1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) 194 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 195 196 // If the element is masked, handle it. 197 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 198 199 // Find out if the comparison would be true or false for the i'th element. 200 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 201 CompareRHS, DL, &TLI); 202 // If the result is undef for this element, ignore it. 203 if (isa<UndefValue>(C)) { 204 // Extend range state machines to cover this element in case there is an 205 // undef in the middle of the range. 206 if (TrueRangeEnd == (int)i-1) 207 TrueRangeEnd = i; 208 if (FalseRangeEnd == (int)i-1) 209 FalseRangeEnd = i; 210 continue; 211 } 212 213 // If we can't compute the result for any of the elements, we have to give 214 // up evaluating the entire conditional. 215 if (!isa<ConstantInt>(C)) return nullptr; 216 217 // Otherwise, we know if the comparison is true or false for this element, 218 // update our state machines. 219 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 220 221 // State machine for single/double/range index comparison. 222 if (IsTrueForElt) { 223 // Update the TrueElement state machine. 224 if (FirstTrueElement == Undefined) 225 FirstTrueElement = TrueRangeEnd = i; // First true element. 226 else { 227 // Update double-compare state machine. 228 if (SecondTrueElement == Undefined) 229 SecondTrueElement = i; 230 else 231 SecondTrueElement = Overdefined; 232 233 // Update range state machine. 234 if (TrueRangeEnd == (int)i-1) 235 TrueRangeEnd = i; 236 else 237 TrueRangeEnd = Overdefined; 238 } 239 } else { 240 // Update the FalseElement state machine. 241 if (FirstFalseElement == Undefined) 242 FirstFalseElement = FalseRangeEnd = i; // First false element. 243 else { 244 // Update double-compare state machine. 245 if (SecondFalseElement == Undefined) 246 SecondFalseElement = i; 247 else 248 SecondFalseElement = Overdefined; 249 250 // Update range state machine. 251 if (FalseRangeEnd == (int)i-1) 252 FalseRangeEnd = i; 253 else 254 FalseRangeEnd = Overdefined; 255 } 256 } 257 258 // If this element is in range, update our magic bitvector. 259 if (i < 64 && IsTrueForElt) 260 MagicBitvector |= 1ULL << i; 261 262 // If all of our states become overdefined, bail out early. Since the 263 // predicate is expensive, only check it every 8 elements. This is only 264 // really useful for really huge arrays. 265 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 266 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 267 FalseRangeEnd == Overdefined) 268 return nullptr; 269 } 270 271 // Now that we've scanned the entire array, emit our new comparison(s). We 272 // order the state machines in complexity of the generated code. 273 Value *Idx = GEP->getOperand(2); 274 275 // If the index is larger than the pointer size of the target, truncate the 276 // index down like the GEP would do implicitly. We don't have to do this for 277 // an inbounds GEP because the index can't be out of range. 278 if (!GEP->isInBounds()) { 279 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 280 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 281 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 282 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 283 } 284 285 // If inbounds keyword is not present, Idx * ElementSize can overflow. 286 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 287 // Then, there are two possible values for Idx to match offset 0: 288 // 0x00..00, 0x80..00. 289 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 290 // comparison is false if Idx was 0x80..00. 291 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 292 unsigned ElementSize = 293 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 294 auto MaskIdx = [&](Value* Idx){ 295 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 296 Value *Mask = ConstantInt::get(Idx->getType(), -1); 297 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 298 Idx = Builder.CreateAnd(Idx, Mask); 299 } 300 return Idx; 301 }; 302 303 // If the comparison is only true for one or two elements, emit direct 304 // comparisons. 305 if (SecondTrueElement != Overdefined) { 306 Idx = MaskIdx(Idx); 307 // None true -> false. 308 if (FirstTrueElement == Undefined) 309 return replaceInstUsesWith(ICI, Builder.getFalse()); 310 311 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 312 313 // True for one element -> 'i == 47'. 314 if (SecondTrueElement == Undefined) 315 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 316 317 // True for two elements -> 'i == 47 | i == 72'. 318 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 319 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 320 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 321 return BinaryOperator::CreateOr(C1, C2); 322 } 323 324 // If the comparison is only false for one or two elements, emit direct 325 // comparisons. 326 if (SecondFalseElement != Overdefined) { 327 Idx = MaskIdx(Idx); 328 // None false -> true. 329 if (FirstFalseElement == Undefined) 330 return replaceInstUsesWith(ICI, Builder.getTrue()); 331 332 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 333 334 // False for one element -> 'i != 47'. 335 if (SecondFalseElement == Undefined) 336 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 337 338 // False for two elements -> 'i != 47 & i != 72'. 339 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 340 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 341 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 342 return BinaryOperator::CreateAnd(C1, C2); 343 } 344 345 // If the comparison can be replaced with a range comparison for the elements 346 // where it is true, emit the range check. 347 if (TrueRangeEnd != Overdefined) { 348 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 349 Idx = MaskIdx(Idx); 350 351 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 352 if (FirstTrueElement) { 353 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 354 Idx = Builder.CreateAdd(Idx, Offs); 355 } 356 357 Value *End = ConstantInt::get(Idx->getType(), 358 TrueRangeEnd-FirstTrueElement+1); 359 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 360 } 361 362 // False range check. 363 if (FalseRangeEnd != Overdefined) { 364 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 367 if (FirstFalseElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 FalseRangeEnd-FirstFalseElement); 374 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 375 } 376 377 // If a magic bitvector captures the entire comparison state 378 // of this load, replace it with computation that does: 379 // ((magic_cst >> i) & 1) != 0 380 { 381 Type *Ty = nullptr; 382 383 // Look for an appropriate type: 384 // - The type of Idx if the magic fits 385 // - The smallest fitting legal type 386 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 387 Ty = Idx->getType(); 388 else 389 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 390 391 if (Ty) { 392 Idx = MaskIdx(Idx); 393 Value *V = Builder.CreateIntCast(Idx, Ty, false); 394 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 395 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 396 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 397 } 398 } 399 400 return nullptr; 401 } 402 403 /// Return a value that can be used to compare the *offset* implied by a GEP to 404 /// zero. For example, if we have &A[i], we want to return 'i' for 405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 406 /// are involved. The above expression would also be legal to codegen as 407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 408 /// This latter form is less amenable to optimization though, and we are allowed 409 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 410 /// 411 /// If we can't emit an optimized form for this expression, this returns null. 412 /// 413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 414 const DataLayout &DL) { 415 gep_type_iterator GTI = gep_type_begin(GEP); 416 417 // Check to see if this gep only has a single variable index. If so, and if 418 // any constant indices are a multiple of its scale, then we can compute this 419 // in terms of the scale of the variable index. For example, if the GEP 420 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 421 // because the expression will cross zero at the same point. 422 unsigned i, e = GEP->getNumOperands(); 423 int64_t Offset = 0; 424 for (i = 1; i != e; ++i, ++GTI) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 426 // Compute the aggregate offset of constant indices. 427 if (CI->isZero()) continue; 428 429 // Handle a struct index, which adds its field offset to the pointer. 430 if (StructType *STy = GTI.getStructTypeOrNull()) { 431 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 432 } else { 433 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 434 Offset += Size*CI->getSExtValue(); 435 } 436 } else { 437 // Found our variable index. 438 break; 439 } 440 } 441 442 // If there are no variable indices, we must have a constant offset, just 443 // evaluate it the general way. 444 if (i == e) return nullptr; 445 446 Value *VariableIdx = GEP->getOperand(i); 447 // Determine the scale factor of the variable element. For example, this is 448 // 4 if the variable index is into an array of i32. 449 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 450 451 // Verify that there are no other variable indices. If so, emit the hard way. 452 for (++i, ++GTI; i != e; ++i, ++GTI) { 453 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 454 if (!CI) return nullptr; 455 456 // Compute the aggregate offset of constant indices. 457 if (CI->isZero()) continue; 458 459 // Handle a struct index, which adds its field offset to the pointer. 460 if (StructType *STy = GTI.getStructTypeOrNull()) { 461 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 462 } else { 463 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 464 Offset += Size*CI->getSExtValue(); 465 } 466 } 467 468 // Okay, we know we have a single variable index, which must be a 469 // pointer/array/vector index. If there is no offset, life is simple, return 470 // the index. 471 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 472 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 473 if (Offset == 0) { 474 // Cast to intptrty in case a truncation occurs. If an extension is needed, 475 // we don't need to bother extending: the extension won't affect where the 476 // computation crosses zero. 477 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 478 IntPtrWidth) { 479 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 480 } 481 return VariableIdx; 482 } 483 484 // Otherwise, there is an index. The computation we will do will be modulo 485 // the pointer size. 486 Offset = SignExtend64(Offset, IntPtrWidth); 487 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 488 489 // To do this transformation, any constant index must be a multiple of the 490 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 491 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 492 // multiple of the variable scale. 493 int64_t NewOffs = Offset / (int64_t)VariableScale; 494 if (Offset != NewOffs*(int64_t)VariableScale) 495 return nullptr; 496 497 // Okay, we can do this evaluation. Start by converting the index to intptr. 498 if (VariableIdx->getType() != IntPtrTy) 499 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 500 true /*Signed*/); 501 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 502 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 503 } 504 505 /// Returns true if we can rewrite Start as a GEP with pointer Base 506 /// and some integer offset. The nodes that need to be re-written 507 /// for this transformation will be added to Explored. 508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 509 const DataLayout &DL, 510 SetVector<Value *> &Explored) { 511 SmallVector<Value *, 16> WorkList(1, Start); 512 Explored.insert(Base); 513 514 // The following traversal gives us an order which can be used 515 // when doing the final transformation. Since in the final 516 // transformation we create the PHI replacement instructions first, 517 // we don't have to get them in any particular order. 518 // 519 // However, for other instructions we will have to traverse the 520 // operands of an instruction first, which means that we have to 521 // do a post-order traversal. 522 while (!WorkList.empty()) { 523 SetVector<PHINode *> PHIs; 524 525 while (!WorkList.empty()) { 526 if (Explored.size() >= 100) 527 return false; 528 529 Value *V = WorkList.back(); 530 531 if (Explored.contains(V)) { 532 WorkList.pop_back(); 533 continue; 534 } 535 536 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 537 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 538 // We've found some value that we can't explore which is different from 539 // the base. Therefore we can't do this transformation. 540 return false; 541 542 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 543 auto *CI = cast<CastInst>(V); 544 if (!CI->isNoopCast(DL)) 545 return false; 546 547 if (!Explored.contains(CI->getOperand(0))) 548 WorkList.push_back(CI->getOperand(0)); 549 } 550 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 // We're limiting the GEP to having one index. This will preserve 553 // the original pointer type. We could handle more cases in the 554 // future. 555 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 556 GEP->getSourceElementType() != ElemTy) 557 return false; 558 559 if (!Explored.contains(GEP->getOperand(0))) 560 WorkList.push_back(GEP->getOperand(0)); 561 } 562 563 if (WorkList.back() == V) { 564 WorkList.pop_back(); 565 // We've finished visiting this node, mark it as such. 566 Explored.insert(V); 567 } 568 569 if (auto *PN = dyn_cast<PHINode>(V)) { 570 // We cannot transform PHIs on unsplittable basic blocks. 571 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 572 return false; 573 Explored.insert(PN); 574 PHIs.insert(PN); 575 } 576 } 577 578 // Explore the PHI nodes further. 579 for (auto *PN : PHIs) 580 for (Value *Op : PN->incoming_values()) 581 if (!Explored.contains(Op)) 582 WorkList.push_back(Op); 583 } 584 585 // Make sure that we can do this. Since we can't insert GEPs in a basic 586 // block before a PHI node, we can't easily do this transformation if 587 // we have PHI node users of transformed instructions. 588 for (Value *Val : Explored) { 589 for (Value *Use : Val->uses()) { 590 591 auto *PHI = dyn_cast<PHINode>(Use); 592 auto *Inst = dyn_cast<Instruction>(Val); 593 594 if (Inst == Base || Inst == PHI || !Inst || !PHI || 595 !Explored.contains(PHI)) 596 continue; 597 598 if (PHI->getParent() == Inst->getParent()) 599 return false; 600 } 601 } 602 return true; 603 } 604 605 // Sets the appropriate insert point on Builder where we can add 606 // a replacement Instruction for V (if that is possible). 607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 608 bool Before = true) { 609 if (auto *PHI = dyn_cast<PHINode>(V)) { 610 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 611 return; 612 } 613 if (auto *I = dyn_cast<Instruction>(V)) { 614 if (!Before) 615 I = &*std::next(I->getIterator()); 616 Builder.SetInsertPoint(I); 617 return; 618 } 619 if (auto *A = dyn_cast<Argument>(V)) { 620 // Set the insertion point in the entry block. 621 BasicBlock &Entry = A->getParent()->getEntryBlock(); 622 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 623 return; 624 } 625 // Otherwise, this is a constant and we don't need to set a new 626 // insertion point. 627 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 628 } 629 630 /// Returns a re-written value of Start as an indexed GEP using Base as a 631 /// pointer. 632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 633 const DataLayout &DL, 634 SetVector<Value *> &Explored) { 635 // Perform all the substitutions. This is a bit tricky because we can 636 // have cycles in our use-def chains. 637 // 1. Create the PHI nodes without any incoming values. 638 // 2. Create all the other values. 639 // 3. Add the edges for the PHI nodes. 640 // 4. Emit GEPs to get the original pointers. 641 // 5. Remove the original instructions. 642 Type *IndexType = IntegerType::get( 643 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 644 645 DenseMap<Value *, Value *> NewInsts; 646 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 647 648 // Create the new PHI nodes, without adding any incoming values. 649 for (Value *Val : Explored) { 650 if (Val == Base) 651 continue; 652 // Create empty phi nodes. This avoids cyclic dependencies when creating 653 // the remaining instructions. 654 if (auto *PHI = dyn_cast<PHINode>(Val)) 655 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 656 PHI->getName() + ".idx", PHI); 657 } 658 IRBuilder<> Builder(Base->getContext()); 659 660 // Create all the other instructions. 661 for (Value *Val : Explored) { 662 663 if (NewInsts.find(Val) != NewInsts.end()) 664 continue; 665 666 if (auto *CI = dyn_cast<CastInst>(Val)) { 667 // Don't get rid of the intermediate variable here; the store can grow 668 // the map which will invalidate the reference to the input value. 669 Value *V = NewInsts[CI->getOperand(0)]; 670 NewInsts[CI] = V; 671 continue; 672 } 673 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 674 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 675 : GEP->getOperand(1); 676 setInsertionPoint(Builder, GEP); 677 // Indices might need to be sign extended. GEPs will magically do 678 // this, but we need to do it ourselves here. 679 if (Index->getType()->getScalarSizeInBits() != 680 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 681 Index = Builder.CreateSExtOrTrunc( 682 Index, NewInsts[GEP->getOperand(0)]->getType(), 683 GEP->getOperand(0)->getName() + ".sext"); 684 } 685 686 auto *Op = NewInsts[GEP->getOperand(0)]; 687 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 688 NewInsts[GEP] = Index; 689 else 690 NewInsts[GEP] = Builder.CreateNSWAdd( 691 Op, Index, GEP->getOperand(0)->getName() + ".add"); 692 continue; 693 } 694 if (isa<PHINode>(Val)) 695 continue; 696 697 llvm_unreachable("Unexpected instruction type"); 698 } 699 700 // Add the incoming values to the PHI nodes. 701 for (Value *Val : Explored) { 702 if (Val == Base) 703 continue; 704 // All the instructions have been created, we can now add edges to the 705 // phi nodes. 706 if (auto *PHI = dyn_cast<PHINode>(Val)) { 707 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 708 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 709 Value *NewIncoming = PHI->getIncomingValue(I); 710 711 if (NewInsts.find(NewIncoming) != NewInsts.end()) 712 NewIncoming = NewInsts[NewIncoming]; 713 714 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 715 } 716 } 717 } 718 719 PointerType *PtrTy = 720 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 721 for (Value *Val : Explored) { 722 if (Val == Base) 723 continue; 724 725 // Depending on the type, for external users we have to emit 726 // a GEP or a GEP + ptrtoint. 727 setInsertionPoint(Builder, Val, false); 728 729 // Cast base to the expected type. 730 Value *NewVal = Builder.CreateBitOrPointerCast( 731 Base, PtrTy, Start->getName() + "to.ptr"); 732 NewVal = Builder.CreateInBoundsGEP( 733 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 NewVal = Builder.CreateBitOrPointerCast( 735 NewVal, Val->getType(), Val->getName() + ".conv"); 736 Val->replaceAllUsesWith(NewVal); 737 } 738 739 return NewInsts[Start]; 740 } 741 742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 743 /// the input Value as a constant indexed GEP. Returns a pair containing 744 /// the GEPs Pointer and Index. 745 static std::pair<Value *, Value *> 746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 747 Type *IndexType = IntegerType::get(V->getContext(), 748 DL.getIndexTypeSizeInBits(V->getType())); 749 750 Constant *Index = ConstantInt::getNullValue(IndexType); 751 while (true) { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 // We accept only inbouds GEPs here to exclude the possibility of 754 // overflow. 755 if (!GEP->isInBounds()) 756 break; 757 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 758 GEP->getSourceElementType() == ElemTy) { 759 V = GEP->getOperand(0); 760 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 761 Index = ConstantExpr::getAdd( 762 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 763 continue; 764 } 765 break; 766 } 767 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 768 if (!CI->isNoopCast(DL)) 769 break; 770 V = CI->getOperand(0); 771 continue; 772 } 773 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 774 if (!CI->isNoopCast(DL)) 775 break; 776 V = CI->getOperand(0); 777 continue; 778 } 779 break; 780 } 781 return {V, Index}; 782 } 783 784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 785 /// We can look through PHIs, GEPs and casts in order to determine a common base 786 /// between GEPLHS and RHS. 787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 788 ICmpInst::Predicate Cond, 789 const DataLayout &DL) { 790 // FIXME: Support vector of pointers. 791 if (GEPLHS->getType()->isVectorTy()) 792 return nullptr; 793 794 if (!GEPLHS->hasAllConstantIndices()) 795 return nullptr; 796 797 Type *ElemTy = GEPLHS->getSourceElementType(); 798 Value *PtrBase, *Index; 799 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 800 801 // The set of nodes that will take part in this transformation. 802 SetVector<Value *> Nodes; 803 804 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 805 return nullptr; 806 807 // We know we can re-write this as 808 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 809 // Since we've only looked through inbouds GEPs we know that we 810 // can't have overflow on either side. We can therefore re-write 811 // this as: 812 // OFFSET1 cmp OFFSET2 813 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 814 815 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 816 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 817 // offset. Since Index is the offset of LHS to the base pointer, we will now 818 // compare the offsets instead of comparing the pointers. 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 820 } 821 822 /// Fold comparisons between a GEP instruction and something else. At this point 823 /// we know that the GEP is on the LHS of the comparison. 824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 825 ICmpInst::Predicate Cond, 826 Instruction &I) { 827 // Don't transform signed compares of GEPs into index compares. Even if the 828 // GEP is inbounds, the final add of the base pointer can have signed overflow 829 // and would change the result of the icmp. 830 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 831 // the maximum signed value for the pointer type. 832 if (ICmpInst::isSigned(Cond)) 833 return nullptr; 834 835 // Look through bitcasts and addrspacecasts. We do not however want to remove 836 // 0 GEPs. 837 if (!isa<GetElementPtrInst>(RHS)) 838 RHS = RHS->stripPointerCasts(); 839 840 Value *PtrBase = GEPLHS->getOperand(0); 841 // FIXME: Support vector pointer GEPs. 842 if (PtrBase == RHS && GEPLHS->isInBounds() && 843 !GEPLHS->getType()->isVectorTy()) { 844 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 845 // This transformation (ignoring the base and scales) is valid because we 846 // know pointers can't overflow since the gep is inbounds. See if we can 847 // output an optimized form. 848 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 849 850 // If not, synthesize the offset the hard way. 851 if (!Offset) 852 Offset = EmitGEPOffset(GEPLHS); 853 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 854 Constant::getNullValue(Offset->getType())); 855 } 856 857 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 858 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 859 !NullPointerIsDefined(I.getFunction(), 860 RHS->getType()->getPointerAddressSpace())) { 861 // For most address spaces, an allocation can't be placed at null, but null 862 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 863 // the only valid inbounds address derived from null, is null itself. 864 // Thus, we have four cases to consider: 865 // 1) Base == nullptr, Offset == 0 -> inbounds, null 866 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 867 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 868 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 869 // 870 // (Note if we're indexing a type of size 0, that simply collapses into one 871 // of the buckets above.) 872 // 873 // In general, we're allowed to make values less poison (i.e. remove 874 // sources of full UB), so in this case, we just select between the two 875 // non-poison cases (1 and 4 above). 876 // 877 // For vectors, we apply the same reasoning on a per-lane basis. 878 auto *Base = GEPLHS->getPointerOperand(); 879 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 880 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 881 Base = Builder.CreateVectorSplat(EC, Base); 882 } 883 return new ICmpInst(Cond, Base, 884 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 885 cast<Constant>(RHS), Base->getType())); 886 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 887 // If the base pointers are different, but the indices are the same, just 888 // compare the base pointer. 889 if (PtrBase != GEPRHS->getOperand(0)) { 890 bool IndicesTheSame = 891 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 892 GEPLHS->getPointerOperand()->getType() == 893 GEPRHS->getPointerOperand()->getType() && 894 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 895 if (IndicesTheSame) 896 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 897 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 898 IndicesTheSame = false; 899 break; 900 } 901 902 // If all indices are the same, just compare the base pointers. 903 Type *BaseType = GEPLHS->getOperand(0)->getType(); 904 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 905 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 906 907 // If we're comparing GEPs with two base pointers that only differ in type 908 // and both GEPs have only constant indices or just one use, then fold 909 // the compare with the adjusted indices. 910 // FIXME: Support vector of pointers. 911 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 912 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 913 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 914 PtrBase->stripPointerCasts() == 915 GEPRHS->getOperand(0)->stripPointerCasts() && 916 !GEPLHS->getType()->isVectorTy()) { 917 Value *LOffset = EmitGEPOffset(GEPLHS); 918 Value *ROffset = EmitGEPOffset(GEPRHS); 919 920 // If we looked through an addrspacecast between different sized address 921 // spaces, the LHS and RHS pointers are different sized 922 // integers. Truncate to the smaller one. 923 Type *LHSIndexTy = LOffset->getType(); 924 Type *RHSIndexTy = ROffset->getType(); 925 if (LHSIndexTy != RHSIndexTy) { 926 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 927 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 928 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 929 } else 930 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 931 } 932 933 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 934 LOffset, ROffset); 935 return replaceInstUsesWith(I, Cmp); 936 } 937 938 // Otherwise, the base pointers are different and the indices are 939 // different. Try convert this to an indexed compare by looking through 940 // PHIs/casts. 941 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 942 } 943 944 // If one of the GEPs has all zero indices, recurse. 945 // FIXME: Handle vector of pointers. 946 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 947 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 948 ICmpInst::getSwappedPredicate(Cond), I); 949 950 // If the other GEP has all zero indices, recurse. 951 // FIXME: Handle vector of pointers. 952 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 953 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 954 955 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 956 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 957 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 958 // If the GEPs only differ by one index, compare it. 959 unsigned NumDifferences = 0; // Keep track of # differences. 960 unsigned DiffOperand = 0; // The operand that differs. 961 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 962 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 963 Type *LHSType = GEPLHS->getOperand(i)->getType(); 964 Type *RHSType = GEPRHS->getOperand(i)->getType(); 965 // FIXME: Better support for vector of pointers. 966 if (LHSType->getPrimitiveSizeInBits() != 967 RHSType->getPrimitiveSizeInBits() || 968 (GEPLHS->getType()->isVectorTy() && 969 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 970 // Irreconcilable differences. 971 NumDifferences = 2; 972 break; 973 } 974 975 if (NumDifferences++) break; 976 DiffOperand = i; 977 } 978 979 if (NumDifferences == 0) // SAME GEP? 980 return replaceInstUsesWith(I, // No comparison is needed here. 981 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 982 983 else if (NumDifferences == 1 && GEPsInBounds) { 984 Value *LHSV = GEPLHS->getOperand(DiffOperand); 985 Value *RHSV = GEPRHS->getOperand(DiffOperand); 986 // Make sure we do a signed comparison here. 987 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 988 } 989 } 990 991 // Only lower this if the icmp is the only user of the GEP or if we expect 992 // the result to fold to a constant! 993 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 994 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 995 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 996 Value *L = EmitGEPOffset(GEPLHS); 997 Value *R = EmitGEPOffset(GEPRHS); 998 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 999 } 1000 } 1001 1002 // Try convert this to an indexed compare by looking through PHIs/casts as a 1003 // last resort. 1004 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1005 } 1006 1007 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1008 const AllocaInst *Alloca) { 1009 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1010 1011 // It would be tempting to fold away comparisons between allocas and any 1012 // pointer not based on that alloca (e.g. an argument). However, even 1013 // though such pointers cannot alias, they can still compare equal. 1014 // 1015 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1016 // doesn't escape we can argue that it's impossible to guess its value, and we 1017 // can therefore act as if any such guesses are wrong. 1018 // 1019 // The code below checks that the alloca doesn't escape, and that it's only 1020 // used in a comparison once (the current instruction). The 1021 // single-comparison-use condition ensures that we're trivially folding all 1022 // comparisons against the alloca consistently, and avoids the risk of 1023 // erroneously folding a comparison of the pointer with itself. 