cond); 2515 } 2516 return nullptr; 2517 } 2518 2519 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2520 InstCombiner::BuilderTy &Builder) { 2521 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2522 if (!Bitcast) 2523 return nullptr; 2524 2525 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2526 Value *Op1 = Cmp.getOperand(1); 2527 Value *BCSrcOp = Bitcast->getOperand(0); 2528 2529 // Make sure the bitcast doesn't change the number of vector elements. 2530 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2531 Bitcast->getDestTy()->getScalarSizeInBits()) { 2532 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2533 Value *X; 2534 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2535 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2536 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2537 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2538 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2539 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2540 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2541 match(Op1, m_Zero())) 2542 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2543 2544 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2545 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2546 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2547 2548 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2549 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2550 return new ICmpInst(Pred, X, 2551 ConstantInt::getAllOnesValue(X->getType())); 2552 } 2553 2554 // Zero-equality checks are preserved through unsigned floating-point casts: 2555 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2556 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2557 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2558 if (Cmp.isEquality() && match(Op1, m_Zero())) 2559 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2560 } 2561 2562 // Test to see if the operands of the icmp are casted versions of other 2563 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2564 if (Bitcast->getType()->isPointerTy() && 2565 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2566 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2567 // so eliminate it as well. 2568 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2569 Op1 = BC2->getOperand(0); 2570 2571 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2572 return new ICmpInst(Pred, BCSrcOp, Op1); 2573 } 2574 2575 // Folding: icmp <pred> iN X, C 2576 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2577 // and C is a splat of a K-bit pattern 2578 // and SC is a constant vector = <C', C', C', ..., C'> 2579 // Into: 2580 // %E = extractelement <M x iK> %vec, i32 C' 2581 // icmp <pred> iK %E, trunc(C) 2582 const APInt *C; 2583 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2584 !Bitcast->getType()->isIntegerTy() || 2585 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2586 return nullptr; 2587 2588 Value *Vec; 2589 Constant *Mask; 2590 if (match(BCSrcOp, 2591 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2592 // Check whether every element of Mask is the same constant 2593 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2594 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2595 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2596 if (C->isSplat(EltTy->getBitWidth())) { 2597 // Fold the icmp based on the value of C 2598 // If C is M copies of an iK sized bit pattern, 2599 // then: 2600 // => %E = extractelement <N x iK> %vec, i32 Elem 2601 // icmp <pred> iK %SplatVal, <pattern> 2602 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2603 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2604 return new ICmpInst(Pred, Extract, NewC); 2605 } 2606 } 2607 } 2608 return nullptr; 2609 } 2610 2611 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2612 /// where X is some kind of instruction. 2613 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2614 const APInt *C; 2615 if (!match(Cmp.getOperand(1), m_APInt(C))) 2616 return nullptr; 2617 2618 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2619 switch (BO->getOpcode()) { 2620 case Instruction::Xor: 2621 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2622 return I; 2623 break; 2624 case Instruction::And: 2625 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2626 return I; 2627 break; 2628 case Instruction::Or: 2629 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2630 return I; 2631 break; 2632 case Instruction::Mul: 2633 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2634 return I; 2635 break; 2636 case Instruction::Shl: 2637 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2638 return I; 2639 break; 2640 case Instruction::LShr: 2641 case Instruction::AShr: 2642 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2643 return I; 2644 break; 2645 case Instruction::UDiv: 2646 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2647 return I; 2648 LLVM_FALLTHROUGH; 2649 case Instruction::SDiv: 2650 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2651 return I; 2652 break; 2653 case Instruction::Sub: 2654 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2655 return I; 2656 break; 2657 case Instruction::Add: 2658 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2659 return I; 2660 break; 2661 default: 2662 break; 2663 } 2664 // TODO: These folds could be refactored to be part of the above calls. 2665 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2666 return I; 2667 } 2668 2669 // Match against CmpInst LHS being instructions other than binary operators. 2670 2671 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2672 // For now, we only support constant integers while folding the 2673 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2674 // similar to the cases handled by binary ops above. 2675 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2676 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2677 return I; 2678 } 2679 2680 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2681 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2682 return I; 2683 } 2684 2685 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2686 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2687 return I; 2688 2689 return nullptr; 2690 } 2691 2692 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2693 /// icmp eq/ne BO, C. 2694 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2695 BinaryOperator *BO, 2696 const APInt &C) { 2697 // TODO: Some of these folds could work with arbitrary constants, but this 2698 // function is limited to scalar and vector splat constants. 2699 if (!Cmp.isEquality()) 2700 return nullptr; 2701 2702 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2703 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2704 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2705 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2706 2707 switch (BO->getOpcode()) { 2708 case Instruction::SRem: 2709 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2710 if (C.isNullValue() && BO->hasOneUse()) { 2711 const APInt *BOC; 2712 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2713 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2714 return new ICmpInst(Pred, NewRem, 2715 Constant::getNullValue(BO->getType())); 2716 } 2717 } 2718 break; 2719 case Instruction::Add: { 2720 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2721 const APInt *BOC; 2722 if (match(BOp1, m_APInt(BOC))) { 2723 if (BO->hasOneUse()) { 2724 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2725 return new ICmpInst(Pred, BOp0, SubC); 2726 } 2727 } else if (C.isNullValue()) { 2728 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2729 // efficiently invertible, or if the add has just this one use. 2730 if (Value *NegVal = dyn_castNegVal(BOp1)) 2731 return new ICmpInst(Pred, BOp0, NegVal); 2732 if (Value *NegVal = dyn_castNegVal(BOp0)) 2733 return new ICmpInst(Pred, NegVal, BOp1); 2734 if (BO->hasOneUse()) { 2735 Value *Neg = Builder.CreateNeg(BOp1); 2736 Neg->takeName(BO); 2737 return new ICmpInst(Pred, BOp0, Neg); 2738 } 2739 } 2740 break; 2741 } 2742 case Instruction::Xor: 2743 if (BO->hasOneUse()) { 2744 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2745 // For the xor case, we can xor two constants together, eliminating 2746 // the explicit xor. 2747 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2748 } else if (C.isNullValue()) { 2749 // Replace ((xor A, B) != 0) with (A != B) 2750 return new ICmpInst(Pred, BOp0, BOp1); 2751 } 2752 } 2753 break; 2754 case Instruction::Sub: 2755 if (BO->hasOneUse()) { 2756 const APInt *BOC; 2757 if (match(BOp0, m_APInt(BOC))) { 2758 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2759 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2760 return new ICmpInst(Pred, BOp1, SubC); 2761 } else if (C.isNullValue()) { 2762 // Replace ((sub A, B) != 0) with (A != B). 2763 return new ICmpInst(Pred, BOp0, BOp1); 2764 } 2765 } 2766 break; 2767 case Instruction::Or: { 2768 const APInt *BOC; 2769 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2770 // Comparing if all bits outside of a constant mask are set? 2771 // Replace (X | C) == -1 with (X & ~C) == ~C. 2772 // This removes the -1 constant. 2773 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2774 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2775 return new ICmpInst(Pred, And, NotBOC); 2776 } 2777 break; 2778 } 2779 case Instruction::And: { 2780 const APInt *BOC; 2781 if (match(BOp1, m_APInt(BOC))) { 2782 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2783 if (C == *BOC && C.isPowerOf2()) 2784 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2785 BO, Constant::getNullValue(RHS->getType())); 2786 2787 // Don't perform the following transforms if the AND has multiple uses 2788 if (!BO->hasOneUse()) 2789 break; 2790 2791 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2792 if (BOC->isSignMask()) { 2793 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2794 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2795 return new ICmpInst(NewPred, BOp0, Zero); 2796 } 2797 2798 // ((X & ~7) == 0) --> X < 8 2799 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2800 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2801 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2802 return new ICmpInst(NewPred, BOp0, NegBOC); 2803 } 2804 } 2805 break; 2806 } 2807 case Instruction::Mul: 2808 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2809 const APInt *BOC; 2810 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2811 // The trivial case (mul X, 0) is handled by InstSimplify. 2812 // General case : (mul X, C) != 0 iff X != 0 2813 // (mul X, C) == 0 iff X == 0 2814 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2815 } 2816 } 2817 break; 2818 case Instruction::UDiv: 2819 if (C.isNullValue()) { 2820 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2821 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2822 return new ICmpInst(NewPred, BOp1, BOp0); 2823 } 2824 break; 2825 default: 2826 break; 2827 } 2828 return nullptr; 2829 } 2830 2831 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2832 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2833 IntrinsicInst *II, 2834 const APInt &C) { 2835 Type *Ty = II->getType(); 2836 unsigned BitWidth = C.getBitWidth(); 2837 switch (II->getIntrinsicID()) { 2838 case Intrinsic::bswap: 2839 Worklist.Add(II); 2840 Cmp.setOperand(0, II->getArgOperand(0)); 2841 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2842 return &Cmp; 2843 2844 case Intrinsic::ctlz: 2845 case Intrinsic::cttz: { 2846 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2847 if (C == BitWidth) { 2848 Worklist.Add(II); 2849 Cmp.setOperand(0, II->getArgOperand(0)); 2850 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2851 return &Cmp; 2852 } 2853 2854 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2855 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2856 // Limit to one use to ensure we don't increase instruction count. 2857 unsigned Num = C.getLimitedValue(BitWidth); 2858 if (Num != BitWidth && II->hasOneUse()) { 2859 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2860 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2861 : APInt::getHighBitsSet(BitWidth, Num + 1); 2862 APInt Mask2 = IsTrailing 2863 ? APInt::getOneBitSet(BitWidth, Num) 2864 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2865 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2866 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2867 Worklist.Add(II); 2868 return &Cmp; 2869 } 2870 break; 2871 } 2872 2873 case Intrinsic::ctpop: { 2874 // popcount(A) == 0 -> A == 0 and likewise for != 2875 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2876 bool IsZero = C.isNullValue(); 2877 if (IsZero || C == BitWidth) { 2878 Worklist.Add(II); 2879 Cmp.setOperand(0, II->getArgOperand(0)); 2880 auto *NewOp = 2881 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2882 Cmp.setOperand(1, NewOp); 2883 return &Cmp; 2884 } 2885 break; 2886 } 2887 default: 2888 break; 2889 } 2890 2891 return nullptr; 2892 } 2893 2894 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2895 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2896 IntrinsicInst *II, 2897 const APInt &C) { 2898 if (Cmp.isEquality()) 2899 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2900 2901 Type *Ty = II->getType(); 2902 unsigned BitWidth = C.getBitWidth(); 2903 switch (II->getIntrinsicID()) { 2904 case Intrinsic::ctlz: { 2905 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2906 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2907 unsigned Num = C.getLimitedValue(); 2908 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2909 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2910 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2911 } 2912 2913 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2914 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2915 C.uge(1) && C.ule(BitWidth)) { 2916 unsigned Num = C.getLimitedValue(); 2917 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2918 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2919 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2920 } 2921 break; 2922 } 2923 case Intrinsic::cttz: { 2924 // Limit to one use to ensure we don't increase instruction count. 