1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isNullValue()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOneValue()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnesValue()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// This is called when we see this pattern: 100 /// cmp pred (load (gep GV, ...)), cmpcst 101 /// where GV is a global variable with a constant initializer. Try to simplify 102 /// this into some simple computation that does not need the load. For example 103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 104 /// 105 /// If AndCst is non-null, then the loaded value is masked with that constant 106 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 107 Instruction * 108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 109 GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 Constant *Init = GV->getInitializer(); 112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 113 return nullptr; 114 115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 116 // Don't blow up on huge arrays. 117 if (ArrayElementCount > MaxArraySizeForCombine) 118 return nullptr; 119 120 // There are many forms of this optimization we can handle, for now, just do 121 // the simple index into a single-dimensional array. 122 // 123 // Require: GEP GV, 0, i {{, constant indices}} 124 if (GEP->getNumOperands() < 3 || 125 !isa<ConstantInt>(GEP->getOperand(1)) || 126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 127 isa<Constant>(GEP->getOperand(2))) 128 return nullptr; 129 130 // Check that indices after the variable are constants and in-range for the 131 // type they index. Collect the indices. This is typically for arrays of 132 // structs. 133 SmallVector<unsigned, 4> LaterIndices; 134 135 Type *EltTy = Init->getType()->getArrayElementType(); 136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 138 if (!Idx) return nullptr; // Variable index. 139 140 uint64_t IdxVal = Idx->getZExtValue(); 141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 142 143 if (StructType *STy = dyn_cast<StructType>(EltTy)) 144 EltTy = STy->getElementType(IdxVal); 145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 146 if (IdxVal >= ATy->getNumElements()) return nullptr; 147 EltTy = ATy->getElementType(); 148 } else { 149 return nullptr; // Unknown type. 150 } 151 152 LaterIndices.push_back(IdxVal); 153 } 154 155 enum { Overdefined = -3, Undefined = -2 }; 156 157 // Variables for our state machines. 158 159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 160 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 161 // and 87 is the second (and last) index. FirstTrueElement is -2 when 162 // undefined, otherwise set to the first true element. SecondTrueElement is 163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 165 166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 167 // form "i != 47 & i != 87". Same state transitions as for true elements. 168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 169 170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 171 /// define a state machine that triggers for ranges of values that the index 172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 174 /// index in the range (inclusive). We use -2 for undefined here because we 175 /// use relative comparisons and don't want 0-1 to match -1. 176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 177 178 // MagicBitvector - This is a magic bitvector where we set a bit if the 179 // comparison is true for element 'i'. If there are 64 elements or less in 180 // the array, this will fully represent all the comparison results. 181 uint64_t MagicBitvector = 0; 182 183 // Scan the array and see if one of our patterns matches. 184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 186 Constant *Elt = Init->getAggregateElement(i); 187 if (!Elt) return nullptr; 188 189 // If this is indexing an array of structures, get the structure element. 190 if (!LaterIndices.empty()) 191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 192 193 // If the element is masked, handle it. 194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 195 196 // Find out if the comparison would be true or false for the i'th element. 197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 198 CompareRHS, DL, &TLI); 199 // If the result is undef for this element, ignore it. 200 if (isa<UndefValue>(C)) { 201 // Extend range state machines to cover this element in case there is an 202 // undef in the middle of the range. 203 if (TrueRangeEnd == (int)i-1) 204 TrueRangeEnd = i; 205 if (FalseRangeEnd == (int)i-1) 206 FalseRangeEnd = i; 207 continue; 208 } 209 210 // If we can't compute the result for any of the elements, we have to give 211 // up evaluating the entire conditional. 212 if (!isa<ConstantInt>(C)) return nullptr; 213 214 // Otherwise, we know if the comparison is true or false for this element, 215 // update our state machines. 216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 217 218 // State machine for single/double/range index comparison. 219 if (IsTrueForElt) { 220 // Update the TrueElement state machine. 221 if (FirstTrueElement == Undefined) 222 FirstTrueElement = TrueRangeEnd = i; // First true element. 223 else { 224 // Update double-compare state machine. 225 if (SecondTrueElement == Undefined) 226 SecondTrueElement = i; 227 else 228 SecondTrueElement = Overdefined; 229 230 // Update range state machine. 231 if (TrueRangeEnd == (int)i-1) 232 TrueRangeEnd = i; 233 else 234 TrueRangeEnd = Overdefined; 235 } 236 } else { 237 // Update the FalseElement state machine. 238 if (FirstFalseElement == Undefined) 239 FirstFalseElement = FalseRangeEnd = i; // First false element. 240 else { 241 // Update double-compare state machine. 242 if (SecondFalseElement == Undefined) 243 SecondFalseElement = i; 244 else 245 SecondFalseElement = Overdefined; 246 247 // Update range state machine. 248 if (FalseRangeEnd == (int)i-1) 249 FalseRangeEnd = i; 250 else 251 FalseRangeEnd = Overdefined; 252 } 253 } 254 255 // If this element is in range, update our magic bitvector. 256 if (i < 64 && IsTrueForElt) 257 MagicBitvector |= 1ULL << i; 258 259 // If all of our states become overdefined, bail out early. Since the 260 // predicate is expensive, only check it every 8 elements. This is only 261 // really useful for really huge arrays. 262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 264 FalseRangeEnd == Overdefined) 265 return nullptr; 266 } 267 268 // Now that we've scanned the entire array, emit our new comparison(s). We 269 // order the state machines in complexity of the generated code. 270 Value *Idx = GEP->getOperand(2); 271 272 // If the index is larger than the pointer size of the target, truncate the 273 // index down like the GEP would do implicitly. We don't have to do this for 274 // an inbounds GEP because the index can't be out of range. 275 if (!GEP->isInBounds()) { 276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 279 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 280 } 281 282 // If inbounds keyword is not present, Idx * ElementSize can overflow. 283 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 284 // Then, there are two possible values for Idx to match offset 0: 285 // 0x00..00, 0x80..00. 286 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 287 // comparison is false if Idx was 0x80..00. 288 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 289 unsigned ElementSize = 290 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 291 auto MaskIdx = [&](Value* Idx){ 292 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 293 Value *Mask = ConstantInt::get(Idx->getType(), -1); 294 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 295 Idx = Builder.CreateAnd(Idx, Mask); 296 } 297 return Idx; 298 }; 299 300 // If the comparison is only true for one or two elements, emit direct 301 // comparisons. 302 if (SecondTrueElement != Overdefined) { 303 Idx = MaskIdx(Idx); 304 // None true -> false. 305 if (FirstTrueElement == Undefined) 306 return replaceInstUsesWith(ICI, Builder.getFalse()); 307 308 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 309 310 // True for one element -> 'i == 47'. 311 if (SecondTrueElement == Undefined) 312 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 313 314 // True for two elements -> 'i == 47 | i == 72'. 315 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 316 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 317 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 318 return BinaryOperator::CreateOr(C1, C2); 319 } 320 321 // If the comparison is only false for one or two elements, emit direct 322 // comparisons. 323 if (SecondFalseElement != Overdefined) { 324 Idx = MaskIdx(Idx); 325 // None false -> true. 326 if (FirstFalseElement == Undefined) 327 return replaceInstUsesWith(ICI, Builder.getTrue()); 328 329 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 330 331 // False for one element -> 'i != 47'. 332 if (SecondFalseElement == Undefined) 333 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 334 335 // False for two elements -> 'i != 47 & i != 72'. 336 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 337 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 338 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 339 return BinaryOperator::CreateAnd(C1, C2); 340 } 341 342 // If the comparison can be replaced with a range comparison for the elements 343 // where it is true, emit the range check. 344 if (TrueRangeEnd != Overdefined) { 345 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 346 Idx = MaskIdx(Idx); 347 348 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 349 if (FirstTrueElement) { 350 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 351 Idx = Builder.CreateAdd(Idx, Offs); 352 } 353 354 Value *End = ConstantInt::get(Idx->getType(), 355 TrueRangeEnd-FirstTrueElement+1); 356 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 357 } 358 359 // False range check. 360 if (FalseRangeEnd != Overdefined) { 361 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 362 Idx = MaskIdx(Idx); 363 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 364 if (FirstFalseElement) { 365 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 366 Idx = Builder.CreateAdd(Idx, Offs); 367 } 368 369 Value *End = ConstantInt::get(Idx->getType(), 370 FalseRangeEnd-FirstFalseElement); 371 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 372 } 373 374 // If a magic bitvector captures the entire comparison state 375 // of this load, replace it with computation that does: 376 // ((magic_cst >> i) & 1) != 0 377 { 378 Type *Ty = nullptr; 379 380 // Look for an appropriate type: 381 // - The type of Idx if the magic fits 382 // - The smallest fitting legal type 383 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 384 Ty = Idx->getType(); 385 else 386 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 387 388 if (Ty) { 389 Idx = MaskIdx(Idx); 390 Value *V = Builder.CreateIntCast(Idx, Ty, false); 391 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 392 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 393 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 394 } 395 } 396 397 return nullptr; 398 } 399 400 /// Return a value that can be used to compare the *offset* implied by a GEP to 401 /// zero. For example, if we have &A[i], we want to return 'i' for 402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 403 /// are involved. The above expression would also be legal to codegen as 404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 405 /// This latter form is less amenable to optimization though, and we are allowed 406 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 407 /// 408 /// If we can't emit an optimized form for this expression, this returns null. 409 /// 410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 411 const DataLayout &DL) { 412 gep_type_iterator GTI = gep_type_begin(GEP); 413 414 // Check to see if this gep only has a single variable index. If so, and if 415 // any constant indices are a multiple of its scale, then we can compute this 416 // in terms of the scale of the variable index. For example, if the GEP 417 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 418 // because the expression will cross zero at the same point. 419 unsigned i, e = GEP->getNumOperands(); 420 int64_t Offset = 0; 421 for (i = 1; i != e; ++i, ++GTI) { 422 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 423 // Compute the aggregate offset of constant indices. 424 if (CI->isZero()) continue; 425 426 // Handle a struct index, which adds its field offset to the pointer. 427 if (StructType *STy = GTI.getStructTypeOrNull()) { 428 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 429 } else { 430 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 431 Offset += Size*CI->getSExtValue(); 432 } 433 } else { 434 // Found our variable index. 435 break; 436 } 437 } 438 439 // If there are no variable indices, we must have a constant offset, just 440 // evaluate it the general way. 441 if (i == e) return nullptr; 442 443 Value *VariableIdx = GEP->getOperand(i); 444 // Determine the scale factor of the variable element. For example, this is 445 // 4 if the variable index is into an array of i32. 446 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 447 448 // Verify that there are no other variable indices. If so, emit the hard way. 449 for (++i, ++GTI; i != e; ++i, ++GTI) { 450 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 451 if (!CI) return nullptr; 452 453 // Compute the aggregate offset of constant indices. 454 if (CI->isZero()) continue; 455 456 // Handle a struct index, which adds its field offset to the pointer. 457 if (StructType *STy = GTI.getStructTypeOrNull()) { 458 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 459 } else { 460 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 461 Offset += Size*CI->getSExtValue(); 462 } 463 } 464 465 // Okay, we know we have a single variable index, which must be a 466 // pointer/array/vector index. If there is no offset, life is simple, return 467 // the index. 468 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 469 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 470 if (Offset == 0) { 471 // Cast to intptrty in case a truncation occurs. If an extension is needed, 472 // we don't need to bother extending: the extension won't affect where the 473 // computation crosses zero. 474 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 475 IntPtrWidth) { 476 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 477 } 478 return VariableIdx; 479 } 480 481 // Otherwise, there is an index. The computation we will do will be modulo 482 // the pointer size. 483 Offset = SignExtend64(Offset, IntPtrWidth); 484 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 485 486 // To do this transformation, any constant index must be a multiple of the 487 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 488 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 489 // multiple of the variable scale. 490 int64_t NewOffs = Offset / (int64_t)VariableScale; 491 if (Offset != NewOffs*(int64_t)VariableScale) 492 return nullptr; 493 494 // Okay, we can do this evaluation. Start by converting the index to intptr. 495 if (VariableIdx->getType() != IntPtrTy) 496 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 497 true /*Signed*/); 498 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 499 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 500 } 501 502 /// Returns true if we can rewrite Start as a GEP with pointer Base 503 /// and some integer offset. The nodes that need to be re-written 504 /// for this transformation will be added to Explored. 505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 506 const DataLayout &DL, 507 SetVector<Value *> &Explored) { 508 SmallVector<Value *, 16> WorkList(1, Start); 509 Explored.insert(Base); 510 511 // The following traversal gives us an order which can be used 512 // when doing the final transformation. Since in the final 513 // transformation we create the PHI replacement instructions first, 514 // we don't have to get them in any particular order. 515 // 516 // However, for other instructions we will have to traverse the 517 // operands of an instruction first, which means that we have to 518 // do a post-order traversal. 519 while (!WorkList.empty()) { 520 SetVector<PHINode *> PHIs; 521 522 while (!WorkList.empty()) { 523 if (Explored.size() >= 100) 524 return false; 525 526 Value *V = WorkList.back(); 527 528 if (Explored.contains(V)) { 529 WorkList.pop_back(); 530 continue; 531 } 532 533 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 534 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 535 // We've found some value that we can't explore which is different from 536 // the base. Therefore we can't do this transformation. 537 return false; 538 539 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 540 auto *CI = cast<CastInst>(V); 541 if (!CI->isNoopCast(DL)) 542 return false; 543 544 if (Explored.count(CI->getOperand(0)) == 0) 545 WorkList.push_back(CI->getOperand(0)); 546 } 547 548 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 549 // We're limiting the GEP to having one index. This will preserve 550 // the original pointer type. We could handle more cases in the 551 // future. 552 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 553 GEP->getType() != Start->getType()) 554 return false; 555 556 if (Explored.count(GEP->getOperand(0)) == 0) 557 WorkList.push_back(GEP->getOperand(0)); 558 } 559 560 if (WorkList.back() == V) { 561 WorkList.pop_back(); 562 // We've finished visiting this node, mark it as such. 563 Explored.insert(V); 564 } 565 566 if (auto *PN = dyn_cast<PHINode>(V)) { 567 // We cannot transform PHIs on unsplittable basic blocks. 568 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 569 return false; 570 Explored.insert(PN); 571 PHIs.insert(PN); 572 } 573 } 574 575 // Explore the PHI nodes further. 576 for (auto *PN : PHIs) 577 for (Value *Op : PN->incoming_values()) 578 if (Explored.count(Op) == 0) 579 WorkList.push_back(Op); 580 } 581 582 // Make sure that we can do this. Since we can't insert GEPs in a basic 583 // block before a PHI node, we can't easily do this transformation if 584 // we have PHI node users of transformed instructions. 585 for (Value *Val : Explored) { 586 for (Value *Use : Val->uses()) { 587 588 auto *PHI = dyn_cast<PHINode>(Use); 589 auto *Inst = dyn_cast<Instruction>(Val); 590 591 if (Inst == Base || Inst == PHI || !Inst || !PHI || 592 Explored.count(PHI) == 0) 593 continue; 594 595 if (PHI->getParent() == Inst->getParent()) 596 return false; 597 } 598 } 599 return true; 600 } 601 602 // Sets the appropriate insert point on Builder where we can add 603 // a replacement Instruction for V (if that is possible). 604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 605 bool Before = true) { 606 if (auto *PHI = dyn_cast<PHINode>(V)) { 607 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 608 return; 609 } 610 if (auto *I = dyn_cast<Instruction>(V)) { 611 if (!Before) 612 I = &*std::next(I->getIterator()); 613 Builder.SetInsertPoint(I); 614 return; 615 } 616 if (auto *A = dyn_cast<Argument>(V)) { 617 // Set the insertion point in the entry block. 618 BasicBlock &Entry = A->getParent()->getEntryBlock(); 619 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 620 return; 621 } 622 // Otherwise, this is a constant and we don't need to set a new 623 // insertion point. 624 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 625 } 626 627 /// Returns a re-written value of Start as an indexed GEP using Base as a 628 /// pointer. 629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 630 const DataLayout &DL, 631 SetVector<Value *> &Explored) { 632 // Perform all the substitutions. This is a bit tricky because we can 633 // have cycles in our use-def chains. 634 // 1. Create the PHI nodes without any incoming values. 635 // 2. Create all the other values. 636 // 3. Add the edges for the PHI nodes. 637 // 4. Emit GEPs to get the original pointers. 638 // 5. Remove the original instructions. 639 Type *IndexType = IntegerType::get( 640 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 641 642 DenseMap<Value *, Value *> NewInsts; 643 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 644 645 // Create the new PHI nodes, without adding any incoming values. 646 for (Value *Val : Explored) { 647 if (Val == Base) 648 continue; 649 // Create empty phi nodes. This avoids cyclic dependencies when creating 650 // the remaining instructions. 651 if (auto *PHI = dyn_cast<PHINode>(Val)) 652 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 653 PHI->getName() + ".idx", PHI); 654 } 655 IRBuilder<> Builder(Base->getContext()); 656 657 // Create all the other instructions. 658 for (Value *Val : Explored) { 659 660 if (NewInsts.find(Val) != NewInsts.end()) 661 continue; 662 663 if (auto *CI = dyn_cast<CastInst>(Val)) { 664 // Don't get rid of the intermediate variable here; the store can grow 665 // the map which will invalidate the reference to the input value. 666 Value *V = NewInsts[CI->getOperand(0)]; 667 NewInsts[CI] = V; 668 continue; 669 } 670 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 671 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 672 : GEP->getOperand(1); 673 setInsertionPoint(Builder, GEP); 674 // Indices might need to be sign extended. GEPs will magically do 675 // this, but we need to do it ourselves here. 676 if (Index->getType()->getScalarSizeInBits() != 677 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 678 Index = Builder.CreateSExtOrTrunc( 679 Index, NewInsts[GEP->getOperand(0)]->getType(), 680 GEP->getOperand(0)->getName() + ".sext"); 681 } 682 683 auto *Op = NewInsts[GEP->getOperand(0)]; 684 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 685 NewInsts[GEP] = Index; 686 else 687 NewInsts[GEP] = Builder.CreateNSWAdd( 688 Op, Index, GEP->getOperand(0)->getName() + ".add"); 689 continue; 690 } 691 if (isa<PHINode>(Val)) 692 continue; 693 694 llvm_unreachable("Unexpected instruction type"); 695 } 696 697 // Add the incoming values to the PHI nodes. 698 for (Value *Val : Explored) { 699 if (Val == Base) 700 continue; 701 // All the instructions have been created, we can now add edges to the 702 // phi nodes. 703 if (auto *PHI = dyn_cast<PHINode>(Val)) { 704 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 705 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 706 Value *NewIncoming = PHI->getIncomingValue(I); 707 708 if (NewInsts.find(NewIncoming) != NewInsts.end()) 709 NewIncoming = NewInsts[NewIncoming]; 710 711 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 712 } 713 } 714 } 715 716 for (Value *Val : Explored) { 717 if (Val == Base) 718 continue; 719 720 // Depending on the type, for external users we have to emit 721 // a GEP or a GEP + ptrtoint. 722 setInsertionPoint(Builder, Val, false); 723 724 // If required, create an inttoptr instruction for Base. 725 Value *NewBase = Base; 726 if (!Base->getType()->isPointerTy()) 727 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 728 Start->getName() + "to.ptr"); 729 730 Value *GEP = Builder.CreateInBoundsGEP( 731 Start->getType()->getPointerElementType(), NewBase, 732 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 733 734 if (!Val->getType()->isPointerTy()) { 735 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 736 Val->getName() + ".conv"); 737 GEP = Cast; 738 } 739 Val->replaceAllUsesWith(GEP); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getType() == V->getType()) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 // Make sure the pointers have the same type. 801 if (GEPLHS->getType() != RHS->getType()) 802 return nullptr; 803 804 Value *PtrBase, *Index; 805 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 806 807 // The set of nodes that will take part in this transformation. 808 SetVector<Value *> Nodes; 809 810 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 811 return nullptr; 812 813 // We know we can re-write this as 814 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 815 // Since we've only looked through inbouds GEPs we know that we 816 // can't have overflow on either side. We can therefore re-write 817 // this as: 818 // OFFSET1 cmp OFFSET2 819 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 820 821 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 822 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 823 // offset. Since Index is the offset of LHS to the base pointer, we will now 824 // compare the offsets instead of comparing the pointers. 825 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 826 } 827 828 /// Fold comparisons between a GEP instruction and something else. At this point 829 /// we know that the GEP is on the LHS of the comparison. 830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 831 ICmpInst::Predicate Cond, 832 Instruction &I) { 833 // Don't transform signed compares of GEPs into index compares. Even if the 834 // GEP is inbounds, the final add of the base pointer can have signed overflow 835 // and would change the result of the icmp. 836 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 837 // the maximum signed value for the pointer type. 838 if (ICmpInst::isSigned(Cond)) 839 return nullptr; 840 841 // Look through bitcasts and addrspacecasts. We do not however want to remove 842 // 0 GEPs. 843 if (!isa<GetElementPtrInst>(RHS)) 844 RHS = RHS->stripPointerCasts(); 845 846 Value *PtrBase = GEPLHS->getOperand(0); 847 // FIXME: Support vector pointer GEPs. 848 if (PtrBase == RHS && GEPLHS->isInBounds() && 849 !GEPLHS->getType()->isVectorTy()) { 850 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 851 // This transformation (ignoring the base and scales) is valid because we 852 // know pointers can't overflow since the gep is inbounds. See if we can 853 // output an optimized form. 854 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 855 856 // If not, synthesize the offset the hard way. 857 if (!Offset) 858 Offset = EmitGEPOffset(GEPLHS); 859 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 860 Constant::getNullValue(Offset->getType())); 861 } 862 863 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 864 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 865 !NullPointerIsDefined(I.getFunction(), 866 RHS->getType()->getPointerAddressSpace())) { 867 // For most address spaces, an allocation can't be placed at null, but null 868 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 869 // the only valid inbounds address derived from null, is null itself. 870 // Thus, we have four cases to consider: 871 // 1) Base == nullptr, Offset == 0 -> inbounds, null 872 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 873 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 874 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 875 // 876 // (Note if we're indexing a type of size 0, that simply collapses into one 877 // of the buckets above.) 878 // 879 // In general, we're allowed to make values less poison (i.e. remove 880 // sources of full UB), so in this case, we just select between the two 881 // non-poison cases (1 and 4 above). 882 // 883 // For vectors, we apply the same reasoning on a per-lane basis. 884 auto *Base = GEPLHS->getPointerOperand(); 885 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 886 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 887 Base = Builder.CreateVectorSplat(EC, Base); 888 } 889 return new ICmpInst(Cond, Base, 890 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 891 cast<Constant>(RHS), Base->getType())); 892 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 893 // If the base pointers are different, but the indices are the same, just 894 // compare the base pointer. 895 if (PtrBase != GEPRHS->getOperand(0)) { 896 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 897 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 898 GEPRHS->getOperand(0)->getType(); 899 if (IndicesTheSame) 900 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 901 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 902 IndicesTheSame = false; 903 break; 904 } 905 906 // If all indices are the same, just compare the base pointers. 907 Type *BaseType = GEPLHS->getOperand(0)->getType(); 908 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 909 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 910 911 // If we're comparing GEPs with two base pointers that only differ in type 912 // and both GEPs have only constant indices or just one use, then fold 913 // the compare with the adjusted indices. 914 // FIXME: Support vector of pointers. 