1024 1025 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1026 1027 SmallVector<const Use *, 32> Worklist; 1028 for (const Use &U : Alloca->uses()) { 1029 if (Worklist.size() >= MaxIter) 1030 return nullptr; 1031 Worklist.push_back(&U); 1032 } 1033 1034 unsigned NumCmps = 0; 1035 while (!Worklist.empty()) { 1036 assert(Worklist.size() <= MaxIter); 1037 const Use *U = Worklist.pop_back_val(); 1038 const Value *V = U->getUser(); 1039 --MaxIter; 1040 1041 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1042 isa<SelectInst>(V)) { 1043 // Track the uses. 1044 } else if (isa<LoadInst>(V)) { 1045 // Loading from the pointer doesn't escape it. 1046 continue; 1047 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1048 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1049 if (SI->getValueOperand() == U->get()) 1050 return nullptr; 1051 continue; 1052 } else if (isa<ICmpInst>(V)) { 1053 if (NumCmps++) 1054 return nullptr; // Found more than one cmp. 1055 continue; 1056 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1057 switch (Intrin->getIntrinsicID()) { 1058 // These intrinsics don't escape or compare the pointer. Memset is safe 1059 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1060 // we don't allow stores, so src cannot point to V. 1061 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1062 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1063 continue; 1064 default: 1065 return nullptr; 1066 } 1067 } else { 1068 return nullptr; 1069 } 1070 for (const Use &U : V->uses()) { 1071 if (Worklist.size() >= MaxIter) 1072 return nullptr; 1073 Worklist.push_back(&U); 1074 } 1075 } 1076 1077 auto *Res = ConstantInt::get(ICI.getType(), 1078 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1079 return replaceInstUsesWith(ICI, Res); 1080 } 1081 1082 /// Fold "icmp pred (X+C), X". 1083 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1084 ICmpInst::Predicate Pred) { 1085 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1086 // so the values can never be equal. Similarly for all other "or equals" 1087 // operators. 1088 assert(!!C && "C should not be zero!"); 1089 1090 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1091 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1092 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1093 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1094 Constant *R = ConstantInt::get(X->getType(), 1095 APInt::getMaxValue(C.getBitWidth()) - C); 1096 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1097 } 1098 1099 // (X+1) >u X --> X <u (0-1) --> X != 255 1100 // (X+2) >u X --> X <u (0-2) --> X <u 254 1101 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1102 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1103 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1104 ConstantInt::get(X->getType(), -C)); 1105 1106 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1107 1108 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1109 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1110 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1111 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1112 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1113 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1114 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1115 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1116 ConstantInt::get(X->getType(), SMax - C)); 1117 1118 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1119 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1120 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1121 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1122 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1123 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1124 1125 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1126 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1127 ConstantInt::get(X->getType(), SMax - (C - 1))); 1128 } 1129 1130 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1131 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1132 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1133 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1134 const APInt &AP1, 1135 const APInt &AP2) { 1136 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1137 1138 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1139 if (I.getPredicate() == I.ICMP_NE) 1140 Pred = CmpInst::getInversePredicate(Pred); 1141 return new ICmpInst(Pred, LHS, RHS); 1142 }; 1143 1144 // Don't bother doing any work for cases which InstSimplify handles. 1145 if (AP2.isZero()) 1146 return nullptr; 1147 1148 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1149 if (IsAShr) { 1150 if (AP2.isAllOnes()) 1151 return nullptr; 1152 if (AP2.isNegative() != AP1.isNegative()) 1153 return nullptr; 1154 if (AP2.sgt(AP1)) 1155 return nullptr; 1156 } 1157 1158 if (!AP1) 1159 // 'A' must be large enough to shift out the highest set bit. 1160 return getICmp(I.ICMP_UGT, A, 1161 ConstantInt::get(A->getType(), AP2.logBase2())); 1162 1163 if (AP1 == AP2) 1164 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1165 1166 int Shift; 1167 if (IsAShr && AP1.isNegative()) 1168 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1169 else 1170 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1171 1172 if (Shift > 0) { 1173 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1174 // There are multiple solutions if we are comparing against -1 and the LHS 1175 // of the ashr is not a power of two. 1176 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1177 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } else if (AP1 == AP2.lshr(Shift)) { 1180 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1181 } 1182 } 1183 1184 // Shifting const2 will never be equal to const1. 1185 // FIXME: This should always be handled by InstSimplify? 1186 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1187 return replaceInstUsesWith(I, TorF); 1188 } 1189 1190 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1191 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1192 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1193 const APInt &AP1, 1194 const APInt &AP2) { 1195 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1196 1197 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1198 if (I.getPredicate() == I.ICMP_NE) 1199 Pred = CmpInst::getInversePredicate(Pred); 1200 return new ICmpInst(Pred, LHS, RHS); 1201 }; 1202 1203 // Don't bother doing any work for cases which InstSimplify handles. 1204 if (AP2.isZero()) 1205 return nullptr; 1206 1207 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1208 1209 if (!AP1 && AP2TrailingZeros != 0) 1210 return getICmp( 1211 I.ICMP_UGE, A, 1212 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1213 1214 if (AP1 == AP2) 1215 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1216 1217 // Get the distance between the lowest bits that are set. 1218 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1219 1220 if (Shift > 0 && AP2.shl(Shift) == AP1) 1221 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1222 1223 // Shifting const2 will never be equal to const1. 1224 // FIXME: This should always be handled by InstSimplify? 1225 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1226 return replaceInstUsesWith(I, TorF); 1227 } 1228 1229 /// The caller has matched a pattern of the form: 1230 /// I = icmp ugt (add (add A, B), CI2), CI1 1231 /// If this is of the form: 1232 /// sum = a + b 1233 /// if (sum+128 >u 255) 1234 /// Then replace it with llvm.sadd.with.overflow.i8. 1235 /// 1236 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1237 ConstantInt *CI2, ConstantInt *CI1, 1238 InstCombinerImpl &IC) { 1239 // The transformation we're trying to do here is to transform this into an 1240 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1241 // with a narrower add, and discard the add-with-constant that is part of the 1242 // range check (if we can't eliminate it, this isn't profitable). 1243 1244 // In order to eliminate the add-with-constant, the compare can be its only 1245 // use. 1246 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1247 if (!AddWithCst->hasOneUse()) 1248 return nullptr; 1249 1250 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1251 if (!CI2->getValue().isPowerOf2()) 1252 return nullptr; 1253 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1254 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1255 return nullptr; 1256 1257 // The width of the new add formed is 1 more than the bias. 1258 ++NewWidth; 1259 1260 // Check to see that CI1 is an all-ones value with NewWidth bits. 1261 if (CI1->getBitWidth() == NewWidth || 1262 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1263 return nullptr; 1264 1265 // This is only really a signed overflow check if the inputs have been 1266 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1267 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1268 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1269 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1270 return nullptr; 1271 1272 // In order to replace the original add with a narrower 1273 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1274 // and truncates that discard the high bits of the add. Verify that this is 1275 // the case. 1276 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1277 for (User *U : OrigAdd->users()) { 1278 if (U == AddWithCst) 1279 continue; 1280 1281 // Only accept truncates for now. We would really like a nice recursive 1282 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1283 // chain to see which bits of a value are actually demanded. If the 1284 // original add had another add which was then immediately truncated, we 1285 // could still do the transformation. 1286 TruncInst *TI = dyn_cast<TruncInst>(U); 1287 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1288 return nullptr; 1289 } 1290 1291 // If the pattern matches, truncate the inputs to the narrower type and 1292 // use the sadd_with_overflow intrinsic to efficiently compute both the 1293 // result and the overflow bit. 1294 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1295 Function *F = Intrinsic::getDeclaration( 1296 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1297 1298 InstCombiner::BuilderTy &Builder = IC.Builder; 1299 1300 // Put the new code above the original add, in case there are any uses of the 1301 // add between the add and the compare. 1302 Builder.SetInsertPoint(OrigAdd); 1303 1304 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1305 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1306 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1307 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1308 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1309 1310 // The inner add was the result of the narrow add, zero extended to the 1311 // wider type. Replace it with the result computed by the intrinsic. 1312 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1313 IC.eraseInstFromFunction(*OrigAdd); 1314 1315 // The original icmp gets replaced with the overflow value. 1316 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1317 } 1318 1319 /// If we have: 1320 /// icmp eq/ne (urem/srem %x, %y), 0 1321 /// iff %y is a power-of-two, we can replace this with a bit test: 1322 /// icmp eq/ne (and %x, (add %y, -1)), 0 1323 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1324 // This fold is only valid for equality predicates. 1325 if (!I.isEquality()) 1326 return nullptr; 1327 ICmpInst::Predicate Pred; 1328 Value *X, *Y, *Zero; 1329 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1330 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1331 return nullptr; 1332 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1333 return nullptr; 1334 // This may increase instruction count, we don't enforce that Y is a constant. 1335 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1336 Value *Masked = Builder.CreateAnd(X, Mask); 1337 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1338 } 1339 1340 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1341 /// by one-less-than-bitwidth into a sign test on the original value. 1342 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1343 Instruction *Val; 1344 ICmpInst::Predicate Pred; 1345 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1346 return nullptr; 1347 1348 Value *X; 1349 Type *XTy; 1350 1351 Constant *C; 1352 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1353 XTy = X->getType(); 1354 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1355 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1356 APInt(XBitWidth, XBitWidth - 1)))) 1357 return nullptr; 1358 } else if (isa<BinaryOperator>(Val) && 1359 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1360 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1361 /*AnalyzeForSignBitExtraction=*/true))) { 1362 XTy = X->getType(); 1363 } else 1364 return nullptr; 1365 1366 return ICmpInst::Create(Instruction::ICmp, 1367 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1368 : ICmpInst::ICMP_SLT, 1369 X, ConstantInt::getNullValue(XTy)); 1370 } 1371 1372 // Handle icmp pred X, 0 1373 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1374 CmpInst::Predicate Pred = Cmp.getPredicate(); 1375 if (!match(Cmp.getOperand(1), m_Zero())) 1376 return nullptr; 1377 1378 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1379 if (Pred == ICmpInst::ICMP_SGT) { 1380 Value *A, *B; 1381 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1382 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1383 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1384 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1385 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1386 } 1387 } 1388 1389 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1390 return New; 1391 1392 // Given: 1393 // icmp eq/ne (urem %x, %y), 0 1394 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1395 // icmp eq/ne %x, 0 1396 Value *X, *Y; 1397 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1398 ICmpInst::isEquality(Pred)) { 1399 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1400 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1401 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1402 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1403 } 1404 1405 return nullptr; 1406 } 1407 1408 /// Fold icmp Pred X, C. 1409 /// TODO: This code structure does not make sense. The saturating add fold 1410 /// should be moved to some other helper and extended as noted below (it is also 1411 /// possible that code has been made unnecessary - do we canonicalize IR to 1412 /// overflow/saturating intrinsics or not?). 1413 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1414 // Match the following pattern, which is a common idiom when writing 1415 // overflow-safe integer arithmetic functions. The source performs an addition 1416 // in wider type and explicitly checks for overflow using comparisons against 1417 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1418 // 1419 // TODO: This could probably be generalized to handle other overflow-safe 1420 // operations if we worked out the formulas to compute the appropriate magic 1421 // constants. 1422 // 1423 // sum = a + b 1424 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1425 CmpInst::Predicate Pred = Cmp.getPredicate(); 1426 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1427 Value *A, *B; 1428 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1429 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1430 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1431 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1432 return Res; 1433 1434 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1435 Constant *C = dyn_cast<Constant>(Op1); 1436 if (!C || C->canTrap()) 1437 return nullptr; 1438 1439 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1440 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1441 Type *Ty = Cmp.getType(); 1442 Builder.SetInsertPoint(Phi); 1443 PHINode *NewPhi = 1444 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1445 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1446 auto *Input = 1447 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1448 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1449 NewPhi->addIncoming(BoolInput, Predecessor); 1450 } 1451 NewPhi->takeName(&Cmp); 1452 return replaceInstUsesWith(Cmp, NewPhi); 1453 } 1454 1455 return nullptr; 1456 } 1457 1458 /// Canonicalize icmp instructions based on dominating conditions. 1459 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1460 // This is a cheap/incomplete check for dominance - just match a single 1461 // predecessor with a conditional branch. 1462 BasicBlock *CmpBB = Cmp.getParent(); 1463 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1464 if (!DomBB) 1465 return nullptr; 1466 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return nullptr; 1471 1472 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1473 "Predecessor block does not point to successor?"); 1474 1475 // The branch should get simplified. Don't bother simplifying this condition. 1476 if (TrueBB == FalseBB) 1477 return nullptr; 1478 1479 // Try to simplify this compare to T/F based on the dominating condition. 1480 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1481 if (Imp) 1482 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1483 1484 CmpInst::Predicate Pred = Cmp.getPredicate(); 1485 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1486 ICmpInst::Predicate DomPred; 1487 const APInt *C, *DomC; 1488 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1489 match(Y, m_APInt(C))) { 1490 // We have 2 compares of a variable with constants. Calculate the constant 1491 // ranges of those compares to see if we can transform the 2nd compare: 1492 // DomBB: 1493 // DomCond = icmp DomPred X, DomC 1494 // br DomCond, CmpBB, FalseBB 1495 // CmpBB: 1496 // Cmp = icmp Pred X, C 1497 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1498 ConstantRange DominatingCR = 1499 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1500 : ConstantRange::makeExactICmpRegion( 1501 CmpInst::getInversePredicate(DomPred), *DomC); 1502 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1503 ConstantRange Difference = DominatingCR.difference(CR); 1504 if (Intersection.isEmptySet()) 1505 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1506 if (Difference.isEmptySet()) 1507 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1508 1509 // Canonicalizing a sign bit comparison that gets used in a branch, 1510 // pessimizes codegen by generating branch on zero instruction instead 1511 // of a test and branch. So we avoid canonicalizing in such situations 1512 // because test and branch instruction has better branch displacement 1513 // than compare and branch instruction. 1514 bool UnusedBit; 1515 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1516 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1517 return nullptr; 1518 1519 // Avoid an infinite loop with min/max canonicalization. 1520 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1521 if (Cmp.hasOneUse() && 1522 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1523 return nullptr; 1524 1525 if (const APInt *EqC = Intersection.getSingleElement()) 1526 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1527 if (const APInt *NeC = Difference.getSingleElement()) 1528 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1529 } 1530 1531 return nullptr; 1532 } 1533 1534 /// Fold icmp (trunc X, Y), C. 1535 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1536 TruncInst *Trunc, 1537 const APInt &C) { 1538 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1539 Value *X = Trunc->getOperand(0); 1540 if (C.isOne() && C.getBitWidth() > 1) { 1541 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1542 Value *V = nullptr; 1543 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1544 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1545 ConstantInt::get(V->getType(), 1)); 1546 } 1547 1548 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1549 SrcBits = X->getType()->getScalarSizeInBits(); 1550 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1551 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1552 // of the high bits truncated out of x are known. 1553 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1554 1555 // If all the high bits are known, we can do this xform. 1556 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1557 // Pull in the high bits from known-ones set. 1558 APInt NewRHS = C.zext(SrcBits); 1559 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1560 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1561 } 1562 } 1563 1564 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1566 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1567 Value *ShOp; 1568 const APInt *ShAmtC; 1569 bool TrueIfSigned; 1570 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1571 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1572 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1573 return TrueIfSigned 1574 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1575 ConstantInt::getNullValue(X->getType())) 1576 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1577 ConstantInt::getAllOnesValue(X->getType())); 1578 } 1579 1580 return nullptr; 1581 } 1582 1583 /// Fold icmp (xor X, Y), C. 1584 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1585 BinaryOperator *Xor, 1586 const APInt &C) { 1587 Value *X = Xor->getOperand(0); 1588 Value *Y = Xor->getOperand(1); 1589 const APInt *XorC; 1590 if (!match(Y, m_APInt(XorC))) 1591 return nullptr; 1592 1593 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1594 // fold the xor. 1595 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1596 bool TrueIfSigned = false; 1597 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1598 1599 // If the sign bit of the XorCst is not set, there is no change to 1600 // the operation, just stop using the Xor. 1601 if (!XorC->isNegative()) 1602 return replaceOperand(Cmp, 0, X); 1603 1604 // Emit the opposite comparison. 1605 if (TrueIfSigned) 1606 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1607 ConstantInt::getAllOnesValue(X->getType())); 1608 else 1609 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1610 ConstantInt::getNullValue(X->getType())); 1611 } 1612 1613 if (Xor->hasOneUse()) { 1614 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1615 if (!Cmp.isEquality() && XorC->isSignMask()) { 1616 Pred = Cmp.getFlippedSignednessPredicate(); 1617 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1618 } 1619 1620 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1621 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1622 Pred = Cmp.getFlippedSignednessPredicate(); 1623 Pred = Cmp.getSwappedPredicate(Pred); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 } 1627 1628 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1629 if (Pred == ICmpInst::ICMP_UGT) { 1630 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1631 if (*XorC == ~C && (C + 1).isPowerOf2()) 1632 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1633 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1634 if (*XorC == C && (C + 1).isPowerOf2()) 1635 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1636 } 1637 if (Pred == ICmpInst::ICMP_ULT) { 1638 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1639 if (*XorC == -C && C.isPowerOf2()) 1640 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1641 ConstantInt::get(X->getType(), ~C)); 1642 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1643 if (*XorC == C && (-C).isPowerOf2()) 1644 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1645 ConstantInt::get(X->getType(), ~C)); 1646 } 1647 return nullptr; 1648 } 1649 1650 /// Fold icmp (and (sh X, Y), C2), C1. 1651 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1652 BinaryOperator *And, 1653 const APInt &C1, 1654 const APInt &C2) { 1655 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1656 if (!Shift || !Shift->isShift()) 1657 return nullptr; 1658 1659 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1660 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1661 // code produced by the clang front-end, for bitfield access. 1662 // This seemingly simple opportunity to fold away a shift turns out to be 1663 // rather complicated. See PR17827 for details. 1664 unsigned ShiftOpcode = Shift->getOpcode(); 1665 bool IsShl = ShiftOpcode == Instruction::Shl; 1666 const APInt *C3; 1667 if (match(Shift->getOperand(1), m_APInt(C3))) { 1668 APInt NewAndCst, NewCmpCst; 1669 bool AnyCmpCstBitsShiftedOut; 1670 if (ShiftOpcode == Instruction::Shl) { 1671 // For a left shift, we can fold if the comparison is not signed. We can 1672 // also fold a signed comparison if the mask value and comparison value 1673 // are not negative. These constraints may not be obvious, but we can 1674 // prove that they are correct using an SMT solver. 1675 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1676 return nullptr; 1677 1678 NewCmpCst = C1.lshr(*C3); 1679 NewAndCst = C2.lshr(*C3); 1680 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1681 } else if (ShiftOpcode == Instruction::LShr) { 1682 // For a logical right shift, we can fold if the comparison is not signed. 1683 // We can also fold a signed comparison if the shifted mask value and the 1684 // shifted comparison value are not negative. These constraints may not be 1685 // obvious, but we can prove that they are correct using an SMT solver. 1686 NewCmpCst = C1.shl(*C3); 1687 NewAndCst = C2.shl(*C3); 1688 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1689 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1690 return nullptr; 1691 } else { 1692 // For an arithmetic shift, check that both constants don't use (in a 1693 // signed sense) the top bits being shifted out. 1694 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1695 NewCmpCst = C1.shl(*C3); 1696 NewAndCst = C2.shl(*C3); 1697 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1698 if (NewAndCst.ashr(*C3) != C2) 1699 return nullptr; 1700 } 1701 1702 if (AnyCmpCstBitsShiftedOut) { 1703 // If we shifted bits out, the fold is not going to work out. As a 1704 // special case, check to see if this means that the result is always 1705 // true or false now. 1706 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1707 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1708 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1709 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1710 } else { 1711 Value *NewAnd = Builder.CreateAnd( 1712 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1713 return new ICmpInst(Cmp.getPredicate(), 1714 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1715 } 1716 } 1717 1718 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1719 // preferable because it allows the C2 << Y expression to be hoisted out of a 1720 // loop if Y is invariant and X is not. 1721 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1722 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1723 // Compute C2 << Y. 1724 Value *NewShift = 1725 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1726 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1727 1728 // Compute X & (C2 << Y). 1729 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1730 return replaceOperand(Cmp, 0, NewAnd); 1731 } 1732 1733 return nullptr; 1734 } 1735 1736 /// Fold icmp (and X, C2), C1. 1737 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1738 BinaryOperator *And, 1739 const APInt &C1) { 1740 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1741 1742 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1743 // TODO: We canonicalize to the longer form for scalars because we have 1744 // better analysis/folds for icmp, and codegen may be better with icmp. 1745 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1746 match(And->getOperand(1), m_One())) 1747 return new TruncInst(And->getOperand(0), Cmp.getType()); 1748 1749 const APInt *C2; 1750 Value *X; 1751 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1752 return nullptr; 1753 1754 // Don't perform the following transforms if the AND has multiple uses 1755 if (!And->hasOneUse()) 1756 return nullptr; 1757 1758 if (Cmp.isEquality() && C1.isZero()) { 1759 // Restrict this fold to single-use 'and' (PR10267). 1760 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1761 if (C2->isSignMask()) { 1762 Constant *Zero = Constant::getNullValue(X->getType()); 1763 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1764 return new ICmpInst(NewPred, X, Zero); 1765 } 1766 1767 // Restrict this fold only for single-use 'and' (PR10267). 1768 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1769 if ((~(*C2) + 1).isPowerOf2()) { 1770 Constant *NegBOC = 1771 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1772 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1773 return new ICmpInst(NewPred, X, NegBOC); 1774 } 1775 } 1776 1777 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1778 // the input width without changing the value produced, eliminate the cast: 1779 // 1780 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1781 // 1782 // We can do this transformation if the constants do not have their sign bits 1783 // set or if it is an equality comparison. Extending a relational comparison 1784 // when we're checking the sign bit would not work. 1785 Value *W; 1786 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1787 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1788 // TODO: Is this a good transform for vectors? Wider types may reduce 1789 // throughput. Should this transform be limited (even for scalars) by using 1790 // shouldChangeType()? 1791 if (!Cmp.getType()->isVectorTy()) { 1792 Type *WideType = W->getType(); 1793 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1794 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1795 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1796 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1797 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1798 } 1799 } 1800 1801 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1802 return I; 1803 1804 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1805 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1806 // 1807 // iff pred isn't signed 1808 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1809 match(And->getOperand(1), m_One())) { 1810 Constant *One = cast<Constant>(And->getOperand(1)); 1811 Value *Or = And->getOperand(0); 1812 Value *A, *B, *LShr; 1813 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1814 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1815 unsigned UsesRemoved = 0; 1816 if (And->hasOneUse()) 1817 ++UsesRemoved; 1818 if (Or->hasOneUse()) 1819 ++UsesRemoved; 1820 if (LShr->hasOneUse()) 1821 ++UsesRemoved; 1822 1823 // Compute A & ((1 << B) | 1) 1824 Value *NewOr = nullptr; 1825 if (auto *C = dyn_cast<Constant>(B)) { 1826 if (UsesRemoved >= 1) 1827 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1828 } else { 1829 if (UsesRemoved >= 3) 1830 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1831 /*HasNUW=*/true), 1832 One, Or->getName()); 1833 } 1834 if (NewOr) { 1835 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1836 return replaceOperand(Cmp, 0, NewAnd); 1837 } 1838 } 1839 } 1840 1841 return nullptr; 1842 } 1843 1844 /// Fold icmp (and X, Y), C. 1845 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1846 BinaryOperator *And, 1847 const APInt &C) { 1848 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1849 return I; 1850 1851 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1852 bool TrueIfNeg; 1853 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1854 // ((X - 1) & ~X) < 0 --> X == 0 1855 // ((X - 1) & ~X) >= 0 --> X != 0 1856 Value *X; 1857 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1858 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1859 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1860 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1861 } 1862 } 1863 1864 // TODO: These all require that Y is constant too, so refactor with the above. 