1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) 194 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 195 196 // If the element is masked, handle it. 197 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 198 199 // Find out if the comparison would be true or false for the i'th element. 200 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 201 CompareRHS, DL, &TLI); 202 // If the result is undef for this element, ignore it. 203 if (isa<UndefValue>(C)) { 204 // Extend range state machines to cover this element in case there is an 205 // undef in the middle of the range. 206 if (TrueRangeEnd == (int)i-1) 207 TrueRangeEnd = i; 208 if (FalseRangeEnd == (int)i-1) 209 FalseRangeEnd = i; 210 continue; 211 } 212 213 // If we can't compute the result for any of the elements, we have to give 214 // up evaluating the entire conditional. 215 if (!isa<ConstantInt>(C)) return nullptr; 216 217 // Otherwise, we know if the comparison is true or false for this element, 218 // update our state machines. 219 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 220 221 // State machine for single/double/range index comparison. 222 if (IsTrueForElt) { 223 // Update the TrueElement state machine. 224 if (FirstTrueElement == Undefined) 225 FirstTrueElement = TrueRangeEnd = i; // First true element. 226 else { 227 // Update double-compare state machine. 228 if (SecondTrueElement == Undefined) 229 SecondTrueElement = i; 230 else 231 SecondTrueElement = Overdefined; 232 233 // Update range state machine. 234 if (TrueRangeEnd == (int)i-1) 235 TrueRangeEnd = i; 236 else 237 TrueRangeEnd = Overdefined; 238 } 239 } else { 240 // Update the FalseElement state machine. 241 if (FirstFalseElement == Undefined) 242 FirstFalseElement = FalseRangeEnd = i; // First false element. 243 else { 244 // Update double-compare state machine. 245 if (SecondFalseElement == Undefined) 246 SecondFalseElement = i; 247 else 248 SecondFalseElement = Overdefined; 249 250 // Update range state machine. 251 if (FalseRangeEnd == (int)i-1) 252 FalseRangeEnd = i; 253 else 254 FalseRangeEnd = Overdefined; 255 } 256 } 257 258 // If this element is in range, update our magic bitvector. 259 if (i < 64 && IsTrueForElt) 260 MagicBitvector |= 1ULL << i; 261 262 // If all of our states become overdefined, bail out early. Since the 263 // predicate is expensive, only check it every 8 elements. This is only 264 // really useful for really huge arrays. 265 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 266 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 267 FalseRangeEnd == Overdefined) 268 return nullptr; 269 } 270 271 // Now that we've scanned the entire array, emit our new comparison(s). We 272 // order the state machines in complexity of the generated code. 273 Value *Idx = GEP->getOperand(2); 274 275 // If the index is larger than the pointer size of the target, truncate the 276 // index down like the GEP would do implicitly. We don't have to do this for 277 // an inbounds GEP because the index can't be out of range. 278 if (!GEP->isInBounds()) { 279 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 280 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 281 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 282 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 283 } 284 285 // If inbounds keyword is not present, Idx * ElementSize can overflow. 286 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 287 // Then, there are two possible values for Idx to match offset 0: 288 // 0x00..00, 0x80..00. 289 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 290 // comparison is false if Idx was 0x80..00. 291 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 292 unsigned ElementSize = 293 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 294 auto MaskIdx = [&](Value* Idx){ 295 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 296 Value *Mask = ConstantInt::get(Idx->getType(), -1); 297 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 298 Idx = Builder.CreateAnd(Idx, Mask); 299 } 300 return Idx; 301 }; 302 303 // If the comparison is only true for one or two elements, emit direct 304 // comparisons. 305 if (SecondTrueElement != Overdefined) { 306 Idx = MaskIdx(Idx); 307 // None true -> false. 308 if (FirstTrueElement == Undefined) 309 return replaceInstUsesWith(ICI, Builder.getFalse()); 310 311 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 312 313 // True for one element -> 'i == 47'. 314 if (SecondTrueElement == Undefined) 315 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 316 317 // True for two elements -> 'i == 47 | i == 72'. 318 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 319 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 320 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 321 return BinaryOperator::CreateOr(C1, C2); 322 } 323 324 // If the comparison is only false for one or two elements, emit direct 325 // comparisons. 326 if (SecondFalseElement != Overdefined) { 327 Idx = MaskIdx(Idx); 328 // None false -> true. 329 if (FirstFalseElement == Undefined) 330 return replaceInstUsesWith(ICI, Builder.getTrue()); 331 332 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 333 334 // False for one element -> 'i != 47'. 335 if (SecondFalseElement == Undefined) 336 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 337 338 // False for two elements -> 'i != 47 & i != 72'. 339 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 340 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 341 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 342 return BinaryOperator::CreateAnd(C1, C2); 343 } 344 345 // If the comparison can be replaced with a range comparison for the elements 346 // where it is true, emit the range check. 347 if (TrueRangeEnd != Overdefined) { 348 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 349 Idx = MaskIdx(Idx); 350 351 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 352 if (FirstTrueElement) { 353 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 354 Idx = Builder.CreateAdd(Idx, Offs); 355 } 356 357 Value *End = ConstantInt::get(Idx->getType(), 358 TrueRangeEnd-FirstTrueElement+1); 359 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 360 } 361 362 // False range check. 363 if (FalseRangeEnd != Overdefined) { 364 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 367 if (FirstFalseElement) { 368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 369 Idx = Builder.CreateAdd(Idx, Offs); 370 } 371 372 Value *End = ConstantInt::get(Idx->getType(), 373 FalseRangeEnd-FirstFalseElement); 374 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 375 } 376 377 // If a magic bitvector captures the entire comparison state 378 // of this load, replace it with computation that does: 379 // ((magic_cst >> i) & 1) != 0 380 { 381 Type *Ty = nullptr; 382 383 // Look for an appropriate type: 384 // - The type of Idx if the magic fits 385 // - The smallest fitting legal type 386 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 387 Ty = Idx->getType(); 388 else 389 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 390 391 if (Ty) { 392 Idx = MaskIdx(Idx); 393 Value *V = Builder.CreateIntCast(Idx, Ty, false); 394 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 395 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 396 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 397 } 398 } 399 400 return nullptr; 401 } 402 403 /// Return a value that can be used to compare the *offset* implied by a GEP to 404 /// zero. For example, if we have &A[i], we want to return 'i' for 405 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 406 /// are involved. The above expression would also be legal to codegen as 407 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 408 /// This latter form is less amenable to optimization though, and we are allowed 409 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 410 /// 411 /// If we can't emit an optimized form for this expression, this returns null. 412 /// 413 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 414 const DataLayout &DL) { 415 gep_type_iterator GTI = gep_type_begin(GEP); 416 417 // Check to see if this gep only has a single variable index. If so, and if 418 // any constant indices are a multiple of its scale, then we can compute this 419 // in terms of the scale of the variable index. For example, if the GEP 420 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 421 // because the expression will cross zero at the same point. 422 unsigned i, e = GEP->getNumOperands(); 423 int64_t Offset = 0; 424 for (i = 1; i != e; ++i, ++GTI) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 426 // Compute the aggregate offset of constant indices. 427 if (CI->isZero()) continue; 428 429 // Handle a struct index, which adds its field offset to the pointer. 430 if (StructType *STy = GTI.getStructTypeOrNull()) { 431 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 432 } else { 433 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 434 Offset += Size*CI->getSExtValue(); 435 } 436 } else { 437 // Found our variable index. 438 break; 439 } 440 } 441 442 // If there are no variable indices, we must have a constant offset, just 443 // evaluate it the general way. 444 if (i == e) return nullptr; 445 446 Value *VariableIdx = GEP->getOperand(i); 447 // Determine the scale factor of the variable element. For example, this is 448 // 4 if the variable index is into an array of i32. 449 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 450 451 // Verify that there are no other variable indices. If so, emit the hard way. 452 for (++i, ++GTI; i != e; ++i, ++GTI) { 453 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 454 if (!CI) return nullptr; 455 456 // Compute the aggregate offset of constant indices. 457 if (CI->isZero()) continue; 458 459 // Handle a struct index, which adds its field offset to the pointer. 460 if (StructType *STy = GTI.getStructTypeOrNull()) { 461 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 462 } else { 463 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 464 Offset += Size*CI->getSExtValue(); 465 } 466 } 467 468 // Okay, we know we have a single variable index, which must be a 469 // pointer/array/vector index. If there is no offset, life is simple, return 470 // the index. 471 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 472 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 473 if (Offset == 0) { 474 // Cast to intptrty in case a truncation occurs. If an extension is needed, 475 // we don't need to bother extending: the extension won't affect where the 476 // computation crosses zero. 477 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 478 IntPtrWidth) { 479 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 480 } 481 return VariableIdx; 482 } 483 484 // Otherwise, there is an index. The computation we will do will be modulo 485 // the pointer size. 486 Offset = SignExtend64(Offset, IntPtrWidth); 487 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 488 489 // To do this transformation, any constant index must be a multiple of the 490 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 491 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 492 // multiple of the variable scale. 493 int64_t NewOffs = Offset / (int64_t)VariableScale; 494 if (Offset != NewOffs*(int64_t)VariableScale) 495 return nullptr; 496 497 // Okay, we can do this evaluation. Start by converting the index to intptr. 498 if (VariableIdx->getType() != IntPtrTy) 499 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 500 true /*Signed*/); 501 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 502 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 503 } 504 505 /// Returns true if we can rewrite Start as a GEP with pointer Base 506 /// and some integer offset. The nodes that need to be re-written 507 /// for this transformation will be added to Explored. 508 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 509 const DataLayout &DL, 510 SetVector<Value *> &Explored) { 511 SmallVector<Value *, 16> WorkList(1, Start); 512 Explored.insert(Base); 513 514 // The following traversal gives us an order which can be used 515 // when doing the final transformation. Since in the final 516 // transformation we create the PHI replacement instructions first, 517 // we don't have to get them in any particular order. 518 // 519 // However, for other instructions we will have to traverse the 520 // operands of an instruction first, which means that we have to 521 // do a post-order traversal. 522 while (!WorkList.empty()) { 523 SetVector<PHINode *> PHIs; 524 525 while (!WorkList.empty()) { 526 if (Explored.size() >= 100) 527 return false; 528 529 Value *V = WorkList.back(); 530 531 if (Explored.contains(V)) { 532 WorkList.pop_back(); 533 continue; 534 } 535 536 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 537 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 538 // We've found some value that we can't explore which is different from 539 // the base. Therefore we can't do this transformation. 540 return false; 541 542 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 543 auto *CI = cast<CastInst>(V); 544 if (!CI->isNoopCast(DL)) 545 return false; 546 547 if (!Explored.contains(CI->getOperand(0))) 548 WorkList.push_back(CI->getOperand(0)); 549 } 550 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 // We're limiting the GEP to having one index. This will preserve 553 // the original pointer type. We could handle more cases in the 554 // future. 555 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 556 GEP->getSourceElementType() != ElemTy) 557 return false; 558 559 if (!Explored.contains(GEP->getOperand(0))) 560 WorkList.push_back(GEP->getOperand(0)); 561 } 562 563 if (WorkList.back() == V) { 564 WorkList.pop_back(); 565 // We've finished visiting this node, mark it as such. 566 Explored.insert(V); 567 } 568 569 if (auto *PN = dyn_cast<PHINode>(V)) { 570 // We cannot transform PHIs on unsplittable basic blocks. 571 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 572 return false; 573 Explored.insert(PN); 574 PHIs.insert(PN); 575 } 576 } 577 578 // Explore the PHI nodes further. 579 for (auto *PN : PHIs) 580 for (Value *Op : PN->incoming_values()) 581 if (!Explored.contains(Op)) 582 WorkList.push_back(Op); 583 } 584 585 // Make sure that we can do this. Since we can't insert GEPs in a basic 586 // block before a PHI node, we can't easily do this transformation if 587 // we have PHI node users of transformed instructions. 588 for (Value *Val : Explored) { 589 for (Value *Use : Val->uses()) { 590 591 auto *PHI = dyn_cast<PHINode>(Use); 592 auto *Inst = dyn_cast<Instruction>(Val); 593 594 if (Inst == Base || Inst == PHI || !Inst || !PHI || 595 !Explored.contains(PHI)) 596 continue; 597 598 if (PHI->getParent() == Inst->getParent()) 599 return false; 600 } 601 } 602 return true; 603 } 604 605 // Sets the appropriate insert point on Builder where we can add 606 // a replacement Instruction for V (if that is possible). 607 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 608 bool Before = true) { 609 if (auto *PHI = dyn_cast<PHINode>(V)) { 610 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 611 return; 612 } 613 if (auto *I = dyn_cast<Instruction>(V)) { 614 if (!Before) 615 I = &*std::next(I->getIterator()); 616 Builder.SetInsertPoint(I); 617 return; 618 } 619 if (auto *A = dyn_cast<Argument>(V)) { 620 // Set the insertion point in the entry block. 621 BasicBlock &Entry = A->getParent()->getEntryBlock(); 622 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 623 return; 624 } 625 // Otherwise, this is a constant and we don't need to set a new 626 // insertion point. 627 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 628 } 629 630 /// Returns a re-written value of Start as an indexed GEP using Base as a 631 /// pointer. 632 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 633 const DataLayout &DL, 634 SetVector<Value *> &Explored) { 635 // Perform all the substitutions. This is a bit tricky because we can 636 // have cycles in our use-def chains. 637 // 1. Create the PHI nodes without any incoming values. 638 // 2. Create all the other values. 639 // 3. Add the edges for the PHI nodes. 640 // 4. Emit GEPs to get the original pointers. 641 // 5. Remove the original instructions. 642 Type *IndexType = IntegerType::get( 643 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 644 645 DenseMap<Value *, Value *> NewInsts; 646 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 647 648 // Create the new PHI nodes, without adding any incoming values. 649 for (Value *Val : Explored) { 650 if (Val == Base) 651 continue; 652 // Create empty phi nodes. This avoids cyclic dependencies when creating 653 // the remaining instructions. 654 if (auto *PHI = dyn_cast<PHINode>(Val)) 655 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 656 PHI->getName() + ".idx", PHI); 657 } 658 IRBuilder<> Builder(Base->getContext()); 659 660 // Create all the other instructions. 661 for (Value *Val : Explored) { 662 663 if (NewInsts.find(Val) != NewInsts.end()) 664 continue; 665 666 if (auto *CI = dyn_cast<CastInst>(Val)) { 667 // Don't get rid of the intermediate variable here; the store can grow 668 // the map which will invalidate the reference to the input value. 669 Value *V = NewInsts[CI->getOperand(0)]; 670 NewInsts[CI] = V; 671 continue; 672 } 673 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 674 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 675 : GEP->getOperand(1); 676 setInsertionPoint(Builder, GEP); 677 // Indices might need to be sign extended. GEPs will magically do 678 // this, but we need to do it ourselves here. 679 if (Index->getType()->getScalarSizeInBits() != 680 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 681 Index = Builder.CreateSExtOrTrunc( 682 Index, NewInsts[GEP->getOperand(0)]->getType(), 683 GEP->getOperand(0)->getName() + ".sext"); 684 } 685 686 auto *Op = NewInsts[GEP->getOperand(0)]; 687 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 688 NewInsts[GEP] = Index; 689 else 690 NewInsts[GEP] = Builder.CreateNSWAdd( 691 Op, Index, GEP->getOperand(0)->getName() + ".add"); 692 continue; 693 } 694 if (isa<PHINode>(Val)) 695 continue; 696 697 llvm_unreachable("Unexpected instruction type"); 698 } 699 700 // Add the incoming values to the PHI nodes. 701 for (Value *Val : Explored) { 702 if (Val == Base) 703 continue; 704 // All the instructions have been created, we can now add edges to the 705 // phi nodes. 706 if (auto *PHI = dyn_cast<PHINode>(Val)) { 707 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 708 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 709 Value *NewIncoming = PHI->getIncomingValue(I); 710 711 if (NewInsts.find(NewIncoming) != NewInsts.end()) 712 NewIncoming = NewInsts[NewIncoming]; 713 714 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 715 } 716 } 717 } 718 719 PointerType *PtrTy = 720 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 721 for (Value *Val : Explored) { 722 if (Val == Base) 723 continue; 724 725 // Depending on the type, for external users we have to emit 726 // a GEP or a GEP + ptrtoint. 727 setInsertionPoint(Builder, Val, false); 728 729 // Cast base to the expected type. 730 Value *NewVal = Builder.CreateBitOrPointerCast( 731 Base, PtrTy, Start->getName() + "to.ptr"); 732 NewVal = Builder.CreateInBoundsGEP( 733 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 NewVal = Builder.CreateBitOrPointerCast( 735 NewVal, Val->getType(), Val->getName() + ".conv"); 736 Val->replaceAllUsesWith(NewVal); 737 } 738 739 return NewInsts[Start]; 740 } 741 742 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 743 /// the input Value as a constant indexed GEP. Returns a pair containing 744 /// the GEPs Pointer and Index. 745 static std::pair<Value *, Value *> 746 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 747 Type *IndexType = IntegerType::get(V->getContext(), 748 DL.getIndexTypeSizeInBits(V->getType())); 749 750 Constant *Index = ConstantInt::getNullValue(IndexType); 751 while (true) { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 // We accept only inbouds GEPs here to exclude the possibility of 754 // overflow. 755 if (!GEP->isInBounds()) 756 break; 757 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 758 GEP->getSourceElementType() == ElemTy) { 759 V = GEP->getOperand(0); 760 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 761 Index = ConstantExpr::getAdd( 762 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 763 continue; 764 } 765 break; 766 } 767 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 768 if (!CI->isNoopCast(DL)) 769 break; 770 V = CI->getOperand(0); 771 continue; 772 } 773 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 774 if (!CI->isNoopCast(DL)) 775 break; 776 V = CI->getOperand(0); 777 continue; 778 } 779 break; 780 } 781 return {V, Index}; 782 } 783 784 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 785 /// We can look through PHIs, GEPs and casts in order to determine a common base 786 /// between GEPLHS and RHS. 787 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 788 ICmpInst::Predicate Cond, 789 const DataLayout &DL) { 790 // FIXME: Support vector of pointers. 791 if (GEPLHS->getType()->isVectorTy()) 792 return nullptr; 793 794 if (!GEPLHS->hasAllConstantIndices()) 795 return nullptr; 796 797 Type *ElemTy = GEPLHS->getSourceElementType(); 798 Value *PtrBase, *Index; 799 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 800 801 // The set of nodes that will take part in this transformation. 802 SetVector<Value *> Nodes; 803 804 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 805 return nullptr; 806 807 // We know we can re-write this as 808 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 809 // Since we've only looked through inbouds GEPs we know that we 810 // can't have overflow on either side. We can therefore re-write 811 // this as: 812 // OFFSET1 cmp OFFSET2 813 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 814 815 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 816 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 817 // offset. Since Index is the offset of LHS to the base pointer, we will now 818 // compare the offsets instead of comparing the pointers. 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 820 } 821 822 /// Fold comparisons between a GEP instruction and something else. At this point 823 /// we know that the GEP is on the LHS of the comparison. 824 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 825 ICmpInst::Predicate Cond, 826 Instruction &I) { 827 // Don't transform signed compares of GEPs into index compares. Even if the 828 // GEP is inbounds, the final add of the base pointer can have signed overflow 829 // and would change the result of the icmp. 830 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 831 // the maximum signed value for the pointer type. 832 if (ICmpInst::isSigned(Cond)) 833 return nullptr; 834 835 // Look through bitcasts and addrspacecasts. We do not however want to remove 836 // 0 GEPs. 837 if (!isa<GetElementPtrInst>(RHS)) 838 RHS = RHS->stripPointerCasts(); 839 840 Value *PtrBase = GEPLHS->getOperand(0); 841 // FIXME: Support vector pointer GEPs. 842 if (PtrBase == RHS && GEPLHS->isInBounds() && 843 !GEPLHS->getType()->isVectorTy()) { 844 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 845 // This transformation (ignoring the base and scales) is valid because we 846 // know pointers can't overflow since the gep is inbounds. See if we can 847 // output an optimized form. 848 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 849 850 // If not, synthesize the offset the hard way. 851 if (!Offset) 852 Offset = EmitGEPOffset(GEPLHS); 853 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 854 Constant::getNullValue(Offset->getType())); 855 } 856 857 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 858 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 859 !NullPointerIsDefined(I.getFunction(), 860 RHS->getType()->getPointerAddressSpace())) { 861 // For most address spaces, an allocation can't be placed at null, but null 862 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 863 // the only valid inbounds address derived from null, is null itself. 864 // Thus, we have four cases to consider: 865 // 1) Base == nullptr, Offset == 0 -> inbounds, null 866 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 867 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 868 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 869 // 870 // (Note if we're indexing a type of size 0, that simply collapses into one 871 // of the buckets above.) 872 // 873 // In general, we're allowed to make values less poison (i.e. remove 874 // sources of full UB), so in this case, we just select between the two 875 // non-poison cases (1 and 4 above). 876 // 877 // For vectors, we apply the same reasoning on a per-lane basis. 878 auto *Base = GEPLHS->getPointerOperand(); 879 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 880 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 881 Base = Builder.CreateVectorSplat(EC, Base); 882 } 883 return new ICmpInst(Cond, Base, 884 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 885 cast<Constant>(RHS), Base->getType())); 886 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 887 // If the base pointers are different, but the indices are the same, just 888 // compare the base pointer. 889 if (PtrBase != GEPRHS->getOperand(0)) { 890 bool IndicesTheSame = 891 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 892 GEPLHS->getType() == GEPRHS->getType() && 893 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 894 if (IndicesTheSame) 895 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 896 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 897 IndicesTheSame = false; 898 break; 899 } 900 901 // If all indices are the same, just compare the base pointers. 902 Type *BaseType = GEPLHS->getOperand(0)->getType(); 903 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 904 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 905 906 // If we're comparing GEPs with two base pointers that only differ in type 907 // and both GEPs have only constant indices or just one use, then fold 908 // the compare with the adjusted indices. 909 // FIXME: Support vector of pointers. 910 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 911 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 912 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 913 PtrBase->stripPointerCasts() == 914 GEPRHS->getOperand(0)->stripPointerCasts() && 915 !GEPLHS->getType()->isVectorTy()) { 916 Value *LOffset = EmitGEPOffset(GEPLHS); 917 Value *ROffset = EmitGEPOffset(GEPRHS); 918 919 // If we looked through an addrspacecast between different sized address 920 // spaces, the LHS and RHS pointers are different sized 921 // integers. Truncate to the smaller one. 922 Type *LHSIndexTy = LOffset->getType(); 923 Type *RHSIndexTy = ROffset->getType(); 924 if (LHSIndexTy != RHSIndexTy) { 925 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 926 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 927 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 928 } else 929 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 930 } 931 932 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 933 LOffset, ROffset); 934 return replaceInstUsesWith(I, Cmp); 935 } 936 937 // Otherwise, the base pointers are different and the indices are 938 // different. Try convert this to an indexed compare by looking through 939 // PHIs/casts. 940 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 941 } 942 943 // If one of the GEPs has all zero indices, recurse. 944 // FIXME: Handle vector of pointers. 945 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 946 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 947 ICmpInst::getSwappedPredicate(Cond), I); 948 949 // If the other GEP has all zero indices, recurse. 950 // FIXME: Handle vector of pointers. 951 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 952 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 953 954 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 955 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 956 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 957 // If the GEPs only differ by one index, compare it. 958 unsigned NumDifferences = 0; // Keep track of # differences. 959 unsigned DiffOperand = 0; // The operand that differs. 960 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 961 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 962 Type *LHSType = GEPLHS->getOperand(i)->getType(); 963 Type *RHSType = GEPRHS->getOperand(i)->getType(); 964 // FIXME: Better support for vector of pointers. 965 if (LHSType->getPrimitiveSizeInBits() != 966 RHSType->getPrimitiveSizeInBits() || 967 (GEPLHS->getType()->isVectorTy() && 968 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 969 // Irreconcilable differences. 970 NumDifferences = 2; 971 break; 972 } 973 974 if (NumDifferences++) break; 975 DiffOperand = i; 976 } 977 978 if (NumDifferences == 0) // SAME GEP? 979 return replaceInstUsesWith(I, // No comparison is needed here. 980 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 981 982 else if (NumDifferences == 1 && GEPsInBounds) { 983 Value *LHSV = GEPLHS->getOperand(DiffOperand); 984 Value *RHSV = GEPRHS->getOperand(DiffOperand); 985 // Make sure we do a signed comparison here. 986 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 987 } 988 } 989 990 // Only lower this if the icmp is the only user of the GEP or if we expect 991 // the result to fold to a constant! 992 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 993 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 994 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 995 Value *L = EmitGEPOffset(GEPLHS); 996 Value *R = EmitGEPOffset(GEPRHS); 997 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 998 } 999 } 1000 1001 // Try convert this to an indexed compare by looking through PHIs/casts as a 1002 // last resort. 1003 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1004 } 1005 1006 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1007 const AllocaInst *Alloca) { 1008 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1009 1010 // It would be tempting to fold away comparisons between allocas and any 1011 // pointer not based on that alloca (e.g. an argument). However, even 1012 // though such pointers cannot alias, they can still compare equal. 