1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
76                            bool &TrueIfSigned) {
77   switch (Pred) {
78   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
79     TrueIfSigned = true;
80     return RHS.isNullValue();
81   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
82     TrueIfSigned = true;
83     return RHS.isAllOnesValue();
84   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
85     TrueIfSigned = false;
86     return RHS.isAllOnesValue();
87   case ICmpInst::ICMP_UGT:
88     // True if LHS u> RHS and RHS == high-bit-mask - 1
89     TrueIfSigned = true;
90     return RHS.isMaxSignedValue();
91   case ICmpInst::ICMP_UGE:
92     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
93     TrueIfSigned = true;
94     return RHS.isSignMask();
95   default:
96     return false;
97   }
98 }
99 
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
105   if (!ICmpInst::isSigned(Pred))
106     return false;
107 
108   if (C.isNullValue())
109     return ICmpInst::isRelational(Pred);
110 
111   if (C.isOneValue()) {
112     if (Pred == ICmpInst::ICMP_SLT) {
113       Pred = ICmpInst::ICMP_SLE;
114       return true;
115     }
116   } else if (C.isAllOnesValue()) {
117     if (Pred == ICmpInst::ICMP_SGT) {
118       Pred = ICmpInst::ICMP_SGE;
119       return true;
120     }
121   }
122 
123   return false;
124 }
125 
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
131                                                    APInt &Min, APInt &Max) {
132   assert(Known.getBitWidth() == Min.getBitWidth() &&
133          Known.getBitWidth() == Max.getBitWidth() &&
134          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135   APInt UnknownBits = ~(Known.Zero|Known.One);
136 
137   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138   // bit if it is unknown.
139   Min = Known.One;
140   Max = Known.One|UnknownBits;
141 
142   if (UnknownBits.isNegative()) { // Sign bit is unknown
143     Min.setSignBit();
144     Max.clearSignBit();
145   }
146 }
147 
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
153                                                      APInt &Min, APInt &Max) {
154   assert(Known.getBitWidth() == Min.getBitWidth() &&
155          Known.getBitWidth() == Max.getBitWidth() &&
156          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157   APInt UnknownBits = ~(Known.Zero|Known.One);
158 
159   // The minimum value is when the unknown bits are all zeros.
160   Min = Known.One;
161   // The maximum value is when the unknown bits are all ones.
162   Max = Known.One|UnknownBits;
163 }
164 
165 /// This is called when we see this pattern:
166 ///   cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
170 ///
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
174                                                         GlobalVariable *GV,
175                                                         CmpInst &ICI,
176                                                         ConstantInt *AndCst) {
177   Constant *Init = GV->getInitializer();
178   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
179     return nullptr;
180 
181   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
182   // Don't blow up on huge arrays.
183   if (ArrayElementCount > MaxArraySizeForCombine)
184     return nullptr;
185 
186   // There are many forms of this optimization we can handle, for now, just do
187   // the simple index into a single-dimensional array.
188   //
189   // Require: GEP GV, 0, i {{, constant indices}}
190   if (GEP->getNumOperands() < 3 ||
191       !isa<ConstantInt>(GEP->getOperand(1)) ||
192       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
193       isa<Constant>(GEP->getOperand(2)))
194     return nullptr;
195 
196   // Check that indices after the variable are constants and in-range for the
197   // type they index.  Collect the indices.  This is typically for arrays of
198   // structs.
199   SmallVector<unsigned, 4> LaterIndices;
200 
201   Type *EltTy = Init->getType()->getArrayElementType();
202   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
203     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
204     if (!Idx) return nullptr;  // Variable index.
205 
206     uint64_t IdxVal = Idx->getZExtValue();
207     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
208 
209     if (StructType *STy = dyn_cast<StructType>(EltTy))
210       EltTy = STy->getElementType(IdxVal);
211     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
212       if (IdxVal >= ATy->getNumElements()) return nullptr;
213       EltTy = ATy->getElementType();
214     } else {
215       return nullptr; // Unknown type.
216     }
217 
218     LaterIndices.push_back(IdxVal);
219   }
220 
221   enum { Overdefined = -3, Undefined = -2 };
222 
223   // Variables for our state machines.
224 
225   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
228   // undefined, otherwise set to the first true element.  SecondTrueElement is
229   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
231 
232   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233   // form "i != 47 & i != 87".  Same state transitions as for true elements.
234   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
235 
236   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237   /// define a state machine that triggers for ranges of values that the index
238   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
239   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240   /// index in the range (inclusive).  We use -2 for undefined here because we
241   /// use relative comparisons and don't want 0-1 to match -1.
242   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
243 
244   // MagicBitvector - This is a magic bitvector where we set a bit if the
245   // comparison is true for element 'i'.  If there are 64 elements or less in
246   // the array, this will fully represent all the comparison results.
247   uint64_t MagicBitvector = 0;
248 
249   // Scan the array and see if one of our patterns matches.
250   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
251   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
252     Constant *Elt = Init->getAggregateElement(i);
253     if (!Elt) return nullptr;
254 
255     // If this is indexing an array of structures, get the structure element.
256     if (!LaterIndices.empty())
257       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
258 
259     // If the element is masked, handle it.
260     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
261 
262     // Find out if the comparison would be true or false for the i'th element.
263     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
264                                                   CompareRHS, DL, &TLI);
265     // If the result is undef for this element, ignore it.
266     if (isa<UndefValue>(C)) {
267       // Extend range state machines to cover this element in case there is an
268       // undef in the middle of the range.
269       if (TrueRangeEnd == (int)i-1)
270         TrueRangeEnd = i;
271       if (FalseRangeEnd == (int)i-1)
272         FalseRangeEnd = i;
273       continue;
274     }
275 
276     // If we can't compute the result for any of the elements, we have to give
277     // up evaluating the entire conditional.
278     if (!isa<ConstantInt>(C)) return nullptr;
279 
280     // Otherwise, we know if the comparison is true or false for this element,
281     // update our state machines.
282     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
283 
284     // State machine for single/double/range index comparison.
285     if (IsTrueForElt) {
286       // Update the TrueElement state machine.
287       if (FirstTrueElement == Undefined)
288         FirstTrueElement = TrueRangeEnd = i;  // First true element.
289       else {
290         // Update double-compare state machine.
291         if (SecondTrueElement == Undefined)
292           SecondTrueElement = i;
293         else
294           SecondTrueElement = Overdefined;
295 
296         // Update range state machine.
297         if (TrueRangeEnd == (int)i-1)
298           TrueRangeEnd = i;
299         else
300           TrueRangeEnd = Overdefined;
301       }
302     } else {
303       // Update the FalseElement state machine.
304       if (FirstFalseElement == Undefined)
305         FirstFalseElement = FalseRangeEnd = i; // First false element.
306       else {
307         // Update double-compare state machine.
308         if (SecondFalseElement == Undefined)
309           SecondFalseElement = i;
310         else
311           SecondFalseElement = Overdefined;
312 
313         // Update range state machine.
314         if (FalseRangeEnd == (int)i-1)
315           FalseRangeEnd = i;
316         else
317           FalseRangeEnd = Overdefined;
318       }
319     }
320 
321     // If this element is in range, update our magic bitvector.
322     if (i < 64 && IsTrueForElt)
323       MagicBitvector |= 1ULL << i;
324 
325     // If all of our states become overdefined, bail out early.  Since the
326     // predicate is expensive, only check it every 8 elements.  This is only
327     // really useful for really huge arrays.
328     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
329         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
330         FalseRangeEnd == Overdefined)
331       return nullptr;
332   }
333 
334   // Now that we've scanned the entire array, emit our new comparison(s).  We
335   // order the state machines in complexity of the generated code.
336   Value *Idx = GEP->getOperand(2);
337 
338   // If the index is larger than the pointer size of the target, truncate the
339   // index down like the GEP would do implicitly.  We don't have to do this for
340   // an inbounds GEP because the index can't be out of range.
341   if (!GEP->isInBounds()) {
342     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
343     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
344     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
345       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
346   }
347 
348   // If the comparison is only true for one or two elements, emit direct
349   // comparisons.
350   if (SecondTrueElement != Overdefined) {
351     // None true -> false.
352     if (FirstTrueElement == Undefined)
353       return replaceInstUsesWith(ICI, Builder.getFalse());
354 
355     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
356 
357     // True for one element -> 'i == 47'.
358     if (SecondTrueElement == Undefined)
359       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
360 
361     // True for two elements -> 'i == 47 | i == 72'.
362     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
363     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
364     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
365     return BinaryOperator::CreateOr(C1, C2);
366   }
367 
368   // If the comparison is only false for one or two elements, emit direct
369   // comparisons.
370   if (SecondFalseElement != Overdefined) {
371     // None false -> true.
372     if (FirstFalseElement == Undefined)
373       return replaceInstUsesWith(ICI, Builder.getTrue());
374 
375     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
376 
377     // False for one element -> 'i != 47'.
378     if (SecondFalseElement == Undefined)
379       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
380 
381     // False for two elements -> 'i != 47 & i != 72'.
382     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
383     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
384     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
385     return BinaryOperator::CreateAnd(C1, C2);
386   }
387 
388   // If the comparison can be replaced with a range comparison for the elements
389   // where it is true, emit the range check.
390   if (TrueRangeEnd != Overdefined) {
391     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
392 
393     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394     if (FirstTrueElement) {
395       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
396       Idx = Builder.CreateAdd(Idx, Offs);
397     }
398 
399     Value *End = ConstantInt::get(Idx->getType(),
400                                   TrueRangeEnd-FirstTrueElement+1);
401     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
402   }
403 
404   // False range check.
405   if (FalseRangeEnd != Overdefined) {
406     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
407     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408     if (FirstFalseElement) {
409       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
410       Idx = Builder.CreateAdd(Idx, Offs);
411     }
412 
413     Value *End = ConstantInt::get(Idx->getType(),
414                                   FalseRangeEnd-FirstFalseElement);
415     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
416   }
417 
418   // If a magic bitvector captures the entire comparison state
419   // of this load, replace it with computation that does:
420   //   ((magic_cst >> i) & 1) != 0
421   {
422     Type *Ty = nullptr;
423 
424     // Look for an appropriate type:
425     // - The type of Idx if the magic fits
426     // - The smallest fitting legal type
427     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
428       Ty = Idx->getType();
429     else
430       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
431 
432     if (Ty) {
433       Value *V = Builder.CreateIntCast(Idx, Ty, false);
434       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
435       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
436       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
437     }
438   }
439 
440   return nullptr;
441 }
442 
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
450 ///
451 /// If we can't emit an optimized form for this expression, this returns null.
452 ///
453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
454                                           const DataLayout &DL) {
455   gep_type_iterator GTI = gep_type_begin(GEP);
456 
457   // Check to see if this gep only has a single variable index.  If so, and if
458   // any constant indices are a multiple of its scale, then we can compute this
459   // in terms of the scale of the variable index.  For example, if the GEP
460   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461   // because the expression will cross zero at the same point.
462   unsigned i, e = GEP->getNumOperands();
463   int64_t Offset = 0;
464   for (i = 1; i != e; ++i, ++GTI) {
465     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
466       // Compute the aggregate offset of constant indices.
467       if (CI->isZero()) continue;
468 
469       // Handle a struct index, which adds its field offset to the pointer.
470       if (StructType *STy = GTI.getStructTypeOrNull()) {
471         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
472       } else {
473         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
474         Offset += Size*CI->getSExtValue();
475       }
476     } else {
477       // Found our variable index.
478       break;
479     }
480   }
481 
482   // If there are no variable indices, we must have a constant offset, just
483   // evaluate it the general way.
484   if (i == e) return nullptr;
485 
486   Value *VariableIdx = GEP->getOperand(i);
487   // Determine the scale factor of the variable element.  For example, this is
488   // 4 if the variable index is into an array of i32.
489   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
490 
491   // Verify that there are no other variable indices.  If so, emit the hard way.
492   for (++i, ++GTI; i != e; ++i, ++GTI) {
493     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
494     if (!CI) return nullptr;
495 
496     // Compute the aggregate offset of constant indices.
497     if (CI->isZero()) continue;
498 
499     // Handle a struct index, which adds its field offset to the pointer.
500     if (StructType *STy = GTI.getStructTypeOrNull()) {
501       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
502     } else {
503       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
504       Offset += Size*CI->getSExtValue();
505     }
506   }
507 
508   // Okay, we know we have a single variable index, which must be a
509   // pointer/array/vector index.  If there is no offset, life is simple, return
510   // the index.
511   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
512   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
513   if (Offset == 0) {
514     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
515     // we don't need to bother extending: the extension won't affect where the
516     // computation crosses zero.
517     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
518       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
519     }
520     return VariableIdx;
521   }
522 
523   // Otherwise, there is an index.  The computation we will do will be modulo
524   // the pointer size.
525   Offset = SignExtend64(Offset, IntPtrWidth);
526   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
527 
528   // To do this transformation, any constant index must be a multiple of the
529   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
530   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
531   // multiple of the variable scale.
532   int64_t NewOffs = Offset / (int64_t)VariableScale;
533   if (Offset != NewOffs*(int64_t)VariableScale)
534     return nullptr;
535 
536   // Okay, we can do this evaluation.  Start by converting the index to intptr.
537   if (VariableIdx->getType() != IntPtrTy)
538     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
539                                             true /*Signed*/);
540   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
541   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
542 }
543 
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
548                                   const DataLayout &DL,
549                                   SetVector<Value *> &Explored) {
550   SmallVector<Value *, 16> WorkList(1, Start);
551   Explored.insert(Base);
552 
553   // The following traversal gives us an order which can be used
554   // when doing the final transformation. Since in the final
555   // transformation we create the PHI replacement instructions first,
556   // we don't have to get them in any particular order.
557   //
558   // However, for other instructions we will have to traverse the
559   // operands of an instruction first, which means that we have to
560   // do a post-order traversal.
561   while (!WorkList.empty()) {
562     SetVector<PHINode *> PHIs;
563 
564     while (!WorkList.empty()) {
565       if (Explored.size() >= 100)
566         return false;
567 
568       Value *V = WorkList.back();
569 
570       if (Explored.count(V) != 0) {
571         WorkList.pop_back();
572         continue;
573       }
574 
575       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
576           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
577         // We've found some value that we can't explore which is different from
578         // the base. Therefore we can't do this transformation.
579         return false;
580 
581       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
582         auto *CI = dyn_cast<CastInst>(V);
583         if (!CI->isNoopCast(DL))
584           return false;
585 
586         if (Explored.count(CI->getOperand(0)) == 0)
587           WorkList.push_back(CI->getOperand(0));
588       }
589 
590       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
591         // We're limiting the GEP to having one index. This will preserve
592         // the original pointer type. We could handle more cases in the
593         // future.
594         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
595             GEP->getType() != Start->getType())
596           return false;
597 
598         if (Explored.count(GEP->getOperand(0)) == 0)
599           WorkList.push_back(GEP->getOperand(0));
600       }
601 
602       if (WorkList.back() == V) {
603         WorkList.pop_back();
604         // We've finished visiting this node, mark it as such.
605         Explored.insert(V);
606       }
607 
608       if (auto *PN = dyn_cast<PHINode>(V)) {
609         // We cannot transform PHIs on unsplittable basic blocks.
610         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
611           return false;
612         Explored.insert(PN);
613         PHIs.insert(PN);
614       }
615     }
616 
617     // Explore the PHI nodes further.
618     for (auto *PN : PHIs)
619       for (Value *Op : PN->incoming_values())
620         if (Explored.count(Op) == 0)
621           WorkList.push_back(Op);
622   }
623 
624   // Make sure that we can do this. Since we can't insert GEPs in a basic
625   // block before a PHI node, we can't easily do this transformation if
626   // we have PHI node users of transformed instructions.
627   for (Value *Val : Explored) {
628     for (Value *Use : Val->uses()) {
629 
630       auto *PHI = dyn_cast<PHINode>(Use);
631       auto *Inst = dyn_cast<Instruction>(Val);
632 
633       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
634           Explored.count(PHI) == 0)
635         continue;
636 
637       if (PHI->getParent() == Inst->getParent())
638         return false;
639     }
640   }
641   return true;
642 }
643 
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
647                               bool Before = true) {
648   if (auto *PHI = dyn_cast<PHINode>(V)) {
649     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
650     return;
651   }
652   if (auto *I = dyn_cast<Instruction>(V)) {
653     if (!Before)
654       I = &*std::next(I->getIterator());
655     Builder.SetInsertPoint(I);
656     return;
657   }
658   if (auto *A = dyn_cast<Argument>(V)) {
659     // Set the insertion point in the entry block.
660     BasicBlock &Entry = A->getParent()->getEntryBlock();
661     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
662     return;
663   }
664   // Otherwise, this is a constant and we don't need to set a new
665   // insertion point.
666   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
667 }
668 
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
670 /// pointer.
671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
672                                  const DataLayout &DL,
673                                  SetVector<Value *> &Explored) {
674   // Perform all the substitutions. This is a bit tricky because we can
675   // have cycles in our use-def chains.
676   // 1. Create the PHI nodes without any incoming values.
677   // 2. Create all the other values.
678   // 3. Add the edges for the PHI nodes.
679   // 4. Emit GEPs to get the original pointers.
680   // 5. Remove the original instructions.
681   Type *IndexType = IntegerType::get(
682       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
683 
684   DenseMap<Value *, Value *> NewInsts;
685   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
686 
687   // Create the new PHI nodes, without adding any incoming values.
688   for (Value *Val : Explored) {
689     if (Val == Base)
690       continue;
691     // Create empty phi nodes. This avoids cyclic dependencies when creating
692     // the remaining instructions.
693     if (auto *PHI = dyn_cast<PHINode>(Val))
694       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
695                                       PHI->getName() + ".idx", PHI);
696   }
697   IRBuilder<> Builder(Base->getContext());
698 
699   // Create all the other instructions.
700   for (Value *Val : Explored) {
701 
702     if (NewInsts.find(Val) != NewInsts.end())
703       continue;
704 
705     if (auto *CI = dyn_cast<CastInst>(Val)) {
706       // Don't get rid of the intermediate variable here; the store can grow
707       // the map which will invalidate the reference to the input value.
708       Value *V = NewInsts[CI->getOperand(0)];
709       NewInsts[CI] = V;
710       continue;
711     }
712     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
713       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
714                                                   : GEP->getOperand(1);
715       setInsertionPoint(Builder, GEP);
716       // Indices might need to be sign extended. GEPs will magically do
717       // this, but we need to do it ourselves here.
718       if (Index->getType()->getScalarSizeInBits() !=
719           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
720         Index = Builder.CreateSExtOrTrunc(
721             Index, NewInsts[GEP->getOperand(0)]->getType(),
722             GEP->getOperand(0)->getName() + ".sext");
723       }
724 
725       auto *Op = NewInsts[GEP->getOperand(0)];
726       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
727         NewInsts[GEP] = Index;
728       else
729         NewInsts[GEP] = Builder.CreateNSWAdd(
730             Op, Index, GEP->getOperand(0)->getName() + ".add");
731       continue;
732     }
733     if (isa<PHINode>(Val))
734       continue;
735 
736     llvm_unreachable("Unexpected instruction type");
737   }
738 
739   // Add the incoming values to the PHI nodes.
740   for (Value *Val : Explored) {
741     if (Val == Base)
742       continue;
743     // All the instructions have been created, we can now add edges to the
744     // phi nodes.
745     if (auto *PHI = dyn_cast<PHINode>(Val)) {
746       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
747       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
748         Value *NewIncoming = PHI->getIncomingValue(I);
749 
750         if (NewInsts.find(NewIncoming) != NewInsts.end())
751           NewIncoming = NewInsts[NewIncoming];
752 
753         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
754       }
755     }
756   }
757 
758   for (Value *Val : Explored) {
759     if (Val == Base)
760       continue;
761 
762     // Depending on the type, for external users we have to emit
763     // a GEP or a GEP + ptrtoint.
764     setInsertionPoint(Builder, Val, false);
765 
766     // If required, create an inttoptr instruction for Base.
767     Value *NewBase = Base;
768     if (!Base->getType()->isPointerTy())
769       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
770                                                Start->getName() + "to.ptr");
771 
772     Value *GEP = Builder.CreateInBoundsGEP(
773         Start->getType()->getPointerElementType(), NewBase,
774         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
775 
776     if (!Val->getType()->isPointerTy()) {
777       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
778                                               Val->getName() + ".conv");
779       GEP = Cast;
780     }
781     Val->replaceAllUsesWith(GEP);
782   }
783 
784   return NewInsts[Start];
785 }
786 
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair<Value *, Value *>
791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
792   Type *IndexType = IntegerType::get(V->getContext(),
793                                      DL.getIndexTypeSizeInBits(V->getType()));
794 
795   Constant *Index = ConstantInt::getNullValue(IndexType);
796   while (true) {
797     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
798       // We accept only inbouds GEPs here to exclude the possibility of
799       // overflow.
800       if (!GEP->isInBounds())
801         break;
802       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
803           GEP->getType() == V->getType()) {
804         V = GEP->getOperand(0);
805         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
806         Index = ConstantExpr::getAdd(
807             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
808         continue;
809       }
810       break;
811     }
812     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
813       if (!CI->isNoopCast(DL))
814         break;
815       V = CI->getOperand(0);
816       continue;
817     }
818     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
819       if (!CI->isNoopCast(DL))
820         break;
821       V = CI->getOperand(0);
822       continue;
823     }
824     break;
825   }
826   return {V, Index};
827 }
828 
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
833                                               ICmpInst::Predicate Cond,
834                                               const DataLayout &DL) {
835   if (!GEPLHS->hasAllConstantIndices())
836     return nullptr;
837 
838   // Make sure the pointers have the same type.