1865 1866 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1867 Value *X = And->getOperand(0); 1868 Value *Y = And->getOperand(1); 1869 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1870 if (auto *LI = dyn_cast<LoadInst>(X)) 1871 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1872 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1873 if (Instruction *Res = 1874 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1875 return Res; 1876 1877 if (!Cmp.isEquality()) 1878 return nullptr; 1879 1880 // X & -C == -C -> X > u ~C 1881 // X & -C != -C -> X <= u ~C 1882 // iff C is a power of 2 1883 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1884 auto NewPred = 1885 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1886 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 /// Fold icmp (or X, Y), C. 1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1894 BinaryOperator *Or, 1895 const APInt &C) { 1896 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1897 if (C.isOne()) { 1898 // icmp slt signum(V) 1 --> icmp slt V, 1 1899 Value *V = nullptr; 1900 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1901 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1902 ConstantInt::get(V->getType(), 1)); 1903 } 1904 1905 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1906 const APInt *MaskC; 1907 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1908 if (*MaskC == C && (C + 1).isPowerOf2()) { 1909 // X | C == C --> X <=u C 1910 // X | C != C --> X >u C 1911 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1912 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1913 return new ICmpInst(Pred, OrOp0, OrOp1); 1914 } 1915 1916 // More general: canonicalize 'equality with set bits mask' to 1917 // 'equality with clear bits mask'. 1918 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1919 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1920 if (Or->hasOneUse()) { 1921 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1922 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1923 return new ICmpInst(Pred, And, NewC); 1924 } 1925 } 1926 1927 // (X | (X-1)) s< 0 --> X s< 1 1928 // (X | (X-1)) s> -1 --> X s> 0 1929 Value *X; 1930 bool TrueIfSigned; 1931 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1932 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1933 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1934 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1935 return new ICmpInst(NewPred, X, NewC); 1936 } 1937 1938 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1939 return nullptr; 1940 1941 Value *P, *Q; 1942 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1943 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1944 // -> and (icmp eq P, null), (icmp eq Q, null). 1945 Value *CmpP = 1946 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1947 Value *CmpQ = 1948 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1949 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1950 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1951 } 1952 1953 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1954 // a shorter form that has more potential to be folded even further. 1955 Value *X1, *X2, *X3, *X4; 1956 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1957 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1958 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1959 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1960 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1961 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1962 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1963 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1964 } 1965 1966 return nullptr; 1967 } 1968 1969 /// Fold icmp (mul X, Y), C. 1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1971 BinaryOperator *Mul, 1972 const APInt &C) { 1973 const APInt *MulC; 1974 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1975 return nullptr; 1976 1977 // If this is a test of the sign bit and the multiply is sign-preserving with 1978 // a constant operand, use the multiply LHS operand instead. 1979 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1980 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1981 if (MulC->isNegative()) 1982 Pred = ICmpInst::getSwappedPredicate(Pred); 1983 return new ICmpInst(Pred, Mul->getOperand(0), 1984 Constant::getNullValue(Mul->getType())); 1985 } 1986 1987 // If the multiply does not wrap, try to divide the compare constant by the 1988 // multiplication factor. 1989 if (Cmp.isEquality() && !MulC->isZero()) { 1990 // (mul nsw X, MulC) == C --> X == C /s MulC 1991 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1992 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1993 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1994 } 1995 // (mul nuw X, MulC) == C --> X == C /u MulC 1996 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1997 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1998 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1999 } 2000 } 2001 2002 return nullptr; 2003 } 2004 2005 /// Fold icmp (shl 1, Y), C. 2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2007 const APInt &C) { 2008 Value *Y; 2009 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2010 return nullptr; 2011 2012 Type *ShiftType = Shl->getType(); 2013 unsigned TypeBits = C.getBitWidth(); 2014 bool CIsPowerOf2 = C.isPowerOf2(); 2015 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2016 if (Cmp.isUnsigned()) { 2017 // (1 << Y) pred C -> Y pred Log2(C) 2018 if (!CIsPowerOf2) { 2019 // (1 << Y) < 30 -> Y <= 4 2020 // (1 << Y) <= 30 -> Y <= 4 2021 // (1 << Y) >= 30 -> Y > 4 2022 // (1 << Y) > 30 -> Y > 4 2023 if (Pred == ICmpInst::ICMP_ULT) 2024 Pred = ICmpInst::ICMP_ULE; 2025 else if (Pred == ICmpInst::ICMP_UGE) 2026 Pred = ICmpInst::ICMP_UGT; 2027 } 2028 2029 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2030 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2031 unsigned CLog2 = C.logBase2(); 2032 if (CLog2 == TypeBits - 1) { 2033 if (Pred == ICmpInst::ICMP_UGE) 2034 Pred = ICmpInst::ICMP_EQ; 2035 else if (Pred == ICmpInst::ICMP_ULT) 2036 Pred = ICmpInst::ICMP_NE; 2037 } 2038 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2039 } else if (Cmp.isSigned()) { 2040 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2041 if (C.isAllOnes()) { 2042 // (1 << Y) <= -1 -> Y == 31 2043 if (Pred == ICmpInst::ICMP_SLE) 2044 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2045 2046 // (1 << Y) > -1 -> Y != 31 2047 if (Pred == ICmpInst::ICMP_SGT) 2048 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2049 } else if (!C) { 2050 // (1 << Y) < 0 -> Y == 31 2051 // (1 << Y) <= 0 -> Y == 31 2052 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2053 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2054 2055 // (1 << Y) >= 0 -> Y != 31 2056 // (1 << Y) > 0 -> Y != 31 2057 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2058 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2059 } 2060 } else if (Cmp.isEquality() && CIsPowerOf2) { 2061 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2062 } 2063 2064 return nullptr; 2065 } 2066 2067 /// Fold icmp (shl X, Y), C. 2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2069 BinaryOperator *Shl, 2070 const APInt &C) { 2071 const APInt *ShiftVal; 2072 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2073 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2074 2075 const APInt *ShiftAmt; 2076 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2077 return foldICmpShlOne(Cmp, Shl, C); 2078 2079 // Check that the shift amount is in range. If not, don't perform undefined 2080 // shifts. When the shift is visited, it will be simplified. 2081 unsigned TypeBits = C.getBitWidth(); 2082 if (ShiftAmt->uge(TypeBits)) 2083 return nullptr; 2084 2085 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2086 Value *X = Shl->getOperand(0); 2087 Type *ShType = Shl->getType(); 2088 2089 // NSW guarantees that we are only shifting out sign bits from the high bits, 2090 // so we can ASHR the compare constant without needing a mask and eliminate 2091 // the shift. 2092 if (Shl->hasNoSignedWrap()) { 2093 if (Pred == ICmpInst::ICMP_SGT) { 2094 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2095 APInt ShiftedC = C.ashr(*ShiftAmt); 2096 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2097 } 2098 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2099 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2100 APInt ShiftedC = C.ashr(*ShiftAmt); 2101 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2102 } 2103 if (Pred == ICmpInst::ICMP_SLT) { 2104 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2105 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2106 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2107 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2108 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2109 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2111 } 2112 // If this is a signed comparison to 0 and the shift is sign preserving, 2113 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2114 // do that if we're sure to not continue on in this function. 2115 if (isSignTest(Pred, C)) 2116 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2117 } 2118 2119 // NUW guarantees that we are only shifting out zero bits from the high bits, 2120 // so we can LSHR the compare constant without needing a mask and eliminate 2121 // the shift. 2122 if (Shl->hasNoUnsignedWrap()) { 2123 if (Pred == ICmpInst::ICMP_UGT) { 2124 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2125 APInt ShiftedC = C.lshr(*ShiftAmt); 2126 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2127 } 2128 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2129 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2130 APInt ShiftedC = C.lshr(*ShiftAmt); 2131 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2132 } 2133 if (Pred == ICmpInst::ICMP_ULT) { 2134 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2135 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2136 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2137 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2138 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2139 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2140 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2141 } 2142 } 2143 2144 if (Cmp.isEquality() && Shl->hasOneUse()) { 2145 // Strength-reduce the shift into an 'and'. 2146 Constant *Mask = ConstantInt::get( 2147 ShType, 2148 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2149 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2150 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2151 return new ICmpInst(Pred, And, LShrC); 2152 } 2153 2154 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2155 bool TrueIfSigned = false; 2156 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2157 // (X << 31) <s 0 --> (X & 1) != 0 2158 Constant *Mask = ConstantInt::get( 2159 ShType, 2160 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2161 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2162 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2163 And, Constant::getNullValue(ShType)); 2164 } 2165 2166 // Simplify 'shl' inequality test into 'and' equality test. 2167 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2168 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2169 if ((C + 1).isPowerOf2() && 2170 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2171 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2172 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2173 : ICmpInst::ICMP_NE, 2174 And, Constant::getNullValue(ShType)); 2175 } 2176 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2177 if (C.isPowerOf2() && 2178 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2179 Value *And = 2180 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2181 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2182 : ICmpInst::ICMP_NE, 2183 And, Constant::getNullValue(ShType)); 2184 } 2185 } 2186 2187 // Transform (icmp pred iM (shl iM %v, N), C) 2188 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2189 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2190 // This enables us to get rid of the shift in favor of a trunc that may be 2191 // free on the target. It has the additional benefit of comparing to a 2192 // smaller constant that may be more target-friendly. 2193 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2194 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2195 DL.isLegalInteger(TypeBits - Amt)) { 2196 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2197 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2198 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2199 Constant *NewC = 2200 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2201 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2202 } 2203 2204 return nullptr; 2205 } 2206 2207 /// Fold icmp ({al}shr X, Y), C. 2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2209 BinaryOperator *Shr, 2210 const APInt &C) { 2211 // An exact shr only shifts out zero bits, so: 2212 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2213 Value *X = Shr->getOperand(0); 2214 CmpInst::Predicate Pred = Cmp.getPredicate(); 2215 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2216 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2217 2218 const APInt *ShiftVal; 2219 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2220 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2221 2222 const APInt *ShiftAmt; 2223 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2224 return nullptr; 2225 2226 // Check that the shift amount is in range. If not, don't perform undefined 2227 // shifts. When the shift is visited it will be simplified. 2228 unsigned TypeBits = C.getBitWidth(); 2229 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2230 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2231 return nullptr; 2232 2233 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2234 bool IsExact = Shr->isExact(); 2235 Type *ShrTy = Shr->getType(); 2236 // TODO: If we could guarantee that InstSimplify would handle all of the 2237 // constant-value-based preconditions in the folds below, then we could assert 2238 // those conditions rather than checking them. This is difficult because of 2239 // undef/poison (PR34838). 2240 if (IsAShr) { 2241 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2242 // When ShAmtC can be shifted losslessly: 2243 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2244 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2245 APInt ShiftedC = C.shl(ShAmtVal); 2246 if (ShiftedC.ashr(ShAmtVal) == C) 2247 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2248 } 2249 if (Pred == CmpInst::ICMP_SGT) { 2250 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2251 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2252 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2253 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2254 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2255 } 2256 if (Pred == CmpInst::ICMP_UGT) { 2257 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2258 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2259 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2260 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2261 } 2262 2263 // If the compare constant has significant bits above the lowest sign-bit, 2264 // then convert an unsigned cmp to a test of the sign-bit: 2265 // (ashr X, ShiftC) u> C --> X s< 0 2266 // (ashr X, ShiftC) u< C --> X s> -1 2267 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2268 if (Pred == CmpInst::ICMP_UGT) { 2269 return new ICmpInst(CmpInst::ICMP_SLT, X, 2270 ConstantInt::getNullValue(ShrTy)); 2271 } 2272 if (Pred == CmpInst::ICMP_ULT) { 2273 return new ICmpInst(CmpInst::ICMP_SGT, X, 2274 ConstantInt::getAllOnesValue(ShrTy)); 2275 } 2276 } 2277 } else { 2278 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2279 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2280 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2281 APInt ShiftedC = C.shl(ShAmtVal); 2282 if (ShiftedC.lshr(ShAmtVal) == C) 2283 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2284 } 2285 if (Pred == CmpInst::ICMP_UGT) { 2286 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2287 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2288 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2289 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2290 } 2291 } 2292 2293 if (!Cmp.isEquality()) 2294 return nullptr; 2295 2296 // Handle equality comparisons of shift-by-constant. 2297 2298 // If the comparison constant changes with the shift, the comparison cannot 2299 // succeed (bits of the comparison constant cannot match the shifted value). 2300 // This should be known by InstSimplify and already be folded to true/false. 2301 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2302 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2303 "Expected icmp+shr simplify did not occur."); 2304 2305 // If the bits shifted out are known zero, compare the unshifted value: 2306 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2307 if (Shr->isExact()) 2308 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2309 2310 if (C.isZero()) { 2311 // == 0 is u< 1. 2312 if (Pred == CmpInst::ICMP_EQ) 2313 return new ICmpInst(CmpInst::ICMP_ULT, X, 2314 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2315 else 2316 return new ICmpInst(CmpInst::ICMP_UGT, X, 2317 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2318 } 2319 2320 if (Shr->hasOneUse()) { 2321 // Canonicalize the shift into an 'and': 2322 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2323 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2324 Constant *Mask = ConstantInt::get(ShrTy, Val); 2325 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2326 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2327 } 2328 2329 return nullptr; 2330 } 2331 2332 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2333 BinaryOperator *SRem, 2334 const APInt &C) { 2335 // Match an 'is positive' or 'is negative' comparison of remainder by a 2336 // constant power-of-2 value: 2337 // (X % pow2C) sgt/slt 0 2338 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2339 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2340 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2341 return nullptr; 2342 2343 // TODO: The one-use check is standard because we do not typically want to 2344 // create longer instruction sequences, but this might be a special-case 2345 // because srem is not good for analysis or codegen. 2346 if (!SRem->hasOneUse()) 2347 return nullptr; 2348 2349 const APInt *DivisorC; 2350 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2351 return nullptr; 2352 2353 // For cmp_sgt/cmp_slt only zero valued C is handled. 2354 // For cmp_eq/cmp_ne only positive valued C is handled. 2355 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2356 !C.isZero()) || 2357 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2358 !C.isStrictlyPositive())) 2359 return nullptr; 2360 2361 // Mask off the sign bit and the modulo bits (low-bits). 2362 Type *Ty = SRem->getType(); 2363 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2364 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2365 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2366 2367 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2368 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2369 2370 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2371 // bit is set. Example: 2372 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2373 if (Pred == ICmpInst::ICMP_SGT) 2374 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2375 2376 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2377 // bit is set. Example: 2378 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2379 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2380 } 2381 2382 /// Fold icmp (udiv X, Y), C. 2383 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2384 BinaryOperator *UDiv, 2385 const APInt &C) { 2386 const APInt *C2; 2387 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2388 return nullptr; 2389 2390 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2391 2392 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2393 Value *Y = UDiv->getOperand(1); 2394 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2395 assert(!C.isMaxValue() && 2396 "icmp ugt X, UINT_MAX should have been simplified already."); 2397 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2398 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2399 } 2400 2401 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2402 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2403 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2404 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2405 ConstantInt::get(Y->getType(), C2->udiv(C))); 2406 } 2407 2408 return nullptr; 2409 } 2410 2411 /// Fold icmp ({su}div X, Y), C. 2412 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2413 BinaryOperator *Div, 2414 const APInt &C) { 2415 // Fold: icmp pred ([us]div X, C2), C -> range test 2416 // Fold this div into the comparison, producing a range check. 2417 // Determine, based on the divide type, what the range is being 2418 // checked. If there is an overflow on the low or high side, remember 2419 // it, otherwise compute the range [low, hi) bounding the new value. 2420 // See: InsertRangeTest above for the kinds of replacements possible. 2421 const APInt *C2; 2422 if (!match(Div->getOperand(1), m_APInt(C2))) 2423 return nullptr; 2424 2425 // FIXME: If the operand types don't match the type of the divide 2426 // then don't attempt this transform. The code below doesn't have the 2427 // logic to deal with a signed divide and an unsigned compare (and 2428 // vice versa). This is because (x /s C2) <s C produces different 2429 // results than (x /s C2) <u C or (x /u C2) <s C or even 2430 // (x /u C2) <u C. Simply casting the operands and result won't 2431 // work. :( The if statement below tests that condition and bails 2432 // if it finds it. 2433 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2434 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2435 return nullptr; 2436 2437 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2438 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2439 // division-by-constant cases should be present, we can not assert that they 2440 // have happened before we reach this icmp instruction. 2441 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2442 return nullptr; 2443 2444 // Compute Prod = C * C2. We are essentially solving an equation of 2445 // form X / C2 = C. We solve for X by multiplying C2 and C. 2446 // By solving for X, we can turn this into a range check instead of computing 2447 // a divide. 2448 APInt Prod = C * *C2; 2449 2450 // Determine if the product overflows by seeing if the product is not equal to 2451 // the divide. Make sure we do the same kind of divide as in the LHS 2452 // instruction that we're folding. 2453 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2454 2455 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2456 2457 // If the division is known to be exact, then there is no remainder from the 2458 // divide, so the covered range size is unit, otherwise it is the divisor. 2459 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2460 2461 // Figure out the interval that is being checked. For example, a comparison 2462 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2463 // Compute this interval based on the constants involved and the signedness of 2464 // the compare/divide. This computes a half-open interval, keeping track of 2465 // whether either value in the interval overflows. After analysis each 2466 // overflow variable is set to 0 if it's corresponding bound variable is valid 2467 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2468 int LoOverflow = 0, HiOverflow = 0; 2469 APInt LoBound, HiBound; 2470 2471 if (!DivIsSigned) { // udiv 2472 // e.g. X/5 op 3 --> [15, 20) 2473 LoBound = Prod; 2474 HiOverflow = LoOverflow = ProdOV; 2475 if (!HiOverflow) { 2476 // If this is not an exact divide, then many values in the range collapse 2477 // to the same result value. 2478 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2479 } 2480 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2481 if (C.isZero()) { // (X / pos) op 0 2482 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2483 LoBound = -(RangeSize - 1); 2484 HiBound = RangeSize; 2485 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2486 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2487 HiOverflow = LoOverflow = ProdOV; 2488 if (!HiOverflow) 2489 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2490 } else { // (X / pos) op neg 2491 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2492 HiBound = Prod + 1; 2493 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2494 if (!LoOverflow) { 2495 APInt DivNeg = -RangeSize; 2496 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2497 } 2498 } 2499 } else if (C2->isNegative()) { // Divisor is < 0. 2500 if (Div->isExact()) 2501 RangeSize.negate(); 2502 if (C.isZero()) { // (X / neg) op 0 2503 // e.g. X/-5 op 0 --> [-4, 5) 2504 LoBound = RangeSize + 1; 2505 HiBound = -RangeSize; 2506 if (HiBound == *C2) { // -INTMIN = INTMIN 2507 HiOverflow = 1; // [INTMIN+1, overflow) 2508 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2509 } 2510 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2511 // e.g. X/-5 op 3 --> [-19, -14) 2512 HiBound = Prod + 1; 2513 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2514 if (!LoOverflow) 2515 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2516 } else { // (X / neg) op neg 2517 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2518 LoOverflow = HiOverflow = ProdOV; 2519 if (!HiOverflow) 2520 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2521 } 2522 2523 // Dividing by a negative swaps the condition. LT <-> GT 2524 Pred = ICmpInst::getSwappedPredicate(Pred); 2525 } 2526 2527 Value *X = Div->getOperand(0); 2528 switch (Pred) { 2529 default: llvm_unreachable("Unhandled icmp opcode!"); 2530 case ICmpInst::ICMP_EQ: 2531 if (LoOverflow && HiOverflow) 2532 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2533 if (HiOverflow) 2534 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2535 ICmpInst::ICMP_UGE, X, 2536 ConstantInt::get(Div->getType(), LoBound)); 2537 if (LoOverflow) 2538 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2539 ICmpInst::ICMP_ULT, X, 2540 ConstantInt::get(Div->getType(), HiBound)); 2541 return replaceInstUsesWith( 2542 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2543 case ICmpInst::ICMP_NE: 2544 if (LoOverflow && HiOverflow) 2545 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2546 if (HiOverflow) 2547 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2548 ICmpInst::ICMP_ULT, X, 2549 ConstantInt::get(Div->getType(), LoBound)); 2550 if (LoOverflow) 2551 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2552 ICmpInst::ICMP_UGE, X, 2553 ConstantInt::get(Div->getType(), HiBound)); 2554 return replaceInstUsesWith(Cmp, 2555 insertRangeTest(X, LoBound, HiBound, 2556 DivIsSigned, false)); 2557 case ICmpInst::ICMP_ULT: 2558 case ICmpInst::ICMP_SLT: 2559 if (LoOverflow == +1) // Low bound is greater than input range. 2560 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2561 if (LoOverflow == -1) // Low bound is less than input range. 2562 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2563 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2564 case ICmpInst::ICMP_UGT: 2565 case ICmpInst::ICMP_SGT: 2566 if (HiOverflow == +1) // High bound greater than input range. 2567 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2568 if (HiOverflow == -1) // High bound less than input range. 2569 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2570 if (Pred == ICmpInst::ICMP_UGT) 2571 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2572 ConstantInt::get(Div->getType(), HiBound)); 2573 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2574 ConstantInt::get(Div->getType(), HiBound)); 2575 } 2576 2577 return nullptr; 2578 } 2579 2580 /// Fold icmp (sub X, Y), C. 2581 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2582 BinaryOperator *Sub, 2583 const APInt &C) { 2584 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2585 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2586 Type *Ty = Sub->getType(); 2587 2588 // (SubC - Y) == C) --> Y == (SubC - C) 2589 // (SubC - Y) != C) --> Y != (SubC - C) 2590 Constant *SubC; 2591 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2592 return new ICmpInst(Pred, Y, 2593 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2594 } 2595 2596 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2597 const APInt *C2; 2598 APInt SubResult; 2599 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2600 bool HasNSW = Sub->hasNoSignedWrap(); 2601 bool HasNUW = Sub->hasNoUnsignedWrap(); 2602 if (match(X, m_APInt(C2)) && 2603 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2604 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2605 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2606 2607 // X - Y == 0 --> X == Y. 2608 // X - Y != 0 --> X != Y. 2609 // TODO: We allow this with multiple uses as long as the other uses are not 2610 // in phis. The phi use check is guarding against a codegen regression 2611 // for a loop test. If the backend could undo this (and possibly 2612 // subsequent transforms), we would not need this hack. 2613 if (Cmp.isEquality() && C.isZero() && 2614 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2615 return new ICmpInst(Pred, X, Y); 2616 2617 // The following transforms are only worth it if the only user of the subtract 2618 // is the icmp. 2619 // TODO: This is an artificial restriction for all of the transforms below 2620 // that only need a single replacement icmp. Can these use the phi test 2621 // like the transform above here? 2622 if (!Sub->hasOneUse()) 2623 return nullptr; 2624 2625 if (Sub->hasNoSignedWrap()) { 2626 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2627 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2628 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2629 2630 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2631 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2632 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2633 2634 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2635 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2636 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2637 2638 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2639 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2640 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2641 } 2642 2643 if (!match(X, m_APInt(C2))) 2644 return nullptr; 2645 2646 // C2 - Y <u C -> (Y | (C - 1)) == C2 2647 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2648 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2649 (*C2 & (C - 1)) == (C - 1)) 2650 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2651 2652 // C2 - Y >u C -> (Y | C) != C2 2653 // iff C2 & C == C and C + 1 is a power of 2 2654 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2655 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2656 2657 // We have handled special cases that reduce. 