1013 // 1014 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1015 // doesn't escape we can argue that it's impossible to guess its value, and we 1016 // can therefore act as if any such guesses are wrong. 1017 // 1018 // The code below checks that the alloca doesn't escape, and that it's only 1019 // used in a comparison once (the current instruction). The 1020 // single-comparison-use condition ensures that we're trivially folding all 1021 // comparisons against the alloca consistently, and avoids the risk of 1022 // erroneously folding a comparison of the pointer with itself. 1023 1024 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1025 1026 SmallVector<const Use *, 32> Worklist; 1027 for (const Use &U : Alloca->uses()) { 1028 if (Worklist.size() >= MaxIter) 1029 return nullptr; 1030 Worklist.push_back(&U); 1031 } 1032 1033 unsigned NumCmps = 0; 1034 while (!Worklist.empty()) { 1035 assert(Worklist.size() <= MaxIter); 1036 const Use *U = Worklist.pop_back_val(); 1037 const Value *V = U->getUser(); 1038 --MaxIter; 1039 1040 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1041 isa<SelectInst>(V)) { 1042 // Track the uses. 1043 } else if (isa<LoadInst>(V)) { 1044 // Loading from the pointer doesn't escape it. 1045 continue; 1046 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1047 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1048 if (SI->getValueOperand() == U->get()) 1049 return nullptr; 1050 continue; 1051 } else if (isa<ICmpInst>(V)) { 1052 if (NumCmps++) 1053 return nullptr; // Found more than one cmp. 1054 continue; 1055 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1056 switch (Intrin->getIntrinsicID()) { 1057 // These intrinsics don't escape or compare the pointer. Memset is safe 1058 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1059 // we don't allow stores, so src cannot point to V. 1060 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1061 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1062 continue; 1063 default: 1064 return nullptr; 1065 } 1066 } else { 1067 return nullptr; 1068 } 1069 for (const Use &U : V->uses()) { 1070 if (Worklist.size() >= MaxIter) 1071 return nullptr; 1072 Worklist.push_back(&U); 1073 } 1074 } 1075 1076 auto *Res = ConstantInt::get(ICI.getType(), 1077 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1078 return replaceInstUsesWith(ICI, Res); 1079 } 1080 1081 /// Fold "icmp pred (X+C), X". 1082 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1083 ICmpInst::Predicate Pred) { 1084 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1085 // so the values can never be equal. Similarly for all other "or equals" 1086 // operators. 1087 assert(!!C && "C should not be zero!"); 1088 1089 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1090 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1091 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1092 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1093 Constant *R = ConstantInt::get(X->getType(), 1094 APInt::getMaxValue(C.getBitWidth()) - C); 1095 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1096 } 1097 1098 // (X+1) >u X --> X <u (0-1) --> X != 255 1099 // (X+2) >u X --> X <u (0-2) --> X <u 254 1100 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1101 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1102 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1103 ConstantInt::get(X->getType(), -C)); 1104 1105 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1106 1107 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1108 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1109 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1110 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1111 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1112 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1113 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1114 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1115 ConstantInt::get(X->getType(), SMax - C)); 1116 1117 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1118 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1119 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1120 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1121 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1122 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1123 1124 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1125 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1126 ConstantInt::get(X->getType(), SMax - (C - 1))); 1127 } 1128 1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1130 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1132 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1133 const APInt &AP1, 1134 const APInt &AP2) { 1135 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1136 1137 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1138 if (I.getPredicate() == I.ICMP_NE) 1139 Pred = CmpInst::getInversePredicate(Pred); 1140 return new ICmpInst(Pred, LHS, RHS); 1141 }; 1142 1143 // Don't bother doing any work for cases which InstSimplify handles. 1144 if (AP2.isZero()) 1145 return nullptr; 1146 1147 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1148 if (IsAShr) { 1149 if (AP2.isAllOnes()) 1150 return nullptr; 1151 if (AP2.isNegative() != AP1.isNegative()) 1152 return nullptr; 1153 if (AP2.sgt(AP1)) 1154 return nullptr; 1155 } 1156 1157 if (!AP1) 1158 // 'A' must be large enough to shift out the highest set bit. 1159 return getICmp(I.ICMP_UGT, A, 1160 ConstantInt::get(A->getType(), AP2.logBase2())); 1161 1162 if (AP1 == AP2) 1163 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1164 1165 int Shift; 1166 if (IsAShr && AP1.isNegative()) 1167 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1168 else 1169 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1170 1171 if (Shift > 0) { 1172 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1173 // There are multiple solutions if we are comparing against -1 and the LHS 1174 // of the ashr is not a power of two. 1175 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1176 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1177 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1178 } else if (AP1 == AP2.lshr(Shift)) { 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } 1181 } 1182 1183 // Shifting const2 will never be equal to const1. 1184 // FIXME: This should always be handled by InstSimplify? 1185 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1186 return replaceInstUsesWith(I, TorF); 1187 } 1188 1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1191 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1192 const APInt &AP1, 1193 const APInt &AP2) { 1194 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1195 1196 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1197 if (I.getPredicate() == I.ICMP_NE) 1198 Pred = CmpInst::getInversePredicate(Pred); 1199 return new ICmpInst(Pred, LHS, RHS); 1200 }; 1201 1202 // Don't bother doing any work for cases which InstSimplify handles. 1203 if (AP2.isZero()) 1204 return nullptr; 1205 1206 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1207 1208 if (!AP1 && AP2TrailingZeros != 0) 1209 return getICmp( 1210 I.ICMP_UGE, A, 1211 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1212 1213 if (AP1 == AP2) 1214 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1215 1216 // Get the distance between the lowest bits that are set. 1217 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1218 1219 if (Shift > 0 && AP2.shl(Shift) == AP1) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1221 1222 // Shifting const2 will never be equal to const1. 1223 // FIXME: This should always be handled by InstSimplify? 1224 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1225 return replaceInstUsesWith(I, TorF); 1226 } 1227 1228 /// The caller has matched a pattern of the form: 1229 /// I = icmp ugt (add (add A, B), CI2), CI1 1230 /// If this is of the form: 1231 /// sum = a + b 1232 /// if (sum+128 >u 255) 1233 /// Then replace it with llvm.sadd.with.overflow.i8. 1234 /// 1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1236 ConstantInt *CI2, ConstantInt *CI1, 1237 InstCombinerImpl &IC) { 1238 // The transformation we're trying to do here is to transform this into an 1239 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1240 // with a narrower add, and discard the add-with-constant that is part of the 1241 // range check (if we can't eliminate it, this isn't profitable). 1242 1243 // In order to eliminate the add-with-constant, the compare can be its only 1244 // use. 1245 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1246 if (!AddWithCst->hasOneUse()) 1247 return nullptr; 1248 1249 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1250 if (!CI2->getValue().isPowerOf2()) 1251 return nullptr; 1252 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1253 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1254 return nullptr; 1255 1256 // The width of the new add formed is 1 more than the bias. 1257 ++NewWidth; 1258 1259 // Check to see that CI1 is an all-ones value with NewWidth bits. 1260 if (CI1->getBitWidth() == NewWidth || 1261 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1262 return nullptr; 1263 1264 // This is only really a signed overflow check if the inputs have been 1265 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1266 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1267 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1268 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1269 return nullptr; 1270 1271 // In order to replace the original add with a narrower 1272 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1273 // and truncates that discard the high bits of the add. Verify that this is 1274 // the case. 1275 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1276 for (User *U : OrigAdd->users()) { 1277 if (U == AddWithCst) 1278 continue; 1279 1280 // Only accept truncates for now. We would really like a nice recursive 1281 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1282 // chain to see which bits of a value are actually demanded. If the 1283 // original add had another add which was then immediately truncated, we 1284 // could still do the transformation. 1285 TruncInst *TI = dyn_cast<TruncInst>(U); 1286 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1287 return nullptr; 1288 } 1289 1290 // If the pattern matches, truncate the inputs to the narrower type and 1291 // use the sadd_with_overflow intrinsic to efficiently compute both the 1292 // result and the overflow bit. 1293 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1294 Function *F = Intrinsic::getDeclaration( 1295 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1296 1297 InstCombiner::BuilderTy &Builder = IC.Builder; 1298 1299 // Put the new code above the original add, in case there are any uses of the 1300 // add between the add and the compare. 1301 Builder.SetInsertPoint(OrigAdd); 1302 1303 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1304 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1305 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1306 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1307 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1308 1309 // The inner add was the result of the narrow add, zero extended to the 1310 // wider type. Replace it with the result computed by the intrinsic. 1311 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1312 IC.eraseInstFromFunction(*OrigAdd); 1313 1314 // The original icmp gets replaced with the overflow value. 1315 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1316 } 1317 1318 /// If we have: 1319 /// icmp eq/ne (urem/srem %x, %y), 0 1320 /// iff %y is a power-of-two, we can replace this with a bit test: 1321 /// icmp eq/ne (and %x, (add %y, -1)), 0 1322 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1323 // This fold is only valid for equality predicates. 1324 if (!I.isEquality()) 1325 return nullptr; 1326 ICmpInst::Predicate Pred; 1327 Value *X, *Y, *Zero; 1328 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1329 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1330 return nullptr; 1331 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1332 return nullptr; 1333 // This may increase instruction count, we don't enforce that Y is a constant. 1334 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1335 Value *Masked = Builder.CreateAnd(X, Mask); 1336 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1337 } 1338 1339 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1340 /// by one-less-than-bitwidth into a sign test on the original value. 1341 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1342 Instruction *Val; 1343 ICmpInst::Predicate Pred; 1344 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1345 return nullptr; 1346 1347 Value *X; 1348 Type *XTy; 1349 1350 Constant *C; 1351 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1352 XTy = X->getType(); 1353 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1354 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1355 APInt(XBitWidth, XBitWidth - 1)))) 1356 return nullptr; 1357 } else if (isa<BinaryOperator>(Val) && 1358 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1359 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1360 /*AnalyzeForSignBitExtraction=*/true))) { 1361 XTy = X->getType(); 1362 } else 1363 return nullptr; 1364 1365 return ICmpInst::Create(Instruction::ICmp, 1366 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1367 : ICmpInst::ICMP_SLT, 1368 X, ConstantInt::getNullValue(XTy)); 1369 } 1370 1371 // Handle icmp pred X, 0 1372 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1373 CmpInst::Predicate Pred = Cmp.getPredicate(); 1374 if (!match(Cmp.getOperand(1), m_Zero())) 1375 return nullptr; 1376 1377 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1378 if (Pred == ICmpInst::ICMP_SGT) { 1379 Value *A, *B; 1380 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1381 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1382 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1383 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1384 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1385 } 1386 } 1387 1388 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1389 return New; 1390 1391 // Given: 1392 // icmp eq/ne (urem %x, %y), 0 1393 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1394 // icmp eq/ne %x, 0 1395 Value *X, *Y; 1396 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1397 ICmpInst::isEquality(Pred)) { 1398 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1399 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1400 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1401 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Fold icmp Pred X, C. 1408 /// TODO: This code structure does not make sense. The saturating add fold 1409 /// should be moved to some other helper and extended as noted below (it is also 1410 /// possible that code has been made unnecessary - do we canonicalize IR to 1411 /// overflow/saturating intrinsics or not?). 1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1413 // Match the following pattern, which is a common idiom when writing 1414 // overflow-safe integer arithmetic functions. The source performs an addition 1415 // in wider type and explicitly checks for overflow using comparisons against 1416 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1417 // 1418 // TODO: This could probably be generalized to handle other overflow-safe 1419 // operations if we worked out the formulas to compute the appropriate magic 1420 // constants. 1421 // 1422 // sum = a + b 1423 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1424 CmpInst::Predicate Pred = Cmp.getPredicate(); 1425 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1426 Value *A, *B; 1427 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1428 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1429 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1430 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1431 return Res; 1432 1433 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1434 Constant *C = dyn_cast<Constant>(Op1); 1435 if (!C || C->canTrap()) 1436 return nullptr; 1437 1438 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1439 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1440 Type *Ty = Cmp.getType(); 1441 Builder.SetInsertPoint(Phi); 1442 PHINode *NewPhi = 1443 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1444 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1445 auto *Input = 1446 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1447 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1448 NewPhi->addIncoming(BoolInput, Predecessor); 1449 } 1450 NewPhi->takeName(&Cmp); 1451 return replaceInstUsesWith(Cmp, NewPhi); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 // Avoid an infinite loop with min/max canonicalization. 1519 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1520 if (Cmp.hasOneUse() && 1521 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1522 return nullptr; 1523 1524 if (const APInt *EqC = Intersection.getSingleElement()) 1525 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1526 if (const APInt *NeC = Difference.getSingleElement()) 1527 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1528 } 1529 1530 return nullptr; 1531 } 1532 1533 /// Fold icmp (trunc X, Y), C. 1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1535 TruncInst *Trunc, 1536 const APInt &C) { 1537 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1538 Value *X = Trunc->getOperand(0); 1539 if (C.isOne() && C.getBitWidth() > 1) { 1540 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1541 Value *V = nullptr; 1542 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1543 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1544 ConstantInt::get(V->getType(), 1)); 1545 } 1546 1547 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1548 SrcBits = X->getType()->getScalarSizeInBits(); 1549 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1550 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1551 // of the high bits truncated out of x are known. 1552 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1553 1554 // If all the high bits are known, we can do this xform. 1555 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1556 // Pull in the high bits from known-ones set. 1557 APInt NewRHS = C.zext(SrcBits); 1558 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1559 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1560 } 1561 } 1562 1563 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1564 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1565 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1566 Value *ShOp; 1567 const APInt *ShAmtC; 1568 bool TrueIfSigned; 1569 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1570 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1571 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1572 return TrueIfSigned 1573 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1574 ConstantInt::getNullValue(X->getType())) 1575 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1576 ConstantInt::getAllOnesValue(X->getType())); 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (xor X, Y), C. 1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1584 BinaryOperator *Xor, 1585 const APInt &C) { 1586 Value *X = Xor->getOperand(0); 1587 Value *Y = Xor->getOperand(1); 1588 const APInt *XorC; 1589 if (!match(Y, m_APInt(XorC))) 1590 return nullptr; 1591 1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1593 // fold the xor. 1594 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1595 bool TrueIfSigned = false; 1596 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1597 1598 // If the sign bit of the XorCst is not set, there is no change to 1599 // the operation, just stop using the Xor. 1600 if (!XorC->isNegative()) 1601 return replaceOperand(Cmp, 0, X); 1602 1603 // Emit the opposite comparison. 1604 if (TrueIfSigned) 1605 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1606 ConstantInt::getAllOnesValue(X->getType())); 1607 else 1608 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1609 ConstantInt::getNullValue(X->getType())); 1610 } 1611 1612 if (Xor->hasOneUse()) { 1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1614 if (!Cmp.isEquality() && XorC->isSignMask()) { 1615 Pred = Cmp.getFlippedSignednessPredicate(); 1616 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1617 } 1618 1619 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1620 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1621 Pred = Cmp.getFlippedSignednessPredicate(); 1622 Pred = Cmp.getSwappedPredicate(Pred); 1623 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1624 } 1625 } 1626 1627 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1628 if (Pred == ICmpInst::ICMP_UGT) { 1629 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1630 if (*XorC == ~C && (C + 1).isPowerOf2()) 1631 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1632 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1633 if (*XorC == C && (C + 1).isPowerOf2()) 1634 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1635 } 1636 if (Pred == ICmpInst::ICMP_ULT) { 1637 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1638 if (*XorC == -C && C.isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1640 ConstantInt::get(X->getType(), ~C)); 1641 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1642 if (*XorC == C && (-C).isPowerOf2()) 1643 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1644 ConstantInt::get(X->getType(), ~C)); 1645 } 1646 return nullptr; 1647 } 1648 1649 /// Fold icmp (and (sh X, Y), C2), C1. 1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1651 BinaryOperator *And, 1652 const APInt &C1, 1653 const APInt &C2) { 1654 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1655 if (!Shift || !Shift->isShift()) 1656 return nullptr; 1657 1658 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1659 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1660 // code produced by the clang front-end, for bitfield access. 1661 // This seemingly simple opportunity to fold away a shift turns out to be 1662 // rather complicated. See PR17827 for details. 1663 unsigned ShiftOpcode = Shift->getOpcode(); 1664 bool IsShl = ShiftOpcode == Instruction::Shl; 1665 const APInt *C3; 1666 if (match(Shift->getOperand(1), m_APInt(C3))) { 1667 APInt NewAndCst, NewCmpCst; 1668 bool AnyCmpCstBitsShiftedOut; 1669 if (ShiftOpcode == Instruction::Shl) { 1670 // For a left shift, we can fold if the comparison is not signed. We can 1671 // also fold a signed comparison if the mask value and comparison value 1672 // are not negative. These constraints may not be obvious, but we can 1673 // prove that they are correct using an SMT solver. 1674 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1675 return nullptr; 1676 1677 NewCmpCst = C1.lshr(*C3); 1678 NewAndCst = C2.lshr(*C3); 1679 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1680 } else if (ShiftOpcode == Instruction::LShr) { 1681 // For a logical right shift, we can fold if the comparison is not signed. 1682 // We can also fold a signed comparison if the shifted mask value and the 1683 // shifted comparison value are not negative. These constraints may not be 1684 // obvious, but we can prove that they are correct using an SMT solver. 1685 NewCmpCst = C1.shl(*C3); 1686 NewAndCst = C2.shl(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1688 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1689 return nullptr; 1690 } else { 1691 // For an arithmetic shift, check that both constants don't use (in a 1692 // signed sense) the top bits being shifted out. 1693 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1697 if (NewAndCst.ashr(*C3) != C2) 1698 return nullptr; 1699 } 1700 1701 if (AnyCmpCstBitsShiftedOut) { 1702 // If we shifted bits out, the fold is not going to work out. As a 1703 // special case, check to see if this means that the result is always 1704 // true or false now. 1705 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1706 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1709 } else { 1710 Value *NewAnd = Builder.CreateAnd( 1711 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1712 return new ICmpInst(Cmp.getPredicate(), 1713 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1714 } 1715 } 1716 1717 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1718 // preferable because it allows the C2 << Y expression to be hoisted out of a 1719 // loop if Y is invariant and X is not. 1720 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1721 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1722 // Compute C2 << Y. 1723 Value *NewShift = 1724 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1725 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1726 1727 // Compute X & (C2 << Y). 1728 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1729 return replaceOperand(Cmp, 0, NewAnd); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Fold icmp (and X, C2), C1. 1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1737 BinaryOperator *And, 1738 const APInt &C1) { 1739 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1740 1741 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1742 // TODO: We canonicalize to the longer form for scalars because we have 1743 // better analysis/folds for icmp, and codegen may be better with icmp. 1744 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1745 match(And->getOperand(1), m_One())) 1746 return new TruncInst(And->getOperand(0), Cmp.getType()); 1747 1748 const APInt *C2; 1749 Value *X; 1750 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1751 return nullptr; 1752 1753 // Don't perform the following transforms if the AND has multiple uses 1754 if (!And->hasOneUse()) 1755 return nullptr; 1756 1757 if (Cmp.isEquality() && C1.isZero()) { 1758 // Restrict this fold to single-use 'and' (PR10267). 1759 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1760 if (C2->isSignMask()) { 1761 Constant *Zero = Constant::getNullValue(X->getType()); 1762 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1763 return new ICmpInst(NewPred, X, Zero); 1764 } 1765 1766 // Restrict this fold only for single-use 'and' (PR10267). 1767 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1768 if ((~(*C2) + 1).isPowerOf2()) { 1769 Constant *NegBOC = 1770 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1772 return new ICmpInst(NewPred, X, NegBOC); 1773 } 1774 } 1775 1776 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1777 // the input width without changing the value produced, eliminate the cast: 1778 // 1779 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1780 // 1781 // We can do this transformation if the constants do not have their sign bits 1782 // set or if it is an equality comparison. Extending a relational comparison 1783 // when we're checking the sign bit would not work. 1784 Value *W; 1785 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1786 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1787 // TODO: Is this a good transform for vectors? Wider types may reduce 1788 // throughput. Should this transform be limited (even for scalars) by using 1789 // shouldChangeType()? 1790 if (!Cmp.getType()->isVectorTy()) { 1791 Type *WideType = W->getType(); 1792 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1793 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1794 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1795 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1796 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1797 } 1798 } 1799 1800 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1801 return I; 1802 1803 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1804 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1805 // 1806 // iff pred isn't signed 1807 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1808 match(And->getOperand(1), m_One())) { 1809 Constant *One = cast<Constant>(And->getOperand(1)); 1810 Value *Or = And->getOperand(0); 1811 Value *A, *B, *LShr; 1812 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1813 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1814 unsigned UsesRemoved = 0; 1815 if (And->hasOneUse()) 1816 ++UsesRemoved; 1817 if (Or->hasOneUse()) 1818 ++UsesRemoved; 1819 if (LShr->hasOneUse()) 1820 ++UsesRemoved; 1821 1822 // Compute A & ((1 << B) | 1) 1823 Value *NewOr = nullptr; 1824 if (auto *C = dyn_cast<Constant>(B)) { 1825 if (UsesRemoved >= 1) 1826 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1827 } else { 1828 if (UsesRemoved >= 3) 1829 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1830 /*HasNUW=*/true), 1831 One, Or->getName()); 1832 } 1833 if (NewOr) { 1834 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1835 return replaceOperand(Cmp, 0, NewAnd); 1836 } 1837 } 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 /// Fold icmp (and X, Y), C. 1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1845 BinaryOperator *And, 1846 const APInt &C) { 1847 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1848 return I; 1849 1850 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1851 bool TrueIfNeg; 1852 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1853 // ((X - 1) & ~X) < 0 --> X == 0 1854 // ((X - 1) & ~X) >= 0 --> X != 0 1855 Value *X; 1856 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1857 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1858 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1859 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1860 } 1861 } 1862 1863 // TODO: These all require that Y is constant too, so refactor with the above. 