839   if (GEPLHS->getType() != RHS->getType())
840     return nullptr;
841 
842   Value *PtrBase, *Index;
843   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
844 
845   // The set of nodes that will take part in this transformation.
846   SetVector<Value *> Nodes;
847 
848   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
849     return nullptr;
850 
851   // We know we can re-write this as
852   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
853   // Since we've only looked through inbouds GEPs we know that we
854   // can't have overflow on either side. We can therefore re-write
855   // this as:
856   //   OFFSET1 cmp OFFSET2
857   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
858 
859   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
860   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
861   // offset. Since Index is the offset of LHS to the base pointer, we will now
862   // compare the offsets instead of comparing the pointers.
863   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
864 }
865 
866 /// Fold comparisons between a GEP instruction and something else. At this point
867 /// we know that the GEP is on the LHS of the comparison.
868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
869                                        ICmpInst::Predicate Cond,
870                                        Instruction &I) {
871   // Don't transform signed compares of GEPs into index compares. Even if the
872   // GEP is inbounds, the final add of the base pointer can have signed overflow
873   // and would change the result of the icmp.
874   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
875   // the maximum signed value for the pointer type.
876   if (ICmpInst::isSigned(Cond))
877     return nullptr;
878 
879   // Look through bitcasts and addrspacecasts. We do not however want to remove
880   // 0 GEPs.
881   if (!isa<GetElementPtrInst>(RHS))
882     RHS = RHS->stripPointerCasts();
883 
884   Value *PtrBase = GEPLHS->getOperand(0);
885   if (PtrBase == RHS && GEPLHS->isInBounds()) {
886     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
887     // This transformation (ignoring the base and scales) is valid because we
888     // know pointers can't overflow since the gep is inbounds.  See if we can
889     // output an optimized form.
890     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
891 
892     // If not, synthesize the offset the hard way.
893     if (!Offset)
894       Offset = EmitGEPOffset(GEPLHS);
895     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
896                         Constant::getNullValue(Offset->getType()));
897   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
898     // If the base pointers are different, but the indices are the same, just
899     // compare the base pointer.
900     if (PtrBase != GEPRHS->getOperand(0)) {
901       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
902       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
903                         GEPRHS->getOperand(0)->getType();
904       if (IndicesTheSame)
905         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
906           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
907             IndicesTheSame = false;
908             break;
909           }
910 
911       // If all indices are the same, just compare the base pointers.
912       Type *BaseType = GEPLHS->getOperand(0)->getType();
913       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
914         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
915 
916       // If we're comparing GEPs with two base pointers that only differ in type
917       // and both GEPs have only constant indices or just one use, then fold
918       // the compare with the adjusted indices.
919       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
920           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
921           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
922           PtrBase->stripPointerCasts() ==
923               GEPRHS->getOperand(0)->stripPointerCasts()) {
924         Value *LOffset = EmitGEPOffset(GEPLHS);
925         Value *ROffset = EmitGEPOffset(GEPRHS);
926 
927         // If we looked through an addrspacecast between different sized address
928         // spaces, the LHS and RHS pointers are different sized
929         // integers. Truncate to the smaller one.
930         Type *LHSIndexTy = LOffset->getType();
931         Type *RHSIndexTy = ROffset->getType();
932         if (LHSIndexTy != RHSIndexTy) {
933           if (LHSIndexTy->getPrimitiveSizeInBits() <
934               RHSIndexTy->getPrimitiveSizeInBits()) {
935             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
936           } else
937             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
938         }
939 
940         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
941                                         LOffset, ROffset);
942         return replaceInstUsesWith(I, Cmp);
943       }
944 
945       // Otherwise, the base pointers are different and the indices are
946       // different. Try convert this to an indexed compare by looking through
947       // PHIs/casts.
948       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
949     }
950 
951     // If one of the GEPs has all zero indices, recurse.
952     if (GEPLHS->hasAllZeroIndices())
953       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
954                          ICmpInst::getSwappedPredicate(Cond), I);
955 
956     // If the other GEP has all zero indices, recurse.
957     if (GEPRHS->hasAllZeroIndices())
958       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
959 
960     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
961     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
962       // If the GEPs only differ by one index, compare it.
963       unsigned NumDifferences = 0;  // Keep track of # differences.
964       unsigned DiffOperand = 0;     // The operand that differs.
965       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
966         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
967           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
968                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
969             // Irreconcilable differences.
970             NumDifferences = 2;
971             break;
972           } else {
973             if (NumDifferences++) break;
974             DiffOperand = i;
975           }
976         }
977 
978       if (NumDifferences == 0)   // SAME GEP?
979         return replaceInstUsesWith(I, // No comparison is needed here.
980           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
981 
982       else if (NumDifferences == 1 && GEPsInBounds) {
983         Value *LHSV = GEPLHS->getOperand(DiffOperand);
984         Value *RHSV = GEPRHS->getOperand(DiffOperand);
985         // Make sure we do a signed comparison here.
986         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
987       }
988     }
989 
990     // Only lower this if the icmp is the only user of the GEP or if we expect
991     // the result to fold to a constant!
992     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
993         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
994       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
995       Value *L = EmitGEPOffset(GEPLHS);
996       Value *R = EmitGEPOffset(GEPRHS);
997       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
998     }
999   }
1000 
1001   // Try convert this to an indexed compare by looking through PHIs/casts as a
1002   // last resort.
1003   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1004 }
1005 
1006 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1007                                          const AllocaInst *Alloca,
1008                                          const Value *Other) {
1009   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1010 
1011   // It would be tempting to fold away comparisons between allocas and any
1012   // pointer not based on that alloca (e.g. an argument). However, even
1013   // though such pointers cannot alias, they can still compare equal.
1014   //
1015   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1016   // doesn't escape we can argue that it's impossible to guess its value, and we
1017   // can therefore act as if any such guesses are wrong.
1018   //
1019   // The code below checks that the alloca doesn't escape, and that it's only
1020   // used in a comparison once (the current instruction). The
1021   // single-comparison-use condition ensures that we're trivially folding all
1022   // comparisons against the alloca consistently, and avoids the risk of
1023   // erroneously folding a comparison of the pointer with itself.
1024 
1025   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1026 
1027   SmallVector<const Use *, 32> Worklist;
1028   for (const Use &U : Alloca->uses()) {
1029     if (Worklist.size() >= MaxIter)
1030       return nullptr;
1031     Worklist.push_back(&U);
1032   }
1033 
1034   unsigned NumCmps = 0;
1035   while (!Worklist.empty()) {
1036     assert(Worklist.size() <= MaxIter);
1037     const Use *U = Worklist.pop_back_val();
1038     const Value *V = U->getUser();
1039     --MaxIter;
1040 
1041     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1042         isa<SelectInst>(V)) {
1043       // Track the uses.
1044     } else if (isa<LoadInst>(V)) {
1045       // Loading from the pointer doesn't escape it.
1046       continue;
1047     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1048       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1049       if (SI->getValueOperand() == U->get())
1050         return nullptr;
1051       continue;
1052     } else if (isa<ICmpInst>(V)) {
1053       if (NumCmps++)
1054         return nullptr; // Found more than one cmp.
1055       continue;
1056     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1057       switch (Intrin->getIntrinsicID()) {
1058         // These intrinsics don't escape or compare the pointer. Memset is safe
1059         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1060         // we don't allow stores, so src cannot point to V.
1061         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1062         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1063           continue;
1064         default:
1065           return nullptr;
1066       }
1067     } else {
1068       return nullptr;
1069     }
1070     for (const Use &U : V->uses()) {
1071       if (Worklist.size() >= MaxIter)
1072         return nullptr;
1073       Worklist.push_back(&U);
1074     }
1075   }
1076 
1077   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1078   return replaceInstUsesWith(
1079       ICI,
1080       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1081 }
1082 
1083 /// Fold "icmp pred (X+C), X".
1084 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1085                                               ICmpInst::Predicate Pred) {
1086   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1087   // so the values can never be equal.  Similarly for all other "or equals"
1088   // operators.
1089   assert(!!C && "C should not be zero!");
1090 
1091   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1092   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1093   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1094   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1095     Constant *R = ConstantInt::get(X->getType(),
1096                                    APInt::getMaxValue(C.getBitWidth()) - C);
1097     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1098   }
1099 
1100   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1101   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1102   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1103   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1104     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1105                         ConstantInt::get(X->getType(), -C));
1106 
1107   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1108 
1109   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1110   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1111   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1112   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1113   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1114   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1115   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1116     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1117                         ConstantInt::get(X->getType(), SMax - C));
1118 
1119   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1120   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1121   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1122   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1123   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1124   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1125 
1126   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1127   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1128                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1129 }
1130 
1131 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1132 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1133 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1134 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1135                                                  const APInt &AP1,
1136                                                  const APInt &AP2) {
1137   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1138 
1139   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1140     if (I.getPredicate() == I.ICMP_NE)
1141       Pred = CmpInst::getInversePredicate(Pred);
1142     return new ICmpInst(Pred, LHS, RHS);
1143   };
1144 
1145   // Don't bother doing any work for cases which InstSimplify handles.
1146   if (AP2.isNullValue())
1147     return nullptr;
1148 
1149   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1150   if (IsAShr) {
1151     if (AP2.isAllOnesValue())
1152       return nullptr;
1153     if (AP2.isNegative() != AP1.isNegative())
1154       return nullptr;
1155     if (AP2.sgt(AP1))
1156       return nullptr;
1157   }
1158 
1159   if (!AP1)
1160     // 'A' must be large enough to shift out the highest set bit.
1161     return getICmp(I.ICMP_UGT, A,
1162                    ConstantInt::get(A->getType(), AP2.logBase2()));
1163 
1164   if (AP1 == AP2)
1165     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1166 
1167   int Shift;
1168   if (IsAShr && AP1.isNegative())
1169     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1170   else
1171     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1172 
1173   if (Shift > 0) {
1174     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1175       // There are multiple solutions if we are comparing against -1 and the LHS
1176       // of the ashr is not a power of two.
1177       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1178         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1179       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180     } else if (AP1 == AP2.lshr(Shift)) {
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     }
1183   }
1184 
1185   // Shifting const2 will never be equal to const1.
1186   // FIXME: This should always be handled by InstSimplify?
1187   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1188   return replaceInstUsesWith(I, TorF);
1189 }
1190 
1191 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1192 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1193 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1194                                                  const APInt &AP1,
1195                                                  const APInt &AP2) {
1196   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1197 
1198   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1199     if (I.getPredicate() == I.ICMP_NE)
1200       Pred = CmpInst::getInversePredicate(Pred);
1201     return new ICmpInst(Pred, LHS, RHS);
1202   };
1203 
1204   // Don't bother doing any work for cases which InstSimplify handles.
1205   if (AP2.isNullValue())
1206     return nullptr;
1207 
1208   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1209 
1210   if (!AP1 && AP2TrailingZeros != 0)
1211     return getICmp(
1212         I.ICMP_UGE, A,
1213         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1214 
1215   if (AP1 == AP2)
1216     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1217 
1218   // Get the distance between the lowest bits that are set.
1219   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1220 
1221   if (Shift > 0 && AP2.shl(Shift) == AP1)
1222     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1223 
1224   // Shifting const2 will never be equal to const1.
1225   // FIXME: This should always be handled by InstSimplify?
1226   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1227   return replaceInstUsesWith(I, TorF);
1228 }
1229 
1230 /// The caller has matched a pattern of the form:
1231 ///   I = icmp ugt (add (add A, B), CI2), CI1
1232 /// If this is of the form:
1233 ///   sum = a + b
1234 ///   if (sum+128 >u 255)
1235 /// Then replace it with llvm.sadd.with.overflow.i8.
1236 ///
1237 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1238                                           ConstantInt *CI2, ConstantInt *CI1,
1239                                           InstCombiner &IC) {
1240   // The transformation we're trying to do here is to transform this into an
1241   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1242   // with a narrower add, and discard the add-with-constant that is part of the
1243   // range check (if we can't eliminate it, this isn't profitable).
1244 
1245   // In order to eliminate the add-with-constant, the compare can be its only
1246   // use.
1247   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1248   if (!AddWithCst->hasOneUse())
1249     return nullptr;
1250 
1251   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1252   if (!CI2->getValue().isPowerOf2())
1253     return nullptr;
1254   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1255   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1256     return nullptr;
1257 
1258   // The width of the new add formed is 1 more than the bias.
1259   ++NewWidth;
1260 
1261   // Check to see that CI1 is an all-ones value with NewWidth bits.
1262   if (CI1->getBitWidth() == NewWidth ||
1263       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1264     return nullptr;
1265 
1266   // This is only really a signed overflow check if the inputs have been
1267   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1268   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1269   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1270   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1271       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1272     return nullptr;
1273 
1274   // In order to replace the original add with a narrower
1275   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1276   // and truncates that discard the high bits of the add.  Verify that this is
1277   // the case.
1278   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1279   for (User *U : OrigAdd->users()) {
1280     if (U == AddWithCst)
1281       continue;
1282 
1283     // Only accept truncates for now.  We would really like a nice recursive
1284     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1285     // chain to see which bits of a value are actually demanded.  If the
1286     // original add had another add which was then immediately truncated, we
1287     // could still do the transformation.
1288     TruncInst *TI = dyn_cast<TruncInst>(U);
1289     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1290       return nullptr;
1291   }
1292 
1293   // If the pattern matches, truncate the inputs to the narrower type and
1294   // use the sadd_with_overflow intrinsic to efficiently compute both the
1295   // result and the overflow bit.
1296   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1297   Function *F = Intrinsic::getDeclaration(
1298       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1299 
1300   InstCombiner::BuilderTy &Builder = IC.Builder;
1301 
1302   // Put the new code above the original add, in case there are any uses of the
1303   // add between the add and the compare.
1304   Builder.SetInsertPoint(OrigAdd);
1305 
1306   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1307   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1308   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1309   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1310   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1311 
1312   // The inner add was the result of the narrow add, zero extended to the
1313   // wider type.  Replace it with the result computed by the intrinsic.
1314   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1315 
1316   // The original icmp gets replaced with the overflow value.
1317   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1318 }
1319 
1320 // Handle  icmp pred X, 0
1321 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1322   CmpInst::Predicate Pred = Cmp.getPredicate();
1323   if (!match(Cmp.getOperand(1), m_Zero()))
1324     return nullptr;
1325 
1326   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1327   if (Pred == ICmpInst::ICMP_SGT) {
1328     Value *A, *B;
1329     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1330     if (SPR.Flavor == SPF_SMIN) {
1331       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1332         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1333       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1334         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1335     }
1336   }
1337 
1338   // Given:
1339   //   icmp eq/ne (urem %x, %y), 0
1340   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1341   //   icmp eq/ne %x, 0
1342   Value *X, *Y;
1343   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1344       ICmpInst::isEquality(Pred)) {
1345     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1346     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1347     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1348       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1349   }
1350 
1351   return nullptr;
1352 }
1353 
1354 /// Fold icmp Pred X, C.
1355 /// TODO: This code structure does not make sense. The saturating add fold
1356 /// should be moved to some other helper and extended as noted below (it is also
1357 /// possible that code has been made unnecessary - do we canonicalize IR to
1358 /// overflow/saturating intrinsics or not?).
1359 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1360   // Match the following pattern, which is a common idiom when writing
1361   // overflow-safe integer arithmetic functions. The source performs an addition
1362   // in wider type and explicitly checks for overflow using comparisons against
1363   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1364   //
1365   // TODO: This could probably be generalized to handle other overflow-safe
1366   // operations if we worked out the formulas to compute the appropriate magic
1367   // constants.
1368   //
1369   // sum = a + b
1370   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1371   CmpInst::Predicate Pred = Cmp.getPredicate();
1372   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1373   Value *A, *B;
1374   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1375   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1376       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1377     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1378       return Res;
1379 
1380   return nullptr;
1381 }
1382 
1383 /// Canonicalize icmp instructions based on dominating conditions.
1384 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1385   // This is a cheap/incomplete check for dominance - just match a single
1386   // predecessor with a conditional branch.
1387   BasicBlock *CmpBB = Cmp.getParent();
1388   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1389   if (!DomBB)
1390     return nullptr;
1391 
1392   Value *DomCond;
1393   BasicBlock *TrueBB, *FalseBB;
1394   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1395     return nullptr;
1396 
1397   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1398          "Predecessor block does not point to successor?");
1399 
1400   // The branch should get simplified. Don't bother simplifying this condition.
1401   if (TrueBB == FalseBB)
1402     return nullptr;
1403 
1404   // Try to simplify this compare to T/F based on the dominating condition.
1405   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1406   if (Imp)
1407     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1408 
1409   CmpInst::Predicate Pred = Cmp.getPredicate();
1410   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1411   ICmpInst::Predicate DomPred;
1412   const APInt *C, *DomC;
1413   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1414       match(Y, m_APInt(C))) {
1415     // We have 2 compares of a variable with constants. Calculate the constant
1416     // ranges of those compares to see if we can transform the 2nd compare:
1417     // DomBB:
1418     //   DomCond = icmp DomPred X, DomC
1419     //   br DomCond, CmpBB, FalseBB
1420     // CmpBB:
1421     //   Cmp = icmp Pred X, C
1422     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1423     ConstantRange DominatingCR =
1424         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1425                           : ConstantRange::makeExactICmpRegion(
1426                                 CmpInst::getInversePredicate(DomPred), *DomC);
1427     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1428     ConstantRange Difference = DominatingCR.difference(CR);
1429     if (Intersection.isEmptySet())
1430       return replaceInstUsesWith(Cmp, Builder.getFalse());
1431     if (Difference.isEmptySet())
1432       return replaceInstUsesWith(Cmp, Builder.getTrue());
1433 
1434     // Canonicalizing a sign bit comparison that gets used in a branch,
1435     // pessimizes codegen by generating branch on zero instruction instead
1436     // of a test and branch. So we avoid canonicalizing in such situations
1437     // because test and branch instruction has better branch displacement
1438     // than compare and branch instruction.
1439     bool UnusedBit;
1440     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1441     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1442       return nullptr;
1443 
1444     if (const APInt *EqC = Intersection.getSingleElement())
1445       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1446     if (const APInt *NeC = Difference.getSingleElement())
1447       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1448   }
1449 
1450   return nullptr;
1451 }
1452 
1453 /// Fold icmp (trunc X, Y), C.
1454 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1455                                                  TruncInst *Trunc,
1456                                                  const APInt &C) {
1457   ICmpInst::Predicate Pred = Cmp.getPredicate();
1458   Value *X = Trunc->getOperand(0);
1459   if (C.isOneValue() && C.getBitWidth() > 1) {
1460     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1461     Value *V = nullptr;
1462     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1463       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1464                           ConstantInt::get(V->getType(), 1));
1465   }
1466 
1467   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1468     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1469     // of the high bits truncated out of x are known.
1470     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1471              SrcBits = X->getType()->getScalarSizeInBits();
1472     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1473 
1474     // If all the high bits are known, we can do this xform.
1475     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1476       // Pull in the high bits from known-ones set.
1477       APInt NewRHS = C.zext(SrcBits);
1478       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1479       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1480     }
1481   }
1482 
1483   return nullptr;
1484 }
1485 
1486 /// Fold icmp (xor X, Y), C.
1487 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1488                                                BinaryOperator *Xor,
1489                                                const APInt &C) {
1490   Value *X = Xor->getOperand(0);
1491   Value *Y = Xor->getOperand(1);
1492   const APInt *XorC;
1493   if (!match(Y, m_APInt(XorC)))
1494     return nullptr;
1495 
1496   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1497   // fold the xor.
1498   ICmpInst::Predicate Pred = Cmp.getPredicate();
1499   bool TrueIfSigned = false;
1500   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1501 
1502     // If the sign bit of the XorCst is not set, there is no change to
1503     // the operation, just stop using the Xor.
1504     if (!XorC->isNegative()) {
1505       Cmp.setOperand(0, X);
1506       Worklist.Add(Xor);
1507       return &Cmp;
1508     }
1509 
1510     // Emit the opposite comparison.
1511     if (TrueIfSigned)
1512       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1513                           ConstantInt::getAllOnesValue(X->getType()));
1514     else
1515       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1516                           ConstantInt::getNullValue(X->getType()));
1517   }
1518 
1519   if (Xor->hasOneUse()) {
1520     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1521     if (!Cmp.isEquality() && XorC->isSignMask()) {
1522       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1523                             : Cmp.getSignedPredicate();
1524       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1525     }
1526 
1527     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1528     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1529       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1530                             : Cmp.getSignedPredicate();
1531       Pred = Cmp.getSwappedPredicate(Pred);
1532       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1533     }
1534   }
1535 
1536   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1537   if (Pred == ICmpInst::ICMP_UGT) {
1538     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1539     if (*XorC == ~C && (C + 1).isPowerOf2())
1540       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1541     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1542     if (*XorC == C && (C + 1).isPowerOf2())
1543       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1544   }
1545   if (Pred == ICmpInst::ICMP_ULT) {
1546     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1547     if (*XorC == -C && C.isPowerOf2())
1548       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1549                           ConstantInt::get(X->getType(), ~C));
1550     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1551     if (*XorC == C && (-C).isPowerOf2())
1552       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1553                           ConstantInt::get(X->getType(), ~C));
1554   }
1555   return nullptr;
1556 }
1557 
1558 /// Fold icmp (and (sh X, Y), C2), C1.