2925 if (!II->hasOneUse()) 2926 return nullptr; 2927 2928 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2929 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2930 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2931 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2932 Builder.CreateAnd(II->getArgOperand(0), Mask), 2933 ConstantInt::getNullValue(Ty)); 2934 } 2935 2936 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 2937 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2938 C.uge(1) && C.ule(BitWidth)) { 2939 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 2940 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 2941 Builder.CreateAnd(II->getArgOperand(0), Mask), 2942 ConstantInt::getNullValue(Ty)); 2943 } 2944 break; 2945 } 2946 default: 2947 break; 2948 } 2949 2950 return nullptr; 2951 } 2952 2953 /// Handle icmp with constant (but not simple integer constant) RHS. 2954 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2955 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2956 Constant *RHSC = dyn_cast<Constant>(Op1); 2957 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2958 if (!RHSC || !LHSI) 2959 return nullptr; 2960 2961 switch (LHSI->getOpcode()) { 2962 case Instruction::GetElementPtr: 2963 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2964 if (RHSC->isNullValue() && 2965 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2966 return new ICmpInst( 2967 I.getPredicate(), LHSI->getOperand(0), 2968 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2969 break; 2970 case Instruction::PHI: 2971 // Only fold icmp into the PHI if the phi and icmp are in the same 2972 // block. If in the same block, we're encouraging jump threading. If 2973 // not, we are just pessimizing the code by making an i1 phi. 2974 if (LHSI->getParent() == I.getParent()) 2975 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2976 return NV; 2977 break; 2978 case Instruction::Select: { 2979 // If either operand of the select is a constant, we can fold the 2980 // comparison into the select arms, which will cause one to be 2981 // constant folded and the select turned into a bitwise or. 2982 Value *Op1 = nullptr, *Op2 = nullptr; 2983 ConstantInt *CI = nullptr; 2984 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2985 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2986 CI = dyn_cast<ConstantInt>(Op1); 2987 } 2988 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2989 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2990 CI = dyn_cast<ConstantInt>(Op2); 2991 } 2992 2993 // We only want to perform this transformation if it will not lead to 2994 // additional code. This is true if either both sides of the select 2995 // fold to a constant (in which case the icmp is replaced with a select 2996 // which will usually simplify) or this is the only user of the 2997 // select (in which case we are trading a select+icmp for a simpler 2998 // select+icmp) or all uses of the select can be replaced based on 2999 // dominance information ("Global cases"). 3000 bool Transform = false; 3001 if (Op1 && Op2) 3002 Transform = true; 3003 else if (Op1 || Op2) { 3004 // Local case 3005 if (LHSI->hasOneUse()) 3006 Transform = true; 3007 // Global cases 3008 else if (CI && !CI->isZero()) 3009 // When Op1 is constant try replacing select with second operand. 3010 // Otherwise Op2 is constant and try replacing select with first 3011 // operand. 3012 Transform = 3013 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3014 } 3015 if (Transform) { 3016 if (!Op1) 3017 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3018 I.getName()); 3019 if (!Op2) 3020 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3021 I.getName()); 3022 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3023 } 3024 break; 3025 } 3026 case Instruction::IntToPtr: 3027 // icmp pred inttoptr(X), null -> icmp pred X, 0 3028 if (RHSC->isNullValue() && 3029 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3030 return new ICmpInst( 3031 I.getPredicate(), LHSI->getOperand(0), 3032 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3033 break; 3034 3035 case Instruction::Load: 3036 // Try to optimize things like "A[i] > 4" to index computations. 3037 if (GetElementPtrInst *GEP = 3038 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3039 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3040 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3041 !cast<LoadInst>(LHSI)->isVolatile()) 3042 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3043 return Res; 3044 } 3045 break; 3046 } 3047 3048 return nullptr; 3049 } 3050 3051 /// Some comparisons can be simplified. 3052 /// In this case, we are looking for comparisons that look like 3053 /// a check for a lossy truncation. 3054 /// Folds: 3055 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3056 /// Where Mask is some pattern that produces all-ones in low bits: 3057 /// (-1 >> y) 3058 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3059 /// ~(-1 << y) 3060 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3061 /// The Mask can be a constant, too. 3062 /// For some predicates, the operands are commutative. 3063 /// For others, x can only be on a specific side. 3064 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3065 InstCombiner::BuilderTy &Builder) { 3066 ICmpInst::Predicate SrcPred; 3067 Value *X, *M, *Y; 3068 auto m_VariableMask = m_CombineOr( 3069 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3070 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3071 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3072 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3073 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3074 if (!match(&I, m_c_ICmp(SrcPred, 3075 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3076 m_Deferred(X)))) 3077 return nullptr; 3078 3079 ICmpInst::Predicate DstPred; 3080 switch (SrcPred) { 3081 case ICmpInst::Predicate::ICMP_EQ: 3082 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3083 DstPred = ICmpInst::Predicate::ICMP_ULE; 3084 break; 3085 case ICmpInst::Predicate::ICMP_NE: 3086 // x & (-1 >> y) != x -> x u> (-1 >> y) 3087 DstPred = ICmpInst::Predicate::ICMP_UGT; 3088 break; 3089 case ICmpInst::Predicate::ICMP_UGT: 3090 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3091 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3092 DstPred = ICmpInst::Predicate::ICMP_UGT; 3093 break; 3094 case ICmpInst::Predicate::ICMP_UGE: 3095 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3096 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3097 DstPred = ICmpInst::Predicate::ICMP_ULE; 3098 break; 3099 case ICmpInst::Predicate::ICMP_ULT: 3100 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3101 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3102 DstPred = ICmpInst::Predicate::ICMP_UGT; 3103 break; 3104 case ICmpInst::Predicate::ICMP_ULE: 3105 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3106 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3107 DstPred = ICmpInst::Predicate::ICMP_ULE; 3108 break; 3109 case ICmpInst::Predicate::ICMP_SGT: 3110 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3111 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3112 return nullptr; // Ignore the other case. 3113 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3114 return nullptr; 3115 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3116 return nullptr; 3117 DstPred = ICmpInst::Predicate::ICMP_SGT; 3118 break; 3119 case ICmpInst::Predicate::ICMP_SGE: 3120 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3121 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3122 return nullptr; // Ignore the other case. 3123 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3124 return nullptr; 3125 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3126 return nullptr; 3127 DstPred = ICmpInst::Predicate::ICMP_SLE; 3128 break; 3129 case ICmpInst::Predicate::ICMP_SLT: 3130 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3131 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3132 return nullptr; // Ignore the other case. 3133 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3134 return nullptr; 3135 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3136 return nullptr; 3137 DstPred = ICmpInst::Predicate::ICMP_SGT; 3138 break; 3139 case ICmpInst::Predicate::ICMP_SLE: 3140 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3141 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3142 return nullptr; // Ignore the other case. 3143 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3144 return nullptr; 3145 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3146 return nullptr; 3147 DstPred = ICmpInst::Predicate::ICMP_SLE; 3148 break; 3149 default: 3150 llvm_unreachable("All possible folds are handled."); 3151 } 3152 3153 return Builder.CreateICmp(DstPred, X, M); 3154 } 3155 3156 /// Some comparisons can be simplified. 3157 /// In this case, we are looking for comparisons that look like 3158 /// a check for a lossy signed truncation. 3159 /// Folds: (MaskedBits is a constant.) 3160 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3161 /// Into: 3162 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3163 /// Where KeptBits = bitwidth(%x) - MaskedBits 3164 static Value * 3165 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3166 InstCombiner::BuilderTy &Builder) { 3167 ICmpInst::Predicate SrcPred; 3168 Value *X; 3169 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3170 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3171 if (!match(&I, m_c_ICmp(SrcPred, 3172 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3173 m_APInt(C1))), 3174 m_Deferred(X)))) 3175 return nullptr; 3176 3177 // Potential handling of non-splats: for each element: 3178 // * if both are undef, replace with constant 0. 3179 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3180 // * if both are not undef, and are different, bailout. 3181 // * else, only one is undef, then pick the non-undef one. 3182 3183 // The shift amount must be equal. 3184 if (*C0 != *C1) 3185 return nullptr; 3186 const APInt &MaskedBits = *C0; 3187 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3188 3189 ICmpInst::Predicate DstPred; 3190 switch (SrcPred) { 3191 case ICmpInst::Predicate::ICMP_EQ: 3192 // ((%x << MaskedBits) a>> MaskedBits) == %x 3193 // => 3194 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3195 DstPred = ICmpInst::Predicate::ICMP_ULT; 3196 break; 3197 case ICmpInst::Predicate::ICMP_NE: 3198 // ((%x << MaskedBits) a>> MaskedBits) != %x 3199 // => 3200 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3201 DstPred = ICmpInst::Predicate::ICMP_UGE; 3202 break; 3203 // FIXME: are more folds possible? 3204 default: 3205 return nullptr; 3206 } 3207 3208 auto *XType = X->getType(); 3209 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3210 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3211 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3212 3213 // KeptBits = bitwidth(%x) - MaskedBits 3214 const APInt KeptBits = BitWidth - MaskedBits; 3215 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3216 // ICmpCst = (1 << KeptBits) 3217 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3218 assert(ICmpCst.isPowerOf2()); 3219 // AddCst = (1 << (KeptBits-1)) 3220 const APInt AddCst = ICmpCst.lshr(1); 3221 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3222 3223 // T0 = add %x, AddCst 3224 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3225 // T1 = T0 DstPred ICmpCst 3226 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3227 3228 return T1; 3229 } 3230 3231 /// Try to fold icmp (binop), X or icmp X, (binop). 3232 /// TODO: A large part of this logic is duplicated in InstSimplify's 3233 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3234 /// duplication. 3235 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3236 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3237 3238 // Special logic for binary operators. 3239 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3240 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3241 if (!BO0 && !BO1) 3242 return nullptr; 3243 3244 const CmpInst::Predicate Pred = I.getPredicate(); 3245 Value *X; 3246 3247 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3248 // (Op1 + X) <u Op1 --> ~Op1 <u X 3249 // Op0 >u (Op0 + X) --> X >u ~Op0 3250 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3251 Pred == ICmpInst::ICMP_ULT) 3252 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3253 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3254 Pred == ICmpInst::ICMP_UGT) 3255 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3256 3257 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3258 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3259 NoOp0WrapProblem = 3260 ICmpInst::isEquality(Pred) || 3261 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3262 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3263 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3264 NoOp1WrapProblem = 3265 ICmpInst::isEquality(Pred) || 3266 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3267 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3268 3269 // Analyze the case when either Op0 or Op1 is an add instruction. 3270 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3271 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3272 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3273 A = BO0->getOperand(0); 3274 B = BO0->getOperand(1); 3275 } 3276 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3277 C = BO1->getOperand(0); 3278 D = BO1->getOperand(1); 3279 } 3280 3281 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3282 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3283 return new ICmpInst(Pred, A == Op1 ? B : A, 3284 Constant::getNullValue(Op1->getType())); 3285 3286 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3287 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3288 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3289 C == Op0 ? D : C); 3290 3291 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3292 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3293 NoOp1WrapProblem && 3294 // Try not to increase register pressure. 