1864 1865 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1866 Value *X = And->getOperand(0); 1867 Value *Y = And->getOperand(1); 1868 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1869 if (auto *LI = dyn_cast<LoadInst>(X)) 1870 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1871 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1872 if (Instruction *Res = 1873 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1874 return Res; 1875 1876 if (!Cmp.isEquality()) 1877 return nullptr; 1878 1879 // X & -C == -C -> X > u ~C 1880 // X & -C != -C -> X <= u ~C 1881 // iff C is a power of 2 1882 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1883 auto NewPred = 1884 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1885 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1886 } 1887 1888 return nullptr; 1889 } 1890 1891 /// Fold icmp (or X, Y), C. 1892 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1893 BinaryOperator *Or, 1894 const APInt &C) { 1895 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1896 if (C.isOne()) { 1897 // icmp slt signum(V) 1 --> icmp slt V, 1 1898 Value *V = nullptr; 1899 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1900 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1901 ConstantInt::get(V->getType(), 1)); 1902 } 1903 1904 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1905 const APInt *MaskC; 1906 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1907 if (*MaskC == C && (C + 1).isPowerOf2()) { 1908 // X | C == C --> X <=u C 1909 // X | C != C --> X >u C 1910 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1911 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1912 return new ICmpInst(Pred, OrOp0, OrOp1); 1913 } 1914 1915 // More general: canonicalize 'equality with set bits mask' to 1916 // 'equality with clear bits mask'. 1917 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1918 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1919 if (Or->hasOneUse()) { 1920 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1921 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1922 return new ICmpInst(Pred, And, NewC); 1923 } 1924 } 1925 1926 // (X | (X-1)) s< 0 --> X s< 1 1927 // (X | (X-1)) s> -1 --> X s> 0 1928 Value *X; 1929 bool TrueIfSigned; 1930 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1931 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1932 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1933 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1934 return new ICmpInst(NewPred, X, NewC); 1935 } 1936 1937 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1938 return nullptr; 1939 1940 Value *P, *Q; 1941 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1942 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1943 // -> and (icmp eq P, null), (icmp eq Q, null). 1944 Value *CmpP = 1945 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1946 Value *CmpQ = 1947 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1948 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1949 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1950 } 1951 1952 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1953 // a shorter form that has more potential to be folded even further. 1954 Value *X1, *X2, *X3, *X4; 1955 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1956 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1957 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1958 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1959 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1960 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1961 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1962 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1963 } 1964 1965 return nullptr; 1966 } 1967 1968 /// Fold icmp (mul X, Y), C. 1969 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1970 BinaryOperator *Mul, 1971 const APInt &C) { 1972 const APInt *MulC; 1973 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1974 return nullptr; 1975 1976 // If this is a test of the sign bit and the multiply is sign-preserving with 1977 // a constant operand, use the multiply LHS operand instead. 1978 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1979 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1980 if (MulC->isNegative()) 1981 Pred = ICmpInst::getSwappedPredicate(Pred); 1982 return new ICmpInst(Pred, Mul->getOperand(0), 1983 Constant::getNullValue(Mul->getType())); 1984 } 1985 1986 // If the multiply does not wrap, try to divide the compare constant by the 1987 // multiplication factor. 1988 if (Cmp.isEquality() && !MulC->isZero()) { 1989 // (mul nsw X, MulC) == C --> X == C /s MulC 1990 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1991 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1992 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1993 } 1994 // (mul nuw X, MulC) == C --> X == C /u MulC 1995 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1996 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1997 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1998 } 1999 } 2000 2001 return nullptr; 2002 } 2003 2004 /// Fold icmp (shl 1, Y), C. 2005 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2006 const APInt &C) { 2007 Value *Y; 2008 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2009 return nullptr; 2010 2011 Type *ShiftType = Shl->getType(); 2012 unsigned TypeBits = C.getBitWidth(); 2013 bool CIsPowerOf2 = C.isPowerOf2(); 2014 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2015 if (Cmp.isUnsigned()) { 2016 // (1 << Y) pred C -> Y pred Log2(C) 2017 if (!CIsPowerOf2) { 2018 // (1 << Y) < 30 -> Y <= 4 2019 // (1 << Y) <= 30 -> Y <= 4 2020 // (1 << Y) >= 30 -> Y > 4 2021 // (1 << Y) > 30 -> Y > 4 2022 if (Pred == ICmpInst::ICMP_ULT) 2023 Pred = ICmpInst::ICMP_ULE; 2024 else if (Pred == ICmpInst::ICMP_UGE) 2025 Pred = ICmpInst::ICMP_UGT; 2026 } 2027 2028 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2029 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2030 unsigned CLog2 = C.logBase2(); 2031 if (CLog2 == TypeBits - 1) { 2032 if (Pred == ICmpInst::ICMP_UGE) 2033 Pred = ICmpInst::ICMP_EQ; 2034 else if (Pred == ICmpInst::ICMP_ULT) 2035 Pred = ICmpInst::ICMP_NE; 2036 } 2037 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2038 } else if (Cmp.isSigned()) { 2039 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2040 if (C.isAllOnes()) { 2041 // (1 << Y) <= -1 -> Y == 31 2042 if (Pred == ICmpInst::ICMP_SLE) 2043 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2044 2045 // (1 << Y) > -1 -> Y != 31 2046 if (Pred == ICmpInst::ICMP_SGT) 2047 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2048 } else if (!C) { 2049 // (1 << Y) < 0 -> Y == 31 2050 // (1 << Y) <= 0 -> Y == 31 2051 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2052 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2053 2054 // (1 << Y) >= 0 -> Y != 31 2055 // (1 << Y) > 0 -> Y != 31 2056 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2057 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2058 } 2059 } else if (Cmp.isEquality() && CIsPowerOf2) { 2060 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2061 } 2062 2063 return nullptr; 2064 } 2065 2066 /// Fold icmp (shl X, Y), C. 2067 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2068 BinaryOperator *Shl, 2069 const APInt &C) { 2070 const APInt *ShiftVal; 2071 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2072 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2073 2074 const APInt *ShiftAmt; 2075 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2076 return foldICmpShlOne(Cmp, Shl, C); 2077 2078 // Check that the shift amount is in range. If not, don't perform undefined 2079 // shifts. When the shift is visited, it will be simplified. 2080 unsigned TypeBits = C.getBitWidth(); 2081 if (ShiftAmt->uge(TypeBits)) 2082 return nullptr; 2083 2084 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2085 Value *X = Shl->getOperand(0); 2086 Type *ShType = Shl->getType(); 2087 2088 // NSW guarantees that we are only shifting out sign bits from the high bits, 2089 // so we can ASHR the compare constant without needing a mask and eliminate 2090 // the shift. 2091 if (Shl->hasNoSignedWrap()) { 2092 if (Pred == ICmpInst::ICMP_SGT) { 2093 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2094 APInt ShiftedC = C.ashr(*ShiftAmt); 2095 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2096 } 2097 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2098 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2099 APInt ShiftedC = C.ashr(*ShiftAmt); 2100 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2101 } 2102 if (Pred == ICmpInst::ICMP_SLT) { 2103 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2104 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2105 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2106 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2107 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2108 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2109 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2110 } 2111 // If this is a signed comparison to 0 and the shift is sign preserving, 2112 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2113 // do that if we're sure to not continue on in this function. 2114 if (isSignTest(Pred, C)) 2115 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2116 } 2117 2118 // NUW guarantees that we are only shifting out zero bits from the high bits, 2119 // so we can LSHR the compare constant without needing a mask and eliminate 2120 // the shift. 2121 if (Shl->hasNoUnsignedWrap()) { 2122 if (Pred == ICmpInst::ICMP_UGT) { 2123 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2124 APInt ShiftedC = C.lshr(*ShiftAmt); 2125 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2126 } 2127 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2128 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2129 APInt ShiftedC = C.lshr(*ShiftAmt); 2130 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2131 } 2132 if (Pred == ICmpInst::ICMP_ULT) { 2133 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2134 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2135 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2136 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2137 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2138 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2139 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2140 } 2141 } 2142 2143 if (Cmp.isEquality() && Shl->hasOneUse()) { 2144 // Strength-reduce the shift into an 'and'. 2145 Constant *Mask = ConstantInt::get( 2146 ShType, 2147 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2148 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2149 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2150 return new ICmpInst(Pred, And, LShrC); 2151 } 2152 2153 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2154 bool TrueIfSigned = false; 2155 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2156 // (X << 31) <s 0 --> (X & 1) != 0 2157 Constant *Mask = ConstantInt::get( 2158 ShType, 2159 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2160 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2161 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2162 And, Constant::getNullValue(ShType)); 2163 } 2164 2165 // Simplify 'shl' inequality test into 'and' equality test. 2166 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2167 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2168 if ((C + 1).isPowerOf2() && 2169 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2170 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2171 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2172 : ICmpInst::ICMP_NE, 2173 And, Constant::getNullValue(ShType)); 2174 } 2175 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2176 if (C.isPowerOf2() && 2177 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2178 Value *And = 2179 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2180 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2181 : ICmpInst::ICMP_NE, 2182 And, Constant::getNullValue(ShType)); 2183 } 2184 } 2185 2186 // Transform (icmp pred iM (shl iM %v, N), C) 2187 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2188 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2189 // This enables us to get rid of the shift in favor of a trunc that may be 2190 // free on the target. It has the additional benefit of comparing to a 2191 // smaller constant that may be more target-friendly. 2192 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2193 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2194 DL.isLegalInteger(TypeBits - Amt)) { 2195 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2196 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2197 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2198 Constant *NewC = 2199 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2200 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2201 } 2202 2203 return nullptr; 2204 } 2205 2206 /// Fold icmp ({al}shr X, Y), C. 2207 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2208 BinaryOperator *Shr, 2209 const APInt &C) { 2210 // An exact shr only shifts out zero bits, so: 2211 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2212 Value *X = Shr->getOperand(0); 2213 CmpInst::Predicate Pred = Cmp.getPredicate(); 2214 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2215 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2216 2217 const APInt *ShiftVal; 2218 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2219 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2220 2221 const APInt *ShiftAmt; 2222 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2223 return nullptr; 2224 2225 // Check that the shift amount is in range. If not, don't perform undefined 2226 // shifts. When the shift is visited it will be simplified. 2227 unsigned TypeBits = C.getBitWidth(); 2228 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2229 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2230 return nullptr; 2231 2232 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2233 bool IsExact = Shr->isExact(); 2234 Type *ShrTy = Shr->getType(); 2235 // TODO: If we could guarantee that InstSimplify would handle all of the 2236 // constant-value-based preconditions in the folds below, then we could assert 2237 // those conditions rather than checking them. This is difficult because of 2238 // undef/poison (PR34838). 2239 if (IsAShr) { 2240 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2241 // When ShAmtC can be shifted losslessly: 2242 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2243 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2244 APInt ShiftedC = C.shl(ShAmtVal); 2245 if (ShiftedC.ashr(ShAmtVal) == C) 2246 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2247 } 2248 if (Pred == CmpInst::ICMP_SGT) { 2249 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2250 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2251 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2252 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2253 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2254 } 2255 if (Pred == CmpInst::ICMP_UGT) { 2256 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2257 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2258 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2259 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2260 } 2261 2262 // If the compare constant has significant bits above the lowest sign-bit, 2263 // then convert an unsigned cmp to a test of the sign-bit: 2264 // (ashr X, ShiftC) u> C --> X s< 0 2265 // (ashr X, ShiftC) u< C --> X s> -1 2266 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2267 if (Pred == CmpInst::ICMP_UGT) { 2268 return new ICmpInst(CmpInst::ICMP_SLT, X, 2269 ConstantInt::getNullValue(ShrTy)); 2270 } 2271 if (Pred == CmpInst::ICMP_ULT) { 2272 return new ICmpInst(CmpInst::ICMP_SGT, X, 2273 ConstantInt::getAllOnesValue(ShrTy)); 2274 } 2275 } 2276 } else { 2277 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2278 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2279 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2280 APInt ShiftedC = C.shl(ShAmtVal); 2281 if (ShiftedC.lshr(ShAmtVal) == C) 2282 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2283 } 2284 if (Pred == CmpInst::ICMP_UGT) { 2285 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2286 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2287 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2288 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2289 } 2290 } 2291 2292 if (!Cmp.isEquality()) 2293 return nullptr; 2294 2295 // Handle equality comparisons of shift-by-constant. 2296 2297 // If the comparison constant changes with the shift, the comparison cannot 2298 // succeed (bits of the comparison constant cannot match the shifted value). 2299 // This should be known by InstSimplify and already be folded to true/false. 2300 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2301 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2302 "Expected icmp+shr simplify did not occur."); 2303 2304 // If the bits shifted out are known zero, compare the unshifted value: 2305 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2306 if (Shr->isExact()) 2307 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2308 2309 if (C.isZero()) { 2310 // == 0 is u< 1. 2311 if (Pred == CmpInst::ICMP_EQ) 2312 return new ICmpInst(CmpInst::ICMP_ULT, X, 2313 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2314 else 2315 return new ICmpInst(CmpInst::ICMP_UGT, X, 2316 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2317 } 2318 2319 if (Shr->hasOneUse()) { 2320 // Canonicalize the shift into an 'and': 2321 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2322 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2323 Constant *Mask = ConstantInt::get(ShrTy, Val); 2324 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2325 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2326 } 2327 2328 return nullptr; 2329 } 2330 2331 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2332 BinaryOperator *SRem, 2333 const APInt &C) { 2334 // Match an 'is positive' or 'is negative' comparison of remainder by a 2335 // constant power-of-2 value: 2336 // (X % pow2C) sgt/slt 0 2337 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2338 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2339 return nullptr; 2340 2341 // TODO: The one-use check is standard because we do not typically want to 2342 // create longer instruction sequences, but this might be a special-case 2343 // because srem is not good for analysis or codegen. 2344 if (!SRem->hasOneUse()) 2345 return nullptr; 2346 2347 const APInt *DivisorC; 2348 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2349 return nullptr; 2350 2351 // Mask off the sign bit and the modulo bits (low-bits). 2352 Type *Ty = SRem->getType(); 2353 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2354 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2355 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2356 2357 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2358 // bit is set. Example: 2359 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2360 if (Pred == ICmpInst::ICMP_SGT) 2361 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2362 2363 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2364 // bit is set. Example: 2365 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2366 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2367 } 2368 2369 /// Fold icmp (udiv X, Y), C. 2370 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2371 BinaryOperator *UDiv, 2372 const APInt &C) { 2373 const APInt *C2; 2374 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2375 return nullptr; 2376 2377 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2378 2379 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2380 Value *Y = UDiv->getOperand(1); 2381 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2382 assert(!C.isMaxValue() && 2383 "icmp ugt X, UINT_MAX should have been simplified already."); 2384 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2385 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2386 } 2387 2388 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2389 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2390 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2391 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2392 ConstantInt::get(Y->getType(), C2->udiv(C))); 2393 } 2394 2395 return nullptr; 2396 } 2397 2398 /// Fold icmp ({su}div X, Y), C. 2399 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2400 BinaryOperator *Div, 2401 const APInt &C) { 2402 // Fold: icmp pred ([us]div X, C2), C -> range test 2403 // Fold this div into the comparison, producing a range check. 2404 // Determine, based on the divide type, what the range is being 2405 // checked. If there is an overflow on the low or high side, remember 2406 // it, otherwise compute the range [low, hi) bounding the new value. 2407 // See: InsertRangeTest above for the kinds of replacements possible. 2408 const APInt *C2; 2409 if (!match(Div->getOperand(1), m_APInt(C2))) 2410 return nullptr; 2411 2412 // FIXME: If the operand types don't match the type of the divide 2413 // then don't attempt this transform. The code below doesn't have the 2414 // logic to deal with a signed divide and an unsigned compare (and 2415 // vice versa). This is because (x /s C2) <s C produces different 2416 // results than (x /s C2) <u C or (x /u C2) <s C or even 2417 // (x /u C2) <u C. Simply casting the operands and result won't 2418 // work. :( The if statement below tests that condition and bails 2419 // if it finds it. 2420 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2421 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2422 return nullptr; 2423 2424 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2425 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2426 // division-by-constant cases should be present, we can not assert that they 2427 // have happened before we reach this icmp instruction. 2428 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2429 return nullptr; 2430 2431 // Compute Prod = C * C2. We are essentially solving an equation of 2432 // form X / C2 = C. We solve for X by multiplying C2 and C. 2433 // By solving for X, we can turn this into a range check instead of computing 2434 // a divide. 2435 APInt Prod = C * *C2; 2436 2437 // Determine if the product overflows by seeing if the product is not equal to 2438 // the divide. Make sure we do the same kind of divide as in the LHS 2439 // instruction that we're folding. 2440 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2441 2442 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2443 2444 // If the division is known to be exact, then there is no remainder from the 2445 // divide, so the covered range size is unit, otherwise it is the divisor. 2446 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2447 2448 // Figure out the interval that is being checked. For example, a comparison 2449 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2450 // Compute this interval based on the constants involved and the signedness of 2451 // the compare/divide. This computes a half-open interval, keeping track of 2452 // whether either value in the interval overflows. After analysis each 2453 // overflow variable is set to 0 if it's corresponding bound variable is valid 2454 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2455 int LoOverflow = 0, HiOverflow = 0; 2456 APInt LoBound, HiBound; 2457 2458 if (!DivIsSigned) { // udiv 2459 // e.g. X/5 op 3 --> [15, 20) 2460 LoBound = Prod; 2461 HiOverflow = LoOverflow = ProdOV; 2462 if (!HiOverflow) { 2463 // If this is not an exact divide, then many values in the range collapse 2464 // to the same result value. 2465 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2466 } 2467 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2468 if (C.isZero()) { // (X / pos) op 0 2469 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2470 LoBound = -(RangeSize - 1); 2471 HiBound = RangeSize; 2472 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2473 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2474 HiOverflow = LoOverflow = ProdOV; 2475 if (!HiOverflow) 2476 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2477 } else { // (X / pos) op neg 2478 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2479 HiBound = Prod + 1; 2480 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2481 if (!LoOverflow) { 2482 APInt DivNeg = -RangeSize; 2483 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2484 } 2485 } 2486 } else if (C2->isNegative()) { // Divisor is < 0. 2487 if (Div->isExact()) 2488 RangeSize.negate(); 2489 if (C.isZero()) { // (X / neg) op 0 2490 // e.g. X/-5 op 0 --> [-4, 5) 2491 LoBound = RangeSize + 1; 2492 HiBound = -RangeSize; 2493 if (HiBound == *C2) { // -INTMIN = INTMIN 2494 HiOverflow = 1; // [INTMIN+1, overflow) 2495 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2496 } 2497 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2498 // e.g. X/-5 op 3 --> [-19, -14) 2499 HiBound = Prod + 1; 2500 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2501 if (!LoOverflow) 2502 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2503 } else { // (X / neg) op neg 2504 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2505 LoOverflow = HiOverflow = ProdOV; 2506 if (!HiOverflow) 2507 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2508 } 2509 2510 // Dividing by a negative swaps the condition. LT <-> GT 2511 Pred = ICmpInst::getSwappedPredicate(Pred); 2512 } 2513 2514 Value *X = Div->getOperand(0); 2515 switch (Pred) { 2516 default: llvm_unreachable("Unhandled icmp opcode!"); 2517 case ICmpInst::ICMP_EQ: 2518 if (LoOverflow && HiOverflow) 2519 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2520 if (HiOverflow) 2521 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2522 ICmpInst::ICMP_UGE, X, 2523 ConstantInt::get(Div->getType(), LoBound)); 2524 if (LoOverflow) 2525 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2526 ICmpInst::ICMP_ULT, X, 2527 ConstantInt::get(Div->getType(), HiBound)); 2528 return replaceInstUsesWith( 2529 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2530 case ICmpInst::ICMP_NE: 2531 if (LoOverflow && HiOverflow) 2532 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2533 if (HiOverflow) 2534 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2535 ICmpInst::ICMP_ULT, X, 2536 ConstantInt::get(Div->getType(), LoBound)); 2537 if (LoOverflow) 2538 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2539 ICmpInst::ICMP_UGE, X, 2540 ConstantInt::get(Div->getType(), HiBound)); 2541 return replaceInstUsesWith(Cmp, 2542 insertRangeTest(X, LoBound, HiBound, 2543 DivIsSigned, false)); 2544 case ICmpInst::ICMP_ULT: 2545 case ICmpInst::ICMP_SLT: 2546 if (LoOverflow == +1) // Low bound is greater than input range. 2547 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2548 if (LoOverflow == -1) // Low bound is less than input range. 2549 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2550 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2551 case ICmpInst::ICMP_UGT: 2552 case ICmpInst::ICMP_SGT: 2553 if (HiOverflow == +1) // High bound greater than input range. 2554 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2555 if (HiOverflow == -1) // High bound less than input range. 2556 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2557 if (Pred == ICmpInst::ICMP_UGT) 2558 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2559 ConstantInt::get(Div->getType(), HiBound)); 2560 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2561 ConstantInt::get(Div->getType(), HiBound)); 2562 } 2563 2564 return nullptr; 2565 } 2566 2567 /// Fold icmp (sub X, Y), C. 2568 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2569 BinaryOperator *Sub, 2570 const APInt &C) { 2571 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2572 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2573 Type *Ty = Sub->getType(); 2574 2575 // (SubC - Y) == C) --> Y == (SubC - C) 2576 // (SubC - Y) != C) --> Y != (SubC - C) 2577 Constant *SubC; 2578 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2579 return new ICmpInst(Pred, Y, 2580 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2581 } 2582 2583 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2584 const APInt *C2; 2585 APInt SubResult; 2586 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2587 bool HasNSW = Sub->hasNoSignedWrap(); 2588 bool HasNUW = Sub->hasNoUnsignedWrap(); 2589 if (match(X, m_APInt(C2)) && 2590 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2591 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2592 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2593 2594 // X - Y == 0 --> X == Y. 2595 // X - Y != 0 --> X != Y. 2596 if (Cmp.isEquality() && C.isZero()) 2597 return new ICmpInst(Pred, X, Y); 2598 2599 // The following transforms are only worth it if the only user of the subtract 2600 // is the icmp. 2601 // TODO: This is an artificial restriction for all of the transforms below 2602 // that only need a single replacement icmp. 2603 if (!Sub->hasOneUse()) 2604 return nullptr; 2605 2606 if (Sub->hasNoSignedWrap()) { 2607 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2608 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2609 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2610 2611 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2612 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2613 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2614 2615 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2616 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2617 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2618 2619 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2620 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2621 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2622 } 2623 2624 if (!match(X, m_APInt(C2))) 2625 return nullptr; 2626 2627 // C2 - Y <u C -> (Y | (C - 1)) == C2 2628 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2629 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2630 (*C2 & (C - 1)) == (C - 1)) 2631 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2632 2633 // C2 - Y >u C -> (Y | C) != C2 2634 // iff C2 & C == C and C + 1 is a power of 2 2635 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2636 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2637 2638 // We have handled special cases that reduce. 