1559 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1560                                             const APInt &C1, const APInt &C2) {
1561   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1562   if (!Shift || !Shift->isShift())
1563     return nullptr;
1564 
1565   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1566   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1567   // code produced by the clang front-end, for bitfield access.
1568   // This seemingly simple opportunity to fold away a shift turns out to be
1569   // rather complicated. See PR17827 for details.
1570   unsigned ShiftOpcode = Shift->getOpcode();
1571   bool IsShl = ShiftOpcode == Instruction::Shl;
1572   const APInt *C3;
1573   if (match(Shift->getOperand(1), m_APInt(C3))) {
1574     bool CanFold = false;
1575     if (ShiftOpcode == Instruction::Shl) {
1576       // For a left shift, we can fold if the comparison is not signed. We can
1577       // also fold a signed comparison if the mask value and comparison value
1578       // are not negative. These constraints may not be obvious, but we can
1579       // prove that they are correct using an SMT solver.
1580       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1581         CanFold = true;
1582     } else {
1583       bool IsAshr = ShiftOpcode == Instruction::AShr;
1584       // For a logical right shift, we can fold if the comparison is not signed.
1585       // We can also fold a signed comparison if the shifted mask value and the
1586       // shifted comparison value are not negative. These constraints may not be
1587       // obvious, but we can prove that they are correct using an SMT solver.
1588       // For an arithmetic shift right we can do the same, if we ensure
1589       // the And doesn't use any bits being shifted in. Normally these would
1590       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1591       // additional user.
1592       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1593         if (!Cmp.isSigned() ||
1594             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1595           CanFold = true;
1596       }
1597     }
1598 
1599     if (CanFold) {
1600       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1601       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1602       // Check to see if we are shifting out any of the bits being compared.
1603       if (SameAsC1 != C1) {
1604         // If we shifted bits out, the fold is not going to work out. As a
1605         // special case, check to see if this means that the result is always
1606         // true or false now.
1607         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1608           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1609         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1610           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1611       } else {
1612         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1613         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1614         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1615         And->setOperand(0, Shift->getOperand(0));
1616         Worklist.Add(Shift); // Shift is dead.
1617         return &Cmp;
1618       }
1619     }
1620   }
1621 
1622   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1623   // preferable because it allows the C2 << Y expression to be hoisted out of a
1624   // loop if Y is invariant and X is not.
1625   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1626       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1627     // Compute C2 << Y.
1628     Value *NewShift =
1629         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1630               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1631 
1632     // Compute X & (C2 << Y).
1633     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1634     Cmp.setOperand(0, NewAnd);
1635     return &Cmp;
1636   }
1637 
1638   return nullptr;
1639 }
1640 
1641 /// Fold icmp (and X, C2), C1.
1642 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1643                                                  BinaryOperator *And,
1644                                                  const APInt &C1) {
1645   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1646 
1647   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1648   // TODO: We canonicalize to the longer form for scalars because we have
1649   // better analysis/folds for icmp, and codegen may be better with icmp.
1650   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1651       match(And->getOperand(1), m_One()))
1652     return new TruncInst(And->getOperand(0), Cmp.getType());
1653 
1654   const APInt *C2;
1655   Value *X;
1656   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1657     return nullptr;
1658 
1659   // Don't perform the following transforms if the AND has multiple uses
1660   if (!And->hasOneUse())
1661     return nullptr;
1662 
1663   if (Cmp.isEquality() && C1.isNullValue()) {
1664     // Restrict this fold to single-use 'and' (PR10267).
1665     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1666     if (C2->isSignMask()) {
1667       Constant *Zero = Constant::getNullValue(X->getType());
1668       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1669       return new ICmpInst(NewPred, X, Zero);
1670     }
1671 
1672     // Restrict this fold only for single-use 'and' (PR10267).
1673     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1674     if ((~(*C2) + 1).isPowerOf2()) {
1675       Constant *NegBOC =
1676           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1677       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1678       return new ICmpInst(NewPred, X, NegBOC);
1679     }
1680   }
1681 
1682   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1683   // the input width without changing the value produced, eliminate the cast:
1684   //
1685   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1686   //
1687   // We can do this transformation if the constants do not have their sign bits
1688   // set or if it is an equality comparison. Extending a relational comparison
1689   // when we're checking the sign bit would not work.
1690   Value *W;
1691   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1692       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1693     // TODO: Is this a good transform for vectors? Wider types may reduce
1694     // throughput. Should this transform be limited (even for scalars) by using
1695     // shouldChangeType()?
1696     if (!Cmp.getType()->isVectorTy()) {
1697       Type *WideType = W->getType();
1698       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1699       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1700       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1701       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1702       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1703     }
1704   }
1705 
1706   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1707     return I;
1708 
1709   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1710   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1711   //
1712   // iff pred isn't signed
1713   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1714       match(And->getOperand(1), m_One())) {
1715     Constant *One = cast<Constant>(And->getOperand(1));
1716     Value *Or = And->getOperand(0);
1717     Value *A, *B, *LShr;
1718     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1719         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1720       unsigned UsesRemoved = 0;
1721       if (And->hasOneUse())
1722         ++UsesRemoved;
1723       if (Or->hasOneUse())
1724         ++UsesRemoved;
1725       if (LShr->hasOneUse())
1726         ++UsesRemoved;
1727 
1728       // Compute A & ((1 << B) | 1)
1729       Value *NewOr = nullptr;
1730       if (auto *C = dyn_cast<Constant>(B)) {
1731         if (UsesRemoved >= 1)
1732           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1733       } else {
1734         if (UsesRemoved >= 3)
1735           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1736                                                      /*HasNUW=*/true),
1737                                    One, Or->getName());
1738       }
1739       if (NewOr) {
1740         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1741         Cmp.setOperand(0, NewAnd);
1742         return &Cmp;
1743       }
1744     }
1745   }
1746 
1747   return nullptr;
1748 }
1749 
1750 /// Fold icmp (and X, Y), C.
1751 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1752                                                BinaryOperator *And,
1753                                                const APInt &C) {
1754   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1755     return I;
1756 
1757   // TODO: These all require that Y is constant too, so refactor with the above.
1758 
1759   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1760   Value *X = And->getOperand(0);
1761   Value *Y = And->getOperand(1);
1762   if (auto *LI = dyn_cast<LoadInst>(X))
1763     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1764       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1765         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1766             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1767           ConstantInt *C2 = cast<ConstantInt>(Y);
1768           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1769             return Res;
1770         }
1771 
1772   if (!Cmp.isEquality())
1773     return nullptr;
1774 
1775   // X & -C == -C -> X >  u ~C
1776   // X & -C != -C -> X <= u ~C
1777   //   iff C is a power of 2
1778   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1779     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1780                                                           : CmpInst::ICMP_ULE;
1781     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1782   }
1783 
1784   // (X & C2) == 0 -> (trunc X) >= 0
1785   // (X & C2) != 0 -> (trunc X) <  0
1786   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1787   const APInt *C2;
1788   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1789     int32_t ExactLogBase2 = C2->exactLogBase2();
1790     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1791       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1792       if (And->getType()->isVectorTy())
1793         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1794       Value *Trunc = Builder.CreateTrunc(X, NTy);
1795       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1796                                                             : CmpInst::ICMP_SLT;
1797       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1798     }
1799   }
1800 
1801   return nullptr;
1802 }
1803 
1804 /// Fold icmp (or X, Y), C.
1805 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1806                                               const APInt &C) {
1807   ICmpInst::Predicate Pred = Cmp.getPredicate();
1808   if (C.isOneValue()) {
1809     // icmp slt signum(V) 1 --> icmp slt V, 1
1810     Value *V = nullptr;
1811     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1812       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1813                           ConstantInt::get(V->getType(), 1));
1814   }
1815 
1816   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1817   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1818     // X | C == C --> X <=u C
1819     // X | C != C --> X  >u C
1820     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1821     if ((C + 1).isPowerOf2()) {
1822       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1823       return new ICmpInst(Pred, OrOp0, OrOp1);
1824     }
1825     // More general: are all bits outside of a mask constant set or not set?
1826     // X | C == C --> (X & ~C) == 0
1827     // X | C != C --> (X & ~C) != 0
1828     if (Or->hasOneUse()) {
1829       Value *A = Builder.CreateAnd(OrOp0, ~C);
1830       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1831     }
1832   }
1833 
1834   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1835     return nullptr;
1836 
1837   Value *P, *Q;
1838   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1839     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1840     // -> and (icmp eq P, null), (icmp eq Q, null).
1841     Value *CmpP =
1842         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1843     Value *CmpQ =
1844         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1845     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1846     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1847   }
1848 
1849   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1850   // a shorter form that has more potential to be folded even further.
1851   Value *X1, *X2, *X3, *X4;
1852   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1853       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1854     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1855     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1856     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1857     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1858     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1859     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1860   }
1861 
1862   return nullptr;
1863 }
1864 
1865 /// Fold icmp (mul X, Y), C.
1866 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1867                                                BinaryOperator *Mul,
1868                                                const APInt &C) {
1869   const APInt *MulC;
1870   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1871     return nullptr;
1872 
1873   // If this is a test of the sign bit and the multiply is sign-preserving with
1874   // a constant operand, use the multiply LHS operand instead.
1875   ICmpInst::Predicate Pred = Cmp.getPredicate();
1876   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1877     if (MulC->isNegative())
1878       Pred = ICmpInst::getSwappedPredicate(Pred);
1879     return new ICmpInst(Pred, Mul->getOperand(0),
1880                         Constant::getNullValue(Mul->getType()));
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 /// Fold icmp (shl 1, Y), C.
1887 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1888                                    const APInt &C) {
1889   Value *Y;
1890   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1891     return nullptr;
1892 
1893   Type *ShiftType = Shl->getType();
1894   unsigned TypeBits = C.getBitWidth();
1895   bool CIsPowerOf2 = C.isPowerOf2();
1896   ICmpInst::Predicate Pred = Cmp.getPredicate();
1897   if (Cmp.isUnsigned()) {
1898     // (1 << Y) pred C -> Y pred Log2(C)
1899     if (!CIsPowerOf2) {
1900       // (1 << Y) <  30 -> Y <= 4
1901       // (1 << Y) <= 30 -> Y <= 4
1902       // (1 << Y) >= 30 -> Y >  4
1903       // (1 << Y) >  30 -> Y >  4
1904       if (Pred == ICmpInst::ICMP_ULT)
1905         Pred = ICmpInst::ICMP_ULE;
1906       else if (Pred == ICmpInst::ICMP_UGE)
1907         Pred = ICmpInst::ICMP_UGT;
1908     }
1909 
1910     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1911     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1912     unsigned CLog2 = C.logBase2();
1913     if (CLog2 == TypeBits - 1) {
1914       if (Pred == ICmpInst::ICMP_UGE)
1915         Pred = ICmpInst::ICMP_EQ;
1916       else if (Pred == ICmpInst::ICMP_ULT)
1917         Pred = ICmpInst::ICMP_NE;
1918     }
1919     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1920   } else if (Cmp.isSigned()) {
1921     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1922     if (C.isAllOnesValue()) {
1923       // (1 << Y) <= -1 -> Y == 31
1924       if (Pred == ICmpInst::ICMP_SLE)
1925         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1926 
1927       // (1 << Y) >  -1 -> Y != 31
1928       if (Pred == ICmpInst::ICMP_SGT)
1929         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1930     } else if (!C) {
1931       // (1 << Y) <  0 -> Y == 31
1932       // (1 << Y) <= 0 -> Y == 31
1933       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1934         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1935 
1936       // (1 << Y) >= 0 -> Y != 31
1937       // (1 << Y) >  0 -> Y != 31
1938       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1939         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1940     }
1941   } else if (Cmp.isEquality() && CIsPowerOf2) {
1942     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
1943   }
1944 
1945   return nullptr;
1946 }
1947 
1948 /// Fold icmp (shl X, Y), C.
1949 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1950                                                BinaryOperator *Shl,
1951                                                const APInt &C) {
1952   const APInt *ShiftVal;
1953   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1954     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
1955 
1956   const APInt *ShiftAmt;
1957   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1958     return foldICmpShlOne(Cmp, Shl, C);
1959 
1960   // Check that the shift amount is in range. If not, don't perform undefined
1961   // shifts. When the shift is visited, it will be simplified.
1962   unsigned TypeBits = C.getBitWidth();
1963   if (ShiftAmt->uge(TypeBits))
1964     return nullptr;
1965 
1966   ICmpInst::Predicate Pred = Cmp.getPredicate();
1967   Value *X = Shl->getOperand(0);
1968   Type *ShType = Shl->getType();
1969 
1970   // NSW guarantees that we are only shifting out sign bits from the high bits,
1971   // so we can ASHR the compare constant without needing a mask and eliminate
1972   // the shift.
1973   if (Shl->hasNoSignedWrap()) {
1974     if (Pred == ICmpInst::ICMP_SGT) {
1975       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1976       APInt ShiftedC = C.ashr(*ShiftAmt);
1977       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1978     }
1979     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1980         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
1981       APInt ShiftedC = C.ashr(*ShiftAmt);
1982       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1983     }
1984     if (Pred == ICmpInst::ICMP_SLT) {
1985       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1986       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1987       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1988       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1989       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
1990       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
1991       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1992     }
1993     // If this is a signed comparison to 0 and the shift is sign preserving,
1994     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1995     // do that if we're sure to not continue on in this function.
1996     if (isSignTest(Pred, C))
1997       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1998   }
1999 
2000   // NUW guarantees that we are only shifting out zero bits from the high bits,
2001   // so we can LSHR the compare constant without needing a mask and eliminate
2002   // the shift.
2003   if (Shl->hasNoUnsignedWrap()) {
2004     if (Pred == ICmpInst::ICMP_UGT) {
2005       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2006       APInt ShiftedC = C.lshr(*ShiftAmt);
2007       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2008     }
2009     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2010         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2011       APInt ShiftedC = C.lshr(*ShiftAmt);
2012       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2013     }
2014     if (Pred == ICmpInst::ICMP_ULT) {
2015       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2016       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2017       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2018       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2019       assert(C.ugt(0) && "ult 0 should have been eliminated");
2020       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2021       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2022     }
2023   }
2024 
2025   if (Cmp.isEquality() && Shl->hasOneUse()) {
2026     // Strength-reduce the shift into an 'and'.
2027     Constant *Mask = ConstantInt::get(
2028         ShType,
2029         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2030     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2031     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2032     return new ICmpInst(Pred, And, LShrC);
2033   }
2034 
2035   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2036   bool TrueIfSigned = false;
2037   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2038     // (X << 31) <s 0  --> (X & 1) != 0
2039     Constant *Mask = ConstantInt::get(
2040         ShType,
2041         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2042     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2043     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2044                         And, Constant::getNullValue(ShType));
2045   }
2046 
2047   // Simplify 'shl' inequality test into 'and' equality test.
2048   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2049     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2050     if ((C + 1).isPowerOf2() &&
2051         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2052       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2053       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2054                                                      : ICmpInst::ICMP_NE,
2055                           And, Constant::getNullValue(ShType));
2056     }
2057     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2058     if (C.isPowerOf2() &&
2059         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2060       Value *And =
2061           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2062       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2063                                                      : ICmpInst::ICMP_NE,
2064                           And, Constant::getNullValue(ShType));
2065     }
2066   }
2067 
2068   // Transform (icmp pred iM (shl iM %v, N), C)
2069   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2070   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2071   // This enables us to get rid of the shift in favor of a trunc that may be
2072   // free on the target. It has the additional benefit of comparing to a
2073   // smaller constant that may be more target-friendly.
2074   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2075   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2076       DL.isLegalInteger(TypeBits - Amt)) {
2077     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2078     if (ShType->isVectorTy())
2079       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2080     Constant *NewC =
2081         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2082     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2083   }
2084 
2085   return nullptr;
2086 }
2087 
2088 /// Fold icmp ({al}shr X, Y), C.
2089 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2090                                                BinaryOperator *Shr,
2091                                                const APInt &C) {
2092   // An exact shr only shifts out zero bits, so:
2093   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2094   Value *X = Shr->getOperand(0);
2095   CmpInst::Predicate Pred = Cmp.getPredicate();
2096   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2097       C.isNullValue())
2098     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2099 
2100   const APInt *ShiftVal;
2101   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2102     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2103 
2104   const APInt *ShiftAmt;
2105   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2106     return nullptr;
2107 
2108   // Check that the shift amount is in range. If not, don't perform undefined
2109   // shifts. When the shift is visited it will be simplified.
2110   unsigned TypeBits = C.getBitWidth();
2111   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2112   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2113     return nullptr;
2114 
2115   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2116   bool IsExact = Shr->isExact();
2117   Type *ShrTy = Shr->getType();
2118   // TODO: If we could guarantee that InstSimplify would handle all of the
2119   // constant-value-based preconditions in the folds below, then we could assert
2120   // those conditions rather than checking them. This is difficult because of
2121   // undef/poison (PR34838).
2122   if (IsAShr) {
2123     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2124       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2125       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2126       APInt ShiftedC = C.shl(ShAmtVal);
2127       if (ShiftedC.ashr(ShAmtVal) == C)
2128         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2129     }
2130     if (Pred == CmpInst::ICMP_SGT) {
2131       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2132       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2133       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2134           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2135         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2136     }
2137   } else {
2138     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2139       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2140       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2141       APInt ShiftedC = C.shl(ShAmtVal);
2142       if (ShiftedC.lshr(ShAmtVal) == C)
2143         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2144     }
2145     if (Pred == CmpInst::ICMP_UGT) {
2146       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2147       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2148       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2149         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2150     }
2151   }
2152 
2153   if (!Cmp.isEquality())
2154     return nullptr;
2155 
2156   // Handle equality comparisons of shift-by-constant.
2157 
2158   // If the comparison constant changes with the shift, the comparison cannot
2159   // succeed (bits of the comparison constant cannot match the shifted value).
2160   // This should be known by InstSimplify and already be folded to true/false.
2161   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2162           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2163          "Expected icmp+shr simplify did not occur.");
2164 
2165   // If the bits shifted out are known zero, compare the unshifted value:
2166   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2167   if (Shr->isExact())
2168     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2169 
2170   if (Shr->hasOneUse()) {
2171     // Canonicalize the shift into an 'and':
2172     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2173     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2174     Constant *Mask = ConstantInt::get(ShrTy, Val);
2175     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2176     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2177   }
2178 
2179   return nullptr;
2180 }
2181 
2182 /// Fold icmp (udiv X, Y), C.
2183 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2184                                                 BinaryOperator *UDiv,
2185                                                 const APInt &C) {
2186   const APInt *C2;
2187   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2188     return nullptr;
2189 
2190   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2191 
2192   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2193   Value *Y = UDiv->getOperand(1);
2194   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2195     assert(!C.isMaxValue() &&
2196            "icmp ugt X, UINT_MAX should have been simplified already.");
2197     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2198                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2199   }
2200 
2201   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2202   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2203     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2204     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2205                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2206   }
2207 
2208   return nullptr;
2209 }
2210 
2211 /// Fold icmp ({su}div X, Y), C.
2212 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2213                                                BinaryOperator *Div,
2214                                                const APInt &C) {
2215   // Fold: icmp pred ([us]div X, C2), C -> range test
2216   // Fold this div into the comparison, producing a range check.
2217   // Determine, based on the divide type, what the range is being
2218   // checked.  If there is an overflow on the low or high side, remember
2219   // it, otherwise compute the range [low, hi) bounding the new value.
2220   // See: InsertRangeTest above for the kinds of replacements possible.
2221   const APInt *C2;
2222   if (!match(Div->getOperand(1), m_APInt(C2)))
2223     return nullptr;
2224 
2225   // FIXME: If the operand types don't match the type of the divide
2226   // then don't attempt this transform. The code below doesn't have the
2227   // logic to deal with a signed divide and an unsigned compare (and
2228   // vice versa). This is because (x /s C2) <s C  produces different
2229   // results than (x /s C2) <u C or (x /u C2) <s C or even
2230   // (x /u C2) <u C.  Simply casting the operands and result won't
2231   // work. :(  The if statement below tests that condition and bails
2232   // if it finds it.
2233   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2234   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2235     return nullptr;
2236 
2237   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2238   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2239   // division-by-constant cases should be present, we can not assert that they
2240   // have happened before we reach this icmp instruction.
2241   if (C2->isNullValue() || C2->isOneValue() ||
2242       (DivIsSigned && C2->isAllOnesValue()))
2243     return nullptr;
2244 
2245   // Compute Prod = C * C2. We are essentially solving an equation of
2246   // form X / C2 = C. We solve for X by multiplying C2 and C.
2247   // By solving for X, we can turn this into a range check instead of computing
2248   // a divide.
2249   APInt Prod = C * *C2;
2250 
2251   // Determine if the product overflows by seeing if the product is not equal to
2252   // the divide. Make sure we do the same kind of divide as in the LHS
2253   // instruction that we're folding.
2254   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2255 
2256   ICmpInst::Predicate Pred = Cmp.getPredicate();
2257 
2258   // If the division is known to be exact, then there is no remainder from the
2259   // divide, so the covered range size is unit, otherwise it is the divisor.