2658 // Canonicalize any remaining sub to add as: 2659 // (C2 - Y) > C --> (Y + ~C2) < ~C 2660 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2661 HasNUW, HasNSW); 2662 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2663 } 2664 2665 /// Fold icmp (add X, Y), C. 2666 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2667 BinaryOperator *Add, 2668 const APInt &C) { 2669 Value *Y = Add->getOperand(1); 2670 const APInt *C2; 2671 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2672 return nullptr; 2673 2674 // Fold icmp pred (add X, C2), C. 2675 Value *X = Add->getOperand(0); 2676 Type *Ty = Add->getType(); 2677 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2678 2679 // If the add does not wrap, we can always adjust the compare by subtracting 2680 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2681 // are canonicalized to SGT/SLT/UGT/ULT. 2682 if ((Add->hasNoSignedWrap() && 2683 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2684 (Add->hasNoUnsignedWrap() && 2685 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2686 bool Overflow; 2687 APInt NewC = 2688 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2689 // If there is overflow, the result must be true or false. 2690 // TODO: Can we assert there is no overflow because InstSimplify always 2691 // handles those cases? 2692 if (!Overflow) 2693 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2694 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2695 } 2696 2697 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2698 const APInt &Upper = CR.getUpper(); 2699 const APInt &Lower = CR.getLower(); 2700 if (Cmp.isSigned()) { 2701 if (Lower.isSignMask()) 2702 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2703 if (Upper.isSignMask()) 2704 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2705 } else { 2706 if (Lower.isMinValue()) 2707 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2708 if (Upper.isMinValue()) 2709 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2710 } 2711 2712 // This set of folds is intentionally placed after folds that use no-wrapping 2713 // flags because those folds are likely better for later analysis/codegen. 2714 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2715 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2716 2717 // Fold compare with offset to opposite sign compare if it eliminates offset: 2718 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2719 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2720 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2721 2722 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2723 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2724 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2725 2726 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2727 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2728 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2729 2730 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2731 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2732 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2733 2734 if (!Add->hasOneUse()) 2735 return nullptr; 2736 2737 // X+C <u C2 -> (X & -C2) == C 2738 // iff C & (C2-1) == 0 2739 // C2 is a power of 2 2740 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2741 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2742 ConstantExpr::getNeg(cast<Constant>(Y))); 2743 2744 // X+C >u C2 -> (X & ~C2) != C 2745 // iff C & C2 == 0 2746 // C2+1 is a power of 2 2747 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2748 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2749 ConstantExpr::getNeg(cast<Constant>(Y))); 2750 2751 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2752 // to the ult form. 2753 // X+C2 >u C -> X+(C2-C-1) <u ~C 2754 if (Pred == ICmpInst::ICMP_UGT) 2755 return new ICmpInst(ICmpInst::ICMP_ULT, 2756 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2757 ConstantInt::get(Ty, ~C)); 2758 2759 return nullptr; 2760 } 2761 2762 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2763 Value *&RHS, ConstantInt *&Less, 2764 ConstantInt *&Equal, 2765 ConstantInt *&Greater) { 2766 // TODO: Generalize this to work with other comparison idioms or ensure 2767 // they get canonicalized into this form. 2768 2769 // select i1 (a == b), 2770 // i32 Equal, 2771 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2772 // where Equal, Less and Greater are placeholders for any three constants. 2773 ICmpInst::Predicate PredA; 2774 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2775 !ICmpInst::isEquality(PredA)) 2776 return false; 2777 Value *EqualVal = SI->getTrueValue(); 2778 Value *UnequalVal = SI->getFalseValue(); 2779 // We still can get non-canonical predicate here, so canonicalize. 2780 if (PredA == ICmpInst::ICMP_NE) 2781 std::swap(EqualVal, UnequalVal); 2782 if (!match(EqualVal, m_ConstantInt(Equal))) 2783 return false; 2784 ICmpInst::Predicate PredB; 2785 Value *LHS2, *RHS2; 2786 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2787 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2788 return false; 2789 // We can get predicate mismatch here, so canonicalize if possible: 2790 // First, ensure that 'LHS' match. 2791 if (LHS2 != LHS) { 2792 // x sgt y <--> y slt x 2793 std::swap(LHS2, RHS2); 2794 PredB = ICmpInst::getSwappedPredicate(PredB); 2795 } 2796 if (LHS2 != LHS) 2797 return false; 2798 // We also need to canonicalize 'RHS'. 2799 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2800 // x sgt C-1 <--> x sge C <--> not(x slt C) 2801 auto FlippedStrictness = 2802 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2803 PredB, cast<Constant>(RHS2)); 2804 if (!FlippedStrictness) 2805 return false; 2806 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2807 "basic correctness failure"); 2808 RHS2 = FlippedStrictness->second; 2809 // And kind-of perform the result swap. 2810 std::swap(Less, Greater); 2811 PredB = ICmpInst::ICMP_SLT; 2812 } 2813 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2814 } 2815 2816 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2817 SelectInst *Select, 2818 ConstantInt *C) { 2819 2820 assert(C && "Cmp RHS should be a constant int!"); 2821 // If we're testing a constant value against the result of a three way 2822 // comparison, the result can be expressed directly in terms of the 2823 // original values being compared. Note: We could possibly be more 2824 // aggressive here and remove the hasOneUse test. The original select is 2825 // really likely to simplify or sink when we remove a test of the result. 2826 Value *OrigLHS, *OrigRHS; 2827 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2828 if (Cmp.hasOneUse() && 2829 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2830 C3GreaterThan)) { 2831 assert(C1LessThan && C2Equal && C3GreaterThan); 2832 2833 bool TrueWhenLessThan = 2834 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2835 ->isAllOnesValue(); 2836 bool TrueWhenEqual = 2837 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2838 ->isAllOnesValue(); 2839 bool TrueWhenGreaterThan = 2840 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2841 ->isAllOnesValue(); 2842 2843 // This generates the new instruction that will replace the original Cmp 2844 // Instruction. Instead of enumerating the various combinations when 2845 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2846 // false, we rely on chaining of ORs and future passes of InstCombine to 2847 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2848 2849 // When none of the three constants satisfy the predicate for the RHS (C), 2850 // the entire original Cmp can be simplified to a false. 2851 Value *Cond = Builder.getFalse(); 2852 if (TrueWhenLessThan) 2853 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2854 OrigLHS, OrigRHS)); 2855 if (TrueWhenEqual) 2856 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2857 OrigLHS, OrigRHS)); 2858 if (TrueWhenGreaterThan) 2859 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2860 OrigLHS, OrigRHS)); 2861 2862 return replaceInstUsesWith(Cmp, Cond); 2863 } 2864 return nullptr; 2865 } 2866 2867 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2868 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2869 if (!Bitcast) 2870 return nullptr; 2871 2872 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2873 Value *Op1 = Cmp.getOperand(1); 2874 Value *BCSrcOp = Bitcast->getOperand(0); 2875 Type *SrcType = Bitcast->getSrcTy(); 2876 Type *DstType = Bitcast->getType(); 2877 2878 // Make sure the bitcast doesn't change between scalar and vector and 2879 // doesn't change the number of vector elements. 2880 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2881 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2882 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2883 Value *X; 2884 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2885 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2886 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2887 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2888 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2889 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2890 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2891 match(Op1, m_Zero())) 2892 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2893 2894 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2895 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2896 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2897 2898 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2899 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2900 return new ICmpInst(Pred, X, 2901 ConstantInt::getAllOnesValue(X->getType())); 2902 } 2903 2904 // Zero-equality checks are preserved through unsigned floating-point casts: 2905 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2906 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2907 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2908 if (Cmp.isEquality() && match(Op1, m_Zero())) 2909 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2910 2911 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2912 // the FP extend/truncate because that cast does not change the sign-bit. 2913 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2914 // The sign-bit is always the most significant bit in those types. 2915 const APInt *C; 2916 bool TrueIfSigned; 2917 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2918 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2919 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2920 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2921 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2922 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2923 Type *XType = X->getType(); 2924 2925 // We can't currently handle Power style floating point operations here. 2926 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 2927 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2928 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2929 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2930 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2931 if (TrueIfSigned) 2932 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2933 ConstantInt::getNullValue(NewType)); 2934 else 2935 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2936 ConstantInt::getAllOnesValue(NewType)); 2937 } 2938 } 2939 } 2940 } 2941 2942 // Test to see if the operands of the icmp are casted versions of other 2943 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2944 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2945 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2946 // so eliminate it as well. 2947 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2948 Op1 = BC2->getOperand(0); 2949 2950 Op1 = Builder.CreateBitCast(Op1, SrcType); 2951 return new ICmpInst(Pred, BCSrcOp, Op1); 2952 } 2953 2954 const APInt *C; 2955 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 2956 !SrcType->isIntOrIntVectorTy()) 2957 return nullptr; 2958 2959 // If this is checking if all elements of a vector compare are set or not, 2960 // invert the casted vector equality compare and test if all compare 2961 // elements are clear or not. Compare against zero is generally easier for 2962 // analysis and codegen. 2963 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2964 // Example: are all elements equal? --> are zero elements not equal? 2965 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2966 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2967 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2968 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 2969 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 2970 } 2971 2972 // If this is checking if all elements of an extended vector are clear or not, 2973 // compare in a narrow type to eliminate the extend: 2974 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2975 Value *X; 2976 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2977 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2978 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2979 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2980 Value *NewCast = Builder.CreateBitCast(X, NewType); 2981 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2982 } 2983 } 2984 2985 // Folding: icmp <pred> iN X, C 2986 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2987 // and C is a splat of a K-bit pattern 2988 // and SC is a constant vector = <C', C', C', ..., C'> 2989 // Into: 2990 // %E = extractelement <M x iK> %vec, i32 C' 2991 // icmp <pred> iK %E, trunc(C) 2992 Value *Vec; 2993 ArrayRef<int> Mask; 2994 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2995 // Check whether every element of Mask is the same constant 2996 if (is_splat(Mask)) { 2997 auto *VecTy = cast<VectorType>(SrcType); 2998 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2999 if (C->isSplat(EltTy->getBitWidth())) { 3000 // Fold the icmp based on the value of C 3001 // If C is M copies of an iK sized bit pattern, 3002 // then: 3003 // => %E = extractelement <N x iK> %vec, i32 Elem 3004 // icmp <pred> iK %SplatVal, <pattern> 3005 Value *Elem = Builder.getInt32(Mask[0]); 3006 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3007 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3008 return new ICmpInst(Pred, Extract, NewC); 3009 } 3010 } 3011 } 3012 return nullptr; 3013 } 3014 3015 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3016 /// where X is some kind of instruction. 3017 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3018 const APInt *C; 3019 3020 if (match(Cmp.getOperand(1), m_APInt(C))) { 3021 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3022 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3023 return I; 3024 3025 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3026 // For now, we only support constant integers while folding the 3027 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3028 // similar to the cases handled by binary ops above. 3029 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3030 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3031 return I; 3032 3033 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3034 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3035 return I; 3036 3037 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3038 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3039 return I; 3040 } 3041 3042 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3043 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3044 3045 return nullptr; 3046 } 3047 3048 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3049 /// icmp eq/ne BO, C. 3050 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3051 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3052 // TODO: Some of these folds could work with arbitrary constants, but this 3053 // function is limited to scalar and vector splat constants. 3054 if (!Cmp.isEquality()) 3055 return nullptr; 3056 3057 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3058 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3059 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3060 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3061 3062 switch (BO->getOpcode()) { 3063 case Instruction::SRem: 3064 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3065 if (C.isZero() && BO->hasOneUse()) { 3066 const APInt *BOC; 3067 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3068 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3069 return new ICmpInst(Pred, NewRem, 3070 Constant::getNullValue(BO->getType())); 3071 } 3072 } 3073 break; 3074 case Instruction::Add: { 3075 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3076 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3077 if (BO->hasOneUse()) 3078 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3079 } else if (C.isZero()) { 3080 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3081 // efficiently invertible, or if the add has just this one use. 3082 if (Value *NegVal = dyn_castNegVal(BOp1)) 3083 return new ICmpInst(Pred, BOp0, NegVal); 3084 if (Value *NegVal = dyn_castNegVal(BOp0)) 3085 return new ICmpInst(Pred, NegVal, BOp1); 3086 if (BO->hasOneUse()) { 3087 Value *Neg = Builder.CreateNeg(BOp1); 3088 Neg->takeName(BO); 3089 return new ICmpInst(Pred, BOp0, Neg); 3090 } 3091 } 3092 break; 3093 } 3094 case Instruction::Xor: 3095 if (BO->hasOneUse()) { 3096 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3097 // For the xor case, we can xor two constants together, eliminating 3098 // the explicit xor. 3099 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3100 } else if (C.isZero()) { 3101 // Replace ((xor A, B) != 0) with (A != B) 3102 return new ICmpInst(Pred, BOp0, BOp1); 3103 } 3104 } 3105 break; 3106 case Instruction::Or: { 3107 const APInt *BOC; 3108 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3109 // Comparing if all bits outside of a constant mask are set? 3110 // Replace (X | C) == -1 with (X & ~C) == ~C. 3111 // This removes the -1 constant. 3112 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3113 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3114 return new ICmpInst(Pred, And, NotBOC); 3115 } 3116 break; 3117 } 3118 case Instruction::And: { 3119 const APInt *BOC; 3120 if (match(BOp1, m_APInt(BOC))) { 3121 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3122 if (C == *BOC && C.isPowerOf2()) 3123 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3124 BO, Constant::getNullValue(RHS->getType())); 3125 } 3126 break; 3127 } 3128 case Instruction::UDiv: 3129 if (C.isZero()) { 3130 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3131 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3132 return new ICmpInst(NewPred, BOp1, BOp0); 3133 } 3134 break; 3135 default: 3136 break; 3137 } 3138 return nullptr; 3139 } 3140 3141 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3142 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3143 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3144 Type *Ty = II->getType(); 3145 unsigned BitWidth = C.getBitWidth(); 3146 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3147 3148 switch (II->getIntrinsicID()) { 3149 case Intrinsic::abs: 3150 // abs(A) == 0 -> A == 0 3151 // abs(A) == INT_MIN -> A == INT_MIN 3152 if (C.isZero() || C.isMinSignedValue()) 3153 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3154 break; 3155 3156 case Intrinsic::bswap: 3157 // bswap(A) == C -> A == bswap(C) 3158 return new ICmpInst(Pred, II->getArgOperand(0), 3159 ConstantInt::get(Ty, C.byteSwap())); 3160 3161 case Intrinsic::ctlz: 3162 case Intrinsic::cttz: { 3163 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3164 if (C == BitWidth) 3165 return new ICmpInst(Pred, II->getArgOperand(0), 3166 ConstantInt::getNullValue(Ty)); 3167 3168 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3169 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3170 // Limit to one use to ensure we don't increase instruction count. 3171 unsigned Num = C.getLimitedValue(BitWidth); 3172 if (Num != BitWidth && II->hasOneUse()) { 3173 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3174 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3175 : APInt::getHighBitsSet(BitWidth, Num + 1); 3176 APInt Mask2 = IsTrailing 3177 ? APInt::getOneBitSet(BitWidth, Num) 3178 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3179 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3180 ConstantInt::get(Ty, Mask2)); 3181 } 3182 break; 3183 } 3184 3185 case Intrinsic::ctpop: { 3186 // popcount(A) == 0 -> A == 0 and likewise for != 3187 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3188 bool IsZero = C.isZero(); 3189 if (IsZero || C == BitWidth) 3190 return new ICmpInst(Pred, II->getArgOperand(0), 3191 IsZero ? Constant::getNullValue(Ty) 3192 : Constant::getAllOnesValue(Ty)); 3193 3194 break; 3195 } 3196 3197 case Intrinsic::fshl: 3198 case Intrinsic::fshr: 3199 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3200 const APInt *RotAmtC; 3201 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3202 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3203 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3204 return new ICmpInst(Pred, II->getArgOperand(0), 3205 II->getIntrinsicID() == Intrinsic::fshl 3206 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3207 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3208 } 3209 break; 3210 3211 case Intrinsic::uadd_sat: { 3212 // uadd.sat(a, b) == 0 -> (a | b) == 0 3213 if (C.isZero()) { 3214 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3215 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3216 } 3217 break; 3218 } 3219 3220 case Intrinsic::usub_sat: { 3221 // usub.sat(a, b) == 0 -> a <= b 3222 if (C.isZero()) { 3223 ICmpInst::Predicate NewPred = 3224 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3225 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3226 } 3227 break; 3228 } 3229 default: 3230 break; 3231 } 3232 3233 return nullptr; 3234 } 3235 3236 /// Fold an icmp with LLVM intrinsics 3237 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3238 assert(Cmp.isEquality()); 3239 3240 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3241 Value *Op0 = Cmp.getOperand(0); 3242 Value *Op1 = Cmp.getOperand(1); 3243 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3244 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3245 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3246 return nullptr; 3247 3248 switch (IIOp0->getIntrinsicID()) { 3249 case Intrinsic::bswap: 3250 case Intrinsic::bitreverse: 3251 // If both operands are byte-swapped or bit-reversed, just compare the 3252 // original values. 3253 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3254 case Intrinsic::fshl: 3255 case Intrinsic::fshr: 3256 // If both operands are rotated by same amount, just compare the 3257 // original values. 3258 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3259 break; 3260 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3261 break; 3262 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3263 break; 3264 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3265 default: 3266 break; 3267 } 3268 3269 return nullptr; 3270 } 3271 3272 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3273 /// where X is some kind of instruction and C is AllowUndef. 3274 /// TODO: Move more folds which allow undef to this function. 3275 Instruction * 3276 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3277 const APInt &C) { 3278 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3279 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3280 switch (II->getIntrinsicID()) { 3281 default: 3282 break; 3283 case Intrinsic::fshl: 3284 case Intrinsic::fshr: 3285 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3286 // (rot X, ?) == 0/-1 --> X == 0/-1 3287 if (C.isZero() || C.isAllOnes()) 3288 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3289 } 3290 break; 3291 } 3292 } 3293 3294 return nullptr; 3295 } 3296 3297 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3298 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3299 BinaryOperator *BO, 3300 const APInt &C) { 3301 switch (BO->getOpcode()) { 3302 case Instruction::Xor: 3303 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3304 return I; 3305 break; 3306 case Instruction::And: 3307 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3308 return I; 3309 break; 3310 case Instruction::Or: 3311 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3312 return I; 3313 break; 3314 case Instruction::Mul: 3315 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3316 return I; 3317 break; 3318 case Instruction::Shl: 3319 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3320 return I; 3321 break; 3322 case Instruction::LShr: 3323 case Instruction::AShr: 3324 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3325 return I; 3326 break; 3327 case Instruction::SRem: 3328 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3329 return I; 3330 break; 3331 case Instruction::UDiv: 3332 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3333 return I; 3334 LLVM_FALLTHROUGH; 3335 case Instruction::SDiv: 3336 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3337 return I; 3338 break; 3339 case Instruction::Sub: 3340 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3341 return I; 3342 break; 3343 case Instruction::Add: 3344 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3345 return I; 3346 break; 3347 default: 3348 break; 3349 } 3350 3351 // TODO: These folds could be refactored to be part of the above calls. 3352 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3353 } 3354 3355 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3356 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3357 IntrinsicInst *II, 3358 const APInt &C) { 3359 if (Cmp.isEquality()) 3360 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3361 3362 Type *Ty = II->getType(); 3363 unsigned BitWidth = C.getBitWidth(); 3364 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3365 switch (II->getIntrinsicID()) { 3366 case Intrinsic::ctpop: { 3367 // (ctpop X > BitWidth - 1) --> X == -1 3368 Value *X = II->getArgOperand(0); 3369 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3370 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3371 ConstantInt::getAllOnesValue(Ty)); 3372 // (ctpop X < BitWidth) --> X != -1 3373 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3374 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3375 ConstantInt::getAllOnesValue(Ty)); 3376 break; 3377 } 3378 case Intrinsic::ctlz: { 3379 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3380 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3381 unsigned Num = C.getLimitedValue(); 3382 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3383 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3384 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3385 } 3386 3387 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3388 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3389 unsigned Num = C.getLimitedValue(); 3390 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3391 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3392 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3393 } 3394 break; 3395 } 3396 case Intrinsic::cttz: { 3397 // Limit to one use to ensure we don't increase instruction count. 3398 if (!II->hasOneUse()) 3399 return nullptr; 3400 3401 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3402 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3403 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3404 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3405 Builder.CreateAnd(II->getArgOperand(0), Mask), 3406 ConstantInt::getNullValue(Ty)); 3407 } 3408 3409 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3410 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3411 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3412 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3413 Builder.CreateAnd(II->getArgOperand(0), Mask), 3414 ConstantInt::getNullValue(Ty)); 3415 } 3416 break; 3417 } 3418 default: 3419 break; 3420 } 3421 3422 return nullptr; 3423 } 3424 3425 /// Handle icmp with constant (but not simple integer constant) RHS. 3426 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3427 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3428 Constant *RHSC = dyn_cast<Constant>(Op1); 3429 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3430 if (!RHSC || !LHSI) 3431 return nullptr; 3432 3433 switch (LHSI->getOpcode()) { 3434 case Instruction::GetElementPtr: 3435 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3436 if (RHSC->isNullValue() && 3437 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3438 return new ICmpInst( 3439 I.getPredicate(), LHSI->getOperand(0), 3440 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3441 break; 3442 case Instruction::PHI: 3443 // Only fold icmp into the PHI if the phi and icmp are in the same 3444 // block. If in the same block, we're encouraging jump threading. If 3445 // not, we are just pessimizing the code by making an i1 phi. 3446 if (LHSI->getParent() == I.getParent()) 3447 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3448 return NV; 3449 break; 3450 case Instruction::IntToPtr: 3451 // icmp pred inttoptr(X), null -> icmp pred X, 0 3452 if (RHSC->isNullValue() && 3453 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3454 return new ICmpInst( 3455 I.getPredicate(), LHSI->getOperand(0), 3456 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3457 break; 3458 3459 case Instruction::Load: 3460 // Try to optimize things like "A[i] > 4" to index computations. 