915 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 916 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 917 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 918 PtrBase->stripPointerCasts() == 919 GEPRHS->getOperand(0)->stripPointerCasts() && 920 !GEPLHS->getType()->isVectorTy()) { 921 Value *LOffset = EmitGEPOffset(GEPLHS); 922 Value *ROffset = EmitGEPOffset(GEPRHS); 923 924 // If we looked through an addrspacecast between different sized address 925 // spaces, the LHS and RHS pointers are different sized 926 // integers. Truncate to the smaller one. 927 Type *LHSIndexTy = LOffset->getType(); 928 Type *RHSIndexTy = ROffset->getType(); 929 if (LHSIndexTy != RHSIndexTy) { 930 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 931 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 932 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 933 } else 934 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 935 } 936 937 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 938 LOffset, ROffset); 939 return replaceInstUsesWith(I, Cmp); 940 } 941 942 // Otherwise, the base pointers are different and the indices are 943 // different. Try convert this to an indexed compare by looking through 944 // PHIs/casts. 945 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 946 } 947 948 // If one of the GEPs has all zero indices, recurse. 949 // FIXME: Handle vector of pointers. 950 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 951 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 952 ICmpInst::getSwappedPredicate(Cond), I); 953 954 // If the other GEP has all zero indices, recurse. 955 // FIXME: Handle vector of pointers. 956 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 957 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 958 959 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 960 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca, 1012 const Value *Other) { 1013 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1014 1015 // It would be tempting to fold away comparisons between allocas and any 1016 // pointer not based on that alloca (e.g. an argument). However, even 1017 // though such pointers cannot alias, they can still compare equal. 1018 // 1019 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1020 // doesn't escape we can argue that it's impossible to guess its value, and we 1021 // can therefore act as if any such guesses are wrong. 1022 // 1023 // The code below checks that the alloca doesn't escape, and that it's only 1024 // used in a comparison once (the current instruction). The 1025 // single-comparison-use condition ensures that we're trivially folding all 1026 // comparisons against the alloca consistently, and avoids the risk of 1027 // erroneously folding a comparison of the pointer with itself. 1028 1029 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1030 1031 SmallVector<const Use *, 32> Worklist; 1032 for (const Use &U : Alloca->uses()) { 1033 if (Worklist.size() >= MaxIter) 1034 return nullptr; 1035 Worklist.push_back(&U); 1036 } 1037 1038 unsigned NumCmps = 0; 1039 while (!Worklist.empty()) { 1040 assert(Worklist.size() <= MaxIter); 1041 const Use *U = Worklist.pop_back_val(); 1042 const Value *V = U->getUser(); 1043 --MaxIter; 1044 1045 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1046 isa<SelectInst>(V)) { 1047 // Track the uses. 1048 } else if (isa<LoadInst>(V)) { 1049 // Loading from the pointer doesn't escape it. 1050 continue; 1051 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1052 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1053 if (SI->getValueOperand() == U->get()) 1054 return nullptr; 1055 continue; 1056 } else if (isa<ICmpInst>(V)) { 1057 if (NumCmps++) 1058 return nullptr; // Found more than one cmp. 1059 continue; 1060 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1061 switch (Intrin->getIntrinsicID()) { 1062 // These intrinsics don't escape or compare the pointer. Memset is safe 1063 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1064 // we don't allow stores, so src cannot point to V. 1065 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1066 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1067 continue; 1068 default: 1069 return nullptr; 1070 } 1071 } else { 1072 return nullptr; 1073 } 1074 for (const Use &U : V->uses()) { 1075 if (Worklist.size() >= MaxIter) 1076 return nullptr; 1077 Worklist.push_back(&U); 1078 } 1079 } 1080 1081 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1082 return replaceInstUsesWith( 1083 ICI, 1084 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1085 } 1086 1087 /// Fold "icmp pred (X+C), X". 1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1089 ICmpInst::Predicate Pred) { 1090 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1091 // so the values can never be equal. Similarly for all other "or equals" 1092 // operators. 1093 assert(!!C && "C should not be zero!"); 1094 1095 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1096 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1097 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1098 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1099 Constant *R = ConstantInt::get(X->getType(), 1100 APInt::getMaxValue(C.getBitWidth()) - C); 1101 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1102 } 1103 1104 // (X+1) >u X --> X <u (0-1) --> X != 255 1105 // (X+2) >u X --> X <u (0-2) --> X <u 254 1106 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1107 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1108 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1109 ConstantInt::get(X->getType(), -C)); 1110 1111 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1112 1113 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1114 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1115 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1116 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1117 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1118 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1119 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1120 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1121 ConstantInt::get(X->getType(), SMax - C)); 1122 1123 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1124 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1125 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1126 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1127 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1128 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1129 1130 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1131 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1132 ConstantInt::get(X->getType(), SMax - (C - 1))); 1133 } 1134 1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1136 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1139 const APInt &AP1, 1140 const APInt &AP2) { 1141 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1142 1143 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1144 if (I.getPredicate() == I.ICMP_NE) 1145 Pred = CmpInst::getInversePredicate(Pred); 1146 return new ICmpInst(Pred, LHS, RHS); 1147 }; 1148 1149 // Don't bother doing any work for cases which InstSimplify handles. 1150 if (AP2.isNullValue()) 1151 return nullptr; 1152 1153 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1154 if (IsAShr) { 1155 if (AP2.isAllOnesValue()) 1156 return nullptr; 1157 if (AP2.isNegative() != AP1.isNegative()) 1158 return nullptr; 1159 if (AP2.sgt(AP1)) 1160 return nullptr; 1161 } 1162 1163 if (!AP1) 1164 // 'A' must be large enough to shift out the highest set bit. 1165 return getICmp(I.ICMP_UGT, A, 1166 ConstantInt::get(A->getType(), AP2.logBase2())); 1167 1168 if (AP1 == AP2) 1169 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1170 1171 int Shift; 1172 if (IsAShr && AP1.isNegative()) 1173 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1174 else 1175 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1176 1177 if (Shift > 0) { 1178 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1179 // There are multiple solutions if we are comparing against -1 and the LHS 1180 // of the ashr is not a power of two. 1181 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1182 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } else if (AP1 == AP2.lshr(Shift)) { 1185 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1186 } 1187 } 1188 1189 // Shifting const2 will never be equal to const1. 1190 // FIXME: This should always be handled by InstSimplify? 1191 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1192 return replaceInstUsesWith(I, TorF); 1193 } 1194 1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1198 const APInt &AP1, 1199 const APInt &AP2) { 1200 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1201 1202 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1203 if (I.getPredicate() == I.ICMP_NE) 1204 Pred = CmpInst::getInversePredicate(Pred); 1205 return new ICmpInst(Pred, LHS, RHS); 1206 }; 1207 1208 // Don't bother doing any work for cases which InstSimplify handles. 1209 if (AP2.isNullValue()) 1210 return nullptr; 1211 1212 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1213 1214 if (!AP1 && AP2TrailingZeros != 0) 1215 return getICmp( 1216 I.ICMP_UGE, A, 1217 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1218 1219 if (AP1 == AP2) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1221 1222 // Get the distance between the lowest bits that are set. 1223 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1224 1225 if (Shift > 0 && AP2.shl(Shift) == AP1) 1226 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1227 1228 // Shifting const2 will never be equal to const1. 1229 // FIXME: This should always be handled by InstSimplify? 1230 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1231 return replaceInstUsesWith(I, TorF); 1232 } 1233 1234 /// The caller has matched a pattern of the form: 1235 /// I = icmp ugt (add (add A, B), CI2), CI1 1236 /// If this is of the form: 1237 /// sum = a + b 1238 /// if (sum+128 >u 255) 1239 /// Then replace it with llvm.sadd.with.overflow.i8. 1240 /// 1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1242 ConstantInt *CI2, ConstantInt *CI1, 1243 InstCombinerImpl &IC) { 1244 // The transformation we're trying to do here is to transform this into an 1245 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1246 // with a narrower add, and discard the add-with-constant that is part of the 1247 // range check (if we can't eliminate it, this isn't profitable). 1248 1249 // In order to eliminate the add-with-constant, the compare can be its only 1250 // use. 1251 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1252 if (!AddWithCst->hasOneUse()) 1253 return nullptr; 1254 1255 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1256 if (!CI2->getValue().isPowerOf2()) 1257 return nullptr; 1258 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1259 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1260 return nullptr; 1261 1262 // The width of the new add formed is 1 more than the bias. 1263 ++NewWidth; 1264 1265 // Check to see that CI1 is an all-ones value with NewWidth bits. 1266 if (CI1->getBitWidth() == NewWidth || 1267 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1268 return nullptr; 1269 1270 // This is only really a signed overflow check if the inputs have been 1271 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1272 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1273 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1274 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1275 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1276 return nullptr; 1277 1278 // In order to replace the original add with a narrower 1279 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1280 // and truncates that discard the high bits of the add. Verify that this is 1281 // the case. 1282 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1283 for (User *U : OrigAdd->users()) { 1284 if (U == AddWithCst) 1285 continue; 1286 1287 // Only accept truncates for now. We would really like a nice recursive 1288 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1289 // chain to see which bits of a value are actually demanded. If the 1290 // original add had another add which was then immediately truncated, we 1291 // could still do the transformation. 1292 TruncInst *TI = dyn_cast<TruncInst>(U); 1293 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1294 return nullptr; 1295 } 1296 1297 // If the pattern matches, truncate the inputs to the narrower type and 1298 // use the sadd_with_overflow intrinsic to efficiently compute both the 1299 // result and the overflow bit. 1300 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1301 Function *F = Intrinsic::getDeclaration( 1302 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1303 1304 InstCombiner::BuilderTy &Builder = IC.Builder; 1305 1306 // Put the new code above the original add, in case there are any uses of the 1307 // add between the add and the compare. 1308 Builder.SetInsertPoint(OrigAdd); 1309 1310 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1311 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1312 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1313 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1314 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1315 1316 // The inner add was the result of the narrow add, zero extended to the 1317 // wider type. Replace it with the result computed by the intrinsic. 1318 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1319 IC.eraseInstFromFunction(*OrigAdd); 1320 1321 // The original icmp gets replaced with the overflow value. 1322 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1323 } 1324 1325 /// If we have: 1326 /// icmp eq/ne (urem/srem %x, %y), 0 1327 /// iff %y is a power-of-two, we can replace this with a bit test: 1328 /// icmp eq/ne (and %x, (add %y, -1)), 0 1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1330 // This fold is only valid for equality predicates. 1331 if (!I.isEquality()) 1332 return nullptr; 1333 ICmpInst::Predicate Pred; 1334 Value *X, *Y, *Zero; 1335 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1336 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1337 return nullptr; 1338 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1339 return nullptr; 1340 // This may increase instruction count, we don't enforce that Y is a constant. 1341 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1342 Value *Masked = Builder.CreateAnd(X, Mask); 1343 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1344 } 1345 1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1347 /// by one-less-than-bitwidth into a sign test on the original value. 1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1349 Instruction *Val; 1350 ICmpInst::Predicate Pred; 1351 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1352 return nullptr; 1353 1354 Value *X; 1355 Type *XTy; 1356 1357 Constant *C; 1358 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1359 XTy = X->getType(); 1360 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1361 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1362 APInt(XBitWidth, XBitWidth - 1)))) 1363 return nullptr; 1364 } else if (isa<BinaryOperator>(Val) && 1365 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1366 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1367 /*AnalyzeForSignBitExtraction=*/true))) { 1368 XTy = X->getType(); 1369 } else 1370 return nullptr; 1371 1372 return ICmpInst::Create(Instruction::ICmp, 1373 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1374 : ICmpInst::ICMP_SLT, 1375 X, ConstantInt::getNullValue(XTy)); 1376 } 1377 1378 // Handle icmp pred X, 0 1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1380 CmpInst::Predicate Pred = Cmp.getPredicate(); 1381 if (!match(Cmp.getOperand(1), m_Zero())) 1382 return nullptr; 1383 1384 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1385 if (Pred == ICmpInst::ICMP_SGT) { 1386 Value *A, *B; 1387 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1388 if (SPR.Flavor == SPF_SMIN) { 1389 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1390 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1391 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1392 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1393 } 1394 } 1395 1396 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1397 return New; 1398 1399 // Given: 1400 // icmp eq/ne (urem %x, %y), 0 1401 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1402 // icmp eq/ne %x, 0 1403 Value *X, *Y; 1404 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1405 ICmpInst::isEquality(Pred)) { 1406 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1407 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1408 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1409 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Fold icmp Pred X, C. 1416 /// TODO: This code structure does not make sense. The saturating add fold 1417 /// should be moved to some other helper and extended as noted below (it is also 1418 /// possible that code has been made unnecessary - do we canonicalize IR to 1419 /// overflow/saturating intrinsics or not?). 1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1421 // Match the following pattern, which is a common idiom when writing 1422 // overflow-safe integer arithmetic functions. The source performs an addition 1423 // in wider type and explicitly checks for overflow using comparisons against 1424 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1425 // 1426 // TODO: This could probably be generalized to handle other overflow-safe 1427 // operations if we worked out the formulas to compute the appropriate magic 1428 // constants. 1429 // 1430 // sum = a + b 1431 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1432 CmpInst::Predicate Pred = Cmp.getPredicate(); 1433 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1434 Value *A, *B; 1435 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1436 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1437 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1438 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1439 return Res; 1440 1441 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1442 Constant *C = dyn_cast<Constant>(Op1); 1443 if (!C || C->canTrap()) 1444 return nullptr; 1445 1446 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1447 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1448 Type *Ty = Cmp.getType(); 1449 Builder.SetInsertPoint(Phi); 1450 PHINode *NewPhi = 1451 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1452 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1453 auto *Input = 1454 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1455 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1456 NewPhi->addIncoming(BoolInput, Predecessor); 1457 } 1458 NewPhi->takeName(&Cmp); 1459 return replaceInstUsesWith(Cmp, NewPhi); 1460 } 1461 1462 return nullptr; 1463 } 1464 1465 /// Canonicalize icmp instructions based on dominating conditions. 1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1467 // This is a cheap/incomplete check for dominance - just match a single 1468 // predecessor with a conditional branch. 1469 BasicBlock *CmpBB = Cmp.getParent(); 1470 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1471 if (!DomBB) 1472 return nullptr; 1473 1474 Value *DomCond; 1475 BasicBlock *TrueBB, *FalseBB; 1476 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1477 return nullptr; 1478 1479 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1480 "Predecessor block does not point to successor?"); 1481 1482 // The branch should get simplified. Don't bother simplifying this condition. 1483 if (TrueBB == FalseBB) 1484 return nullptr; 1485 1486 // Try to simplify this compare to T/F based on the dominating condition. 1487 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1488 if (Imp) 1489 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1490 1491 CmpInst::Predicate Pred = Cmp.getPredicate(); 1492 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1493 ICmpInst::Predicate DomPred; 1494 const APInt *C, *DomC; 1495 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1496 match(Y, m_APInt(C))) { 1497 // We have 2 compares of a variable with constants. Calculate the constant 1498 // ranges of those compares to see if we can transform the 2nd compare: 1499 // DomBB: 1500 // DomCond = icmp DomPred X, DomC 1501 // br DomCond, CmpBB, FalseBB 1502 // CmpBB: 1503 // Cmp = icmp Pred X, C 1504 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1505 ConstantRange DominatingCR = 1506 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1507 : ConstantRange::makeExactICmpRegion( 1508 CmpInst::getInversePredicate(DomPred), *DomC); 1509 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1510 ConstantRange Difference = DominatingCR.difference(CR); 1511 if (Intersection.isEmptySet()) 1512 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1513 if (Difference.isEmptySet()) 1514 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1515 1516 // Canonicalizing a sign bit comparison that gets used in a branch, 1517 // pessimizes codegen by generating branch on zero instruction instead 1518 // of a test and branch. So we avoid canonicalizing in such situations 1519 // because test and branch instruction has better branch displacement 1520 // than compare and branch instruction. 1521 bool UnusedBit; 1522 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1523 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1524 return nullptr; 1525 1526 // Avoid an infinite loop with min/max canonicalization. 1527 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1528 if (Cmp.hasOneUse() && 1529 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1530 return nullptr; 1531 1532 if (const APInt *EqC = Intersection.getSingleElement()) 1533 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1534 if (const APInt *NeC = Difference.getSingleElement()) 1535 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 /// Fold icmp (trunc X, Y), C. 1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1543 TruncInst *Trunc, 1544 const APInt &C) { 1545 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1546 Value *X = Trunc->getOperand(0); 1547 if (C.isOneValue() && C.getBitWidth() > 1) { 1548 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1549 Value *V = nullptr; 1550 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1551 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1552 ConstantInt::get(V->getType(), 1)); 1553 } 1554 1555 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1556 SrcBits = X->getType()->getScalarSizeInBits(); 1557 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1558 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1559 // of the high bits truncated out of x are known. 1560 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1561 1562 // If all the high bits are known, we can do this xform. 1563 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1564 // Pull in the high bits from known-ones set. 1565 APInt NewRHS = C.zext(SrcBits); 1566 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1567 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1568 } 1569 } 1570 1571 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1572 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1573 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1574 Value *ShOp; 1575 const APInt *ShAmtC; 1576 bool TrueIfSigned; 1577 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1578 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1579 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1580 return TrueIfSigned 1581 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1582 ConstantInt::getNullValue(X->getType())) 1583 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1584 ConstantInt::getAllOnesValue(X->getType())); 1585 } 1586 1587 return nullptr; 1588 } 1589 1590 /// Fold icmp (xor X, Y), C. 1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1592 BinaryOperator *Xor, 1593 const APInt &C) { 1594 Value *X = Xor->getOperand(0); 1595 Value *Y = Xor->getOperand(1); 1596 const APInt *XorC; 1597 if (!match(Y, m_APInt(XorC))) 1598 return nullptr; 1599 1600 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1601 // fold the xor. 1602 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1603 bool TrueIfSigned = false; 1604 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1605 1606 // If the sign bit of the XorCst is not set, there is no change to 1607 // the operation, just stop using the Xor. 1608 if (!XorC->isNegative()) 1609 return replaceOperand(Cmp, 0, X); 1610 1611 // Emit the opposite comparison. 1612 if (TrueIfSigned) 1613 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1614 ConstantInt::getAllOnesValue(X->getType())); 1615 else 1616 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1617 ConstantInt::getNullValue(X->getType())); 1618 } 1619 1620 if (Xor->hasOneUse()) { 1621 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1622 if (!Cmp.isEquality() && XorC->isSignMask()) { 1623 Pred = Cmp.getFlippedSignednessPredicate(); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 1627 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1628 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1629 Pred = Cmp.getFlippedSignednessPredicate(); 1630 Pred = Cmp.getSwappedPredicate(Pred); 1631 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1632 } 1633 } 1634 1635 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1636 if (Pred == ICmpInst::ICMP_UGT) { 1637 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1638 if (*XorC == ~C && (C + 1).isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1640 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1641 if (*XorC == C && (C + 1).isPowerOf2()) 1642 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1643 } 1644 if (Pred == ICmpInst::ICMP_ULT) { 1645 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1646 if (*XorC == -C && C.isPowerOf2()) 1647 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1648 ConstantInt::get(X->getType(), ~C)); 1649 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1650 if (*XorC == C && (-C).isPowerOf2()) 1651 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1652 ConstantInt::get(X->getType(), ~C)); 1653 } 1654 return nullptr; 1655 } 1656 1657 /// Fold icmp (and (sh X, Y), C2), C1. 1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1659 BinaryOperator *And, 1660 const APInt &C1, 1661 const APInt &C2) { 1662 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1663 if (!Shift || !Shift->isShift()) 1664 return nullptr; 1665 1666 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1667 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1668 // code produced by the clang front-end, for bitfield access. 1669 // This seemingly simple opportunity to fold away a shift turns out to be 1670 // rather complicated. See PR17827 for details. 1671 unsigned ShiftOpcode = Shift->getOpcode(); 1672 bool IsShl = ShiftOpcode == Instruction::Shl; 1673 const APInt *C3; 1674 if (match(Shift->getOperand(1), m_APInt(C3))) { 1675 APInt NewAndCst, NewCmpCst; 1676 bool AnyCmpCstBitsShiftedOut; 1677 if (ShiftOpcode == Instruction::Shl) { 1678 // For a left shift, we can fold if the comparison is not signed. We can 1679 // also fold a signed comparison if the mask value and comparison value 1680 // are not negative. These constraints may not be obvious, but we can 1681 // prove that they are correct using an SMT solver. 1682 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1683 return nullptr; 1684 1685 NewCmpCst = C1.lshr(*C3); 1686 NewAndCst = C2.lshr(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1688 } else if (ShiftOpcode == Instruction::LShr) { 1689 // For a logical right shift, we can fold if the comparison is not signed. 1690 // We can also fold a signed comparison if the shifted mask value and the 1691 // shifted comparison value are not negative. These constraints may not be 1692 // obvious, but we can prove that they are correct using an SMT solver. 1693 NewCmpCst = C1.shl(*C3); 1694 NewAndCst = C2.shl(*C3); 1695 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1696 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1697 return nullptr; 1698 } else { 1699 // For an arithmetic shift, check that both constants don't use (in a 1700 // signed sense) the top bits being shifted out. 1701 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1702 NewCmpCst = C1.shl(*C3); 1703 NewAndCst = C2.shl(*C3); 1704 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1705 if (NewAndCst.ashr(*C3) != C2) 1706 return nullptr; 1707 } 1708 1709 if (AnyCmpCstBitsShiftedOut) { 1710 // If we shifted bits out, the fold is not going to work out. As a 1711 // special case, check to see if this means that the result is always 1712 // true or false now. 1713 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1714 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1715 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1716 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1717 } else { 1718 Value *NewAnd = Builder.CreateAnd( 1719 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1720 return new ICmpInst(Cmp.getPredicate(), 1721 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1722 } 1723 } 1724 1725 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1726 // preferable because it allows the C2 << Y expression to be hoisted out of a 1727 // loop if Y is invariant and X is not. 1728 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1729 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1730 // Compute C2 << Y. 1731 Value *NewShift = 1732 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1733 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1734 1735 // Compute X & (C2 << Y). 