2260   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2261 
2262   // Figure out the interval that is being checked.  For example, a comparison
2263   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2264   // Compute this interval based on the constants involved and the signedness of
2265   // the compare/divide.  This computes a half-open interval, keeping track of
2266   // whether either value in the interval overflows.  After analysis each
2267   // overflow variable is set to 0 if it's corresponding bound variable is valid
2268   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2269   int LoOverflow = 0, HiOverflow = 0;
2270   APInt LoBound, HiBound;
2271 
2272   if (!DivIsSigned) {  // udiv
2273     // e.g. X/5 op 3  --> [15, 20)
2274     LoBound = Prod;
2275     HiOverflow = LoOverflow = ProdOV;
2276     if (!HiOverflow) {
2277       // If this is not an exact divide, then many values in the range collapse
2278       // to the same result value.
2279       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2280     }
2281   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2282     if (C.isNullValue()) {       // (X / pos) op 0
2283       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2284       LoBound = -(RangeSize - 1);
2285       HiBound = RangeSize;
2286     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2287       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2288       HiOverflow = LoOverflow = ProdOV;
2289       if (!HiOverflow)
2290         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2291     } else {                       // (X / pos) op neg
2292       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2293       HiBound = Prod + 1;
2294       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2295       if (!LoOverflow) {
2296         APInt DivNeg = -RangeSize;
2297         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2298       }
2299     }
2300   } else if (C2->isNegative()) { // Divisor is < 0.
2301     if (Div->isExact())
2302       RangeSize.negate();
2303     if (C.isNullValue()) { // (X / neg) op 0
2304       // e.g. X/-5 op 0  --> [-4, 5)
2305       LoBound = RangeSize + 1;
2306       HiBound = -RangeSize;
2307       if (HiBound == *C2) {        // -INTMIN = INTMIN
2308         HiOverflow = 1;            // [INTMIN+1, overflow)
2309         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2310       }
2311     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2312       // e.g. X/-5 op 3  --> [-19, -14)
2313       HiBound = Prod + 1;
2314       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2315       if (!LoOverflow)
2316         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2317     } else {                       // (X / neg) op neg
2318       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2319       LoOverflow = HiOverflow = ProdOV;
2320       if (!HiOverflow)
2321         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2322     }
2323 
2324     // Dividing by a negative swaps the condition.  LT <-> GT
2325     Pred = ICmpInst::getSwappedPredicate(Pred);
2326   }
2327 
2328   Value *X = Div->getOperand(0);
2329   switch (Pred) {
2330     default: llvm_unreachable("Unhandled icmp opcode!");
2331     case ICmpInst::ICMP_EQ:
2332       if (LoOverflow && HiOverflow)
2333         return replaceInstUsesWith(Cmp, Builder.getFalse());
2334       if (HiOverflow)
2335         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2336                             ICmpInst::ICMP_UGE, X,
2337                             ConstantInt::get(Div->getType(), LoBound));
2338       if (LoOverflow)
2339         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2340                             ICmpInst::ICMP_ULT, X,
2341                             ConstantInt::get(Div->getType(), HiBound));
2342       return replaceInstUsesWith(
2343           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2344     case ICmpInst::ICMP_NE:
2345       if (LoOverflow && HiOverflow)
2346         return replaceInstUsesWith(Cmp, Builder.getTrue());
2347       if (HiOverflow)
2348         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2349                             ICmpInst::ICMP_ULT, X,
2350                             ConstantInt::get(Div->getType(), LoBound));
2351       if (LoOverflow)
2352         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2353                             ICmpInst::ICMP_UGE, X,
2354                             ConstantInt::get(Div->getType(), HiBound));
2355       return replaceInstUsesWith(Cmp,
2356                                  insertRangeTest(X, LoBound, HiBound,
2357                                                  DivIsSigned, false));
2358     case ICmpInst::ICMP_ULT:
2359     case ICmpInst::ICMP_SLT:
2360       if (LoOverflow == +1)   // Low bound is greater than input range.
2361         return replaceInstUsesWith(Cmp, Builder.getTrue());
2362       if (LoOverflow == -1)   // Low bound is less than input range.
2363         return replaceInstUsesWith(Cmp, Builder.getFalse());
2364       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2365     case ICmpInst::ICMP_UGT:
2366     case ICmpInst::ICMP_SGT:
2367       if (HiOverflow == +1)       // High bound greater than input range.
2368         return replaceInstUsesWith(Cmp, Builder.getFalse());
2369       if (HiOverflow == -1)       // High bound less than input range.
2370         return replaceInstUsesWith(Cmp, Builder.getTrue());
2371       if (Pred == ICmpInst::ICMP_UGT)
2372         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2373                             ConstantInt::get(Div->getType(), HiBound));
2374       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2375                           ConstantInt::get(Div->getType(), HiBound));
2376   }
2377 
2378   return nullptr;
2379 }
2380 
2381 /// Fold icmp (sub X, Y), C.
2382 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2383                                                BinaryOperator *Sub,
2384                                                const APInt &C) {
2385   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2386   ICmpInst::Predicate Pred = Cmp.getPredicate();
2387   const APInt *C2;
2388   APInt SubResult;
2389 
2390   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2391   if (match(X, m_APInt(C2)) &&
2392       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2393        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2394       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2395     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2396                         ConstantInt::get(Y->getType(), SubResult));
2397 
2398   // The following transforms are only worth it if the only user of the subtract
2399   // is the icmp.
2400   if (!Sub->hasOneUse())
2401     return nullptr;
2402 
2403   if (Sub->hasNoSignedWrap()) {
2404     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2405     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2406       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2407 
2408     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2409     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2410       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2411 
2412     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2413     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2414       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2415 
2416     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2417     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2418       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2419   }
2420 
2421   if (!match(X, m_APInt(C2)))
2422     return nullptr;
2423 
2424   // C2 - Y <u C -> (Y | (C - 1)) == C2
2425   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2426   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2427       (*C2 & (C - 1)) == (C - 1))
2428     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2429 
2430   // C2 - Y >u C -> (Y | C) != C2
2431   //   iff C2 & C == C and C + 1 is a power of 2
2432   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2433     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2434 
2435   return nullptr;
2436 }
2437 
2438 /// Fold icmp (add X, Y), C.
2439 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2440                                                BinaryOperator *Add,
2441                                                const APInt &C) {
2442   Value *Y = Add->getOperand(1);
2443   const APInt *C2;
2444   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2445     return nullptr;
2446 
2447   // Fold icmp pred (add X, C2), C.
2448   Value *X = Add->getOperand(0);
2449   Type *Ty = Add->getType();
2450   CmpInst::Predicate Pred = Cmp.getPredicate();
2451 
2452   if (!Add->hasOneUse())
2453     return nullptr;
2454 
2455   // If the add does not wrap, we can always adjust the compare by subtracting
2456   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2457   // are canonicalized to SGT/SLT/UGT/ULT.
2458   if ((Add->hasNoSignedWrap() &&
2459        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2460       (Add->hasNoUnsignedWrap() &&
2461        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2462     bool Overflow;
2463     APInt NewC =
2464         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2465     // If there is overflow, the result must be true or false.
2466     // TODO: Can we assert there is no overflow because InstSimplify always
2467     // handles those cases?
2468     if (!Overflow)
2469       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2470       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2471   }
2472 
2473   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2474   const APInt &Upper = CR.getUpper();
2475   const APInt &Lower = CR.getLower();
2476   if (Cmp.isSigned()) {
2477     if (Lower.isSignMask())
2478       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2479     if (Upper.isSignMask())
2480       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2481   } else {
2482     if (Lower.isMinValue())
2483       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2484     if (Upper.isMinValue())
2485       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2486   }
2487 
2488   // X+C <u C2 -> (X & -C2) == C
2489   //   iff C & (C2-1) == 0
2490   //       C2 is a power of 2
2491   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2492     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2493                         ConstantExpr::getNeg(cast<Constant>(Y)));
2494 
2495   // X+C >u C2 -> (X & ~C2) != C
2496   //   iff C & C2 == 0
2497   //       C2+1 is a power of 2
2498   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2499     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2500                         ConstantExpr::getNeg(cast<Constant>(Y)));
2501 
2502   return nullptr;
2503 }
2504 
2505 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2506                                            Value *&RHS, ConstantInt *&Less,
2507                                            ConstantInt *&Equal,
2508                                            ConstantInt *&Greater) {
2509   // TODO: Generalize this to work with other comparison idioms or ensure
2510   // they get canonicalized into this form.
2511 
2512   // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
2513   // Greater), where Equal, Less and Greater are placeholders for any three
2514   // constants.
2515   ICmpInst::Predicate PredA, PredB;
2516   if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
2517       match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
2518       PredA == ICmpInst::ICMP_EQ &&
2519       match(SI->getFalseValue(),
2520             m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
2521                      m_ConstantInt(Less), m_ConstantInt(Greater))) &&
2522       PredB == ICmpInst::ICMP_SLT) {
2523     return true;
2524   }
2525   return false;
2526 }
2527 
2528 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2529                                                   SelectInst *Select,
2530                                                   ConstantInt *C) {
2531 
2532   assert(C && "Cmp RHS should be a constant int!");
2533   // If we're testing a constant value against the result of a three way
2534   // comparison, the result can be expressed directly in terms of the
2535   // original values being compared.  Note: We could possibly be more
2536   // aggressive here and remove the hasOneUse test. The original select is
2537   // really likely to simplify or sink when we remove a test of the result.
2538   Value *OrigLHS, *OrigRHS;
2539   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2540   if (Cmp.hasOneUse() &&
2541       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2542                               C3GreaterThan)) {
2543     assert(C1LessThan && C2Equal && C3GreaterThan);
2544 
2545     bool TrueWhenLessThan =
2546         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2547             ->isAllOnesValue();
2548     bool TrueWhenEqual =
2549         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2550             ->isAllOnesValue();
2551     bool TrueWhenGreaterThan =
2552         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2553             ->isAllOnesValue();
2554 
2555     // This generates the new instruction that will replace the original Cmp
2556     // Instruction. Instead of enumerating the various combinations when
2557     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2558     // false, we rely on chaining of ORs and future passes of InstCombine to
2559     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2560 
2561     // When none of the three constants satisfy the predicate for the RHS (C),
2562     // the entire original Cmp can be simplified to a false.
2563     Value *Cond = Builder.getFalse();
2564     if (TrueWhenLessThan)
2565       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2566                                                        OrigLHS, OrigRHS));
2567     if (TrueWhenEqual)
2568       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2569                                                        OrigLHS, OrigRHS));
2570     if (TrueWhenGreaterThan)
2571       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2572                                                        OrigLHS, OrigRHS));
2573 
2574     return replaceInstUsesWith(Cmp, Cond);
2575   }
2576   return nullptr;
2577 }
2578 
2579 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2580                                     InstCombiner::BuilderTy &Builder) {
2581   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2582   if (!Bitcast)
2583     return nullptr;
2584 
2585   ICmpInst::Predicate Pred = Cmp.getPredicate();
2586   Value *Op1 = Cmp.getOperand(1);
2587   Value *BCSrcOp = Bitcast->getOperand(0);
2588 
2589   // Make sure the bitcast doesn't change the number of vector elements.
2590   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2591           Bitcast->getDestTy()->getScalarSizeInBits()) {
2592     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2593     Value *X;
2594     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2595       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2596       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2597       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2598       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2599       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2600            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2601           match(Op1, m_Zero()))
2602         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2603 
2604       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2605       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2606         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2607 
2608       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2609       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2610         return new ICmpInst(Pred, X,
2611                             ConstantInt::getAllOnesValue(X->getType()));
2612     }
2613 
2614     // Zero-equality checks are preserved through unsigned floating-point casts:
2615     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2616     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2617     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2618       if (Cmp.isEquality() && match(Op1, m_Zero()))
2619         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2620   }
2621 
2622   // Test to see if the operands of the icmp are casted versions of other
2623   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2624   if (Bitcast->getType()->isPointerTy() &&
2625       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2626     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2627     // so eliminate it as well.
2628     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2629       Op1 = BC2->getOperand(0);
2630 
2631     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2632     return new ICmpInst(Pred, BCSrcOp, Op1);
2633   }
2634 
2635   // Folding: icmp <pred> iN X, C
2636   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2637   //    and C is a splat of a K-bit pattern
2638   //    and SC is a constant vector = <C', C', C', ..., C'>
2639   // Into:
2640   //   %E = extractelement <M x iK> %vec, i32 C'
2641   //   icmp <pred> iK %E, trunc(C)
2642   const APInt *C;
2643   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2644       !Bitcast->getType()->isIntegerTy() ||
2645       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2646     return nullptr;
2647 
2648   Value *Vec;
2649   Constant *Mask;
2650   if (match(BCSrcOp,
2651             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2652     // Check whether every element of Mask is the same constant
2653     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2654       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2655       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2656       if (C->isSplat(EltTy->getBitWidth())) {
2657         // Fold the icmp based on the value of C
2658         // If C is M copies of an iK sized bit pattern,
2659         // then:
2660         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2661         //       icmp <pred> iK %SplatVal, <pattern>
2662         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2663         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2664         return new ICmpInst(Pred, Extract, NewC);
2665       }
2666     }
2667   }
2668   return nullptr;
2669 }
2670 
2671 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2672 /// where X is some kind of instruction.
2673 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2674   const APInt *C;
2675   if (!match(Cmp.getOperand(1), m_APInt(C)))
2676     return nullptr;
2677 
2678   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2679     switch (BO->getOpcode()) {
2680     case Instruction::Xor:
2681       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2682         return I;
2683       break;
2684     case Instruction::And:
2685       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2686         return I;
2687       break;
2688     case Instruction::Or:
2689       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2690         return I;
2691       break;
2692     case Instruction::Mul:
2693       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2694         return I;
2695       break;
2696     case Instruction::Shl:
2697       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2698         return I;
2699       break;
2700     case Instruction::LShr:
2701     case Instruction::AShr:
2702       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2703         return I;
2704       break;
2705     case Instruction::UDiv:
2706       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2707         return I;
2708       LLVM_FALLTHROUGH;
2709     case Instruction::SDiv:
2710       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2711         return I;
2712       break;
2713     case Instruction::Sub:
2714       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2715         return I;
2716       break;
2717     case Instruction::Add:
2718       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2719         return I;
2720       break;
2721     default:
2722       break;
2723     }
2724     // TODO: These folds could be refactored to be part of the above calls.
2725     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2726       return I;
2727   }
2728 
2729   // Match against CmpInst LHS being instructions other than binary operators.
2730 
2731   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2732     // For now, we only support constant integers while folding the
2733     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2734     // similar to the cases handled by binary ops above.
2735     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2736       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2737         return I;
2738   }
2739 
2740   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2741     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2742       return I;
2743   }
2744 
2745   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2746     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2747       return I;
2748 
2749   return nullptr;
2750 }
2751 
2752 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2753 /// icmp eq/ne BO, C.
2754 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2755                                                              BinaryOperator *BO,
2756                                                              const APInt &C) {
2757   // TODO: Some of these folds could work with arbitrary constants, but this
2758   // function is limited to scalar and vector splat constants.
2759   if (!Cmp.isEquality())
2760     return nullptr;
2761 
2762   ICmpInst::Predicate Pred = Cmp.getPredicate();
2763   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2764   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2765   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2766 
2767   switch (BO->getOpcode()) {
2768   case Instruction::SRem:
2769     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2770     if (C.isNullValue() && BO->hasOneUse()) {
2771       const APInt *BOC;
2772       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2773         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2774         return new ICmpInst(Pred, NewRem,
2775                             Constant::getNullValue(BO->getType()));
2776       }
2777     }
2778     break;
2779   case Instruction::Add: {
2780     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2781     const APInt *BOC;
2782     if (match(BOp1, m_APInt(BOC))) {
2783       if (BO->hasOneUse()) {
2784         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2785         return new ICmpInst(Pred, BOp0, SubC);
2786       }
2787     } else if (C.isNullValue()) {
2788       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2789       // efficiently invertible, or if the add has just this one use.
2790       if (Value *NegVal = dyn_castNegVal(BOp1))
2791         return new ICmpInst(Pred, BOp0, NegVal);
2792       if (Value *NegVal = dyn_castNegVal(BOp0))
2793         return new ICmpInst(Pred, NegVal, BOp1);
2794       if (BO->hasOneUse()) {
2795         Value *Neg = Builder.CreateNeg(BOp1);
2796         Neg->takeName(BO);
2797         return new ICmpInst(Pred, BOp0, Neg);
2798       }
2799     }
2800     break;
2801   }
2802   case Instruction::Xor:
2803     if (BO->hasOneUse()) {
2804       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2805         // For the xor case, we can xor two constants together, eliminating
2806         // the explicit xor.
2807         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2808       } else if (C.isNullValue()) {
2809         // Replace ((xor A, B) != 0) with (A != B)
2810         return new ICmpInst(Pred, BOp0, BOp1);
2811       }
2812     }
2813     break;
2814   case Instruction::Sub:
2815     if (BO->hasOneUse()) {
2816       const APInt *BOC;
2817       if (match(BOp0, m_APInt(BOC))) {
2818         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2819         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2820         return new ICmpInst(Pred, BOp1, SubC);
2821       } else if (C.isNullValue()) {
2822         // Replace ((sub A, B) != 0) with (A != B).
2823         return new ICmpInst(Pred, BOp0, BOp1);
2824       }
2825     }
2826     break;
2827   case Instruction::Or: {
2828     const APInt *BOC;
2829     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2830       // Comparing if all bits outside of a constant mask are set?
2831       // Replace (X | C) == -1 with (X & ~C) == ~C.
2832       // This removes the -1 constant.
2833       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2834       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2835       return new ICmpInst(Pred, And, NotBOC);
2836     }
2837     break;
2838   }
2839   case Instruction::And: {
2840     const APInt *BOC;
2841     if (match(BOp1, m_APInt(BOC))) {
2842       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2843       if (C == *BOC && C.isPowerOf2())
2844         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2845                             BO, Constant::getNullValue(RHS->getType()));
2846     }
2847     break;
2848   }
2849   case Instruction::Mul:
2850     if (C.isNullValue() && BO->hasNoSignedWrap()) {
2851       const APInt *BOC;
2852       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2853         // The trivial case (mul X, 0) is handled by InstSimplify.
2854         // General case : (mul X, C) != 0 iff X != 0
2855         //                (mul X, C) == 0 iff X == 0
2856         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2857       }
2858     }
2859     break;
2860   case Instruction::UDiv:
2861     if (C.isNullValue()) {
2862       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2863       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2864       return new ICmpInst(NewPred, BOp1, BOp0);
2865     }
2866     break;
2867   default:
2868     break;
2869   }
2870   return nullptr;
2871 }
2872 
2873 /// Fold an equality icmp with LLVM intrinsic and constant operand.
2874 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
2875                                                            IntrinsicInst *II,
2876                                                            const APInt &C) {
2877   Type *Ty = II->getType();
2878   unsigned BitWidth = C.getBitWidth();
2879   switch (II->getIntrinsicID()) {
2880   case Intrinsic::bswap:
2881     Worklist.Add(II);
2882     Cmp.setOperand(0, II->getArgOperand(0));
2883     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
2884     return &Cmp;
2885 
2886   case Intrinsic::ctlz:
2887   case Intrinsic::cttz: {
2888     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2889     if (C == BitWidth) {
2890       Worklist.Add(II);
2891       Cmp.setOperand(0, II->getArgOperand(0));
2892       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
2893       return &Cmp;
2894     }
2895 
2896     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
2897     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
2898     // Limit to one use to ensure we don't increase instruction count.
2899     unsigned Num = C.getLimitedValue(BitWidth);
2900     if (Num != BitWidth && II->hasOneUse()) {
2901       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
2902       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
2903                                : APInt::getHighBitsSet(BitWidth, Num + 1);
2904       APInt Mask2 = IsTrailing
2905         ? APInt::getOneBitSet(BitWidth, Num)
2906         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2907       Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
2908       Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
2909       Worklist.Add(II);
2910       return &Cmp;
2911     }
2912     break;
2913   }
2914 
2915   case Intrinsic::ctpop: {
2916     // popcount(A) == 0  ->  A == 0 and likewise for !=
2917     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2918     bool IsZero = C.isNullValue();
2919     if (IsZero || C == BitWidth) {
2920       Worklist.Add(II);
2921       Cmp.setOperand(0, II->getArgOperand(0));
2922       auto *NewOp =
2923           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
2924       Cmp.setOperand(1, NewOp);
2925       return &Cmp;
2926     }
2927     break;
2928   }
2929   default:
2930     break;
2931   }
2932 
2933   return nullptr;
2934 }
2935 
2936 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2937 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2938                                                          IntrinsicInst *II,
2939                                                          const APInt &C) {
2940   if (Cmp.isEquality())
2941     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
2942 
2943   Type *Ty = II->getType();
2944   unsigned BitWidth = C.getBitWidth();
2945   switch (II->getIntrinsicID()) {
2946   case Intrinsic::ctlz: {
2947     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
2948     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2949       unsigned Num = C.getLimitedValue();
2950       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2951       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
2952                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2953     }
2954 
2955     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
2956     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2957         C.uge(1) && C.ule(BitWidth)) {
2958       unsigned Num = C.getLimitedValue();
2959       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
2960       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
2961                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
2962     }
2963     break;
2964   }
2965   case Intrinsic::cttz: {
2966     // Limit to one use to ensure we don't increase instruction count.