3461 if (GetElementPtrInst *GEP = 3462 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3463 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3464 if (Instruction *Res = 3465 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3466 return Res; 3467 break; 3468 } 3469 3470 return nullptr; 3471 } 3472 3473 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3474 SelectInst *SI, Value *RHS, 3475 const ICmpInst &I) { 3476 // Try to fold the comparison into the select arms, which will cause the 3477 // select to be converted into a logical and/or. 3478 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3479 if (Value *Res = SimplifyICmpInst(Pred, Op, RHS, SQ)) 3480 return Res; 3481 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3482 RHS, DL, SelectCondIsTrue)) 3483 return ConstantInt::get(I.getType(), *Impl); 3484 return nullptr; 3485 }; 3486 3487 ConstantInt *CI = nullptr; 3488 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3489 if (Op1) 3490 CI = dyn_cast<ConstantInt>(Op1); 3491 3492 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3493 if (Op2) 3494 CI = dyn_cast<ConstantInt>(Op2); 3495 3496 // We only want to perform this transformation if it will not lead to 3497 // additional code. This is true if either both sides of the select 3498 // fold to a constant (in which case the icmp is replaced with a select 3499 // which will usually simplify) or this is the only user of the 3500 // select (in which case we are trading a select+icmp for a simpler 3501 // select+icmp) or all uses of the select can be replaced based on 3502 // dominance information ("Global cases"). 3503 bool Transform = false; 3504 if (Op1 && Op2) 3505 Transform = true; 3506 else if (Op1 || Op2) { 3507 // Local case 3508 if (SI->hasOneUse()) 3509 Transform = true; 3510 // Global cases 3511 else if (CI && !CI->isZero()) 3512 // When Op1 is constant try replacing select with second operand. 3513 // Otherwise Op2 is constant and try replacing select with first 3514 // operand. 3515 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3516 } 3517 if (Transform) { 3518 if (!Op1) 3519 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3520 if (!Op2) 3521 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3522 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3523 } 3524 3525 return nullptr; 3526 } 3527 3528 /// Some comparisons can be simplified. 3529 /// In this case, we are looking for comparisons that look like 3530 /// a check for a lossy truncation. 3531 /// Folds: 3532 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3533 /// Where Mask is some pattern that produces all-ones in low bits: 3534 /// (-1 >> y) 3535 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3536 /// ~(-1 << y) 3537 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3538 /// The Mask can be a constant, too. 3539 /// For some predicates, the operands are commutative. 3540 /// For others, x can only be on a specific side. 3541 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3542 InstCombiner::BuilderTy &Builder) { 3543 ICmpInst::Predicate SrcPred; 3544 Value *X, *M, *Y; 3545 auto m_VariableMask = m_CombineOr( 3546 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3547 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3548 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3549 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3550 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3551 if (!match(&I, m_c_ICmp(SrcPred, 3552 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3553 m_Deferred(X)))) 3554 return nullptr; 3555 3556 ICmpInst::Predicate DstPred; 3557 switch (SrcPred) { 3558 case ICmpInst::Predicate::ICMP_EQ: 3559 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3560 DstPred = ICmpInst::Predicate::ICMP_ULE; 3561 break; 3562 case ICmpInst::Predicate::ICMP_NE: 3563 // x & (-1 >> y) != x -> x u> (-1 >> y) 3564 DstPred = ICmpInst::Predicate::ICMP_UGT; 3565 break; 3566 case ICmpInst::Predicate::ICMP_ULT: 3567 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3568 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3569 DstPred = ICmpInst::Predicate::ICMP_UGT; 3570 break; 3571 case ICmpInst::Predicate::ICMP_UGE: 3572 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3573 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3574 DstPred = ICmpInst::Predicate::ICMP_ULE; 3575 break; 3576 case ICmpInst::Predicate::ICMP_SLT: 3577 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3578 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3579 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3580 return nullptr; 3581 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3582 return nullptr; 3583 DstPred = ICmpInst::Predicate::ICMP_SGT; 3584 break; 3585 case ICmpInst::Predicate::ICMP_SGE: 3586 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3587 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3588 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3589 return nullptr; 3590 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3591 return nullptr; 3592 DstPred = ICmpInst::Predicate::ICMP_SLE; 3593 break; 3594 case ICmpInst::Predicate::ICMP_SGT: 3595 case ICmpInst::Predicate::ICMP_SLE: 3596 return nullptr; 3597 case ICmpInst::Predicate::ICMP_UGT: 3598 case ICmpInst::Predicate::ICMP_ULE: 3599 llvm_unreachable("Instsimplify took care of commut. variant"); 3600 break; 3601 default: 3602 llvm_unreachable("All possible folds are handled."); 3603 } 3604 3605 // The mask value may be a vector constant that has undefined elements. But it 3606 // may not be safe to propagate those undefs into the new compare, so replace 3607 // those elements by copying an existing, defined, and safe scalar constant. 3608 Type *OpTy = M->getType(); 3609 auto *VecC = dyn_cast<Constant>(M); 3610 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3611 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3612 Constant *SafeReplacementConstant = nullptr; 3613 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3614 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3615 SafeReplacementConstant = VecC->getAggregateElement(i); 3616 break; 3617 } 3618 } 3619 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3620 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3621 } 3622 3623 return Builder.CreateICmp(DstPred, X, M); 3624 } 3625 3626 /// Some comparisons can be simplified. 3627 /// In this case, we are looking for comparisons that look like 3628 /// a check for a lossy signed truncation. 3629 /// Folds: (MaskedBits is a constant.) 3630 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3631 /// Into: 3632 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3633 /// Where KeptBits = bitwidth(%x) - MaskedBits 3634 static Value * 3635 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3636 InstCombiner::BuilderTy &Builder) { 3637 ICmpInst::Predicate SrcPred; 3638 Value *X; 3639 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3640 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3641 if (!match(&I, m_c_ICmp(SrcPred, 3642 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3643 m_APInt(C1))), 3644 m_Deferred(X)))) 3645 return nullptr; 3646 3647 // Potential handling of non-splats: for each element: 3648 // * if both are undef, replace with constant 0. 3649 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3650 // * if both are not undef, and are different, bailout. 3651 // * else, only one is undef, then pick the non-undef one. 3652 3653 // The shift amount must be equal. 3654 if (*C0 != *C1) 3655 return nullptr; 3656 const APInt &MaskedBits = *C0; 3657 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3658 3659 ICmpInst::Predicate DstPred; 3660 switch (SrcPred) { 3661 case ICmpInst::Predicate::ICMP_EQ: 3662 // ((%x << MaskedBits) a>> MaskedBits) == %x 3663 // => 3664 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3665 DstPred = ICmpInst::Predicate::ICMP_ULT; 3666 break; 3667 case ICmpInst::Predicate::ICMP_NE: 3668 // ((%x << MaskedBits) a>> MaskedBits) != %x 3669 // => 3670 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3671 DstPred = ICmpInst::Predicate::ICMP_UGE; 3672 break; 3673 // FIXME: are more folds possible? 3674 default: 3675 return nullptr; 3676 } 3677 3678 auto *XType = X->getType(); 3679 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3680 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3681 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3682 3683 // KeptBits = bitwidth(%x) - MaskedBits 3684 const APInt KeptBits = BitWidth - MaskedBits; 3685 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3686 // ICmpCst = (1 << KeptBits) 3687 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3688 assert(ICmpCst.isPowerOf2()); 3689 // AddCst = (1 << (KeptBits-1)) 3690 const APInt AddCst = ICmpCst.lshr(1); 3691 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3692 3693 // T0 = add %x, AddCst 3694 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3695 // T1 = T0 DstPred ICmpCst 3696 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3697 3698 return T1; 3699 } 3700 3701 // Given pattern: 3702 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3703 // we should move shifts to the same hand of 'and', i.e. rewrite as 3704 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3705 // We are only interested in opposite logical shifts here. 3706 // One of the shifts can be truncated. 3707 // If we can, we want to end up creating 'lshr' shift. 3708 static Value * 3709 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3710 InstCombiner::BuilderTy &Builder) { 3711 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3712 !I.getOperand(0)->hasOneUse()) 3713 return nullptr; 3714 3715 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3716 3717 // Look for an 'and' of two logical shifts, one of which may be truncated. 3718 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3719 Instruction *XShift, *MaybeTruncation, *YShift; 3720 if (!match( 3721 I.getOperand(0), 3722 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3723 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3724 m_AnyLogicalShift, m_Instruction(YShift))), 3725 m_Instruction(MaybeTruncation))))) 3726 return nullptr; 3727 3728 // We potentially looked past 'trunc', but only when matching YShift, 3729 // therefore YShift must have the widest type. 3730 Instruction *WidestShift = YShift; 3731 // Therefore XShift must have the shallowest type. 3732 // Or they both have identical types if there was no truncation. 3733 Instruction *NarrowestShift = XShift; 3734 3735 Type *WidestTy = WidestShift->getType(); 3736 Type *NarrowestTy = NarrowestShift->getType(); 3737 assert(NarrowestTy == I.getOperand(0)->getType() && 3738 "We did not look past any shifts while matching XShift though."); 3739 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3740 3741 // If YShift is a 'lshr', swap the shifts around. 3742 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3743 std::swap(XShift, YShift); 3744 3745 // The shifts must be in opposite directions. 3746 auto XShiftOpcode = XShift->getOpcode(); 3747 if (XShiftOpcode == YShift->getOpcode()) 3748 return nullptr; // Do not care about same-direction shifts here. 3749 3750 Value *X, *XShAmt, *Y, *YShAmt; 3751 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3752 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3753 3754 // If one of the values being shifted is a constant, then we will end with 3755 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3756 // however, we will need to ensure that we won't increase instruction count. 3757 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3758 // At least one of the hands of the 'and' should be one-use shift. 3759 if (!match(I.getOperand(0), 3760 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3761 return nullptr; 3762 if (HadTrunc) { 3763 // Due to the 'trunc', we will need to widen X. For that either the old 3764 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3765 if (!MaybeTruncation->hasOneUse() && 3766 !NarrowestShift->getOperand(1)->hasOneUse()) 3767 return nullptr; 3768 } 3769 } 3770 3771 // We have two shift amounts from two different shifts. The types of those 3772 // shift amounts may not match. If that's the case let's bailout now. 3773 if (XShAmt->getType() != YShAmt->getType()) 3774 return nullptr; 3775 3776 // As input, we have the following pattern: 3777 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3778 // We want to rewrite that as: 3779 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3780 // While we know that originally (Q+K) would not overflow 3781 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3782 // shift amounts. so it may now overflow in smaller bitwidth. 3783 // To ensure that does not happen, we need to ensure that the total maximal 3784 // shift amount is still representable in that smaller bit width. 3785 unsigned MaximalPossibleTotalShiftAmount = 3786 (WidestTy->getScalarSizeInBits() - 1) + 3787 (NarrowestTy->getScalarSizeInBits() - 1); 3788 APInt MaximalRepresentableShiftAmount = 3789 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3790 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3791 return nullptr; 3792 3793 // Can we fold (XShAmt+YShAmt) ? 3794 auto *NewShAmt = dyn_cast_or_null<Constant>( 3795 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3796 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3797 if (!NewShAmt) 3798 return nullptr; 3799 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3800 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3801 3802 // Is the new shift amount smaller than the bit width? 3803 // FIXME: could also rely on ConstantRange. 3804 if (!match(NewShAmt, 3805 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3806 APInt(WidestBitWidth, WidestBitWidth)))) 3807 return nullptr; 3808 3809 // An extra legality check is needed if we had trunc-of-lshr. 3810 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3811 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3812 WidestShift]() { 3813 // It isn't obvious whether it's worth it to analyze non-constants here. 3814 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3815 // If *any* of these preconditions matches we can perform the fold. 3816 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3817 ? NewShAmt->getSplatValue() 3818 : NewShAmt; 3819 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3820 if (NewShAmtSplat && 3821 (NewShAmtSplat->isNullValue() || 3822 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3823 return true; 3824 // We consider *min* leading zeros so a single outlier 3825 // blocks the transform as opposed to allowing it. 3826 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3827 KnownBits Known = computeKnownBits(C, SQ.DL); 3828 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3829 // If the value being shifted has at most lowest bit set we can fold. 3830 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3831 if (MaxActiveBits <= 1) 3832 return true; 3833 // Precondition: NewShAmt u<= countLeadingZeros(C) 3834 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3835 return true; 3836 } 3837 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3838 KnownBits Known = computeKnownBits(C, SQ.DL); 3839 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3840 // If the value being shifted has at most lowest bit set we can fold. 3841 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3842 if (MaxActiveBits <= 1) 3843 return true; 3844 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3845 if (NewShAmtSplat) { 3846 APInt AdjNewShAmt = 3847 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3848 if (AdjNewShAmt.ule(MinLeadZero)) 3849 return true; 3850 } 3851 } 3852 return false; // Can't tell if it's ok. 3853 }; 3854 if (!CanFold()) 3855 return nullptr; 3856 } 3857 3858 // All good, we can do this fold. 3859 X = Builder.CreateZExt(X, WidestTy); 3860 Y = Builder.CreateZExt(Y, WidestTy); 3861 // The shift is the same that was for X. 3862 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3863 ? Builder.CreateLShr(X, NewShAmt) 3864 : Builder.CreateShl(X, NewShAmt); 3865 Value *T1 = Builder.CreateAnd(T0, Y); 3866 return Builder.CreateICmp(I.getPredicate(), T1, 3867 Constant::getNullValue(WidestTy)); 3868 } 3869 3870 /// Fold 3871 /// (-1 u/ x) u< y 3872 /// ((x * y) ?/ x) != y 3873 /// to 3874 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3875 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3876 /// will mean that we are looking for the opposite answer. 3877 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3878 ICmpInst::Predicate Pred; 3879 Value *X, *Y; 3880 Instruction *Mul; 3881 Instruction *Div; 3882 bool NeedNegation; 3883 // Look for: (-1 u/ x) u</u>= y 3884 if (!I.isEquality() && 3885 match(&I, m_c_ICmp(Pred, 3886 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3887 m_Instruction(Div)), 3888 m_Value(Y)))) { 3889 Mul = nullptr; 3890 3891 // Are we checking that overflow does not happen, or does happen? 3892 switch (Pred) { 3893 case ICmpInst::Predicate::ICMP_ULT: 3894 NeedNegation = false; 3895 break; // OK 3896 case ICmpInst::Predicate::ICMP_UGE: 3897 NeedNegation = true; 3898 break; // OK 3899 default: 3900 return nullptr; // Wrong predicate. 3901 } 3902 } else // Look for: ((x * y) / x) !=/== y 3903 if (I.isEquality() && 3904 match(&I, 3905 m_c_ICmp(Pred, m_Value(Y), 3906 m_CombineAnd( 3907 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3908 m_Value(X)), 3909 m_Instruction(Mul)), 3910 m_Deferred(X))), 3911 m_Instruction(Div))))) { 3912 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3913 } else 3914 return nullptr; 3915 3916 BuilderTy::InsertPointGuard Guard(Builder); 3917 // If the pattern included (x * y), we'll want to insert new instructions 3918 // right before that original multiplication so that we can replace it. 3919 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3920 if (MulHadOtherUses) 3921 Builder.SetInsertPoint(Mul); 3922 3923 Function *F = Intrinsic::getDeclaration(I.getModule(), 3924 Div->getOpcode() == Instruction::UDiv 3925 ? Intrinsic::umul_with_overflow 3926 : Intrinsic::smul_with_overflow, 3927 X->getType()); 3928 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3929 3930 // If the multiplication was used elsewhere, to ensure that we don't leave 3931 // "duplicate" instructions, replace uses of that original multiplication 3932 // with the multiplication result from the with.overflow intrinsic. 3933 if (MulHadOtherUses) 3934 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3935 3936 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3937 if (NeedNegation) // This technically increases instruction count. 3938 Res = Builder.CreateNot(Res, "mul.not.ov"); 3939 3940 // If we replaced the mul, erase it. Do this after all uses of Builder, 3941 // as the mul is used as insertion point. 3942 if (MulHadOtherUses) 3943 eraseInstFromFunction(*Mul); 3944 3945 return Res; 3946 } 3947 3948 static Instruction *foldICmpXNegX(ICmpInst &I) { 3949 CmpInst::Predicate Pred; 3950 Value *X; 3951 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3952 return nullptr; 3953 3954 if (ICmpInst::isSigned(Pred)) 3955 Pred = ICmpInst::getSwappedPredicate(Pred); 3956 else if (ICmpInst::isUnsigned(Pred)) 3957 Pred = ICmpInst::getSignedPredicate(Pred); 3958 // else for equality-comparisons just keep the predicate. 3959 3960 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3961 Constant::getNullValue(X->getType()), I.getName()); 3962 } 3963 3964 /// Try to fold icmp (binop), X or icmp X, (binop). 3965 /// TODO: A large part of this logic is duplicated in InstSimplify's 3966 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3967 /// duplication. 3968 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3969 const SimplifyQuery &SQ) { 3970 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3971 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3972 3973 // Special logic for binary operators. 3974 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3975 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3976 if (!BO0 && !BO1) 3977 return nullptr; 3978 3979 if (Instruction *NewICmp = foldICmpXNegX(I)) 3980 return NewICmp; 3981 3982 const CmpInst::Predicate Pred = I.getPredicate(); 3983 Value *X; 3984 3985 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3986 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3987 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3988 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3989 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3990 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3991 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3992 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3993 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3994 3995 { 3996 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 3997 Constant *C; 3998 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 3999 m_ImmConstant(C)))) && 4000 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4001 Constant *C2 = ConstantExpr::getNot(C); 4002 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4003 } 4004 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4005 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4006 m_ImmConstant(C)))) && 4007 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4008 Constant *C2 = ConstantExpr::getNot(C); 4009 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4010 } 4011 } 4012 4013 { 4014 // Similar to above: an unsigned overflow comparison may use offset + mask: 4015 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4016 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4017 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4018 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4019 BinaryOperator *BO; 4020 const APInt *C; 4021 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4022 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4023 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4024 CmpInst::Predicate NewPred = 4025 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4026 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4027 return new ICmpInst(NewPred, Op1, Zero); 4028 } 4029 4030 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4031 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4032 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4033 CmpInst::Predicate NewPred = 4034 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4035 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4036 return new ICmpInst(NewPred, Op0, Zero); 4037 } 4038 } 4039 4040 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4041 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4042 NoOp0WrapProblem = 4043 ICmpInst::isEquality(Pred) || 4044 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4045 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4046 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4047 NoOp1WrapProblem = 4048 ICmpInst::isEquality(Pred) || 4049 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4050 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4051 4052 // Analyze the case when either Op0 or Op1 is an add instruction. 4053 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4054 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4055 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4056 A = BO0->getOperand(0); 4057 B = BO0->getOperand(1); 4058 } 4059 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4060 C = BO1->getOperand(0); 4061 D = BO1->getOperand(1); 4062 } 4063 4064 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4065 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4066 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4067 return new ICmpInst(Pred, A == Op1 ? B : A, 4068 Constant::getNullValue(Op1->getType())); 4069 4070 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4071 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4072 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4073 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4074 C == Op0 ? D : C); 4075 4076 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4077 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4078 NoOp1WrapProblem) { 4079 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4080 Value *Y, *Z; 4081 if (A == C) { 4082 // C + B == C + D -> B == D 4083 Y = B; 4084 Z = D; 4085 } else if (A == D) { 4086 // D + B == C + D -> B == C 4087 Y = B; 4088 Z = C; 4089 } else if (B == C) { 4090 // A + C == C + D -> A == D 4091 Y = A; 4092 Z = D; 4093 } else { 4094 assert(B == D); 4095 // A + D == C + D -> A == C 4096 Y = A; 4097 Z = C; 4098 } 4099 return new ICmpInst(Pred, Y, Z); 4100 } 4101 4102 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4103 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4104 match(B, m_AllOnes())) 4105 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4106 4107 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4108 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4109 match(B, m_AllOnes())) 4110 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4111 4112 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4113 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4114 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4115 4116 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4117 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4118 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4119 4120 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4121 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4122 match(D, m_AllOnes())) 4123 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4124 4125 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4126 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4127 match(D, m_AllOnes())) 4128 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4129 4130 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4131 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4132 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4133 4134 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4135 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4136 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4137 4138 // TODO: The subtraction-related identities shown below also hold, but 4139 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4140 // wouldn't happen even if they were implemented. 4141 // 4142 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4143 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4144 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4145 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4146 4147 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4148 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4149 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4150 4151 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4152 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4153 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4154 4155 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4156 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4157 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4158 4159 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4160 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4161 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4162 4163 // if C1 has greater magnitude than C2: 4164 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4165 // s.t. C3 = C1 - C2 4166 // 4167 // if C2 has greater magnitude than C1: 4168 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4169 // s.t. C3 = C2 - C1 4170 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4171 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4172 const APInt *AP1, *AP2; 4173 // TODO: Support non-uniform vectors. 4174 // TODO: Allow undef passthrough if B AND D's element is undef. 4175 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4176 AP1->isNegative() == AP2->isNegative()) { 4177 APInt AP1Abs = AP1->abs(); 4178 APInt AP2Abs = AP2->abs(); 4179 if (AP1Abs.uge(AP2Abs)) { 4180 APInt Diff = *AP1 - *AP2; 4181 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4182 bool HasNSW = BO0->hasNoSignedWrap(); 4183 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4184 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4185 return new ICmpInst(Pred, NewAdd, C); 4186 } else { 4187 APInt Diff = *AP2 - *AP1; 4188 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4189 bool HasNSW = BO1->hasNoSignedWrap(); 4190 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4191 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4192 return new ICmpInst(Pred, A, NewAdd); 4193 } 4194 } 4195 Constant *Cst1, *Cst2; 4196 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4197 ICmpInst::isEquality(Pred)) { 4198 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4199 Value *NewAdd = Builder.CreateAdd(C, Diff); 4200 return new ICmpInst(Pred, A, NewAdd); 4201 } 4202 } 4203 4204 // Analyze the case when either Op0 or Op1 is a sub instruction. 4205 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4206 A = nullptr; 4207 B = nullptr; 4208 C = nullptr; 4209 D = nullptr; 4210 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4211 A = BO0->getOperand(0); 4212 B = BO0->getOperand(1); 4213 } 4214 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4215 C = BO1->getOperand(0); 4216 D = BO1->getOperand(1); 4217 } 4218 4219 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4220 if (A == Op1 && NoOp0WrapProblem) 4221 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4222 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4223 if (C == Op0 && NoOp1WrapProblem) 4224 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4225 4226 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4227 // (A - B) u>/u<= A --> B u>/u<= A 4228 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4229 return new ICmpInst(Pred, B, A); 4230 // C u</u>= (C - D) --> C u</u>= D 4231 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4232 return new ICmpInst(Pred, C, D); 4233 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4234 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4235 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4236 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4237 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4238 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4239 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4240 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4241 4242 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4243 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4244 return new ICmpInst(Pred, A, C); 4245 4246 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4247 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4248 return new ICmpInst(Pred, D, B); 4249 4250 // icmp (0-X) < cst --> x > -cst 4251 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4252 Value *X; 4253 if (match(BO0, m_Neg(m_Value(X)))) 4254 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4255 if (RHSC->isNotMinSignedValue()) 4256 return new ICmpInst(I.getSwappedPredicate(), X, 4257 ConstantExpr::getNeg(RHSC)); 4258 } 4259 4260 { 4261 // Try to remove shared constant multiplier from equality comparison: 4262 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4263 Value *X, *Y; 4264 const APInt *C; 4265 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4266 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4267 if (!C->countTrailingZeros() || 4268 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4269 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4270 return new ICmpInst(Pred, X, Y); 4271 } 4272 4273 BinaryOperator *SRem = nullptr; 4274 // icmp (srem X, Y), Y 4275 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4276 SRem = BO0; 4277 // icmp Y, (srem X, Y) 4278 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4279 Op0 == BO1->getOperand(1)) 4280 SRem = BO1; 4281 if (SRem) { 4282 // We don't check hasOneUse to avoid increasing register pressure because 4283 // the value we use is the same value this instruction was already using. 