3295 BO0->hasOneUse() && BO1->hasOneUse()) { 3296 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3297 Value *Y, *Z; 3298 if (A == C) { 3299 // C + B == C + D -> B == D 3300 Y = B; 3301 Z = D; 3302 } else if (A == D) { 3303 // D + B == C + D -> B == C 3304 Y = B; 3305 Z = C; 3306 } else if (B == C) { 3307 // A + C == C + D -> A == D 3308 Y = A; 3309 Z = D; 3310 } else { 3311 assert(B == D); 3312 // A + D == C + D -> A == C 3313 Y = A; 3314 Z = C; 3315 } 3316 return new ICmpInst(Pred, Y, Z); 3317 } 3318 3319 // icmp slt (X + -1), Y -> icmp sle X, Y 3320 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3321 match(B, m_AllOnes())) 3322 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3323 3324 // icmp sge (X + -1), Y -> icmp sgt X, Y 3325 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3326 match(B, m_AllOnes())) 3327 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3328 3329 // icmp sle (X + 1), Y -> icmp slt X, Y 3330 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3331 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3332 3333 // icmp sgt (X + 1), Y -> icmp sge X, Y 3334 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3335 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3336 3337 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3338 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3339 match(D, m_AllOnes())) 3340 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3341 3342 // icmp sle X, (Y + -1) -> icmp slt X, Y 3343 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3344 match(D, m_AllOnes())) 3345 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3346 3347 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3348 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3349 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3350 3351 // icmp slt X, (Y + 1) -> icmp sle X, Y 3352 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3353 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3354 3355 // TODO: The subtraction-related identities shown below also hold, but 3356 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3357 // wouldn't happen even if they were implemented. 3358 // 3359 // icmp ult (X - 1), Y -> icmp ule X, Y 3360 // icmp uge (X - 1), Y -> icmp ugt X, Y 3361 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3362 // icmp ule X, (Y - 1) -> icmp ult X, Y 3363 3364 // icmp ule (X + 1), Y -> icmp ult X, Y 3365 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3366 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3367 3368 // icmp ugt (X + 1), Y -> icmp uge X, Y 3369 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3370 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3371 3372 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3373 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3374 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3375 3376 // icmp ult X, (Y + 1) -> icmp ule X, Y 3377 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3378 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3379 3380 // if C1 has greater magnitude than C2: 3381 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3382 // s.t. C3 = C1 - C2 3383 // 3384 // if C2 has greater magnitude than C1: 3385 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3386 // s.t. C3 = C2 - C1 3387 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3388 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3389 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3390 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3391 const APInt &AP1 = C1->getValue(); 3392 const APInt &AP2 = C2->getValue(); 3393 if (AP1.isNegative() == AP2.isNegative()) { 3394 APInt AP1Abs = C1->getValue().abs(); 3395 APInt AP2Abs = C2->getValue().abs(); 3396 if (AP1Abs.uge(AP2Abs)) { 3397 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3398 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3399 return new ICmpInst(Pred, NewAdd, C); 3400 } else { 3401 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3402 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3403 return new ICmpInst(Pred, A, NewAdd); 3404 } 3405 } 3406 } 3407 3408 // Analyze the case when either Op0 or Op1 is a sub instruction. 3409 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3410 A = nullptr; 3411 B = nullptr; 3412 C = nullptr; 3413 D = nullptr; 3414 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3415 A = BO0->getOperand(0); 3416 B = BO0->getOperand(1); 3417 } 3418 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3419 C = BO1->getOperand(0); 3420 D = BO1->getOperand(1); 3421 } 3422 3423 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3424 if (A == Op1 && NoOp0WrapProblem) 3425 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3426 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3427 if (C == Op0 && NoOp1WrapProblem) 3428 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3429 3430 // (A - B) >u A --> A <u B 3431 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3432 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3433 // C <u (C - D) --> C <u D 3434 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3435 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3436 3437 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3438 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3439 // Try not to increase register pressure. 3440 BO0->hasOneUse() && BO1->hasOneUse()) 3441 return new ICmpInst(Pred, A, C); 3442 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3443 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3444 // Try not to increase register pressure. 3445 BO0->hasOneUse() && BO1->hasOneUse()) 3446 return new ICmpInst(Pred, D, B); 3447 3448 // icmp (0-X) < cst --> x > -cst 3449 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3450 Value *X; 3451 if (match(BO0, m_Neg(m_Value(X)))) 3452 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3453 if (RHSC->isNotMinSignedValue()) 3454 return new ICmpInst(I.getSwappedPredicate(), X, 3455 ConstantExpr::getNeg(RHSC)); 3456 } 3457 3458 BinaryOperator *SRem = nullptr; 3459 // icmp (srem X, Y), Y 3460 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3461 SRem = BO0; 3462 // icmp Y, (srem X, Y) 3463 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3464 Op0 == BO1->getOperand(1)) 3465 SRem = BO1; 3466 if (SRem) { 3467 // We don't check hasOneUse to avoid increasing register pressure because 3468 // the value we use is the same value this instruction was already using. 3469 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3470 default: 3471 break; 3472 case ICmpInst::ICMP_EQ: 3473 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3474 case ICmpInst::ICMP_NE: 3475 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3476 case ICmpInst::ICMP_SGT: 3477 case ICmpInst::ICMP_SGE: 3478 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3479 Constant::getAllOnesValue(SRem->getType())); 3480 case ICmpInst::ICMP_SLT: 3481 case ICmpInst::ICMP_SLE: 3482 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3483 Constant::getNullValue(SRem->getType())); 3484 } 3485 } 3486 3487 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3488 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3489 switch (BO0->getOpcode()) { 3490 default: 3491 break; 3492 case Instruction::Add: 3493 case Instruction::Sub: 3494 case Instruction::Xor: { 3495 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3496 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3497 3498 const APInt *C; 3499 if (match(BO0->getOperand(1), m_APInt(C))) { 3500 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3501 if (C->isSignMask()) { 3502 ICmpInst::Predicate NewPred = 3503 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3504 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3505 } 3506 3507 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3508 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3509 ICmpInst::Predicate NewPred = 3510 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3511 NewPred = I.getSwappedPredicate(NewPred); 3512 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3513 } 3514 } 3515 break; 3516 } 3517 case Instruction::Mul: { 3518 if (!I.isEquality()) 3519 break; 3520 3521 const APInt *C; 3522 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3523 !C->isOneValue()) { 3524 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3525 // Mask = -1 >> count-trailing-zeros(C). 3526 if (unsigned TZs = C->countTrailingZeros()) { 3527 Constant *Mask = ConstantInt::get( 3528 BO0->getType(), 3529 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3530 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3531 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3532 return new ICmpInst(Pred, And1, And2); 3533 } 3534 // If there are no trailing zeros in the multiplier, just eliminate 3535 // the multiplies (no masking is needed): 3536 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3537 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3538 } 3539 break; 3540 } 3541 case Instruction::UDiv: 3542 case Instruction::LShr: 3543 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3544 break; 3545 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3546 3547 case Instruction::SDiv: 3548 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3549 break; 3550 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3551 3552 case Instruction::AShr: 3553 if (!BO0->isExact() || !BO1->isExact()) 3554 break; 3555 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3556 3557 case Instruction::Shl: { 3558 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3559 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3560 if (!NUW && !NSW) 3561 break; 3562 if (!NSW && I.isSigned()) 3563 break; 3564 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3565 } 3566 } 3567 } 3568 3569 if (BO0) { 3570 // Transform A & (L - 1) `ult` L --> L != 0 3571 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3572 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3573 3574 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3575 auto *Zero = Constant::getNullValue(BO0->getType()); 3576 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3577 } 3578 } 3579 3580 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3581 return replaceInstUsesWith(I, V); 3582 3583 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3584 return replaceInstUsesWith(I, V); 3585 3586 return nullptr; 3587 } 3588 3589 /// Fold icmp Pred min|max(X, Y), X. 3590 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3591 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3592 Value *Op0 = Cmp.getOperand(0); 3593 Value *X = Cmp.getOperand(1); 3594 3595 // Canonicalize minimum or maximum operand to LHS of the icmp. 3596 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3597 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3598 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3599 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3600 std::swap(Op0, X); 3601 Pred = Cmp.getSwappedPredicate(); 3602 } 3603 3604 Value *Y; 3605 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3606 // smin(X, Y) == X --> X s<= Y 3607 // smin(X, Y) s>= X --> X s<= Y 3608 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3609 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3610 3611 // smin(X, Y) != X --> X s> Y 3612 // smin(X, Y) s< X --> X s> Y 3613 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3614 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3615 3616 // These cases should be handled in InstSimplify: 3617 // smin(X, Y) s<= X --> true 3618 // smin(X, Y) s> X --> false 3619 return nullptr; 3620 } 3621 3622 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3623 // smax(X, Y) == X --> X s>= Y 3624 // smax(X, Y) s<= X --> X s>= Y 3625 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3626 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3627 3628 // smax(X, Y) != X --> X s< Y 3629 // smax(X, Y) s> X --> X s< Y 3630 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3631 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3632 3633 // These cases should be handled in InstSimplify: 3634 // smax(X, Y) s>= X --> true 3635 // smax(X, Y) s< X --> false 3636 return nullptr; 3637 } 3638 3639 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3640 // umin(X, Y) == X --> X u<= Y 3641 // umin(X, Y) u>= X --> X u<= Y 3642 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3643 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3644 3645 // umin(X, Y) != X --> X u> Y 3646 // umin(X, Y) u< X --> X u> Y 3647 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3648 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3649 3650 // These cases should be handled in InstSimplify: 3651 // umin(X, Y) u<= X --> true 3652 // umin(X, Y) u> X --> false 3653 return nullptr; 3654 } 3655 3656 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3657 // umax(X, Y) == X --> X u>= Y 3658 // umax(X, Y) u<= X --> X u>= Y 3659 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3660 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3661 3662 // umax(X, Y) != X --> X u< Y 3663 // umax(X, Y) u> X --> X u< Y 3664 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3665 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3666 3667 // These cases should be handled in InstSimplify: 3668 // umax(X, Y) u>= X --> true 3669 // umax(X, Y) u< X --> false 3670 return nullptr; 3671 } 3672 3673 return nullptr; 3674 } 3675 3676 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3677 if (!I.isEquality()) 3678 return nullptr; 3679 3680 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3681 const CmpInst::Predicate Pred = I.getPredicate(); 3682 Value *A, *B, *C, *D; 3683 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3684 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3685 Value *OtherVal = A == Op1 ? B : A; 3686 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3687 } 3688 3689 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3690 // A^c1 == C^c2 --> A == C^(c1^c2) 3691 ConstantInt *C1, *C2; 3692 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3693 Op1->hasOneUse()) { 3694 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3695 Value *Xor = Builder.CreateXor(C, NC); 3696 return new ICmpInst(Pred, A, Xor); 3697 } 3698 3699 // A^B == A^D -> B == D 3700 if (A == C) 3701 return new ICmpInst(Pred, B, D); 3702 if (A == D) 3703 return new ICmpInst(Pred, B, C); 3704 if (B == C) 3705 return new ICmpInst(Pred, A, D); 3706 if (B == D) 3707 return new ICmpInst(Pred, A, C); 3708 } 3709 } 3710 3711 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3712 // A == (A^B) -> B == 0 3713 Value *OtherVal = A == Op0 ? B : A; 3714 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3715 } 3716 3717 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3718 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3719 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3720 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3721 3722 if (A == C) { 3723 X = B; 3724 Y = D; 3725 Z = A; 3726 } else if (A == D) { 3727 X = B; 3728 Y = C; 3729 Z = A; 3730 } else if (B == C) { 3731 X = A; 3732 Y = D; 3733 Z = B; 3734 } else if (B == D) { 3735 X = A; 3736 Y = C; 3737 Z = B; 3738 } 3739 3740 if (X) { // Build (X^Y) & Z 3741 Op1 = Builder.CreateXor(X, Y); 3742 Op1 = Builder.CreateAnd(Op1, Z); 3743 I.setOperand(0, Op1); 3744 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3745 return &I; 3746 } 3747 } 3748 3749 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3750 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3751 ConstantInt *Cst1; 3752 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3753 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3754 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3755 match(Op1, m_ZExt(m_Value(A))))) { 3756 APInt Pow2 = Cst1->getValue() + 1; 3757 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3758 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3759 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3760 } 3761 3762 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3763 // For lshr and ashr pairs. 3764 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3765 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3766 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3767 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3768 unsigned TypeBits = Cst1->getBitWidth(); 3769 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3770 if (ShAmt < TypeBits && ShAmt != 0) { 3771 ICmpInst::Predicate NewPred = 3772 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3773 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3774 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3775 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3776 } 3777 } 3778 3779 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3780 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3781 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3782 unsigned TypeBits = Cst1->getBitWidth(); 3783 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3784 if (ShAmt < TypeBits && ShAmt != 0) { 3785 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3786 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3787 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3788 I.getName() + ".mask"); 3789 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3790 } 3791 } 3792 3793 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3794 // "icmp (and X, mask), cst" 3795 uint64_t ShAmt = 0; 3796 if (Op0->hasOneUse() && 3797 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3798 match(Op1, m_ConstantInt(Cst1)) && 3799 // Only do this when A has multiple uses. This is most important to do 3800 // when it exposes other optimizations. 3801 !A->hasOneUse()) { 3802 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3803 3804 if (ShAmt < ASize) { 3805 APInt MaskV = 3806 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3807 MaskV <<= ShAmt; 3808 3809 APInt CmpV = Cst1->getValue().zext(ASize); 3810 CmpV <<= ShAmt; 3811 3812 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3813 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3814 } 3815 } 3816 3817 // If both operands are byte-swapped or bit-reversed, just compare the 3818 // original values. 3819 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3820 // and handle more intrinsics. 3821 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3822 (match(Op0, m_BitReverse(m_Value(A))) && 3823 match(Op1, m_BitReverse(m_Value(B))))) 3824 return new ICmpInst(Pred, A, B); 3825 3826 return nullptr; 3827 } 3828 3829 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3830 /// far. 3831 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3832 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3833 Value *LHSCIOp = LHSCI->getOperand(0); 3834 Type *SrcTy = LHSCIOp->getType(); 3835 Type *DestTy = LHSCI->getType(); 3836 3837 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3838 // integer type is the same size as the pointer type. 3839 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3840 if (isa<VectorType>(SrcTy)) { 3841 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3842 DestTy = cast<VectorType>(DestTy)->getElementType(); 3843 } 3844 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3845 }; 3846 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3847 CompatibleSizes(SrcTy, DestTy)) { 3848 Value *RHSOp = nullptr; 3849 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3850 Value *RHSCIOp = RHSC->getOperand(0); 3851 if (RHSCIOp->getType()->getPointerAddressSpace() == 3852 LHSCIOp->getType()->getPointerAddressSpace()) { 3853 RHSOp = RHSC->getOperand(0); 3854 // If the pointer types don't match, insert a bitcast. 3855 if (LHSCIOp->getType() != RHSOp->getType()) 3856 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3857 } 3858 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3859 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3860 } 3861 3862 if (RHSOp) 3863 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3864 } 3865 3866 // The code below only handles extension cast instructions, so far. 3867 // Enforce this. 3868 if (LHSCI->getOpcode() != Instruction::ZExt && 3869 LHSCI->getOpcode() != Instruction::SExt) 3870 return nullptr; 3871 3872 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3873 bool isSignedCmp = ICmp.isSigned(); 3874 3875 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3876 // Not an extension from the same type? 3877 Value *RHSCIOp = CI->getOperand(0); 3878 if (RHSCIOp->getType() != LHSCIOp->getType()) 3879 return nullptr; 3880 3881 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3882 // and the other is a zext), then we can't handle this. 3883 if (CI->getOpcode() != LHSCI->getOpcode()) 3884 return nullptr; 3885 3886 // Deal with equality cases early. 3887 if (ICmp.isEquality()) 3888 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3889 3890 // A signed comparison of sign extended values simplifies into a 3891 // signed comparison. 3892 if (isSignedCmp && isSignedExt) 3893 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3894 3895 // The other three cases all fold into an unsigned comparison. 3896 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3897 } 3898 3899 // If we aren't dealing with a constant on the RHS, exit early. 3900 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3901 if (!C) 3902 return nullptr; 3903 3904 // Compute the constant that would happen if we truncated to SrcTy then 3905 // re-extended to DestTy. 3906 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3907 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3908 3909 // If the re-extended constant didn't change... 3910 if (Res2 == C) { 3911 // Deal with equality cases early. 3912 if (ICmp.isEquality()) 3913 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3914 3915 // A signed comparison of sign extended values simplifies into a 3916 // signed comparison. 3917 if (isSignedExt && isSignedCmp) 3918 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3919 3920 // The other three cases all fold into an unsigned comparison. 3921 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3922 } 3923 3924 // The re-extended constant changed, partly changed (in the case of a vector), 3925 // or could not be determined to be equal (in the case of a constant 3926 // expression), so the constant cannot be represented in the shorter type. 3927 // Consequently, we cannot emit a simple comparison. 3928 // All the cases that fold to true or false will have already been handled 3929 // by SimplifyICmpInst, so only deal with the tricky case. 3930 3931 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3932 return nullptr; 3933 3934 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3935 // should have been folded away previously and not enter in here. 3936 3937 // We're performing an unsigned comp with a sign extended value. 3938 // This is true if the input is >= 0. [aka >s -1] 3939 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3940 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3941 3942 // Finally, return the value computed. 3943 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3944 return replaceInstUsesWith(ICmp, Result); 3945 3946 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3947 return BinaryOperator::CreateNot(Result); 3948 } 3949 3950 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 3951 switch (BinaryOp) { 3952 default: 3953 llvm_unreachable("Unsupported binary op"); 3954 case Instruction::Add: 3955 case Instruction::Sub: 3956 return match(RHS, m_Zero()); 3957 case Instruction::Mul: 3958 return match(RHS, m_One()); 3959 } 3960 } 3961 3962 OverflowResult InstCombiner::computeOverflow( 3963 Instruction::BinaryOps BinaryOp, bool IsSigned, 3964 Value *LHS, Value *RHS, Instruction *CxtI) const { 3965 switch (BinaryOp) { 3966 default: 3967 llvm_unreachable("Unsupported binary op"); 3968 case Instruction::Add: 3969 if (IsSigned) 3970 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 3971 else 3972 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 3973 case Instruction::Sub: 3974 if (IsSigned) 3975 return computeOverflowForSignedSub(LHS, RHS, CxtI); 3976 else 3977 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 3978 case Instruction::Mul: 3979 if (IsSigned) 3980 return computeOverflowForSignedMul(LHS, RHS, CxtI); 3981 else 3982 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 3983 } 3984 } 3985 3986 bool InstCombiner::OptimizeOverflowCheck( 3987 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 3988 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 3989 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3990 std::swap(LHS, RHS); 3991 3992 // If the overflow check was an add followed by a compare, the insertion point 3993 // may be pointing to the compare. We want to insert the new instructions 3994 // before the add in case there are uses of the add between the add and the 3995 // compare. 3996 Builder.SetInsertPoint(&OrigI); 3997 3998 if (isNeutralValue(BinaryOp, RHS)) { 3999 Result = LHS; 4000 Overflow = Builder.getFalse(); 4001 return true; 4002 } 4003 4004 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4005 case OverflowResult::MayOverflow: 4006 return false; 4007 case OverflowResult::AlwaysOverflowsLow: 4008 case OverflowResult::AlwaysOverflowsHigh: 4009 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4010 Result->takeName(&OrigI); 4011 Overflow = Builder.getTrue(); 4012 return true; 4013 case OverflowResult::NeverOverflows: 4014 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4015 Result->takeName(&OrigI); 4016 Overflow = Builder.getFalse(); 4017 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4018 if (IsSigned) 4019 Inst->setHasNoSignedWrap(); 4020 else 4021 Inst->setHasNoUnsignedWrap(); 4022 } 4023 return true; 4024 } 4025 4026 llvm_unreachable("Unexpected overflow result"); 4027 } 4028 4029 /// Recognize and process idiom involving test for multiplication 4030 /// overflow. 4031 /// 4032 /// The caller has matched a pattern of the form: 4033 /// I = cmp u (mul(zext A, zext B), V 4034 /// The function checks if this is a test for overflow and if so replaces 4035 /// multiplication with call to 'mul.with.overflow' intrinsic. 4036 /// 4037 /// \param I Compare instruction. 4038 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4039 /// the compare instruction. Must be of integer type. 4040 /// \param OtherVal The other argument of compare instruction. 4041 /// \returns Instruction which must replace the compare instruction, NULL if no 4042 /// replacement required. 4043 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4044 Value *OtherVal, InstCombiner &IC) { 4045 // Don't bother doing this transformation for pointers, don't do it for 4046 // vectors. 4047 if (!isa<IntegerType>(MulVal->getType())) 4048 return nullptr; 4049 4050 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4051 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4052 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4053 if (!MulInstr) 4054 return nullptr; 4055 assert(MulInstr->getOpcode() == Instruction::Mul); 4056 4057 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4058 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4059 assert(LHS->getOpcode() == Instruction::ZExt); 4060 assert(RHS->getOpcode() == Instruction::ZExt); 4061 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4062 4063 // Calculate type and width of the result produced by mul.with.overflow. 4064 Type *TyA = A->getType(), *TyB = B->getType(); 4065 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4066 WidthB = TyB->getPrimitiveSizeInBits(); 4067 unsigned MulWidth; 4068 Type *MulType; 4069 if (WidthB > WidthA) { 4070 MulWidth = WidthB; 4071 MulType = TyB; 4072 } else { 4073 MulWidth = WidthA; 4074 MulType = TyA; 4075 } 4076 4077 // In order to replace the original mul with a narrower mul.with.overflow, 4078 // all uses must ignore upper bits of the product. The number of used low 4079 // bits must be not greater than the width of mul.with.overflow. 