2967     if (!II->hasOneUse())
2968       return nullptr;
2969 
2970     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
2971     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
2972       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
2973       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
2974                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2975                              ConstantInt::getNullValue(Ty));
2976     }
2977 
2978     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
2979     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
2980         C.uge(1) && C.ule(BitWidth)) {
2981       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
2982       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
2983                              Builder.CreateAnd(II->getArgOperand(0), Mask),
2984                              ConstantInt::getNullValue(Ty));
2985     }
2986     break;
2987   }
2988   default:
2989     break;
2990   }
2991 
2992   return nullptr;
2993 }
2994 
2995 /// Handle icmp with constant (but not simple integer constant) RHS.
2996 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2997   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2998   Constant *RHSC = dyn_cast<Constant>(Op1);
2999   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3000   if (!RHSC || !LHSI)
3001     return nullptr;
3002 
3003   switch (LHSI->getOpcode()) {
3004   case Instruction::GetElementPtr:
3005     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3006     if (RHSC->isNullValue() &&
3007         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3008       return new ICmpInst(
3009           I.getPredicate(), LHSI->getOperand(0),
3010           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3011     break;
3012   case Instruction::PHI:
3013     // Only fold icmp into the PHI if the phi and icmp are in the same
3014     // block.  If in the same block, we're encouraging jump threading.  If
3015     // not, we are just pessimizing the code by making an i1 phi.
3016     if (LHSI->getParent() == I.getParent())
3017       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3018         return NV;
3019     break;
3020   case Instruction::Select: {
3021     // If either operand of the select is a constant, we can fold the
3022     // comparison into the select arms, which will cause one to be
3023     // constant folded and the select turned into a bitwise or.
3024     Value *Op1 = nullptr, *Op2 = nullptr;
3025     ConstantInt *CI = nullptr;
3026     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3027       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3028       CI = dyn_cast<ConstantInt>(Op1);
3029     }
3030     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3031       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3032       CI = dyn_cast<ConstantInt>(Op2);
3033     }
3034 
3035     // We only want to perform this transformation if it will not lead to
3036     // additional code. This is true if either both sides of the select
3037     // fold to a constant (in which case the icmp is replaced with a select
3038     // which will usually simplify) or this is the only user of the
3039     // select (in which case we are trading a select+icmp for a simpler
3040     // select+icmp) or all uses of the select can be replaced based on
3041     // dominance information ("Global cases").
3042     bool Transform = false;
3043     if (Op1 && Op2)
3044       Transform = true;
3045     else if (Op1 || Op2) {
3046       // Local case
3047       if (LHSI->hasOneUse())
3048         Transform = true;
3049       // Global cases
3050       else if (CI && !CI->isZero())
3051         // When Op1 is constant try replacing select with second operand.
3052         // Otherwise Op2 is constant and try replacing select with first
3053         // operand.
3054         Transform =
3055             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3056     }
3057     if (Transform) {
3058       if (!Op1)
3059         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3060                                  I.getName());
3061       if (!Op2)
3062         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3063                                  I.getName());
3064       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3065     }
3066     break;
3067   }
3068   case Instruction::IntToPtr:
3069     // icmp pred inttoptr(X), null -> icmp pred X, 0
3070     if (RHSC->isNullValue() &&
3071         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3072       return new ICmpInst(
3073           I.getPredicate(), LHSI->getOperand(0),
3074           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3075     break;
3076 
3077   case Instruction::Load:
3078     // Try to optimize things like "A[i] > 4" to index computations.
3079     if (GetElementPtrInst *GEP =
3080             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3081       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3082         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3083             !cast<LoadInst>(LHSI)->isVolatile())
3084           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3085             return Res;
3086     }
3087     break;
3088   }
3089 
3090   return nullptr;
3091 }
3092 
3093 /// Some comparisons can be simplified.
3094 /// In this case, we are looking for comparisons that look like
3095 /// a check for a lossy truncation.
3096 /// Folds:
3097 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3098 /// Where Mask is some pattern that produces all-ones in low bits:
3099 ///    (-1 >> y)
3100 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3101 ///   ~(-1 << y)
3102 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3103 /// The Mask can be a constant, too.
3104 /// For some predicates, the operands are commutative.
3105 /// For others, x can only be on a specific side.
3106 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3107                                           InstCombiner::BuilderTy &Builder) {
3108   ICmpInst::Predicate SrcPred;
3109   Value *X, *M, *Y;
3110   auto m_VariableMask = m_CombineOr(
3111       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3112                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3113       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3114                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3115   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3116   if (!match(&I, m_c_ICmp(SrcPred,
3117                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3118                           m_Deferred(X))))
3119     return nullptr;
3120 
3121   ICmpInst::Predicate DstPred;
3122   switch (SrcPred) {
3123   case ICmpInst::Predicate::ICMP_EQ:
3124     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3125     DstPred = ICmpInst::Predicate::ICMP_ULE;
3126     break;
3127   case ICmpInst::Predicate::ICMP_NE:
3128     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3129     DstPred = ICmpInst::Predicate::ICMP_UGT;
3130     break;
3131   case ICmpInst::Predicate::ICMP_UGT:
3132     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3133     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3134     DstPred = ICmpInst::Predicate::ICMP_UGT;
3135     break;
3136   case ICmpInst::Predicate::ICMP_UGE:
3137     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3138     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3139     DstPred = ICmpInst::Predicate::ICMP_ULE;
3140     break;
3141   case ICmpInst::Predicate::ICMP_ULT:
3142     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3143     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3144     DstPred = ICmpInst::Predicate::ICMP_UGT;
3145     break;
3146   case ICmpInst::Predicate::ICMP_ULE:
3147     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3148     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3149     DstPred = ICmpInst::Predicate::ICMP_ULE;
3150     break;
3151   case ICmpInst::Predicate::ICMP_SGT:
3152     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3153     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3154       return nullptr;         // Ignore the other case.
3155     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3156       return nullptr;
3157     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3158       return nullptr;
3159     DstPred = ICmpInst::Predicate::ICMP_SGT;
3160     break;
3161   case ICmpInst::Predicate::ICMP_SGE:
3162     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3163     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3164       return nullptr;         // Ignore the other case.
3165     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3166       return nullptr;
3167     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3168       return nullptr;
3169     DstPred = ICmpInst::Predicate::ICMP_SLE;
3170     break;
3171   case ICmpInst::Predicate::ICMP_SLT:
3172     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3173     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3174       return nullptr;         // Ignore the other case.
3175     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3176       return nullptr;
3177     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3178       return nullptr;
3179     DstPred = ICmpInst::Predicate::ICMP_SGT;
3180     break;
3181   case ICmpInst::Predicate::ICMP_SLE:
3182     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3183     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3184       return nullptr;         // Ignore the other case.
3185     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3186       return nullptr;
3187     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3188       return nullptr;
3189     DstPred = ICmpInst::Predicate::ICMP_SLE;
3190     break;
3191   default:
3192     llvm_unreachable("All possible folds are handled.");
3193   }
3194 
3195   return Builder.CreateICmp(DstPred, X, M);
3196 }
3197 
3198 /// Some comparisons can be simplified.
3199 /// In this case, we are looking for comparisons that look like
3200 /// a check for a lossy signed truncation.
3201 /// Folds:   (MaskedBits is a constant.)
3202 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3203 /// Into:
3204 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3205 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3206 static Value *
3207 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3208                                  InstCombiner::BuilderTy &Builder) {
3209   ICmpInst::Predicate SrcPred;
3210   Value *X;
3211   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3212   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3213   if (!match(&I, m_c_ICmp(SrcPred,
3214                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3215                                           m_APInt(C1))),
3216                           m_Deferred(X))))
3217     return nullptr;
3218 
3219   // Potential handling of non-splats: for each element:
3220   //  * if both are undef, replace with constant 0.
3221   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3222   //  * if both are not undef, and are different, bailout.
3223   //  * else, only one is undef, then pick the non-undef one.
3224 
3225   // The shift amount must be equal.
3226   if (*C0 != *C1)
3227     return nullptr;
3228   const APInt &MaskedBits = *C0;
3229   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3230 
3231   ICmpInst::Predicate DstPred;
3232   switch (SrcPred) {
3233   case ICmpInst::Predicate::ICMP_EQ:
3234     // ((%x << MaskedBits) a>> MaskedBits) == %x
3235     //   =>
3236     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3237     DstPred = ICmpInst::Predicate::ICMP_ULT;
3238     break;
3239   case ICmpInst::Predicate::ICMP_NE:
3240     // ((%x << MaskedBits) a>> MaskedBits) != %x
3241     //   =>
3242     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3243     DstPred = ICmpInst::Predicate::ICMP_UGE;
3244     break;
3245   // FIXME: are more folds possible?
3246   default:
3247     return nullptr;
3248   }
3249 
3250   auto *XType = X->getType();
3251   const unsigned XBitWidth = XType->getScalarSizeInBits();
3252   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3253   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3254 
3255   // KeptBits = bitwidth(%x) - MaskedBits
3256   const APInt KeptBits = BitWidth - MaskedBits;
3257   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3258   // ICmpCst = (1 << KeptBits)
3259   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3260   assert(ICmpCst.isPowerOf2());
3261   // AddCst = (1 << (KeptBits-1))
3262   const APInt AddCst = ICmpCst.lshr(1);
3263   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3264 
3265   // T0 = add %x, AddCst
3266   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3267   // T1 = T0 DstPred ICmpCst
3268   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3269 
3270   return T1;
3271 }
3272 
3273 // Given pattern:
3274 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3275 // we should move shifts to the same hand of 'and', i.e. rewrite as
3276 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3277 // We are only interested in opposite logical shifts here.
3278 // If we can, we want to end up creating 'lshr' shift.
3279 static Value *
3280 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3281                                            InstCombiner::BuilderTy &Builder) {
3282   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3283       !I.getOperand(0)->hasOneUse())
3284     return nullptr;
3285 
3286   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3287   auto m_AnyLShr = m_LShr(m_Value(), m_Value());
3288 
3289   // Look for an 'and' of two (opposite) logical shifts.
3290   // Pick the single-use shift as XShift.
3291   Value *XShift, *YShift;
3292   if (!match(I.getOperand(0),
3293              m_c_And(m_OneUse(m_CombineAnd(m_AnyLogicalShift, m_Value(XShift))),
3294                      m_CombineAnd(m_AnyLogicalShift, m_Value(YShift)))))
3295     return nullptr;
3296 
3297   // If YShift is a single-use 'lshr', swap the shifts around.
3298   if (match(YShift, m_OneUse(m_AnyLShr)))
3299     std::swap(XShift, YShift);
3300 
3301   // The shifts must be in opposite directions.
3302   Instruction::BinaryOps XShiftOpcode =
3303       cast<BinaryOperator>(XShift)->getOpcode();
3304   if (XShiftOpcode == cast<BinaryOperator>(YShift)->getOpcode())
3305     return nullptr; // Do not care about same-direction shifts here.
3306 
3307   Value *X, *XShAmt, *Y, *YShAmt;
3308   match(XShift, m_BinOp(m_Value(X), m_Value(XShAmt)));
3309   match(YShift, m_BinOp(m_Value(Y), m_Value(YShAmt)));
3310 
3311   // Can we fold (XShAmt+YShAmt) ?
3312   Value *NewShAmt = SimplifyBinOp(Instruction::BinaryOps::Add, XShAmt, YShAmt,
3313                                   SQ.getWithInstruction(&I));
3314   if (!NewShAmt)
3315     return nullptr;
3316   // Is the new shift amount smaller than the bit width?
3317   // FIXME: could also rely on ConstantRange.
3318   unsigned BitWidth = X->getType()->getScalarSizeInBits();
3319   if (!match(NewShAmt, m_SpecificInt_ULT(APInt(BitWidth, BitWidth))))
3320     return nullptr;
3321   // All good, we can do this fold. The shift is the same that was for X.
3322   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3323                   ? Builder.CreateLShr(X, NewShAmt)
3324                   : Builder.CreateShl(X, NewShAmt);
3325   Value *T1 = Builder.CreateAnd(T0, Y);
3326   return Builder.CreateICmp(I.getPredicate(), T1,
3327                             Constant::getNullValue(X->getType()));
3328 }
3329 
3330 /// Try to fold icmp (binop), X or icmp X, (binop).
3331 /// TODO: A large part of this logic is duplicated in InstSimplify's
3332 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3333 /// duplication.
3334 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3335   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3336 
3337   // Special logic for binary operators.
3338   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3339   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3340   if (!BO0 && !BO1)
3341     return nullptr;
3342 
3343   const CmpInst::Predicate Pred = I.getPredicate();
3344   Value *X;
3345 
3346   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3347   // (Op1 + X) <u Op1 --> ~Op1 <u X
3348   // Op0 >u (Op0 + X) --> X >u ~Op0
3349   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3350       Pred == ICmpInst::ICMP_ULT)
3351     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3352   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3353       Pred == ICmpInst::ICMP_UGT)
3354     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3355 
3356   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3357   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3358     NoOp0WrapProblem =
3359         ICmpInst::isEquality(Pred) ||
3360         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3361         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3362   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3363     NoOp1WrapProblem =
3364         ICmpInst::isEquality(Pred) ||
3365         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3366         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3367 
3368   // Analyze the case when either Op0 or Op1 is an add instruction.
3369   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3370   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3371   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3372     A = BO0->getOperand(0);
3373     B = BO0->getOperand(1);
3374   }
3375   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3376     C = BO1->getOperand(0);
3377     D = BO1->getOperand(1);
3378   }
3379 
3380   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3381   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3382     return new ICmpInst(Pred, A == Op1 ? B : A,
3383                         Constant::getNullValue(Op1->getType()));
3384 
3385   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3386   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3387     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3388                         C == Op0 ? D : C);
3389 
3390   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3391   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3392       NoOp1WrapProblem &&
3393       // Try not to increase register pressure.
3394       BO0->hasOneUse() && BO1->hasOneUse()) {
3395     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3396     Value *Y, *Z;
3397     if (A == C) {
3398       // C + B == C + D  ->  B == D
3399       Y = B;
3400       Z = D;
3401     } else if (A == D) {
3402       // D + B == C + D  ->  B == C
3403       Y = B;
3404       Z = C;
3405     } else if (B == C) {
3406       // A + C == C + D  ->  A == D
3407       Y = A;
3408       Z = D;
3409     } else {
3410       assert(B == D);
3411       // A + D == C + D  ->  A == C
3412       Y = A;
3413       Z = C;
3414     }
3415     return new ICmpInst(Pred, Y, Z);
3416   }
3417 
3418   // icmp slt (X + -1), Y -> icmp sle X, Y
3419   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3420       match(B, m_AllOnes()))
3421     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3422 
3423   // icmp sge (X + -1), Y -> icmp sgt X, Y
3424   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3425       match(B, m_AllOnes()))
3426     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3427 
3428   // icmp sle (X + 1), Y -> icmp slt X, Y
3429   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3430     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3431 
3432   // icmp sgt (X + 1), Y -> icmp sge X, Y
3433   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3434     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3435 
3436   // icmp sgt X, (Y + -1) -> icmp sge X, Y
3437   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3438       match(D, m_AllOnes()))
3439     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3440 
3441   // icmp sle X, (Y + -1) -> icmp slt X, Y
3442   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3443       match(D, m_AllOnes()))
3444     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3445 
3446   // icmp sge X, (Y + 1) -> icmp sgt X, Y
3447   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3448     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3449 
3450   // icmp slt X, (Y + 1) -> icmp sle X, Y
3451   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3452     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3453 
3454   // TODO: The subtraction-related identities shown below also hold, but
3455   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3456   // wouldn't happen even if they were implemented.
3457   //
3458   // icmp ult (X - 1), Y -> icmp ule X, Y
3459   // icmp uge (X - 1), Y -> icmp ugt X, Y
3460   // icmp ugt X, (Y - 1) -> icmp uge X, Y
3461   // icmp ule X, (Y - 1) -> icmp ult X, Y
3462 
3463   // icmp ule (X + 1), Y -> icmp ult X, Y
3464   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3465     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3466 
3467   // icmp ugt (X + 1), Y -> icmp uge X, Y
3468   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3469     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3470 
3471   // icmp uge X, (Y + 1) -> icmp ugt X, Y
3472   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3473     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3474 
3475   // icmp ult X, (Y + 1) -> icmp ule X, Y
3476   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3477     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3478 
3479   // if C1 has greater magnitude than C2:
3480   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3481   //  s.t. C3 = C1 - C2
3482   //
3483   // if C2 has greater magnitude than C1:
3484   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3485   //  s.t. C3 = C2 - C1
3486   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3487       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3488     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3489       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3490         const APInt &AP1 = C1->getValue();
3491         const APInt &AP2 = C2->getValue();
3492         if (AP1.isNegative() == AP2.isNegative()) {
3493           APInt AP1Abs = C1->getValue().abs();
3494           APInt AP2Abs = C2->getValue().abs();
3495           if (AP1Abs.uge(AP2Abs)) {
3496             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3497             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3498             return new ICmpInst(Pred, NewAdd, C);
3499           } else {
3500             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3501             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3502             return new ICmpInst(Pred, A, NewAdd);
3503           }
3504         }
3505       }
3506 
3507   // Analyze the case when either Op0 or Op1 is a sub instruction.
3508   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3509   A = nullptr;
3510   B = nullptr;
3511   C = nullptr;
3512   D = nullptr;
3513   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3514     A = BO0->getOperand(0);
3515     B = BO0->getOperand(1);
3516   }
3517   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3518     C = BO1->getOperand(0);
3519     D = BO1->getOperand(1);
3520   }
3521 
3522   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3523   if (A == Op1 && NoOp0WrapProblem)
3524     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3525   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3526   if (C == Op0 && NoOp1WrapProblem)
3527     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3528 
3529   // (A - B) >u A --> A <u B
3530   if (A == Op1 && Pred == ICmpInst::ICMP_UGT)
3531     return new ICmpInst(ICmpInst::ICMP_ULT, A, B);
3532   // C <u (C - D) --> C <u D
3533   if (C == Op0 && Pred == ICmpInst::ICMP_ULT)
3534     return new ICmpInst(ICmpInst::ICMP_ULT, C, D);
3535 
3536   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3537   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3538       // Try not to increase register pressure.
3539       BO0->hasOneUse() && BO1->hasOneUse())
3540     return new ICmpInst(Pred, A, C);
3541   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3542   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3543       // Try not to increase register pressure.
3544       BO0->hasOneUse() && BO1->hasOneUse())
3545     return new ICmpInst(Pred, D, B);
3546 
3547   // icmp (0-X) < cst --> x > -cst
3548   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3549     Value *X;
3550     if (match(BO0, m_Neg(m_Value(X))))
3551       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3552         if (RHSC->isNotMinSignedValue())
3553           return new ICmpInst(I.getSwappedPredicate(), X,
3554                               ConstantExpr::getNeg(RHSC));
3555   }
3556 
3557   BinaryOperator *SRem = nullptr;
3558   // icmp (srem X, Y), Y
3559   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3560     SRem = BO0;
3561   // icmp Y, (srem X, Y)
3562   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3563            Op0 == BO1->getOperand(1))
3564     SRem = BO1;
3565   if (SRem) {
3566     // We don't check hasOneUse to avoid increasing register pressure because
3567     // the value we use is the same value this instruction was already using.
3568     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3569     default:
3570       break;
3571     case ICmpInst::ICMP_EQ:
3572       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3573     case ICmpInst::ICMP_NE:
3574       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3575     case ICmpInst::ICMP_SGT:
3576     case ICmpInst::ICMP_SGE:
3577       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3578                           Constant::getAllOnesValue(SRem->getType()));
3579     case ICmpInst::ICMP_SLT:
3580     case ICmpInst::ICMP_SLE:
3581       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3582                           Constant::getNullValue(SRem->getType()));
3583     }
3584   }
3585 
3586   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3587       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3588     switch (BO0->getOpcode()) {
3589     default:
3590       break;
3591     case Instruction::Add:
3592     case Instruction::Sub:
3593     case Instruction::Xor: {
3594       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3595         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3596 
3597       const APInt *C;
3598       if (match(BO0->getOperand(1), m_APInt(C))) {
3599         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3600         if (C->isSignMask()) {
3601           ICmpInst::Predicate NewPred =
3602               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3603           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3604         }
3605 
3606         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3607         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3608           ICmpInst::Predicate NewPred =
3609               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3610           NewPred = I.getSwappedPredicate(NewPred);
3611           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3612         }
3613       }
3614       break;
3615     }
3616     case Instruction::Mul: {
3617       if (!I.isEquality())
3618         break;
3619 
3620       const APInt *C;
3621       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3622           !C->isOneValue()) {
3623         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3624         // Mask = -1 >> count-trailing-zeros(C).
3625         if (unsigned TZs = C->countTrailingZeros()) {
3626           Constant *Mask = ConstantInt::get(
3627               BO0->getType(),
3628               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3629           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3630           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3631           return new ICmpInst(Pred, And1, And2);
3632         }
3633         // If there are no trailing zeros in the multiplier, just eliminate
3634         // the multiplies (no masking is needed):
3635         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3636         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3637       }
3638       break;
3639     }
3640     case Instruction::UDiv:
3641     case Instruction::LShr:
3642       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3643         break;
3644       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3645 
3646     case Instruction::SDiv:
3647       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3648         break;
3649       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3650 
3651     case Instruction::AShr:
3652       if (!BO0->isExact() || !BO1->isExact())
3653         break;
3654       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3655 
3656     case Instruction::Shl: {
3657       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3658       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3659       if (!NUW && !NSW)
3660         break;
3661       if (!NSW && I.isSigned())
3662         break;
3663       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3664     }
3665     }
3666   }
3667 
3668   if (BO0) {
3669     // Transform  A & (L - 1) `ult` L --> L != 0
3670     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3671     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3672 
3673     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3674       auto *Zero = Constant::getNullValue(BO0->getType());
3675       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3676     }
3677   }
3678 
3679   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3680     return replaceInstUsesWith(I, V);
3681 
3682   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3683     return replaceInstUsesWith(I, V);
3684 
3685   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
3686     return replaceInstUsesWith(I, V);
3687 
3688   return nullptr;
3689 }
3690 
3691 /// Fold icmp Pred min|max(X, Y), X.