2639 // Canonicalize any remaining sub to add as: 2640 // (C2 - Y) > C --> (Y + ~C2) < ~C 2641 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2642 HasNUW, HasNSW); 2643 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2644 } 2645 2646 /// Fold icmp (add X, Y), C. 2647 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2648 BinaryOperator *Add, 2649 const APInt &C) { 2650 Value *Y = Add->getOperand(1); 2651 const APInt *C2; 2652 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2653 return nullptr; 2654 2655 // Fold icmp pred (add X, C2), C. 2656 Value *X = Add->getOperand(0); 2657 Type *Ty = Add->getType(); 2658 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2659 2660 // If the add does not wrap, we can always adjust the compare by subtracting 2661 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2662 // are canonicalized to SGT/SLT/UGT/ULT. 2663 if ((Add->hasNoSignedWrap() && 2664 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2665 (Add->hasNoUnsignedWrap() && 2666 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2667 bool Overflow; 2668 APInt NewC = 2669 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2670 // If there is overflow, the result must be true or false. 2671 // TODO: Can we assert there is no overflow because InstSimplify always 2672 // handles those cases? 2673 if (!Overflow) 2674 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2675 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2676 } 2677 2678 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2679 const APInt &Upper = CR.getUpper(); 2680 const APInt &Lower = CR.getLower(); 2681 if (Cmp.isSigned()) { 2682 if (Lower.isSignMask()) 2683 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2684 if (Upper.isSignMask()) 2685 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2686 } else { 2687 if (Lower.isMinValue()) 2688 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2689 if (Upper.isMinValue()) 2690 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2691 } 2692 2693 // This set of folds is intentionally placed after folds that use no-wrapping 2694 // flags because those folds are likely better for later analysis/codegen. 2695 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2696 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2697 2698 // Fold compare with offset to opposite sign compare if it eliminates offset: 2699 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2700 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2701 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2702 2703 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2704 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2705 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2706 2707 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2708 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2709 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2710 2711 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2712 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2713 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2714 2715 if (!Add->hasOneUse()) 2716 return nullptr; 2717 2718 // X+C <u C2 -> (X & -C2) == C 2719 // iff C & (C2-1) == 0 2720 // C2 is a power of 2 2721 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2722 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2723 ConstantExpr::getNeg(cast<Constant>(Y))); 2724 2725 // X+C >u C2 -> (X & ~C2) != C 2726 // iff C & C2 == 0 2727 // C2+1 is a power of 2 2728 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2729 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2730 ConstantExpr::getNeg(cast<Constant>(Y))); 2731 2732 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2733 // to the ult form. 2734 // X+C2 >u C -> X+(C2-C-1) <u ~C 2735 if (Pred == ICmpInst::ICMP_UGT) 2736 return new ICmpInst(ICmpInst::ICMP_ULT, 2737 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2738 ConstantInt::get(Ty, ~C)); 2739 2740 return nullptr; 2741 } 2742 2743 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2744 Value *&RHS, ConstantInt *&Less, 2745 ConstantInt *&Equal, 2746 ConstantInt *&Greater) { 2747 // TODO: Generalize this to work with other comparison idioms or ensure 2748 // they get canonicalized into this form. 2749 2750 // select i1 (a == b), 2751 // i32 Equal, 2752 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2753 // where Equal, Less and Greater are placeholders for any three constants. 2754 ICmpInst::Predicate PredA; 2755 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2756 !ICmpInst::isEquality(PredA)) 2757 return false; 2758 Value *EqualVal = SI->getTrueValue(); 2759 Value *UnequalVal = SI->getFalseValue(); 2760 // We still can get non-canonical predicate here, so canonicalize. 2761 if (PredA == ICmpInst::ICMP_NE) 2762 std::swap(EqualVal, UnequalVal); 2763 if (!match(EqualVal, m_ConstantInt(Equal))) 2764 return false; 2765 ICmpInst::Predicate PredB; 2766 Value *LHS2, *RHS2; 2767 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2768 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2769 return false; 2770 // We can get predicate mismatch here, so canonicalize if possible: 2771 // First, ensure that 'LHS' match. 2772 if (LHS2 != LHS) { 2773 // x sgt y <--> y slt x 2774 std::swap(LHS2, RHS2); 2775 PredB = ICmpInst::getSwappedPredicate(PredB); 2776 } 2777 if (LHS2 != LHS) 2778 return false; 2779 // We also need to canonicalize 'RHS'. 2780 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2781 // x sgt C-1 <--> x sge C <--> not(x slt C) 2782 auto FlippedStrictness = 2783 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2784 PredB, cast<Constant>(RHS2)); 2785 if (!FlippedStrictness) 2786 return false; 2787 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2788 "basic correctness failure"); 2789 RHS2 = FlippedStrictness->second; 2790 // And kind-of perform the result swap. 2791 std::swap(Less, Greater); 2792 PredB = ICmpInst::ICMP_SLT; 2793 } 2794 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2795 } 2796 2797 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2798 SelectInst *Select, 2799 ConstantInt *C) { 2800 2801 assert(C && "Cmp RHS should be a constant int!"); 2802 // If we're testing a constant value against the result of a three way 2803 // comparison, the result can be expressed directly in terms of the 2804 // original values being compared. Note: We could possibly be more 2805 // aggressive here and remove the hasOneUse test. The original select is 2806 // really likely to simplify or sink when we remove a test of the result. 2807 Value *OrigLHS, *OrigRHS; 2808 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2809 if (Cmp.hasOneUse() && 2810 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2811 C3GreaterThan)) { 2812 assert(C1LessThan && C2Equal && C3GreaterThan); 2813 2814 bool TrueWhenLessThan = 2815 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2816 ->isAllOnesValue(); 2817 bool TrueWhenEqual = 2818 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2819 ->isAllOnesValue(); 2820 bool TrueWhenGreaterThan = 2821 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2822 ->isAllOnesValue(); 2823 2824 // This generates the new instruction that will replace the original Cmp 2825 // Instruction. Instead of enumerating the various combinations when 2826 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2827 // false, we rely on chaining of ORs and future passes of InstCombine to 2828 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2829 2830 // When none of the three constants satisfy the predicate for the RHS (C), 2831 // the entire original Cmp can be simplified to a false. 2832 Value *Cond = Builder.getFalse(); 2833 if (TrueWhenLessThan) 2834 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2835 OrigLHS, OrigRHS)); 2836 if (TrueWhenEqual) 2837 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2838 OrigLHS, OrigRHS)); 2839 if (TrueWhenGreaterThan) 2840 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2841 OrigLHS, OrigRHS)); 2842 2843 return replaceInstUsesWith(Cmp, Cond); 2844 } 2845 return nullptr; 2846 } 2847 2848 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2849 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2850 if (!Bitcast) 2851 return nullptr; 2852 2853 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2854 Value *Op1 = Cmp.getOperand(1); 2855 Value *BCSrcOp = Bitcast->getOperand(0); 2856 2857 // Make sure the bitcast doesn't change the number of vector elements. 2858 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2859 Bitcast->getDestTy()->getScalarSizeInBits()) { 2860 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2861 Value *X; 2862 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2863 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2864 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2865 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2866 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2867 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2868 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2869 match(Op1, m_Zero())) 2870 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2871 2872 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2873 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2874 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2875 2876 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2877 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2878 return new ICmpInst(Pred, X, 2879 ConstantInt::getAllOnesValue(X->getType())); 2880 } 2881 2882 // Zero-equality checks are preserved through unsigned floating-point casts: 2883 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2884 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2885 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2886 if (Cmp.isEquality() && match(Op1, m_Zero())) 2887 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2888 2889 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2890 // the FP extend/truncate because that cast does not change the sign-bit. 2891 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2892 // The sign-bit is always the most significant bit in those types. 2893 const APInt *C; 2894 bool TrueIfSigned; 2895 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2896 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2897 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2898 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2899 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2900 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2901 Type *XType = X->getType(); 2902 2903 // We can't currently handle Power style floating point operations here. 2904 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2905 2906 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2907 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2908 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2909 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2910 if (TrueIfSigned) 2911 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2912 ConstantInt::getNullValue(NewType)); 2913 else 2914 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2915 ConstantInt::getAllOnesValue(NewType)); 2916 } 2917 } 2918 } 2919 } 2920 2921 // Test to see if the operands of the icmp are casted versions of other 2922 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2923 if (Bitcast->getType()->isPointerTy() && 2924 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2925 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2926 // so eliminate it as well. 2927 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2928 Op1 = BC2->getOperand(0); 2929 2930 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2931 return new ICmpInst(Pred, BCSrcOp, Op1); 2932 } 2933 2934 const APInt *C; 2935 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2936 !Bitcast->getType()->isIntegerTy() || 2937 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2938 return nullptr; 2939 2940 // If this is checking if all elements of a vector compare are set or not, 2941 // invert the casted vector equality compare and test if all compare 2942 // elements are clear or not. Compare against zero is generally easier for 2943 // analysis and codegen. 2944 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2945 // Example: are all elements equal? --> are zero elements not equal? 2946 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2947 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2948 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2949 Type *ScalarTy = Bitcast->getType(); 2950 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2951 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2952 } 2953 2954 // If this is checking if all elements of an extended vector are clear or not, 2955 // compare in a narrow type to eliminate the extend: 2956 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2957 Value *X; 2958 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2959 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2960 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2961 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2962 Value *NewCast = Builder.CreateBitCast(X, NewType); 2963 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2964 } 2965 } 2966 2967 // Folding: icmp <pred> iN X, C 2968 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2969 // and C is a splat of a K-bit pattern 2970 // and SC is a constant vector = <C', C', C', ..., C'> 2971 // Into: 2972 // %E = extractelement <M x iK> %vec, i32 C' 2973 // icmp <pred> iK %E, trunc(C) 2974 Value *Vec; 2975 ArrayRef<int> Mask; 2976 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2977 // Check whether every element of Mask is the same constant 2978 if (is_splat(Mask)) { 2979 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2980 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2981 if (C->isSplat(EltTy->getBitWidth())) { 2982 // Fold the icmp based on the value of C 2983 // If C is M copies of an iK sized bit pattern, 2984 // then: 2985 // => %E = extractelement <N x iK> %vec, i32 Elem 2986 // icmp <pred> iK %SplatVal, <pattern> 2987 Value *Elem = Builder.getInt32(Mask[0]); 2988 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2989 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2990 return new ICmpInst(Pred, Extract, NewC); 2991 } 2992 } 2993 } 2994 return nullptr; 2995 } 2996 2997 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2998 /// where X is some kind of instruction. 2999 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3000 const APInt *C; 3001 if (!match(Cmp.getOperand(1), m_APInt(C))) 3002 return nullptr; 3003 3004 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3005 switch (BO->getOpcode()) { 3006 case Instruction::Xor: 3007 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3008 return I; 3009 break; 3010 case Instruction::And: 3011 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3012 return I; 3013 break; 3014 case Instruction::Or: 3015 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3016 return I; 3017 break; 3018 case Instruction::Mul: 3019 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3020 return I; 3021 break; 3022 case Instruction::Shl: 3023 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3024 return I; 3025 break; 3026 case Instruction::LShr: 3027 case Instruction::AShr: 3028 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3029 return I; 3030 break; 3031 case Instruction::SRem: 3032 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3033 return I; 3034 break; 3035 case Instruction::UDiv: 3036 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3037 return I; 3038 LLVM_FALLTHROUGH; 3039 case Instruction::SDiv: 3040 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3041 return I; 3042 break; 3043 case Instruction::Sub: 3044 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3045 return I; 3046 break; 3047 case Instruction::Add: 3048 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3049 return I; 3050 break; 3051 default: 3052 break; 3053 } 3054 // TODO: These folds could be refactored to be part of the above calls. 3055 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3056 return I; 3057 } 3058 3059 // Match against CmpInst LHS being instructions other than binary operators. 3060 3061 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3062 // For now, we only support constant integers while folding the 3063 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3064 // similar to the cases handled by binary ops above. 3065 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3066 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3067 return I; 3068 } 3069 3070 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3071 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3072 return I; 3073 } 3074 3075 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3076 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3077 return I; 3078 3079 return nullptr; 3080 } 3081 3082 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3083 /// icmp eq/ne BO, C. 3084 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3085 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3086 // TODO: Some of these folds could work with arbitrary constants, but this 3087 // function is limited to scalar and vector splat constants. 3088 if (!Cmp.isEquality()) 3089 return nullptr; 3090 3091 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3092 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3093 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3094 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3095 3096 switch (BO->getOpcode()) { 3097 case Instruction::SRem: 3098 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3099 if (C.isZero() && BO->hasOneUse()) { 3100 const APInt *BOC; 3101 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3102 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3103 return new ICmpInst(Pred, NewRem, 3104 Constant::getNullValue(BO->getType())); 3105 } 3106 } 3107 break; 3108 case Instruction::Add: { 3109 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3110 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3111 if (BO->hasOneUse()) 3112 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3113 } else if (C.isZero()) { 3114 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3115 // efficiently invertible, or if the add has just this one use. 3116 if (Value *NegVal = dyn_castNegVal(BOp1)) 3117 return new ICmpInst(Pred, BOp0, NegVal); 3118 if (Value *NegVal = dyn_castNegVal(BOp0)) 3119 return new ICmpInst(Pred, NegVal, BOp1); 3120 if (BO->hasOneUse()) { 3121 Value *Neg = Builder.CreateNeg(BOp1); 3122 Neg->takeName(BO); 3123 return new ICmpInst(Pred, BOp0, Neg); 3124 } 3125 } 3126 break; 3127 } 3128 case Instruction::Xor: 3129 if (BO->hasOneUse()) { 3130 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3131 // For the xor case, we can xor two constants together, eliminating 3132 // the explicit xor. 3133 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3134 } else if (C.isZero()) { 3135 // Replace ((xor A, B) != 0) with (A != B) 3136 return new ICmpInst(Pred, BOp0, BOp1); 3137 } 3138 } 3139 break; 3140 case Instruction::Or: { 3141 const APInt *BOC; 3142 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3143 // Comparing if all bits outside of a constant mask are set? 3144 // Replace (X | C) == -1 with (X & ~C) == ~C. 3145 // This removes the -1 constant. 3146 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3147 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3148 return new ICmpInst(Pred, And, NotBOC); 3149 } 3150 break; 3151 } 3152 case Instruction::And: { 3153 const APInt *BOC; 3154 if (match(BOp1, m_APInt(BOC))) { 3155 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3156 if (C == *BOC && C.isPowerOf2()) 3157 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3158 BO, Constant::getNullValue(RHS->getType())); 3159 } 3160 break; 3161 } 3162 case Instruction::UDiv: 3163 if (C.isZero()) { 3164 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3165 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3166 return new ICmpInst(NewPred, BOp1, BOp0); 3167 } 3168 break; 3169 default: 3170 break; 3171 } 3172 return nullptr; 3173 } 3174 3175 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3176 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3177 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3178 Type *Ty = II->getType(); 3179 unsigned BitWidth = C.getBitWidth(); 3180 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3181 3182 switch (II->getIntrinsicID()) { 3183 case Intrinsic::abs: 3184 // abs(A) == 0 -> A == 0 3185 // abs(A) == INT_MIN -> A == INT_MIN 3186 if (C.isZero() || C.isMinSignedValue()) 3187 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3188 break; 3189 3190 case Intrinsic::bswap: 3191 // bswap(A) == C -> A == bswap(C) 3192 return new ICmpInst(Pred, II->getArgOperand(0), 3193 ConstantInt::get(Ty, C.byteSwap())); 3194 3195 case Intrinsic::ctlz: 3196 case Intrinsic::cttz: { 3197 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3198 if (C == BitWidth) 3199 return new ICmpInst(Pred, II->getArgOperand(0), 3200 ConstantInt::getNullValue(Ty)); 3201 3202 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3203 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3204 // Limit to one use to ensure we don't increase instruction count. 3205 unsigned Num = C.getLimitedValue(BitWidth); 3206 if (Num != BitWidth && II->hasOneUse()) { 3207 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3208 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3209 : APInt::getHighBitsSet(BitWidth, Num + 1); 3210 APInt Mask2 = IsTrailing 3211 ? APInt::getOneBitSet(BitWidth, Num) 3212 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3213 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3214 ConstantInt::get(Ty, Mask2)); 3215 } 3216 break; 3217 } 3218 3219 case Intrinsic::ctpop: { 3220 // popcount(A) == 0 -> A == 0 and likewise for != 3221 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3222 bool IsZero = C.isZero(); 3223 if (IsZero || C == BitWidth) 3224 return new ICmpInst(Pred, II->getArgOperand(0), 3225 IsZero ? Constant::getNullValue(Ty) 3226 : Constant::getAllOnesValue(Ty)); 3227 3228 break; 3229 } 3230 3231 case Intrinsic::fshl: 3232 case Intrinsic::fshr: 3233 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3234 // (rot X, ?) == 0/-1 --> X == 0/-1 3235 // TODO: This transform is safe to re-use undef elts in a vector, but 3236 // the constant value passed in by the caller doesn't allow that. 3237 if (C.isZero() || C.isAllOnes()) 3238 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3239 3240 const APInt *RotAmtC; 3241 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3242 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3243 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3244 return new ICmpInst(Pred, II->getArgOperand(0), 3245 II->getIntrinsicID() == Intrinsic::fshl 3246 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3247 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3248 } 3249 break; 3250 3251 case Intrinsic::uadd_sat: { 3252 // uadd.sat(a, b) == 0 -> (a | b) == 0 3253 if (C.isZero()) { 3254 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3255 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3256 } 3257 break; 3258 } 3259 3260 case Intrinsic::usub_sat: { 3261 // usub.sat(a, b) == 0 -> a <= b 3262 if (C.isZero()) { 3263 ICmpInst::Predicate NewPred = 3264 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3265 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3266 } 3267 break; 3268 } 3269 default: 3270 break; 3271 } 3272 3273 return nullptr; 3274 } 3275 3276 /// Fold an icmp with LLVM intrinsics 3277 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3278 assert(Cmp.isEquality()); 3279 3280 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3281 Value *Op0 = Cmp.getOperand(0); 3282 Value *Op1 = Cmp.getOperand(1); 3283 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3284 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3285 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3286 return nullptr; 3287 3288 switch (IIOp0->getIntrinsicID()) { 3289 case Intrinsic::bswap: 3290 case Intrinsic::bitreverse: 3291 // If both operands are byte-swapped or bit-reversed, just compare the 3292 // original values. 3293 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3294 case Intrinsic::fshl: 3295 case Intrinsic::fshr: 3296 // If both operands are rotated by same amount, just compare the 3297 // original values. 3298 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3299 break; 3300 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3301 break; 3302 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3303 break; 3304 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3305 default: 3306 break; 3307 } 3308 3309 return nullptr; 3310 } 3311 3312 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3313 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3314 IntrinsicInst *II, 3315 const APInt &C) { 3316 if (Cmp.isEquality()) 3317 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3318 3319 Type *Ty = II->getType(); 3320 unsigned BitWidth = C.getBitWidth(); 3321 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3322 switch (II->getIntrinsicID()) { 3323 case Intrinsic::ctpop: { 3324 // (ctpop X > BitWidth - 1) --> X == -1 3325 Value *X = II->getArgOperand(0); 3326 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3327 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3328 ConstantInt::getAllOnesValue(Ty)); 3329 // (ctpop X < BitWidth) --> X != -1 3330 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3331 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3332 ConstantInt::getAllOnesValue(Ty)); 3333 break; 3334 } 3335 case Intrinsic::ctlz: { 3336 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3337 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3338 unsigned Num = C.getLimitedValue(); 3339 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3340 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3341 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3342 } 3343 3344 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3345 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3346 unsigned Num = C.getLimitedValue(); 3347 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3348 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3349 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3350 } 3351 break; 3352 } 3353 case Intrinsic::cttz: { 3354 // Limit to one use to ensure we don't increase instruction count. 3355 if (!II->hasOneUse()) 3356 return nullptr; 3357 3358 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3359 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3360 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3361 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3362 Builder.CreateAnd(II->getArgOperand(0), Mask), 3363 ConstantInt::getNullValue(Ty)); 3364 } 3365 3366 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3367 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3368 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3369 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3370 Builder.CreateAnd(II->getArgOperand(0), Mask), 3371 ConstantInt::getNullValue(Ty)); 3372 } 3373 break; 3374 } 3375 default: 3376 break; 3377 } 3378 3379 return nullptr; 3380 } 3381 3382 /// Handle icmp with constant (but not simple integer constant) RHS. 3383 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3384 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3385 Constant *RHSC = dyn_cast<Constant>(Op1); 3386 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3387 if (!RHSC || !LHSI) 3388 return nullptr; 3389 3390 switch (LHSI->getOpcode()) { 3391 case Instruction::GetElementPtr: 3392 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3393 if (RHSC->isNullValue() && 3394 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3395 return new ICmpInst( 3396 I.getPredicate(), LHSI->getOperand(0), 3397 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3398 break; 3399 case Instruction::PHI: 3400 // Only fold icmp into the PHI if the phi and icmp are in the same 3401 // block. If in the same block, we're encouraging jump threading. If 3402 // not, we are just pessimizing the code by making an i1 phi. 3403 if (LHSI->getParent() == I.getParent()) 3404 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3405 return NV; 3406 break; 3407 case Instruction::Select: { 3408 // If either operand of the select is a constant, we can fold the 3409 // comparison into the select arms, which will cause one to be 3410 // constant folded and the select turned into a bitwise or. 3411 Value *Op1 = nullptr, *Op2 = nullptr; 3412 ConstantInt *CI = nullptr; 3413 3414 auto SimplifyOp = [&](Value *V) { 3415 Value *Op = nullptr; 3416 if (Constant *C = dyn_cast<Constant>(V)) { 3417 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3418 } else if (RHSC->isNullValue()) { 3419 // If null is being compared, check if it can be further simplified. 3420 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3421 } 3422 return Op; 3423 }; 3424 Op1 = SimplifyOp(LHSI->getOperand(1)); 3425 if (Op1) 3426 CI = dyn_cast<ConstantInt>(Op1); 3427 3428 Op2 = SimplifyOp(LHSI->getOperand(2)); 3429 if (Op2) 3430 CI = dyn_cast<ConstantInt>(Op2); 3431 3432 // We only want to perform this transformation if it will not lead to 3433 // additional code. This is true if either both sides of the select 3434 // fold to a constant (in which case the icmp is replaced with a select 3435 // which will usually simplify) or this is the only user of the 3436 // select (in which case we are trading a select+icmp for a simpler 3437 // select+icmp) or all uses of the select can be replaced based on 3438 // dominance information ("Global cases"). 3439 bool Transform = false; 3440 if (Op1 && Op2) 3441 Transform = true; 3442 else if (Op1 || Op2) { 3443 // Local case 3444 if (LHSI->hasOneUse()) 3445 Transform = true; 3446 // Global cases 3447 else if (CI && !CI->isZero()) 3448 // When Op1 is constant try replacing select with second operand. 3449 // Otherwise Op2 is constant and try replacing select with first 3450 // operand. 