1736 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1737 return replaceOperand(Cmp, 0, NewAnd); 1738 } 1739 1740 return nullptr; 1741 } 1742 1743 /// Fold icmp (and X, C2), C1. 1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1745 BinaryOperator *And, 1746 const APInt &C1) { 1747 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1748 1749 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1750 // TODO: We canonicalize to the longer form for scalars because we have 1751 // better analysis/folds for icmp, and codegen may be better with icmp. 1752 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1753 match(And->getOperand(1), m_One())) 1754 return new TruncInst(And->getOperand(0), Cmp.getType()); 1755 1756 const APInt *C2; 1757 Value *X; 1758 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1759 return nullptr; 1760 1761 // Don't perform the following transforms if the AND has multiple uses 1762 if (!And->hasOneUse()) 1763 return nullptr; 1764 1765 if (Cmp.isEquality() && C1.isNullValue()) { 1766 // Restrict this fold to single-use 'and' (PR10267). 1767 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1768 if (C2->isSignMask()) { 1769 Constant *Zero = Constant::getNullValue(X->getType()); 1770 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1771 return new ICmpInst(NewPred, X, Zero); 1772 } 1773 1774 // Restrict this fold only for single-use 'and' (PR10267). 1775 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1776 if ((~(*C2) + 1).isPowerOf2()) { 1777 Constant *NegBOC = 1778 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1779 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1780 return new ICmpInst(NewPred, X, NegBOC); 1781 } 1782 } 1783 1784 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1785 // the input width without changing the value produced, eliminate the cast: 1786 // 1787 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1788 // 1789 // We can do this transformation if the constants do not have their sign bits 1790 // set or if it is an equality comparison. Extending a relational comparison 1791 // when we're checking the sign bit would not work. 1792 Value *W; 1793 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1794 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1795 // TODO: Is this a good transform for vectors? Wider types may reduce 1796 // throughput. Should this transform be limited (even for scalars) by using 1797 // shouldChangeType()? 1798 if (!Cmp.getType()->isVectorTy()) { 1799 Type *WideType = W->getType(); 1800 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1801 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1802 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1803 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1804 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1805 } 1806 } 1807 1808 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1809 return I; 1810 1811 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1812 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1813 // 1814 // iff pred isn't signed 1815 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1816 match(And->getOperand(1), m_One())) { 1817 Constant *One = cast<Constant>(And->getOperand(1)); 1818 Value *Or = And->getOperand(0); 1819 Value *A, *B, *LShr; 1820 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1821 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1822 unsigned UsesRemoved = 0; 1823 if (And->hasOneUse()) 1824 ++UsesRemoved; 1825 if (Or->hasOneUse()) 1826 ++UsesRemoved; 1827 if (LShr->hasOneUse()) 1828 ++UsesRemoved; 1829 1830 // Compute A & ((1 << B) | 1) 1831 Value *NewOr = nullptr; 1832 if (auto *C = dyn_cast<Constant>(B)) { 1833 if (UsesRemoved >= 1) 1834 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1835 } else { 1836 if (UsesRemoved >= 3) 1837 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1838 /*HasNUW=*/true), 1839 One, Or->getName()); 1840 } 1841 if (NewOr) { 1842 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1843 return replaceOperand(Cmp, 0, NewAnd); 1844 } 1845 } 1846 } 1847 1848 return nullptr; 1849 } 1850 1851 /// Fold icmp (and X, Y), C. 1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1853 BinaryOperator *And, 1854 const APInt &C) { 1855 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1856 return I; 1857 1858 // TODO: These all require that Y is constant too, so refactor with the above. 1859 1860 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1861 Value *X = And->getOperand(0); 1862 Value *Y = And->getOperand(1); 1863 if (auto *LI = dyn_cast<LoadInst>(X)) 1864 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1865 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1866 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1867 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1868 ConstantInt *C2 = cast<ConstantInt>(Y); 1869 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1870 return Res; 1871 } 1872 1873 if (!Cmp.isEquality()) 1874 return nullptr; 1875 1876 // X & -C == -C -> X > u ~C 1877 // X & -C != -C -> X <= u ~C 1878 // iff C is a power of 2 1879 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1880 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1881 : CmpInst::ICMP_ULE; 1882 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1883 } 1884 1885 // (X & C2) == 0 -> (trunc X) >= 0 1886 // (X & C2) != 0 -> (trunc X) < 0 1887 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1888 const APInt *C2; 1889 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1890 int32_t ExactLogBase2 = C2->exactLogBase2(); 1891 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1892 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1893 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1894 NTy = VectorType::get(NTy, AndVTy->getElementCount()); 1895 Value *Trunc = Builder.CreateTrunc(X, NTy); 1896 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1897 : CmpInst::ICMP_SLT; 1898 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1899 } 1900 } 1901 1902 return nullptr; 1903 } 1904 1905 /// Fold icmp (or X, Y), C. 1906 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1907 BinaryOperator *Or, 1908 const APInt &C) { 1909 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1910 if (C.isOneValue()) { 1911 // icmp slt signum(V) 1 --> icmp slt V, 1 1912 Value *V = nullptr; 1913 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1914 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1915 ConstantInt::get(V->getType(), 1)); 1916 } 1917 1918 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1919 const APInt *MaskC; 1920 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1921 if (*MaskC == C && (C + 1).isPowerOf2()) { 1922 // X | C == C --> X <=u C 1923 // X | C != C --> X >u C 1924 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1925 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1926 return new ICmpInst(Pred, OrOp0, OrOp1); 1927 } 1928 1929 // More general: canonicalize 'equality with set bits mask' to 1930 // 'equality with clear bits mask'. 1931 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1932 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1933 if (Or->hasOneUse()) { 1934 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1935 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1936 return new ICmpInst(Pred, And, NewC); 1937 } 1938 } 1939 1940 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1941 return nullptr; 1942 1943 Value *P, *Q; 1944 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1945 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1946 // -> and (icmp eq P, null), (icmp eq Q, null). 1947 Value *CmpP = 1948 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1949 Value *CmpQ = 1950 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1951 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1952 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1953 } 1954 1955 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1956 // a shorter form that has more potential to be folded even further. 1957 Value *X1, *X2, *X3, *X4; 1958 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1959 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1960 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1961 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1962 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1963 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1964 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1965 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1966 } 1967 1968 return nullptr; 1969 } 1970 1971 /// Fold icmp (mul X, Y), C. 1972 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1973 BinaryOperator *Mul, 1974 const APInt &C) { 1975 const APInt *MulC; 1976 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1977 return nullptr; 1978 1979 // If this is a test of the sign bit and the multiply is sign-preserving with 1980 // a constant operand, use the multiply LHS operand instead. 1981 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1982 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1983 if (MulC->isNegative()) 1984 Pred = ICmpInst::getSwappedPredicate(Pred); 1985 return new ICmpInst(Pred, Mul->getOperand(0), 1986 Constant::getNullValue(Mul->getType())); 1987 } 1988 1989 // If the multiply does not wrap, try to divide the compare constant by the 1990 // multiplication factor. 1991 if (Cmp.isEquality() && !MulC->isNullValue()) { 1992 // (mul nsw X, MulC) == C --> X == C /s MulC 1993 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { 1994 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1995 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1996 } 1997 // (mul nuw X, MulC) == C --> X == C /u MulC 1998 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { 1999 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2000 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2001 } 2002 } 2003 2004 return nullptr; 2005 } 2006 2007 /// Fold icmp (shl 1, Y), C. 2008 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2009 const APInt &C) { 2010 Value *Y; 2011 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2012 return nullptr; 2013 2014 Type *ShiftType = Shl->getType(); 2015 unsigned TypeBits = C.getBitWidth(); 2016 bool CIsPowerOf2 = C.isPowerOf2(); 2017 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2018 if (Cmp.isUnsigned()) { 2019 // (1 << Y) pred C -> Y pred Log2(C) 2020 if (!CIsPowerOf2) { 2021 // (1 << Y) < 30 -> Y <= 4 2022 // (1 << Y) <= 30 -> Y <= 4 2023 // (1 << Y) >= 30 -> Y > 4 2024 // (1 << Y) > 30 -> Y > 4 2025 if (Pred == ICmpInst::ICMP_ULT) 2026 Pred = ICmpInst::ICMP_ULE; 2027 else if (Pred == ICmpInst::ICMP_UGE) 2028 Pred = ICmpInst::ICMP_UGT; 2029 } 2030 2031 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2032 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2033 unsigned CLog2 = C.logBase2(); 2034 if (CLog2 == TypeBits - 1) { 2035 if (Pred == ICmpInst::ICMP_UGE) 2036 Pred = ICmpInst::ICMP_EQ; 2037 else if (Pred == ICmpInst::ICMP_ULT) 2038 Pred = ICmpInst::ICMP_NE; 2039 } 2040 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2041 } else if (Cmp.isSigned()) { 2042 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2043 if (C.isAllOnesValue()) { 2044 // (1 << Y) <= -1 -> Y == 31 2045 if (Pred == ICmpInst::ICMP_SLE) 2046 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2047 2048 // (1 << Y) > -1 -> Y != 31 2049 if (Pred == ICmpInst::ICMP_SGT) 2050 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2051 } else if (!C) { 2052 // (1 << Y) < 0 -> Y == 31 2053 // (1 << Y) <= 0 -> Y == 31 2054 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2055 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2056 2057 // (1 << Y) >= 0 -> Y != 31 2058 // (1 << Y) > 0 -> Y != 31 2059 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2060 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2061 } 2062 } else if (Cmp.isEquality() && CIsPowerOf2) { 2063 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2064 } 2065 2066 return nullptr; 2067 } 2068 2069 /// Fold icmp (shl X, Y), C. 2070 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2071 BinaryOperator *Shl, 2072 const APInt &C) { 2073 const APInt *ShiftVal; 2074 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2075 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2076 2077 const APInt *ShiftAmt; 2078 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2079 return foldICmpShlOne(Cmp, Shl, C); 2080 2081 // Check that the shift amount is in range. If not, don't perform undefined 2082 // shifts. When the shift is visited, it will be simplified. 2083 unsigned TypeBits = C.getBitWidth(); 2084 if (ShiftAmt->uge(TypeBits)) 2085 return nullptr; 2086 2087 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2088 Value *X = Shl->getOperand(0); 2089 Type *ShType = Shl->getType(); 2090 2091 // NSW guarantees that we are only shifting out sign bits from the high bits, 2092 // so we can ASHR the compare constant without needing a mask and eliminate 2093 // the shift. 2094 if (Shl->hasNoSignedWrap()) { 2095 if (Pred == ICmpInst::ICMP_SGT) { 2096 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2097 APInt ShiftedC = C.ashr(*ShiftAmt); 2098 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2099 } 2100 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2101 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2102 APInt ShiftedC = C.ashr(*ShiftAmt); 2103 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2104 } 2105 if (Pred == ICmpInst::ICMP_SLT) { 2106 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2107 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2108 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2109 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2110 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2111 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2112 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2113 } 2114 // If this is a signed comparison to 0 and the shift is sign preserving, 2115 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2116 // do that if we're sure to not continue on in this function. 2117 if (isSignTest(Pred, C)) 2118 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2119 } 2120 2121 // NUW guarantees that we are only shifting out zero bits from the high bits, 2122 // so we can LSHR the compare constant without needing a mask and eliminate 2123 // the shift. 2124 if (Shl->hasNoUnsignedWrap()) { 2125 if (Pred == ICmpInst::ICMP_UGT) { 2126 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2127 APInt ShiftedC = C.lshr(*ShiftAmt); 2128 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2129 } 2130 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2131 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2132 APInt ShiftedC = C.lshr(*ShiftAmt); 2133 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2134 } 2135 if (Pred == ICmpInst::ICMP_ULT) { 2136 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2137 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2138 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2139 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2140 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2141 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2142 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2143 } 2144 } 2145 2146 if (Cmp.isEquality() && Shl->hasOneUse()) { 2147 // Strength-reduce the shift into an 'and'. 2148 Constant *Mask = ConstantInt::get( 2149 ShType, 2150 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2151 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2152 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2153 return new ICmpInst(Pred, And, LShrC); 2154 } 2155 2156 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2157 bool TrueIfSigned = false; 2158 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2159 // (X << 31) <s 0 --> (X & 1) != 0 2160 Constant *Mask = ConstantInt::get( 2161 ShType, 2162 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2163 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2164 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2165 And, Constant::getNullValue(ShType)); 2166 } 2167 2168 // Simplify 'shl' inequality test into 'and' equality test. 2169 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2170 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2171 if ((C + 1).isPowerOf2() && 2172 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2173 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2174 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2175 : ICmpInst::ICMP_NE, 2176 And, Constant::getNullValue(ShType)); 2177 } 2178 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2179 if (C.isPowerOf2() && 2180 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2181 Value *And = 2182 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2183 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2184 : ICmpInst::ICMP_NE, 2185 And, Constant::getNullValue(ShType)); 2186 } 2187 } 2188 2189 // Transform (icmp pred iM (shl iM %v, N), C) 2190 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2191 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2192 // This enables us to get rid of the shift in favor of a trunc that may be 2193 // free on the target. It has the additional benefit of comparing to a 2194 // smaller constant that may be more target-friendly. 2195 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2196 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2197 DL.isLegalInteger(TypeBits - Amt)) { 2198 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2199 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2200 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2201 Constant *NewC = 2202 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2203 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2204 } 2205 2206 return nullptr; 2207 } 2208 2209 /// Fold icmp ({al}shr X, Y), C. 2210 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2211 BinaryOperator *Shr, 2212 const APInt &C) { 2213 // An exact shr only shifts out zero bits, so: 2214 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2215 Value *X = Shr->getOperand(0); 2216 CmpInst::Predicate Pred = Cmp.getPredicate(); 2217 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2218 C.isNullValue()) 2219 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2220 2221 const APInt *ShiftVal; 2222 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2223 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2224 2225 const APInt *ShiftAmt; 2226 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2227 return nullptr; 2228 2229 // Check that the shift amount is in range. If not, don't perform undefined 2230 // shifts. When the shift is visited it will be simplified. 2231 unsigned TypeBits = C.getBitWidth(); 2232 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2233 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2234 return nullptr; 2235 2236 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2237 bool IsExact = Shr->isExact(); 2238 Type *ShrTy = Shr->getType(); 2239 // TODO: If we could guarantee that InstSimplify would handle all of the 2240 // constant-value-based preconditions in the folds below, then we could assert 2241 // those conditions rather than checking them. This is difficult because of 2242 // undef/poison (PR34838). 2243 if (IsAShr) { 2244 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2245 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2246 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2247 APInt ShiftedC = C.shl(ShAmtVal); 2248 if (ShiftedC.ashr(ShAmtVal) == C) 2249 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2250 } 2251 if (Pred == CmpInst::ICMP_SGT) { 2252 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2253 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2254 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2255 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2256 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2257 } 2258 2259 // If the compare constant has significant bits above the lowest sign-bit, 2260 // then convert an unsigned cmp to a test of the sign-bit: 2261 // (ashr X, ShiftC) u> C --> X s< 0 2262 // (ashr X, ShiftC) u< C --> X s> -1 2263 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2264 if (Pred == CmpInst::ICMP_UGT) { 2265 return new ICmpInst(CmpInst::ICMP_SLT, X, 2266 ConstantInt::getNullValue(ShrTy)); 2267 } 2268 if (Pred == CmpInst::ICMP_ULT) { 2269 return new ICmpInst(CmpInst::ICMP_SGT, X, 2270 ConstantInt::getAllOnesValue(ShrTy)); 2271 } 2272 } 2273 } else { 2274 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2275 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2276 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2277 APInt ShiftedC = C.shl(ShAmtVal); 2278 if (ShiftedC.lshr(ShAmtVal) == C) 2279 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2280 } 2281 if (Pred == CmpInst::ICMP_UGT) { 2282 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2283 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2284 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2285 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2286 } 2287 } 2288 2289 if (!Cmp.isEquality()) 2290 return nullptr; 2291 2292 // Handle equality comparisons of shift-by-constant. 2293 2294 // If the comparison constant changes with the shift, the comparison cannot 2295 // succeed (bits of the comparison constant cannot match the shifted value). 2296 // This should be known by InstSimplify and already be folded to true/false. 2297 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2298 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2299 "Expected icmp+shr simplify did not occur."); 2300 2301 // If the bits shifted out are known zero, compare the unshifted value: 2302 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2303 if (Shr->isExact()) 2304 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2305 2306 if (C.isNullValue()) { 2307 // == 0 is u< 1. 2308 if (Pred == CmpInst::ICMP_EQ) 2309 return new ICmpInst(CmpInst::ICMP_ULT, X, 2310 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2311 else 2312 return new ICmpInst(CmpInst::ICMP_UGT, X, 2313 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2314 } 2315 2316 if (Shr->hasOneUse()) { 2317 // Canonicalize the shift into an 'and': 2318 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2319 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2320 Constant *Mask = ConstantInt::get(ShrTy, Val); 2321 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2322 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2323 } 2324 2325 return nullptr; 2326 } 2327 2328 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2329 BinaryOperator *SRem, 2330 const APInt &C) { 2331 // Match an 'is positive' or 'is negative' comparison of remainder by a 2332 // constant power-of-2 value: 2333 // (X % pow2C) sgt/slt 0 2334 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2335 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2336 return nullptr; 2337 2338 // TODO: The one-use check is standard because we do not typically want to 2339 // create longer instruction sequences, but this might be a special-case 2340 // because srem is not good for analysis or codegen. 2341 if (!SRem->hasOneUse()) 2342 return nullptr; 2343 2344 const APInt *DivisorC; 2345 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2346 return nullptr; 2347 2348 // Mask off the sign bit and the modulo bits (low-bits). 2349 Type *Ty = SRem->getType(); 2350 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2351 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2352 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2353 2354 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2355 // bit is set. Example: 2356 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2357 if (Pred == ICmpInst::ICMP_SGT) 2358 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2359 2360 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2361 // bit is set. Example: 2362 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2363 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2364 } 2365 2366 /// Fold icmp (udiv X, Y), C. 2367 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2368 BinaryOperator *UDiv, 2369 const APInt &C) { 2370 const APInt *C2; 2371 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2372 return nullptr; 2373 2374 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2375 2376 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2377 Value *Y = UDiv->getOperand(1); 2378 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2379 assert(!C.isMaxValue() && 2380 "icmp ugt X, UINT_MAX should have been simplified already."); 2381 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2382 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2383 } 2384 2385 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2386 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2387 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2388 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2389 ConstantInt::get(Y->getType(), C2->udiv(C))); 2390 } 2391 2392 return nullptr; 2393 } 2394 2395 /// Fold icmp ({su}div X, Y), C. 2396 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2397 BinaryOperator *Div, 2398 const APInt &C) { 2399 // Fold: icmp pred ([us]div X, C2), C -> range test 2400 // Fold this div into the comparison, producing a range check. 2401 // Determine, based on the divide type, what the range is being 2402 // checked. If there is an overflow on the low or high side, remember 2403 // it, otherwise compute the range [low, hi) bounding the new value. 2404 // See: InsertRangeTest above for the kinds of replacements possible. 2405 const APInt *C2; 2406 if (!match(Div->getOperand(1), m_APInt(C2))) 2407 return nullptr; 2408 2409 // FIXME: If the operand types don't match the type of the divide 2410 // then don't attempt this transform. The code below doesn't have the 2411 // logic to deal with a signed divide and an unsigned compare (and 2412 // vice versa). This is because (x /s C2) <s C produces different 2413 // results than (x /s C2) <u C or (x /u C2) <s C or even 2414 // (x /u C2) <u C. Simply casting the operands and result won't 2415 // work. :( The if statement below tests that condition and bails 2416 // if it finds it. 2417 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2418 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2419 return nullptr; 2420 2421 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2422 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2423 // division-by-constant cases should be present, we can not assert that they 2424 // have happened before we reach this icmp instruction. 2425 if (C2->isNullValue() || C2->isOneValue() || 2426 (DivIsSigned && C2->isAllOnesValue())) 2427 return nullptr; 2428 2429 // Compute Prod = C * C2. We are essentially solving an equation of 2430 // form X / C2 = C. We solve for X by multiplying C2 and C. 2431 // By solving for X, we can turn this into a range check instead of computing 2432 // a divide. 2433 APInt Prod = C * *C2; 2434 2435 // Determine if the product overflows by seeing if the product is not equal to 2436 // the divide. Make sure we do the same kind of divide as in the LHS 2437 // instruction that we're folding. 2438 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2439 2440 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2441 2442 // If the division is known to be exact, then there is no remainder from the 2443 // divide, so the covered range size is unit, otherwise it is the divisor. 2444 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2445 2446 // Figure out the interval that is being checked. For example, a comparison 2447 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2448 // Compute this interval based on the constants involved and the signedness of 2449 // the compare/divide. This computes a half-open interval, keeping track of 2450 // whether either value in the interval overflows. After analysis each 2451 // overflow variable is set to 0 if it's corresponding bound variable is valid 2452 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2453 int LoOverflow = 0, HiOverflow = 0; 2454 APInt LoBound, HiBound; 2455 2456 if (!DivIsSigned) { // udiv 2457 // e.g. X/5 op 3 --> [15, 20) 2458 LoBound = Prod; 2459 HiOverflow = LoOverflow = ProdOV; 2460 if (!HiOverflow) { 2461 // If this is not an exact divide, then many values in the range collapse 2462 // to the same result value. 