3692 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3693   ICmpInst::Predicate Pred = Cmp.getPredicate();
3694   Value *Op0 = Cmp.getOperand(0);
3695   Value *X = Cmp.getOperand(1);
3696 
3697   // Canonicalize minimum or maximum operand to LHS of the icmp.
3698   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3699       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3700       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3701       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3702     std::swap(Op0, X);
3703     Pred = Cmp.getSwappedPredicate();
3704   }
3705 
3706   Value *Y;
3707   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3708     // smin(X, Y)  == X --> X s<= Y
3709     // smin(X, Y) s>= X --> X s<= Y
3710     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3711       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3712 
3713     // smin(X, Y) != X --> X s> Y
3714     // smin(X, Y) s< X --> X s> Y
3715     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3716       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3717 
3718     // These cases should be handled in InstSimplify:
3719     // smin(X, Y) s<= X --> true
3720     // smin(X, Y) s> X --> false
3721     return nullptr;
3722   }
3723 
3724   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3725     // smax(X, Y)  == X --> X s>= Y
3726     // smax(X, Y) s<= X --> X s>= Y
3727     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3728       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3729 
3730     // smax(X, Y) != X --> X s< Y
3731     // smax(X, Y) s> X --> X s< Y
3732     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3733       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3734 
3735     // These cases should be handled in InstSimplify:
3736     // smax(X, Y) s>= X --> true
3737     // smax(X, Y) s< X --> false
3738     return nullptr;
3739   }
3740 
3741   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3742     // umin(X, Y)  == X --> X u<= Y
3743     // umin(X, Y) u>= X --> X u<= Y
3744     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3745       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3746 
3747     // umin(X, Y) != X --> X u> Y
3748     // umin(X, Y) u< X --> X u> Y
3749     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3750       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3751 
3752     // These cases should be handled in InstSimplify:
3753     // umin(X, Y) u<= X --> true
3754     // umin(X, Y) u> X --> false
3755     return nullptr;
3756   }
3757 
3758   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3759     // umax(X, Y)  == X --> X u>= Y
3760     // umax(X, Y) u<= X --> X u>= Y
3761     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3762       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3763 
3764     // umax(X, Y) != X --> X u< Y
3765     // umax(X, Y) u> X --> X u< Y
3766     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3767       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3768 
3769     // These cases should be handled in InstSimplify:
3770     // umax(X, Y) u>= X --> true
3771     // umax(X, Y) u< X --> false
3772     return nullptr;
3773   }
3774 
3775   return nullptr;
3776 }
3777 
3778 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3779   if (!I.isEquality())
3780     return nullptr;
3781 
3782   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3783   const CmpInst::Predicate Pred = I.getPredicate();
3784   Value *A, *B, *C, *D;
3785   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3786     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3787       Value *OtherVal = A == Op1 ? B : A;
3788       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3789     }
3790 
3791     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3792       // A^c1 == C^c2 --> A == C^(c1^c2)
3793       ConstantInt *C1, *C2;
3794       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3795           Op1->hasOneUse()) {
3796         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
3797         Value *Xor = Builder.CreateXor(C, NC);
3798         return new ICmpInst(Pred, A, Xor);
3799       }
3800 
3801       // A^B == A^D -> B == D
3802       if (A == C)
3803         return new ICmpInst(Pred, B, D);
3804       if (A == D)
3805         return new ICmpInst(Pred, B, C);
3806       if (B == C)
3807         return new ICmpInst(Pred, A, D);
3808       if (B == D)
3809         return new ICmpInst(Pred, A, C);
3810     }
3811   }
3812 
3813   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3814     // A == (A^B)  ->  B == 0
3815     Value *OtherVal = A == Op0 ? B : A;
3816     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3817   }
3818 
3819   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3820   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3821       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3822     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3823 
3824     if (A == C) {
3825       X = B;
3826       Y = D;
3827       Z = A;
3828     } else if (A == D) {
3829       X = B;
3830       Y = C;
3831       Z = A;
3832     } else if (B == C) {
3833       X = A;
3834       Y = D;
3835       Z = B;
3836     } else if (B == D) {
3837       X = A;
3838       Y = C;
3839       Z = B;
3840     }
3841 
3842     if (X) { // Build (X^Y) & Z
3843       Op1 = Builder.CreateXor(X, Y);
3844       Op1 = Builder.CreateAnd(Op1, Z);
3845       I.setOperand(0, Op1);
3846       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3847       return &I;
3848     }
3849   }
3850 
3851   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3852   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3853   ConstantInt *Cst1;
3854   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3855        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3856       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3857        match(Op1, m_ZExt(m_Value(A))))) {
3858     APInt Pow2 = Cst1->getValue() + 1;
3859     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3860         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3861       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
3862   }
3863 
3864   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3865   // For lshr and ashr pairs.
3866   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3867        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3868       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3869        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3870     unsigned TypeBits = Cst1->getBitWidth();
3871     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3872     if (ShAmt < TypeBits && ShAmt != 0) {
3873       ICmpInst::Predicate NewPred =
3874           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
3875       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3876       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3877       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
3878     }
3879   }
3880 
3881   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3882   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3883       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3884     unsigned TypeBits = Cst1->getBitWidth();
3885     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3886     if (ShAmt < TypeBits && ShAmt != 0) {
3887       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3888       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3889       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
3890                                       I.getName() + ".mask");
3891       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
3892     }
3893   }
3894 
3895   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3896   // "icmp (and X, mask), cst"
3897   uint64_t ShAmt = 0;
3898   if (Op0->hasOneUse() &&
3899       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3900       match(Op1, m_ConstantInt(Cst1)) &&
3901       // Only do this when A has multiple uses.  This is most important to do
3902       // when it exposes other optimizations.
3903       !A->hasOneUse()) {
3904     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3905 
3906     if (ShAmt < ASize) {
3907       APInt MaskV =
3908           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3909       MaskV <<= ShAmt;
3910 
3911       APInt CmpV = Cst1->getValue().zext(ASize);
3912       CmpV <<= ShAmt;
3913 
3914       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
3915       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
3916     }
3917   }
3918 
3919   // If both operands are byte-swapped or bit-reversed, just compare the
3920   // original values.
3921   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
3922   // and handle more intrinsics.
3923   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
3924       (match(Op0, m_BitReverse(m_Value(A))) &&
3925        match(Op1, m_BitReverse(m_Value(B)))))
3926     return new ICmpInst(Pred, A, B);
3927 
3928   // Canonicalize checking for a power-of-2-or-zero value:
3929   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
3930   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
3931   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
3932                                    m_Deferred(A)))) ||
3933       !match(Op1, m_ZeroInt()))
3934     A = nullptr;
3935 
3936   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
3937   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
3938   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
3939     A = Op1;
3940   else if (match(Op1,
3941                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
3942     A = Op0;
3943 
3944   if (A) {
3945     Type *Ty = A->getType();
3946     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
3947     return Pred == ICmpInst::ICMP_EQ
3948         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
3949         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
3950   }
3951 
3952   return nullptr;
3953 }
3954 
3955 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3956 /// far.
3957 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3958   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3959   Value *LHSCIOp        = LHSCI->getOperand(0);
3960   Type *SrcTy     = LHSCIOp->getType();
3961   Type *DestTy    = LHSCI->getType();
3962 
3963   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3964   // integer type is the same size as the pointer type.
3965   const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool {
3966     if (isa<VectorType>(SrcTy)) {
3967       SrcTy = cast<VectorType>(SrcTy)->getElementType();
3968       DestTy = cast<VectorType>(DestTy)->getElementType();
3969     }
3970     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
3971   };
3972   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3973       CompatibleSizes(SrcTy, DestTy)) {
3974     Value *RHSOp = nullptr;
3975     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3976       Value *RHSCIOp = RHSC->getOperand(0);
3977       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3978           LHSCIOp->getType()->getPointerAddressSpace()) {
3979         RHSOp = RHSC->getOperand(0);
3980         // If the pointer types don't match, insert a bitcast.
3981         if (LHSCIOp->getType() != RHSOp->getType())
3982           RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
3983       }
3984     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3985       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3986     }
3987 
3988     if (RHSOp)
3989       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3990   }
3991 
3992   // The code below only handles extension cast instructions, so far.
3993   // Enforce this.
3994   if (LHSCI->getOpcode() != Instruction::ZExt &&
3995       LHSCI->getOpcode() != Instruction::SExt)
3996     return nullptr;
3997 
3998   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3999   bool isSignedCmp = ICmp.isSigned();
4000 
4001   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4002     // Not an extension from the same type?
4003     Value *RHSCIOp = CI->getOperand(0);
4004     if (RHSCIOp->getType() != LHSCIOp->getType())
4005       return nullptr;
4006 
4007     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4008     // and the other is a zext), then we can't handle this.
4009     if (CI->getOpcode() != LHSCI->getOpcode())
4010       return nullptr;
4011 
4012     // Deal with equality cases early.
4013     if (ICmp.isEquality())
4014       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
4015 
4016     // A signed comparison of sign extended values simplifies into a
4017     // signed comparison.
4018     if (isSignedCmp && isSignedExt)
4019       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
4020 
4021     // The other three cases all fold into an unsigned comparison.
4022     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
4023   }
4024 
4025   // If we aren't dealing with a constant on the RHS, exit early.
4026   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4027   if (!C)
4028     return nullptr;
4029 
4030   // Compute the constant that would happen if we truncated to SrcTy then
4031   // re-extended to DestTy.
4032   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4033   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
4034 
4035   // If the re-extended constant didn't change...
4036   if (Res2 == C) {
4037     // Deal with equality cases early.
4038     if (ICmp.isEquality())
4039       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
4040 
4041     // A signed comparison of sign extended values simplifies into a
4042     // signed comparison.
4043     if (isSignedExt && isSignedCmp)
4044       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
4045 
4046     // The other three cases all fold into an unsigned comparison.
4047     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
4048   }
4049 
4050   // The re-extended constant changed, partly changed (in the case of a vector),
4051   // or could not be determined to be equal (in the case of a constant
4052   // expression), so the constant cannot be represented in the shorter type.
4053   // Consequently, we cannot emit a simple comparison.
4054   // All the cases that fold to true or false will have already been handled
4055   // by SimplifyICmpInst, so only deal with the tricky case.
4056 
4057   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
4058     return nullptr;
4059 
4060   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
4061   // should have been folded away previously and not enter in here.
4062 
4063   // We're performing an unsigned comp with a sign extended value.
4064   // This is true if the input is >= 0. [aka >s -1]
4065   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
4066   Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
4067 
4068   // Finally, return the value computed.
4069   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4070     return replaceInstUsesWith(ICmp, Result);
4071 
4072   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4073   return BinaryOperator::CreateNot(Result);
4074 }
4075 
4076 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4077   switch (BinaryOp) {
4078     default:
4079       llvm_unreachable("Unsupported binary op");
4080     case Instruction::Add:
4081     case Instruction::Sub:
4082       return match(RHS, m_Zero());
4083     case Instruction::Mul:
4084       return match(RHS, m_One());
4085   }
4086 }
4087 
4088 OverflowResult InstCombiner::computeOverflow(
4089     Instruction::BinaryOps BinaryOp, bool IsSigned,
4090     Value *LHS, Value *RHS, Instruction *CxtI) const {
4091   switch (BinaryOp) {
4092     default:
4093       llvm_unreachable("Unsupported binary op");
4094     case Instruction::Add:
4095       if (IsSigned)
4096         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4097       else
4098         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4099     case Instruction::Sub:
4100       if (IsSigned)
4101         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4102       else
4103         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4104     case Instruction::Mul:
4105       if (IsSigned)
4106         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4107       else
4108         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4109   }
4110 }
4111 
4112 bool InstCombiner::OptimizeOverflowCheck(
4113     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4114     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4115   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4116     std::swap(LHS, RHS);
4117 
4118   // If the overflow check was an add followed by a compare, the insertion point
4119   // may be pointing to the compare.  We want to insert the new instructions
4120   // before the add in case there are uses of the add between the add and the
4121   // compare.
4122   Builder.SetInsertPoint(&OrigI);
4123 
4124   if (isNeutralValue(BinaryOp, RHS)) {
4125     Result = LHS;
4126     Overflow = Builder.getFalse();
4127     return true;
4128   }
4129 
4130   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4131     case OverflowResult::MayOverflow:
4132       return false;
4133     case OverflowResult::AlwaysOverflowsLow:
4134     case OverflowResult::AlwaysOverflowsHigh:
4135       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4136       Result->takeName(&OrigI);
4137       Overflow = Builder.getTrue();
4138       return true;
4139     case OverflowResult::NeverOverflows:
4140       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4141       Result->takeName(&OrigI);
4142       Overflow = Builder.getFalse();
4143       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4144         if (IsSigned)
4145           Inst->setHasNoSignedWrap();
4146         else
4147           Inst->setHasNoUnsignedWrap();
4148       }
4149       return true;
4150   }
4151 
4152   llvm_unreachable("Unexpected overflow result");
4153 }
4154 
4155 /// Recognize and process idiom involving test for multiplication
4156 /// overflow.
4157 ///
4158 /// The caller has matched a pattern of the form:
4159 ///   I = cmp u (mul(zext A, zext B), V
4160 /// The function checks if this is a test for overflow and if so replaces
4161 /// multiplication with call to 'mul.with.overflow' intrinsic.
4162 ///
4163 /// \param I Compare instruction.
4164 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4165 ///               the compare instruction.  Must be of integer type.
4166 /// \param OtherVal The other argument of compare instruction.
4167 /// \returns Instruction which must replace the compare instruction, NULL if no
4168 ///          replacement required.
4169 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4170                                          Value *OtherVal, InstCombiner &IC) {
4171   // Don't bother doing this transformation for pointers, don't do it for
4172   // vectors.
4173   if (!isa<IntegerType>(MulVal->getType()))
4174     return nullptr;
4175 
4176   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4177   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4178   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4179   if (!MulInstr)
4180     return nullptr;
4181   assert(MulInstr->getOpcode() == Instruction::Mul);
4182 
4183   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4184        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4185   assert(LHS->getOpcode() == Instruction::ZExt);
4186   assert(RHS->getOpcode() == Instruction::ZExt);
4187   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4188 
4189   // Calculate type and width of the result produced by mul.with.overflow.
4190   Type *TyA = A->getType(), *TyB = B->getType();
4191   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4192            WidthB = TyB->getPrimitiveSizeInBits();
4193   unsigned MulWidth;
4194   Type *MulType;
4195   if (WidthB > WidthA) {
4196     MulWidth = WidthB;
4197     MulType = TyB;
4198   } else {
4199     MulWidth = WidthA;
4200     MulType = TyA;
4201   }
4202 
4203   // In order to replace the original mul with a narrower mul.with.overflow,
4204   // all uses must ignore upper bits of the product.  The number of used low
4205   // bits must be not greater than the width of mul.with.overflow.
4206   if (MulVal->hasNUsesOrMore(2))
4207     for (User *U : MulVal->users()) {
4208       if (U == &I)
4209         continue;
4210       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4211         // Check if truncation ignores bits above MulWidth.
4212         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4213         if (TruncWidth > MulWidth)
4214           return nullptr;
4215       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4216         // Check if AND ignores bits above MulWidth.
4217         if (BO->getOpcode() != Instruction::And)
4218           return nullptr;
4219         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4220           const APInt &CVal = CI->getValue();
4221           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4222             return nullptr;
4223         } else {
4224           // In this case we could have the operand of the binary operation
4225           // being defined in another block, and performing the replacement
4226           // could break the dominance relation.
4227           return nullptr;
4228         }
4229       } else {
4230         // Other uses prohibit this transformation.
4231         return nullptr;
4232       }
4233     }
4234 
4235   // Recognize patterns
4236   switch (I.getPredicate()) {
4237   case ICmpInst::ICMP_EQ:
4238   case ICmpInst::ICMP_NE:
4239     // Recognize pattern:
4240     //   mulval = mul(zext A, zext B)
4241     //   cmp eq/neq mulval, zext trunc mulval
4242     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4243       if (Zext->hasOneUse()) {
4244         Value *ZextArg = Zext->getOperand(0);
4245         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4246           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4247             break; //Recognized
4248       }
4249 
4250     // Recognize pattern:
4251     //   mulval = mul(zext A, zext B)
4252     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4253     ConstantInt *CI;
4254     Value *ValToMask;
4255     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4256       if (ValToMask != MulVal)
4257         return nullptr;
4258       const APInt &CVal = CI->getValue() + 1;
4259       if (CVal.isPowerOf2()) {
4260         unsigned MaskWidth = CVal.logBase2();
4261         if (MaskWidth == MulWidth)
4262           break; // Recognized
4263       }
4264     }
4265     return nullptr;
4266 
4267   case ICmpInst::ICMP_UGT:
4268     // Recognize pattern:
4269     //   mulval = mul(zext A, zext B)
4270     //   cmp ugt mulval, max
4271     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4272       APInt MaxVal = APInt::getMaxValue(MulWidth);
4273       MaxVal = MaxVal.zext(CI->getBitWidth());
4274       if (MaxVal.eq(CI->getValue()))
4275         break; // Recognized
4276     }
4277     return nullptr;
4278 
4279   case ICmpInst::ICMP_UGE:
4280     // Recognize pattern:
4281     //   mulval = mul(zext A, zext B)
4282     //   cmp uge mulval, max+1
4283     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4284       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4285       if (MaxVal.eq(CI->getValue()))
4286         break; // Recognized
4287     }
4288     return nullptr;
4289 
4290   case ICmpInst::ICMP_ULE:
4291     // Recognize pattern:
4292     //   mulval = mul(zext A, zext B)
4293     //   cmp ule mulval, max
4294     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4295       APInt MaxVal = APInt::getMaxValue(MulWidth);
4296       MaxVal = MaxVal.zext(CI->getBitWidth());
4297       if (MaxVal.eq(CI->getValue()))
4298         break; // Recognized
4299     }
4300     return nullptr;
4301 
4302   case ICmpInst::ICMP_ULT:
4303     // Recognize pattern:
4304     //   mulval = mul(zext A, zext B)
4305     //   cmp ule mulval, max + 1
4306     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4307       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4308       if (MaxVal.eq(CI->getValue()))
4309         break; // Recognized
4310     }
4311     return nullptr;
4312 
4313   default:
4314     return nullptr;
4315   }
4316 
4317   InstCombiner::BuilderTy &Builder = IC.Builder;
4318   Builder.SetInsertPoint(MulInstr);
4319 
4320   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4321   Value *MulA = A, *MulB = B;
4322   if (WidthA < MulWidth)
4323     MulA = Builder.CreateZExt(A, MulType);
4324   if (WidthB < MulWidth)
4325     MulB = Builder.CreateZExt(B, MulType);
4326   Function *F = Intrinsic::getDeclaration(
4327       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4328   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4329   IC.Worklist.Add(MulInstr);
4330 
4331   // If there are uses of mul result other than the comparison, we know that
4332   // they are truncation or binary AND. Change them to use result of
4333   // mul.with.overflow and adjust properly mask/size.
4334   if (MulVal->hasNUsesOrMore(2)) {
4335     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4336     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4337       User *U = *UI++;
4338       if (U == &I || U == OtherVal)
4339         continue;
4340       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4341         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4342           IC.replaceInstUsesWith(*TI, Mul);
4343         else
4344           TI->setOperand(0, Mul);
4345       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4346         assert(BO->getOpcode() == Instruction::And);
4347         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4348         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4349         APInt ShortMask = CI->getValue().trunc(MulWidth);
4350         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4351         Instruction *Zext =
4352             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4353         IC.Worklist.Add(Zext);
4354         IC.replaceInstUsesWith(*BO, Zext);
4355       } else {
4356         llvm_unreachable("Unexpected Binary operation");
4357       }
4358       IC.Worklist.Add(cast<Instruction>(U));
4359     }
4360   }
4361   if (isa<Instruction>(OtherVal))
4362     IC.Worklist.Add(cast<Instruction>(OtherVal));
4363 
4364   // The original icmp gets replaced with the overflow value, maybe inverted
4365   // depending on predicate.
4366   bool Inverse = false;
4367   switch (I.getPredicate()) {
4368   case ICmpInst::ICMP_NE:
4369     break;
4370   case ICmpInst::ICMP_EQ:
4371     Inverse = true;
4372     break;
4373   case ICmpInst::ICMP_UGT:
4374   case ICmpInst::ICMP_UGE:
4375     if (I.getOperand(0) == MulVal)
4376       break;
4377     Inverse = true;
4378     break;
4379   case ICmpInst::ICMP_ULT:
4380   case ICmpInst::ICMP_ULE:
4381     if (I.getOperand(1) == MulVal)
4382       break;
4383     Inverse = true;
4384     break;
4385   default:
4386     llvm_unreachable("Unexpected predicate");
4387   }
4388   if (Inverse) {
4389     Value *Res = Builder.CreateExtractValue(Call, 1);
4390     return BinaryOperator::CreateNot(Res);
4391   }
4392 
4393   return ExtractValueInst::Create(Call, 1);
4394 }
4395 
4396 /// When performing a comparison against a constant, it is possible that not all
4397 /// the bits in the LHS are demanded. This helper method computes the mask that
4398 /// IS demanded.