3451 Transform = 3452 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3453 } 3454 if (Transform) { 3455 if (!Op1) 3456 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3457 I.getName()); 3458 if (!Op2) 3459 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3460 I.getName()); 3461 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3462 } 3463 break; 3464 } 3465 case Instruction::IntToPtr: 3466 // icmp pred inttoptr(X), null -> icmp pred X, 0 3467 if (RHSC->isNullValue() && 3468 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3469 return new ICmpInst( 3470 I.getPredicate(), LHSI->getOperand(0), 3471 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3472 break; 3473 3474 case Instruction::Load: 3475 // Try to optimize things like "A[i] > 4" to index computations. 3476 if (GetElementPtrInst *GEP = 3477 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3478 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3479 if (Instruction *Res = 3480 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3481 return Res; 3482 break; 3483 } 3484 3485 return nullptr; 3486 } 3487 3488 /// Some comparisons can be simplified. 3489 /// In this case, we are looking for comparisons that look like 3490 /// a check for a lossy truncation. 3491 /// Folds: 3492 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3493 /// Where Mask is some pattern that produces all-ones in low bits: 3494 /// (-1 >> y) 3495 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3496 /// ~(-1 << y) 3497 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3498 /// The Mask can be a constant, too. 3499 /// For some predicates, the operands are commutative. 3500 /// For others, x can only be on a specific side. 3501 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3502 InstCombiner::BuilderTy &Builder) { 3503 ICmpInst::Predicate SrcPred; 3504 Value *X, *M, *Y; 3505 auto m_VariableMask = m_CombineOr( 3506 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3507 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3508 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3509 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3510 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3511 if (!match(&I, m_c_ICmp(SrcPred, 3512 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3513 m_Deferred(X)))) 3514 return nullptr; 3515 3516 ICmpInst::Predicate DstPred; 3517 switch (SrcPred) { 3518 case ICmpInst::Predicate::ICMP_EQ: 3519 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3520 DstPred = ICmpInst::Predicate::ICMP_ULE; 3521 break; 3522 case ICmpInst::Predicate::ICMP_NE: 3523 // x & (-1 >> y) != x -> x u> (-1 >> y) 3524 DstPred = ICmpInst::Predicate::ICMP_UGT; 3525 break; 3526 case ICmpInst::Predicate::ICMP_ULT: 3527 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3528 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3529 DstPred = ICmpInst::Predicate::ICMP_UGT; 3530 break; 3531 case ICmpInst::Predicate::ICMP_UGE: 3532 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3533 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3534 DstPred = ICmpInst::Predicate::ICMP_ULE; 3535 break; 3536 case ICmpInst::Predicate::ICMP_SLT: 3537 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3538 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3539 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3540 return nullptr; 3541 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3542 return nullptr; 3543 DstPred = ICmpInst::Predicate::ICMP_SGT; 3544 break; 3545 case ICmpInst::Predicate::ICMP_SGE: 3546 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3547 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3548 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3549 return nullptr; 3550 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3551 return nullptr; 3552 DstPred = ICmpInst::Predicate::ICMP_SLE; 3553 break; 3554 case ICmpInst::Predicate::ICMP_SGT: 3555 case ICmpInst::Predicate::ICMP_SLE: 3556 return nullptr; 3557 case ICmpInst::Predicate::ICMP_UGT: 3558 case ICmpInst::Predicate::ICMP_ULE: 3559 llvm_unreachable("Instsimplify took care of commut. variant"); 3560 break; 3561 default: 3562 llvm_unreachable("All possible folds are handled."); 3563 } 3564 3565 // The mask value may be a vector constant that has undefined elements. But it 3566 // may not be safe to propagate those undefs into the new compare, so replace 3567 // those elements by copying an existing, defined, and safe scalar constant. 3568 Type *OpTy = M->getType(); 3569 auto *VecC = dyn_cast<Constant>(M); 3570 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3571 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3572 Constant *SafeReplacementConstant = nullptr; 3573 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3574 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3575 SafeReplacementConstant = VecC->getAggregateElement(i); 3576 break; 3577 } 3578 } 3579 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3580 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3581 } 3582 3583 return Builder.CreateICmp(DstPred, X, M); 3584 } 3585 3586 /// Some comparisons can be simplified. 3587 /// In this case, we are looking for comparisons that look like 3588 /// a check for a lossy signed truncation. 3589 /// Folds: (MaskedBits is a constant.) 3590 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3591 /// Into: 3592 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3593 /// Where KeptBits = bitwidth(%x) - MaskedBits 3594 static Value * 3595 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3596 InstCombiner::BuilderTy &Builder) { 3597 ICmpInst::Predicate SrcPred; 3598 Value *X; 3599 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3600 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3601 if (!match(&I, m_c_ICmp(SrcPred, 3602 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3603 m_APInt(C1))), 3604 m_Deferred(X)))) 3605 return nullptr; 3606 3607 // Potential handling of non-splats: for each element: 3608 // * if both are undef, replace with constant 0. 3609 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3610 // * if both are not undef, and are different, bailout. 3611 // * else, only one is undef, then pick the non-undef one. 3612 3613 // The shift amount must be equal. 3614 if (*C0 != *C1) 3615 return nullptr; 3616 const APInt &MaskedBits = *C0; 3617 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3618 3619 ICmpInst::Predicate DstPred; 3620 switch (SrcPred) { 3621 case ICmpInst::Predicate::ICMP_EQ: 3622 // ((%x << MaskedBits) a>> MaskedBits) == %x 3623 // => 3624 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3625 DstPred = ICmpInst::Predicate::ICMP_ULT; 3626 break; 3627 case ICmpInst::Predicate::ICMP_NE: 3628 // ((%x << MaskedBits) a>> MaskedBits) != %x 3629 // => 3630 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3631 DstPred = ICmpInst::Predicate::ICMP_UGE; 3632 break; 3633 // FIXME: are more folds possible? 3634 default: 3635 return nullptr; 3636 } 3637 3638 auto *XType = X->getType(); 3639 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3640 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3641 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3642 3643 // KeptBits = bitwidth(%x) - MaskedBits 3644 const APInt KeptBits = BitWidth - MaskedBits; 3645 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3646 // ICmpCst = (1 << KeptBits) 3647 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3648 assert(ICmpCst.isPowerOf2()); 3649 // AddCst = (1 << (KeptBits-1)) 3650 const APInt AddCst = ICmpCst.lshr(1); 3651 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3652 3653 // T0 = add %x, AddCst 3654 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3655 // T1 = T0 DstPred ICmpCst 3656 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3657 3658 return T1; 3659 } 3660 3661 // Given pattern: 3662 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3663 // we should move shifts to the same hand of 'and', i.e. rewrite as 3664 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3665 // We are only interested in opposite logical shifts here. 3666 // One of the shifts can be truncated. 3667 // If we can, we want to end up creating 'lshr' shift. 3668 static Value * 3669 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3670 InstCombiner::BuilderTy &Builder) { 3671 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3672 !I.getOperand(0)->hasOneUse()) 3673 return nullptr; 3674 3675 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3676 3677 // Look for an 'and' of two logical shifts, one of which may be truncated. 3678 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3679 Instruction *XShift, *MaybeTruncation, *YShift; 3680 if (!match( 3681 I.getOperand(0), 3682 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3683 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3684 m_AnyLogicalShift, m_Instruction(YShift))), 3685 m_Instruction(MaybeTruncation))))) 3686 return nullptr; 3687 3688 // We potentially looked past 'trunc', but only when matching YShift, 3689 // therefore YShift must have the widest type. 3690 Instruction *WidestShift = YShift; 3691 // Therefore XShift must have the shallowest type. 3692 // Or they both have identical types if there was no truncation. 3693 Instruction *NarrowestShift = XShift; 3694 3695 Type *WidestTy = WidestShift->getType(); 3696 Type *NarrowestTy = NarrowestShift->getType(); 3697 assert(NarrowestTy == I.getOperand(0)->getType() && 3698 "We did not look past any shifts while matching XShift though."); 3699 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3700 3701 // If YShift is a 'lshr', swap the shifts around. 3702 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3703 std::swap(XShift, YShift); 3704 3705 // The shifts must be in opposite directions. 3706 auto XShiftOpcode = XShift->getOpcode(); 3707 if (XShiftOpcode == YShift->getOpcode()) 3708 return nullptr; // Do not care about same-direction shifts here. 3709 3710 Value *X, *XShAmt, *Y, *YShAmt; 3711 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3712 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3713 3714 // If one of the values being shifted is a constant, then we will end with 3715 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3716 // however, we will need to ensure that we won't increase instruction count. 3717 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3718 // At least one of the hands of the 'and' should be one-use shift. 3719 if (!match(I.getOperand(0), 3720 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3721 return nullptr; 3722 if (HadTrunc) { 3723 // Due to the 'trunc', we will need to widen X. For that either the old 3724 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3725 if (!MaybeTruncation->hasOneUse() && 3726 !NarrowestShift->getOperand(1)->hasOneUse()) 3727 return nullptr; 3728 } 3729 } 3730 3731 // We have two shift amounts from two different shifts. The types of those 3732 // shift amounts may not match. If that's the case let's bailout now. 3733 if (XShAmt->getType() != YShAmt->getType()) 3734 return nullptr; 3735 3736 // As input, we have the following pattern: 3737 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3738 // We want to rewrite that as: 3739 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3740 // While we know that originally (Q+K) would not overflow 3741 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3742 // shift amounts. so it may now overflow in smaller bitwidth. 3743 // To ensure that does not happen, we need to ensure that the total maximal 3744 // shift amount is still representable in that smaller bit width. 3745 unsigned MaximalPossibleTotalShiftAmount = 3746 (WidestTy->getScalarSizeInBits() - 1) + 3747 (NarrowestTy->getScalarSizeInBits() - 1); 3748 APInt MaximalRepresentableShiftAmount = 3749 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3750 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3751 return nullptr; 3752 3753 // Can we fold (XShAmt+YShAmt) ? 3754 auto *NewShAmt = dyn_cast_or_null<Constant>( 3755 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3756 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3757 if (!NewShAmt) 3758 return nullptr; 3759 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3760 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3761 3762 // Is the new shift amount smaller than the bit width? 3763 // FIXME: could also rely on ConstantRange. 3764 if (!match(NewShAmt, 3765 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3766 APInt(WidestBitWidth, WidestBitWidth)))) 3767 return nullptr; 3768 3769 // An extra legality check is needed if we had trunc-of-lshr. 3770 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3771 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3772 WidestShift]() { 3773 // It isn't obvious whether it's worth it to analyze non-constants here. 3774 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3775 // If *any* of these preconditions matches we can perform the fold. 3776 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3777 ? NewShAmt->getSplatValue() 3778 : NewShAmt; 3779 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3780 if (NewShAmtSplat && 3781 (NewShAmtSplat->isNullValue() || 3782 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3783 return true; 3784 // We consider *min* leading zeros so a single outlier 3785 // blocks the transform as opposed to allowing it. 3786 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3787 KnownBits Known = computeKnownBits(C, SQ.DL); 3788 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3789 // If the value being shifted has at most lowest bit set we can fold. 3790 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3791 if (MaxActiveBits <= 1) 3792 return true; 3793 // Precondition: NewShAmt u<= countLeadingZeros(C) 3794 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3795 return true; 3796 } 3797 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3798 KnownBits Known = computeKnownBits(C, SQ.DL); 3799 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3800 // If the value being shifted has at most lowest bit set we can fold. 3801 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3802 if (MaxActiveBits <= 1) 3803 return true; 3804 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3805 if (NewShAmtSplat) { 3806 APInt AdjNewShAmt = 3807 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3808 if (AdjNewShAmt.ule(MinLeadZero)) 3809 return true; 3810 } 3811 } 3812 return false; // Can't tell if it's ok. 3813 }; 3814 if (!CanFold()) 3815 return nullptr; 3816 } 3817 3818 // All good, we can do this fold. 3819 X = Builder.CreateZExt(X, WidestTy); 3820 Y = Builder.CreateZExt(Y, WidestTy); 3821 // The shift is the same that was for X. 3822 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3823 ? Builder.CreateLShr(X, NewShAmt) 3824 : Builder.CreateShl(X, NewShAmt); 3825 Value *T1 = Builder.CreateAnd(T0, Y); 3826 return Builder.CreateICmp(I.getPredicate(), T1, 3827 Constant::getNullValue(WidestTy)); 3828 } 3829 3830 /// Fold 3831 /// (-1 u/ x) u< y 3832 /// ((x * y) ?/ x) != y 3833 /// to 3834 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3835 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3836 /// will mean that we are looking for the opposite answer. 3837 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3838 ICmpInst::Predicate Pred; 3839 Value *X, *Y; 3840 Instruction *Mul; 3841 Instruction *Div; 3842 bool NeedNegation; 3843 // Look for: (-1 u/ x) u</u>= y 3844 if (!I.isEquality() && 3845 match(&I, m_c_ICmp(Pred, 3846 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3847 m_Instruction(Div)), 3848 m_Value(Y)))) { 3849 Mul = nullptr; 3850 3851 // Are we checking that overflow does not happen, or does happen? 3852 switch (Pred) { 3853 case ICmpInst::Predicate::ICMP_ULT: 3854 NeedNegation = false; 3855 break; // OK 3856 case ICmpInst::Predicate::ICMP_UGE: 3857 NeedNegation = true; 3858 break; // OK 3859 default: 3860 return nullptr; // Wrong predicate. 3861 } 3862 } else // Look for: ((x * y) / x) !=/== y 3863 if (I.isEquality() && 3864 match(&I, 3865 m_c_ICmp(Pred, m_Value(Y), 3866 m_CombineAnd( 3867 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3868 m_Value(X)), 3869 m_Instruction(Mul)), 3870 m_Deferred(X))), 3871 m_Instruction(Div))))) { 3872 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3873 } else 3874 return nullptr; 3875 3876 BuilderTy::InsertPointGuard Guard(Builder); 3877 // If the pattern included (x * y), we'll want to insert new instructions 3878 // right before that original multiplication so that we can replace it. 3879 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3880 if (MulHadOtherUses) 3881 Builder.SetInsertPoint(Mul); 3882 3883 Function *F = Intrinsic::getDeclaration(I.getModule(), 3884 Div->getOpcode() == Instruction::UDiv 3885 ? Intrinsic::umul_with_overflow 3886 : Intrinsic::smul_with_overflow, 3887 X->getType()); 3888 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3889 3890 // If the multiplication was used elsewhere, to ensure that we don't leave 3891 // "duplicate" instructions, replace uses of that original multiplication 3892 // with the multiplication result from the with.overflow intrinsic. 3893 if (MulHadOtherUses) 3894 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3895 3896 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3897 if (NeedNegation) // This technically increases instruction count. 3898 Res = Builder.CreateNot(Res, "mul.not.ov"); 3899 3900 // If we replaced the mul, erase it. Do this after all uses of Builder, 3901 // as the mul is used as insertion point. 3902 if (MulHadOtherUses) 3903 eraseInstFromFunction(*Mul); 3904 3905 return Res; 3906 } 3907 3908 static Instruction *foldICmpXNegX(ICmpInst &I) { 3909 CmpInst::Predicate Pred; 3910 Value *X; 3911 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3912 return nullptr; 3913 3914 if (ICmpInst::isSigned(Pred)) 3915 Pred = ICmpInst::getSwappedPredicate(Pred); 3916 else if (ICmpInst::isUnsigned(Pred)) 3917 Pred = ICmpInst::getSignedPredicate(Pred); 3918 // else for equality-comparisons just keep the predicate. 3919 3920 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3921 Constant::getNullValue(X->getType()), I.getName()); 3922 } 3923 3924 /// Try to fold icmp (binop), X or icmp X, (binop). 3925 /// TODO: A large part of this logic is duplicated in InstSimplify's 3926 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3927 /// duplication. 3928 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3929 const SimplifyQuery &SQ) { 3930 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3931 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3932 3933 // Special logic for binary operators. 3934 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3935 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3936 if (!BO0 && !BO1) 3937 return nullptr; 3938 3939 if (Instruction *NewICmp = foldICmpXNegX(I)) 3940 return NewICmp; 3941 3942 const CmpInst::Predicate Pred = I.getPredicate(); 3943 Value *X; 3944 3945 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3946 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3947 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3948 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3949 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3950 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3951 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3952 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3953 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3954 3955 { 3956 // Similar to above: an unsigned overflow comparison may use offset + mask: 3957 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3958 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3959 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3960 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3961 BinaryOperator *BO; 3962 const APInt *C; 3963 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3964 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3965 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3966 CmpInst::Predicate NewPred = 3967 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3968 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3969 return new ICmpInst(NewPred, Op1, Zero); 3970 } 3971 3972 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 3973 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3974 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 3975 CmpInst::Predicate NewPred = 3976 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3977 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3978 return new ICmpInst(NewPred, Op0, Zero); 3979 } 3980 } 3981 3982 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3983 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3984 NoOp0WrapProblem = 3985 ICmpInst::isEquality(Pred) || 3986 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3987 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3988 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3989 NoOp1WrapProblem = 3990 ICmpInst::isEquality(Pred) || 3991 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3992 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3993 3994 // Analyze the case when either Op0 or Op1 is an add instruction. 3995 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3996 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3997 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3998 A = BO0->getOperand(0); 3999 B = BO0->getOperand(1); 4000 } 4001 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4002 C = BO1->getOperand(0); 4003 D = BO1->getOperand(1); 4004 } 4005 4006 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4007 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4008 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4009 return new ICmpInst(Pred, A == Op1 ? B : A, 4010 Constant::getNullValue(Op1->getType())); 4011 4012 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4013 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4014 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4015 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4016 C == Op0 ? D : C); 4017 4018 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4019 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4020 NoOp1WrapProblem) { 4021 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4022 Value *Y, *Z; 4023 if (A == C) { 4024 // C + B == C + D -> B == D 4025 Y = B; 4026 Z = D; 4027 } else if (A == D) { 4028 // D + B == C + D -> B == C 4029 Y = B; 4030 Z = C; 4031 } else if (B == C) { 4032 // A + C == C + D -> A == D 4033 Y = A; 4034 Z = D; 4035 } else { 4036 assert(B == D); 4037 // A + D == C + D -> A == C 4038 Y = A; 4039 Z = C; 4040 } 4041 return new ICmpInst(Pred, Y, Z); 4042 } 4043 4044 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4045 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4046 match(B, m_AllOnes())) 4047 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4048 4049 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4050 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4051 match(B, m_AllOnes())) 4052 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4053 4054 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4055 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4056 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4057 4058 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4059 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4060 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4061 4062 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4063 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4064 match(D, m_AllOnes())) 4065 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4066 4067 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4068 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4069 match(D, m_AllOnes())) 4070 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4071 4072 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4073 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4074 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4075 4076 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4077 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4078 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4079 4080 // TODO: The subtraction-related identities shown below also hold, but 4081 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4082 // wouldn't happen even if they were implemented. 4083 // 4084 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4085 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4086 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4087 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4088 4089 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4090 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4091 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4092 4093 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4094 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4095 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4096 4097 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4098 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4099 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4100 4101 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4102 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4103 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4104 4105 // if C1 has greater magnitude than C2: 4106 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4107 // s.t. C3 = C1 - C2 4108 // 4109 // if C2 has greater magnitude than C1: 4110 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4111 // s.t. C3 = C2 - C1 4112 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4113 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4114 const APInt *AP1, *AP2; 4115 // TODO: Support non-uniform vectors. 4116 // TODO: Allow undef passthrough if B AND D's element is undef. 4117 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4118 AP1->isNegative() == AP2->isNegative()) { 4119 APInt AP1Abs = AP1->abs(); 4120 APInt AP2Abs = AP2->abs(); 4121 if (AP1Abs.uge(AP2Abs)) { 4122 APInt Diff = *AP1 - *AP2; 4123 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4124 bool HasNSW = BO0->hasNoSignedWrap(); 4125 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4126 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4127 return new ICmpInst(Pred, NewAdd, C); 4128 } else { 4129 APInt Diff = *AP2 - *AP1; 4130 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4131 bool HasNSW = BO1->hasNoSignedWrap(); 4132 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4133 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4134 return new ICmpInst(Pred, A, NewAdd); 4135 } 4136 } 4137 Constant *Cst1, *Cst2; 4138 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4139 ICmpInst::isEquality(Pred)) { 4140 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4141 Value *NewAdd = Builder.CreateAdd(C, Diff); 4142 return new ICmpInst(Pred, A, NewAdd); 4143 } 4144 } 4145 4146 // Analyze the case when either Op0 or Op1 is a sub instruction. 4147 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4148 A = nullptr; 4149 B = nullptr; 4150 C = nullptr; 4151 D = nullptr; 4152 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4153 A = BO0->getOperand(0); 4154 B = BO0->getOperand(1); 4155 } 4156 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4157 C = BO1->getOperand(0); 4158 D = BO1->getOperand(1); 4159 } 4160 4161 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4162 if (A == Op1 && NoOp0WrapProblem) 4163 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4164 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4165 if (C == Op0 && NoOp1WrapProblem) 4166 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4167 4168 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4169 // (A - B) u>/u<= A --> B u>/u<= A 4170 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4171 return new ICmpInst(Pred, B, A); 4172 // C u</u>= (C - D) --> C u</u>= D 4173 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4174 return new ICmpInst(Pred, C, D); 4175 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4176 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4177 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4178 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4179 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4180 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4181 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4182 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4183 4184 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4185 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4186 return new ICmpInst(Pred, A, C); 4187 4188 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4189 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4190 return new ICmpInst(Pred, D, B); 4191 4192 // icmp (0-X) < cst --> x > -cst 4193 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4194 Value *X; 4195 if (match(BO0, m_Neg(m_Value(X)))) 4196 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4197 if (RHSC->isNotMinSignedValue()) 4198 return new ICmpInst(I.getSwappedPredicate(), X, 4199 ConstantExpr::getNeg(RHSC)); 4200 } 4201 4202 { 4203 // Try to remove shared constant multiplier from equality comparison: 4204 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4205 Value *X, *Y; 4206 const APInt *C; 4207 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4208 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4209 if (!C->countTrailingZeros() || 4210 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4211 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4212 return new ICmpInst(Pred, X, Y); 4213 } 4214 4215 BinaryOperator *SRem = nullptr; 4216 // icmp (srem X, Y), Y 4217 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4218 SRem = BO0; 4219 // icmp Y, (srem X, Y) 4220 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4221 Op0 == BO1->getOperand(1)) 4222 SRem = BO1; 4223 if (SRem) { 4224 // We don't check hasOneUse to avoid increasing register pressure because 4225 // the value we use is the same value this instruction was already using. 