2463 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2464 } 2465 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2466 if (C.isNullValue()) { // (X / pos) op 0 2467 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2468 LoBound = -(RangeSize - 1); 2469 HiBound = RangeSize; 2470 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2471 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2472 HiOverflow = LoOverflow = ProdOV; 2473 if (!HiOverflow) 2474 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2475 } else { // (X / pos) op neg 2476 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2477 HiBound = Prod + 1; 2478 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2479 if (!LoOverflow) { 2480 APInt DivNeg = -RangeSize; 2481 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2482 } 2483 } 2484 } else if (C2->isNegative()) { // Divisor is < 0. 2485 if (Div->isExact()) 2486 RangeSize.negate(); 2487 if (C.isNullValue()) { // (X / neg) op 0 2488 // e.g. X/-5 op 0 --> [-4, 5) 2489 LoBound = RangeSize + 1; 2490 HiBound = -RangeSize; 2491 if (HiBound == *C2) { // -INTMIN = INTMIN 2492 HiOverflow = 1; // [INTMIN+1, overflow) 2493 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2494 } 2495 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2496 // e.g. X/-5 op 3 --> [-19, -14) 2497 HiBound = Prod + 1; 2498 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2499 if (!LoOverflow) 2500 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2501 } else { // (X / neg) op neg 2502 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2503 LoOverflow = HiOverflow = ProdOV; 2504 if (!HiOverflow) 2505 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2506 } 2507 2508 // Dividing by a negative swaps the condition. LT <-> GT 2509 Pred = ICmpInst::getSwappedPredicate(Pred); 2510 } 2511 2512 Value *X = Div->getOperand(0); 2513 switch (Pred) { 2514 default: llvm_unreachable("Unhandled icmp opcode!"); 2515 case ICmpInst::ICMP_EQ: 2516 if (LoOverflow && HiOverflow) 2517 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2518 if (HiOverflow) 2519 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2520 ICmpInst::ICMP_UGE, X, 2521 ConstantInt::get(Div->getType(), LoBound)); 2522 if (LoOverflow) 2523 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2524 ICmpInst::ICMP_ULT, X, 2525 ConstantInt::get(Div->getType(), HiBound)); 2526 return replaceInstUsesWith( 2527 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2528 case ICmpInst::ICMP_NE: 2529 if (LoOverflow && HiOverflow) 2530 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2531 if (HiOverflow) 2532 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2533 ICmpInst::ICMP_ULT, X, 2534 ConstantInt::get(Div->getType(), LoBound)); 2535 if (LoOverflow) 2536 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2537 ICmpInst::ICMP_UGE, X, 2538 ConstantInt::get(Div->getType(), HiBound)); 2539 return replaceInstUsesWith(Cmp, 2540 insertRangeTest(X, LoBound, HiBound, 2541 DivIsSigned, false)); 2542 case ICmpInst::ICMP_ULT: 2543 case ICmpInst::ICMP_SLT: 2544 if (LoOverflow == +1) // Low bound is greater than input range. 2545 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2546 if (LoOverflow == -1) // Low bound is less than input range. 2547 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2548 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2549 case ICmpInst::ICMP_UGT: 2550 case ICmpInst::ICMP_SGT: 2551 if (HiOverflow == +1) // High bound greater than input range. 2552 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2553 if (HiOverflow == -1) // High bound less than input range. 2554 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2555 if (Pred == ICmpInst::ICMP_UGT) 2556 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2557 ConstantInt::get(Div->getType(), HiBound)); 2558 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2559 ConstantInt::get(Div->getType(), HiBound)); 2560 } 2561 2562 return nullptr; 2563 } 2564 2565 /// Fold icmp (sub X, Y), C. 2566 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2567 BinaryOperator *Sub, 2568 const APInt &C) { 2569 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2570 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2571 const APInt *C2; 2572 APInt SubResult; 2573 2574 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2575 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2576 return new ICmpInst(Cmp.getPredicate(), Y, 2577 ConstantInt::get(Y->getType(), 0)); 2578 2579 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2580 if (match(X, m_APInt(C2)) && 2581 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2582 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2583 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2584 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2585 ConstantInt::get(Y->getType(), SubResult)); 2586 2587 // The following transforms are only worth it if the only user of the subtract 2588 // is the icmp. 2589 if (!Sub->hasOneUse()) 2590 return nullptr; 2591 2592 if (Sub->hasNoSignedWrap()) { 2593 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2594 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2595 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2596 2597 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2598 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2599 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2600 2601 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2602 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2603 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2604 2605 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2606 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2607 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2608 } 2609 2610 if (!match(X, m_APInt(C2))) 2611 return nullptr; 2612 2613 // C2 - Y <u C -> (Y | (C - 1)) == C2 2614 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2615 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2616 (*C2 & (C - 1)) == (C - 1)) 2617 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2618 2619 // C2 - Y >u C -> (Y | C) != C2 2620 // iff C2 & C == C and C + 1 is a power of 2 2621 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2622 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2623 2624 return nullptr; 2625 } 2626 2627 /// Fold icmp (add X, Y), C. 2628 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2629 BinaryOperator *Add, 2630 const APInt &C) { 2631 Value *Y = Add->getOperand(1); 2632 const APInt *C2; 2633 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2634 return nullptr; 2635 2636 // Fold icmp pred (add X, C2), C. 2637 Value *X = Add->getOperand(0); 2638 Type *Ty = Add->getType(); 2639 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2640 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2641 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2642 2643 // Fold compare with offset to opposite sign compare if it eliminates offset: 2644 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2645 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2646 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2647 2648 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2649 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2650 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2651 2652 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2653 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2654 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2655 2656 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2657 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2658 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2659 2660 // If the add does not wrap, we can always adjust the compare by subtracting 2661 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2662 // are canonicalized to SGT/SLT/UGT/ULT. 2663 if ((Add->hasNoSignedWrap() && 2664 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2665 (Add->hasNoUnsignedWrap() && 2666 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2667 bool Overflow; 2668 APInt NewC = 2669 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2670 // If there is overflow, the result must be true or false. 2671 // TODO: Can we assert there is no overflow because InstSimplify always 2672 // handles those cases? 2673 if (!Overflow) 2674 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2675 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2676 } 2677 2678 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2679 const APInt &Upper = CR.getUpper(); 2680 const APInt &Lower = CR.getLower(); 2681 if (Cmp.isSigned()) { 2682 if (Lower.isSignMask()) 2683 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2684 if (Upper.isSignMask()) 2685 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2686 } else { 2687 if (Lower.isMinValue()) 2688 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2689 if (Upper.isMinValue()) 2690 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2691 } 2692 2693 if (!Add->hasOneUse()) 2694 return nullptr; 2695 2696 // X+C <u C2 -> (X & -C2) == C 2697 // iff C & (C2-1) == 0 2698 // C2 is a power of 2 2699 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2700 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2701 ConstantExpr::getNeg(cast<Constant>(Y))); 2702 2703 // X+C >u C2 -> (X & ~C2) != C 2704 // iff C & C2 == 0 2705 // C2+1 is a power of 2 2706 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2707 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2708 ConstantExpr::getNeg(cast<Constant>(Y))); 2709 2710 return nullptr; 2711 } 2712 2713 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2714 Value *&RHS, ConstantInt *&Less, 2715 ConstantInt *&Equal, 2716 ConstantInt *&Greater) { 2717 // TODO: Generalize this to work with other comparison idioms or ensure 2718 // they get canonicalized into this form. 2719 2720 // select i1 (a == b), 2721 // i32 Equal, 2722 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2723 // where Equal, Less and Greater are placeholders for any three constants. 2724 ICmpInst::Predicate PredA; 2725 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2726 !ICmpInst::isEquality(PredA)) 2727 return false; 2728 Value *EqualVal = SI->getTrueValue(); 2729 Value *UnequalVal = SI->getFalseValue(); 2730 // We still can get non-canonical predicate here, so canonicalize. 2731 if (PredA == ICmpInst::ICMP_NE) 2732 std::swap(EqualVal, UnequalVal); 2733 if (!match(EqualVal, m_ConstantInt(Equal))) 2734 return false; 2735 ICmpInst::Predicate PredB; 2736 Value *LHS2, *RHS2; 2737 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2738 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2739 return false; 2740 // We can get predicate mismatch here, so canonicalize if possible: 2741 // First, ensure that 'LHS' match. 2742 if (LHS2 != LHS) { 2743 // x sgt y <--> y slt x 2744 std::swap(LHS2, RHS2); 2745 PredB = ICmpInst::getSwappedPredicate(PredB); 2746 } 2747 if (LHS2 != LHS) 2748 return false; 2749 // We also need to canonicalize 'RHS'. 2750 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2751 // x sgt C-1 <--> x sge C <--> not(x slt C) 2752 auto FlippedStrictness = 2753 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2754 PredB, cast<Constant>(RHS2)); 2755 if (!FlippedStrictness) 2756 return false; 2757 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2758 RHS2 = FlippedStrictness->second; 2759 // And kind-of perform the result swap. 2760 std::swap(Less, Greater); 2761 PredB = ICmpInst::ICMP_SLT; 2762 } 2763 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2764 } 2765 2766 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2767 SelectInst *Select, 2768 ConstantInt *C) { 2769 2770 assert(C && "Cmp RHS should be a constant int!"); 2771 // If we're testing a constant value against the result of a three way 2772 // comparison, the result can be expressed directly in terms of the 2773 // original values being compared. Note: We could possibly be more 2774 // aggressive here and remove the hasOneUse test. The original select is 2775 // really likely to simplify or sink when we remove a test of the result. 2776 Value *OrigLHS, *OrigRHS; 2777 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2778 if (Cmp.hasOneUse() && 2779 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2780 C3GreaterThan)) { 2781 assert(C1LessThan && C2Equal && C3GreaterThan); 2782 2783 bool TrueWhenLessThan = 2784 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2785 ->isAllOnesValue(); 2786 bool TrueWhenEqual = 2787 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2788 ->isAllOnesValue(); 2789 bool TrueWhenGreaterThan = 2790 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2791 ->isAllOnesValue(); 2792 2793 // This generates the new instruction that will replace the original Cmp 2794 // Instruction. Instead of enumerating the various combinations when 2795 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2796 // false, we rely on chaining of ORs and future passes of InstCombine to 2797 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2798 2799 // When none of the three constants satisfy the predicate for the RHS (C), 2800 // the entire original Cmp can be simplified to a false. 2801 Value *Cond = Builder.getFalse(); 2802 if (TrueWhenLessThan) 2803 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2804 OrigLHS, OrigRHS)); 2805 if (TrueWhenEqual) 2806 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2807 OrigLHS, OrigRHS)); 2808 if (TrueWhenGreaterThan) 2809 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2810 OrigLHS, OrigRHS)); 2811 2812 return replaceInstUsesWith(Cmp, Cond); 2813 } 2814 return nullptr; 2815 } 2816 2817 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2818 InstCombiner::BuilderTy &Builder) { 2819 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2820 if (!Bitcast) 2821 return nullptr; 2822 2823 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2824 Value *Op1 = Cmp.getOperand(1); 2825 Value *BCSrcOp = Bitcast->getOperand(0); 2826 2827 // Make sure the bitcast doesn't change the number of vector elements. 2828 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2829 Bitcast->getDestTy()->getScalarSizeInBits()) { 2830 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2831 Value *X; 2832 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2833 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2834 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2835 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2836 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2837 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2838 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2839 match(Op1, m_Zero())) 2840 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2841 2842 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2843 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2844 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2845 2846 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2847 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2848 return new ICmpInst(Pred, X, 2849 ConstantInt::getAllOnesValue(X->getType())); 2850 } 2851 2852 // Zero-equality checks are preserved through unsigned floating-point casts: 2853 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2854 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2855 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2856 if (Cmp.isEquality() && match(Op1, m_Zero())) 2857 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2858 2859 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2860 // the FP extend/truncate because that cast does not change the sign-bit. 2861 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2862 // The sign-bit is always the most significant bit in those types. 2863 const APInt *C; 2864 bool TrueIfSigned; 2865 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2866 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2867 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2868 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2869 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2870 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2871 Type *XType = X->getType(); 2872 2873 // We can't currently handle Power style floating point operations here. 2874 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2875 2876 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2877 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2878 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2879 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2880 if (TrueIfSigned) 2881 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2882 ConstantInt::getNullValue(NewType)); 2883 else 2884 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2885 ConstantInt::getAllOnesValue(NewType)); 2886 } 2887 } 2888 } 2889 } 2890 2891 // Test to see if the operands of the icmp are casted versions of other 2892 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2893 if (Bitcast->getType()->isPointerTy() && 2894 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2895 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2896 // so eliminate it as well. 2897 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2898 Op1 = BC2->getOperand(0); 2899 2900 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2901 return new ICmpInst(Pred, BCSrcOp, Op1); 2902 } 2903 2904 // Folding: icmp <pred> iN X, C 2905 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2906 // and C is a splat of a K-bit pattern 2907 // and SC is a constant vector = <C', C', C', ..., C'> 2908 // Into: 2909 // %E = extractelement <M x iK> %vec, i32 C' 2910 // icmp <pred> iK %E, trunc(C) 2911 const APInt *C; 2912 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2913 !Bitcast->getType()->isIntegerTy() || 2914 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2915 return nullptr; 2916 2917 Value *Vec; 2918 ArrayRef<int> Mask; 2919 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2920 // Check whether every element of Mask is the same constant 2921 if (is_splat(Mask)) { 2922 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2923 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2924 if (C->isSplat(EltTy->getBitWidth())) { 2925 // Fold the icmp based on the value of C 2926 // If C is M copies of an iK sized bit pattern, 2927 // then: 2928 // => %E = extractelement <N x iK> %vec, i32 Elem 2929 // icmp <pred> iK %SplatVal, <pattern> 2930 Value *Elem = Builder.getInt32(Mask[0]); 2931 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2932 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2933 return new ICmpInst(Pred, Extract, NewC); 2934 } 2935 } 2936 } 2937 return nullptr; 2938 } 2939 2940 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2941 /// where X is some kind of instruction. 2942 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 2943 const APInt *C; 2944 if (!match(Cmp.getOperand(1), m_APInt(C))) 2945 return nullptr; 2946 2947 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2948 switch (BO->getOpcode()) { 2949 case Instruction::Xor: 2950 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2951 return I; 2952 break; 2953 case Instruction::And: 2954 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2955 return I; 2956 break; 2957 case Instruction::Or: 2958 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2959 return I; 2960 break; 2961 case Instruction::Mul: 2962 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2963 return I; 2964 break; 2965 case Instruction::Shl: 2966 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2967 return I; 2968 break; 2969 case Instruction::LShr: 2970 case Instruction::AShr: 2971 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2972 return I; 2973 break; 2974 case Instruction::SRem: 2975 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2976 return I; 2977 break; 2978 case Instruction::UDiv: 2979 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2980 return I; 2981 LLVM_FALLTHROUGH; 2982 case Instruction::SDiv: 2983 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2984 return I; 2985 break; 2986 case Instruction::Sub: 2987 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2988 return I; 2989 break; 2990 case Instruction::Add: 2991 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2992 return I; 2993 break; 2994 default: 2995 break; 2996 } 2997 // TODO: These folds could be refactored to be part of the above calls. 2998 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2999 return I; 3000 } 3001 3002 // Match against CmpInst LHS being instructions other than binary operators. 3003 3004 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3005 // For now, we only support constant integers while folding the 3006 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3007 // similar to the cases handled by binary ops above. 3008 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3009 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3010 return I; 3011 } 3012 3013 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3014 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3015 return I; 3016 } 3017 3018 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3019 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3020 return I; 3021 3022 return nullptr; 3023 } 3024 3025 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3026 /// icmp eq/ne BO, C. 3027 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3028 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3029 // TODO: Some of these folds could work with arbitrary constants, but this 3030 // function is limited to scalar and vector splat constants. 3031 if (!Cmp.isEquality()) 3032 return nullptr; 3033 3034 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3035 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3036 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3037 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3038 3039 switch (BO->getOpcode()) { 3040 case Instruction::SRem: 3041 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3042 if (C.isNullValue() && BO->hasOneUse()) { 3043 const APInt *BOC; 3044 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3045 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3046 return new ICmpInst(Pred, NewRem, 3047 Constant::getNullValue(BO->getType())); 3048 } 3049 } 3050 break; 3051 case Instruction::Add: { 3052 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3053 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3054 if (BO->hasOneUse()) 3055 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3056 } else if (C.isNullValue()) { 3057 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3058 // efficiently invertible, or if the add has just this one use. 3059 if (Value *NegVal = dyn_castNegVal(BOp1)) 3060 return new ICmpInst(Pred, BOp0, NegVal); 3061 if (Value *NegVal = dyn_castNegVal(BOp0)) 3062 return new ICmpInst(Pred, NegVal, BOp1); 3063 if (BO->hasOneUse()) { 3064 Value *Neg = Builder.CreateNeg(BOp1); 3065 Neg->takeName(BO); 3066 return new ICmpInst(Pred, BOp0, Neg); 3067 } 3068 } 3069 break; 3070 } 3071 case Instruction::Xor: 3072 if (BO->hasOneUse()) { 3073 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3074 // For the xor case, we can xor two constants together, eliminating 3075 // the explicit xor. 3076 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3077 } else if (C.isNullValue()) { 3078 // Replace ((xor A, B) != 0) with (A != B) 3079 return new ICmpInst(Pred, BOp0, BOp1); 3080 } 3081 } 3082 break; 3083 case Instruction::Sub: 3084 if (BO->hasOneUse()) { 3085 // Only check for constant LHS here, as constant RHS will be canonicalized 3086 // to add and use the fold above. 3087 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3088 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3089 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3090 } else if (C.isNullValue()) { 3091 // Replace ((sub A, B) != 0) with (A != B). 3092 return new ICmpInst(Pred, BOp0, BOp1); 3093 } 3094 } 3095 break; 3096 case Instruction::Or: { 3097 const APInt *BOC; 3098 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3099 // Comparing if all bits outside of a constant mask are set? 3100 // Replace (X | C) == -1 with (X & ~C) == ~C. 3101 // This removes the -1 constant. 3102 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3103 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3104 return new ICmpInst(Pred, And, NotBOC); 3105 } 3106 break; 3107 } 3108 case Instruction::And: { 3109 const APInt *BOC; 3110 if (match(BOp1, m_APInt(BOC))) { 3111 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3112 if (C == *BOC && C.isPowerOf2()) 3113 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3114 BO, Constant::getNullValue(RHS->getType())); 3115 } 3116 break; 3117 } 3118 case Instruction::UDiv: 3119 if (C.isNullValue()) { 3120 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3121 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3122 return new ICmpInst(NewPred, BOp1, BOp0); 3123 } 3124 break; 3125 default: 3126 break; 3127 } 3128 return nullptr; 3129 } 3130 3131 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3132 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3133 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3134 Type *Ty = II->getType(); 3135 unsigned BitWidth = C.getBitWidth(); 3136 switch (II->getIntrinsicID()) { 3137 case Intrinsic::abs: 3138 // abs(A) == 0 -> A == 0 3139 // abs(A) == INT_MIN -> A == INT_MIN 3140 if (C.isNullValue() || C.isMinSignedValue()) 3141 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3142 ConstantInt::get(Ty, C)); 3143 break; 3144 3145 case Intrinsic::bswap: 3146 // bswap(A) == C -> A == bswap(C) 3147 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3148 ConstantInt::get(Ty, C.byteSwap())); 3149 3150 case Intrinsic::ctlz: 3151 case Intrinsic::cttz: { 3152 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3153 if (C == BitWidth) 3154 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3155 ConstantInt::getNullValue(Ty)); 3156 3157 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3158 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3159 // Limit to one use to ensure we don't increase instruction count. 3160 unsigned Num = C.getLimitedValue(BitWidth); 3161 if (Num != BitWidth && II->hasOneUse()) { 3162 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3163 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3164 : APInt::getHighBitsSet(BitWidth, Num + 1); 3165 APInt Mask2 = IsTrailing 3166 ? APInt::getOneBitSet(BitWidth, Num) 3167 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3168 return new ICmpInst(Cmp.getPredicate(), 3169 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3170 ConstantInt::get(Ty, Mask2)); 3171 } 3172 break; 3173 } 3174 3175 case Intrinsic::ctpop: { 3176 // popcount(A) == 0 -> A == 0 and likewise for != 3177 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3178 bool IsZero = C.isNullValue(); 3179 if (IsZero || C == BitWidth) 3180 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3181 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3182 3183 break; 3184 } 3185 3186 case Intrinsic::uadd_sat: { 3187 // uadd.sat(a, b) == 0 -> (a | b) == 0 3188 if (C.isNullValue()) { 3189 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3190 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3191 } 3192 break; 3193 } 3194 3195 case Intrinsic::usub_sat: { 3196 // usub.sat(a, b) == 0 -> a <= b 3197 if (C.isNullValue()) { 3198 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3199 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3200 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3201 } 3202 break; 3203 } 3204 default: 3205 break; 3206 } 3207 3208 return nullptr; 3209 } 3210 3211 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3212 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3213 IntrinsicInst *II, 3214 const APInt &C) { 3215 if (Cmp.isEquality()) 3216 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3217 3218 Type *Ty = II->getType(); 3219 unsigned BitWidth = C.getBitWidth(); 3220 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3221 switch (II->getIntrinsicID()) { 3222 case Intrinsic::ctpop: { 3223 // (ctpop X > BitWidth - 1) --> X == -1 3224 Value *X = II->getArgOperand(0); 3225 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3226 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3227 ConstantInt::getAllOnesValue(Ty)); 3228 // (ctpop X < BitWidth) --> X != -1 3229 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3230 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3231 ConstantInt::getAllOnesValue(Ty)); 3232 break; 3233 } 3234 case Intrinsic::ctlz: { 3235 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3236 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3237 unsigned Num = C.getLimitedValue(); 3238 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3239 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3240 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3241 } 3242 3243 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3244 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3245 unsigned Num = C.getLimitedValue(); 3246 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3247 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3248 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3249 } 3250 break; 3251 } 3252 case Intrinsic::cttz: { 3253 // Limit to one use to ensure we don't increase instruction count. 