4399 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4400   const APInt *RHS;
4401   if (!match(I.getOperand(1), m_APInt(RHS)))
4402     return APInt::getAllOnesValue(BitWidth);
4403 
4404   // If this is a normal comparison, it demands all bits. If it is a sign bit
4405   // comparison, it only demands the sign bit.
4406   bool UnusedBit;
4407   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4408     return APInt::getSignMask(BitWidth);
4409 
4410   switch (I.getPredicate()) {
4411   // For a UGT comparison, we don't care about any bits that
4412   // correspond to the trailing ones of the comparand.  The value of these
4413   // bits doesn't impact the outcome of the comparison, because any value
4414   // greater than the RHS must differ in a bit higher than these due to carry.
4415   case ICmpInst::ICMP_UGT:
4416     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4417 
4418   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4419   // Any value less than the RHS must differ in a higher bit because of carries.
4420   case ICmpInst::ICMP_ULT:
4421     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4422 
4423   default:
4424     return APInt::getAllOnesValue(BitWidth);
4425   }
4426 }
4427 
4428 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4429 /// should be swapped.
4430 /// The decision is based on how many times these two operands are reused
4431 /// as subtract operands and their positions in those instructions.
4432 /// The rationale is that several architectures use the same instruction for
4433 /// both subtract and cmp. Thus, it is better if the order of those operands
4434 /// match.
4435 /// \return true if Op0 and Op1 should be swapped.
4436 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4437   // Filter out pointer values as those cannot appear directly in subtract.
4438   // FIXME: we may want to go through inttoptrs or bitcasts.
4439   if (Op0->getType()->isPointerTy())
4440     return false;
4441   // If a subtract already has the same operands as a compare, swapping would be
4442   // bad. If a subtract has the same operands as a compare but in reverse order,
4443   // then swapping is good.
4444   int GoodToSwap = 0;
4445   for (const User *U : Op0->users()) {
4446     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4447       GoodToSwap++;
4448     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4449       GoodToSwap--;
4450   }
4451   return GoodToSwap > 0;
4452 }
4453 
4454 /// Check that one use is in the same block as the definition and all
4455 /// other uses are in blocks dominated by a given block.
4456 ///
4457 /// \param DI Definition
4458 /// \param UI Use
4459 /// \param DB Block that must dominate all uses of \p DI outside
4460 ///           the parent block
4461 /// \return true when \p UI is the only use of \p DI in the parent block
4462 /// and all other uses of \p DI are in blocks dominated by \p DB.
4463 ///
4464 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4465                                     const Instruction *UI,
4466                                     const BasicBlock *DB) const {
4467   assert(DI && UI && "Instruction not defined\n");
4468   // Ignore incomplete definitions.
4469   if (!DI->getParent())
4470     return false;
4471   // DI and UI must be in the same block.
4472   if (DI->getParent() != UI->getParent())
4473     return false;
4474   // Protect from self-referencing blocks.
4475   if (DI->getParent() == DB)
4476     return false;
4477   for (const User *U : DI->users()) {
4478     auto *Usr = cast<Instruction>(U);
4479     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4480       return false;
4481   }
4482   return true;
4483 }
4484 
4485 /// Return true when the instruction sequence within a block is select-cmp-br.
4486 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4487   const BasicBlock *BB = SI->getParent();
4488   if (!BB)
4489     return false;
4490   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4491   if (!BI || BI->getNumSuccessors() != 2)
4492     return false;
4493   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4494   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4495     return false;
4496   return true;
4497 }
4498 
4499 /// True when a select result is replaced by one of its operands
4500 /// in select-icmp sequence. This will eventually result in the elimination
4501 /// of the select.
4502 ///
4503 /// \param SI    Select instruction
4504 /// \param Icmp  Compare instruction
4505 /// \param SIOpd Operand that replaces the select
4506 ///
4507 /// Notes:
4508 /// - The replacement is global and requires dominator information
4509 /// - The caller is responsible for the actual replacement
4510 ///
4511 /// Example:
4512 ///
4513 /// entry:
4514 ///  %4 = select i1 %3, %C* %0, %C* null
4515 ///  %5 = icmp eq %C* %4, null
4516 ///  br i1 %5, label %9, label %7
4517 ///  ...
4518 ///  ; <label>:7                                       ; preds = %entry
4519 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4520 ///  ...
4521 ///
4522 /// can be transformed to
4523 ///
4524 ///  %5 = icmp eq %C* %0, null
4525 ///  %6 = select i1 %3, i1 %5, i1 true
4526 ///  br i1 %6, label %9, label %7
4527 ///  ...
4528 ///  ; <label>:7                                       ; preds = %entry
4529 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4530 ///
4531 /// Similar when the first operand of the select is a constant or/and
4532 /// the compare is for not equal rather than equal.
4533 ///
4534 /// NOTE: The function is only called when the select and compare constants
4535 /// are equal, the optimization can work only for EQ predicates. This is not a
4536 /// major restriction since a NE compare should be 'normalized' to an equal
4537 /// compare, which usually happens in the combiner and test case
4538 /// select-cmp-br.ll checks for it.
4539 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4540                                              const ICmpInst *Icmp,
4541                                              const unsigned SIOpd) {
4542   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4543   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4544     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4545     // The check for the single predecessor is not the best that can be
4546     // done. But it protects efficiently against cases like when SI's
4547     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4548     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4549     // replaced can be reached on either path. So the uniqueness check
4550     // guarantees that the path all uses of SI (outside SI's parent) are on
4551     // is disjoint from all other paths out of SI. But that information
4552     // is more expensive to compute, and the trade-off here is in favor
4553     // of compile-time. It should also be noticed that we check for a single
4554     // predecessor and not only uniqueness. This to handle the situation when
4555     // Succ and Succ1 points to the same basic block.
4556     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4557       NumSel++;
4558       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4559       return true;
4560     }
4561   }
4562   return false;
4563 }
4564 
4565 /// Try to fold the comparison based on range information we can get by checking
4566 /// whether bits are known to be zero or one in the inputs.
4567 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4568   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4569   Type *Ty = Op0->getType();
4570   ICmpInst::Predicate Pred = I.getPredicate();
4571 
4572   // Get scalar or pointer size.
4573   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4574                           ? Ty->getScalarSizeInBits()
4575                           : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4576 
4577   if (!BitWidth)
4578     return nullptr;
4579 
4580   KnownBits Op0Known(BitWidth);
4581   KnownBits Op1Known(BitWidth);
4582 
4583   if (SimplifyDemandedBits(&I, 0,
4584                            getDemandedBitsLHSMask(I, BitWidth),
4585                            Op0Known, 0))
4586     return &I;
4587 
4588   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4589                            Op1Known, 0))
4590     return &I;
4591 
4592   // Given the known and unknown bits, compute a range that the LHS could be
4593   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4594   // EQ and NE we use unsigned values.
4595   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4596   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4597   if (I.isSigned()) {
4598     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4599     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4600   } else {
4601     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4602     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4603   }
4604 
4605   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4606   // out that the LHS or RHS is a constant. Constant fold this now, so that
4607   // code below can assume that Min != Max.
4608   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4609     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4610   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4611     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4612 
4613   // Based on the range information we know about the LHS, see if we can
4614   // simplify this comparison.  For example, (x&4) < 8 is always true.
4615   switch (Pred) {
4616   default:
4617     llvm_unreachable("Unknown icmp opcode!");
4618   case ICmpInst::ICMP_EQ:
4619   case ICmpInst::ICMP_NE: {
4620     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4621       return Pred == CmpInst::ICMP_EQ
4622                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4623                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4624     }
4625 
4626     // If all bits are known zero except for one, then we know at most one bit
4627     // is set. If the comparison is against zero, then this is a check to see if
4628     // *that* bit is set.
4629     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4630     if (Op1Known.isZero()) {
4631       // If the LHS is an AND with the same constant, look through it.
4632       Value *LHS = nullptr;
4633       const APInt *LHSC;
4634       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4635           *LHSC != Op0KnownZeroInverted)
4636         LHS = Op0;
4637 
4638       Value *X;
4639       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4640         APInt ValToCheck = Op0KnownZeroInverted;
4641         Type *XTy = X->getType();
4642         if (ValToCheck.isPowerOf2()) {
4643           // ((1 << X) & 8) == 0 -> X != 3
4644           // ((1 << X) & 8) != 0 -> X == 3
4645           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4646           auto NewPred = ICmpInst::getInversePredicate(Pred);
4647           return new ICmpInst(NewPred, X, CmpC);
4648         } else if ((++ValToCheck).isPowerOf2()) {
4649           // ((1 << X) & 7) == 0 -> X >= 3
4650           // ((1 << X) & 7) != 0 -> X  < 3
4651           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4652           auto NewPred =
4653               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4654           return new ICmpInst(NewPred, X, CmpC);
4655         }
4656       }
4657 
4658       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4659       const APInt *CI;
4660       if (Op0KnownZeroInverted.isOneValue() &&
4661           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4662         // ((8 >>u X) & 1) == 0 -> X != 3
4663         // ((8 >>u X) & 1) != 0 -> X == 3
4664         unsigned CmpVal = CI->countTrailingZeros();
4665         auto NewPred = ICmpInst::getInversePredicate(Pred);
4666         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4667       }
4668     }
4669     break;
4670   }
4671   case ICmpInst::ICMP_ULT: {
4672     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4673       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4674     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4675       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4676     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4677       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4678 
4679     const APInt *CmpC;
4680     if (match(Op1, m_APInt(CmpC))) {
4681       // A <u C -> A == C-1 if min(A)+1 == C
4682       if (*CmpC == Op0Min + 1)
4683         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4684                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4685       // X <u C --> X == 0, if the number of zero bits in the bottom of X
4686       // exceeds the log2 of C.
4687       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
4688         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4689                             Constant::getNullValue(Op1->getType()));
4690     }
4691     break;
4692   }
4693   case ICmpInst::ICMP_UGT: {
4694     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4695       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4696     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4697       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4698     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4699       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4700 
4701     const APInt *CmpC;
4702     if (match(Op1, m_APInt(CmpC))) {
4703       // A >u C -> A == C+1 if max(a)-1 == C
4704       if (*CmpC == Op0Max - 1)
4705         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4706                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4707       // X >u C --> X != 0, if the number of zero bits in the bottom of X
4708       // exceeds the log2 of C.
4709       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
4710         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
4711                             Constant::getNullValue(Op1->getType()));
4712     }
4713     break;
4714   }
4715   case ICmpInst::ICMP_SLT: {
4716     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4717       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4718     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4719       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4720     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4721       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4722     const APInt *CmpC;
4723     if (match(Op1, m_APInt(CmpC))) {
4724       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4725         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4726                             ConstantInt::get(Op1->getType(), *CmpC - 1));
4727     }
4728     break;
4729   }
4730   case ICmpInst::ICMP_SGT: {
4731     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4732       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4733     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4734       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4735     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4736       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4737     const APInt *CmpC;
4738     if (match(Op1, m_APInt(CmpC))) {
4739       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4740         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4741                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4742     }
4743     break;
4744   }
4745   case ICmpInst::ICMP_SGE:
4746     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4747     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4748       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4749     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4750       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4751     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
4752       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4753     break;
4754   case ICmpInst::ICMP_SLE:
4755     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4756     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4757       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4758     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4759       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4760     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
4761       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4762     break;
4763   case ICmpInst::ICMP_UGE:
4764     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4765     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4766       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4767     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4768       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4769     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
4770       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4771     break;
4772   case ICmpInst::ICMP_ULE:
4773     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4774     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4775       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4776     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4777       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4778     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
4779       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4780     break;
4781   }
4782 
4783   // Turn a signed comparison into an unsigned one if both operands are known to
4784   // have the same sign.
4785   if (I.isSigned() &&
4786       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4787        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4788     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4789 
4790   return nullptr;
4791 }
4792 
4793 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4794 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4795 /// allows them to be folded in visitICmpInst.
4796 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4797   ICmpInst::Predicate Pred = I.getPredicate();
4798   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4799       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4800     return nullptr;
4801 
4802   Value *Op0 = I.getOperand(0);
4803   Value *Op1 = I.getOperand(1);
4804   auto *Op1C = dyn_cast<Constant>(Op1);
4805   if (!Op1C)
4806     return nullptr;
4807 
4808   // Check if the constant operand can be safely incremented/decremented without
4809   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4810   // the edge cases for us, so we just assert on them. For vectors, we must
4811   // handle the edge cases.
4812   Type *Op1Type = Op1->getType();
4813   bool IsSigned = I.isSigned();
4814   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4815   auto *CI = dyn_cast<ConstantInt>(Op1C);
4816   if (CI) {
4817     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4818     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4819   } else if (Op1Type->isVectorTy()) {
4820     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4821     // are for scalar, we could remove the min/max checks. However, to do that,
4822     // we would have to use insertelement/shufflevector to replace edge values.
4823     unsigned NumElts = Op1Type->getVectorNumElements();
4824     for (unsigned i = 0; i != NumElts; ++i) {
4825       Constant *Elt = Op1C->getAggregateElement(i);
4826       if (!Elt)
4827         return nullptr;
4828 
4829       if (isa<UndefValue>(Elt))
4830         continue;
4831 
4832       // Bail out if we can't determine if this constant is min/max or if we
4833       // know that this constant is min/max.
4834       auto *CI = dyn_cast<ConstantInt>(Elt);
4835       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4836         return nullptr;
4837     }
4838   } else {
4839     // ConstantExpr?
4840     return nullptr;
4841   }
4842 
4843   // Increment or decrement the constant and set the new comparison predicate:
4844   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4845   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4846   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4847   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4848   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4849 }
4850 
4851 /// Integer compare with boolean values can always be turned into bitwise ops.
4852 static Instruction *canonicalizeICmpBool(ICmpInst &I,
4853                                          InstCombiner::BuilderTy &Builder) {
4854   Value *A = I.getOperand(0), *B = I.getOperand(1);
4855   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
4856 
4857   // A boolean compared to true/false can be simplified to Op0/true/false in
4858   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4859   // Cases not handled by InstSimplify are always 'not' of Op0.
4860   if (match(B, m_Zero())) {
4861     switch (I.getPredicate()) {
4862       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
4863       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
4864       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
4865         return BinaryOperator::CreateNot(A);
4866       default:
4867         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4868     }
4869   } else if (match(B, m_One())) {
4870     switch (I.getPredicate()) {
4871       case CmpInst::ICMP_NE:  // A !=  1 -> !A
4872       case CmpInst::ICMP_ULT: // A <u  1 -> !A
4873       case CmpInst::ICMP_SGT: // A >s -1 -> !A
4874         return BinaryOperator::CreateNot(A);
4875       default:
4876         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4877     }
4878   }
4879 
4880   switch (I.getPredicate()) {
4881   default:
4882     llvm_unreachable("Invalid icmp instruction!");
4883   case ICmpInst::ICMP_EQ:
4884     // icmp eq i1 A, B -> ~(A ^ B)
4885     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4886 
4887   case ICmpInst::ICMP_NE:
4888     // icmp ne i1 A, B -> A ^ B
4889     return BinaryOperator::CreateXor(A, B);
4890 
4891   case ICmpInst::ICMP_UGT:
4892     // icmp ugt -> icmp ult
4893     std::swap(A, B);
4894     LLVM_FALLTHROUGH;
4895   case ICmpInst::ICMP_ULT:
4896     // icmp ult i1 A, B -> ~A & B
4897     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4898 
4899   case ICmpInst::ICMP_SGT:
4900     // icmp sgt -> icmp slt
4901     std::swap(A, B);
4902     LLVM_FALLTHROUGH;
4903   case ICmpInst::ICMP_SLT:
4904     // icmp slt i1 A, B -> A & ~B
4905     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4906 
4907   case ICmpInst::ICMP_UGE:
4908     // icmp uge -> icmp ule
4909     std::swap(A, B);
4910     LLVM_FALLTHROUGH;
4911   case ICmpInst::ICMP_ULE:
4912     // icmp ule i1 A, B -> ~A | B
4913     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4914 
4915   case ICmpInst::ICMP_SGE:
4916     // icmp sge -> icmp sle
4917     std::swap(A, B);
4918     LLVM_FALLTHROUGH;
4919   case ICmpInst::ICMP_SLE:
4920     // icmp sle i1 A, B -> A | ~B
4921     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4922   }
4923 }
4924 
4925 // Transform pattern like:
4926 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
4927 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
4928 // Into:
4929 //   (X l>> Y) != 0
4930 //   (X l>> Y) == 0
4931 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
4932                                             InstCombiner::BuilderTy &Builder) {
4933   ICmpInst::Predicate Pred, NewPred;
4934   Value *X, *Y;
4935   if (match(&Cmp,
4936             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
4937     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4938     if (Cmp.getOperand(0) == X)
4939       Pred = Cmp.getSwappedPredicate();
4940 
4941     switch (Pred) {
4942     case ICmpInst::ICMP_ULE:
4943       NewPred = ICmpInst::ICMP_NE;
4944       break;
4945     case ICmpInst::ICMP_UGT:
4946       NewPred = ICmpInst::ICMP_EQ;
4947       break;
4948     default:
4949       return nullptr;
4950     }
4951   } else if (match(&Cmp, m_c_ICmp(Pred,
4952                                   m_OneUse(m_CombineOr(
4953                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
4954                                       m_Add(m_Shl(m_One(), m_Value(Y)),
4955                                             m_AllOnes()))),
4956                                   m_Value(X)))) {
4957     // The variant with 'add' is not canonical, (the variant with 'not' is)
4958     // we only get it because it has extra uses, and can't be canonicalized,
4959 
4960     // We want X to be the icmp's second operand, so swap predicate if it isn't.
4961     if (Cmp.getOperand(0) == X)
4962       Pred = Cmp.getSwappedPredicate();
4963 
4964     switch (Pred) {
4965     case ICmpInst::ICMP_ULT:
4966       NewPred = ICmpInst::ICMP_NE;
4967       break;
4968     case ICmpInst::ICMP_UGE:
4969       NewPred = ICmpInst::ICMP_EQ;
4970       break;
4971     default:
4972       return nullptr;
4973     }
4974   } else
4975     return nullptr;
4976 
4977   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
4978   Constant *Zero = Constant::getNullValue(NewX->getType());
4979   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
4980 }
4981 
4982 static Instruction *foldVectorCmp(CmpInst &Cmp,
4983                                   InstCombiner::BuilderTy &Builder) {
4984   // If both arguments of the cmp are shuffles that use the same mask and
4985   // shuffle within a single vector, move the shuffle after the cmp.
4986   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
4987   Value *V1, *V2;
4988   Constant *M;
4989   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
4990       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
4991       V1->getType() == V2->getType() &&
4992       (LHS->hasOneUse() || RHS->hasOneUse())) {
4993     // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
4994     CmpInst::Predicate P = Cmp.getPredicate();
4995     Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
4996                                        : Builder.CreateFCmp(P, V1, V2);
4997     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
4998   }
4999   return nullptr;
5000 }
5001 
5002 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5003   bool Changed = false;
5004   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5005   unsigned Op0Cplxity = getComplexity(Op0);
5006   unsigned Op1Cplxity = getComplexity(Op1);
5007 
5008   /// Orders the operands of the compare so that they are listed from most
5009   /// complex to least complex.  This puts constants before unary operators,
5010   /// before binary operators.
5011   if (Op0Cplxity < Op1Cplxity ||
5012       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5013     I.swapOperands();
5014     std::swap(Op0, Op1);
5015     Changed = true;
5016   }
5017 
5018   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
5019                                   SQ.getWithInstruction(&I)))
5020     return replaceInstUsesWith(I, V);
5021 
5022   // Comparing -val or val with non-zero is the same as just comparing val
5023   // ie, abs(val) != 0 -> val != 0
5024   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5025     Value *Cond, *SelectTrue, *SelectFalse;
5026     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5027                             m_Value(SelectFalse)))) {
5028       if (Value *V = dyn_castNegVal(SelectTrue)) {
5029         if (V == SelectFalse)
5030           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5031       }
5032       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5033         if (V == SelectTrue)
5034           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5035       }
5036     }
5037   }
5038 
5039   if (Op0->getType()->isIntOrIntVectorTy(1))
5040     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5041       return Res;
5042 
5043   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5044     return NewICmp;
5045 
5046   if (Instruction *Res = foldICmpWithConstant(I))
5047     return Res;
5048 
5049   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5050     return Res;
5051 
5052   if (Instruction *Res = foldICmpUsingKnownBits(I))
5053     return Res;
5054 
5055   // Test if the ICmpInst instruction is used exclusively by a select as
5056   // part of a minimum or maximum operation. If so, refrain from doing
5057   // any other folding. This helps out other analyses which understand
5058   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5059   // and CodeGen. And in this case, at least one of the comparison
5060   // operands has at least one user besides the compare (the select),
5061   // which would often largely negate the benefit of folding anyway.
5062   //
5063   // Do the same for the other patterns recognized by matchSelectPattern.
5064   if (I.hasOneUse())
5065     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5066       Value *A, *B;
5067       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5068       if (SPR.Flavor != SPF_UNKNOWN)
5069         return nullptr;
5070     }
5071 
5072   // Do this after checking for min/max to prevent infinite looping.