4226 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4227 default: 4228 break; 4229 case ICmpInst::ICMP_EQ: 4230 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4231 case ICmpInst::ICMP_NE: 4232 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4233 case ICmpInst::ICMP_SGT: 4234 case ICmpInst::ICMP_SGE: 4235 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4236 Constant::getAllOnesValue(SRem->getType())); 4237 case ICmpInst::ICMP_SLT: 4238 case ICmpInst::ICMP_SLE: 4239 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4240 Constant::getNullValue(SRem->getType())); 4241 } 4242 } 4243 4244 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4245 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4246 switch (BO0->getOpcode()) { 4247 default: 4248 break; 4249 case Instruction::Add: 4250 case Instruction::Sub: 4251 case Instruction::Xor: { 4252 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4253 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4254 4255 const APInt *C; 4256 if (match(BO0->getOperand(1), m_APInt(C))) { 4257 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4258 if (C->isSignMask()) { 4259 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4260 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4261 } 4262 4263 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4264 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4265 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4266 NewPred = I.getSwappedPredicate(NewPred); 4267 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4268 } 4269 } 4270 break; 4271 } 4272 case Instruction::Mul: { 4273 if (!I.isEquality()) 4274 break; 4275 4276 const APInt *C; 4277 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4278 !C->isOne()) { 4279 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4280 // Mask = -1 >> count-trailing-zeros(C). 4281 if (unsigned TZs = C->countTrailingZeros()) { 4282 Constant *Mask = ConstantInt::get( 4283 BO0->getType(), 4284 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4285 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4286 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4287 return new ICmpInst(Pred, And1, And2); 4288 } 4289 } 4290 break; 4291 } 4292 case Instruction::UDiv: 4293 case Instruction::LShr: 4294 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4295 break; 4296 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4297 4298 case Instruction::SDiv: 4299 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4300 break; 4301 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4302 4303 case Instruction::AShr: 4304 if (!BO0->isExact() || !BO1->isExact()) 4305 break; 4306 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4307 4308 case Instruction::Shl: { 4309 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4310 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4311 if (!NUW && !NSW) 4312 break; 4313 if (!NSW && I.isSigned()) 4314 break; 4315 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4316 } 4317 } 4318 } 4319 4320 if (BO0) { 4321 // Transform A & (L - 1) `ult` L --> L != 0 4322 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4323 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4324 4325 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4326 auto *Zero = Constant::getNullValue(BO0->getType()); 4327 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4328 } 4329 } 4330 4331 if (Value *V = foldMultiplicationOverflowCheck(I)) 4332 return replaceInstUsesWith(I, V); 4333 4334 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4335 return replaceInstUsesWith(I, V); 4336 4337 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4338 return replaceInstUsesWith(I, V); 4339 4340 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4341 return replaceInstUsesWith(I, V); 4342 4343 return nullptr; 4344 } 4345 4346 /// Fold icmp Pred min|max(X, Y), X. 4347 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4348 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4349 Value *Op0 = Cmp.getOperand(0); 4350 Value *X = Cmp.getOperand(1); 4351 4352 // Canonicalize minimum or maximum operand to LHS of the icmp. 4353 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4354 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4355 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4356 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4357 std::swap(Op0, X); 4358 Pred = Cmp.getSwappedPredicate(); 4359 } 4360 4361 Value *Y; 4362 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4363 // smin(X, Y) == X --> X s<= Y 4364 // smin(X, Y) s>= X --> X s<= Y 4365 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4366 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4367 4368 // smin(X, Y) != X --> X s> Y 4369 // smin(X, Y) s< X --> X s> Y 4370 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4371 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4372 4373 // These cases should be handled in InstSimplify: 4374 // smin(X, Y) s<= X --> true 4375 // smin(X, Y) s> X --> false 4376 return nullptr; 4377 } 4378 4379 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4380 // smax(X, Y) == X --> X s>= Y 4381 // smax(X, Y) s<= X --> X s>= Y 4382 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4383 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4384 4385 // smax(X, Y) != X --> X s< Y 4386 // smax(X, Y) s> X --> X s< Y 4387 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4388 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4389 4390 // These cases should be handled in InstSimplify: 4391 // smax(X, Y) s>= X --> true 4392 // smax(X, Y) s< X --> false 4393 return nullptr; 4394 } 4395 4396 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4397 // umin(X, Y) == X --> X u<= Y 4398 // umin(X, Y) u>= X --> X u<= Y 4399 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4400 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4401 4402 // umin(X, Y) != X --> X u> Y 4403 // umin(X, Y) u< X --> X u> Y 4404 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4405 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4406 4407 // These cases should be handled in InstSimplify: 4408 // umin(X, Y) u<= X --> true 4409 // umin(X, Y) u> X --> false 4410 return nullptr; 4411 } 4412 4413 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4414 // umax(X, Y) == X --> X u>= Y 4415 // umax(X, Y) u<= X --> X u>= Y 4416 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4417 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4418 4419 // umax(X, Y) != X --> X u< Y 4420 // umax(X, Y) u> X --> X u< Y 4421 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4422 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4423 4424 // These cases should be handled in InstSimplify: 4425 // umax(X, Y) u>= X --> true 4426 // umax(X, Y) u< X --> false 4427 return nullptr; 4428 } 4429 4430 return nullptr; 4431 } 4432 4433 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4434 if (!I.isEquality()) 4435 return nullptr; 4436 4437 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4438 const CmpInst::Predicate Pred = I.getPredicate(); 4439 Value *A, *B, *C, *D; 4440 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4441 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4442 Value *OtherVal = A == Op1 ? B : A; 4443 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4444 } 4445 4446 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4447 // A^c1 == C^c2 --> A == C^(c1^c2) 4448 ConstantInt *C1, *C2; 4449 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4450 Op1->hasOneUse()) { 4451 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4452 Value *Xor = Builder.CreateXor(C, NC); 4453 return new ICmpInst(Pred, A, Xor); 4454 } 4455 4456 // A^B == A^D -> B == D 4457 if (A == C) 4458 return new ICmpInst(Pred, B, D); 4459 if (A == D) 4460 return new ICmpInst(Pred, B, C); 4461 if (B == C) 4462 return new ICmpInst(Pred, A, D); 4463 if (B == D) 4464 return new ICmpInst(Pred, A, C); 4465 } 4466 } 4467 4468 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4469 // A == (A^B) -> B == 0 4470 Value *OtherVal = A == Op0 ? B : A; 4471 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4472 } 4473 4474 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4475 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4476 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4477 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4478 4479 if (A == C) { 4480 X = B; 4481 Y = D; 4482 Z = A; 4483 } else if (A == D) { 4484 X = B; 4485 Y = C; 4486 Z = A; 4487 } else if (B == C) { 4488 X = A; 4489 Y = D; 4490 Z = B; 4491 } else if (B == D) { 4492 X = A; 4493 Y = C; 4494 Z = B; 4495 } 4496 4497 if (X) { // Build (X^Y) & Z 4498 Op1 = Builder.CreateXor(X, Y); 4499 Op1 = Builder.CreateAnd(Op1, Z); 4500 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4501 } 4502 } 4503 4504 { 4505 // Similar to above, but specialized for constant because invert is needed: 4506 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4507 Value *X, *Y; 4508 Constant *C; 4509 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4510 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4511 Value *Xor = Builder.CreateXor(X, Y); 4512 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4513 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4514 } 4515 } 4516 4517 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4518 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4519 ConstantInt *Cst1; 4520 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4521 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4522 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4523 match(Op1, m_ZExt(m_Value(A))))) { 4524 APInt Pow2 = Cst1->getValue() + 1; 4525 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4526 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4527 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4528 } 4529 4530 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4531 // For lshr and ashr pairs. 4532 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4533 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4534 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4535 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4536 unsigned TypeBits = Cst1->getBitWidth(); 4537 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4538 if (ShAmt < TypeBits && ShAmt != 0) { 4539 ICmpInst::Predicate NewPred = 4540 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4541 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4542 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4543 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4544 } 4545 } 4546 4547 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4548 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4549 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4550 unsigned TypeBits = Cst1->getBitWidth(); 4551 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4552 if (ShAmt < TypeBits && ShAmt != 0) { 4553 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4554 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4555 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4556 I.getName() + ".mask"); 4557 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4558 } 4559 } 4560 4561 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4562 // "icmp (and X, mask), cst" 4563 uint64_t ShAmt = 0; 4564 if (Op0->hasOneUse() && 4565 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4566 match(Op1, m_ConstantInt(Cst1)) && 4567 // Only do this when A has multiple uses. This is most important to do 4568 // when it exposes other optimizations. 4569 !A->hasOneUse()) { 4570 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4571 4572 if (ShAmt < ASize) { 4573 APInt MaskV = 4574 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4575 MaskV <<= ShAmt; 4576 4577 APInt CmpV = Cst1->getValue().zext(ASize); 4578 CmpV <<= ShAmt; 4579 4580 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4581 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4582 } 4583 } 4584 4585 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4586 return ICmp; 4587 4588 // Canonicalize checking for a power-of-2-or-zero value: 4589 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4590 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4591 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4592 m_Deferred(A)))) || 4593 !match(Op1, m_ZeroInt())) 4594 A = nullptr; 4595 4596 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4597 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4598 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4599 A = Op1; 4600 else if (match(Op1, 4601 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4602 A = Op0; 4603 4604 if (A) { 4605 Type *Ty = A->getType(); 4606 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4607 return Pred == ICmpInst::ICMP_EQ 4608 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4609 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4610 } 4611 4612 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4613 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4614 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4615 // of instcombine. 4616 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4617 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4618 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4619 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4620 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4621 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4622 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4623 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4624 : ICmpInst::ICMP_UGE, 4625 Add, ConstantInt::get(A->getType(), C.shl(1))); 4626 } 4627 4628 return nullptr; 4629 } 4630 4631 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4632 InstCombiner::BuilderTy &Builder) { 4633 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4634 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4635 4636 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4637 // The trunc masks high bits while the compare may effectively mask low bits. 4638 Value *X; 4639 const APInt *C; 4640 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4641 return nullptr; 4642 4643 // This matches patterns corresponding to tests of the signbit as well as: 4644 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4645 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4646 APInt Mask; 4647 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4648 Value *And = Builder.CreateAnd(X, Mask); 4649 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4650 return new ICmpInst(Pred, And, Zero); 4651 } 4652 4653 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4654 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4655 // If C is a negative power-of-2 (high-bit mask): 4656 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4657 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4658 Value *And = Builder.CreateAnd(X, MaskC); 4659 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4660 } 4661 4662 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4663 // If C is not-of-power-of-2 (one clear bit): 4664 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4665 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4666 Value *And = Builder.CreateAnd(X, MaskC); 4667 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4668 } 4669 4670 return nullptr; 4671 } 4672 4673 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4674 InstCombiner::BuilderTy &Builder) { 4675 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4676 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4677 Value *X; 4678 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4679 return nullptr; 4680 4681 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4682 bool IsSignedCmp = ICmp.isSigned(); 4683 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4684 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4685 // and the other is a zext), then we can't handle this. 4686 // TODO: This is too strict. We can handle some predicates (equality?). 4687 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4688 return nullptr; 4689 4690 // Not an extension from the same type? 4691 Value *Y = CastOp1->getOperand(0); 4692 Type *XTy = X->getType(), *YTy = Y->getType(); 4693 if (XTy != YTy) { 4694 // One of the casts must have one use because we are creating a new cast. 4695 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4696 return nullptr; 4697 // Extend the narrower operand to the type of the wider operand. 4698 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4699 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4700 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4701 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4702 else 4703 return nullptr; 4704 } 4705 4706 // (zext X) == (zext Y) --> X == Y 4707 // (sext X) == (sext Y) --> X == Y 4708 if (ICmp.isEquality()) 4709 return new ICmpInst(ICmp.getPredicate(), X, Y); 4710 4711 // A signed comparison of sign extended values simplifies into a 4712 // signed comparison. 4713 if (IsSignedCmp && IsSignedExt) 4714 return new ICmpInst(ICmp.getPredicate(), X, Y); 4715 4716 // The other three cases all fold into an unsigned comparison. 4717 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4718 } 4719 4720 // Below here, we are only folding a compare with constant. 4721 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4722 if (!C) 4723 return nullptr; 4724 4725 // Compute the constant that would happen if we truncated to SrcTy then 4726 // re-extended to DestTy. 4727 Type *SrcTy = CastOp0->getSrcTy(); 4728 Type *DestTy = CastOp0->getDestTy(); 4729 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4730 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4731 4732 // If the re-extended constant didn't change... 4733 if (Res2 == C) { 4734 if (ICmp.isEquality()) 4735 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4736 4737 // A signed comparison of sign extended values simplifies into a 4738 // signed comparison. 4739 if (IsSignedExt && IsSignedCmp) 4740 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4741 4742 // The other three cases all fold into an unsigned comparison. 4743 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4744 } 4745 4746 // The re-extended constant changed, partly changed (in the case of a vector), 4747 // or could not be determined to be equal (in the case of a constant 4748 // expression), so the constant cannot be represented in the shorter type. 4749 // All the cases that fold to true or false will have already been handled 4750 // by SimplifyICmpInst, so only deal with the tricky case. 4751 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4752 return nullptr; 4753 4754 // Is source op positive? 4755 // icmp ult (sext X), C --> icmp sgt X, -1 4756 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4757 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4758 4759 // Is source op negative? 4760 // icmp ugt (sext X), C --> icmp slt X, 0 4761 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4762 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4763 } 4764 4765 /// Handle icmp (cast x), (cast or constant). 4766 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4767 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4768 // icmp compares only pointer's value. 4769 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4770 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4771 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4772 if (SimplifiedOp0 || SimplifiedOp1) 4773 return new ICmpInst(ICmp.getPredicate(), 4774 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4775 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4776 4777 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4778 if (!CastOp0) 4779 return nullptr; 4780 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4781 return nullptr; 4782 4783 Value *Op0Src = CastOp0->getOperand(0); 4784 Type *SrcTy = CastOp0->getSrcTy(); 4785 Type *DestTy = CastOp0->getDestTy(); 4786 4787 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4788 // integer type is the same size as the pointer type. 4789 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4790 if (isa<VectorType>(SrcTy)) { 4791 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4792 DestTy = cast<VectorType>(DestTy)->getElementType(); 4793 } 4794 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4795 }; 4796 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4797 CompatibleSizes(SrcTy, DestTy)) { 4798 Value *NewOp1 = nullptr; 4799 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4800 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4801 if (PtrSrc->getType()->getPointerAddressSpace() == 4802 Op0Src->getType()->getPointerAddressSpace()) { 4803 NewOp1 = PtrToIntOp1->getOperand(0); 4804 // If the pointer types don't match, insert a bitcast. 4805 if (Op0Src->getType() != NewOp1->getType()) 4806 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4807 } 4808 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4809 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4810 } 4811 4812 if (NewOp1) 4813 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4814 } 4815 4816 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4817 return R; 4818 4819 return foldICmpWithZextOrSext(ICmp, Builder); 4820 } 4821 4822 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4823 switch (BinaryOp) { 4824 default: 4825 llvm_unreachable("Unsupported binary op"); 4826 case Instruction::Add: 4827 case Instruction::Sub: 4828 return match(RHS, m_Zero()); 4829 case Instruction::Mul: 4830 return match(RHS, m_One()); 4831 } 4832 } 4833 4834 OverflowResult 4835 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4836 bool IsSigned, Value *LHS, Value *RHS, 4837 Instruction *CxtI) const { 4838 switch (BinaryOp) { 4839 default: 4840 llvm_unreachable("Unsupported binary op"); 4841 case Instruction::Add: 4842 if (IsSigned) 4843 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4844 else 4845 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4846 case Instruction::Sub: 4847 if (IsSigned) 4848 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4849 else 4850 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4851 case Instruction::Mul: 4852 if (IsSigned) 4853 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4854 else 4855 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4856 } 4857 } 4858 4859 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4860 bool IsSigned, Value *LHS, 4861 Value *RHS, Instruction &OrigI, 4862 Value *&Result, 4863 Constant *&Overflow) { 4864 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4865 std::swap(LHS, RHS); 4866 4867 // If the overflow check was an add followed by a compare, the insertion point 4868 // may be pointing to the compare. We want to insert the new instructions 4869 // before the add in case there are uses of the add between the add and the 4870 // compare. 4871 Builder.SetInsertPoint(&OrigI); 4872 4873 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4874 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4875 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4876 4877 if (isNeutralValue(BinaryOp, RHS)) { 4878 Result = LHS; 4879 Overflow = ConstantInt::getFalse(OverflowTy); 4880 return true; 4881 } 4882 4883 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4884 case OverflowResult::MayOverflow: 4885 return false; 4886 case OverflowResult::AlwaysOverflowsLow: 4887 case OverflowResult::AlwaysOverflowsHigh: 4888 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4889 Result->takeName(&OrigI); 4890 Overflow = ConstantInt::getTrue(OverflowTy); 4891 return true; 4892 case OverflowResult::NeverOverflows: 4893 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4894 Result->takeName(&OrigI); 4895 Overflow = ConstantInt::getFalse(OverflowTy); 4896 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4897 if (IsSigned) 4898 Inst->setHasNoSignedWrap(); 4899 else 4900 Inst->setHasNoUnsignedWrap(); 4901 } 4902 return true; 4903 } 4904 4905 llvm_unreachable("Unexpected overflow result"); 4906 } 4907 4908 /// Recognize and process idiom involving test for multiplication 4909 /// overflow. 4910 /// 4911 /// The caller has matched a pattern of the form: 4912 /// I = cmp u (mul(zext A, zext B), V 4913 /// The function checks if this is a test for overflow and if so replaces 4914 /// multiplication with call to 'mul.with.overflow' intrinsic. 4915 /// 4916 /// \param I Compare instruction. 4917 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4918 /// the compare instruction. Must be of integer type. 4919 /// \param OtherVal The other argument of compare instruction. 4920 /// \returns Instruction which must replace the compare instruction, NULL if no 4921 /// replacement required. 4922 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4923 Value *OtherVal, 4924 InstCombinerImpl &IC) { 4925 // Don't bother doing this transformation for pointers, don't do it for 4926 // vectors. 4927 if (!isa<IntegerType>(MulVal->getType())) 4928 return nullptr; 4929 4930 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4931 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4932 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4933 if (!MulInstr) 4934 return nullptr; 4935 assert(MulInstr->getOpcode() == Instruction::Mul); 4936 4937 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4938 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4939 assert(LHS->getOpcode() == Instruction::ZExt); 4940 assert(RHS->getOpcode() == Instruction::ZExt); 4941 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4942 4943 // Calculate type and width of the result produced by mul.with.overflow. 4944 Type *TyA = A->getType(), *TyB = B->getType(); 4945 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4946 WidthB = TyB->getPrimitiveSizeInBits(); 4947 unsigned MulWidth; 4948 Type *MulType; 4949 if (WidthB > WidthA) { 4950 MulWidth = WidthB; 4951 MulType = TyB; 4952 } else { 4953 MulWidth = WidthA; 4954 MulType = TyA; 4955 } 4956 4957 // In order to replace the original mul with a narrower mul.with.overflow, 4958 // all uses must ignore upper bits of the product. The number of used low 4959 // bits must be not greater than the width of mul.with.overflow. 4960 if (MulVal->hasNUsesOrMore(2)) 4961 for (User *U : MulVal->users()) { 4962 if (U == &I) 4963 continue; 4964 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4965 // Check if truncation ignores bits above MulWidth. 4966 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4967 if (TruncWidth > MulWidth) 4968 return nullptr; 4969 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4970 // Check if AND ignores bits above MulWidth. 4971 if (BO->getOpcode() != Instruction::And) 4972 return nullptr; 4973 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4974 const APInt &CVal = CI->getValue(); 4975 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4976 return nullptr; 4977 } else { 4978 // In this case we could have the operand of the binary operation 4979 // being defined in another block, and performing the replacement 4980 // could break the dominance relation. 4981 return nullptr; 4982 } 4983 } else { 4984 // Other uses prohibit this transformation. 4985 return nullptr; 4986 } 4987 } 4988 4989 // Recognize patterns 4990 switch (I.getPredicate()) { 4991 case ICmpInst::ICMP_EQ: 4992 case ICmpInst::ICMP_NE: 4993 // Recognize pattern: 4994 // mulval = mul(zext A, zext B) 4995 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4996 ConstantInt *CI; 4997 Value *ValToMask; 4998 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4999 if (ValToMask != MulVal) 5000 return nullptr; 5001 const APInt &CVal = CI->getValue() + 1; 5002 if (CVal.isPowerOf2()) { 5003 unsigned MaskWidth = CVal.logBase2(); 5004 if (MaskWidth == MulWidth) 5005 break; // Recognized 5006 } 5007 } 5008 return nullptr; 5009 5010 case ICmpInst::ICMP_UGT: 5011 // Recognize pattern: 5012 // mulval = mul(zext A, zext B) 5013 // cmp ugt mulval, max 5014 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5015 APInt MaxVal = APInt::getMaxValue(MulWidth); 5016 MaxVal = MaxVal.zext(CI->getBitWidth()); 5017 if (MaxVal.eq(CI->getValue())) 5018 break; // Recognized 5019 } 5020 return nullptr; 5021 5022 case ICmpInst::ICMP_UGE: 5023 // Recognize pattern: 5024 // mulval = mul(zext A, zext B) 5025 // cmp uge mulval, max+1 5026 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5027 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5028 if (MaxVal.eq(CI->getValue())) 5029 break; // Recognized 5030 } 5031 return nullptr; 5032 5033 case ICmpInst::ICMP_ULE: 5034 // Recognize pattern: 5035 // mulval = mul(zext A, zext B) 5036 // cmp ule mulval, max 5037 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5038 APInt MaxVal = APInt::getMaxValue(MulWidth); 5039 MaxVal = MaxVal.zext(CI->getBitWidth()); 5040 if (MaxVal.eq(CI->getValue())) 5041 break; // Recognized 5042 } 5043 return nullptr; 5044 5045 case ICmpInst::ICMP_ULT: 5046 // Recognize pattern: 5047 // mulval = mul(zext A, zext B) 5048 // cmp ule mulval, max + 1 5049 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5050 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5051 if (MaxVal.eq(CI->getValue())) 5052 break; // Recognized 5053 } 5054 return nullptr; 5055 5056 default: 5057 return nullptr; 5058 } 5059 5060 InstCombiner::BuilderTy &Builder = IC.Builder; 5061 Builder.SetInsertPoint(MulInstr); 5062 5063 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5064 Value *MulA = A, *MulB = B; 5065 if (WidthA < MulWidth) 5066 MulA = Builder.CreateZExt(A, MulType); 5067 if (WidthB < MulWidth) 5068 MulB = Builder.CreateZExt(B, MulType); 5069 Function *F = Intrinsic::getDeclaration( 5070 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5071 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5072 IC.addToWorklist(MulInstr); 5073 5074 // If there are uses of mul result other than the comparison, we know that 5075 // they are truncation or binary AND. Change them to use result of 5076 // mul.with.overflow and adjust properly mask/size. 5077 if (MulVal->hasNUsesOrMore(2)) { 5078 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5079 for (User *U : make_early_inc_range(MulVal->users())) { 5080 if (U == &I || U == OtherVal) 5081 continue; 5082 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5083 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5084 IC.replaceInstUsesWith(*TI, Mul); 5085 else 5086 TI->setOperand(0, Mul); 5087 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5088 assert(BO->getOpcode() == Instruction::And); 5089 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5090 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5091 APInt ShortMask = CI->getValue().trunc(MulWidth); 5092 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5093 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5094 IC.replaceInstUsesWith(*BO, Zext); 5095 } else { 5096 llvm_unreachable("Unexpected Binary operation"); 5097 } 5098 IC.addToWorklist(cast<Instruction>(U)); 5099 } 5100 } 5101 if (isa<Instruction>(OtherVal)) 5102 IC.addToWorklist(cast<Instruction>(OtherVal)); 5103 5104 // The original icmp gets replaced with the overflow value, maybe inverted 5105 // depending on predicate. 