4080 if (MulVal->hasNUsesOrMore(2)) 4081 for (User *U : MulVal->users()) { 4082 if (U == &I) 4083 continue; 4084 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4085 // Check if truncation ignores bits above MulWidth. 4086 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4087 if (TruncWidth > MulWidth) 4088 return nullptr; 4089 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4090 // Check if AND ignores bits above MulWidth. 4091 if (BO->getOpcode() != Instruction::And) 4092 return nullptr; 4093 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4094 const APInt &CVal = CI->getValue(); 4095 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4096 return nullptr; 4097 } else { 4098 // In this case we could have the operand of the binary operation 4099 // being defined in another block, and performing the replacement 4100 // could break the dominance relation. 4101 return nullptr; 4102 } 4103 } else { 4104 // Other uses prohibit this transformation. 4105 return nullptr; 4106 } 4107 } 4108 4109 // Recognize patterns 4110 switch (I.getPredicate()) { 4111 case ICmpInst::ICMP_EQ: 4112 case ICmpInst::ICMP_NE: 4113 // Recognize pattern: 4114 // mulval = mul(zext A, zext B) 4115 // cmp eq/neq mulval, zext trunc mulval 4116 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4117 if (Zext->hasOneUse()) { 4118 Value *ZextArg = Zext->getOperand(0); 4119 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4120 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4121 break; //Recognized 4122 } 4123 4124 // Recognize pattern: 4125 // mulval = mul(zext A, zext B) 4126 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4127 ConstantInt *CI; 4128 Value *ValToMask; 4129 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4130 if (ValToMask != MulVal) 4131 return nullptr; 4132 const APInt &CVal = CI->getValue() + 1; 4133 if (CVal.isPowerOf2()) { 4134 unsigned MaskWidth = CVal.logBase2(); 4135 if (MaskWidth == MulWidth) 4136 break; // Recognized 4137 } 4138 } 4139 return nullptr; 4140 4141 case ICmpInst::ICMP_UGT: 4142 // Recognize pattern: 4143 // mulval = mul(zext A, zext B) 4144 // cmp ugt mulval, max 4145 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4146 APInt MaxVal = APInt::getMaxValue(MulWidth); 4147 MaxVal = MaxVal.zext(CI->getBitWidth()); 4148 if (MaxVal.eq(CI->getValue())) 4149 break; // Recognized 4150 } 4151 return nullptr; 4152 4153 case ICmpInst::ICMP_UGE: 4154 // Recognize pattern: 4155 // mulval = mul(zext A, zext B) 4156 // cmp uge mulval, max+1 4157 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4158 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4159 if (MaxVal.eq(CI->getValue())) 4160 break; // Recognized 4161 } 4162 return nullptr; 4163 4164 case ICmpInst::ICMP_ULE: 4165 // Recognize pattern: 4166 // mulval = mul(zext A, zext B) 4167 // cmp ule mulval, max 4168 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4169 APInt MaxVal = APInt::getMaxValue(MulWidth); 4170 MaxVal = MaxVal.zext(CI->getBitWidth()); 4171 if (MaxVal.eq(CI->getValue())) 4172 break; // Recognized 4173 } 4174 return nullptr; 4175 4176 case ICmpInst::ICMP_ULT: 4177 // Recognize pattern: 4178 // mulval = mul(zext A, zext B) 4179 // cmp ule mulval, max + 1 4180 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4181 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4182 if (MaxVal.eq(CI->getValue())) 4183 break; // Recognized 4184 } 4185 return nullptr; 4186 4187 default: 4188 return nullptr; 4189 } 4190 4191 InstCombiner::BuilderTy &Builder = IC.Builder; 4192 Builder.SetInsertPoint(MulInstr); 4193 4194 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4195 Value *MulA = A, *MulB = B; 4196 if (WidthA < MulWidth) 4197 MulA = Builder.CreateZExt(A, MulType); 4198 if (WidthB < MulWidth) 4199 MulB = Builder.CreateZExt(B, MulType); 4200 Function *F = Intrinsic::getDeclaration( 4201 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4202 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4203 IC.Worklist.Add(MulInstr); 4204 4205 // If there are uses of mul result other than the comparison, we know that 4206 // they are truncation or binary AND. Change them to use result of 4207 // mul.with.overflow and adjust properly mask/size. 4208 if (MulVal->hasNUsesOrMore(2)) { 4209 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4210 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4211 User *U = *UI++; 4212 if (U == &I || U == OtherVal) 4213 continue; 4214 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4215 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4216 IC.replaceInstUsesWith(*TI, Mul); 4217 else 4218 TI->setOperand(0, Mul); 4219 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4220 assert(BO->getOpcode() == Instruction::And); 4221 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4222 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4223 APInt ShortMask = CI->getValue().trunc(MulWidth); 4224 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4225 Instruction *Zext = 4226 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4227 IC.Worklist.Add(Zext); 4228 IC.replaceInstUsesWith(*BO, Zext); 4229 } else { 4230 llvm_unreachable("Unexpected Binary operation"); 4231 } 4232 IC.Worklist.Add(cast<Instruction>(U)); 4233 } 4234 } 4235 if (isa<Instruction>(OtherVal)) 4236 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4237 4238 // The original icmp gets replaced with the overflow value, maybe inverted 4239 // depending on predicate. 4240 bool Inverse = false; 4241 switch (I.getPredicate()) { 4242 case ICmpInst::ICMP_NE: 4243 break; 4244 case ICmpInst::ICMP_EQ: 4245 Inverse = true; 4246 break; 4247 case ICmpInst::ICMP_UGT: 4248 case ICmpInst::ICMP_UGE: 4249 if (I.getOperand(0) == MulVal) 4250 break; 4251 Inverse = true; 4252 break; 4253 case ICmpInst::ICMP_ULT: 4254 case ICmpInst::ICMP_ULE: 4255 if (I.getOperand(1) == MulVal) 4256 break; 4257 Inverse = true; 4258 break; 4259 default: 4260 llvm_unreachable("Unexpected predicate"); 4261 } 4262 if (Inverse) { 4263 Value *Res = Builder.CreateExtractValue(Call, 1); 4264 return BinaryOperator::CreateNot(Res); 4265 } 4266 4267 return ExtractValueInst::Create(Call, 1); 4268 } 4269 4270 /// When performing a comparison against a constant, it is possible that not all 4271 /// the bits in the LHS are demanded. This helper method computes the mask that 4272 /// IS demanded. 4273 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4274 const APInt *RHS; 4275 if (!match(I.getOperand(1), m_APInt(RHS))) 4276 return APInt::getAllOnesValue(BitWidth); 4277 4278 // If this is a normal comparison, it demands all bits. If it is a sign bit 4279 // comparison, it only demands the sign bit. 4280 bool UnusedBit; 4281 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4282 return APInt::getSignMask(BitWidth); 4283 4284 switch (I.getPredicate()) { 4285 // For a UGT comparison, we don't care about any bits that 4286 // correspond to the trailing ones of the comparand. The value of these 4287 // bits doesn't impact the outcome of the comparison, because any value 4288 // greater than the RHS must differ in a bit higher than these due to carry. 4289 case ICmpInst::ICMP_UGT: 4290 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4291 4292 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4293 // Any value less than the RHS must differ in a higher bit because of carries. 4294 case ICmpInst::ICMP_ULT: 4295 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4296 4297 default: 4298 return APInt::getAllOnesValue(BitWidth); 4299 } 4300 } 4301 4302 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4303 /// should be swapped. 4304 /// The decision is based on how many times these two operands are reused 4305 /// as subtract operands and their positions in those instructions. 4306 /// The rationale is that several architectures use the same instruction for 4307 /// both subtract and cmp. Thus, it is better if the order of those operands 4308 /// match. 4309 /// \return true if Op0 and Op1 should be swapped. 4310 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4311 // Filter out pointer values as those cannot appear directly in subtract. 4312 // FIXME: we may want to go through inttoptrs or bitcasts. 4313 if (Op0->getType()->isPointerTy()) 4314 return false; 4315 // If a subtract already has the same operands as a compare, swapping would be 4316 // bad. If a subtract has the same operands as a compare but in reverse order, 4317 // then swapping is good. 4318 int GoodToSwap = 0; 4319 for (const User *U : Op0->users()) { 4320 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4321 GoodToSwap++; 4322 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4323 GoodToSwap--; 4324 } 4325 return GoodToSwap > 0; 4326 } 4327 4328 /// Check that one use is in the same block as the definition and all 4329 /// other uses are in blocks dominated by a given block. 4330 /// 4331 /// \param DI Definition 4332 /// \param UI Use 4333 /// \param DB Block that must dominate all uses of \p DI outside 4334 /// the parent block 4335 /// \return true when \p UI is the only use of \p DI in the parent block 4336 /// and all other uses of \p DI are in blocks dominated by \p DB. 4337 /// 4338 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4339 const Instruction *UI, 4340 const BasicBlock *DB) const { 4341 assert(DI && UI && "Instruction not defined\n"); 4342 // Ignore incomplete definitions. 4343 if (!DI->getParent()) 4344 return false; 4345 // DI and UI must be in the same block. 4346 if (DI->getParent() != UI->getParent()) 4347 return false; 4348 // Protect from self-referencing blocks. 4349 if (DI->getParent() == DB) 4350 return false; 4351 for (const User *U : DI->users()) { 4352 auto *Usr = cast<Instruction>(U); 4353 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4354 return false; 4355 } 4356 return true; 4357 } 4358 4359 /// Return true when the instruction sequence within a block is select-cmp-br. 4360 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4361 const BasicBlock *BB = SI->getParent(); 4362 if (!BB) 4363 return false; 4364 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4365 if (!BI || BI->getNumSuccessors() != 2) 4366 return false; 4367 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4368 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4369 return false; 4370 return true; 4371 } 4372 4373 /// True when a select result is replaced by one of its operands 4374 /// in select-icmp sequence. This will eventually result in the elimination 4375 /// of the select. 4376 /// 4377 /// \param SI Select instruction 4378 /// \param Icmp Compare instruction 4379 /// \param SIOpd Operand that replaces the select 4380 /// 4381 /// Notes: 4382 /// - The replacement is global and requires dominator information 4383 /// - The caller is responsible for the actual replacement 4384 /// 4385 /// Example: 4386 /// 4387 /// entry: 4388 /// %4 = select i1 %3, %C* %0, %C* null 4389 /// %5 = icmp eq %C* %4, null 4390 /// br i1 %5, label %9, label %7 4391 /// ... 4392 /// ; <label>:7 ; preds = %entry 4393 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4394 /// ... 4395 /// 4396 /// can be transformed to 4397 /// 4398 /// %5 = icmp eq %C* %0, null 4399 /// %6 = select i1 %3, i1 %5, i1 true 4400 /// br i1 %6, label %9, label %7 4401 /// ... 4402 /// ; <label>:7 ; preds = %entry 4403 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4404 /// 4405 /// Similar when the first operand of the select is a constant or/and 4406 /// the compare is for not equal rather than equal. 4407 /// 4408 /// NOTE: The function is only called when the select and compare constants 4409 /// are equal, the optimization can work only for EQ predicates. This is not a 4410 /// major restriction since a NE compare should be 'normalized' to an equal 4411 /// compare, which usually happens in the combiner and test case 4412 /// select-cmp-br.ll checks for it. 4413 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4414 const ICmpInst *Icmp, 4415 const unsigned SIOpd) { 4416 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4417 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4418 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4419 // The check for the single predecessor is not the best that can be 4420 // done. But it protects efficiently against cases like when SI's 4421 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4422 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4423 // replaced can be reached on either path. So the uniqueness check 4424 // guarantees that the path all uses of SI (outside SI's parent) are on 4425 // is disjoint from all other paths out of SI. But that information 4426 // is more expensive to compute, and the trade-off here is in favor 4427 // of compile-time. It should also be noticed that we check for a single 4428 // predecessor and not only uniqueness. This to handle the situation when 4429 // Succ and Succ1 points to the same basic block. 4430 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4431 NumSel++; 4432 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4433 return true; 4434 } 4435 } 4436 return false; 4437 } 4438 4439 /// Try to fold the comparison based on range information we can get by checking 4440 /// whether bits are known to be zero or one in the inputs. 4441 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4442 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4443 Type *Ty = Op0->getType(); 4444 ICmpInst::Predicate Pred = I.getPredicate(); 4445 4446 // Get scalar or pointer size. 4447 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4448 ? Ty->getScalarSizeInBits() 4449 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4450 4451 if (!BitWidth) 4452 return nullptr; 4453 4454 KnownBits Op0Known(BitWidth); 4455 KnownBits Op1Known(BitWidth); 4456 4457 if (SimplifyDemandedBits(&I, 0, 4458 getDemandedBitsLHSMask(I, BitWidth), 4459 Op0Known, 0)) 4460 return &I; 4461 4462 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4463 Op1Known, 0)) 4464 return &I; 4465 4466 // Given the known and unknown bits, compute a range that the LHS could be 4467 // in. Compute the Min, Max and RHS values based on the known bits. For the 4468 // EQ and NE we use unsigned values. 