4284 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4285 default: 4286 break; 4287 case ICmpInst::ICMP_EQ: 4288 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4289 case ICmpInst::ICMP_NE: 4290 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4291 case ICmpInst::ICMP_SGT: 4292 case ICmpInst::ICMP_SGE: 4293 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4294 Constant::getAllOnesValue(SRem->getType())); 4295 case ICmpInst::ICMP_SLT: 4296 case ICmpInst::ICMP_SLE: 4297 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4298 Constant::getNullValue(SRem->getType())); 4299 } 4300 } 4301 4302 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4303 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4304 switch (BO0->getOpcode()) { 4305 default: 4306 break; 4307 case Instruction::Add: 4308 case Instruction::Sub: 4309 case Instruction::Xor: { 4310 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4311 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4312 4313 const APInt *C; 4314 if (match(BO0->getOperand(1), m_APInt(C))) { 4315 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4316 if (C->isSignMask()) { 4317 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4318 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4319 } 4320 4321 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4322 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4323 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4324 NewPred = I.getSwappedPredicate(NewPred); 4325 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4326 } 4327 } 4328 break; 4329 } 4330 case Instruction::Mul: { 4331 if (!I.isEquality()) 4332 break; 4333 4334 const APInt *C; 4335 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4336 !C->isOne()) { 4337 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4338 // Mask = -1 >> count-trailing-zeros(C). 4339 if (unsigned TZs = C->countTrailingZeros()) { 4340 Constant *Mask = ConstantInt::get( 4341 BO0->getType(), 4342 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4343 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4344 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4345 return new ICmpInst(Pred, And1, And2); 4346 } 4347 } 4348 break; 4349 } 4350 case Instruction::UDiv: 4351 case Instruction::LShr: 4352 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4353 break; 4354 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4355 4356 case Instruction::SDiv: 4357 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4358 break; 4359 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4360 4361 case Instruction::AShr: 4362 if (!BO0->isExact() || !BO1->isExact()) 4363 break; 4364 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4365 4366 case Instruction::Shl: { 4367 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4368 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4369 if (!NUW && !NSW) 4370 break; 4371 if (!NSW && I.isSigned()) 4372 break; 4373 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4374 } 4375 } 4376 } 4377 4378 if (BO0) { 4379 // Transform A & (L - 1) `ult` L --> L != 0 4380 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4381 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4382 4383 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4384 auto *Zero = Constant::getNullValue(BO0->getType()); 4385 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4386 } 4387 } 4388 4389 if (Value *V = foldMultiplicationOverflowCheck(I)) 4390 return replaceInstUsesWith(I, V); 4391 4392 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4393 return replaceInstUsesWith(I, V); 4394 4395 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4396 return replaceInstUsesWith(I, V); 4397 4398 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4399 return replaceInstUsesWith(I, V); 4400 4401 return nullptr; 4402 } 4403 4404 /// Fold icmp Pred min|max(X, Y), X. 4405 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4406 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4407 Value *Op0 = Cmp.getOperand(0); 4408 Value *X = Cmp.getOperand(1); 4409 4410 // Canonicalize minimum or maximum operand to LHS of the icmp. 4411 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4412 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4413 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4414 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4415 std::swap(Op0, X); 4416 Pred = Cmp.getSwappedPredicate(); 4417 } 4418 4419 Value *Y; 4420 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4421 // smin(X, Y) == X --> X s<= Y 4422 // smin(X, Y) s>= X --> X s<= Y 4423 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4424 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4425 4426 // smin(X, Y) != X --> X s> Y 4427 // smin(X, Y) s< X --> X s> Y 4428 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4429 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4430 4431 // These cases should be handled in InstSimplify: 4432 // smin(X, Y) s<= X --> true 4433 // smin(X, Y) s> X --> false 4434 return nullptr; 4435 } 4436 4437 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4438 // smax(X, Y) == X --> X s>= Y 4439 // smax(X, Y) s<= X --> X s>= Y 4440 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4441 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4442 4443 // smax(X, Y) != X --> X s< Y 4444 // smax(X, Y) s> X --> X s< Y 4445 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4446 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4447 4448 // These cases should be handled in InstSimplify: 4449 // smax(X, Y) s>= X --> true 4450 // smax(X, Y) s< X --> false 4451 return nullptr; 4452 } 4453 4454 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4455 // umin(X, Y) == X --> X u<= Y 4456 // umin(X, Y) u>= X --> X u<= Y 4457 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4458 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4459 4460 // umin(X, Y) != X --> X u> Y 4461 // umin(X, Y) u< X --> X u> Y 4462 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4463 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4464 4465 // These cases should be handled in InstSimplify: 4466 // umin(X, Y) u<= X --> true 4467 // umin(X, Y) u> X --> false 4468 return nullptr; 4469 } 4470 4471 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4472 // umax(X, Y) == X --> X u>= Y 4473 // umax(X, Y) u<= X --> X u>= Y 4474 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4475 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4476 4477 // umax(X, Y) != X --> X u< Y 4478 // umax(X, Y) u> X --> X u< Y 4479 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4480 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4481 4482 // These cases should be handled in InstSimplify: 4483 // umax(X, Y) u>= X --> true 4484 // umax(X, Y) u< X --> false 4485 return nullptr; 4486 } 4487 4488 return nullptr; 4489 } 4490 4491 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4492 if (!I.isEquality()) 4493 return nullptr; 4494 4495 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4496 const CmpInst::Predicate Pred = I.getPredicate(); 4497 Value *A, *B, *C, *D; 4498 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4499 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4500 Value *OtherVal = A == Op1 ? B : A; 4501 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4502 } 4503 4504 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4505 // A^c1 == C^c2 --> A == C^(c1^c2) 4506 ConstantInt *C1, *C2; 4507 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4508 Op1->hasOneUse()) { 4509 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4510 Value *Xor = Builder.CreateXor(C, NC); 4511 return new ICmpInst(Pred, A, Xor); 4512 } 4513 4514 // A^B == A^D -> B == D 4515 if (A == C) 4516 return new ICmpInst(Pred, B, D); 4517 if (A == D) 4518 return new ICmpInst(Pred, B, C); 4519 if (B == C) 4520 return new ICmpInst(Pred, A, D); 4521 if (B == D) 4522 return new ICmpInst(Pred, A, C); 4523 } 4524 } 4525 4526 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4527 // A == (A^B) -> B == 0 4528 Value *OtherVal = A == Op0 ? B : A; 4529 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4530 } 4531 4532 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4533 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4534 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4535 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4536 4537 if (A == C) { 4538 X = B; 4539 Y = D; 4540 Z = A; 4541 } else if (A == D) { 4542 X = B; 4543 Y = C; 4544 Z = A; 4545 } else if (B == C) { 4546 X = A; 4547 Y = D; 4548 Z = B; 4549 } else if (B == D) { 4550 X = A; 4551 Y = C; 4552 Z = B; 4553 } 4554 4555 if (X) { // Build (X^Y) & Z 4556 Op1 = Builder.CreateXor(X, Y); 4557 Op1 = Builder.CreateAnd(Op1, Z); 4558 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4559 } 4560 } 4561 4562 { 4563 // Similar to above, but specialized for constant because invert is needed: 4564 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4565 Value *X, *Y; 4566 Constant *C; 4567 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4568 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4569 Value *Xor = Builder.CreateXor(X, Y); 4570 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4571 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4572 } 4573 } 4574 4575 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4576 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4577 ConstantInt *Cst1; 4578 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4579 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4580 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4581 match(Op1, m_ZExt(m_Value(A))))) { 4582 APInt Pow2 = Cst1->getValue() + 1; 4583 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4584 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4585 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4586 } 4587 4588 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4589 // For lshr and ashr pairs. 4590 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4591 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4592 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4593 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4594 unsigned TypeBits = Cst1->getBitWidth(); 4595 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4596 if (ShAmt < TypeBits && ShAmt != 0) { 4597 ICmpInst::Predicate NewPred = 4598 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4599 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4600 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4601 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4602 } 4603 } 4604 4605 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4606 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4607 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4608 unsigned TypeBits = Cst1->getBitWidth(); 4609 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4610 if (ShAmt < TypeBits && ShAmt != 0) { 4611 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4612 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4613 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4614 I.getName() + ".mask"); 4615 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4616 } 4617 } 4618 4619 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4620 // "icmp (and X, mask), cst" 4621 uint64_t ShAmt = 0; 4622 if (Op0->hasOneUse() && 4623 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4624 match(Op1, m_ConstantInt(Cst1)) && 4625 // Only do this when A has multiple uses. This is most important to do 4626 // when it exposes other optimizations. 4627 !A->hasOneUse()) { 4628 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4629 4630 if (ShAmt < ASize) { 4631 APInt MaskV = 4632 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4633 MaskV <<= ShAmt; 4634 4635 APInt CmpV = Cst1->getValue().zext(ASize); 4636 CmpV <<= ShAmt; 4637 4638 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4639 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4640 } 4641 } 4642 4643 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4644 return ICmp; 4645 4646 // Canonicalize checking for a power-of-2-or-zero value: 4647 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4648 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4649 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4650 m_Deferred(A)))) || 4651 !match(Op1, m_ZeroInt())) 4652 A = nullptr; 4653 4654 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4655 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4656 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4657 A = Op1; 4658 else if (match(Op1, 4659 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4660 A = Op0; 4661 4662 if (A) { 4663 Type *Ty = A->getType(); 4664 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4665 return Pred == ICmpInst::ICMP_EQ 4666 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4667 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4668 } 4669 4670 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4671 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4672 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4673 // of instcombine. 4674 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4675 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4676 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4677 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4678 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4679 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4680 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4681 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4682 : ICmpInst::ICMP_UGE, 4683 Add, ConstantInt::get(A->getType(), C.shl(1))); 4684 } 4685 4686 return nullptr; 4687 } 4688 4689 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4690 InstCombiner::BuilderTy &Builder) { 4691 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4692 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4693 4694 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4695 // The trunc masks high bits while the compare may effectively mask low bits. 4696 Value *X; 4697 const APInt *C; 4698 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4699 return nullptr; 4700 4701 // This matches patterns corresponding to tests of the signbit as well as: 4702 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4703 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4704 APInt Mask; 4705 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4706 Value *And = Builder.CreateAnd(X, Mask); 4707 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4708 return new ICmpInst(Pred, And, Zero); 4709 } 4710 4711 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4712 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4713 // If C is a negative power-of-2 (high-bit mask): 4714 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4715 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4716 Value *And = Builder.CreateAnd(X, MaskC); 4717 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4718 } 4719 4720 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4721 // If C is not-of-power-of-2 (one clear bit): 4722 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4723 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4724 Value *And = Builder.CreateAnd(X, MaskC); 4725 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4726 } 4727 4728 return nullptr; 4729 } 4730 4731 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4732 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4733 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4734 Value *X; 4735 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4736 return nullptr; 4737 4738 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4739 bool IsSignedCmp = ICmp.isSigned(); 4740 4741 // icmp Pred (ext X), (ext Y) 4742 Value *Y; 4743 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4744 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4745 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4746 4747 // If we have mismatched casts, treat the zext of a non-negative source as 4748 // a sext to simulate matching casts. Otherwise, we are done. 4749 // TODO: Can we handle some predicates (equality) without non-negative? 4750 if (IsZext0 != IsZext1) { 4751 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4752 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4753 IsSignedExt = true; 4754 else 4755 return nullptr; 4756 } 4757 4758 // Not an extension from the same type? 4759 Type *XTy = X->getType(), *YTy = Y->getType(); 4760 if (XTy != YTy) { 4761 // One of the casts must have one use because we are creating a new cast. 4762 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4763 return nullptr; 4764 // Extend the narrower operand to the type of the wider operand. 4765 CastInst::CastOps CastOpcode = 4766 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4767 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4768 X = Builder.CreateCast(CastOpcode, X, YTy); 4769 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4770 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4771 else 4772 return nullptr; 4773 } 4774 4775 // (zext X) == (zext Y) --> X == Y 4776 // (sext X) == (sext Y) --> X == Y 4777 if (ICmp.isEquality()) 4778 return new ICmpInst(ICmp.getPredicate(), X, Y); 4779 4780 // A signed comparison of sign extended values simplifies into a 4781 // signed comparison. 4782 if (IsSignedCmp && IsSignedExt) 4783 return new ICmpInst(ICmp.getPredicate(), X, Y); 4784 4785 // The other three cases all fold into an unsigned comparison. 4786 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4787 } 4788 4789 // Below here, we are only folding a compare with constant. 4790 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4791 if (!C) 4792 return nullptr; 4793 4794 // Compute the constant that would happen if we truncated to SrcTy then 4795 // re-extended to DestTy. 4796 Type *SrcTy = CastOp0->getSrcTy(); 4797 Type *DestTy = CastOp0->getDestTy(); 4798 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4799 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4800 4801 // If the re-extended constant didn't change... 4802 if (Res2 == C) { 4803 if (ICmp.isEquality()) 4804 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4805 4806 // A signed comparison of sign extended values simplifies into a 4807 // signed comparison. 4808 if (IsSignedExt && IsSignedCmp) 4809 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4810 4811 // The other three cases all fold into an unsigned comparison. 4812 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4813 } 4814 4815 // The re-extended constant changed, partly changed (in the case of a vector), 4816 // or could not be determined to be equal (in the case of a constant 4817 // expression), so the constant cannot be represented in the shorter type. 4818 // All the cases that fold to true or false will have already been handled 4819 // by SimplifyICmpInst, so only deal with the tricky case. 4820 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4821 return nullptr; 4822 4823 // Is source op positive? 4824 // icmp ult (sext X), C --> icmp sgt X, -1 4825 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4826 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4827 4828 // Is source op negative? 4829 // icmp ugt (sext X), C --> icmp slt X, 0 4830 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4831 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4832 } 4833 4834 /// Handle icmp (cast x), (cast or constant). 4835 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4836 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4837 // icmp compares only pointer's value. 4838 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4839 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4840 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4841 if (SimplifiedOp0 || SimplifiedOp1) 4842 return new ICmpInst(ICmp.getPredicate(), 4843 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4844 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4845 4846 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4847 if (!CastOp0) 4848 return nullptr; 4849 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4850 return nullptr; 4851 4852 Value *Op0Src = CastOp0->getOperand(0); 4853 Type *SrcTy = CastOp0->getSrcTy(); 4854 Type *DestTy = CastOp0->getDestTy(); 4855 4856 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4857 // integer type is the same size as the pointer type. 4858 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4859 if (isa<VectorType>(SrcTy)) { 4860 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4861 DestTy = cast<VectorType>(DestTy)->getElementType(); 4862 } 4863 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4864 }; 4865 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4866 CompatibleSizes(SrcTy, DestTy)) { 4867 Value *NewOp1 = nullptr; 4868 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4869 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4870 if (PtrSrc->getType()->getPointerAddressSpace() == 4871 Op0Src->getType()->getPointerAddressSpace()) { 4872 NewOp1 = PtrToIntOp1->getOperand(0); 4873 // If the pointer types don't match, insert a bitcast. 4874 if (Op0Src->getType() != NewOp1->getType()) 4875 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4876 } 4877 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4878 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4879 } 4880 4881 if (NewOp1) 4882 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4883 } 4884 4885 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4886 return R; 4887 4888 return foldICmpWithZextOrSext(ICmp); 4889 } 4890 4891 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4892 switch (BinaryOp) { 4893 default: 4894 llvm_unreachable("Unsupported binary op"); 4895 case Instruction::Add: 4896 case Instruction::Sub: 4897 return match(RHS, m_Zero()); 4898 case Instruction::Mul: 4899 return match(RHS, m_One()); 4900 } 4901 } 4902 4903 OverflowResult 4904 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4905 bool IsSigned, Value *LHS, Value *RHS, 4906 Instruction *CxtI) const { 4907 switch (BinaryOp) { 4908 default: 4909 llvm_unreachable("Unsupported binary op"); 4910 case Instruction::Add: 4911 if (IsSigned) 4912 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4913 else 4914 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4915 case Instruction::Sub: 4916 if (IsSigned) 4917 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4918 else 4919 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4920 case Instruction::Mul: 4921 if (IsSigned) 4922 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4923 else 4924 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4925 } 4926 } 4927 4928 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4929 bool IsSigned, Value *LHS, 4930 Value *RHS, Instruction &OrigI, 4931 Value *&Result, 4932 Constant *&Overflow) { 4933 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4934 std::swap(LHS, RHS); 4935 4936 // If the overflow check was an add followed by a compare, the insertion point 4937 // may be pointing to the compare. We want to insert the new instructions 4938 // before the add in case there are uses of the add between the add and the 4939 // compare. 4940 Builder.SetInsertPoint(&OrigI); 4941 4942 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4943 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4944 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4945 4946 if (isNeutralValue(BinaryOp, RHS)) { 4947 Result = LHS; 4948 Overflow = ConstantInt::getFalse(OverflowTy); 4949 return true; 4950 } 4951 4952 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4953 case OverflowResult::MayOverflow: 4954 return false; 4955 case OverflowResult::AlwaysOverflowsLow: 4956 case OverflowResult::AlwaysOverflowsHigh: 4957 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4958 Result->takeName(&OrigI); 4959 Overflow = ConstantInt::getTrue(OverflowTy); 4960 return true; 4961 case OverflowResult::NeverOverflows: 4962 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4963 Result->takeName(&OrigI); 4964 Overflow = ConstantInt::getFalse(OverflowTy); 4965 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4966 if (IsSigned) 4967 Inst->setHasNoSignedWrap(); 4968 else 4969 Inst->setHasNoUnsignedWrap(); 4970 } 4971 return true; 4972 } 4973 4974 llvm_unreachable("Unexpected overflow result"); 4975 } 4976 4977 /// Recognize and process idiom involving test for multiplication 4978 /// overflow. 4979 /// 4980 /// The caller has matched a pattern of the form: 4981 /// I = cmp u (mul(zext A, zext B), V 4982 /// The function checks if this is a test for overflow and if so replaces 4983 /// multiplication with call to 'mul.with.overflow' intrinsic. 4984 /// 4985 /// \param I Compare instruction. 4986 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4987 /// the compare instruction. Must be of integer type. 4988 /// \param OtherVal The other argument of compare instruction. 4989 /// \returns Instruction which must replace the compare instruction, NULL if no 4990 /// replacement required. 4991 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4992 Value *OtherVal, 4993 InstCombinerImpl &IC) { 4994 // Don't bother doing this transformation for pointers, don't do it for 4995 // vectors. 4996 if (!isa<IntegerType>(MulVal->getType())) 4997 return nullptr; 4998 4999 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5000 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5001 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5002 if (!MulInstr) 5003 return nullptr; 5004 assert(MulInstr->getOpcode() == Instruction::Mul); 5005 5006 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5007 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5008 assert(LHS->getOpcode() == Instruction::ZExt); 5009 assert(RHS->getOpcode() == Instruction::ZExt); 5010 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5011 5012 // Calculate type and width of the result produced by mul.with.overflow. 5013 Type *TyA = A->getType(), *TyB = B->getType(); 5014 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5015 WidthB = TyB->getPrimitiveSizeInBits(); 5016 unsigned MulWidth; 5017 Type *MulType; 5018 if (WidthB > WidthA) { 5019 MulWidth = WidthB; 5020 MulType = TyB; 5021 } else { 5022 MulWidth = WidthA; 5023 MulType = TyA; 5024 } 5025 5026 // In order to replace the original mul with a narrower mul.with.overflow, 5027 // all uses must ignore upper bits of the product. The number of used low 5028 // bits must be not greater than the width of mul.with.overflow. 5029 if (MulVal->hasNUsesOrMore(2)) 5030 for (User *U : MulVal->users()) { 5031 if (U == &I) 5032 continue; 5033 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5034 // Check if truncation ignores bits above MulWidth. 5035 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5036 if (TruncWidth > MulWidth) 5037 return nullptr; 5038 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5039 // Check if AND ignores bits above MulWidth. 5040 if (BO->getOpcode() != Instruction::And) 5041 return nullptr; 5042 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5043 const APInt &CVal = CI->getValue(); 5044 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5045 return nullptr; 5046 } else { 5047 // In this case we could have the operand of the binary operation 5048 // being defined in another block, and performing the replacement 5049 // could break the dominance relation. 5050 return nullptr; 5051 } 5052 } else { 5053 // Other uses prohibit this transformation. 5054 return nullptr; 5055 } 5056 } 5057 5058 // Recognize patterns 5059 switch (I.getPredicate()) { 5060 case ICmpInst::ICMP_EQ: 5061 case ICmpInst::ICMP_NE: 5062 // Recognize pattern: 5063 // mulval = mul(zext A, zext B) 5064 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5065 ConstantInt *CI; 5066 Value *ValToMask; 5067 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5068 if (ValToMask != MulVal) 5069 return nullptr; 5070 const APInt &CVal = CI->getValue() + 1; 5071 if (CVal.isPowerOf2()) { 5072 unsigned MaskWidth = CVal.logBase2(); 5073 if (MaskWidth == MulWidth) 5074 break; // Recognized 5075 } 5076 } 5077 return nullptr; 5078 5079 case ICmpInst::ICMP_UGT: 5080 // Recognize pattern: 5081 // mulval = mul(zext A, zext B) 5082 // cmp ugt mulval, max 5083 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5084 APInt MaxVal = APInt::getMaxValue(MulWidth); 5085 MaxVal = MaxVal.zext(CI->getBitWidth()); 5086 if (MaxVal.eq(CI->getValue())) 5087 break; // Recognized 5088 } 5089 return nullptr; 5090 5091 case ICmpInst::ICMP_UGE: 5092 // Recognize pattern: 5093 // mulval = mul(zext A, zext B) 5094 // cmp uge mulval, max+1 5095 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5096 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5097 if (MaxVal.eq(CI->getValue())) 5098 break; // Recognized 5099 } 5100 return nullptr; 5101 5102 case ICmpInst::ICMP_ULE: 5103 // Recognize pattern: 5104 // mulval = mul(zext A, zext B) 5105 // cmp ule mulval, max 5106 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5107 APInt MaxVal = APInt::getMaxValue(MulWidth); 5108 MaxVal = MaxVal.zext(CI->getBitWidth()); 5109 if (MaxVal.eq(CI->getValue())) 5110 break; // Recognized 5111 } 5112 return nullptr; 5113 5114 case ICmpInst::ICMP_ULT: 5115 // Recognize pattern: 5116 // mulval = mul(zext A, zext B) 5117 // cmp ule mulval, max + 1 5118 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5119 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5120 if (MaxVal.eq(CI->getValue())) 5121 break; // Recognized 5122 } 5123 return nullptr; 5124 5125 default: 5126 return nullptr; 5127 } 5128 5129 InstCombiner::BuilderTy &Builder = IC.Builder; 5130 Builder.SetInsertPoint(MulInstr); 5131 5132 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5133 Value *MulA = A, *MulB = B; 5134 if (WidthA < MulWidth) 5135 MulA = Builder.CreateZExt(A, MulType); 5136 if (WidthB < MulWidth) 5137 MulB = Builder.CreateZExt(B, MulType); 5138 Function *F = Intrinsic::getDeclaration( 5139 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5140 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5141 IC.addToWorklist(MulInstr); 5142 5143 // If there are uses of mul result other than the comparison, we know that 5144 // they are truncation or binary AND. Change them to use result of 5145 // mul.with.overflow and adjust properly mask/size. 5146 if (MulVal->hasNUsesOrMore(2)) { 5147 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5148 for (User *U : make_early_inc_range(MulVal->users())) { 5149 if (U == &I || U == OtherVal) 5150 continue; 5151 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5152 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5153 IC.replaceInstUsesWith(*TI, Mul); 5154 else 5155 TI->setOperand(0, Mul); 5156 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5157 assert(BO->getOpcode() == Instruction::And); 5158 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5159 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5160 APInt ShortMask = CI->getValue().trunc(MulWidth); 5161 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5162 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5163 IC.replaceInstUsesWith(*BO, Zext); 5164 } else { 5165 llvm_unreachable("Unexpected Binary operation"); 5166 } 5167 IC.addToWorklist(cast<Instruction>(U)); 5168 } 5169 } 5170 if (isa<Instruction>(OtherVal)) 5171 IC.addToWorklist(cast<Instruction>(OtherVal)); 5172 5173 // The original icmp gets replaced with the overflow value, maybe inverted 5174 // depending on predicate. 