3254 if (!II->hasOneUse()) 3255 return nullptr; 3256 3257 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3258 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3259 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3260 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3261 Builder.CreateAnd(II->getArgOperand(0), Mask), 3262 ConstantInt::getNullValue(Ty)); 3263 } 3264 3265 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3266 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3267 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3268 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3269 Builder.CreateAnd(II->getArgOperand(0), Mask), 3270 ConstantInt::getNullValue(Ty)); 3271 } 3272 break; 3273 } 3274 default: 3275 break; 3276 } 3277 3278 return nullptr; 3279 } 3280 3281 /// Handle icmp with constant (but not simple integer constant) RHS. 3282 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3283 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3284 Constant *RHSC = dyn_cast<Constant>(Op1); 3285 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3286 if (!RHSC || !LHSI) 3287 return nullptr; 3288 3289 switch (LHSI->getOpcode()) { 3290 case Instruction::GetElementPtr: 3291 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3292 if (RHSC->isNullValue() && 3293 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3294 return new ICmpInst( 3295 I.getPredicate(), LHSI->getOperand(0), 3296 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3297 break; 3298 case Instruction::PHI: 3299 // Only fold icmp into the PHI if the phi and icmp are in the same 3300 // block. If in the same block, we're encouraging jump threading. If 3301 // not, we are just pessimizing the code by making an i1 phi. 3302 if (LHSI->getParent() == I.getParent()) 3303 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3304 return NV; 3305 break; 3306 case Instruction::Select: { 3307 // If either operand of the select is a constant, we can fold the 3308 // comparison into the select arms, which will cause one to be 3309 // constant folded and the select turned into a bitwise or. 3310 Value *Op1 = nullptr, *Op2 = nullptr; 3311 ConstantInt *CI = nullptr; 3312 3313 auto SimplifyOp = [&](Value *V) { 3314 Value *Op = nullptr; 3315 if (Constant *C = dyn_cast<Constant>(V)) { 3316 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3317 } else if (RHSC->isNullValue()) { 3318 // If null is being compared, check if it can be further simplified. 3319 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3320 } 3321 return Op; 3322 }; 3323 Op1 = SimplifyOp(LHSI->getOperand(1)); 3324 if (Op1) 3325 CI = dyn_cast<ConstantInt>(Op1); 3326 3327 Op2 = SimplifyOp(LHSI->getOperand(2)); 3328 if (Op2) 3329 CI = dyn_cast<ConstantInt>(Op2); 3330 3331 // We only want to perform this transformation if it will not lead to 3332 // additional code. This is true if either both sides of the select 3333 // fold to a constant (in which case the icmp is replaced with a select 3334 // which will usually simplify) or this is the only user of the 3335 // select (in which case we are trading a select+icmp for a simpler 3336 // select+icmp) or all uses of the select can be replaced based on 3337 // dominance information ("Global cases"). 3338 bool Transform = false; 3339 if (Op1 && Op2) 3340 Transform = true; 3341 else if (Op1 || Op2) { 3342 // Local case 3343 if (LHSI->hasOneUse()) 3344 Transform = true; 3345 // Global cases 3346 else if (CI && !CI->isZero()) 3347 // When Op1 is constant try replacing select with second operand. 3348 // Otherwise Op2 is constant and try replacing select with first 3349 // operand. 3350 Transform = 3351 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3352 } 3353 if (Transform) { 3354 if (!Op1) 3355 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3356 I.getName()); 3357 if (!Op2) 3358 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3359 I.getName()); 3360 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3361 } 3362 break; 3363 } 3364 case Instruction::IntToPtr: 3365 // icmp pred inttoptr(X), null -> icmp pred X, 0 3366 if (RHSC->isNullValue() && 3367 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3368 return new ICmpInst( 3369 I.getPredicate(), LHSI->getOperand(0), 3370 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3371 break; 3372 3373 case Instruction::Load: 3374 // Try to optimize things like "A[i] > 4" to index computations. 3375 if (GetElementPtrInst *GEP = 3376 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3377 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3378 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3379 !cast<LoadInst>(LHSI)->isVolatile()) 3380 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3381 return Res; 3382 } 3383 break; 3384 } 3385 3386 return nullptr; 3387 } 3388 3389 /// Some comparisons can be simplified. 3390 /// In this case, we are looking for comparisons that look like 3391 /// a check for a lossy truncation. 3392 /// Folds: 3393 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3394 /// Where Mask is some pattern that produces all-ones in low bits: 3395 /// (-1 >> y) 3396 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3397 /// ~(-1 << y) 3398 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3399 /// The Mask can be a constant, too. 3400 /// For some predicates, the operands are commutative. 3401 /// For others, x can only be on a specific side. 3402 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3403 InstCombiner::BuilderTy &Builder) { 3404 ICmpInst::Predicate SrcPred; 3405 Value *X, *M, *Y; 3406 auto m_VariableMask = m_CombineOr( 3407 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3408 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3409 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3410 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3411 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3412 if (!match(&I, m_c_ICmp(SrcPred, 3413 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3414 m_Deferred(X)))) 3415 return nullptr; 3416 3417 ICmpInst::Predicate DstPred; 3418 switch (SrcPred) { 3419 case ICmpInst::Predicate::ICMP_EQ: 3420 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3421 DstPred = ICmpInst::Predicate::ICMP_ULE; 3422 break; 3423 case ICmpInst::Predicate::ICMP_NE: 3424 // x & (-1 >> y) != x -> x u> (-1 >> y) 3425 DstPred = ICmpInst::Predicate::ICMP_UGT; 3426 break; 3427 case ICmpInst::Predicate::ICMP_ULT: 3428 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3429 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3430 DstPred = ICmpInst::Predicate::ICMP_UGT; 3431 break; 3432 case ICmpInst::Predicate::ICMP_UGE: 3433 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3434 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3435 DstPred = ICmpInst::Predicate::ICMP_ULE; 3436 break; 3437 case ICmpInst::Predicate::ICMP_SLT: 3438 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3439 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3440 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3441 return nullptr; 3442 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3443 return nullptr; 3444 DstPred = ICmpInst::Predicate::ICMP_SGT; 3445 break; 3446 case ICmpInst::Predicate::ICMP_SGE: 3447 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3448 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3449 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3450 return nullptr; 3451 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3452 return nullptr; 3453 DstPred = ICmpInst::Predicate::ICMP_SLE; 3454 break; 3455 case ICmpInst::Predicate::ICMP_SGT: 3456 case ICmpInst::Predicate::ICMP_SLE: 3457 return nullptr; 3458 case ICmpInst::Predicate::ICMP_UGT: 3459 case ICmpInst::Predicate::ICMP_ULE: 3460 llvm_unreachable("Instsimplify took care of commut. variant"); 3461 break; 3462 default: 3463 llvm_unreachable("All possible folds are handled."); 3464 } 3465 3466 // The mask value may be a vector constant that has undefined elements. But it 3467 // may not be safe to propagate those undefs into the new compare, so replace 3468 // those elements by copying an existing, defined, and safe scalar constant. 3469 Type *OpTy = M->getType(); 3470 auto *VecC = dyn_cast<Constant>(M); 3471 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3472 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3473 Constant *SafeReplacementConstant = nullptr; 3474 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3475 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3476 SafeReplacementConstant = VecC->getAggregateElement(i); 3477 break; 3478 } 3479 } 3480 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3481 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3482 } 3483 3484 return Builder.CreateICmp(DstPred, X, M); 3485 } 3486 3487 /// Some comparisons can be simplified. 3488 /// In this case, we are looking for comparisons that look like 3489 /// a check for a lossy signed truncation. 3490 /// Folds: (MaskedBits is a constant.) 3491 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3492 /// Into: 3493 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3494 /// Where KeptBits = bitwidth(%x) - MaskedBits 3495 static Value * 3496 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3497 InstCombiner::BuilderTy &Builder) { 3498 ICmpInst::Predicate SrcPred; 3499 Value *X; 3500 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3501 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3502 if (!match(&I, m_c_ICmp(SrcPred, 3503 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3504 m_APInt(C1))), 3505 m_Deferred(X)))) 3506 return nullptr; 3507 3508 // Potential handling of non-splats: for each element: 3509 // * if both are undef, replace with constant 0. 3510 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3511 // * if both are not undef, and are different, bailout. 3512 // * else, only one is undef, then pick the non-undef one. 3513 3514 // The shift amount must be equal. 3515 if (*C0 != *C1) 3516 return nullptr; 3517 const APInt &MaskedBits = *C0; 3518 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3519 3520 ICmpInst::Predicate DstPred; 3521 switch (SrcPred) { 3522 case ICmpInst::Predicate::ICMP_EQ: 3523 // ((%x << MaskedBits) a>> MaskedBits) == %x 3524 // => 3525 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3526 DstPred = ICmpInst::Predicate::ICMP_ULT; 3527 break; 3528 case ICmpInst::Predicate::ICMP_NE: 3529 // ((%x << MaskedBits) a>> MaskedBits) != %x 3530 // => 3531 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3532 DstPred = ICmpInst::Predicate::ICMP_UGE; 3533 break; 3534 // FIXME: are more folds possible? 3535 default: 3536 return nullptr; 3537 } 3538 3539 auto *XType = X->getType(); 3540 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3541 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3542 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3543 3544 // KeptBits = bitwidth(%x) - MaskedBits 3545 const APInt KeptBits = BitWidth - MaskedBits; 3546 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3547 // ICmpCst = (1 << KeptBits) 3548 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3549 assert(ICmpCst.isPowerOf2()); 3550 // AddCst = (1 << (KeptBits-1)) 3551 const APInt AddCst = ICmpCst.lshr(1); 3552 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3553 3554 // T0 = add %x, AddCst 3555 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3556 // T1 = T0 DstPred ICmpCst 3557 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3558 3559 return T1; 3560 } 3561 3562 // Given pattern: 3563 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3564 // we should move shifts to the same hand of 'and', i.e. rewrite as 3565 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3566 // We are only interested in opposite logical shifts here. 3567 // One of the shifts can be truncated. 3568 // If we can, we want to end up creating 'lshr' shift. 3569 static Value * 3570 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3571 InstCombiner::BuilderTy &Builder) { 3572 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3573 !I.getOperand(0)->hasOneUse()) 3574 return nullptr; 3575 3576 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3577 3578 // Look for an 'and' of two logical shifts, one of which may be truncated. 3579 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3580 Instruction *XShift, *MaybeTruncation, *YShift; 3581 if (!match( 3582 I.getOperand(0), 3583 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3584 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3585 m_AnyLogicalShift, m_Instruction(YShift))), 3586 m_Instruction(MaybeTruncation))))) 3587 return nullptr; 3588 3589 // We potentially looked past 'trunc', but only when matching YShift, 3590 // therefore YShift must have the widest type. 3591 Instruction *WidestShift = YShift; 3592 // Therefore XShift must have the shallowest type. 3593 // Or they both have identical types if there was no truncation. 3594 Instruction *NarrowestShift = XShift; 3595 3596 Type *WidestTy = WidestShift->getType(); 3597 Type *NarrowestTy = NarrowestShift->getType(); 3598 assert(NarrowestTy == I.getOperand(0)->getType() && 3599 "We did not look past any shifts while matching XShift though."); 3600 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3601 3602 // If YShift is a 'lshr', swap the shifts around. 3603 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3604 std::swap(XShift, YShift); 3605 3606 // The shifts must be in opposite directions. 3607 auto XShiftOpcode = XShift->getOpcode(); 3608 if (XShiftOpcode == YShift->getOpcode()) 3609 return nullptr; // Do not care about same-direction shifts here. 3610 3611 Value *X, *XShAmt, *Y, *YShAmt; 3612 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3613 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3614 3615 // If one of the values being shifted is a constant, then we will end with 3616 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3617 // however, we will need to ensure that we won't increase instruction count. 3618 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3619 // At least one of the hands of the 'and' should be one-use shift. 3620 if (!match(I.getOperand(0), 3621 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3622 return nullptr; 3623 if (HadTrunc) { 3624 // Due to the 'trunc', we will need to widen X. For that either the old 3625 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3626 if (!MaybeTruncation->hasOneUse() && 3627 !NarrowestShift->getOperand(1)->hasOneUse()) 3628 return nullptr; 3629 } 3630 } 3631 3632 // We have two shift amounts from two different shifts. The types of those 3633 // shift amounts may not match. If that's the case let's bailout now. 3634 if (XShAmt->getType() != YShAmt->getType()) 3635 return nullptr; 3636 3637 // As input, we have the following pattern: 3638 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3639 // We want to rewrite that as: 3640 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3641 // While we know that originally (Q+K) would not overflow 3642 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3643 // shift amounts. so it may now overflow in smaller bitwidth. 3644 // To ensure that does not happen, we need to ensure that the total maximal 3645 // shift amount is still representable in that smaller bit width. 3646 unsigned MaximalPossibleTotalShiftAmount = 3647 (WidestTy->getScalarSizeInBits() - 1) + 3648 (NarrowestTy->getScalarSizeInBits() - 1); 3649 APInt MaximalRepresentableShiftAmount = 3650 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3651 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3652 return nullptr; 3653 3654 // Can we fold (XShAmt+YShAmt) ? 3655 auto *NewShAmt = dyn_cast_or_null<Constant>( 3656 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3657 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3658 if (!NewShAmt) 3659 return nullptr; 3660 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3661 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3662 3663 // Is the new shift amount smaller than the bit width? 3664 // FIXME: could also rely on ConstantRange. 3665 if (!match(NewShAmt, 3666 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3667 APInt(WidestBitWidth, WidestBitWidth)))) 3668 return nullptr; 3669 3670 // An extra legality check is needed if we had trunc-of-lshr. 3671 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3672 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3673 WidestShift]() { 3674 // It isn't obvious whether it's worth it to analyze non-constants here. 3675 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3676 // If *any* of these preconditions matches we can perform the fold. 3677 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3678 ? NewShAmt->getSplatValue() 3679 : NewShAmt; 3680 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3681 if (NewShAmtSplat && 3682 (NewShAmtSplat->isNullValue() || 3683 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3684 return true; 3685 // We consider *min* leading zeros so a single outlier 3686 // blocks the transform as opposed to allowing it. 3687 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3688 KnownBits Known = computeKnownBits(C, SQ.DL); 3689 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3690 // If the value being shifted has at most lowest bit set we can fold. 3691 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3692 if (MaxActiveBits <= 1) 3693 return true; 3694 // Precondition: NewShAmt u<= countLeadingZeros(C) 3695 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3696 return true; 3697 } 3698 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3699 KnownBits Known = computeKnownBits(C, SQ.DL); 3700 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3701 // If the value being shifted has at most lowest bit set we can fold. 3702 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3703 if (MaxActiveBits <= 1) 3704 return true; 3705 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3706 if (NewShAmtSplat) { 3707 APInt AdjNewShAmt = 3708 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3709 if (AdjNewShAmt.ule(MinLeadZero)) 3710 return true; 3711 } 3712 } 3713 return false; // Can't tell if it's ok. 3714 }; 3715 if (!CanFold()) 3716 return nullptr; 3717 } 3718 3719 // All good, we can do this fold. 3720 X = Builder.CreateZExt(X, WidestTy); 3721 Y = Builder.CreateZExt(Y, WidestTy); 3722 // The shift is the same that was for X. 3723 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3724 ? Builder.CreateLShr(X, NewShAmt) 3725 : Builder.CreateShl(X, NewShAmt); 3726 Value *T1 = Builder.CreateAnd(T0, Y); 3727 return Builder.CreateICmp(I.getPredicate(), T1, 3728 Constant::getNullValue(WidestTy)); 3729 } 3730 3731 /// Fold 3732 /// (-1 u/ x) u< y 3733 /// ((x * y) u/ x) != y 3734 /// to 3735 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3736 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3737 /// will mean that we are looking for the opposite answer. 3738 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3739 ICmpInst::Predicate Pred; 3740 Value *X, *Y; 3741 Instruction *Mul; 3742 bool NeedNegation; 3743 // Look for: (-1 u/ x) u</u>= y 3744 if (!I.isEquality() && 3745 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3746 m_Value(Y)))) { 3747 Mul = nullptr; 3748 3749 // Are we checking that overflow does not happen, or does happen? 3750 switch (Pred) { 3751 case ICmpInst::Predicate::ICMP_ULT: 3752 NeedNegation = false; 3753 break; // OK 3754 case ICmpInst::Predicate::ICMP_UGE: 3755 NeedNegation = true; 3756 break; // OK 3757 default: 3758 return nullptr; // Wrong predicate. 3759 } 3760 } else // Look for: ((x * y) u/ x) !=/== y 3761 if (I.isEquality() && 3762 match(&I, m_c_ICmp(Pred, m_Value(Y), 3763 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3764 m_Value(X)), 3765 m_Instruction(Mul)), 3766 m_Deferred(X)))))) { 3767 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3768 } else 3769 return nullptr; 3770 3771 BuilderTy::InsertPointGuard Guard(Builder); 3772 // If the pattern included (x * y), we'll want to insert new instructions 3773 // right before that original multiplication so that we can replace it. 3774 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3775 if (MulHadOtherUses) 3776 Builder.SetInsertPoint(Mul); 3777 3778 Function *F = Intrinsic::getDeclaration( 3779 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3780 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3781 3782 // If the multiplication was used elsewhere, to ensure that we don't leave 3783 // "duplicate" instructions, replace uses of that original multiplication 3784 // with the multiplication result from the with.overflow intrinsic. 3785 if (MulHadOtherUses) 3786 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3787 3788 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3789 if (NeedNegation) // This technically increases instruction count. 3790 Res = Builder.CreateNot(Res, "umul.not.ov"); 3791 3792 // If we replaced the mul, erase it. Do this after all uses of Builder, 3793 // as the mul is used as insertion point. 3794 if (MulHadOtherUses) 3795 eraseInstFromFunction(*Mul); 3796 3797 return Res; 3798 } 3799 3800 static Instruction *foldICmpXNegX(ICmpInst &I) { 3801 CmpInst::Predicate Pred; 3802 Value *X; 3803 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3804 return nullptr; 3805 3806 if (ICmpInst::isSigned(Pred)) 3807 Pred = ICmpInst::getSwappedPredicate(Pred); 3808 else if (ICmpInst::isUnsigned(Pred)) 3809 Pred = ICmpInst::getSignedPredicate(Pred); 3810 // else for equality-comparisons just keep the predicate. 3811 3812 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3813 Constant::getNullValue(X->getType()), I.getName()); 3814 } 3815 3816 /// Try to fold icmp (binop), X or icmp X, (binop). 3817 /// TODO: A large part of this logic is duplicated in InstSimplify's 3818 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3819 /// duplication. 3820 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3821 const SimplifyQuery &SQ) { 3822 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3823 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3824 3825 // Special logic for binary operators. 3826 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3827 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3828 if (!BO0 && !BO1) 3829 return nullptr; 3830 3831 if (Instruction *NewICmp = foldICmpXNegX(I)) 3832 return NewICmp; 3833 3834 const CmpInst::Predicate Pred = I.getPredicate(); 3835 Value *X; 3836 3837 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3838 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3839 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3840 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3841 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3842 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3843 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3844 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3845 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3846 3847 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3848 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3849 NoOp0WrapProblem = 3850 ICmpInst::isEquality(Pred) || 3851 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3852 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3853 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3854 NoOp1WrapProblem = 3855 ICmpInst::isEquality(Pred) || 3856 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3857 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3858 3859 // Analyze the case when either Op0 or Op1 is an add instruction. 3860 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3861 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3862 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3863 A = BO0->getOperand(0); 3864 B = BO0->getOperand(1); 3865 } 3866 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3867 C = BO1->getOperand(0); 3868 D = BO1->getOperand(1); 3869 } 3870 3871 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3872 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3873 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3874 return new ICmpInst(Pred, A == Op1 ? B : A, 3875 Constant::getNullValue(Op1->getType())); 3876 3877 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3878 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3879 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3880 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3881 C == Op0 ? D : C); 3882 3883 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3884 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3885 NoOp1WrapProblem) { 3886 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3887 Value *Y, *Z; 3888 if (A == C) { 3889 // C + B == C + D -> B == D 3890 Y = B; 3891 Z = D; 3892 } else if (A == D) { 3893 // D + B == C + D -> B == C 3894 Y = B; 3895 Z = C; 3896 } else if (B == C) { 3897 // A + C == C + D -> A == D 3898 Y = A; 3899 Z = D; 3900 } else { 3901 assert(B == D); 3902 // A + D == C + D -> A == C 3903 Y = A; 3904 Z = C; 3905 } 3906 return new ICmpInst(Pred, Y, Z); 3907 } 3908 3909 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3910 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3911 match(B, m_AllOnes())) 3912 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3913 3914 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3915 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3916 match(B, m_AllOnes())) 3917 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3918 3919 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3920 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3921 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3922 3923 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3924 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3925 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3926 3927 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3928 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3929 match(D, m_AllOnes())) 3930 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3931 3932 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3933 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3934 match(D, m_AllOnes())) 3935 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3936 3937 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3938 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3939 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3940 3941 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3942 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3943 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3944 3945 // TODO: The subtraction-related identities shown below also hold, but 3946 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3947 // wouldn't happen even if they were implemented. 3948 // 3949 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3950 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3951 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3952 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3953 3954 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3955 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3956 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3957 3958 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3959 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3960 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3961 3962 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3963 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3964 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3965 3966 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3967 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3968 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3969 3970 // if C1 has greater magnitude than C2: 3971 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3972 // s.t. C3 = C1 - C2 3973 // 3974 // if C2 has greater magnitude than C1: 3975 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3976 // s.t. C3 = C2 - C1 3977 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3978 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3979 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3980 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3981 const APInt &AP1 = C1->getValue(); 3982 const APInt &AP2 = C2->getValue(); 3983 if (AP1.isNegative() == AP2.isNegative()) { 3984 APInt AP1Abs = C1->getValue().abs(); 3985 APInt AP2Abs = C2->getValue().abs(); 3986 if (AP1Abs.uge(AP2Abs)) { 3987 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3988 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 3989 bool HasNSW = BO0->hasNoSignedWrap(); 3990 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 3991 return new ICmpInst(Pred, NewAdd, C); 3992 } else { 3993 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3994 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 3995 bool HasNSW = BO1->hasNoSignedWrap(); 3996 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 3997 return new ICmpInst(Pred, A, NewAdd); 3998 } 3999 } 4000 } 4001 4002 // Analyze the case when either Op0 or Op1 is a sub instruction. 