4469 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4470 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4471 if (I.isSigned()) { 4472 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4473 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4474 } else { 4475 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4476 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4477 } 4478 4479 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4480 // out that the LHS or RHS is a constant. Constant fold this now, so that 4481 // code below can assume that Min != Max. 4482 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4483 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4484 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4485 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4486 4487 // Based on the range information we know about the LHS, see if we can 4488 // simplify this comparison. For example, (x&4) < 8 is always true. 4489 switch (Pred) { 4490 default: 4491 llvm_unreachable("Unknown icmp opcode!"); 4492 case ICmpInst::ICMP_EQ: 4493 case ICmpInst::ICMP_NE: { 4494 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4495 return Pred == CmpInst::ICMP_EQ 4496 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4497 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4498 } 4499 4500 // If all bits are known zero except for one, then we know at most one bit 4501 // is set. If the comparison is against zero, then this is a check to see if 4502 // *that* bit is set. 4503 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4504 if (Op1Known.isZero()) { 4505 // If the LHS is an AND with the same constant, look through it. 4506 Value *LHS = nullptr; 4507 const APInt *LHSC; 4508 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4509 *LHSC != Op0KnownZeroInverted) 4510 LHS = Op0; 4511 4512 Value *X; 4513 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4514 APInt ValToCheck = Op0KnownZeroInverted; 4515 Type *XTy = X->getType(); 4516 if (ValToCheck.isPowerOf2()) { 4517 // ((1 << X) & 8) == 0 -> X != 3 4518 // ((1 << X) & 8) != 0 -> X == 3 4519 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4520 auto NewPred = ICmpInst::getInversePredicate(Pred); 4521 return new ICmpInst(NewPred, X, CmpC); 4522 } else if ((++ValToCheck).isPowerOf2()) { 4523 // ((1 << X) & 7) == 0 -> X >= 3 4524 // ((1 << X) & 7) != 0 -> X < 3 4525 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4526 auto NewPred = 4527 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4528 return new ICmpInst(NewPred, X, CmpC); 4529 } 4530 } 4531 4532 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4533 const APInt *CI; 4534 if (Op0KnownZeroInverted.isOneValue() && 4535 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4536 // ((8 >>u X) & 1) == 0 -> X != 3 4537 // ((8 >>u X) & 1) != 0 -> X == 3 4538 unsigned CmpVal = CI->countTrailingZeros(); 4539 auto NewPred = ICmpInst::getInversePredicate(Pred); 4540 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4541 } 4542 } 4543 break; 4544 } 4545 case ICmpInst::ICMP_ULT: { 4546 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4547 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4548 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4549 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4550 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4551 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4552 4553 const APInt *CmpC; 4554 if (match(Op1, m_APInt(CmpC))) { 4555 // A <u C -> A == C-1 if min(A)+1 == C 4556 if (*CmpC == Op0Min + 1) 4557 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4558 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4559 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4560 // exceeds the log2 of C. 4561 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4562 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4563 Constant::getNullValue(Op1->getType())); 4564 } 4565 break; 4566 } 4567 case ICmpInst::ICMP_UGT: { 4568 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4569 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4570 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4571 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4572 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4573 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4574 4575 const APInt *CmpC; 4576 if (match(Op1, m_APInt(CmpC))) { 4577 // A >u C -> A == C+1 if max(a)-1 == C 4578 if (*CmpC == Op0Max - 1) 4579 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4580 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4581 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4582 // exceeds the log2 of C. 4583 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4584 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4585 Constant::getNullValue(Op1->getType())); 4586 } 4587 break; 4588 } 4589 case ICmpInst::ICMP_SLT: { 4590 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4591 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4592 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4593 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4594 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4595 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4596 const APInt *CmpC; 4597 if (match(Op1, m_APInt(CmpC))) { 4598 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4599 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4600 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4601 } 4602 break; 4603 } 4604 case ICmpInst::ICMP_SGT: { 4605 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4606 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4607 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4608 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4609 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4610 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4611 const APInt *CmpC; 4612 if (match(Op1, m_APInt(CmpC))) { 4613 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4614 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4615 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4616 } 4617 break; 4618 } 4619 case ICmpInst::ICMP_SGE: 4620 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4621 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4622 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4623 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4624 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4625 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4626 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4627 break; 4628 case ICmpInst::ICMP_SLE: 4629 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4630 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4631 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4632 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4633 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4634 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4635 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4636 break; 4637 case ICmpInst::ICMP_UGE: 4638 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4639 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4640 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4641 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4642 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4643 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4644 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4645 break; 4646 case ICmpInst::ICMP_ULE: 4647 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4648 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4649 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4650 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4651 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4652 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4653 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4654 break; 4655 } 4656 4657 // Turn a signed comparison into an unsigned one if both operands are known to 4658 // have the same sign. 4659 if (I.isSigned() && 4660 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4661 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4662 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4663 4664 return nullptr; 4665 } 4666 4667 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4668 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4669 /// allows them to be folded in visitICmpInst. 4670 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4671 ICmpInst::Predicate Pred = I.getPredicate(); 4672 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4673 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4674 return nullptr; 4675 4676 Value *Op0 = I.getOperand(0); 4677 Value *Op1 = I.getOperand(1); 4678 auto *Op1C = dyn_cast<Constant>(Op1); 4679 if (!Op1C) 4680 return nullptr; 4681 4682 // Check if the constant operand can be safely incremented/decremented without 4683 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4684 // the edge cases for us, so we just assert on them. For vectors, we must 4685 // handle the edge cases. 4686 Type *Op1Type = Op1->getType(); 4687 bool IsSigned = I.isSigned(); 4688 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4689 auto *CI = dyn_cast<ConstantInt>(Op1C); 4690 if (CI) { 4691 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4692 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4693 } else if (Op1Type->isVectorTy()) { 4694 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4695 // are for scalar, we could remove the min/max checks. However, to do that, 4696 // we would have to use insertelement/shufflevector to replace edge values. 4697 unsigned NumElts = Op1Type->getVectorNumElements(); 4698 for (unsigned i = 0; i != NumElts; ++i) { 4699 Constant *Elt = Op1C->getAggregateElement(i); 4700 if (!Elt) 4701 return nullptr; 4702 4703 if (isa<UndefValue>(Elt)) 4704 continue; 4705 4706 // Bail out if we can't determine if this constant is min/max or if we 4707 // know that this constant is min/max. 4708 auto *CI = dyn_cast<ConstantInt>(Elt); 4709 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4710 return nullptr; 4711 } 4712 } else { 4713 // ConstantExpr? 4714 return nullptr; 4715 } 4716 4717 // Increment or decrement the constant and set the new comparison predicate: 4718 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4719 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4720 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4721 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4722 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4723 } 4724 4725 /// Integer compare with boolean values can always be turned into bitwise ops. 4726 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4727 InstCombiner::BuilderTy &Builder) { 4728 Value *A = I.getOperand(0), *B = I.getOperand(1); 4729 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4730 4731 // A boolean compared to true/false can be simplified to Op0/true/false in 4732 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4733 // Cases not handled by InstSimplify are always 'not' of Op0. 4734 if (match(B, m_Zero())) { 4735 switch (I.getPredicate()) { 4736 case CmpInst::ICMP_EQ: // A == 0 -> !A 4737 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4738 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4739 return BinaryOperator::CreateNot(A); 4740 default: 4741 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4742 } 4743 } else if (match(B, m_One())) { 4744 switch (I.getPredicate()) { 4745 case CmpInst::ICMP_NE: // A != 1 -> !A 4746 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4747 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4748 return BinaryOperator::CreateNot(A); 4749 default: 4750 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4751 } 4752 } 4753 4754 switch (I.getPredicate()) { 4755 default: 4756 llvm_unreachable("Invalid icmp instruction!"); 4757 case ICmpInst::ICMP_EQ: 4758 // icmp eq i1 A, B -> ~(A ^ B) 4759 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4760 4761 case ICmpInst::ICMP_NE: 4762 // icmp ne i1 A, B -> A ^ B 4763 return BinaryOperator::CreateXor(A, B); 4764 4765 case ICmpInst::ICMP_UGT: 4766 // icmp ugt -> icmp ult 4767 std::swap(A, B); 4768 LLVM_FALLTHROUGH; 4769 case ICmpInst::ICMP_ULT: 4770 // icmp ult i1 A, B -> ~A & B 4771 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4772 4773 case ICmpInst::ICMP_SGT: 4774 // icmp sgt -> icmp slt 4775 std::swap(A, B); 4776 LLVM_FALLTHROUGH; 4777 case ICmpInst::ICMP_SLT: 4778 // icmp slt i1 A, B -> A & ~B 4779 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4780 4781 case ICmpInst::ICMP_UGE: 4782 // icmp uge -> icmp ule 4783 std::swap(A, B); 4784 LLVM_FALLTHROUGH; 4785 case ICmpInst::ICMP_ULE: 4786 // icmp ule i1 A, B -> ~A | B 4787 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4788 4789 case ICmpInst::ICMP_SGE: 4790 // icmp sge -> icmp sle 4791 std::swap(A, B); 4792 LLVM_FALLTHROUGH; 4793 case ICmpInst::ICMP_SLE: 4794 // icmp sle i1 A, B -> A | ~B 4795 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4796 } 4797 } 4798 4799 // Transform pattern like: 4800 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4801 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4802 // Into: 4803 // (X l>> Y) != 0 4804 // (X l>> Y) == 0 4805 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4806 InstCombiner::BuilderTy &Builder) { 4807 ICmpInst::Predicate Pred, NewPred; 4808 Value *X, *Y; 4809 if (match(&Cmp, 4810 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4811 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4812 if (Cmp.getOperand(0) == X) 4813 Pred = Cmp.getSwappedPredicate(); 4814 4815 switch (Pred) { 4816 case ICmpInst::ICMP_ULE: 4817 NewPred = ICmpInst::ICMP_NE; 4818 break; 4819 case ICmpInst::ICMP_UGT: 4820 NewPred = ICmpInst::ICMP_EQ; 4821 break; 4822 default: 4823 return nullptr; 4824 } 4825 } else if (match(&Cmp, m_c_ICmp(Pred, 4826 m_OneUse(m_CombineOr( 4827 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4828 m_Add(m_Shl(m_One(), m_Value(Y)), 4829 m_AllOnes()))), 4830 m_Value(X)))) { 4831 // The variant with 'add' is not canonical, (the variant with 'not' is) 4832 // we only get it because it has extra uses, and can't be canonicalized, 4833 4834 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4835 if (Cmp.getOperand(0) == X) 4836 Pred = Cmp.getSwappedPredicate(); 4837 4838 switch (Pred) { 4839 case ICmpInst::ICMP_ULT: 4840 NewPred = ICmpInst::ICMP_NE; 4841 break; 4842 case ICmpInst::ICMP_UGE: 4843 NewPred = ICmpInst::ICMP_EQ; 4844 break; 4845 default: 4846 return nullptr; 4847 } 4848 } else 4849 return nullptr; 4850 4851 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 4852 Constant *Zero = Constant::getNullValue(NewX->getType()); 4853 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 4854 } 4855 4856 static Instruction *foldVectorCmp(CmpInst &Cmp, 4857 InstCombiner::BuilderTy &Builder) { 4858 // If both arguments of the cmp are shuffles that use the same mask and 4859 // shuffle within a single vector, move the shuffle after the cmp. 4860 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 4861 Value *V1, *V2; 4862 Constant *M; 4863 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 4864 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 4865 V1->getType() == V2->getType() && 4866 (LHS->hasOneUse() || RHS->hasOneUse())) { 4867 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 4868 CmpInst::Predicate P = Cmp.getPredicate(); 4869 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 4870 : Builder.CreateFCmp(P, V1, V2); 4871 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 4872 } 4873 return nullptr; 4874 } 4875 4876 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4877 bool Changed = false; 4878 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4879 unsigned Op0Cplxity = getComplexity(Op0); 4880 unsigned Op1Cplxity = getComplexity(Op1); 4881 4882 /// Orders the operands of the compare so that they are listed from most 4883 /// complex to least complex. This puts constants before unary operators, 4884 /// before binary operators. 