5106 bool Inverse = false; 5107 switch (I.getPredicate()) { 5108 case ICmpInst::ICMP_NE: 5109 break; 5110 case ICmpInst::ICMP_EQ: 5111 Inverse = true; 5112 break; 5113 case ICmpInst::ICMP_UGT: 5114 case ICmpInst::ICMP_UGE: 5115 if (I.getOperand(0) == MulVal) 5116 break; 5117 Inverse = true; 5118 break; 5119 case ICmpInst::ICMP_ULT: 5120 case ICmpInst::ICMP_ULE: 5121 if (I.getOperand(1) == MulVal) 5122 break; 5123 Inverse = true; 5124 break; 5125 default: 5126 llvm_unreachable("Unexpected predicate"); 5127 } 5128 if (Inverse) { 5129 Value *Res = Builder.CreateExtractValue(Call, 1); 5130 return BinaryOperator::CreateNot(Res); 5131 } 5132 5133 return ExtractValueInst::Create(Call, 1); 5134 } 5135 5136 /// When performing a comparison against a constant, it is possible that not all 5137 /// the bits in the LHS are demanded. This helper method computes the mask that 5138 /// IS demanded. 5139 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5140 const APInt *RHS; 5141 if (!match(I.getOperand(1), m_APInt(RHS))) 5142 return APInt::getAllOnes(BitWidth); 5143 5144 // If this is a normal comparison, it demands all bits. If it is a sign bit 5145 // comparison, it only demands the sign bit. 5146 bool UnusedBit; 5147 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5148 return APInt::getSignMask(BitWidth); 5149 5150 switch (I.getPredicate()) { 5151 // For a UGT comparison, we don't care about any bits that 5152 // correspond to the trailing ones of the comparand. The value of these 5153 // bits doesn't impact the outcome of the comparison, because any value 5154 // greater than the RHS must differ in a bit higher than these due to carry. 5155 case ICmpInst::ICMP_UGT: 5156 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5157 5158 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5159 // Any value less than the RHS must differ in a higher bit because of carries. 5160 case ICmpInst::ICMP_ULT: 5161 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5162 5163 default: 5164 return APInt::getAllOnes(BitWidth); 5165 } 5166 } 5167 5168 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5169 /// should be swapped. 5170 /// The decision is based on how many times these two operands are reused 5171 /// as subtract operands and their positions in those instructions. 5172 /// The rationale is that several architectures use the same instruction for 5173 /// both subtract and cmp. Thus, it is better if the order of those operands 5174 /// match. 5175 /// \return true if Op0 and Op1 should be swapped. 5176 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5177 // Filter out pointer values as those cannot appear directly in subtract. 5178 // FIXME: we may want to go through inttoptrs or bitcasts. 5179 if (Op0->getType()->isPointerTy()) 5180 return false; 5181 // If a subtract already has the same operands as a compare, swapping would be 5182 // bad. If a subtract has the same operands as a compare but in reverse order, 5183 // then swapping is good. 5184 int GoodToSwap = 0; 5185 for (const User *U : Op0->users()) { 5186 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5187 GoodToSwap++; 5188 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5189 GoodToSwap--; 5190 } 5191 return GoodToSwap > 0; 5192 } 5193 5194 /// Check that one use is in the same block as the definition and all 5195 /// other uses are in blocks dominated by a given block. 5196 /// 5197 /// \param DI Definition 5198 /// \param UI Use 5199 /// \param DB Block that must dominate all uses of \p DI outside 5200 /// the parent block 5201 /// \return true when \p UI is the only use of \p DI in the parent block 5202 /// and all other uses of \p DI are in blocks dominated by \p DB. 5203 /// 5204 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5205 const Instruction *UI, 5206 const BasicBlock *DB) const { 5207 assert(DI && UI && "Instruction not defined\n"); 5208 // Ignore incomplete definitions. 5209 if (!DI->getParent()) 5210 return false; 5211 // DI and UI must be in the same block. 5212 if (DI->getParent() != UI->getParent()) 5213 return false; 5214 // Protect from self-referencing blocks. 5215 if (DI->getParent() == DB) 5216 return false; 5217 for (const User *U : DI->users()) { 5218 auto *Usr = cast<Instruction>(U); 5219 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5220 return false; 5221 } 5222 return true; 5223 } 5224 5225 /// Return true when the instruction sequence within a block is select-cmp-br. 5226 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5227 const BasicBlock *BB = SI->getParent(); 5228 if (!BB) 5229 return false; 5230 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5231 if (!BI || BI->getNumSuccessors() != 2) 5232 return false; 5233 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5234 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5235 return false; 5236 return true; 5237 } 5238 5239 /// True when a select result is replaced by one of its operands 5240 /// in select-icmp sequence. This will eventually result in the elimination 5241 /// of the select. 5242 /// 5243 /// \param SI Select instruction 5244 /// \param Icmp Compare instruction 5245 /// \param SIOpd Operand that replaces the select 5246 /// 5247 /// Notes: 5248 /// - The replacement is global and requires dominator information 5249 /// - The caller is responsible for the actual replacement 5250 /// 5251 /// Example: 5252 /// 5253 /// entry: 5254 /// %4 = select i1 %3, %C* %0, %C* null 5255 /// %5 = icmp eq %C* %4, null 5256 /// br i1 %5, label %9, label %7 5257 /// ... 5258 /// ; <label>:7 ; preds = %entry 5259 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5260 /// ... 5261 /// 5262 /// can be transformed to 5263 /// 5264 /// %5 = icmp eq %C* %0, null 5265 /// %6 = select i1 %3, i1 %5, i1 true 5266 /// br i1 %6, label %9, label %7 5267 /// ... 5268 /// ; <label>:7 ; preds = %entry 5269 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5270 /// 5271 /// Similar when the first operand of the select is a constant or/and 5272 /// the compare is for not equal rather than equal. 5273 /// 5274 /// NOTE: The function is only called when the select and compare constants 5275 /// are equal, the optimization can work only for EQ predicates. This is not a 5276 /// major restriction since a NE compare should be 'normalized' to an equal 5277 /// compare, which usually happens in the combiner and test case 5278 /// select-cmp-br.ll checks for it. 5279 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5280 const ICmpInst *Icmp, 5281 const unsigned SIOpd) { 5282 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5283 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5284 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5285 // The check for the single predecessor is not the best that can be 5286 // done. But it protects efficiently against cases like when SI's 5287 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5288 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5289 // replaced can be reached on either path. So the uniqueness check 5290 // guarantees that the path all uses of SI (outside SI's parent) are on 5291 // is disjoint from all other paths out of SI. But that information 5292 // is more expensive to compute, and the trade-off here is in favor 5293 // of compile-time. It should also be noticed that we check for a single 5294 // predecessor and not only uniqueness. This to handle the situation when 5295 // Succ and Succ1 points to the same basic block. 5296 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5297 NumSel++; 5298 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5299 return true; 5300 } 5301 } 5302 return false; 5303 } 5304 5305 /// Try to fold the comparison based on range information we can get by checking 5306 /// whether bits are known to be zero or one in the inputs. 5307 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5308 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5309 Type *Ty = Op0->getType(); 5310 ICmpInst::Predicate Pred = I.getPredicate(); 5311 5312 // Get scalar or pointer size. 5313 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5314 ? Ty->getScalarSizeInBits() 5315 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5316 5317 if (!BitWidth) 5318 return nullptr; 5319 5320 KnownBits Op0Known(BitWidth); 5321 KnownBits Op1Known(BitWidth); 5322 5323 if (SimplifyDemandedBits(&I, 0, 5324 getDemandedBitsLHSMask(I, BitWidth), 5325 Op0Known, 0)) 5326 return &I; 5327 5328 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5329 return &I; 5330 5331 // Given the known and unknown bits, compute a range that the LHS could be 5332 // in. Compute the Min, Max and RHS values based on the known bits. For the 5333 // EQ and NE we use unsigned values. 5334 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5335 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5336 if (I.isSigned()) { 5337 Op0Min = Op0Known.getSignedMinValue(); 5338 Op0Max = Op0Known.getSignedMaxValue(); 5339 Op1Min = Op1Known.getSignedMinValue(); 5340 Op1Max = Op1Known.getSignedMaxValue(); 5341 } else { 5342 Op0Min = Op0Known.getMinValue(); 5343 Op0Max = Op0Known.getMaxValue(); 5344 Op1Min = Op1Known.getMinValue(); 5345 Op1Max = Op1Known.getMaxValue(); 5346 } 5347 5348 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5349 // out that the LHS or RHS is a constant. Constant fold this now, so that 5350 // code below can assume that Min != Max. 5351 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5352 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5353 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5354 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5355 5356 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5357 // min/max canonical compare with some other compare. That could lead to 5358 // conflict with select canonicalization and infinite looping. 5359 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5360 auto isMinMaxCmp = [&](Instruction &Cmp) { 5361 if (!Cmp.hasOneUse()) 5362 return false; 5363 Value *A, *B; 5364 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5365 if (!SelectPatternResult::isMinOrMax(SPF)) 5366 return false; 5367 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5368 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5369 }; 5370 if (!isMinMaxCmp(I)) { 5371 switch (Pred) { 5372 default: 5373 break; 5374 case ICmpInst::ICMP_ULT: { 5375 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5376 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5377 const APInt *CmpC; 5378 if (match(Op1, m_APInt(CmpC))) { 5379 // A <u C -> A == C-1 if min(A)+1 == C 5380 if (*CmpC == Op0Min + 1) 5381 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5382 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5383 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5384 // exceeds the log2 of C. 5385 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5386 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5387 Constant::getNullValue(Op1->getType())); 5388 } 5389 break; 5390 } 5391 case ICmpInst::ICMP_UGT: { 5392 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5393 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5394 const APInt *CmpC; 5395 if (match(Op1, m_APInt(CmpC))) { 5396 // A >u C -> A == C+1 if max(a)-1 == C 5397 if (*CmpC == Op0Max - 1) 5398 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5399 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5400 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5401 // exceeds the log2 of C. 5402 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5403 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5404 Constant::getNullValue(Op1->getType())); 5405 } 5406 break; 5407 } 5408 case ICmpInst::ICMP_SLT: { 5409 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5410 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5411 const APInt *CmpC; 5412 if (match(Op1, m_APInt(CmpC))) { 5413 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5414 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5415 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5416 } 5417 break; 5418 } 5419 case ICmpInst::ICMP_SGT: { 5420 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5421 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5422 const APInt *CmpC; 5423 if (match(Op1, m_APInt(CmpC))) { 5424 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5425 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5426 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5427 } 5428 break; 5429 } 5430 } 5431 } 5432 5433 // Based on the range information we know about the LHS, see if we can 5434 // simplify this comparison. For example, (x&4) < 8 is always true. 5435 switch (Pred) { 5436 default: 5437 llvm_unreachable("Unknown icmp opcode!"); 5438 case ICmpInst::ICMP_EQ: 5439 case ICmpInst::ICMP_NE: { 5440 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5441 return replaceInstUsesWith( 5442 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5443 5444 // If all bits are known zero except for one, then we know at most one bit 5445 // is set. If the comparison is against zero, then this is a check to see if 5446 // *that* bit is set. 5447 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5448 if (Op1Known.isZero()) { 5449 // If the LHS is an AND with the same constant, look through it. 5450 Value *LHS = nullptr; 5451 const APInt *LHSC; 5452 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5453 *LHSC != Op0KnownZeroInverted) 5454 LHS = Op0; 5455 5456 Value *X; 5457 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5458 APInt ValToCheck = Op0KnownZeroInverted; 5459 Type *XTy = X->getType(); 5460 if (ValToCheck.isPowerOf2()) { 5461 // ((1 << X) & 8) == 0 -> X != 3 5462 // ((1 << X) & 8) != 0 -> X == 3 5463 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5464 auto NewPred = ICmpInst::getInversePredicate(Pred); 5465 return new ICmpInst(NewPred, X, CmpC); 5466 } else if ((++ValToCheck).isPowerOf2()) { 5467 // ((1 << X) & 7) == 0 -> X >= 3 5468 // ((1 << X) & 7) != 0 -> X < 3 5469 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5470 auto NewPred = 5471 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5472 return new ICmpInst(NewPred, X, CmpC); 5473 } 5474 } 5475 5476 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5477 const APInt *CI; 5478 if (Op0KnownZeroInverted.isOne() && 5479 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5480 // ((8 >>u X) & 1) == 0 -> X != 3 5481 // ((8 >>u X) & 1) != 0 -> X == 3 5482 unsigned CmpVal = CI->countTrailingZeros(); 5483 auto NewPred = ICmpInst::getInversePredicate(Pred); 5484 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5485 } 5486 } 5487 break; 5488 } 5489 case ICmpInst::ICMP_ULT: { 5490 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5491 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5492 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5493 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5494 break; 5495 } 5496 case ICmpInst::ICMP_UGT: { 5497 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5498 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5499 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5500 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5501 break; 5502 } 5503 case ICmpInst::ICMP_SLT: { 5504 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5505 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5506 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5507 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5508 break; 5509 } 5510 case ICmpInst::ICMP_SGT: { 5511 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5512 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5513 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5514 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5515 break; 5516 } 5517 case ICmpInst::ICMP_SGE: 5518 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5519 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5520 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5521 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5522 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5523 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5524 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5525 break; 5526 case ICmpInst::ICMP_SLE: 5527 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5528 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5529 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5530 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5531 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5532 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5533 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5534 break; 5535 case ICmpInst::ICMP_UGE: 5536 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5537 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5538 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5539 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5540 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5541 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5542 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5543 break; 5544 case ICmpInst::ICMP_ULE: 5545 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5546 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5547 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5548 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5549 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5550 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5551 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5552 break; 5553 } 5554 5555 // Turn a signed comparison into an unsigned one if both operands are known to 5556 // have the same sign. 5557 if (I.isSigned() && 5558 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5559 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5560 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5561 5562 return nullptr; 5563 } 5564 5565 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5566 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5567 Constant *C) { 5568 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5569 "Only for relational integer predicates."); 5570 5571 Type *Type = C->getType(); 5572 bool IsSigned = ICmpInst::isSigned(Pred); 5573 5574 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5575 bool WillIncrement = 5576 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5577 5578 // Check if the constant operand can be safely incremented/decremented 5579 // without overflowing/underflowing. 5580 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5581 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5582 }; 5583 5584 Constant *SafeReplacementConstant = nullptr; 5585 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5586 // Bail out if the constant can't be safely incremented/decremented. 5587 if (!ConstantIsOk(CI)) 5588 return llvm::None; 5589 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5590 unsigned NumElts = FVTy->getNumElements(); 5591 for (unsigned i = 0; i != NumElts; ++i) { 5592 Constant *Elt = C->getAggregateElement(i); 5593 if (!Elt) 5594 return llvm::None; 5595 5596 if (isa<UndefValue>(Elt)) 5597 continue; 5598 5599 // Bail out if we can't determine if this constant is min/max or if we 5600 // know that this constant is min/max. 5601 auto *CI = dyn_cast<ConstantInt>(Elt); 5602 if (!CI || !ConstantIsOk(CI)) 5603 return llvm::None; 5604 5605 if (!SafeReplacementConstant) 5606 SafeReplacementConstant = CI; 5607 } 5608 } else { 5609 // ConstantExpr? 5610 return llvm::None; 5611 } 5612 5613 // It may not be safe to change a compare predicate in the presence of 5614 // undefined elements, so replace those elements with the first safe constant 5615 // that we found. 5616 // TODO: in case of poison, it is safe; let's replace undefs only. 5617 if (C->containsUndefOrPoisonElement()) { 5618 assert(SafeReplacementConstant && "Replacement constant not set"); 5619 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5620 } 5621 5622 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5623 5624 // Increment or decrement the constant. 5625 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5626 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5627 5628 return std::make_pair(NewPred, NewC); 5629 } 5630 5631 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5632 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5633 /// allows them to be folded in visitICmpInst. 5634 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5635 ICmpInst::Predicate Pred = I.getPredicate(); 5636 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5637 InstCombiner::isCanonicalPredicate(Pred)) 5638 return nullptr; 5639 5640 Value *Op0 = I.getOperand(0); 5641 Value *Op1 = I.getOperand(1); 5642 auto *Op1C = dyn_cast<Constant>(Op1); 5643 if (!Op1C) 5644 return nullptr; 5645 5646 auto FlippedStrictness = 5647 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5648 if (!FlippedStrictness) 5649 return nullptr; 5650 5651 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5652 } 5653 5654 /// If we have a comparison with a non-canonical predicate, if we can update 5655 /// all the users, invert the predicate and adjust all the users. 5656 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5657 // Is the predicate already canonical? 5658 CmpInst::Predicate Pred = I.getPredicate(); 5659 if (InstCombiner::isCanonicalPredicate(Pred)) 5660 return nullptr; 5661 5662 // Can all users be adjusted to predicate inversion? 5663 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5664 return nullptr; 5665 5666 // Ok, we can canonicalize comparison! 5667 // Let's first invert the comparison's predicate. 5668 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5669 I.setName(I.getName() + ".not"); 5670 5671 // And, adapt users. 5672 freelyInvertAllUsersOf(&I); 5673 5674 return &I; 5675 } 5676 5677 /// Integer compare with boolean values can always be turned into bitwise ops. 5678 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5679 InstCombiner::BuilderTy &Builder) { 5680 Value *A = I.getOperand(0), *B = I.getOperand(1); 5681 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5682 5683 // A boolean compared to true/false can be simplified to Op0/true/false in 5684 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5685 // Cases not handled by InstSimplify are always 'not' of Op0. 5686 if (match(B, m_Zero())) { 5687 switch (I.getPredicate()) { 5688 case CmpInst::ICMP_EQ: // A == 0 -> !A 5689 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5690 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5691 return BinaryOperator::CreateNot(A); 5692 default: 5693 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5694 } 5695 } else if (match(B, m_One())) { 5696 switch (I.getPredicate()) { 5697 case CmpInst::ICMP_NE: // A != 1 -> !A 5698 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5699 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5700 return BinaryOperator::CreateNot(A); 5701 default: 5702 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5703 } 5704 } 5705 5706 switch (I.getPredicate()) { 5707 default: 5708 llvm_unreachable("Invalid icmp instruction!"); 5709 case ICmpInst::ICMP_EQ: 5710 // icmp eq i1 A, B -> ~(A ^ B) 5711 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5712 5713 case ICmpInst::ICMP_NE: 5714 // icmp ne i1 A, B -> A ^ B 5715 return BinaryOperator::CreateXor(A, B); 5716 5717 case ICmpInst::ICMP_UGT: 5718 // icmp ugt -> icmp ult 5719 std::swap(A, B); 5720 LLVM_FALLTHROUGH; 5721 case ICmpInst::ICMP_ULT: 5722 // icmp ult i1 A, B -> ~A & B 5723 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5724 5725 case ICmpInst::ICMP_SGT: 5726 // icmp sgt -> icmp slt 5727 std::swap(A, B); 5728 LLVM_FALLTHROUGH; 5729 case ICmpInst::ICMP_SLT: 5730 // icmp slt i1 A, B -> A & ~B 5731 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5732 5733 case ICmpInst::ICMP_UGE: 5734 // icmp uge -> icmp ule 5735 std::swap(A, B); 5736 LLVM_FALLTHROUGH; 5737 case ICmpInst::ICMP_ULE: 5738 // icmp ule i1 A, B -> ~A | B 5739 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5740 5741 case ICmpInst::ICMP_SGE: 5742 // icmp sge -> icmp sle 5743 std::swap(A, B); 5744 LLVM_FALLTHROUGH; 5745 case ICmpInst::ICMP_SLE: 5746 // icmp sle i1 A, B -> A | ~B 5747 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5748 } 5749 } 5750 5751 // Transform pattern like: 5752 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5753 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5754 // Into: 5755 // (X l>> Y) != 0 5756 // (X l>> Y) == 0 5757 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5758 InstCombiner::BuilderTy &Builder) { 5759 ICmpInst::Predicate Pred, NewPred; 5760 Value *X, *Y; 5761 if (match(&Cmp, 5762 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5763 switch (Pred) { 5764 case ICmpInst::ICMP_ULE: 5765 NewPred = ICmpInst::ICMP_NE; 5766 break; 5767 case ICmpInst::ICMP_UGT: 5768 NewPred = ICmpInst::ICMP_EQ; 5769 break; 5770 default: 5771 return nullptr; 5772 } 5773 } else if (match(&Cmp, m_c_ICmp(Pred, 5774 m_OneUse(m_CombineOr( 5775 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5776 m_Add(m_Shl(m_One(), m_Value(Y)), 5777 m_AllOnes()))), 5778 m_Value(X)))) { 5779 // The variant with 'add' is not canonical, (the variant with 'not' is) 5780 // we only get it because it has extra uses, and can't be canonicalized, 5781 5782 switch (Pred) { 5783 case ICmpInst::ICMP_ULT: 5784 NewPred = ICmpInst::ICMP_NE; 5785 break; 5786 case ICmpInst::ICMP_UGE: 5787 NewPred = ICmpInst::ICMP_EQ; 5788 break; 5789 default: 5790 return nullptr; 5791 } 5792 } else 5793 return nullptr; 5794 5795 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5796 Constant *Zero = Constant::getNullValue(NewX->getType()); 5797 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5798 } 5799 5800 static Instruction *foldVectorCmp(CmpInst &Cmp, 5801 InstCombiner::BuilderTy &Builder) { 5802 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5803 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5804 Value *V1, *V2; 5805 ArrayRef<int> M; 5806 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5807 return nullptr; 5808 5809 // If both arguments of the cmp are shuffles that use the same mask and 5810 // shuffle within a single vector, move the shuffle after the cmp: 5811 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5812 Type *V1Ty = V1->getType(); 5813 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5814 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5815 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5816 return new ShuffleVectorInst(NewCmp, M); 5817 } 5818 5819 // Try to canonicalize compare with splatted operand and splat constant. 5820 // TODO: We could generalize this for more than splats. See/use the code in 5821 // InstCombiner::foldVectorBinop(). 5822 Constant *C; 5823 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5824 return nullptr; 5825 5826 // Length-changing splats are ok, so adjust the constants as needed: 5827 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5828 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5829 int MaskSplatIndex; 5830 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5831 // We allow undefs in matching, but this transform removes those for safety. 5832 // Demanded elements analysis should be able to recover some/all of that. 5833 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5834 ScalarC); 5835 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5836 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5837 return new ShuffleVectorInst(NewCmp, NewM); 5838 } 5839 5840 return nullptr; 5841 } 5842 5843 // extract(uadd.with.overflow(A, B), 0) ult A 5844 // -> extract(uadd.with.overflow(A, B), 1) 5845 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5846 CmpInst::Predicate Pred = I.getPredicate(); 5847 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5848 5849 Value *UAddOv; 5850 Value *A, *B; 5851 auto UAddOvResultPat = m_ExtractValue<0>( 5852 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5853 if (match(Op0, UAddOvResultPat) && 5854 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5855 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5856 (match(A, m_One()) || match(B, m_One()))) || 5857 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5858 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5859 // extract(uadd.with.overflow(A, B), 0) < A 5860 // extract(uadd.with.overflow(A, 1), 0) == 0 5861 // extract(uadd.with.overflow(A, -1), 0) != -1 5862 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5863 else if (match(Op1, UAddOvResultPat) && 5864 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5865 // A > extract(uadd.with.overflow(A, B), 0) 5866 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5867 else 5868 return nullptr; 5869 5870 return ExtractValueInst::Create(UAddOv, 1); 5871 } 5872 5873 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5874 if (!I.getOperand(0)->getType()->isPointerTy() || 5875 NullPointerIsDefined( 5876 I.getParent()->getParent(), 5877 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5878 return nullptr; 5879 } 5880 Instruction *Op; 5881 if (match(I.getOperand(0), m_Instruction(Op)) && 5882 match(I.getOperand(1), m_Zero()) && 5883 Op->isLaunderOrStripInvariantGroup()) { 5884 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5885 Op->getOperand(0), I.getOperand(1)); 5886 } 5887 return nullptr; 5888 } 5889 5890 /// This function folds patterns produced by lowering of reduce idioms, such as 5891 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 5892 /// attempts to generate fewer number of scalar comparisons instead of vector 5893 /// comparisons when possible. 