5175 bool Inverse = false; 5176 switch (I.getPredicate()) { 5177 case ICmpInst::ICMP_NE: 5178 break; 5179 case ICmpInst::ICMP_EQ: 5180 Inverse = true; 5181 break; 5182 case ICmpInst::ICMP_UGT: 5183 case ICmpInst::ICMP_UGE: 5184 if (I.getOperand(0) == MulVal) 5185 break; 5186 Inverse = true; 5187 break; 5188 case ICmpInst::ICMP_ULT: 5189 case ICmpInst::ICMP_ULE: 5190 if (I.getOperand(1) == MulVal) 5191 break; 5192 Inverse = true; 5193 break; 5194 default: 5195 llvm_unreachable("Unexpected predicate"); 5196 } 5197 if (Inverse) { 5198 Value *Res = Builder.CreateExtractValue(Call, 1); 5199 return BinaryOperator::CreateNot(Res); 5200 } 5201 5202 return ExtractValueInst::Create(Call, 1); 5203 } 5204 5205 /// When performing a comparison against a constant, it is possible that not all 5206 /// the bits in the LHS are demanded. This helper method computes the mask that 5207 /// IS demanded. 5208 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5209 const APInt *RHS; 5210 if (!match(I.getOperand(1), m_APInt(RHS))) 5211 return APInt::getAllOnes(BitWidth); 5212 5213 // If this is a normal comparison, it demands all bits. If it is a sign bit 5214 // comparison, it only demands the sign bit. 5215 bool UnusedBit; 5216 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5217 return APInt::getSignMask(BitWidth); 5218 5219 switch (I.getPredicate()) { 5220 // For a UGT comparison, we don't care about any bits that 5221 // correspond to the trailing ones of the comparand. The value of these 5222 // bits doesn't impact the outcome of the comparison, because any value 5223 // greater than the RHS must differ in a bit higher than these due to carry. 5224 case ICmpInst::ICMP_UGT: 5225 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5226 5227 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5228 // Any value less than the RHS must differ in a higher bit because of carries. 5229 case ICmpInst::ICMP_ULT: 5230 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5231 5232 default: 5233 return APInt::getAllOnes(BitWidth); 5234 } 5235 } 5236 5237 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5238 /// should be swapped. 5239 /// The decision is based on how many times these two operands are reused 5240 /// as subtract operands and their positions in those instructions. 5241 /// The rationale is that several architectures use the same instruction for 5242 /// both subtract and cmp. Thus, it is better if the order of those operands 5243 /// match. 5244 /// \return true if Op0 and Op1 should be swapped. 5245 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5246 // Filter out pointer values as those cannot appear directly in subtract. 5247 // FIXME: we may want to go through inttoptrs or bitcasts. 5248 if (Op0->getType()->isPointerTy()) 5249 return false; 5250 // If a subtract already has the same operands as a compare, swapping would be 5251 // bad. If a subtract has the same operands as a compare but in reverse order, 5252 // then swapping is good. 5253 int GoodToSwap = 0; 5254 for (const User *U : Op0->users()) { 5255 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5256 GoodToSwap++; 5257 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5258 GoodToSwap--; 5259 } 5260 return GoodToSwap > 0; 5261 } 5262 5263 /// Check that one use is in the same block as the definition and all 5264 /// other uses are in blocks dominated by a given block. 5265 /// 5266 /// \param DI Definition 5267 /// \param UI Use 5268 /// \param DB Block that must dominate all uses of \p DI outside 5269 /// the parent block 5270 /// \return true when \p UI is the only use of \p DI in the parent block 5271 /// and all other uses of \p DI are in blocks dominated by \p DB. 5272 /// 5273 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5274 const Instruction *UI, 5275 const BasicBlock *DB) const { 5276 assert(DI && UI && "Instruction not defined\n"); 5277 // Ignore incomplete definitions. 5278 if (!DI->getParent()) 5279 return false; 5280 // DI and UI must be in the same block. 5281 if (DI->getParent() != UI->getParent()) 5282 return false; 5283 // Protect from self-referencing blocks. 5284 if (DI->getParent() == DB) 5285 return false; 5286 for (const User *U : DI->users()) { 5287 auto *Usr = cast<Instruction>(U); 5288 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5289 return false; 5290 } 5291 return true; 5292 } 5293 5294 /// Return true when the instruction sequence within a block is select-cmp-br. 5295 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5296 const BasicBlock *BB = SI->getParent(); 5297 if (!BB) 5298 return false; 5299 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5300 if (!BI || BI->getNumSuccessors() != 2) 5301 return false; 5302 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5303 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5304 return false; 5305 return true; 5306 } 5307 5308 /// True when a select result is replaced by one of its operands 5309 /// in select-icmp sequence. This will eventually result in the elimination 5310 /// of the select. 5311 /// 5312 /// \param SI Select instruction 5313 /// \param Icmp Compare instruction 5314 /// \param SIOpd Operand that replaces the select 5315 /// 5316 /// Notes: 5317 /// - The replacement is global and requires dominator information 5318 /// - The caller is responsible for the actual replacement 5319 /// 5320 /// Example: 5321 /// 5322 /// entry: 5323 /// %4 = select i1 %3, %C* %0, %C* null 5324 /// %5 = icmp eq %C* %4, null 5325 /// br i1 %5, label %9, label %7 5326 /// ... 5327 /// ; <label>:7 ; preds = %entry 5328 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5329 /// ... 5330 /// 5331 /// can be transformed to 5332 /// 5333 /// %5 = icmp eq %C* %0, null 5334 /// %6 = select i1 %3, i1 %5, i1 true 5335 /// br i1 %6, label %9, label %7 5336 /// ... 5337 /// ; <label>:7 ; preds = %entry 5338 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5339 /// 5340 /// Similar when the first operand of the select is a constant or/and 5341 /// the compare is for not equal rather than equal. 5342 /// 5343 /// NOTE: The function is only called when the select and compare constants 5344 /// are equal, the optimization can work only for EQ predicates. This is not a 5345 /// major restriction since a NE compare should be 'normalized' to an equal 5346 /// compare, which usually happens in the combiner and test case 5347 /// select-cmp-br.ll checks for it. 5348 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5349 const ICmpInst *Icmp, 5350 const unsigned SIOpd) { 5351 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5352 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5353 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5354 // The check for the single predecessor is not the best that can be 5355 // done. But it protects efficiently against cases like when SI's 5356 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5357 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5358 // replaced can be reached on either path. So the uniqueness check 5359 // guarantees that the path all uses of SI (outside SI's parent) are on 5360 // is disjoint from all other paths out of SI. But that information 5361 // is more expensive to compute, and the trade-off here is in favor 5362 // of compile-time. It should also be noticed that we check for a single 5363 // predecessor and not only uniqueness. This to handle the situation when 5364 // Succ and Succ1 points to the same basic block. 5365 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5366 NumSel++; 5367 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5368 return true; 5369 } 5370 } 5371 return false; 5372 } 5373 5374 /// Try to fold the comparison based on range information we can get by checking 5375 /// whether bits are known to be zero or one in the inputs. 5376 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5377 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5378 Type *Ty = Op0->getType(); 5379 ICmpInst::Predicate Pred = I.getPredicate(); 5380 5381 // Get scalar or pointer size. 5382 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5383 ? Ty->getScalarSizeInBits() 5384 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5385 5386 if (!BitWidth) 5387 return nullptr; 5388 5389 KnownBits Op0Known(BitWidth); 5390 KnownBits Op1Known(BitWidth); 5391 5392 if (SimplifyDemandedBits(&I, 0, 5393 getDemandedBitsLHSMask(I, BitWidth), 5394 Op0Known, 0)) 5395 return &I; 5396 5397 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5398 return &I; 5399 5400 // Given the known and unknown bits, compute a range that the LHS could be 5401 // in. Compute the Min, Max and RHS values based on the known bits. For the 5402 // EQ and NE we use unsigned values. 5403 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5404 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5405 if (I.isSigned()) { 5406 Op0Min = Op0Known.getSignedMinValue(); 5407 Op0Max = Op0Known.getSignedMaxValue(); 5408 Op1Min = Op1Known.getSignedMinValue(); 5409 Op1Max = Op1Known.getSignedMaxValue(); 5410 } else { 5411 Op0Min = Op0Known.getMinValue(); 5412 Op0Max = Op0Known.getMaxValue(); 5413 Op1Min = Op1Known.getMinValue(); 5414 Op1Max = Op1Known.getMaxValue(); 5415 } 5416 5417 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5418 // out that the LHS or RHS is a constant. Constant fold this now, so that 5419 // code below can assume that Min != Max. 5420 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5421 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5422 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5423 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5424 5425 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5426 // min/max canonical compare with some other compare. That could lead to 5427 // conflict with select canonicalization and infinite looping. 5428 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5429 auto isMinMaxCmp = [&](Instruction &Cmp) { 5430 if (!Cmp.hasOneUse()) 5431 return false; 5432 Value *A, *B; 5433 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5434 if (!SelectPatternResult::isMinOrMax(SPF)) 5435 return false; 5436 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5437 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5438 }; 5439 if (!isMinMaxCmp(I)) { 5440 switch (Pred) { 5441 default: 5442 break; 5443 case ICmpInst::ICMP_ULT: { 5444 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5445 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5446 const APInt *CmpC; 5447 if (match(Op1, m_APInt(CmpC))) { 5448 // A <u C -> A == C-1 if min(A)+1 == C 5449 if (*CmpC == Op0Min + 1) 5450 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5451 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5452 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5453 // exceeds the log2 of C. 5454 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5455 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5456 Constant::getNullValue(Op1->getType())); 5457 } 5458 break; 5459 } 5460 case ICmpInst::ICMP_UGT: { 5461 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5462 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5463 const APInt *CmpC; 5464 if (match(Op1, m_APInt(CmpC))) { 5465 // A >u C -> A == C+1 if max(a)-1 == C 5466 if (*CmpC == Op0Max - 1) 5467 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5468 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5469 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5470 // exceeds the log2 of C. 5471 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5472 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5473 Constant::getNullValue(Op1->getType())); 5474 } 5475 break; 5476 } 5477 case ICmpInst::ICMP_SLT: { 5478 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5479 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5480 const APInt *CmpC; 5481 if (match(Op1, m_APInt(CmpC))) { 5482 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5483 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5484 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5485 } 5486 break; 5487 } 5488 case ICmpInst::ICMP_SGT: { 5489 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5490 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5491 const APInt *CmpC; 5492 if (match(Op1, m_APInt(CmpC))) { 5493 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5494 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5495 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5496 } 5497 break; 5498 } 5499 } 5500 } 5501 5502 // Based on the range information we know about the LHS, see if we can 5503 // simplify this comparison. For example, (x&4) < 8 is always true. 5504 switch (Pred) { 5505 default: 5506 llvm_unreachable("Unknown icmp opcode!"); 5507 case ICmpInst::ICMP_EQ: 5508 case ICmpInst::ICMP_NE: { 5509 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5510 return replaceInstUsesWith( 5511 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5512 5513 // If all bits are known zero except for one, then we know at most one bit 5514 // is set. If the comparison is against zero, then this is a check to see if 5515 // *that* bit is set. 5516 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5517 if (Op1Known.isZero()) { 5518 // If the LHS is an AND with the same constant, look through it. 5519 Value *LHS = nullptr; 5520 const APInt *LHSC; 5521 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5522 *LHSC != Op0KnownZeroInverted) 5523 LHS = Op0; 5524 5525 Value *X; 5526 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5527 APInt ValToCheck = Op0KnownZeroInverted; 5528 Type *XTy = X->getType(); 5529 if (ValToCheck.isPowerOf2()) { 5530 // ((1 << X) & 8) == 0 -> X != 3 5531 // ((1 << X) & 8) != 0 -> X == 3 5532 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5533 auto NewPred = ICmpInst::getInversePredicate(Pred); 5534 return new ICmpInst(NewPred, X, CmpC); 5535 } else if ((++ValToCheck).isPowerOf2()) { 5536 // ((1 << X) & 7) == 0 -> X >= 3 5537 // ((1 << X) & 7) != 0 -> X < 3 5538 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5539 auto NewPred = 5540 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5541 return new ICmpInst(NewPred, X, CmpC); 5542 } 5543 } 5544 5545 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5546 const APInt *CI; 5547 if (Op0KnownZeroInverted.isOne() && 5548 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5549 // ((8 >>u X) & 1) == 0 -> X != 3 5550 // ((8 >>u X) & 1) != 0 -> X == 3 5551 unsigned CmpVal = CI->countTrailingZeros(); 5552 auto NewPred = ICmpInst::getInversePredicate(Pred); 5553 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5554 } 5555 } 5556 break; 5557 } 5558 case ICmpInst::ICMP_ULT: { 5559 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5560 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5561 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5562 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5563 break; 5564 } 5565 case ICmpInst::ICMP_UGT: { 5566 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5567 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5568 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5569 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5570 break; 5571 } 5572 case ICmpInst::ICMP_SLT: { 5573 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5574 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5575 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5576 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5577 break; 5578 } 5579 case ICmpInst::ICMP_SGT: { 5580 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5581 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5582 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5583 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5584 break; 5585 } 5586 case ICmpInst::ICMP_SGE: 5587 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5588 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5589 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5590 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5591 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5592 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5593 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5594 break; 5595 case ICmpInst::ICMP_SLE: 5596 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5597 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5598 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5599 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5600 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5601 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5602 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5603 break; 5604 case ICmpInst::ICMP_UGE: 5605 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5606 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5607 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5608 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5609 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5610 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5611 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5612 break; 5613 case ICmpInst::ICMP_ULE: 5614 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5615 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5616 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5617 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5618 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5619 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5620 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5621 break; 5622 } 5623 5624 // Turn a signed comparison into an unsigned one if both operands are known to 5625 // have the same sign. 5626 if (I.isSigned() && 5627 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5628 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5629 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5630 5631 return nullptr; 5632 } 5633 5634 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5635 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5636 Constant *C) { 5637 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5638 "Only for relational integer predicates."); 5639 5640 Type *Type = C->getType(); 5641 bool IsSigned = ICmpInst::isSigned(Pred); 5642 5643 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5644 bool WillIncrement = 5645 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5646 5647 // Check if the constant operand can be safely incremented/decremented 5648 // without overflowing/underflowing. 5649 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5650 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5651 }; 5652 5653 Constant *SafeReplacementConstant = nullptr; 5654 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5655 // Bail out if the constant can't be safely incremented/decremented. 5656 if (!ConstantIsOk(CI)) 5657 return llvm::None; 5658 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5659 unsigned NumElts = FVTy->getNumElements(); 5660 for (unsigned i = 0; i != NumElts; ++i) { 5661 Constant *Elt = C->getAggregateElement(i); 5662 if (!Elt) 5663 return llvm::None; 5664 5665 if (isa<UndefValue>(Elt)) 5666 continue; 5667 5668 // Bail out if we can't determine if this constant is min/max or if we 5669 // know that this constant is min/max. 5670 auto *CI = dyn_cast<ConstantInt>(Elt); 5671 if (!CI || !ConstantIsOk(CI)) 5672 return llvm::None; 5673 5674 if (!SafeReplacementConstant) 5675 SafeReplacementConstant = CI; 5676 } 5677 } else { 5678 // ConstantExpr? 5679 return llvm::None; 5680 } 5681 5682 // It may not be safe to change a compare predicate in the presence of 5683 // undefined elements, so replace those elements with the first safe constant 5684 // that we found. 5685 // TODO: in case of poison, it is safe; let's replace undefs only. 5686 if (C->containsUndefOrPoisonElement()) { 5687 assert(SafeReplacementConstant && "Replacement constant not set"); 5688 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5689 } 5690 5691 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5692 5693 // Increment or decrement the constant. 5694 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5695 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5696 5697 return std::make_pair(NewPred, NewC); 5698 } 5699 5700 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5701 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5702 /// allows them to be folded in visitICmpInst. 5703 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5704 ICmpInst::Predicate Pred = I.getPredicate(); 5705 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5706 InstCombiner::isCanonicalPredicate(Pred)) 5707 return nullptr; 5708 5709 Value *Op0 = I.getOperand(0); 5710 Value *Op1 = I.getOperand(1); 5711 auto *Op1C = dyn_cast<Constant>(Op1); 5712 if (!Op1C) 5713 return nullptr; 5714 5715 auto FlippedStrictness = 5716 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5717 if (!FlippedStrictness) 5718 return nullptr; 5719 5720 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5721 } 5722 5723 /// If we have a comparison with a non-canonical predicate, if we can update 5724 /// all the users, invert the predicate and adjust all the users. 5725 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5726 // Is the predicate already canonical? 5727 CmpInst::Predicate Pred = I.getPredicate(); 5728 if (InstCombiner::isCanonicalPredicate(Pred)) 5729 return nullptr; 5730 5731 // Can all users be adjusted to predicate inversion? 5732 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5733 return nullptr; 5734 5735 // Ok, we can canonicalize comparison! 5736 // Let's first invert the comparison's predicate. 5737 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5738 I.setName(I.getName() + ".not"); 5739 5740 // And, adapt users. 5741 freelyInvertAllUsersOf(&I); 5742 5743 return &I; 5744 } 5745 5746 /// Integer compare with boolean values can always be turned into bitwise ops. 5747 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5748 InstCombiner::BuilderTy &Builder) { 5749 Value *A = I.getOperand(0), *B = I.getOperand(1); 5750 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5751 5752 // A boolean compared to true/false can be simplified to Op0/true/false in 5753 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5754 // Cases not handled by InstSimplify are always 'not' of Op0. 5755 if (match(B, m_Zero())) { 5756 switch (I.getPredicate()) { 5757 case CmpInst::ICMP_EQ: // A == 0 -> !A 5758 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5759 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5760 return BinaryOperator::CreateNot(A); 5761 default: 5762 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5763 } 5764 } else if (match(B, m_One())) { 5765 switch (I.getPredicate()) { 5766 case CmpInst::ICMP_NE: // A != 1 -> !A 5767 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5768 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5769 return BinaryOperator::CreateNot(A); 5770 default: 5771 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5772 } 5773 } 5774 5775 switch (I.getPredicate()) { 5776 default: 5777 llvm_unreachable("Invalid icmp instruction!"); 5778 case ICmpInst::ICMP_EQ: 5779 // icmp eq i1 A, B -> ~(A ^ B) 5780 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5781 5782 case ICmpInst::ICMP_NE: 5783 // icmp ne i1 A, B -> A ^ B 5784 return BinaryOperator::CreateXor(A, B); 5785 5786 case ICmpInst::ICMP_UGT: 5787 // icmp ugt -> icmp ult 5788 std::swap(A, B); 5789 LLVM_FALLTHROUGH; 5790 case ICmpInst::ICMP_ULT: 5791 // icmp ult i1 A, B -> ~A & B 5792 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5793 5794 case ICmpInst::ICMP_SGT: 5795 // icmp sgt -> icmp slt 5796 std::swap(A, B); 5797 LLVM_FALLTHROUGH; 5798 case ICmpInst::ICMP_SLT: 5799 // icmp slt i1 A, B -> A & ~B 5800 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5801 5802 case ICmpInst::ICMP_UGE: 5803 // icmp uge -> icmp ule 5804 std::swap(A, B); 5805 LLVM_FALLTHROUGH; 5806 case ICmpInst::ICMP_ULE: 5807 // icmp ule i1 A, B -> ~A | B 5808 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5809 5810 case ICmpInst::ICMP_SGE: 5811 // icmp sge -> icmp sle 5812 std::swap(A, B); 5813 LLVM_FALLTHROUGH; 5814 case ICmpInst::ICMP_SLE: 5815 // icmp sle i1 A, B -> A | ~B 5816 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5817 } 5818 } 5819 5820 // Transform pattern like: 5821 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5822 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5823 // Into: 5824 // (X l>> Y) != 0 5825 // (X l>> Y) == 0 5826 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5827 InstCombiner::BuilderTy &Builder) { 5828 ICmpInst::Predicate Pred, NewPred; 5829 Value *X, *Y; 5830 if (match(&Cmp, 5831 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5832 switch (Pred) { 5833 case ICmpInst::ICMP_ULE: 5834 NewPred = ICmpInst::ICMP_NE; 5835 break; 5836 case ICmpInst::ICMP_UGT: 5837 NewPred = ICmpInst::ICMP_EQ; 5838 break; 5839 default: 5840 return nullptr; 5841 } 5842 } else if (match(&Cmp, m_c_ICmp(Pred, 5843 m_OneUse(m_CombineOr( 5844 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5845 m_Add(m_Shl(m_One(), m_Value(Y)), 5846 m_AllOnes()))), 5847 m_Value(X)))) { 5848 // The variant with 'add' is not canonical, (the variant with 'not' is) 5849 // we only get it because it has extra uses, and can't be canonicalized, 5850 5851 switch (Pred) { 5852 case ICmpInst::ICMP_ULT: 5853 NewPred = ICmpInst::ICMP_NE; 5854 break; 5855 case ICmpInst::ICMP_UGE: 5856 NewPred = ICmpInst::ICMP_EQ; 5857 break; 5858 default: 5859 return nullptr; 5860 } 5861 } else 5862 return nullptr; 5863 5864 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5865 Constant *Zero = Constant::getNullValue(NewX->getType()); 5866 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5867 } 5868 5869 static Instruction *foldVectorCmp(CmpInst &Cmp, 5870 InstCombiner::BuilderTy &Builder) { 5871 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5872 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5873 Value *V1, *V2; 5874 ArrayRef<int> M; 5875 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5876 return nullptr; 5877 5878 // If both arguments of the cmp are shuffles that use the same mask and 5879 // shuffle within a single vector, move the shuffle after the cmp: 5880 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5881 Type *V1Ty = V1->getType(); 5882 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5883 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5884 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5885 return new ShuffleVectorInst(NewCmp, M); 5886 } 5887 5888 // Try to canonicalize compare with splatted operand and splat constant. 5889 // TODO: We could generalize this for more than splats. See/use the code in 5890 // InstCombiner::foldVectorBinop(). 5891 Constant *C; 5892 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5893 return nullptr; 5894 5895 // Length-changing splats are ok, so adjust the constants as needed: 5896 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5897 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5898 int MaskSplatIndex; 5899 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5900 // We allow undefs in matching, but this transform removes those for safety. 5901 // Demanded elements analysis should be able to recover some/all of that. 5902 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5903 ScalarC); 5904 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5905 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5906 return new ShuffleVectorInst(NewCmp, NewM); 5907 } 5908 5909 return nullptr; 5910 } 5911 5912 // extract(uadd.with.overflow(A, B), 0) ult A 5913 // -> extract(uadd.with.overflow(A, B), 1) 5914 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5915 CmpInst::Predicate Pred = I.getPredicate(); 5916 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5917 5918 Value *UAddOv; 5919 Value *A, *B; 5920 auto UAddOvResultPat = m_ExtractValue<0>( 5921 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5922 if (match(Op0, UAddOvResultPat) && 5923 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5924 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5925 (match(A, m_One()) || match(B, m_One()))) || 5926 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5927 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5928 // extract(uadd.with.overflow(A, B), 0) < A 5929 // extract(uadd.with.overflow(A, 1), 0) == 0 5930 // extract(uadd.with.overflow(A, -1), 0) != -1 5931 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5932 else if (match(Op1, UAddOvResultPat) && 5933 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5934 // A > extract(uadd.with.overflow(A, B), 0) 5935 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5936 else 5937 return nullptr; 5938 5939 return ExtractValueInst::Create(UAddOv, 1); 5940 } 5941 5942 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5943 if (!I.getOperand(0)->getType()->isPointerTy() || 5944 NullPointerIsDefined( 5945 I.getParent()->getParent(), 5946 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5947 return nullptr; 5948 } 5949 Instruction *Op; 5950 if (match(I.getOperand(0), m_Instruction(Op)) && 5951 match(I.getOperand(1), m_Zero()) && 5952 Op->isLaunderOrStripInvariantGroup()) { 5953 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5954 Op->getOperand(0), I.getOperand(1)); 5955 } 5956 return nullptr; 5957 } 5958 5959 /// This function folds patterns produced by lowering of reduce idioms, such as 5960 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 5961 /// attempts to generate fewer number of scalar comparisons instead of vector 5962 /// comparisons when possible. 5963 static Instruction *foldReductionIdiom(ICmpInst &I, 5964 InstCombiner::BuilderTy &Builder, 5965 const DataLayout &DL) { 5966 if (I.getType()->isVectorTy()) 5967 return nullptr; 5968 ICmpInst::Predicate OuterPred, InnerPred; 5969 Value *LHS, *RHS; 5970 5971 // Match lowering of @llvm.vector.reduce.and. Turn 5972 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 5973 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 5974 /// %res = icmp <pred> i8 %scalar_ne, 0 5975 /// 5976 /// into 5977 /// 5978 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 5979 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 5980 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 5981 /// 5982 /// for <pred> in {ne, eq}. 