4003 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4004 A = nullptr; 4005 B = nullptr; 4006 C = nullptr; 4007 D = nullptr; 4008 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4009 A = BO0->getOperand(0); 4010 B = BO0->getOperand(1); 4011 } 4012 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4013 C = BO1->getOperand(0); 4014 D = BO1->getOperand(1); 4015 } 4016 4017 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4018 if (A == Op1 && NoOp0WrapProblem) 4019 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4020 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4021 if (C == Op0 && NoOp1WrapProblem) 4022 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4023 4024 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4025 // (A - B) u>/u<= A --> B u>/u<= A 4026 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4027 return new ICmpInst(Pred, B, A); 4028 // C u</u>= (C - D) --> C u</u>= D 4029 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4030 return new ICmpInst(Pred, C, D); 4031 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4032 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4033 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4034 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4035 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4036 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4037 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4038 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4039 4040 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4041 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4042 return new ICmpInst(Pred, A, C); 4043 4044 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4045 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4046 return new ICmpInst(Pred, D, B); 4047 4048 // icmp (0-X) < cst --> x > -cst 4049 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4050 Value *X; 4051 if (match(BO0, m_Neg(m_Value(X)))) 4052 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4053 if (RHSC->isNotMinSignedValue()) 4054 return new ICmpInst(I.getSwappedPredicate(), X, 4055 ConstantExpr::getNeg(RHSC)); 4056 } 4057 4058 { 4059 // Try to remove shared constant multiplier from equality comparison: 4060 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4061 Value *X, *Y; 4062 const APInt *C; 4063 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4064 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4065 if (!C->countTrailingZeros() || 4066 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4067 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4068 return new ICmpInst(Pred, X, Y); 4069 } 4070 4071 BinaryOperator *SRem = nullptr; 4072 // icmp (srem X, Y), Y 4073 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4074 SRem = BO0; 4075 // icmp Y, (srem X, Y) 4076 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4077 Op0 == BO1->getOperand(1)) 4078 SRem = BO1; 4079 if (SRem) { 4080 // We don't check hasOneUse to avoid increasing register pressure because 4081 // the value we use is the same value this instruction was already using. 4082 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4083 default: 4084 break; 4085 case ICmpInst::ICMP_EQ: 4086 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4087 case ICmpInst::ICMP_NE: 4088 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4089 case ICmpInst::ICMP_SGT: 4090 case ICmpInst::ICMP_SGE: 4091 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4092 Constant::getAllOnesValue(SRem->getType())); 4093 case ICmpInst::ICMP_SLT: 4094 case ICmpInst::ICMP_SLE: 4095 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4096 Constant::getNullValue(SRem->getType())); 4097 } 4098 } 4099 4100 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4101 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4102 switch (BO0->getOpcode()) { 4103 default: 4104 break; 4105 case Instruction::Add: 4106 case Instruction::Sub: 4107 case Instruction::Xor: { 4108 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4109 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4110 4111 const APInt *C; 4112 if (match(BO0->getOperand(1), m_APInt(C))) { 4113 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4114 if (C->isSignMask()) { 4115 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4116 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4117 } 4118 4119 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4120 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4121 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4122 NewPred = I.getSwappedPredicate(NewPred); 4123 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4124 } 4125 } 4126 break; 4127 } 4128 case Instruction::Mul: { 4129 if (!I.isEquality()) 4130 break; 4131 4132 const APInt *C; 4133 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4134 !C->isOneValue()) { 4135 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4136 // Mask = -1 >> count-trailing-zeros(C). 4137 if (unsigned TZs = C->countTrailingZeros()) { 4138 Constant *Mask = ConstantInt::get( 4139 BO0->getType(), 4140 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4141 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4142 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4143 return new ICmpInst(Pred, And1, And2); 4144 } 4145 } 4146 break; 4147 } 4148 case Instruction::UDiv: 4149 case Instruction::LShr: 4150 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4151 break; 4152 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4153 4154 case Instruction::SDiv: 4155 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4156 break; 4157 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4158 4159 case Instruction::AShr: 4160 if (!BO0->isExact() || !BO1->isExact()) 4161 break; 4162 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4163 4164 case Instruction::Shl: { 4165 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4166 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4167 if (!NUW && !NSW) 4168 break; 4169 if (!NSW && I.isSigned()) 4170 break; 4171 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4172 } 4173 } 4174 } 4175 4176 if (BO0) { 4177 // Transform A & (L - 1) `ult` L --> L != 0 4178 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4179 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4180 4181 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4182 auto *Zero = Constant::getNullValue(BO0->getType()); 4183 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4184 } 4185 } 4186 4187 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4188 return replaceInstUsesWith(I, V); 4189 4190 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4191 return replaceInstUsesWith(I, V); 4192 4193 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4194 return replaceInstUsesWith(I, V); 4195 4196 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4197 return replaceInstUsesWith(I, V); 4198 4199 return nullptr; 4200 } 4201 4202 /// Fold icmp Pred min|max(X, Y), X. 4203 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4204 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4205 Value *Op0 = Cmp.getOperand(0); 4206 Value *X = Cmp.getOperand(1); 4207 4208 // Canonicalize minimum or maximum operand to LHS of the icmp. 4209 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4210 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4211 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4212 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4213 std::swap(Op0, X); 4214 Pred = Cmp.getSwappedPredicate(); 4215 } 4216 4217 Value *Y; 4218 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4219 // smin(X, Y) == X --> X s<= Y 4220 // smin(X, Y) s>= X --> X s<= Y 4221 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4222 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4223 4224 // smin(X, Y) != X --> X s> Y 4225 // smin(X, Y) s< X --> X s> Y 4226 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4227 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4228 4229 // These cases should be handled in InstSimplify: 4230 // smin(X, Y) s<= X --> true 4231 // smin(X, Y) s> X --> false 4232 return nullptr; 4233 } 4234 4235 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4236 // smax(X, Y) == X --> X s>= Y 4237 // smax(X, Y) s<= X --> X s>= Y 4238 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4239 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4240 4241 // smax(X, Y) != X --> X s< Y 4242 // smax(X, Y) s> X --> X s< Y 4243 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4244 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4245 4246 // These cases should be handled in InstSimplify: 4247 // smax(X, Y) s>= X --> true 4248 // smax(X, Y) s< X --> false 4249 return nullptr; 4250 } 4251 4252 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4253 // umin(X, Y) == X --> X u<= Y 4254 // umin(X, Y) u>= X --> X u<= Y 4255 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4256 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4257 4258 // umin(X, Y) != X --> X u> Y 4259 // umin(X, Y) u< X --> X u> Y 4260 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4261 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4262 4263 // These cases should be handled in InstSimplify: 4264 // umin(X, Y) u<= X --> true 4265 // umin(X, Y) u> X --> false 4266 return nullptr; 4267 } 4268 4269 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4270 // umax(X, Y) == X --> X u>= Y 4271 // umax(X, Y) u<= X --> X u>= Y 4272 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4273 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4274 4275 // umax(X, Y) != X --> X u< Y 4276 // umax(X, Y) u> X --> X u< Y 4277 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4278 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4279 4280 // These cases should be handled in InstSimplify: 4281 // umax(X, Y) u>= X --> true 4282 // umax(X, Y) u< X --> false 4283 return nullptr; 4284 } 4285 4286 return nullptr; 4287 } 4288 4289 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4290 if (!I.isEquality()) 4291 return nullptr; 4292 4293 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4294 const CmpInst::Predicate Pred = I.getPredicate(); 4295 Value *A, *B, *C, *D; 4296 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4297 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4298 Value *OtherVal = A == Op1 ? B : A; 4299 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4300 } 4301 4302 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4303 // A^c1 == C^c2 --> A == C^(c1^c2) 4304 ConstantInt *C1, *C2; 4305 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4306 Op1->hasOneUse()) { 4307 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4308 Value *Xor = Builder.CreateXor(C, NC); 4309 return new ICmpInst(Pred, A, Xor); 4310 } 4311 4312 // A^B == A^D -> B == D 4313 if (A == C) 4314 return new ICmpInst(Pred, B, D); 4315 if (A == D) 4316 return new ICmpInst(Pred, B, C); 4317 if (B == C) 4318 return new ICmpInst(Pred, A, D); 4319 if (B == D) 4320 return new ICmpInst(Pred, A, C); 4321 } 4322 } 4323 4324 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4325 // A == (A^B) -> B == 0 4326 Value *OtherVal = A == Op0 ? B : A; 4327 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4328 } 4329 4330 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4331 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4332 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4333 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4334 4335 if (A == C) { 4336 X = B; 4337 Y = D; 4338 Z = A; 4339 } else if (A == D) { 4340 X = B; 4341 Y = C; 4342 Z = A; 4343 } else if (B == C) { 4344 X = A; 4345 Y = D; 4346 Z = B; 4347 } else if (B == D) { 4348 X = A; 4349 Y = C; 4350 Z = B; 4351 } 4352 4353 if (X) { // Build (X^Y) & Z 4354 Op1 = Builder.CreateXor(X, Y); 4355 Op1 = Builder.CreateAnd(Op1, Z); 4356 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4357 } 4358 } 4359 4360 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4361 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4362 ConstantInt *Cst1; 4363 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4364 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4365 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4366 match(Op1, m_ZExt(m_Value(A))))) { 4367 APInt Pow2 = Cst1->getValue() + 1; 4368 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4369 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4370 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4371 } 4372 4373 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4374 // For lshr and ashr pairs. 4375 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4376 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4377 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4378 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4379 unsigned TypeBits = Cst1->getBitWidth(); 4380 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4381 if (ShAmt < TypeBits && ShAmt != 0) { 4382 ICmpInst::Predicate NewPred = 4383 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4384 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4385 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4386 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4387 } 4388 } 4389 4390 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4391 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4392 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4393 unsigned TypeBits = Cst1->getBitWidth(); 4394 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4395 if (ShAmt < TypeBits && ShAmt != 0) { 4396 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4397 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4398 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4399 I.getName() + ".mask"); 4400 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4401 } 4402 } 4403 4404 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4405 // "icmp (and X, mask), cst" 4406 uint64_t ShAmt = 0; 4407 if (Op0->hasOneUse() && 4408 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4409 match(Op1, m_ConstantInt(Cst1)) && 4410 // Only do this when A has multiple uses. This is most important to do 4411 // when it exposes other optimizations. 4412 !A->hasOneUse()) { 4413 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4414 4415 if (ShAmt < ASize) { 4416 APInt MaskV = 4417 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4418 MaskV <<= ShAmt; 4419 4420 APInt CmpV = Cst1->getValue().zext(ASize); 4421 CmpV <<= ShAmt; 4422 4423 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4424 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4425 } 4426 } 4427 4428 // If both operands are byte-swapped or bit-reversed, just compare the 4429 // original values. 4430 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4431 // and handle more intrinsics. 4432 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4433 (match(Op0, m_BitReverse(m_Value(A))) && 4434 match(Op1, m_BitReverse(m_Value(B))))) 4435 return new ICmpInst(Pred, A, B); 4436 4437 // Canonicalize checking for a power-of-2-or-zero value: 4438 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4439 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4440 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4441 m_Deferred(A)))) || 4442 !match(Op1, m_ZeroInt())) 4443 A = nullptr; 4444 4445 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4446 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4447 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4448 A = Op1; 4449 else if (match(Op1, 4450 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4451 A = Op0; 4452 4453 if (A) { 4454 Type *Ty = A->getType(); 4455 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4456 return Pred == ICmpInst::ICMP_EQ 4457 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4458 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4459 } 4460 4461 return nullptr; 4462 } 4463 4464 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4465 InstCombiner::BuilderTy &Builder) { 4466 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4467 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4468 Value *X; 4469 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4470 return nullptr; 4471 4472 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4473 bool IsSignedCmp = ICmp.isSigned(); 4474 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4475 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4476 // and the other is a zext), then we can't handle this. 4477 // TODO: This is too strict. We can handle some predicates (equality?). 4478 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4479 return nullptr; 4480 4481 // Not an extension from the same type? 4482 Value *Y = CastOp1->getOperand(0); 4483 Type *XTy = X->getType(), *YTy = Y->getType(); 4484 if (XTy != YTy) { 4485 // One of the casts must have one use because we are creating a new cast. 4486 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4487 return nullptr; 4488 // Extend the narrower operand to the type of the wider operand. 4489 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4490 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4491 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4492 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4493 else 4494 return nullptr; 4495 } 4496 4497 // (zext X) == (zext Y) --> X == Y 4498 // (sext X) == (sext Y) --> X == Y 4499 if (ICmp.isEquality()) 4500 return new ICmpInst(ICmp.getPredicate(), X, Y); 4501 4502 // A signed comparison of sign extended values simplifies into a 4503 // signed comparison. 4504 if (IsSignedCmp && IsSignedExt) 4505 return new ICmpInst(ICmp.getPredicate(), X, Y); 4506 4507 // The other three cases all fold into an unsigned comparison. 4508 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4509 } 4510 4511 // Below here, we are only folding a compare with constant. 4512 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4513 if (!C) 4514 return nullptr; 4515 4516 // Compute the constant that would happen if we truncated to SrcTy then 4517 // re-extended to DestTy. 4518 Type *SrcTy = CastOp0->getSrcTy(); 4519 Type *DestTy = CastOp0->getDestTy(); 4520 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4521 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4522 4523 // If the re-extended constant didn't change... 4524 if (Res2 == C) { 4525 if (ICmp.isEquality()) 4526 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4527 4528 // A signed comparison of sign extended values simplifies into a 4529 // signed comparison. 4530 if (IsSignedExt && IsSignedCmp) 4531 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4532 4533 // The other three cases all fold into an unsigned comparison. 4534 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4535 } 4536 4537 // The re-extended constant changed, partly changed (in the case of a vector), 4538 // or could not be determined to be equal (in the case of a constant 4539 // expression), so the constant cannot be represented in the shorter type. 4540 // All the cases that fold to true or false will have already been handled 4541 // by SimplifyICmpInst, so only deal with the tricky case. 4542 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4543 return nullptr; 4544 4545 // Is source op positive? 4546 // icmp ult (sext X), C --> icmp sgt X, -1 4547 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4548 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4549 4550 // Is source op negative? 4551 // icmp ugt (sext X), C --> icmp slt X, 0 4552 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4553 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4554 } 4555 4556 /// Handle icmp (cast x), (cast or constant). 4557 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4558 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4559 if (!CastOp0) 4560 return nullptr; 4561 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4562 return nullptr; 4563 4564 Value *Op0Src = CastOp0->getOperand(0); 4565 Type *SrcTy = CastOp0->getSrcTy(); 4566 Type *DestTy = CastOp0->getDestTy(); 4567 4568 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4569 // integer type is the same size as the pointer type. 4570 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4571 if (isa<VectorType>(SrcTy)) { 4572 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4573 DestTy = cast<VectorType>(DestTy)->getElementType(); 4574 } 4575 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4576 }; 4577 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4578 CompatibleSizes(SrcTy, DestTy)) { 4579 Value *NewOp1 = nullptr; 4580 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4581 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4582 if (PtrSrc->getType()->getPointerAddressSpace() == 4583 Op0Src->getType()->getPointerAddressSpace()) { 4584 NewOp1 = PtrToIntOp1->getOperand(0); 4585 // If the pointer types don't match, insert a bitcast. 4586 if (Op0Src->getType() != NewOp1->getType()) 4587 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4588 } 4589 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4590 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4591 } 4592 4593 if (NewOp1) 4594 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4595 } 4596 4597 return foldICmpWithZextOrSext(ICmp, Builder); 4598 } 4599 4600 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4601 switch (BinaryOp) { 4602 default: 4603 llvm_unreachable("Unsupported binary op"); 4604 case Instruction::Add: 4605 case Instruction::Sub: 4606 return match(RHS, m_Zero()); 4607 case Instruction::Mul: 4608 return match(RHS, m_One()); 4609 } 4610 } 4611 4612 OverflowResult 4613 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4614 bool IsSigned, Value *LHS, Value *RHS, 4615 Instruction *CxtI) const { 4616 switch (BinaryOp) { 4617 default: 4618 llvm_unreachable("Unsupported binary op"); 4619 case Instruction::Add: 4620 if (IsSigned) 4621 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4622 else 4623 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4624 case Instruction::Sub: 4625 if (IsSigned) 4626 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4627 else 4628 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4629 case Instruction::Mul: 4630 if (IsSigned) 4631 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4632 else 4633 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4634 } 4635 } 4636 4637 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4638 bool IsSigned, Value *LHS, 4639 Value *RHS, Instruction &OrigI, 4640 Value *&Result, 4641 Constant *&Overflow) { 4642 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4643 std::swap(LHS, RHS); 4644 4645 // If the overflow check was an add followed by a compare, the insertion point 4646 // may be pointing to the compare. We want to insert the new instructions 4647 // before the add in case there are uses of the add between the add and the 4648 // compare. 4649 Builder.SetInsertPoint(&OrigI); 4650 4651 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4652 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4653 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4654 4655 if (isNeutralValue(BinaryOp, RHS)) { 4656 Result = LHS; 4657 Overflow = ConstantInt::getFalse(OverflowTy); 4658 return true; 4659 } 4660 4661 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4662 case OverflowResult::MayOverflow: 4663 return false; 4664 case OverflowResult::AlwaysOverflowsLow: 4665 case OverflowResult::AlwaysOverflowsHigh: 4666 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4667 Result->takeName(&OrigI); 4668 Overflow = ConstantInt::getTrue(OverflowTy); 4669 return true; 4670 case OverflowResult::NeverOverflows: 4671 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4672 Result->takeName(&OrigI); 4673 Overflow = ConstantInt::getFalse(OverflowTy); 4674 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4675 if (IsSigned) 4676 Inst->setHasNoSignedWrap(); 4677 else 4678 Inst->setHasNoUnsignedWrap(); 4679 } 4680 return true; 4681 } 4682 4683 llvm_unreachable("Unexpected overflow result"); 4684 } 4685 4686 /// Recognize and process idiom involving test for multiplication 4687 /// overflow. 4688 /// 4689 /// The caller has matched a pattern of the form: 4690 /// I = cmp u (mul(zext A, zext B), V 4691 /// The function checks if this is a test for overflow and if so replaces 4692 /// multiplication with call to 'mul.with.overflow' intrinsic. 4693 /// 4694 /// \param I Compare instruction. 4695 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4696 /// the compare instruction. Must be of integer type. 4697 /// \param OtherVal The other argument of compare instruction. 4698 /// \returns Instruction which must replace the compare instruction, NULL if no 4699 /// replacement required. 4700 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4701 Value *OtherVal, 4702 InstCombinerImpl &IC) { 4703 // Don't bother doing this transformation for pointers, don't do it for 4704 // vectors. 4705 if (!isa<IntegerType>(MulVal->getType())) 4706 return nullptr; 4707 4708 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4709 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4710 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4711 if (!MulInstr) 4712 return nullptr; 4713 assert(MulInstr->getOpcode() == Instruction::Mul); 4714 4715 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4716 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4717 assert(LHS->getOpcode() == Instruction::ZExt); 4718 assert(RHS->getOpcode() == Instruction::ZExt); 4719 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4720 4721 // Calculate type and width of the result produced by mul.with.overflow. 4722 Type *TyA = A->getType(), *TyB = B->getType(); 4723 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4724 WidthB = TyB->getPrimitiveSizeInBits(); 4725 unsigned MulWidth; 4726 Type *MulType; 4727 if (WidthB > WidthA) { 4728 MulWidth = WidthB; 4729 MulType = TyB; 4730 } else { 4731 MulWidth = WidthA; 4732 MulType = TyA; 4733 } 4734 4735 // In order to replace the original mul with a narrower mul.with.overflow, 4736 // all uses must ignore upper bits of the product. The number of used low 4737 // bits must be not greater than the width of mul.with.overflow. 4738 if (MulVal->hasNUsesOrMore(2)) 4739 for (User *U : MulVal->users()) { 4740 if (U == &I) 4741 continue; 4742 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4743 // Check if truncation ignores bits above MulWidth. 4744 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4745 if (TruncWidth > MulWidth) 4746 return nullptr; 4747 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4748 // Check if AND ignores bits above MulWidth. 4749 if (BO->getOpcode() != Instruction::And) 4750 return nullptr; 4751 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4752 const APInt &CVal = CI->getValue(); 4753 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4754 return nullptr; 4755 } else { 4756 // In this case we could have the operand of the binary operation 4757 // being defined in another block, and performing the replacement 4758 // could break the dominance relation. 4759 return nullptr; 4760 } 4761 } else { 4762 // Other uses prohibit this transformation. 