5894 static Instruction *foldReductionIdiom(ICmpInst &I, 5895 InstCombiner::BuilderTy &Builder, 5896 const DataLayout &DL) { 5897 if (I.getType()->isVectorTy()) 5898 return nullptr; 5899 ICmpInst::Predicate OuterPred, InnerPred; 5900 Value *LHS, *RHS; 5901 5902 // Match lowering of @llvm.vector.reduce.and. Turn 5903 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 5904 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 5905 /// %res = icmp <pred> i8 %scalar_ne, 0 5906 /// 5907 /// into 5908 /// 5909 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 5910 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 5911 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 5912 /// 5913 /// for <pred> in {ne, eq}. 5914 if (!match(&I, m_ICmp(OuterPred, 5915 m_OneUse(m_BitCast(m_OneUse( 5916 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 5917 m_Zero()))) 5918 return nullptr; 5919 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 5920 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 5921 return nullptr; 5922 unsigned NumBits = 5923 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 5924 // TODO: Relax this to "not wider than max legal integer type"? 5925 if (!DL.isLegalInteger(NumBits)) 5926 return nullptr; 5927 5928 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 5929 auto *ScalarTy = Builder.getIntNTy(NumBits); 5930 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 5931 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 5932 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 5933 I.getName()); 5934 } 5935 5936 return nullptr; 5937 } 5938 5939 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5940 bool Changed = false; 5941 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5942 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5943 unsigned Op0Cplxity = getComplexity(Op0); 5944 unsigned Op1Cplxity = getComplexity(Op1); 5945 5946 /// Orders the operands of the compare so that they are listed from most 5947 /// complex to least complex. This puts constants before unary operators, 5948 /// before binary operators. 5949 if (Op0Cplxity < Op1Cplxity || 5950 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5951 I.swapOperands(); 5952 std::swap(Op0, Op1); 5953 Changed = true; 5954 } 5955 5956 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5957 return replaceInstUsesWith(I, V); 5958 5959 // Comparing -val or val with non-zero is the same as just comparing val 5960 // ie, abs(val) != 0 -> val != 0 5961 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5962 Value *Cond, *SelectTrue, *SelectFalse; 5963 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5964 m_Value(SelectFalse)))) { 5965 if (Value *V = dyn_castNegVal(SelectTrue)) { 5966 if (V == SelectFalse) 5967 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5968 } 5969 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5970 if (V == SelectTrue) 5971 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5972 } 5973 } 5974 } 5975 5976 if (Op0->getType()->isIntOrIntVectorTy(1)) 5977 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5978 return Res; 5979 5980 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5981 return Res; 5982 5983 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5984 return Res; 5985 5986 if (Instruction *Res = foldICmpWithConstant(I)) 5987 return Res; 5988 5989 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5990 return Res; 5991 5992 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5993 return Res; 5994 5995 // Test if the ICmpInst instruction is used exclusively by a select as 5996 // part of a minimum or maximum operation. If so, refrain from doing 5997 // any other folding. This helps out other analyses which understand 5998 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5999 // and CodeGen. And in this case, at least one of the comparison 6000 // operands has at least one user besides the compare (the select), 6001 // which would often largely negate the benefit of folding anyway. 6002 // 6003 // Do the same for the other patterns recognized by matchSelectPattern. 6004 if (I.hasOneUse()) 6005 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6006 Value *A, *B; 6007 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6008 if (SPR.Flavor != SPF_UNKNOWN) 6009 return nullptr; 6010 } 6011 6012 // Do this after checking for min/max to prevent infinite looping. 6013 if (Instruction *Res = foldICmpWithZero(I)) 6014 return Res; 6015 6016 // FIXME: We only do this after checking for min/max to prevent infinite 6017 // looping caused by a reverse canonicalization of these patterns for min/max. 6018 // FIXME: The organization of folds is a mess. These would naturally go into 6019 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6020 // down here after the min/max restriction. 6021 ICmpInst::Predicate Pred = I.getPredicate(); 6022 const APInt *C; 6023 if (match(Op1, m_APInt(C))) { 6024 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6025 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6026 Constant *Zero = Constant::getNullValue(Op0->getType()); 6027 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6028 } 6029 6030 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6031 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6032 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6033 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6034 } 6035 } 6036 6037 // The folds in here may rely on wrapping flags and special constants, so 6038 // they can break up min/max idioms in some cases but not seemingly similar 6039 // patterns. 6040 // FIXME: It may be possible to enhance select folding to make this 6041 // unnecessary. It may also be moot if we canonicalize to min/max 6042 // intrinsics. 6043 if (Instruction *Res = foldICmpBinOp(I, Q)) 6044 return Res; 6045 6046 if (Instruction *Res = foldICmpInstWithConstant(I)) 6047 return Res; 6048 6049 // Try to match comparison as a sign bit test. Intentionally do this after 6050 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6051 if (Instruction *New = foldSignBitTest(I)) 6052 return New; 6053 6054 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6055 return Res; 6056 6057 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6058 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6059 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6060 return NI; 6061 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6062 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6063 return NI; 6064 6065 // Try to optimize equality comparisons against alloca-based pointers. 6066 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6067 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6068 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6069 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6070 return New; 6071 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6072 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6073 return New; 6074 } 6075 6076 if (Instruction *Res = foldICmpBitCast(I)) 6077 return Res; 6078 6079 // TODO: Hoist this above the min/max bailout. 6080 if (Instruction *R = foldICmpWithCastOp(I)) 6081 return R; 6082 6083 if (Instruction *Res = foldICmpWithMinMax(I)) 6084 return Res; 6085 6086 { 6087 Value *A, *B; 6088 // Transform (A & ~B) == 0 --> (A & B) != 0 6089 // and (A & ~B) != 0 --> (A & B) == 0 6090 // if A is a power of 2. 6091 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6092 match(Op1, m_Zero()) && 6093 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6094 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6095 Op1); 6096 6097 // ~X < ~Y --> Y < X 6098 // ~X < C --> X > ~C 6099 if (match(Op0, m_Not(m_Value(A)))) { 6100 if (match(Op1, m_Not(m_Value(B)))) 6101 return new ICmpInst(I.getPredicate(), B, A); 6102 6103 const APInt *C; 6104 if (match(Op1, m_APInt(C))) 6105 return new ICmpInst(I.getSwappedPredicate(), A, 6106 ConstantInt::get(Op1->getType(), ~(*C))); 6107 } 6108 6109 Instruction *AddI = nullptr; 6110 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6111 m_Instruction(AddI))) && 6112 isa<IntegerType>(A->getType())) { 6113 Value *Result; 6114 Constant *Overflow; 6115 // m_UAddWithOverflow can match patterns that do not include an explicit 6116 // "add" instruction, so check the opcode of the matched op. 6117 if (AddI->getOpcode() == Instruction::Add && 6118 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6119 Result, Overflow)) { 6120 replaceInstUsesWith(*AddI, Result); 6121 eraseInstFromFunction(*AddI); 6122 return replaceInstUsesWith(I, Overflow); 6123 } 6124 } 6125 6126 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6127 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6128 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6129 return R; 6130 } 6131 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6132 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6133 return R; 6134 } 6135 } 6136 6137 if (Instruction *Res = foldICmpEquality(I)) 6138 return Res; 6139 6140 if (Instruction *Res = foldICmpOfUAddOv(I)) 6141 return Res; 6142 6143 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6144 // an i1 which indicates whether or not we successfully did the swap. 6145 // 6146 // Replace comparisons between the old value and the expected value with the 6147 // indicator that 'cmpxchg' returns. 6148 // 6149 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6150 // spuriously fail. In those cases, the old value may equal the expected 6151 // value but it is possible for the swap to not occur. 6152 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6153 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6154 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6155 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6156 !ACXI->isWeak()) 6157 return ExtractValueInst::Create(ACXI, 1); 6158 6159 { 6160 Value *X; 6161 const APInt *C; 6162 // icmp X+Cst, X 6163 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6164 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6165 6166 // icmp X, X+Cst 6167 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6168 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6169 } 6170 6171 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6172 return Res; 6173 6174 if (I.getType()->isVectorTy()) 6175 if (Instruction *Res = foldVectorCmp(I, Builder)) 6176 return Res; 6177 6178 if (Instruction *Res = foldICmpInvariantGroup(I)) 6179 return Res; 6180 6181 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6182 return Res; 6183 6184 return Changed ? &I : nullptr; 6185 } 6186 6187 /// Fold fcmp ([us]itofp x, cst) if possible. 6188 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6189 Instruction *LHSI, 6190 Constant *RHSC) { 6191 if (!isa<ConstantFP>(RHSC)) return nullptr; 6192 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6193 6194 // Get the width of the mantissa. We don't want to hack on conversions that 6195 // might lose information from the integer, e.g. "i64 -> float" 6196 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6197 if (MantissaWidth == -1) return nullptr; // Unknown. 6198 6199 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6200 6201 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6202 6203 if (I.isEquality()) { 6204 FCmpInst::Predicate P = I.getPredicate(); 6205 bool IsExact = false; 6206 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6207 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6208 6209 // If the floating point constant isn't an integer value, we know if we will 6210 // ever compare equal / not equal to it. 6211 if (!IsExact) { 6212 // TODO: Can never be -0.0 and other non-representable values 6213 APFloat RHSRoundInt(RHS); 6214 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6215 if (RHS != RHSRoundInt) { 6216 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6217 return replaceInstUsesWith(I, Builder.getFalse()); 6218 6219 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6220 return replaceInstUsesWith(I, Builder.getTrue()); 6221 } 6222 } 6223 6224 // TODO: If the constant is exactly representable, is it always OK to do 6225 // equality compares as integer? 6226 } 6227 6228 // Check to see that the input is converted from an integer type that is small 6229 // enough that preserves all bits. TODO: check here for "known" sign bits. 6230 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6231 unsigned InputSize = IntTy->getScalarSizeInBits(); 6232 6233 // Following test does NOT adjust InputSize downwards for signed inputs, 6234 // because the most negative value still requires all the mantissa bits 6235 // to distinguish it from one less than that value. 6236 if ((int)InputSize > MantissaWidth) { 6237 // Conversion would lose accuracy. Check if loss can impact comparison. 6238 int Exp = ilogb(RHS); 6239 if (Exp == APFloat::IEK_Inf) { 6240 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6241 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6242 // Conversion could create infinity. 6243 return nullptr; 6244 } else { 6245 // Note that if RHS is zero or NaN, then Exp is negative 6246 // and first condition is trivially false. 6247 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6248 // Conversion could affect comparison. 6249 return nullptr; 6250 } 6251 } 6252 6253 // Otherwise, we can potentially simplify the comparison. We know that it 6254 // will always come through as an integer value and we know the constant is 6255 // not a NAN (it would have been previously simplified). 6256 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6257 6258 ICmpInst::Predicate Pred; 6259 switch (I.getPredicate()) { 6260 default: llvm_unreachable("Unexpected predicate!"); 6261 case FCmpInst::FCMP_UEQ: 6262 case FCmpInst::FCMP_OEQ: 6263 Pred = ICmpInst::ICMP_EQ; 6264 break; 6265 case FCmpInst::FCMP_UGT: 6266 case FCmpInst::FCMP_OGT: 6267 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6268 break; 6269 case FCmpInst::FCMP_UGE: 6270 case FCmpInst::FCMP_OGE: 6271 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6272 break; 6273 case FCmpInst::FCMP_ULT: 6274 case FCmpInst::FCMP_OLT: 6275 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6276 break; 6277 case FCmpInst::FCMP_ULE: 6278 case FCmpInst::FCMP_OLE: 6279 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6280 break; 6281 case FCmpInst::FCMP_UNE: 6282 case FCmpInst::FCMP_ONE: 6283 Pred = ICmpInst::ICMP_NE; 6284 break; 6285 case FCmpInst::FCMP_ORD: 6286 return replaceInstUsesWith(I, Builder.getTrue()); 6287 case FCmpInst::FCMP_UNO: 6288 return replaceInstUsesWith(I, Builder.getFalse()); 6289 } 6290 6291 // Now we know that the APFloat is a normal number, zero or inf. 6292 6293 // See if the FP constant is too large for the integer. For example, 6294 // comparing an i8 to 300.0. 6295 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6296 6297 if (!LHSUnsigned) { 6298 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6299 // and large values. 6300 APFloat SMax(RHS.getSemantics()); 6301 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6302 APFloat::rmNearestTiesToEven); 6303 if (SMax < RHS) { // smax < 13123.0 6304 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6305 Pred == ICmpInst::ICMP_SLE) 6306 return replaceInstUsesWith(I, Builder.getTrue()); 6307 return replaceInstUsesWith(I, Builder.getFalse()); 6308 } 6309 } else { 6310 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6311 // +INF and large values. 6312 APFloat UMax(RHS.getSemantics()); 6313 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6314 APFloat::rmNearestTiesToEven); 6315 if (UMax < RHS) { // umax < 13123.0 6316 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6317 Pred == ICmpInst::ICMP_ULE) 6318 return replaceInstUsesWith(I, Builder.getTrue()); 6319 return replaceInstUsesWith(I, Builder.getFalse()); 6320 } 6321 } 6322 6323 if (!LHSUnsigned) { 6324 // See if the RHS value is < SignedMin. 6325 APFloat SMin(RHS.getSemantics()); 6326 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6327 APFloat::rmNearestTiesToEven); 6328 if (SMin > RHS) { // smin > 12312.0 6329 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6330 Pred == ICmpInst::ICMP_SGE) 6331 return replaceInstUsesWith(I, Builder.getTrue()); 6332 return replaceInstUsesWith(I, Builder.getFalse()); 6333 } 6334 } else { 6335 // See if the RHS value is < UnsignedMin. 6336 APFloat UMin(RHS.getSemantics()); 6337 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6338 APFloat::rmNearestTiesToEven); 6339 if (UMin > RHS) { // umin > 12312.0 6340 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6341 Pred == ICmpInst::ICMP_UGE) 6342 return replaceInstUsesWith(I, Builder.getTrue()); 6343 return replaceInstUsesWith(I, Builder.getFalse()); 6344 } 6345 } 6346 6347 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6348 // [0, UMAX], but it may still be fractional. See if it is fractional by 6349 // casting the FP value to the integer value and back, checking for equality. 6350 // Don't do this for zero, because -0.0 is not fractional. 6351 Constant *RHSInt = LHSUnsigned 6352 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6353 : ConstantExpr::getFPToSI(RHSC, IntTy); 6354 if (!RHS.isZero()) { 6355 bool Equal = LHSUnsigned 6356 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6357 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6358 if (!Equal) { 6359 // If we had a comparison against a fractional value, we have to adjust 6360 // the compare predicate and sometimes the value. RHSC is rounded towards 6361 // zero at this point. 6362 switch (Pred) { 6363 default: llvm_unreachable("Unexpected integer comparison!"); 6364 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6365 return replaceInstUsesWith(I, Builder.getTrue()); 6366 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6367 return replaceInstUsesWith(I, Builder.getFalse()); 6368 case ICmpInst::ICMP_ULE: 6369 // (float)int <= 4.4 --> int <= 4 6370 // (float)int <= -4.4 --> false 6371 if (RHS.isNegative()) 6372 return replaceInstUsesWith(I, Builder.getFalse()); 6373 break; 6374 case ICmpInst::ICMP_SLE: 6375 // (float)int <= 4.4 --> int <= 4 6376 // (float)int <= -4.4 --> int < -4 6377 if (RHS.isNegative()) 6378 Pred = ICmpInst::ICMP_SLT; 6379 break; 6380 case ICmpInst::ICMP_ULT: 6381 // (float)int < -4.4 --> false 6382 // (float)int < 4.4 --> int <= 4 6383 if (RHS.isNegative()) 6384 return replaceInstUsesWith(I, Builder.getFalse()); 6385 Pred = ICmpInst::ICMP_ULE; 6386 break; 6387 case ICmpInst::ICMP_SLT: 6388 // (float)int < -4.4 --> int < -4 6389 // (float)int < 4.4 --> int <= 4 6390 if (!RHS.isNegative()) 6391 Pred = ICmpInst::ICMP_SLE; 6392 break; 6393 case ICmpInst::ICMP_UGT: 6394 // (float)int > 4.4 --> int > 4 6395 // (float)int > -4.4 --> true 6396 if (RHS.isNegative()) 6397 return replaceInstUsesWith(I, Builder.getTrue()); 6398 break; 6399 case ICmpInst::ICMP_SGT: 6400 // (float)int > 4.4 --> int > 4 6401 // (float)int > -4.4 --> int >= -4 6402 if (RHS.isNegative()) 6403 Pred = ICmpInst::ICMP_SGE; 6404 break; 6405 case ICmpInst::ICMP_UGE: 6406 // (float)int >= -4.4 --> true 6407 // (float)int >= 4.4 --> int > 4 6408 if (RHS.isNegative()) 6409 return replaceInstUsesWith(I, Builder.getTrue()); 6410 Pred = ICmpInst::ICMP_UGT; 6411 break; 6412 case ICmpInst::ICMP_SGE: 6413 // (float)int >= -4.4 --> int >= -4 6414 // (float)int >= 4.4 --> int > 4 6415 if (!RHS.isNegative()) 6416 Pred = ICmpInst::ICMP_SGT; 6417 break; 6418 } 6419 } 6420 } 6421 6422 // Lower this FP comparison into an appropriate integer version of the 6423 // comparison. 6424 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6425 } 6426 6427 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6428 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6429 Constant *RHSC) { 6430 // When C is not 0.0 and infinities are not allowed: 6431 // (C / X) < 0.0 is a sign-bit test of X 6432 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6433 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6434 // 6435 // Proof: 6436 // Multiply (C / X) < 0.0 by X * X / C. 6437 // - X is non zero, if it is the flag 'ninf' is violated. 6438 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6439 // the predicate. C is also non zero by definition. 6440 // 6441 // Thus X * X / C is non zero and the transformation is valid. [qed] 6442 6443 FCmpInst::Predicate Pred = I.getPredicate(); 6444 6445 // Check that predicates are valid. 6446 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6447 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6448 return nullptr; 6449 6450 // Check that RHS operand is zero. 6451 if (!match(RHSC, m_AnyZeroFP())) 6452 return nullptr; 6453 6454 // Check fastmath flags ('ninf'). 6455 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6456 return nullptr; 6457 6458 // Check the properties of the dividend. It must not be zero to avoid a 6459 // division by zero (see Proof). 6460 const APFloat *C; 6461 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6462 return nullptr; 6463 6464 if (C->isZero()) 6465 return nullptr; 6466 6467 // Get swapped predicate if necessary. 6468 if (C->isNegative()) 6469 Pred = I.getSwappedPredicate(); 6470 6471 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6472 } 6473 6474 /// Optimize fabs(X) compared with zero. 6475 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6476 Value *X; 6477 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6478 !match(I.getOperand(1), m_PosZeroFP())) 6479 return nullptr; 6480 6481 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6482 I->setPredicate(P); 6483 return IC.replaceOperand(*I, 0, X); 6484 }; 6485 6486 switch (I.getPredicate()) { 6487 case FCmpInst::FCMP_UGE: 6488 case FCmpInst::FCMP_OLT: 6489 // fabs(X) >= 0.0 --> true 6490 // fabs(X) < 0.0 --> false 6491 llvm_unreachable("fcmp should have simplified"); 6492 6493 case FCmpInst::FCMP_OGT: 6494 // fabs(X) > 0.0 --> X != 0.0 6495 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6496 6497 case FCmpInst::FCMP_UGT: 6498 // fabs(X) u> 0.0 --> X u!= 0.0 6499 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6500 6501 case FCmpInst::FCMP_OLE: 6502 // fabs(X) <= 0.0 --> X == 0.0 6503 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6504 6505 case FCmpInst::FCMP_ULE: 6506 // fabs(X) u<= 0.0 --> X u== 0.0 6507 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6508 6509 case FCmpInst::FCMP_OGE: 6510 // fabs(X) >= 0.0 --> !isnan(X) 6511 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6512 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6513 6514 case FCmpInst::FCMP_ULT: 6515 // fabs(X) u< 0.0 --> isnan(X) 6516 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6517 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6518 6519 case FCmpInst::FCMP_OEQ: 6520 case FCmpInst::FCMP_UEQ: 6521 case FCmpInst::FCMP_ONE: 6522 case FCmpInst::FCMP_UNE: 6523 case FCmpInst::FCMP_ORD: 6524 case FCmpInst::FCMP_UNO: 6525 // Look through the fabs() because it doesn't change anything but the sign. 6526 // fabs(X) == 0.0 --> X == 0.0, 6527 // fabs(X) != 0.0 --> X != 0.0 6528 // isnan(fabs(X)) --> isnan(X) 6529 // !isnan(fabs(X) --> !isnan(X) 6530 return replacePredAndOp0(&I, I.getPredicate(), X); 6531 6532 default: 6533 return nullptr; 6534 } 6535 } 6536 6537 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6538 CmpInst::Predicate Pred = I.getPredicate(); 6539 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6540 6541 // Canonicalize fneg as Op1. 6542 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6543 std::swap(Op0, Op1); 6544 Pred = I.getSwappedPredicate(); 6545 } 6546 6547 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6548 return nullptr; 6549 6550 // Replace the negated operand with 0.0: 6551 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6552 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6553 return new FCmpInst(Pred, Op0, Zero, "", &I); 6554 } 6555 6556 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6557 bool Changed = false; 6558 6559 /// Orders the operands of the compare so that they are listed from most 6560 /// complex to least complex. This puts constants before unary operators, 6561 /// before binary operators. 6562 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6563 I.swapOperands(); 6564 Changed = true; 6565 } 6566 6567 const CmpInst::Predicate Pred = I.getPredicate(); 6568 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6569 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6570 SQ.getWithInstruction(&I))) 6571 return replaceInstUsesWith(I, V); 6572 6573 // Simplify 'fcmp pred X, X' 6574 Type *OpType = Op0->getType(); 6575 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6576 if (Op0 == Op1) { 6577 switch (Pred) { 6578 default: break; 6579 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6580 case FCmpInst::FCMP_ULT: // True if unordered or less than 6581 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6582 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6583 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6584 I.setPredicate(FCmpInst::FCMP_UNO); 6585 I.setOperand(1, Constant::getNullValue(OpType)); 6586 return &I; 6587 6588 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6589 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6590 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6591 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6592 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6593 I.setPredicate(FCmpInst::FCMP_ORD); 6594 I.setOperand(1, Constant::getNullValue(OpType)); 6595 return &I; 6596 } 6597 } 6598 6599 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6600 // then canonicalize the operand to 0.0. 6601 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6602 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6603 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6604 6605 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6606 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6607 } 6608 6609 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6610 Value *X, *Y; 6611 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6612 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6613 6614 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6615 return R; 6616 6617 // Test if the FCmpInst instruction is used exclusively by a select as 6618 // part of a minimum or maximum operation. If so, refrain from doing 6619 // any other folding. This helps out other analyses which understand 6620 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6621 // and CodeGen. And in this case, at least one of the comparison 6622 // operands has at least one user besides the compare (the select), 6623 // which would often largely negate the benefit of folding anyway. 6624 if (I.hasOneUse()) 6625 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6626 Value *A, *B; 6627 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6628 if (SPR.Flavor != SPF_UNKNOWN) 6629 return nullptr; 6630 } 6631 6632 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6633 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6634 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6635 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6636 6637 // Handle fcmp with instruction LHS and constant RHS. 6638 Instruction *LHSI; 6639 Constant *RHSC; 6640 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6641 switch (LHSI->getOpcode()) { 6642 case Instruction::PHI: 6643 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6644 // block. If in the same block, we're encouraging jump threading. If 6645 // not, we are just pessimizing the code by making an i1 phi. 6646 if (LHSI->getParent() == I.getParent()) 6647 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6648 return NV; 6649 break; 6650 case Instruction::SIToFP: 6651 case Instruction::UIToFP: 6652 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6653 return NV; 6654 break; 6655 case Instruction::FDiv: 6656 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6657 return NV; 6658 break; 6659 case Instruction::Load: 6660 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6661 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6662 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6663 cast<LoadInst>(LHSI), GEP, GV, I)) 6664 return Res; 6665 break; 6666 } 6667 } 6668 6669 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6670 return R; 6671 6672 if (match(Op0, m_FNeg(m_Value(X)))) { 6673 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6674 Constant *C; 6675 if (match(Op1, m_Constant(C))) { 6676 Constant *NegC = ConstantExpr::getFNeg(C); 6677 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6678 } 6679 } 6680 6681 if (match(Op0, m_FPExt(m_Value(X)))) { 6682 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6683 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6684 return new FCmpInst(Pred, X, Y, "", &I); 6685 6686 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6687 const APFloat *C; 6688 if (match(Op1, m_APFloat(C))) { 6689 const fltSemantics &FPSem = 6690 X->getType()->getScalarType()->getFltSemantics(); 6691 bool Lossy; 6692 APFloat TruncC = *C; 6693 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6694 6695 // Avoid lossy conversions and denormals. 6696 // Zero is a special case that's OK to convert. 6697 APFloat Fabs = TruncC; 6698 Fabs.clearSign(); 6699 if (!Lossy && 6700 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6701 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6702 return new FCmpInst(Pred, X, NewC, "", &I); 6703 } 6704 } 6705 } 6706 6707 // Convert a sign-bit test of an FP value into a cast and integer compare. 6708 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6709 // TODO: Handle non-zero compare constants. 6710 // TODO: Handle other predicates. 6711 const APFloat *C; 6712 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6713 m_Value(X)))) && 6714 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6715 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6716 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6717 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6718 6719 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6720 if (Pred == FCmpInst::FCMP_OLT) { 6721 Value *IntX = Builder.CreateBitCast(X, IntType); 6722 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6723 ConstantInt::getNullValue(IntType)); 6724 } 6725 } 6726 6727 if (I.getType()->isVectorTy()) 6728 if (Instruction *Res = foldVectorCmp(I, Builder)) 6729 return Res; 6730 6731 return Changed ? &I : nullptr; 6732 } 6733