5983 if (!match(&I, m_ICmp(OuterPred, 5984 m_OneUse(m_BitCast(m_OneUse( 5985 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 5986 m_Zero()))) 5987 return nullptr; 5988 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 5989 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 5990 return nullptr; 5991 unsigned NumBits = 5992 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 5993 // TODO: Relax this to "not wider than max legal integer type"? 5994 if (!DL.isLegalInteger(NumBits)) 5995 return nullptr; 5996 5997 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 5998 auto *ScalarTy = Builder.getIntNTy(NumBits); 5999 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6000 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6001 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6002 I.getName()); 6003 } 6004 6005 return nullptr; 6006 } 6007 6008 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6009 bool Changed = false; 6010 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6011 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6012 unsigned Op0Cplxity = getComplexity(Op0); 6013 unsigned Op1Cplxity = getComplexity(Op1); 6014 6015 /// Orders the operands of the compare so that they are listed from most 6016 /// complex to least complex. This puts constants before unary operators, 6017 /// before binary operators. 6018 if (Op0Cplxity < Op1Cplxity || 6019 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6020 I.swapOperands(); 6021 std::swap(Op0, Op1); 6022 Changed = true; 6023 } 6024 6025 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6026 return replaceInstUsesWith(I, V); 6027 6028 // Comparing -val or val with non-zero is the same as just comparing val 6029 // ie, abs(val) != 0 -> val != 0 6030 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6031 Value *Cond, *SelectTrue, *SelectFalse; 6032 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6033 m_Value(SelectFalse)))) { 6034 if (Value *V = dyn_castNegVal(SelectTrue)) { 6035 if (V == SelectFalse) 6036 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6037 } 6038 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6039 if (V == SelectTrue) 6040 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6041 } 6042 } 6043 } 6044 6045 if (Op0->getType()->isIntOrIntVectorTy(1)) 6046 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6047 return Res; 6048 6049 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6050 return Res; 6051 6052 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6053 return Res; 6054 6055 if (Instruction *Res = foldICmpWithConstant(I)) 6056 return Res; 6057 6058 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6059 return Res; 6060 6061 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6062 return Res; 6063 6064 // Test if the ICmpInst instruction is used exclusively by a select as 6065 // part of a minimum or maximum operation. If so, refrain from doing 6066 // any other folding. This helps out other analyses which understand 6067 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6068 // and CodeGen. And in this case, at least one of the comparison 6069 // operands has at least one user besides the compare (the select), 6070 // which would often largely negate the benefit of folding anyway. 6071 // 6072 // Do the same for the other patterns recognized by matchSelectPattern. 6073 if (I.hasOneUse()) 6074 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6075 Value *A, *B; 6076 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6077 if (SPR.Flavor != SPF_UNKNOWN) 6078 return nullptr; 6079 } 6080 6081 // Do this after checking for min/max to prevent infinite looping. 6082 if (Instruction *Res = foldICmpWithZero(I)) 6083 return Res; 6084 6085 // FIXME: We only do this after checking for min/max to prevent infinite 6086 // looping caused by a reverse canonicalization of these patterns for min/max. 6087 // FIXME: The organization of folds is a mess. These would naturally go into 6088 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6089 // down here after the min/max restriction. 6090 ICmpInst::Predicate Pred = I.getPredicate(); 6091 const APInt *C; 6092 if (match(Op1, m_APInt(C))) { 6093 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6094 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6095 Constant *Zero = Constant::getNullValue(Op0->getType()); 6096 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6097 } 6098 6099 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6100 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6101 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6102 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6103 } 6104 } 6105 6106 // The folds in here may rely on wrapping flags and special constants, so 6107 // they can break up min/max idioms in some cases but not seemingly similar 6108 // patterns. 6109 // FIXME: It may be possible to enhance select folding to make this 6110 // unnecessary. It may also be moot if we canonicalize to min/max 6111 // intrinsics. 6112 if (Instruction *Res = foldICmpBinOp(I, Q)) 6113 return Res; 6114 6115 if (Instruction *Res = foldICmpInstWithConstant(I)) 6116 return Res; 6117 6118 // Try to match comparison as a sign bit test. Intentionally do this after 6119 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6120 if (Instruction *New = foldSignBitTest(I)) 6121 return New; 6122 6123 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6124 return Res; 6125 6126 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6127 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6128 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6129 return NI; 6130 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6131 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6132 return NI; 6133 6134 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6135 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6136 return NI; 6137 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6138 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6139 return NI; 6140 6141 // Try to optimize equality comparisons against alloca-based pointers. 6142 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6143 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6144 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6145 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6146 return New; 6147 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6148 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6149 return New; 6150 } 6151 6152 if (Instruction *Res = foldICmpBitCast(I)) 6153 return Res; 6154 6155 // TODO: Hoist this above the min/max bailout. 6156 if (Instruction *R = foldICmpWithCastOp(I)) 6157 return R; 6158 6159 if (Instruction *Res = foldICmpWithMinMax(I)) 6160 return Res; 6161 6162 { 6163 Value *A, *B; 6164 // Transform (A & ~B) == 0 --> (A & B) != 0 6165 // and (A & ~B) != 0 --> (A & B) == 0 6166 // if A is a power of 2. 6167 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6168 match(Op1, m_Zero()) && 6169 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6170 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6171 Op1); 6172 6173 // ~X < ~Y --> Y < X 6174 // ~X < C --> X > ~C 6175 if (match(Op0, m_Not(m_Value(A)))) { 6176 if (match(Op1, m_Not(m_Value(B)))) 6177 return new ICmpInst(I.getPredicate(), B, A); 6178 6179 const APInt *C; 6180 if (match(Op1, m_APInt(C))) 6181 return new ICmpInst(I.getSwappedPredicate(), A, 6182 ConstantInt::get(Op1->getType(), ~(*C))); 6183 } 6184 6185 Instruction *AddI = nullptr; 6186 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6187 m_Instruction(AddI))) && 6188 isa<IntegerType>(A->getType())) { 6189 Value *Result; 6190 Constant *Overflow; 6191 // m_UAddWithOverflow can match patterns that do not include an explicit 6192 // "add" instruction, so check the opcode of the matched op. 6193 if (AddI->getOpcode() == Instruction::Add && 6194 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6195 Result, Overflow)) { 6196 replaceInstUsesWith(*AddI, Result); 6197 eraseInstFromFunction(*AddI); 6198 return replaceInstUsesWith(I, Overflow); 6199 } 6200 } 6201 6202 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6203 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6204 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6205 return R; 6206 } 6207 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6208 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6209 return R; 6210 } 6211 } 6212 6213 if (Instruction *Res = foldICmpEquality(I)) 6214 return Res; 6215 6216 if (Instruction *Res = foldICmpOfUAddOv(I)) 6217 return Res; 6218 6219 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6220 // an i1 which indicates whether or not we successfully did the swap. 6221 // 6222 // Replace comparisons between the old value and the expected value with the 6223 // indicator that 'cmpxchg' returns. 6224 // 6225 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6226 // spuriously fail. In those cases, the old value may equal the expected 6227 // value but it is possible for the swap to not occur. 6228 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6229 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6230 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6231 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6232 !ACXI->isWeak()) 6233 return ExtractValueInst::Create(ACXI, 1); 6234 6235 { 6236 Value *X; 6237 const APInt *C; 6238 // icmp X+Cst, X 6239 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6240 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6241 6242 // icmp X, X+Cst 6243 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6244 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6245 } 6246 6247 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6248 return Res; 6249 6250 if (I.getType()->isVectorTy()) 6251 if (Instruction *Res = foldVectorCmp(I, Builder)) 6252 return Res; 6253 6254 if (Instruction *Res = foldICmpInvariantGroup(I)) 6255 return Res; 6256 6257 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6258 return Res; 6259 6260 return Changed ? &I : nullptr; 6261 } 6262 6263 /// Fold fcmp ([us]itofp x, cst) if possible. 6264 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6265 Instruction *LHSI, 6266 Constant *RHSC) { 6267 if (!isa<ConstantFP>(RHSC)) return nullptr; 6268 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6269 6270 // Get the width of the mantissa. We don't want to hack on conversions that 6271 // might lose information from the integer, e.g. "i64 -> float" 6272 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6273 if (MantissaWidth == -1) return nullptr; // Unknown. 6274 6275 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6276 6277 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6278 6279 if (I.isEquality()) { 6280 FCmpInst::Predicate P = I.getPredicate(); 6281 bool IsExact = false; 6282 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6283 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6284 6285 // If the floating point constant isn't an integer value, we know if we will 6286 // ever compare equal / not equal to it. 6287 if (!IsExact) { 6288 // TODO: Can never be -0.0 and other non-representable values 6289 APFloat RHSRoundInt(RHS); 6290 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6291 if (RHS != RHSRoundInt) { 6292 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6293 return replaceInstUsesWith(I, Builder.getFalse()); 6294 6295 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6296 return replaceInstUsesWith(I, Builder.getTrue()); 6297 } 6298 } 6299 6300 // TODO: If the constant is exactly representable, is it always OK to do 6301 // equality compares as integer? 6302 } 6303 6304 // Check to see that the input is converted from an integer type that is small 6305 // enough that preserves all bits. TODO: check here for "known" sign bits. 6306 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6307 unsigned InputSize = IntTy->getScalarSizeInBits(); 6308 6309 // Following test does NOT adjust InputSize downwards for signed inputs, 6310 // because the most negative value still requires all the mantissa bits 6311 // to distinguish it from one less than that value. 6312 if ((int)InputSize > MantissaWidth) { 6313 // Conversion would lose accuracy. Check if loss can impact comparison. 6314 int Exp = ilogb(RHS); 6315 if (Exp == APFloat::IEK_Inf) { 6316 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6317 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6318 // Conversion could create infinity. 6319 return nullptr; 6320 } else { 6321 // Note that if RHS is zero or NaN, then Exp is negative 6322 // and first condition is trivially false. 6323 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6324 // Conversion could affect comparison. 6325 return nullptr; 6326 } 6327 } 6328 6329 // Otherwise, we can potentially simplify the comparison. We know that it 6330 // will always come through as an integer value and we know the constant is 6331 // not a NAN (it would have been previously simplified). 6332 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6333 6334 ICmpInst::Predicate Pred; 6335 switch (I.getPredicate()) { 6336 default: llvm_unreachable("Unexpected predicate!"); 6337 case FCmpInst::FCMP_UEQ: 6338 case FCmpInst::FCMP_OEQ: 6339 Pred = ICmpInst::ICMP_EQ; 6340 break; 6341 case FCmpInst::FCMP_UGT: 6342 case FCmpInst::FCMP_OGT: 6343 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6344 break; 6345 case FCmpInst::FCMP_UGE: 6346 case FCmpInst::FCMP_OGE: 6347 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6348 break; 6349 case FCmpInst::FCMP_ULT: 6350 case FCmpInst::FCMP_OLT: 6351 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6352 break; 6353 case FCmpInst::FCMP_ULE: 6354 case FCmpInst::FCMP_OLE: 6355 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6356 break; 6357 case FCmpInst::FCMP_UNE: 6358 case FCmpInst::FCMP_ONE: 6359 Pred = ICmpInst::ICMP_NE; 6360 break; 6361 case FCmpInst::FCMP_ORD: 6362 return replaceInstUsesWith(I, Builder.getTrue()); 6363 case FCmpInst::FCMP_UNO: 6364 return replaceInstUsesWith(I, Builder.getFalse()); 6365 } 6366 6367 // Now we know that the APFloat is a normal number, zero or inf. 6368 6369 // See if the FP constant is too large for the integer. For example, 6370 // comparing an i8 to 300.0. 6371 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6372 6373 if (!LHSUnsigned) { 6374 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6375 // and large values. 6376 APFloat SMax(RHS.getSemantics()); 6377 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6378 APFloat::rmNearestTiesToEven); 6379 if (SMax < RHS) { // smax < 13123.0 6380 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6381 Pred == ICmpInst::ICMP_SLE) 6382 return replaceInstUsesWith(I, Builder.getTrue()); 6383 return replaceInstUsesWith(I, Builder.getFalse()); 6384 } 6385 } else { 6386 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6387 // +INF and large values. 6388 APFloat UMax(RHS.getSemantics()); 6389 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6390 APFloat::rmNearestTiesToEven); 6391 if (UMax < RHS) { // umax < 13123.0 6392 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6393 Pred == ICmpInst::ICMP_ULE) 6394 return replaceInstUsesWith(I, Builder.getTrue()); 6395 return replaceInstUsesWith(I, Builder.getFalse()); 6396 } 6397 } 6398 6399 if (!LHSUnsigned) { 6400 // See if the RHS value is < SignedMin. 6401 APFloat SMin(RHS.getSemantics()); 6402 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6403 APFloat::rmNearestTiesToEven); 6404 if (SMin > RHS) { // smin > 12312.0 6405 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6406 Pred == ICmpInst::ICMP_SGE) 6407 return replaceInstUsesWith(I, Builder.getTrue()); 6408 return replaceInstUsesWith(I, Builder.getFalse()); 6409 } 6410 } else { 6411 // See if the RHS value is < UnsignedMin. 6412 APFloat UMin(RHS.getSemantics()); 6413 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6414 APFloat::rmNearestTiesToEven); 6415 if (UMin > RHS) { // umin > 12312.0 6416 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6417 Pred == ICmpInst::ICMP_UGE) 6418 return replaceInstUsesWith(I, Builder.getTrue()); 6419 return replaceInstUsesWith(I, Builder.getFalse()); 6420 } 6421 } 6422 6423 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6424 // [0, UMAX], but it may still be fractional. See if it is fractional by 6425 // casting the FP value to the integer value and back, checking for equality. 6426 // Don't do this for zero, because -0.0 is not fractional. 6427 Constant *RHSInt = LHSUnsigned 6428 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6429 : ConstantExpr::getFPToSI(RHSC, IntTy); 6430 if (!RHS.isZero()) { 6431 bool Equal = LHSUnsigned 6432 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6433 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6434 if (!Equal) { 6435 // If we had a comparison against a fractional value, we have to adjust 6436 // the compare predicate and sometimes the value. RHSC is rounded towards 6437 // zero at this point. 6438 switch (Pred) { 6439 default: llvm_unreachable("Unexpected integer comparison!"); 6440 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6441 return replaceInstUsesWith(I, Builder.getTrue()); 6442 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6443 return replaceInstUsesWith(I, Builder.getFalse()); 6444 case ICmpInst::ICMP_ULE: 6445 // (float)int <= 4.4 --> int <= 4 6446 // (float)int <= -4.4 --> false 6447 if (RHS.isNegative()) 6448 return replaceInstUsesWith(I, Builder.getFalse()); 6449 break; 6450 case ICmpInst::ICMP_SLE: 6451 // (float)int <= 4.4 --> int <= 4 6452 // (float)int <= -4.4 --> int < -4 6453 if (RHS.isNegative()) 6454 Pred = ICmpInst::ICMP_SLT; 6455 break; 6456 case ICmpInst::ICMP_ULT: 6457 // (float)int < -4.4 --> false 6458 // (float)int < 4.4 --> int <= 4 6459 if (RHS.isNegative()) 6460 return replaceInstUsesWith(I, Builder.getFalse()); 6461 Pred = ICmpInst::ICMP_ULE; 6462 break; 6463 case ICmpInst::ICMP_SLT: 6464 // (float)int < -4.4 --> int < -4 6465 // (float)int < 4.4 --> int <= 4 6466 if (!RHS.isNegative()) 6467 Pred = ICmpInst::ICMP_SLE; 6468 break; 6469 case ICmpInst::ICMP_UGT: 6470 // (float)int > 4.4 --> int > 4 6471 // (float)int > -4.4 --> true 6472 if (RHS.isNegative()) 6473 return replaceInstUsesWith(I, Builder.getTrue()); 6474 break; 6475 case ICmpInst::ICMP_SGT: 6476 // (float)int > 4.4 --> int > 4 6477 // (float)int > -4.4 --> int >= -4 6478 if (RHS.isNegative()) 6479 Pred = ICmpInst::ICMP_SGE; 6480 break; 6481 case ICmpInst::ICMP_UGE: 6482 // (float)int >= -4.4 --> true 6483 // (float)int >= 4.4 --> int > 4 6484 if (RHS.isNegative()) 6485 return replaceInstUsesWith(I, Builder.getTrue()); 6486 Pred = ICmpInst::ICMP_UGT; 6487 break; 6488 case ICmpInst::ICMP_SGE: 6489 // (float)int >= -4.4 --> int >= -4 6490 // (float)int >= 4.4 --> int > 4 6491 if (!RHS.isNegative()) 6492 Pred = ICmpInst::ICMP_SGT; 6493 break; 6494 } 6495 } 6496 } 6497 6498 // Lower this FP comparison into an appropriate integer version of the 6499 // comparison. 6500 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6501 } 6502 6503 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6504 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6505 Constant *RHSC) { 6506 // When C is not 0.0 and infinities are not allowed: 6507 // (C / X) < 0.0 is a sign-bit test of X 6508 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6509 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6510 // 6511 // Proof: 6512 // Multiply (C / X) < 0.0 by X * X / C. 6513 // - X is non zero, if it is the flag 'ninf' is violated. 6514 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6515 // the predicate. C is also non zero by definition. 6516 // 6517 // Thus X * X / C is non zero and the transformation is valid. [qed] 6518 6519 FCmpInst::Predicate Pred = I.getPredicate(); 6520 6521 // Check that predicates are valid. 6522 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6523 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6524 return nullptr; 6525 6526 // Check that RHS operand is zero. 6527 if (!match(RHSC, m_AnyZeroFP())) 6528 return nullptr; 6529 6530 // Check fastmath flags ('ninf'). 6531 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6532 return nullptr; 6533 6534 // Check the properties of the dividend. It must not be zero to avoid a 6535 // division by zero (see Proof). 6536 const APFloat *C; 6537 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6538 return nullptr; 6539 6540 if (C->isZero()) 6541 return nullptr; 6542 6543 // Get swapped predicate if necessary. 6544 if (C->isNegative()) 6545 Pred = I.getSwappedPredicate(); 6546 6547 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6548 } 6549 6550 /// Optimize fabs(X) compared with zero. 6551 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6552 Value *X; 6553 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6554 !match(I.getOperand(1), m_PosZeroFP())) 6555 return nullptr; 6556 6557 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6558 I->setPredicate(P); 6559 return IC.replaceOperand(*I, 0, X); 6560 }; 6561 6562 switch (I.getPredicate()) { 6563 case FCmpInst::FCMP_UGE: 6564 case FCmpInst::FCMP_OLT: 6565 // fabs(X) >= 0.0 --> true 6566 // fabs(X) < 0.0 --> false 6567 llvm_unreachable("fcmp should have simplified"); 6568 6569 case FCmpInst::FCMP_OGT: 6570 // fabs(X) > 0.0 --> X != 0.0 6571 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6572 6573 case FCmpInst::FCMP_UGT: 6574 // fabs(X) u> 0.0 --> X u!= 0.0 6575 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6576 6577 case FCmpInst::FCMP_OLE: 6578 // fabs(X) <= 0.0 --> X == 0.0 6579 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6580 6581 case FCmpInst::FCMP_ULE: 6582 // fabs(X) u<= 0.0 --> X u== 0.0 6583 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6584 6585 case FCmpInst::FCMP_OGE: 6586 // fabs(X) >= 0.0 --> !isnan(X) 6587 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6588 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6589 6590 case FCmpInst::FCMP_ULT: 6591 // fabs(X) u< 0.0 --> isnan(X) 6592 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6593 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6594 6595 case FCmpInst::FCMP_OEQ: 6596 case FCmpInst::FCMP_UEQ: 6597 case FCmpInst::FCMP_ONE: 6598 case FCmpInst::FCMP_UNE: 6599 case FCmpInst::FCMP_ORD: 6600 case FCmpInst::FCMP_UNO: 6601 // Look through the fabs() because it doesn't change anything but the sign. 6602 // fabs(X) == 0.0 --> X == 0.0, 6603 // fabs(X) != 0.0 --> X != 0.0 6604 // isnan(fabs(X)) --> isnan(X) 6605 // !isnan(fabs(X) --> !isnan(X) 6606 return replacePredAndOp0(&I, I.getPredicate(), X); 6607 6608 default: 6609 return nullptr; 6610 } 6611 } 6612 6613 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6614 CmpInst::Predicate Pred = I.getPredicate(); 6615 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6616 6617 // Canonicalize fneg as Op1. 6618 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6619 std::swap(Op0, Op1); 6620 Pred = I.getSwappedPredicate(); 6621 } 6622 6623 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6624 return nullptr; 6625 6626 // Replace the negated operand with 0.0: 6627 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6628 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6629 return new FCmpInst(Pred, Op0, Zero, "", &I); 6630 } 6631 6632 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6633 bool Changed = false; 6634 6635 /// Orders the operands of the compare so that they are listed from most 6636 /// complex to least complex. This puts constants before unary operators, 6637 /// before binary operators. 6638 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6639 I.swapOperands(); 6640 Changed = true; 6641 } 6642 6643 const CmpInst::Predicate Pred = I.getPredicate(); 6644 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6645 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6646 SQ.getWithInstruction(&I))) 6647 return replaceInstUsesWith(I, V); 6648 6649 // Simplify 'fcmp pred X, X' 6650 Type *OpType = Op0->getType(); 6651 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6652 if (Op0 == Op1) { 6653 switch (Pred) { 6654 default: break; 6655 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6656 case FCmpInst::FCMP_ULT: // True if unordered or less than 6657 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6658 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6659 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6660 I.setPredicate(FCmpInst::FCMP_UNO); 6661 I.setOperand(1, Constant::getNullValue(OpType)); 6662 return &I; 6663 6664 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6665 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6666 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6667 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6668 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6669 I.setPredicate(FCmpInst::FCMP_ORD); 6670 I.setOperand(1, Constant::getNullValue(OpType)); 6671 return &I; 6672 } 6673 } 6674 6675 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6676 // then canonicalize the operand to 0.0. 6677 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6678 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6679 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6680 6681 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6682 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6683 } 6684 6685 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6686 Value *X, *Y; 6687 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6688 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6689 6690 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6691 return R; 6692 6693 // Test if the FCmpInst instruction is used exclusively by a select as 6694 // part of a minimum or maximum operation. If so, refrain from doing 6695 // any other folding. This helps out other analyses which understand 6696 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6697 // and CodeGen. And in this case, at least one of the comparison 6698 // operands has at least one user besides the compare (the select), 6699 // which would often largely negate the benefit of folding anyway. 6700 if (I.hasOneUse()) 6701 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6702 Value *A, *B; 6703 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6704 if (SPR.Flavor != SPF_UNKNOWN) 6705 return nullptr; 6706 } 6707 6708 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6709 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6710 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6711 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6712 6713 // Handle fcmp with instruction LHS and constant RHS. 6714 Instruction *LHSI; 6715 Constant *RHSC; 6716 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6717 switch (LHSI->getOpcode()) { 6718 case Instruction::PHI: 6719 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6720 // block. If in the same block, we're encouraging jump threading. If 6721 // not, we are just pessimizing the code by making an i1 phi. 6722 if (LHSI->getParent() == I.getParent()) 6723 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6724 return NV; 6725 break; 6726 case Instruction::SIToFP: 6727 case Instruction::UIToFP: 6728 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6729 return NV; 6730 break; 6731 case Instruction::FDiv: 6732 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6733 return NV; 6734 break; 6735 case Instruction::Load: 6736 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6737 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6738 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6739 cast<LoadInst>(LHSI), GEP, GV, I)) 6740 return Res; 6741 break; 6742 } 6743 } 6744 6745 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6746 return R; 6747 6748 if (match(Op0, m_FNeg(m_Value(X)))) { 6749 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6750 Constant *C; 6751 if (match(Op1, m_Constant(C))) { 6752 Constant *NegC = ConstantExpr::getFNeg(C); 6753 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6754 } 6755 } 6756 6757 if (match(Op0, m_FPExt(m_Value(X)))) { 6758 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6759 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6760 return new FCmpInst(Pred, X, Y, "", &I); 6761 6762 const APFloat *C; 6763 if (match(Op1, m_APFloat(C))) { 6764 const fltSemantics &FPSem = 6765 X->getType()->getScalarType()->getFltSemantics(); 6766 bool Lossy; 6767 APFloat TruncC = *C; 6768 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6769 6770 if (Lossy) { 6771 // X can't possibly equal the higher-precision constant, so reduce any 6772 // equality comparison. 6773 // TODO: Other predicates can be handled via getFCmpCode(). 6774 switch (Pred) { 6775 case FCmpInst::FCMP_OEQ: 6776 // X is ordered and equal to an impossible constant --> false 6777 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6778 case FCmpInst::FCMP_ONE: 6779 // X is ordered and not equal to an impossible constant --> ordered 6780 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6781 ConstantFP::getNullValue(X->getType())); 6782 case FCmpInst::FCMP_UEQ: 6783 // X is unordered or equal to an impossible constant --> unordered 6784 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6785 ConstantFP::getNullValue(X->getType())); 6786 case FCmpInst::FCMP_UNE: 6787 // X is unordered or not equal to an impossible constant --> true 6788 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6789 default: 6790 break; 6791 } 6792 } 6793 6794 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6795 // Avoid lossy conversions and denormals. 6796 // Zero is a special case that's OK to convert. 6797 APFloat Fabs = TruncC; 6798 Fabs.clearSign(); 6799 if (!Lossy && 6800 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6801 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6802 return new FCmpInst(Pred, X, NewC, "", &I); 6803 } 6804 } 6805 } 6806 6807 // Convert a sign-bit test of an FP value into a cast and integer compare. 6808 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6809 // TODO: Handle non-zero compare constants. 6810 // TODO: Handle other predicates. 6811 const APFloat *C; 6812 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6813 m_Value(X)))) && 6814 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6815 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6816 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6817 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6818 6819 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6820 if (Pred == FCmpInst::FCMP_OLT) { 6821 Value *IntX = Builder.CreateBitCast(X, IntType); 6822 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6823 ConstantInt::getNullValue(IntType)); 6824 } 6825 } 6826 6827 if (I.getType()->isVectorTy()) 6828 if (Instruction *Res = foldVectorCmp(I, Builder)) 6829 return Res; 6830 6831 return Changed ? &I : nullptr; 6832 } 6833