4885 if (Op0Cplxity < Op1Cplxity || 4886 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4887 I.swapOperands(); 4888 std::swap(Op0, Op1); 4889 Changed = true; 4890 } 4891 4892 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4893 SQ.getWithInstruction(&I))) 4894 return replaceInstUsesWith(I, V); 4895 4896 // Comparing -val or val with non-zero is the same as just comparing val 4897 // ie, abs(val) != 0 -> val != 0 4898 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4899 Value *Cond, *SelectTrue, *SelectFalse; 4900 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4901 m_Value(SelectFalse)))) { 4902 if (Value *V = dyn_castNegVal(SelectTrue)) { 4903 if (V == SelectFalse) 4904 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4905 } 4906 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4907 if (V == SelectTrue) 4908 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4909 } 4910 } 4911 } 4912 4913 if (Op0->getType()->isIntOrIntVectorTy(1)) 4914 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4915 return Res; 4916 4917 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4918 return NewICmp; 4919 4920 if (Instruction *Res = foldICmpWithConstant(I)) 4921 return Res; 4922 4923 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 4924 return Res; 4925 4926 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4927 return Res; 4928 4929 // Test if the ICmpInst instruction is used exclusively by a select as 4930 // part of a minimum or maximum operation. If so, refrain from doing 4931 // any other folding. This helps out other analyses which understand 4932 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4933 // and CodeGen. And in this case, at least one of the comparison 4934 // operands has at least one user besides the compare (the select), 4935 // which would often largely negate the benefit of folding anyway. 4936 // 4937 // Do the same for the other patterns recognized by matchSelectPattern. 4938 if (I.hasOneUse()) 4939 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4940 Value *A, *B; 4941 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4942 if (SPR.Flavor != SPF_UNKNOWN) 4943 return nullptr; 4944 } 4945 4946 // Do this after checking for min/max to prevent infinite looping. 4947 if (Instruction *Res = foldICmpWithZero(I)) 4948 return Res; 4949 4950 // FIXME: We only do this after checking for min/max to prevent infinite 4951 // looping caused by a reverse canonicalization of these patterns for min/max. 4952 // FIXME: The organization of folds is a mess. These would naturally go into 4953 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4954 // down here after the min/max restriction. 4955 ICmpInst::Predicate Pred = I.getPredicate(); 4956 const APInt *C; 4957 if (match(Op1, m_APInt(C))) { 4958 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4959 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4960 Constant *Zero = Constant::getNullValue(Op0->getType()); 4961 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4962 } 4963 4964 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4965 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4966 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4967 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4968 } 4969 } 4970 4971 if (Instruction *Res = foldICmpInstWithConstant(I)) 4972 return Res; 4973 4974 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4975 return Res; 4976 4977 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4978 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4979 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4980 return NI; 4981 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4982 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4983 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4984 return NI; 4985 4986 // Try to optimize equality comparisons against alloca-based pointers. 4987 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4988 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4989 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4990 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4991 return New; 4992 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4993 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4994 return New; 4995 } 4996 4997 if (Instruction *Res = foldICmpBitCast(I, Builder)) 4998 return Res; 4999 5000 if (isa<CastInst>(Op0)) { 5001 // Handle the special case of: icmp (cast bool to X), <cst> 5002 // This comes up when you have code like 5003 // int X = A < B; 5004 // if (X) ... 5005 // For generality, we handle any zero-extension of any operand comparison 5006 // with a constant or another cast from the same type. 5007 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5008 if (Instruction *R = foldICmpWithCastAndCast(I)) 5009 return R; 5010 } 5011 5012 if (Instruction *Res = foldICmpBinOp(I)) 5013 return Res; 5014 5015 if (Instruction *Res = foldICmpWithMinMax(I)) 5016 return Res; 5017 5018 { 5019 Value *A, *B; 5020 // Transform (A & ~B) == 0 --> (A & B) != 0 5021 // and (A & ~B) != 0 --> (A & B) == 0 5022 // if A is a power of 2. 5023 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5024 match(Op1, m_Zero()) && 5025 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5026 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5027 Op1); 5028 5029 // ~X < ~Y --> Y < X 5030 // ~X < C --> X > ~C 5031 if (match(Op0, m_Not(m_Value(A)))) { 5032 if (match(Op1, m_Not(m_Value(B)))) 5033 return new ICmpInst(I.getPredicate(), B, A); 5034 5035 const APInt *C; 5036 if (match(Op1, m_APInt(C))) 5037 return new ICmpInst(I.getSwappedPredicate(), A, 5038 ConstantInt::get(Op1->getType(), ~(*C))); 5039 } 5040 5041 Instruction *AddI = nullptr; 5042 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5043 m_Instruction(AddI))) && 5044 isa<IntegerType>(A->getType())) { 5045 Value *Result; 5046 Constant *Overflow; 5047 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5048 *AddI, Result, Overflow)) { 5049 replaceInstUsesWith(*AddI, Result); 5050 return replaceInstUsesWith(I, Overflow); 5051 } 5052 } 5053 5054 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5055 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5056 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5057 return R; 5058 } 5059 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5060 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5061 return R; 5062 } 5063 } 5064 5065 if (Instruction *Res = foldICmpEquality(I)) 5066 return Res; 5067 5068 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5069 // an i1 which indicates whether or not we successfully did the swap. 5070 // 5071 // Replace comparisons between the old value and the expected value with the 5072 // indicator that 'cmpxchg' returns. 5073 // 5074 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5075 // spuriously fail. In those cases, the old value may equal the expected 5076 // value but it is possible for the swap to not occur. 5077 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5078 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5079 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5080 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5081 !ACXI->isWeak()) 5082 return ExtractValueInst::Create(ACXI, 1); 5083 5084 { 5085 Value *X; 5086 const APInt *C; 5087 // icmp X+Cst, X 5088 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5089 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5090 5091 // icmp X, X+Cst 5092 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5093 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5094 } 5095 5096 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5097 return Res; 5098 5099 if (I.getType()->isVectorTy()) 5100 if (Instruction *Res = foldVectorCmp(I, Builder)) 5101 return Res; 5102 5103 return Changed ? &I : nullptr; 5104 } 5105 5106 /// Fold fcmp ([us]itofp x, cst) if possible. 5107 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5108 Constant *RHSC) { 5109 if (!isa<ConstantFP>(RHSC)) return nullptr; 5110 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5111 5112 // Get the width of the mantissa. We don't want to hack on conversions that 5113 // might lose information from the integer, e.g. "i64 -> float" 5114 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5115 if (MantissaWidth == -1) return nullptr; // Unknown. 5116 5117 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5118 5119 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5120 5121 if (I.isEquality()) { 5122 FCmpInst::Predicate P = I.getPredicate(); 5123 bool IsExact = false; 5124 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5125 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5126 5127 // If the floating point constant isn't an integer value, we know if we will 5128 // ever compare equal / not equal to it. 5129 if (!IsExact) { 5130 // TODO: Can never be -0.0 and other non-representable values 5131 APFloat RHSRoundInt(RHS); 5132 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5133 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5134 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5135 return replaceInstUsesWith(I, Builder.getFalse()); 5136 5137 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5138 return replaceInstUsesWith(I, Builder.getTrue()); 5139 } 5140 } 5141 5142 // TODO: If the constant is exactly representable, is it always OK to do 5143 // equality compares as integer? 5144 } 5145 5146 // Check to see that the input is converted from an integer type that is small 5147 // enough that preserves all bits. TODO: check here for "known" sign bits. 5148 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5149 unsigned InputSize = IntTy->getScalarSizeInBits(); 5150 5151 // Following test does NOT adjust InputSize downwards for signed inputs, 5152 // because the most negative value still requires all the mantissa bits 5153 // to distinguish it from one less than that value. 5154 if ((int)InputSize > MantissaWidth) { 5155 // Conversion would lose accuracy. Check if loss can impact comparison. 5156 int Exp = ilogb(RHS); 5157 if (Exp == APFloat::IEK_Inf) { 5158 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5159 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5160 // Conversion could create infinity. 5161 return nullptr; 5162 } else { 5163 // Note that if RHS is zero or NaN, then Exp is negative 5164 // and first condition is trivially false. 5165 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5166 // Conversion could affect comparison. 5167 return nullptr; 5168 } 5169 } 5170 5171 // Otherwise, we can potentially simplify the comparison. We know that it 5172 // will always come through as an integer value and we know the constant is 5173 // not a NAN (it would have been previously simplified). 5174 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5175 5176 ICmpInst::Predicate Pred; 5177 switch (I.getPredicate()) { 5178 default: llvm_unreachable("Unexpected predicate!"); 5179 case FCmpInst::FCMP_UEQ: 5180 case FCmpInst::FCMP_OEQ: 5181 Pred = ICmpInst::ICMP_EQ; 5182 break; 5183 case FCmpInst::FCMP_UGT: 5184 case FCmpInst::FCMP_OGT: 5185 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5186 break; 5187 case FCmpInst::FCMP_UGE: 5188 case FCmpInst::FCMP_OGE: 5189 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5190 break; 5191 case FCmpInst::FCMP_ULT: 5192 case FCmpInst::FCMP_OLT: 5193 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5194 break; 5195 case FCmpInst::FCMP_ULE: 5196 case FCmpInst::FCMP_OLE: 5197 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5198 break; 5199 case FCmpInst::FCMP_UNE: 5200 case FCmpInst::FCMP_ONE: 5201 Pred = ICmpInst::ICMP_NE; 5202 break; 5203 case FCmpInst::FCMP_ORD: 5204 return replaceInstUsesWith(I, Builder.getTrue()); 5205 case FCmpInst::FCMP_UNO: 5206 return replaceInstUsesWith(I, Builder.getFalse()); 5207 } 5208 5209 // Now we know that the APFloat is a normal number, zero or inf. 5210 5211 // See if the FP constant is too large for the integer. For example, 5212 // comparing an i8 to 300.0. 5213 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5214 5215 if (!LHSUnsigned) { 5216 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5217 // and large values. 