4763 return nullptr; 4764 } 4765 } 4766 4767 // Recognize patterns 4768 switch (I.getPredicate()) { 4769 case ICmpInst::ICMP_EQ: 4770 case ICmpInst::ICMP_NE: 4771 // Recognize pattern: 4772 // mulval = mul(zext A, zext B) 4773 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4774 ConstantInt *CI; 4775 Value *ValToMask; 4776 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4777 if (ValToMask != MulVal) 4778 return nullptr; 4779 const APInt &CVal = CI->getValue() + 1; 4780 if (CVal.isPowerOf2()) { 4781 unsigned MaskWidth = CVal.logBase2(); 4782 if (MaskWidth == MulWidth) 4783 break; // Recognized 4784 } 4785 } 4786 return nullptr; 4787 4788 case ICmpInst::ICMP_UGT: 4789 // Recognize pattern: 4790 // mulval = mul(zext A, zext B) 4791 // cmp ugt mulval, max 4792 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4793 APInt MaxVal = APInt::getMaxValue(MulWidth); 4794 MaxVal = MaxVal.zext(CI->getBitWidth()); 4795 if (MaxVal.eq(CI->getValue())) 4796 break; // Recognized 4797 } 4798 return nullptr; 4799 4800 case ICmpInst::ICMP_UGE: 4801 // Recognize pattern: 4802 // mulval = mul(zext A, zext B) 4803 // cmp uge mulval, max+1 4804 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4805 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4806 if (MaxVal.eq(CI->getValue())) 4807 break; // Recognized 4808 } 4809 return nullptr; 4810 4811 case ICmpInst::ICMP_ULE: 4812 // Recognize pattern: 4813 // mulval = mul(zext A, zext B) 4814 // cmp ule mulval, max 4815 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4816 APInt MaxVal = APInt::getMaxValue(MulWidth); 4817 MaxVal = MaxVal.zext(CI->getBitWidth()); 4818 if (MaxVal.eq(CI->getValue())) 4819 break; // Recognized 4820 } 4821 return nullptr; 4822 4823 case ICmpInst::ICMP_ULT: 4824 // Recognize pattern: 4825 // mulval = mul(zext A, zext B) 4826 // cmp ule mulval, max + 1 4827 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4828 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4829 if (MaxVal.eq(CI->getValue())) 4830 break; // Recognized 4831 } 4832 return nullptr; 4833 4834 default: 4835 return nullptr; 4836 } 4837 4838 InstCombiner::BuilderTy &Builder = IC.Builder; 4839 Builder.SetInsertPoint(MulInstr); 4840 4841 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4842 Value *MulA = A, *MulB = B; 4843 if (WidthA < MulWidth) 4844 MulA = Builder.CreateZExt(A, MulType); 4845 if (WidthB < MulWidth) 4846 MulB = Builder.CreateZExt(B, MulType); 4847 Function *F = Intrinsic::getDeclaration( 4848 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4849 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4850 IC.addToWorklist(MulInstr); 4851 4852 // If there are uses of mul result other than the comparison, we know that 4853 // they are truncation or binary AND. Change them to use result of 4854 // mul.with.overflow and adjust properly mask/size. 4855 if (MulVal->hasNUsesOrMore(2)) { 4856 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4857 for (User *U : make_early_inc_range(MulVal->users())) { 4858 if (U == &I || U == OtherVal) 4859 continue; 4860 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4861 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4862 IC.replaceInstUsesWith(*TI, Mul); 4863 else 4864 TI->setOperand(0, Mul); 4865 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4866 assert(BO->getOpcode() == Instruction::And); 4867 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4868 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4869 APInt ShortMask = CI->getValue().trunc(MulWidth); 4870 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4871 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4872 IC.replaceInstUsesWith(*BO, Zext); 4873 } else { 4874 llvm_unreachable("Unexpected Binary operation"); 4875 } 4876 IC.addToWorklist(cast<Instruction>(U)); 4877 } 4878 } 4879 if (isa<Instruction>(OtherVal)) 4880 IC.addToWorklist(cast<Instruction>(OtherVal)); 4881 4882 // The original icmp gets replaced with the overflow value, maybe inverted 4883 // depending on predicate. 4884 bool Inverse = false; 4885 switch (I.getPredicate()) { 4886 case ICmpInst::ICMP_NE: 4887 break; 4888 case ICmpInst::ICMP_EQ: 4889 Inverse = true; 4890 break; 4891 case ICmpInst::ICMP_UGT: 4892 case ICmpInst::ICMP_UGE: 4893 if (I.getOperand(0) == MulVal) 4894 break; 4895 Inverse = true; 4896 break; 4897 case ICmpInst::ICMP_ULT: 4898 case ICmpInst::ICMP_ULE: 4899 if (I.getOperand(1) == MulVal) 4900 break; 4901 Inverse = true; 4902 break; 4903 default: 4904 llvm_unreachable("Unexpected predicate"); 4905 } 4906 if (Inverse) { 4907 Value *Res = Builder.CreateExtractValue(Call, 1); 4908 return BinaryOperator::CreateNot(Res); 4909 } 4910 4911 return ExtractValueInst::Create(Call, 1); 4912 } 4913 4914 /// When performing a comparison against a constant, it is possible that not all 4915 /// the bits in the LHS are demanded. This helper method computes the mask that 4916 /// IS demanded. 4917 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4918 const APInt *RHS; 4919 if (!match(I.getOperand(1), m_APInt(RHS))) 4920 return APInt::getAllOnesValue(BitWidth); 4921 4922 // If this is a normal comparison, it demands all bits. If it is a sign bit 4923 // comparison, it only demands the sign bit. 4924 bool UnusedBit; 4925 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4926 return APInt::getSignMask(BitWidth); 4927 4928 switch (I.getPredicate()) { 4929 // For a UGT comparison, we don't care about any bits that 4930 // correspond to the trailing ones of the comparand. The value of these 4931 // bits doesn't impact the outcome of the comparison, because any value 4932 // greater than the RHS must differ in a bit higher than these due to carry. 4933 case ICmpInst::ICMP_UGT: 4934 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4935 4936 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4937 // Any value less than the RHS must differ in a higher bit because of carries. 4938 case ICmpInst::ICMP_ULT: 4939 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4940 4941 default: 4942 return APInt::getAllOnesValue(BitWidth); 4943 } 4944 } 4945 4946 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4947 /// should be swapped. 4948 /// The decision is based on how many times these two operands are reused 4949 /// as subtract operands and their positions in those instructions. 4950 /// The rationale is that several architectures use the same instruction for 4951 /// both subtract and cmp. Thus, it is better if the order of those operands 4952 /// match. 4953 /// \return true if Op0 and Op1 should be swapped. 4954 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4955 // Filter out pointer values as those cannot appear directly in subtract. 4956 // FIXME: we may want to go through inttoptrs or bitcasts. 4957 if (Op0->getType()->isPointerTy()) 4958 return false; 4959 // If a subtract already has the same operands as a compare, swapping would be 4960 // bad. If a subtract has the same operands as a compare but in reverse order, 4961 // then swapping is good. 4962 int GoodToSwap = 0; 4963 for (const User *U : Op0->users()) { 4964 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4965 GoodToSwap++; 4966 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4967 GoodToSwap--; 4968 } 4969 return GoodToSwap > 0; 4970 } 4971 4972 /// Check that one use is in the same block as the definition and all 4973 /// other uses are in blocks dominated by a given block. 4974 /// 4975 /// \param DI Definition 4976 /// \param UI Use 4977 /// \param DB Block that must dominate all uses of \p DI outside 4978 /// the parent block 4979 /// \return true when \p UI is the only use of \p DI in the parent block 4980 /// and all other uses of \p DI are in blocks dominated by \p DB. 4981 /// 4982 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 4983 const Instruction *UI, 4984 const BasicBlock *DB) const { 4985 assert(DI && UI && "Instruction not defined\n"); 4986 // Ignore incomplete definitions. 4987 if (!DI->getParent()) 4988 return false; 4989 // DI and UI must be in the same block. 4990 if (DI->getParent() != UI->getParent()) 4991 return false; 4992 // Protect from self-referencing blocks. 4993 if (DI->getParent() == DB) 4994 return false; 4995 for (const User *U : DI->users()) { 4996 auto *Usr = cast<Instruction>(U); 4997 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4998 return false; 4999 } 5000 return true; 5001 } 5002 5003 /// Return true when the instruction sequence within a block is select-cmp-br. 5004 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5005 const BasicBlock *BB = SI->getParent(); 5006 if (!BB) 5007 return false; 5008 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5009 if (!BI || BI->getNumSuccessors() != 2) 5010 return false; 5011 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5012 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5013 return false; 5014 return true; 5015 } 5016 5017 /// True when a select result is replaced by one of its operands 5018 /// in select-icmp sequence. This will eventually result in the elimination 5019 /// of the select. 5020 /// 5021 /// \param SI Select instruction 5022 /// \param Icmp Compare instruction 5023 /// \param SIOpd Operand that replaces the select 5024 /// 5025 /// Notes: 5026 /// - The replacement is global and requires dominator information 5027 /// - The caller is responsible for the actual replacement 5028 /// 5029 /// Example: 5030 /// 5031 /// entry: 5032 /// %4 = select i1 %3, %C* %0, %C* null 5033 /// %5 = icmp eq %C* %4, null 5034 /// br i1 %5, label %9, label %7 5035 /// ... 5036 /// ; <label>:7 ; preds = %entry 5037 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5038 /// ... 5039 /// 5040 /// can be transformed to 5041 /// 5042 /// %5 = icmp eq %C* %0, null 5043 /// %6 = select i1 %3, i1 %5, i1 true 5044 /// br i1 %6, label %9, label %7 5045 /// ... 5046 /// ; <label>:7 ; preds = %entry 5047 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5048 /// 5049 /// Similar when the first operand of the select is a constant or/and 5050 /// the compare is for not equal rather than equal. 5051 /// 5052 /// NOTE: The function is only called when the select and compare constants 5053 /// are equal, the optimization can work only for EQ predicates. This is not a 5054 /// major restriction since a NE compare should be 'normalized' to an equal 5055 /// compare, which usually happens in the combiner and test case 5056 /// select-cmp-br.ll checks for it. 5057 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5058 const ICmpInst *Icmp, 5059 const unsigned SIOpd) { 5060 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5061 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5062 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5063 // The check for the single predecessor is not the best that can be 5064 // done. But it protects efficiently against cases like when SI's 5065 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5066 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5067 // replaced can be reached on either path. So the uniqueness check 5068 // guarantees that the path all uses of SI (outside SI's parent) are on 5069 // is disjoint from all other paths out of SI. But that information 5070 // is more expensive to compute, and the trade-off here is in favor 5071 // of compile-time. It should also be noticed that we check for a single 5072 // predecessor and not only uniqueness. This to handle the situation when 5073 // Succ and Succ1 points to the same basic block. 5074 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5075 NumSel++; 5076 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5077 return true; 5078 } 5079 } 5080 return false; 5081 } 5082 5083 /// Try to fold the comparison based on range information we can get by checking 5084 /// whether bits are known to be zero or one in the inputs. 5085 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5086 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5087 Type *Ty = Op0->getType(); 5088 ICmpInst::Predicate Pred = I.getPredicate(); 5089 5090 // Get scalar or pointer size. 5091 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5092 ? Ty->getScalarSizeInBits() 5093 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5094 5095 if (!BitWidth) 5096 return nullptr; 5097 5098 KnownBits Op0Known(BitWidth); 5099 KnownBits Op1Known(BitWidth); 5100 5101 if (SimplifyDemandedBits(&I, 0, 5102 getDemandedBitsLHSMask(I, BitWidth), 5103 Op0Known, 0)) 5104 return &I; 5105 5106 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 5107 Op1Known, 0)) 5108 return &I; 5109 5110 // Given the known and unknown bits, compute a range that the LHS could be 5111 // in. Compute the Min, Max and RHS values based on the known bits. For the 5112 // EQ and NE we use unsigned values. 5113 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5114 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5115 if (I.isSigned()) { 5116 Op0Min = Op0Known.getSignedMinValue(); 5117 Op0Max = Op0Known.getSignedMaxValue(); 5118 Op1Min = Op1Known.getSignedMinValue(); 5119 Op1Max = Op1Known.getSignedMaxValue(); 5120 } else { 5121 Op0Min = Op0Known.getMinValue(); 5122 Op0Max = Op0Known.getMaxValue(); 5123 Op1Min = Op1Known.getMinValue(); 5124 Op1Max = Op1Known.getMaxValue(); 5125 } 5126 5127 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5128 // out that the LHS or RHS is a constant. Constant fold this now, so that 5129 // code below can assume that Min != Max. 5130 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5131 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5132 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5133 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5134 5135 // Based on the range information we know about the LHS, see if we can 5136 // simplify this comparison. For example, (x&4) < 8 is always true. 5137 switch (Pred) { 5138 default: 5139 llvm_unreachable("Unknown icmp opcode!"); 5140 case ICmpInst::ICMP_EQ: 5141 case ICmpInst::ICMP_NE: { 5142 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5143 return replaceInstUsesWith( 5144 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5145 5146 // If all bits are known zero except for one, then we know at most one bit 5147 // is set. If the comparison is against zero, then this is a check to see if 5148 // *that* bit is set. 5149 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5150 if (Op1Known.isZero()) { 5151 // If the LHS is an AND with the same constant, look through it. 5152 Value *LHS = nullptr; 5153 const APInt *LHSC; 5154 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5155 *LHSC != Op0KnownZeroInverted) 5156 LHS = Op0; 5157 5158 Value *X; 5159 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5160 APInt ValToCheck = Op0KnownZeroInverted; 5161 Type *XTy = X->getType(); 5162 if (ValToCheck.isPowerOf2()) { 5163 // ((1 << X) & 8) == 0 -> X != 3 5164 // ((1 << X) & 8) != 0 -> X == 3 5165 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5166 auto NewPred = ICmpInst::getInversePredicate(Pred); 5167 return new ICmpInst(NewPred, X, CmpC); 5168 } else if ((++ValToCheck).isPowerOf2()) { 5169 // ((1 << X) & 7) == 0 -> X >= 3 5170 // ((1 << X) & 7) != 0 -> X < 3 5171 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5172 auto NewPred = 5173 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5174 return new ICmpInst(NewPred, X, CmpC); 5175 } 5176 } 5177 5178 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5179 const APInt *CI; 5180 if (Op0KnownZeroInverted.isOneValue() && 5181 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5182 // ((8 >>u X) & 1) == 0 -> X != 3 5183 // ((8 >>u X) & 1) != 0 -> X == 3 5184 unsigned CmpVal = CI->countTrailingZeros(); 5185 auto NewPred = ICmpInst::getInversePredicate(Pred); 5186 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5187 } 5188 } 5189 break; 5190 } 5191 case ICmpInst::ICMP_ULT: { 5192 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5193 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5194 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5195 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5196 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5197 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5198 5199 const APInt *CmpC; 5200 if (match(Op1, m_APInt(CmpC))) { 5201 // A <u C -> A == C-1 if min(A)+1 == C 5202 if (*CmpC == Op0Min + 1) 5203 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5204 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5205 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5206 // exceeds the log2 of C. 5207 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5208 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5209 Constant::getNullValue(Op1->getType())); 5210 } 5211 break; 5212 } 5213 case ICmpInst::ICMP_UGT: { 5214 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5215 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5216 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5217 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5218 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5219 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5220 5221 const APInt *CmpC; 5222 if (match(Op1, m_APInt(CmpC))) { 5223 // A >u C -> A == C+1 if max(a)-1 == C 5224 if (*CmpC == Op0Max - 1) 5225 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5226 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5227 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5228 // exceeds the log2 of C. 5229 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5230 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5231 Constant::getNullValue(Op1->getType())); 5232 } 5233 break; 5234 } 5235 case ICmpInst::ICMP_SLT: { 5236 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5237 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5238 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5239 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5240 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5241 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5242 const APInt *CmpC; 5243 if (match(Op1, m_APInt(CmpC))) { 5244 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5245 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5246 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5247 } 5248 break; 5249 } 5250 case ICmpInst::ICMP_SGT: { 5251 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5252 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5253 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5254 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5255 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5256 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5257 const APInt *CmpC; 5258 if (match(Op1, m_APInt(CmpC))) { 5259 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5260 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5261 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5262 } 5263 break; 5264 } 5265 case ICmpInst::ICMP_SGE: 5266 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5267 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5268 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5269 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5270 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5271 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5272 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5273 break; 5274 case ICmpInst::ICMP_SLE: 5275 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5276 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5277 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5278 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5279 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5280 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5281 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5282 break; 5283 case ICmpInst::ICMP_UGE: 5284 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5285 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5286 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5287 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5288 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5289 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5290 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5291 break; 5292 case ICmpInst::ICMP_ULE: 5293 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5294 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5295 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5296 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5297 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5298 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5299 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5300 break; 5301 } 5302 5303 // Turn a signed comparison into an unsigned one if both operands are known to 5304 // have the same sign. 5305 if (I.isSigned() && 5306 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5307 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5308 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5309 5310 return nullptr; 5311 } 5312 5313 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5314 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5315 Constant *C) { 5316 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5317 "Only for relational integer predicates."); 5318 5319 Type *Type = C->getType(); 5320 bool IsSigned = ICmpInst::isSigned(Pred); 5321 5322 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5323 bool WillIncrement = 5324 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5325 5326 // Check if the constant operand can be safely incremented/decremented 5327 // without overflowing/underflowing. 5328 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5329 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5330 }; 5331 5332 Constant *SafeReplacementConstant = nullptr; 5333 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5334 // Bail out if the constant can't be safely incremented/decremented. 5335 if (!ConstantIsOk(CI)) 5336 return llvm::None; 5337 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5338 unsigned NumElts = FVTy->getNumElements(); 5339 for (unsigned i = 0; i != NumElts; ++i) { 5340 Constant *Elt = C->getAggregateElement(i); 5341 if (!Elt) 5342 return llvm::None; 5343 5344 if (isa<UndefValue>(Elt)) 5345 continue; 5346 5347 // Bail out if we can't determine if this constant is min/max or if we 5348 // know that this constant is min/max. 5349 auto *CI = dyn_cast<ConstantInt>(Elt); 5350 if (!CI || !ConstantIsOk(CI)) 5351 return llvm::None; 5352 5353 if (!SafeReplacementConstant) 5354 SafeReplacementConstant = CI; 5355 } 5356 } else { 5357 // ConstantExpr? 5358 return llvm::None; 5359 } 5360 5361 // It may not be safe to change a compare predicate in the presence of 5362 // undefined elements, so replace those elements with the first safe constant 5363 // that we found. 5364 // TODO: in case of poison, it is safe; let's replace undefs only. 5365 if (C->containsUndefOrPoisonElement()) { 5366 assert(SafeReplacementConstant && "Replacement constant not set"); 5367 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5368 } 5369 5370 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5371 5372 // Increment or decrement the constant. 5373 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5374 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5375 5376 return std::make_pair(NewPred, NewC); 5377 } 5378 5379 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5380 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5381 /// allows them to be folded in visitICmpInst. 5382 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5383 ICmpInst::Predicate Pred = I.getPredicate(); 5384 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5385 InstCombiner::isCanonicalPredicate(Pred)) 5386 return nullptr; 5387 5388 Value *Op0 = I.getOperand(0); 5389 Value *Op1 = I.getOperand(1); 5390 auto *Op1C = dyn_cast<Constant>(Op1); 5391 if (!Op1C) 5392 return nullptr; 5393 5394 auto FlippedStrictness = 5395 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5396 if (!FlippedStrictness) 5397 return nullptr; 5398 5399 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5400 } 5401 5402 /// If we have a comparison with a non-canonical predicate, if we can update 5403 /// all the users, invert the predicate and adjust all the users. 5404 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5405 // Is the predicate already canonical? 5406 CmpInst::Predicate Pred = I.getPredicate(); 5407 if (InstCombiner::isCanonicalPredicate(Pred)) 5408 return nullptr; 5409 5410 // Can all users be adjusted to predicate inversion? 5411 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5412 return nullptr; 5413 5414 // Ok, we can canonicalize comparison! 5415 // Let's first invert the comparison's predicate. 5416 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5417 I.setName(I.getName() + ".not"); 5418 5419 // And, adapt users. 5420 freelyInvertAllUsersOf(&I); 5421 5422 return &I; 5423 } 5424 5425 /// Integer compare with boolean values can always be turned into bitwise ops. 5426 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5427 InstCombiner::BuilderTy &Builder) { 5428 Value *A = I.getOperand(0), *B = I.getOperand(1); 5429 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5430 5431 // A boolean compared to true/false can be simplified to Op0/true/false in 5432 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5433 // Cases not handled by InstSimplify are always 'not' of Op0. 5434 if (match(B, m_Zero())) { 5435 switch (I.getPredicate()) { 5436 case CmpInst::ICMP_EQ: // A == 0 -> !A 5437 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5438 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5439 return BinaryOperator::CreateNot(A); 5440 default: 5441 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5442 } 5443 } else if (match(B, m_One())) { 5444 switch (I.getPredicate()) { 5445 case CmpInst::ICMP_NE: // A != 1 -> !A 5446 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5447 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5448 return BinaryOperator::CreateNot(A); 5449 default: 5450 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5451 } 5452 } 5453 5454 switch (I.getPredicate()) { 5455 default: 5456 llvm_unreachable("Invalid icmp instruction!"); 5457 case ICmpInst::ICMP_EQ: 5458 // icmp eq i1 A, B -> ~(A ^ B) 5459 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5460 5461 case ICmpInst::ICMP_NE: 5462 // icmp ne i1 A, B -> A ^ B 5463 return BinaryOperator::CreateXor(A, B); 5464 5465 case ICmpInst::ICMP_UGT: 5466 // icmp ugt -> icmp ult 5467 std::swap(A, B); 5468 LLVM_FALLTHROUGH; 5469 case ICmpInst::ICMP_ULT: 5470 // icmp ult i1 A, B -> ~A & B 5471 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5472 5473 case ICmpInst::ICMP_SGT: 5474 // icmp sgt -> icmp slt 5475 std::swap(A, B); 5476 LLVM_FALLTHROUGH; 5477 case ICmpInst::ICMP_SLT: 5478 // icmp slt i1 A, B -> A & ~B 5479 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5480 5481 case ICmpInst::ICMP_UGE: 5482 // icmp uge -> icmp ule 5483 std::swap(A, B); 5484 LLVM_FALLTHROUGH; 5485 case ICmpInst::ICMP_ULE: 5486 // icmp ule i1 A, B -> ~A | B 5487 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5488 5489 case ICmpInst::ICMP_SGE: 5490 // icmp sge -> icmp sle 5491 std::swap(A, B); 5492 LLVM_FALLTHROUGH; 5493 case ICmpInst::ICMP_SLE: 5494 // icmp sle i1 A, B -> A | ~B 5495 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5496 } 5497 } 5498 5499 // Transform pattern like: 5500 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5501 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5502 // Into: 5503 // (X l>> Y) != 0 5504 // (X l>> Y) == 0 5505 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5506 InstCombiner::BuilderTy &Builder) { 5507 ICmpInst::Predicate Pred, NewPred; 5508 Value *X, *Y; 5509 if (match(&Cmp, 5510 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5511 switch (Pred) { 5512 case ICmpInst::ICMP_ULE: 5513 NewPred = ICmpInst::ICMP_NE; 5514 break; 5515 case ICmpInst::ICMP_UGT: 5516 NewPred = ICmpInst::ICMP_EQ; 5517 break; 5518 default: 5519 return nullptr; 5520 } 5521 } else if (match(&Cmp, m_c_ICmp(Pred, 5522 m_OneUse(m_CombineOr( 5523 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5524 m_Add(m_Shl(m_One(), m_Value(Y)), 5525 m_AllOnes()))), 5526 m_Value(X)))) { 5527 // The variant with 'add' is not canonical, (the variant with 'not' is) 5528 // we only get it because it has extra uses, and can't be canonicalized, 5529 5530 switch (Pred) { 5531 case ICmpInst::ICMP_ULT: 5532 NewPred = ICmpInst::ICMP_NE; 5533 break; 5534 case ICmpInst::ICMP_UGE: 5535 NewPred = ICmpInst::ICMP_EQ; 5536 break; 5537 default: 5538 return nullptr; 5539 } 5540 } else 5541 return nullptr; 5542 5543 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5544 Constant *Zero = Constant::getNullValue(NewX->getType()); 5545 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5546 } 5547 5548 static Instruction *foldVectorCmp(CmpInst &Cmp, 5549 InstCombiner::BuilderTy &Builder) { 5550 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5551 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5552 Value *V1, *V2; 5553 ArrayRef<int> M; 5554 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5555 return nullptr; 5556 5557 // If both arguments of the cmp are shuffles that use the same mask and 5558 // shuffle within a single vector, move the shuffle after the cmp: 5559 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5560 Type *V1Ty = V1->getType(); 5561 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5562 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5563 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5564 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5565 } 5566 5567 // Try to canonicalize compare with splatted operand and splat constant. 5568 // TODO: We could generalize this for more than splats. See/use the code in 5569 // InstCombiner::foldVectorBinop(). 5570 Constant *C; 5571 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5572 return nullptr; 5573 5574 // Length-changing splats are ok, so adjust the constants as needed: 5575 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5576 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5577 int MaskSplatIndex; 5578 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5579 // We allow undefs in matching, but this transform removes those for safety. 