5073   if (Instruction *Res = foldICmpWithZero(I))
5074     return Res;
5075 
5076   // FIXME: We only do this after checking for min/max to prevent infinite
5077   // looping caused by a reverse canonicalization of these patterns for min/max.
5078   // FIXME: The organization of folds is a mess. These would naturally go into
5079   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5080   // down here after the min/max restriction.
5081   ICmpInst::Predicate Pred = I.getPredicate();
5082   const APInt *C;
5083   if (match(Op1, m_APInt(C))) {
5084     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5085     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5086       Constant *Zero = Constant::getNullValue(Op0->getType());
5087       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5088     }
5089 
5090     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5091     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5092       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5093       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5094     }
5095   }
5096 
5097   if (Instruction *Res = foldICmpInstWithConstant(I))
5098     return Res;
5099 
5100   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5101     return Res;
5102 
5103   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5104   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5105     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5106       return NI;
5107   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5108     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5109                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5110       return NI;
5111 
5112   // Try to optimize equality comparisons against alloca-based pointers.
5113   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5114     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5115     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5116       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5117         return New;
5118     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5119       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5120         return New;
5121   }
5122 
5123   if (Instruction *Res = foldICmpBitCast(I, Builder))
5124     return Res;
5125 
5126   if (isa<CastInst>(Op0)) {
5127     // Handle the special case of: icmp (cast bool to X), <cst>
5128     // This comes up when you have code like
5129     //   int X = A < B;
5130     //   if (X) ...
5131     // For generality, we handle any zero-extension of any operand comparison
5132     // with a constant or another cast from the same type.
5133     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
5134       if (Instruction *R = foldICmpWithCastAndCast(I))
5135         return R;
5136   }
5137 
5138   if (Instruction *Res = foldICmpBinOp(I))
5139     return Res;
5140 
5141   if (Instruction *Res = foldICmpWithMinMax(I))
5142     return Res;
5143 
5144   {
5145     Value *A, *B;
5146     // Transform (A & ~B) == 0 --> (A & B) != 0
5147     // and       (A & ~B) != 0 --> (A & B) == 0
5148     // if A is a power of 2.
5149     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5150         match(Op1, m_Zero()) &&
5151         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5152       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5153                           Op1);
5154 
5155     // ~X < ~Y --> Y < X
5156     // ~X < C -->  X > ~C
5157     if (match(Op0, m_Not(m_Value(A)))) {
5158       if (match(Op1, m_Not(m_Value(B))))
5159         return new ICmpInst(I.getPredicate(), B, A);
5160 
5161       const APInt *C;
5162       if (match(Op1, m_APInt(C)))
5163         return new ICmpInst(I.getSwappedPredicate(), A,
5164                             ConstantInt::get(Op1->getType(), ~(*C)));
5165     }
5166 
5167     Instruction *AddI = nullptr;
5168     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5169                                      m_Instruction(AddI))) &&
5170         isa<IntegerType>(A->getType())) {
5171       Value *Result;
5172       Constant *Overflow;
5173       if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B,
5174                                 *AddI, Result, Overflow)) {
5175         replaceInstUsesWith(*AddI, Result);
5176         return replaceInstUsesWith(I, Overflow);
5177       }
5178     }
5179 
5180     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5181     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5182       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5183         return R;
5184     }
5185     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5186       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5187         return R;
5188     }
5189   }
5190 
5191   if (Instruction *Res = foldICmpEquality(I))
5192     return Res;
5193 
5194   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5195   // an i1 which indicates whether or not we successfully did the swap.
5196   //
5197   // Replace comparisons between the old value and the expected value with the
5198   // indicator that 'cmpxchg' returns.
5199   //
5200   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5201   // spuriously fail.  In those cases, the old value may equal the expected
5202   // value but it is possible for the swap to not occur.
5203   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5204     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5205       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5206         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5207             !ACXI->isWeak())
5208           return ExtractValueInst::Create(ACXI, 1);
5209 
5210   {
5211     Value *X;
5212     const APInt *C;
5213     // icmp X+Cst, X
5214     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5215       return foldICmpAddOpConst(X, *C, I.getPredicate());
5216 
5217     // icmp X, X+Cst
5218     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5219       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5220   }
5221 
5222   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5223     return Res;
5224 
5225   if (I.getType()->isVectorTy())
5226     if (Instruction *Res = foldVectorCmp(I, Builder))
5227       return Res;
5228 
5229   return Changed ? &I : nullptr;
5230 }
5231 
5232 /// Fold fcmp ([us]itofp x, cst) if possible.
5233 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5234                                                 Constant *RHSC) {
5235   if (!isa<ConstantFP>(RHSC)) return nullptr;
5236   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5237 
5238   // Get the width of the mantissa.  We don't want to hack on conversions that
5239   // might lose information from the integer, e.g. "i64 -> float"
5240   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5241   if (MantissaWidth == -1) return nullptr;  // Unknown.
5242 
5243   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5244 
5245   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5246 
5247   if (I.isEquality()) {
5248     FCmpInst::Predicate P = I.getPredicate();
5249     bool IsExact = false;
5250     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5251     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5252 
5253     // If the floating point constant isn't an integer value, we know if we will
5254     // ever compare equal / not equal to it.
5255     if (!IsExact) {
5256       // TODO: Can never be -0.0 and other non-representable values
5257       APFloat RHSRoundInt(RHS);
5258       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5259       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5260         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5261           return replaceInstUsesWith(I, Builder.getFalse());
5262 
5263         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5264         return replaceInstUsesWith(I, Builder.getTrue());
5265       }
5266     }
5267 
5268     // TODO: If the constant is exactly representable, is it always OK to do
5269     // equality compares as integer?
5270   }
5271 
5272   // Check to see that the input is converted from an integer type that is small
5273   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5274   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5275   unsigned InputSize = IntTy->getScalarSizeInBits();
5276 
5277   // Following test does NOT adjust InputSize downwards for signed inputs,
5278   // because the most negative value still requires all the mantissa bits
5279   // to distinguish it from one less than that value.
5280   if ((int)InputSize > MantissaWidth) {
5281     // Conversion would lose accuracy. Check if loss can impact comparison.
5282     int Exp = ilogb(RHS);
5283     if (Exp == APFloat::IEK_Inf) {
5284       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5285       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5286         // Conversion could create infinity.
5287         return nullptr;
5288     } else {
5289       // Note that if RHS is zero or NaN, then Exp is negative
5290       // and first condition is trivially false.
5291       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5292         // Conversion could affect comparison.
5293         return nullptr;
5294     }
5295   }
5296 
5297   // Otherwise, we can potentially simplify the comparison.  We know that it
5298   // will always come through as an integer value and we know the constant is
5299   // not a NAN (it would have been previously simplified).
5300   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5301 
5302   ICmpInst::Predicate Pred;
5303   switch (I.getPredicate()) {
5304   default: llvm_unreachable("Unexpected predicate!");
5305   case FCmpInst::FCMP_UEQ:
5306   case FCmpInst::FCMP_OEQ:
5307     Pred = ICmpInst::ICMP_EQ;
5308     break;
5309   case FCmpInst::FCMP_UGT:
5310   case FCmpInst::FCMP_OGT:
5311     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5312     break;
5313   case FCmpInst::FCMP_UGE:
5314   case FCmpInst::FCMP_OGE:
5315     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5316     break;
5317   case FCmpInst::FCMP_ULT:
5318   case FCmpInst::FCMP_OLT:
5319     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5320     break;
5321   case FCmpInst::FCMP_ULE:
5322   case FCmpInst::FCMP_OLE:
5323     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5324     break;
5325   case FCmpInst::FCMP_UNE:
5326   case FCmpInst::FCMP_ONE:
5327     Pred = ICmpInst::ICMP_NE;
5328     break;
5329   case FCmpInst::FCMP_ORD:
5330     return replaceInstUsesWith(I, Builder.getTrue());
5331   case FCmpInst::FCMP_UNO:
5332     return replaceInstUsesWith(I, Builder.getFalse());
5333   }
5334 
5335   // Now we know that the APFloat is a normal number, zero or inf.
5336 
5337   // See if the FP constant is too large for the integer.  For example,
5338   // comparing an i8 to 300.0.
5339   unsigned IntWidth = IntTy->getScalarSizeInBits();
5340 
5341   if (!LHSUnsigned) {
5342     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5343     // and large values.
5344     APFloat SMax(RHS.getSemantics());
5345     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5346                           APFloat::rmNearestTiesToEven);
5347     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5348       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5349           Pred == ICmpInst::ICMP_SLE)
5350         return replaceInstUsesWith(I, Builder.getTrue());
5351       return replaceInstUsesWith(I, Builder.getFalse());
5352     }
5353   } else {
5354     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5355     // +INF and large values.
5356     APFloat UMax(RHS.getSemantics());
5357     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5358                           APFloat::rmNearestTiesToEven);
5359     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5360       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5361           Pred == ICmpInst::ICMP_ULE)
5362         return replaceInstUsesWith(I, Builder.getTrue());
5363       return replaceInstUsesWith(I, Builder.getFalse());
5364     }
5365   }
5366 
5367   if (!LHSUnsigned) {
5368     // See if the RHS value is < SignedMin.
5369     APFloat SMin(RHS.getSemantics());
5370     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5371                           APFloat::rmNearestTiesToEven);
5372     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5373       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5374           Pred == ICmpInst::ICMP_SGE)
5375         return replaceInstUsesWith(I, Builder.getTrue());
5376       return replaceInstUsesWith(I, Builder.getFalse());
5377     }
5378   } else {
5379     // See if the RHS value is < UnsignedMin.
5380     APFloat SMin(RHS.getSemantics());
5381     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5382                           APFloat::rmNearestTiesToEven);
5383     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5384       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5385           Pred == ICmpInst::ICMP_UGE)
5386         return replaceInstUsesWith(I, Builder.getTrue());
5387       return replaceInstUsesWith(I, Builder.getFalse());
5388     }
5389   }
5390 
5391   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5392   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5393   // casting the FP value to the integer value and back, checking for equality.
5394   // Don't do this for zero, because -0.0 is not fractional.
5395   Constant *RHSInt = LHSUnsigned
5396     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5397     : ConstantExpr::getFPToSI(RHSC, IntTy);
5398   if (!RHS.isZero()) {
5399     bool Equal = LHSUnsigned
5400       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5401       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5402     if (!Equal) {
5403       // If we had a comparison against a fractional value, we have to adjust
5404       // the compare predicate and sometimes the value.  RHSC is rounded towards
5405       // zero at this point.
5406       switch (Pred) {
5407       default: llvm_unreachable("Unexpected integer comparison!");
5408       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5409         return replaceInstUsesWith(I, Builder.getTrue());
5410       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5411         return replaceInstUsesWith(I, Builder.getFalse());
5412       case ICmpInst::ICMP_ULE:
5413         // (float)int <= 4.4   --> int <= 4
5414         // (float)int <= -4.4  --> false
5415         if (RHS.isNegative())
5416           return replaceInstUsesWith(I, Builder.getFalse());
5417         break;
5418       case ICmpInst::ICMP_SLE:
5419         // (float)int <= 4.4   --> int <= 4
5420         // (float)int <= -4.4  --> int < -4
5421         if (RHS.isNegative())
5422           Pred = ICmpInst::ICMP_SLT;
5423         break;
5424       case ICmpInst::ICMP_ULT:
5425         // (float)int < -4.4   --> false
5426         // (float)int < 4.4    --> int <= 4
5427         if (RHS.isNegative())
5428           return replaceInstUsesWith(I, Builder.getFalse());
5429         Pred = ICmpInst::ICMP_ULE;
5430         break;
5431       case ICmpInst::ICMP_SLT:
5432         // (float)int < -4.4   --> int < -4
5433         // (float)int < 4.4    --> int <= 4
5434         if (!RHS.isNegative())
5435           Pred = ICmpInst::ICMP_SLE;
5436         break;
5437       case ICmpInst::ICMP_UGT:
5438         // (float)int > 4.4    --> int > 4
5439         // (float)int > -4.4   --> true
5440         if (RHS.isNegative())
5441           return replaceInstUsesWith(I, Builder.getTrue());
5442         break;
5443       case ICmpInst::ICMP_SGT:
5444         // (float)int > 4.4    --> int > 4
5445         // (float)int > -4.4   --> int >= -4
5446         if (RHS.isNegative())
5447           Pred = ICmpInst::ICMP_SGE;
5448         break;
5449       case ICmpInst::ICMP_UGE:
5450         // (float)int >= -4.4   --> true
5451         // (float)int >= 4.4    --> int > 4
5452         if (RHS.isNegative())
5453           return replaceInstUsesWith(I, Builder.getTrue());
5454         Pred = ICmpInst::ICMP_UGT;
5455         break;
5456       case ICmpInst::ICMP_SGE:
5457         // (float)int >= -4.4   --> int >= -4
5458         // (float)int >= 4.4    --> int > 4
5459         if (!RHS.isNegative())
5460           Pred = ICmpInst::ICMP_SGT;
5461         break;
5462       }
5463     }
5464   }
5465 
5466   // Lower this FP comparison into an appropriate integer version of the
5467   // comparison.
5468   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5469 }
5470 
5471 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5472 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5473                                               Constant *RHSC) {
5474   // When C is not 0.0 and infinities are not allowed:
5475   // (C / X) < 0.0 is a sign-bit test of X
5476   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5477   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5478   //
5479   // Proof:
5480   // Multiply (C / X) < 0.0 by X * X / C.
5481   // - X is non zero, if it is the flag 'ninf' is violated.
5482   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5483   //   the predicate. C is also non zero by definition.
5484   //
5485   // Thus X * X / C is non zero and the transformation is valid. [qed]
5486 
5487   FCmpInst::Predicate Pred = I.getPredicate();
5488 
5489   // Check that predicates are valid.
5490   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5491       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5492     return nullptr;
5493 
5494   // Check that RHS operand is zero.
5495   if (!match(RHSC, m_AnyZeroFP()))
5496     return nullptr;
5497 
5498   // Check fastmath flags ('ninf').
5499   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5500     return nullptr;
5501 
5502   // Check the properties of the dividend. It must not be zero to avoid a
5503   // division by zero (see Proof).
5504   const APFloat *C;
5505   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5506     return nullptr;
5507 
5508   if (C->isZero())
5509     return nullptr;
5510 
5511   // Get swapped predicate if necessary.
5512   if (C->isNegative())
5513     Pred = I.getSwappedPredicate();
5514 
5515   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5516 }
5517 
5518 /// Optimize fabs(X) compared with zero.
5519 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5520   Value *X;
5521   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5522       !match(I.getOperand(1), m_PosZeroFP()))
5523     return nullptr;
5524 
5525   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5526     I->setPredicate(P);
5527     I->setOperand(0, X);
5528     return I;
5529   };
5530 
5531   switch (I.getPredicate()) {
5532   case FCmpInst::FCMP_UGE:
5533   case FCmpInst::FCMP_OLT:
5534     // fabs(X) >= 0.0 --> true
5535     // fabs(X) <  0.0 --> false
5536     llvm_unreachable("fcmp should have simplified");
5537 
5538   case FCmpInst::FCMP_OGT:
5539     // fabs(X) > 0.0 --> X != 0.0
5540     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5541 
5542   case FCmpInst::FCMP_UGT:
5543     // fabs(X) u> 0.0 --> X u!= 0.0
5544     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5545 
5546   case FCmpInst::FCMP_OLE:
5547     // fabs(X) <= 0.0 --> X == 0.0
5548     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5549 
5550   case FCmpInst::FCMP_ULE:
5551     // fabs(X) u<= 0.0 --> X u== 0.0
5552     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5553 
5554   case FCmpInst::FCMP_OGE:
5555     // fabs(X) >= 0.0 --> !isnan(X)
5556     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5557     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5558 
5559   case FCmpInst::FCMP_ULT:
5560     // fabs(X) u< 0.0 --> isnan(X)
5561     assert(!I.hasNoNaNs() && "fcmp should have simplified");
5562     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5563 
5564   case FCmpInst::FCMP_OEQ:
5565   case FCmpInst::FCMP_UEQ:
5566   case FCmpInst::FCMP_ONE:
5567   case FCmpInst::FCMP_UNE:
5568   case FCmpInst::FCMP_ORD:
5569   case FCmpInst::FCMP_UNO:
5570     // Look through the fabs() because it doesn't change anything but the sign.
5571     // fabs(X) == 0.0 --> X == 0.0,
5572     // fabs(X) != 0.0 --> X != 0.0
5573     // isnan(fabs(X)) --> isnan(X)
5574     // !isnan(fabs(X) --> !isnan(X)
5575     return replacePredAndOp0(&I, I.getPredicate(), X);
5576 
5577   default:
5578     return nullptr;
5579   }
5580 }
5581 
5582 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5583   bool Changed = false;
5584 
5585   /// Orders the operands of the compare so that they are listed from most
5586   /// complex to least complex.  This puts constants before unary operators,
5587   /// before binary operators.
5588   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5589     I.swapOperands();
5590     Changed = true;
5591   }
5592 
5593   const CmpInst::Predicate Pred = I.getPredicate();
5594   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5595   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5596                                   SQ.getWithInstruction(&I)))
5597     return replaceInstUsesWith(I, V);
5598 
5599   // Simplify 'fcmp pred X, X'
5600   Type *OpType = Op0->getType();
5601   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
5602   if (Op0 == Op1) {
5603     switch (Pred) {
5604       default: break;
5605     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
5606     case FCmpInst::FCMP_ULT:    // True if unordered or less than
5607     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
5608     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
5609       // Canonicalize these to be 'fcmp uno %X, 0.0'.
5610       I.setPredicate(FCmpInst::FCMP_UNO);
5611       I.setOperand(1, Constant::getNullValue(OpType));
5612       return &I;
5613 
5614     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
5615     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
5616     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
5617     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
5618       // Canonicalize these to be 'fcmp ord %X, 0.0'.
5619       I.setPredicate(FCmpInst::FCMP_ORD);
5620       I.setOperand(1, Constant::getNullValue(OpType));
5621       return &I;
5622     }
5623   }
5624 
5625   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5626   // then canonicalize the operand to 0.0.
5627   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5628     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5629       I.setOperand(0, ConstantFP::getNullValue(OpType));
5630       return &I;
5631     }
5632     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5633       I.setOperand(1, ConstantFP::getNullValue(OpType));
5634       return &I;
5635     }
5636   }
5637 
5638   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5639   Value *X, *Y;
5640   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
5641     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5642 
5643   // Test if the FCmpInst instruction is used exclusively by a select as
5644   // part of a minimum or maximum operation. If so, refrain from doing
5645   // any other folding. This helps out other analyses which understand
5646   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5647   // and CodeGen. And in this case, at least one of the comparison
5648   // operands has at least one user besides the compare (the select),
5649   // which would often largely negate the benefit of folding anyway.
5650   if (I.hasOneUse())
5651     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5652       Value *A, *B;
5653       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5654       if (SPR.Flavor != SPF_UNKNOWN)
5655         return nullptr;
5656     }
5657 
5658   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5659   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5660   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5661     I.setOperand(1, ConstantFP::getNullValue(OpType));
5662     return &I;
5663   }
5664 
5665   // Handle fcmp with instruction LHS and constant RHS.
5666   Instruction *LHSI;
5667   Constant *RHSC;
5668   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
5669     switch (LHSI->getOpcode()) {
5670     case Instruction::PHI:
5671       // Only fold fcmp into the PHI if the phi and fcmp are in the same
5672       // block.  If in the same block, we're encouraging jump threading.  If
5673       // not, we are just pessimizing the code by making an i1 phi.
5674       if (LHSI->getParent() == I.getParent())
5675         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
5676           return NV;
5677       break;
5678     case Instruction::SIToFP:
5679     case Instruction::UIToFP:
5680       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
5681         return NV;
5682       break;
5683     case Instruction::FDiv:
5684       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
5685         return NV;
5686       break;
5687     case Instruction::Load:
5688       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
5689         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
5690           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
5691               !cast<LoadInst>(LHSI)->isVolatile())
5692             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
5693               return Res;
5694       break;
5695   }
5696   }
5697 
5698   if (Instruction *R = foldFabsWithFcmpZero(I))
5699     return R;
5700 
5701   if (match(Op0, m_FNeg(m_Value(X)))) {
5702     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
5703     Constant *C;
5704     if (match(Op1, m_Constant(C))) {
5705       Constant *NegC = ConstantExpr::getFNeg(C);
5706       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
5707     }
5708   }
5709 
5710   if (match(Op0, m_FPExt(m_Value(X)))) {
5711     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
5712     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
5713       return new FCmpInst(Pred, X, Y, "", &I);
5714 
5715     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
5716     const APFloat *C;
5717     if (match(Op1, m_APFloat(C))) {
5718       const fltSemantics &FPSem =
5719           X->getType()->getScalarType()->getFltSemantics();
5720       bool Lossy;
5721       APFloat TruncC = *C;
5722       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
5723 
5724       // Avoid lossy conversions and denormals.
5725       // Zero is a special case that's OK to convert.
5726       APFloat Fabs = TruncC;
5727       Fabs.clearSign();
5728       if (!Lossy &&
5729           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
5730             APFloat::cmpLessThan) || Fabs.isZero())) {
5731         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
5732         return new FCmpInst(Pred, X, NewC, "", &I);
5733       }
5734     }
5735   }
5736 
5737   if (I.getType()->isVectorTy())
5738     if (Instruction *Res = foldVectorCmp(I, Builder))
5739       return Res;
5740 
5741   return Changed ? &I : nullptr;
5742 }
5743