5218 APFloat SMax(RHS.getSemantics()); 5219 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5220 APFloat::rmNearestTiesToEven); 5221 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5222 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5223 Pred == ICmpInst::ICMP_SLE) 5224 return replaceInstUsesWith(I, Builder.getTrue()); 5225 return replaceInstUsesWith(I, Builder.getFalse()); 5226 } 5227 } else { 5228 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5229 // +INF and large values. 5230 APFloat UMax(RHS.getSemantics()); 5231 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5232 APFloat::rmNearestTiesToEven); 5233 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5234 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5235 Pred == ICmpInst::ICMP_ULE) 5236 return replaceInstUsesWith(I, Builder.getTrue()); 5237 return replaceInstUsesWith(I, Builder.getFalse()); 5238 } 5239 } 5240 5241 if (!LHSUnsigned) { 5242 // See if the RHS value is < SignedMin. 5243 APFloat SMin(RHS.getSemantics()); 5244 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5245 APFloat::rmNearestTiesToEven); 5246 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5247 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5248 Pred == ICmpInst::ICMP_SGE) 5249 return replaceInstUsesWith(I, Builder.getTrue()); 5250 return replaceInstUsesWith(I, Builder.getFalse()); 5251 } 5252 } else { 5253 // See if the RHS value is < UnsignedMin. 5254 APFloat SMin(RHS.getSemantics()); 5255 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5256 APFloat::rmNearestTiesToEven); 5257 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5258 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5259 Pred == ICmpInst::ICMP_UGE) 5260 return replaceInstUsesWith(I, Builder.getTrue()); 5261 return replaceInstUsesWith(I, Builder.getFalse()); 5262 } 5263 } 5264 5265 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5266 // [0, UMAX], but it may still be fractional. See if it is fractional by 5267 // casting the FP value to the integer value and back, checking for equality. 5268 // Don't do this for zero, because -0.0 is not fractional. 5269 Constant *RHSInt = LHSUnsigned 5270 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5271 : ConstantExpr::getFPToSI(RHSC, IntTy); 5272 if (!RHS.isZero()) { 5273 bool Equal = LHSUnsigned 5274 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5275 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5276 if (!Equal) { 5277 // If we had a comparison against a fractional value, we have to adjust 5278 // the compare predicate and sometimes the value. RHSC is rounded towards 5279 // zero at this point. 5280 switch (Pred) { 5281 default: llvm_unreachable("Unexpected integer comparison!"); 5282 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5283 return replaceInstUsesWith(I, Builder.getTrue()); 5284 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5285 return replaceInstUsesWith(I, Builder.getFalse()); 5286 case ICmpInst::ICMP_ULE: 5287 // (float)int <= 4.4 --> int <= 4 5288 // (float)int <= -4.4 --> false 5289 if (RHS.isNegative()) 5290 return replaceInstUsesWith(I, Builder.getFalse()); 5291 break; 5292 case ICmpInst::ICMP_SLE: 5293 // (float)int <= 4.4 --> int <= 4 5294 // (float)int <= -4.4 --> int < -4 5295 if (RHS.isNegative()) 5296 Pred = ICmpInst::ICMP_SLT; 5297 break; 5298 case ICmpInst::ICMP_ULT: 5299 // (float)int < -4.4 --> false 5300 // (float)int < 4.4 --> int <= 4 5301 if (RHS.isNegative()) 5302 return replaceInstUsesWith(I, Builder.getFalse()); 5303 Pred = ICmpInst::ICMP_ULE; 5304 break; 5305 case ICmpInst::ICMP_SLT: 5306 // (float)int < -4.4 --> int < -4 5307 // (float)int < 4.4 --> int <= 4 5308 if (!RHS.isNegative()) 5309 Pred = ICmpInst::ICMP_SLE; 5310 break; 5311 case ICmpInst::ICMP_UGT: 5312 // (float)int > 4.4 --> int > 4 5313 // (float)int > -4.4 --> true 5314 if (RHS.isNegative()) 5315 return replaceInstUsesWith(I, Builder.getTrue()); 5316 break; 5317 case ICmpInst::ICMP_SGT: 5318 // (float)int > 4.4 --> int > 4 5319 // (float)int > -4.4 --> int >= -4 5320 if (RHS.isNegative()) 5321 Pred = ICmpInst::ICMP_SGE; 5322 break; 5323 case ICmpInst::ICMP_UGE: 5324 // (float)int >= -4.4 --> true 5325 // (float)int >= 4.4 --> int > 4 5326 if (RHS.isNegative()) 5327 return replaceInstUsesWith(I, Builder.getTrue()); 5328 Pred = ICmpInst::ICMP_UGT; 5329 break; 5330 case ICmpInst::ICMP_SGE: 5331 // (float)int >= -4.4 --> int >= -4 5332 // (float)int >= 4.4 --> int > 4 5333 if (!RHS.isNegative()) 5334 Pred = ICmpInst::ICMP_SGT; 5335 break; 5336 } 5337 } 5338 } 5339 5340 // Lower this FP comparison into an appropriate integer version of the 5341 // comparison. 5342 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5343 } 5344 5345 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5346 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5347 Constant *RHSC) { 5348 // When C is not 0.0 and infinities are not allowed: 5349 // (C / X) < 0.0 is a sign-bit test of X 5350 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5351 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5352 // 5353 // Proof: 5354 // Multiply (C / X) < 0.0 by X * X / C. 5355 // - X is non zero, if it is the flag 'ninf' is violated. 5356 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5357 // the predicate. C is also non zero by definition. 5358 // 5359 // Thus X * X / C is non zero and the transformation is valid. [qed] 5360 5361 FCmpInst::Predicate Pred = I.getPredicate(); 5362 5363 // Check that predicates are valid. 5364 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5365 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5366 return nullptr; 5367 5368 // Check that RHS operand is zero. 5369 if (!match(RHSC, m_AnyZeroFP())) 5370 return nullptr; 5371 5372 // Check fastmath flags ('ninf'). 5373 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5374 return nullptr; 5375 5376 // Check the properties of the dividend. It must not be zero to avoid a 5377 // division by zero (see Proof). 5378 const APFloat *C; 5379 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5380 return nullptr; 5381 5382 if (C->isZero()) 5383 return nullptr; 5384 5385 // Get swapped predicate if necessary. 5386 if (C->isNegative()) 5387 Pred = I.getSwappedPredicate(); 5388 5389 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5390 } 5391 5392 /// Optimize fabs(X) compared with zero. 5393 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5394 Value *X; 5395 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5396 !match(I.getOperand(1), m_PosZeroFP())) 5397 return nullptr; 5398 5399 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5400 I->setPredicate(P); 5401 I->setOperand(0, X); 5402 return I; 5403 }; 5404 5405 switch (I.getPredicate()) { 5406 case FCmpInst::FCMP_UGE: 5407 case FCmpInst::FCMP_OLT: 5408 // fabs(X) >= 0.0 --> true 5409 // fabs(X) < 0.0 --> false 5410 llvm_unreachable("fcmp should have simplified"); 5411 5412 case FCmpInst::FCMP_OGT: 5413 // fabs(X) > 0.0 --> X != 0.0 5414 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5415 5416 case FCmpInst::FCMP_UGT: 5417 // fabs(X) u> 0.0 --> X u!= 0.0 5418 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5419 5420 case FCmpInst::FCMP_OLE: 5421 // fabs(X) <= 0.0 --> X == 0.0 5422 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5423 5424 case FCmpInst::FCMP_ULE: 5425 // fabs(X) u<= 0.0 --> X u== 0.0 5426 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5427 5428 case FCmpInst::FCMP_OGE: 5429 // fabs(X) >= 0.0 --> !isnan(X) 5430 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5431 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5432 5433 case FCmpInst::FCMP_ULT: 5434 // fabs(X) u< 0.0 --> isnan(X) 5435 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5436 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5437 5438 case FCmpInst::FCMP_OEQ: 5439 case FCmpInst::FCMP_UEQ: 5440 case FCmpInst::FCMP_ONE: 5441 case FCmpInst::FCMP_UNE: 5442 case FCmpInst::FCMP_ORD: 5443 case FCmpInst::FCMP_UNO: 5444 // Look through the fabs() because it doesn't change anything but the sign. 5445 // fabs(X) == 0.0 --> X == 0.0, 5446 // fabs(X) != 0.0 --> X != 0.0 5447 // isnan(fabs(X)) --> isnan(X) 5448 // !isnan(fabs(X) --> !isnan(X) 5449 return replacePredAndOp0(&I, I.getPredicate(), X); 5450 5451 default: 5452 return nullptr; 5453 } 5454 } 5455 5456 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5457 bool Changed = false; 5458 5459 /// Orders the operands of the compare so that they are listed from most 5460 /// complex to least complex. This puts constants before unary operators, 5461 /// before binary operators. 5462 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5463 I.swapOperands(); 5464 Changed = true; 5465 } 5466 5467 const CmpInst::Predicate Pred = I.getPredicate(); 5468 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5469 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5470 SQ.getWithInstruction(&I))) 5471 return replaceInstUsesWith(I, V); 5472 5473 // Simplify 'fcmp pred X, X' 5474 Type *OpType = Op0->getType(); 5475 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 5476 if (Op0 == Op1) { 5477 switch (Pred) { 5478 default: break; 5479 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5480 case FCmpInst::FCMP_ULT: // True if unordered or less than 5481 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5482 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5483 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5484 I.setPredicate(FCmpInst::FCMP_UNO); 5485 I.setOperand(1, Constant::getNullValue(OpType)); 5486 return &I; 5487 5488 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5489 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5490 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5491 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5492 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5493 I.setPredicate(FCmpInst::FCMP_ORD); 5494 I.setOperand(1, Constant::getNullValue(OpType)); 5495 return &I; 5496 } 5497 } 5498 5499 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5500 // then canonicalize the operand to 0.0. 5501 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5502 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5503 I.setOperand(0, ConstantFP::getNullValue(OpType)); 5504 return &I; 5505 } 5506 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5507 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5508 return &I; 5509 } 5510 } 5511 5512 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5513 Value *X, *Y; 5514 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5515 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5516 5517 // Test if the FCmpInst instruction is used exclusively by a select as 5518 // part of a minimum or maximum operation. If so, refrain from doing 5519 // any other folding. This helps out other analyses which understand 5520 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5521 // and CodeGen. And in this case, at least one of the comparison 5522 // operands has at least one user besides the compare (the select), 5523 // which would often largely negate the benefit of folding anyway. 5524 if (I.hasOneUse()) 5525 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5526 Value *A, *B; 5527 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5528 if (SPR.Flavor != SPF_UNKNOWN) 5529 return nullptr; 5530 } 5531 5532 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5533 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5534 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5535 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5536 return &I; 5537 } 5538 5539 // Handle fcmp with instruction LHS and constant RHS. 5540 Instruction *LHSI; 5541 Constant *RHSC; 5542 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5543 switch (LHSI->getOpcode()) { 5544 case Instruction::PHI: 5545 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5546 // block. If in the same block, we're encouraging jump threading. If 5547 // not, we are just pessimizing the code by making an i1 phi. 5548 if (LHSI->getParent() == I.getParent()) 5549 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5550 return NV; 5551 break; 5552 case Instruction::SIToFP: 5553 case Instruction::UIToFP: 5554 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5555 return NV; 5556 break; 5557 case Instruction::FDiv: 5558 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5559 return NV; 5560 break; 5561 case Instruction::Load: 5562 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5563 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5564 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5565 !cast<LoadInst>(LHSI)->isVolatile()) 5566 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5567 return Res; 5568 break; 5569 } 5570 } 5571 5572 if (Instruction *R = foldFabsWithFcmpZero(I)) 5573 return R; 5574 5575 if (match(Op0, m_FNeg(m_Value(X)))) { 5576 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5577 Constant *C; 5578 if (match(Op1, m_Constant(C))) { 5579 Constant *NegC = ConstantExpr::getFNeg(C); 5580 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5581 } 5582 } 5583 5584 if (match(Op0, m_FPExt(m_Value(X)))) { 5585 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5586 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5587 return new FCmpInst(Pred, X, Y, "", &I); 5588 5589 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5590 const APFloat *C; 5591 if (match(Op1, m_APFloat(C))) { 5592 const fltSemantics &FPSem = 5593 X->getType()->getScalarType()->getFltSemantics(); 5594 bool Lossy; 5595 APFloat TruncC = *C; 5596 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5597 5598 // Avoid lossy conversions and denormals. 5599 // Zero is a special case that's OK to convert. 5600 APFloat Fabs = TruncC; 5601 Fabs.clearSign(); 5602 if (!Lossy && 5603 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5604 APFloat::cmpLessThan) || Fabs.isZero())) { 5605 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5606 return new FCmpInst(Pred, X, NewC, "", &I); 5607 } 5608 } 5609 } 5610 5611 if (I.getType()->isVectorTy()) 5612 if (Instruction *Res = foldVectorCmp(I, Builder)) 5613 return Res; 5614 5615 return Changed ? &I : nullptr; 5616 } 5617