5580 // Demanded elements analysis should be able to recover some/all of that. 5581 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5582 ScalarC); 5583 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5584 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5585 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5586 NewM); 5587 } 5588 5589 return nullptr; 5590 } 5591 5592 // extract(uadd.with.overflow(A, B), 0) ult A 5593 // -> extract(uadd.with.overflow(A, B), 1) 5594 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5595 CmpInst::Predicate Pred = I.getPredicate(); 5596 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5597 5598 Value *UAddOv; 5599 Value *A, *B; 5600 auto UAddOvResultPat = m_ExtractValue<0>( 5601 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5602 if (match(Op0, UAddOvResultPat) && 5603 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5604 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5605 (match(A, m_One()) || match(B, m_One()))) || 5606 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5607 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5608 // extract(uadd.with.overflow(A, B), 0) < A 5609 // extract(uadd.with.overflow(A, 1), 0) == 0 5610 // extract(uadd.with.overflow(A, -1), 0) != -1 5611 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5612 else if (match(Op1, UAddOvResultPat) && 5613 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5614 // A > extract(uadd.with.overflow(A, B), 0) 5615 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5616 else 5617 return nullptr; 5618 5619 return ExtractValueInst::Create(UAddOv, 1); 5620 } 5621 5622 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5623 bool Changed = false; 5624 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5625 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5626 unsigned Op0Cplxity = getComplexity(Op0); 5627 unsigned Op1Cplxity = getComplexity(Op1); 5628 5629 /// Orders the operands of the compare so that they are listed from most 5630 /// complex to least complex. This puts constants before unary operators, 5631 /// before binary operators. 5632 if (Op0Cplxity < Op1Cplxity || 5633 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5634 I.swapOperands(); 5635 std::swap(Op0, Op1); 5636 Changed = true; 5637 } 5638 5639 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5640 return replaceInstUsesWith(I, V); 5641 5642 // Comparing -val or val with non-zero is the same as just comparing val 5643 // ie, abs(val) != 0 -> val != 0 5644 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5645 Value *Cond, *SelectTrue, *SelectFalse; 5646 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5647 m_Value(SelectFalse)))) { 5648 if (Value *V = dyn_castNegVal(SelectTrue)) { 5649 if (V == SelectFalse) 5650 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5651 } 5652 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5653 if (V == SelectTrue) 5654 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5655 } 5656 } 5657 } 5658 5659 if (Op0->getType()->isIntOrIntVectorTy(1)) 5660 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5661 return Res; 5662 5663 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5664 return Res; 5665 5666 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5667 return Res; 5668 5669 if (Instruction *Res = foldICmpWithConstant(I)) 5670 return Res; 5671 5672 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5673 return Res; 5674 5675 if (Instruction *Res = foldICmpBinOp(I, Q)) 5676 return Res; 5677 5678 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5679 return Res; 5680 5681 // Test if the ICmpInst instruction is used exclusively by a select as 5682 // part of a minimum or maximum operation. If so, refrain from doing 5683 // any other folding. This helps out other analyses which understand 5684 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5685 // and CodeGen. And in this case, at least one of the comparison 5686 // operands has at least one user besides the compare (the select), 5687 // which would often largely negate the benefit of folding anyway. 5688 // 5689 // Do the same for the other patterns recognized by matchSelectPattern. 5690 if (I.hasOneUse()) 5691 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5692 Value *A, *B; 5693 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5694 if (SPR.Flavor != SPF_UNKNOWN) 5695 return nullptr; 5696 } 5697 5698 // Do this after checking for min/max to prevent infinite looping. 5699 if (Instruction *Res = foldICmpWithZero(I)) 5700 return Res; 5701 5702 // FIXME: We only do this after checking for min/max to prevent infinite 5703 // looping caused by a reverse canonicalization of these patterns for min/max. 5704 // FIXME: The organization of folds is a mess. These would naturally go into 5705 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5706 // down here after the min/max restriction. 5707 ICmpInst::Predicate Pred = I.getPredicate(); 5708 const APInt *C; 5709 if (match(Op1, m_APInt(C))) { 5710 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5711 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5712 Constant *Zero = Constant::getNullValue(Op0->getType()); 5713 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5714 } 5715 5716 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5717 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5718 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5719 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5720 } 5721 } 5722 5723 if (Instruction *Res = foldICmpInstWithConstant(I)) 5724 return Res; 5725 5726 // Try to match comparison as a sign bit test. Intentionally do this after 5727 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5728 if (Instruction *New = foldSignBitTest(I)) 5729 return New; 5730 5731 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5732 return Res; 5733 5734 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5735 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5736 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5737 return NI; 5738 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5739 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5740 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5741 return NI; 5742 5743 // Try to optimize equality comparisons against alloca-based pointers. 5744 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5745 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5746 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5747 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5748 return New; 5749 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5750 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5751 return New; 5752 } 5753 5754 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5755 return Res; 5756 5757 // TODO: Hoist this above the min/max bailout. 5758 if (Instruction *R = foldICmpWithCastOp(I)) 5759 return R; 5760 5761 if (Instruction *Res = foldICmpWithMinMax(I)) 5762 return Res; 5763 5764 { 5765 Value *A, *B; 5766 // Transform (A & ~B) == 0 --> (A & B) != 0 5767 // and (A & ~B) != 0 --> (A & B) == 0 5768 // if A is a power of 2. 5769 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5770 match(Op1, m_Zero()) && 5771 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5772 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5773 Op1); 5774 5775 // ~X < ~Y --> Y < X 5776 // ~X < C --> X > ~C 5777 if (match(Op0, m_Not(m_Value(A)))) { 5778 if (match(Op1, m_Not(m_Value(B)))) 5779 return new ICmpInst(I.getPredicate(), B, A); 5780 5781 const APInt *C; 5782 if (match(Op1, m_APInt(C))) 5783 return new ICmpInst(I.getSwappedPredicate(), A, 5784 ConstantInt::get(Op1->getType(), ~(*C))); 5785 } 5786 5787 Instruction *AddI = nullptr; 5788 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5789 m_Instruction(AddI))) && 5790 isa<IntegerType>(A->getType())) { 5791 Value *Result; 5792 Constant *Overflow; 5793 // m_UAddWithOverflow can match patterns that do not include an explicit 5794 // "add" instruction, so check the opcode of the matched op. 5795 if (AddI->getOpcode() == Instruction::Add && 5796 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5797 Result, Overflow)) { 5798 replaceInstUsesWith(*AddI, Result); 5799 eraseInstFromFunction(*AddI); 5800 return replaceInstUsesWith(I, Overflow); 5801 } 5802 } 5803 5804 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5805 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5806 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5807 return R; 5808 } 5809 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5810 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5811 return R; 5812 } 5813 } 5814 5815 if (Instruction *Res = foldICmpEquality(I)) 5816 return Res; 5817 5818 if (Instruction *Res = foldICmpOfUAddOv(I)) 5819 return Res; 5820 5821 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5822 // an i1 which indicates whether or not we successfully did the swap. 5823 // 5824 // Replace comparisons between the old value and the expected value with the 5825 // indicator that 'cmpxchg' returns. 5826 // 5827 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5828 // spuriously fail. In those cases, the old value may equal the expected 5829 // value but it is possible for the swap to not occur. 5830 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5831 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5832 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5833 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5834 !ACXI->isWeak()) 5835 return ExtractValueInst::Create(ACXI, 1); 5836 5837 { 5838 Value *X; 5839 const APInt *C; 5840 // icmp X+Cst, X 5841 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5842 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5843 5844 // icmp X, X+Cst 5845 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5846 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5847 } 5848 5849 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5850 return Res; 5851 5852 if (I.getType()->isVectorTy()) 5853 if (Instruction *Res = foldVectorCmp(I, Builder)) 5854 return Res; 5855 5856 return Changed ? &I : nullptr; 5857 } 5858 5859 /// Fold fcmp ([us]itofp x, cst) if possible. 5860 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 5861 Instruction *LHSI, 5862 Constant *RHSC) { 5863 if (!isa<ConstantFP>(RHSC)) return nullptr; 5864 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5865 5866 // Get the width of the mantissa. We don't want to hack on conversions that 5867 // might lose information from the integer, e.g. "i64 -> float" 5868 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5869 if (MantissaWidth == -1) return nullptr; // Unknown. 5870 5871 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5872 5873 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5874 5875 if (I.isEquality()) { 5876 FCmpInst::Predicate P = I.getPredicate(); 5877 bool IsExact = false; 5878 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5879 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5880 5881 // If the floating point constant isn't an integer value, we know if we will 5882 // ever compare equal / not equal to it. 5883 if (!IsExact) { 5884 // TODO: Can never be -0.0 and other non-representable values 5885 APFloat RHSRoundInt(RHS); 5886 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5887 if (RHS != RHSRoundInt) { 5888 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5889 return replaceInstUsesWith(I, Builder.getFalse()); 5890 5891 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5892 return replaceInstUsesWith(I, Builder.getTrue()); 5893 } 5894 } 5895 5896 // TODO: If the constant is exactly representable, is it always OK to do 5897 // equality compares as integer? 5898 } 5899 5900 // Check to see that the input is converted from an integer type that is small 5901 // enough that preserves all bits. TODO: check here for "known" sign bits. 5902 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5903 unsigned InputSize = IntTy->getScalarSizeInBits(); 5904 5905 // Following test does NOT adjust InputSize downwards for signed inputs, 5906 // because the most negative value still requires all the mantissa bits 5907 // to distinguish it from one less than that value. 5908 if ((int)InputSize > MantissaWidth) { 5909 // Conversion would lose accuracy. Check if loss can impact comparison. 5910 int Exp = ilogb(RHS); 5911 if (Exp == APFloat::IEK_Inf) { 5912 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5913 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5914 // Conversion could create infinity. 5915 return nullptr; 5916 } else { 5917 // Note that if RHS is zero or NaN, then Exp is negative 5918 // and first condition is trivially false. 5919 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5920 // Conversion could affect comparison. 5921 return nullptr; 5922 } 5923 } 5924 5925 // Otherwise, we can potentially simplify the comparison. We know that it 5926 // will always come through as an integer value and we know the constant is 5927 // not a NAN (it would have been previously simplified). 5928 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5929 5930 ICmpInst::Predicate Pred; 5931 switch (I.getPredicate()) { 5932 default: llvm_unreachable("Unexpected predicate!"); 5933 case FCmpInst::FCMP_UEQ: 5934 case FCmpInst::FCMP_OEQ: 5935 Pred = ICmpInst::ICMP_EQ; 5936 break; 5937 case FCmpInst::FCMP_UGT: 5938 case FCmpInst::FCMP_OGT: 5939 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5940 break; 5941 case FCmpInst::FCMP_UGE: 5942 case FCmpInst::FCMP_OGE: 5943 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5944 break; 5945 case FCmpInst::FCMP_ULT: 5946 case FCmpInst::FCMP_OLT: 5947 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5948 break; 5949 case FCmpInst::FCMP_ULE: 5950 case FCmpInst::FCMP_OLE: 5951 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5952 break; 5953 case FCmpInst::FCMP_UNE: 5954 case FCmpInst::FCMP_ONE: 5955 Pred = ICmpInst::ICMP_NE; 5956 break; 5957 case FCmpInst::FCMP_ORD: 5958 return replaceInstUsesWith(I, Builder.getTrue()); 5959 case FCmpInst::FCMP_UNO: 5960 return replaceInstUsesWith(I, Builder.getFalse()); 5961 } 5962 5963 // Now we know that the APFloat is a normal number, zero or inf. 5964 5965 // See if the FP constant is too large for the integer. For example, 5966 // comparing an i8 to 300.0. 5967 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5968 5969 if (!LHSUnsigned) { 5970 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5971 // and large values. 5972 APFloat SMax(RHS.getSemantics()); 5973 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5974 APFloat::rmNearestTiesToEven); 5975 if (SMax < RHS) { // smax < 13123.0 5976 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5977 Pred == ICmpInst::ICMP_SLE) 5978 return replaceInstUsesWith(I, Builder.getTrue()); 5979 return replaceInstUsesWith(I, Builder.getFalse()); 5980 } 5981 } else { 5982 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5983 // +INF and large values. 5984 APFloat UMax(RHS.getSemantics()); 5985 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5986 APFloat::rmNearestTiesToEven); 5987 if (UMax < RHS) { // umax < 13123.0 5988 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5989 Pred == ICmpInst::ICMP_ULE) 5990 return replaceInstUsesWith(I, Builder.getTrue()); 5991 return replaceInstUsesWith(I, Builder.getFalse()); 5992 } 5993 } 5994 5995 if (!LHSUnsigned) { 5996 // See if the RHS value is < SignedMin. 5997 APFloat SMin(RHS.getSemantics()); 5998 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5999 APFloat::rmNearestTiesToEven); 6000 if (SMin > RHS) { // smin > 12312.0 6001 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6002 Pred == ICmpInst::ICMP_SGE) 6003 return replaceInstUsesWith(I, Builder.getTrue()); 6004 return replaceInstUsesWith(I, Builder.getFalse()); 6005 } 6006 } else { 6007 // See if the RHS value is < UnsignedMin. 6008 APFloat UMin(RHS.getSemantics()); 6009 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6010 APFloat::rmNearestTiesToEven); 6011 if (UMin > RHS) { // umin > 12312.0 6012 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6013 Pred == ICmpInst::ICMP_UGE) 6014 return replaceInstUsesWith(I, Builder.getTrue()); 6015 return replaceInstUsesWith(I, Builder.getFalse()); 6016 } 6017 } 6018 6019 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6020 // [0, UMAX], but it may still be fractional. See if it is fractional by 6021 // casting the FP value to the integer value and back, checking for equality. 6022 // Don't do this for zero, because -0.0 is not fractional. 6023 Constant *RHSInt = LHSUnsigned 6024 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6025 : ConstantExpr::getFPToSI(RHSC, IntTy); 6026 if (!RHS.isZero()) { 6027 bool Equal = LHSUnsigned 6028 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6029 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6030 if (!Equal) { 6031 // If we had a comparison against a fractional value, we have to adjust 6032 // the compare predicate and sometimes the value. RHSC is rounded towards 6033 // zero at this point. 6034 switch (Pred) { 6035 default: llvm_unreachable("Unexpected integer comparison!"); 6036 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6037 return replaceInstUsesWith(I, Builder.getTrue()); 6038 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6039 return replaceInstUsesWith(I, Builder.getFalse()); 6040 case ICmpInst::ICMP_ULE: 6041 // (float)int <= 4.4 --> int <= 4 6042 // (float)int <= -4.4 --> false 6043 if (RHS.isNegative()) 6044 return replaceInstUsesWith(I, Builder.getFalse()); 6045 break; 6046 case ICmpInst::ICMP_SLE: 6047 // (float)int <= 4.4 --> int <= 4 6048 // (float)int <= -4.4 --> int < -4 6049 if (RHS.isNegative()) 6050 Pred = ICmpInst::ICMP_SLT; 6051 break; 6052 case ICmpInst::ICMP_ULT: 6053 // (float)int < -4.4 --> false 6054 // (float)int < 4.4 --> int <= 4 6055 if (RHS.isNegative()) 6056 return replaceInstUsesWith(I, Builder.getFalse()); 6057 Pred = ICmpInst::ICMP_ULE; 6058 break; 6059 case ICmpInst::ICMP_SLT: 6060 // (float)int < -4.4 --> int < -4 6061 // (float)int < 4.4 --> int <= 4 6062 if (!RHS.isNegative()) 6063 Pred = ICmpInst::ICMP_SLE; 6064 break; 6065 case ICmpInst::ICMP_UGT: 6066 // (float)int > 4.4 --> int > 4 6067 // (float)int > -4.4 --> true 6068 if (RHS.isNegative()) 6069 return replaceInstUsesWith(I, Builder.getTrue()); 6070 break; 6071 case ICmpInst::ICMP_SGT: 6072 // (float)int > 4.4 --> int > 4 6073 // (float)int > -4.4 --> int >= -4 6074 if (RHS.isNegative()) 6075 Pred = ICmpInst::ICMP_SGE; 6076 break; 6077 case ICmpInst::ICMP_UGE: 6078 // (float)int >= -4.4 --> true 6079 // (float)int >= 4.4 --> int > 4 6080 if (RHS.isNegative()) 6081 return replaceInstUsesWith(I, Builder.getTrue()); 6082 Pred = ICmpInst::ICMP_UGT; 6083 break; 6084 case ICmpInst::ICMP_SGE: 6085 // (float)int >= -4.4 --> int >= -4 6086 // (float)int >= 4.4 --> int > 4 6087 if (!RHS.isNegative()) 6088 Pred = ICmpInst::ICMP_SGT; 6089 break; 6090 } 6091 } 6092 } 6093 6094 // Lower this FP comparison into an appropriate integer version of the 6095 // comparison. 6096 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6097 } 6098 6099 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6100 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6101 Constant *RHSC) { 6102 // When C is not 0.0 and infinities are not allowed: 6103 // (C / X) < 0.0 is a sign-bit test of X 6104 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6105 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6106 // 6107 // Proof: 6108 // Multiply (C / X) < 0.0 by X * X / C. 6109 // - X is non zero, if it is the flag 'ninf' is violated. 6110 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6111 // the predicate. C is also non zero by definition. 6112 // 6113 // Thus X * X / C is non zero and the transformation is valid. [qed] 6114 6115 FCmpInst::Predicate Pred = I.getPredicate(); 6116 6117 // Check that predicates are valid. 6118 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6119 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6120 return nullptr; 6121 6122 // Check that RHS operand is zero. 6123 if (!match(RHSC, m_AnyZeroFP())) 6124 return nullptr; 6125 6126 // Check fastmath flags ('ninf'). 6127 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6128 return nullptr; 6129 6130 // Check the properties of the dividend. It must not be zero to avoid a 6131 // division by zero (see Proof). 6132 const APFloat *C; 6133 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6134 return nullptr; 6135 6136 if (C->isZero()) 6137 return nullptr; 6138 6139 // Get swapped predicate if necessary. 6140 if (C->isNegative()) 6141 Pred = I.getSwappedPredicate(); 6142 6143 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6144 } 6145 6146 /// Optimize fabs(X) compared with zero. 6147 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6148 Value *X; 6149 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6150 !match(I.getOperand(1), m_PosZeroFP())) 6151 return nullptr; 6152 6153 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6154 I->setPredicate(P); 6155 return IC.replaceOperand(*I, 0, X); 6156 }; 6157 6158 switch (I.getPredicate()) { 6159 case FCmpInst::FCMP_UGE: 6160 case FCmpInst::FCMP_OLT: 6161 // fabs(X) >= 0.0 --> true 6162 // fabs(X) < 0.0 --> false 6163 llvm_unreachable("fcmp should have simplified"); 6164 6165 case FCmpInst::FCMP_OGT: 6166 // fabs(X) > 0.0 --> X != 0.0 6167 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6168 6169 case FCmpInst::FCMP_UGT: 6170 // fabs(X) u> 0.0 --> X u!= 0.0 6171 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6172 6173 case FCmpInst::FCMP_OLE: 6174 // fabs(X) <= 0.0 --> X == 0.0 6175 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6176 6177 case FCmpInst::FCMP_ULE: 6178 // fabs(X) u<= 0.0 --> X u== 0.0 6179 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6180 6181 case FCmpInst::FCMP_OGE: 6182 // fabs(X) >= 0.0 --> !isnan(X) 6183 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6184 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6185 6186 case FCmpInst::FCMP_ULT: 6187 // fabs(X) u< 0.0 --> isnan(X) 6188 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6189 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6190 6191 case FCmpInst::FCMP_OEQ: 6192 case FCmpInst::FCMP_UEQ: 6193 case FCmpInst::FCMP_ONE: 6194 case FCmpInst::FCMP_UNE: 6195 case FCmpInst::FCMP_ORD: 6196 case FCmpInst::FCMP_UNO: 6197 // Look through the fabs() because it doesn't change anything but the sign. 6198 // fabs(X) == 0.0 --> X == 0.0, 6199 // fabs(X) != 0.0 --> X != 0.0 6200 // isnan(fabs(X)) --> isnan(X) 6201 // !isnan(fabs(X) --> !isnan(X) 6202 return replacePredAndOp0(&I, I.getPredicate(), X); 6203 6204 default: 6205 return nullptr; 6206 } 6207 } 6208 6209 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6210 bool Changed = false; 6211 6212 /// Orders the operands of the compare so that they are listed from most 6213 /// complex to least complex. This puts constants before unary operators, 6214 /// before binary operators. 6215 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6216 I.swapOperands(); 6217 Changed = true; 6218 } 6219 6220 const CmpInst::Predicate Pred = I.getPredicate(); 6221 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6222 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6223 SQ.getWithInstruction(&I))) 6224 return replaceInstUsesWith(I, V); 6225 6226 // Simplify 'fcmp pred X, X' 6227 Type *OpType = Op0->getType(); 6228 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6229 if (Op0 == Op1) { 6230 switch (Pred) { 6231 default: break; 6232 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6233 case FCmpInst::FCMP_ULT: // True if unordered or less than 6234 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6235 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6236 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6237 I.setPredicate(FCmpInst::FCMP_UNO); 6238 I.setOperand(1, Constant::getNullValue(OpType)); 6239 return &I; 6240 6241 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6242 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6243 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6244 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6245 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6246 I.setPredicate(FCmpInst::FCMP_ORD); 6247 I.setOperand(1, Constant::getNullValue(OpType)); 6248 return &I; 6249 } 6250 } 6251 6252 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6253 // then canonicalize the operand to 0.0. 6254 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6255 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6256 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6257 6258 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6259 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6260 } 6261 6262 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6263 Value *X, *Y; 6264 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6265 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6266 6267 // Test if the FCmpInst instruction is used exclusively by a select as 6268 // part of a minimum or maximum operation. If so, refrain from doing 6269 // any other folding. This helps out other analyses which understand 6270 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6271 // and CodeGen. And in this case, at least one of the comparison 6272 // operands has at least one user besides the compare (the select), 6273 // which would often largely negate the benefit of folding anyway. 6274 if (I.hasOneUse()) 6275 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6276 Value *A, *B; 6277 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6278 if (SPR.Flavor != SPF_UNKNOWN) 6279 return nullptr; 6280 } 6281 6282 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6283 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6284 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6285 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6286 6287 // Handle fcmp with instruction LHS and constant RHS. 6288 Instruction *LHSI; 6289 Constant *RHSC; 6290 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6291 switch (LHSI->getOpcode()) { 6292 case Instruction::PHI: 6293 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6294 // block. If in the same block, we're encouraging jump threading. If 6295 // not, we are just pessimizing the code by making an i1 phi. 6296 if (LHSI->getParent() == I.getParent()) 6297 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6298 return NV; 6299 break; 6300 case Instruction::SIToFP: 6301 case Instruction::UIToFP: 6302 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6303 return NV; 6304 break; 6305 case Instruction::FDiv: 6306 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6307 return NV; 6308 break; 6309 case Instruction::Load: 6310 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6311 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6312 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6313 !cast<LoadInst>(LHSI)->isVolatile()) 6314 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6315 return Res; 6316 break; 6317 } 6318 } 6319 6320 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6321 return R; 6322 6323 if (match(Op0, m_FNeg(m_Value(X)))) { 6324 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6325 Constant *C; 6326 if (match(Op1, m_Constant(C))) { 6327 Constant *NegC = ConstantExpr::getFNeg(C); 6328 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6329 } 6330 } 6331 6332 if (match(Op0, m_FPExt(m_Value(X)))) { 6333 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6334 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6335 return new FCmpInst(Pred, X, Y, "", &I); 6336 6337 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6338 const APFloat *C; 6339 if (match(Op1, m_APFloat(C))) { 6340 const fltSemantics &FPSem = 6341 X->getType()->getScalarType()->getFltSemantics(); 6342 bool Lossy; 6343 APFloat TruncC = *C; 6344 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6345 6346 // Avoid lossy conversions and denormals. 6347 // Zero is a special case that's OK to convert. 6348 APFloat Fabs = TruncC; 6349 Fabs.clearSign(); 6350 if (!Lossy && 6351 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6352 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6353 return new FCmpInst(Pred, X, NewC, "", &I); 6354 } 6355 } 6356 } 6357 6358 // Convert a sign-bit test of an FP value into a cast and integer compare. 6359 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6360 // TODO: Handle non-zero compare constants. 6361 // TODO: Handle other predicates. 6362 const APFloat *C; 6363 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6364 m_Value(X)))) && 6365 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6366 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6367 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6368 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6369 6370 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6371 if (Pred == FCmpInst::FCMP_OLT) { 6372 Value *IntX = Builder.CreateBitCast(X, IntType); 6373 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6374 ConstantInt::getNullValue(IntType)); 6375 } 6376 } 6377 6378 if (I.getType()->isVectorTy()) 6379 if (Instruction *Res = foldVectorCmp(I, Builder)) 6380 return Res; 6381 6382 return Changed ? &I : nullptr; 6383 } 6384