1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 static ConstantInt *extractElement(Constant *V, Constant *Idx) { 40 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 41 } 42 43 static bool hasAddOverflow(ConstantInt *Result, 44 ConstantInt *In1, ConstantInt *In2, 45 bool IsSigned) { 46 if (!IsSigned) 47 return Result->getValue().ult(In1->getValue()); 48 49 if (In2->isNegative()) 50 return Result->getValue().sgt(In1->getValue()); 51 return Result->getValue().slt(In1->getValue()); 52 } 53 54 /// Compute Result = In1+In2, returning true if the result overflowed for this 55 /// type. 56 static bool addWithOverflow(Constant *&Result, Constant *In1, 57 Constant *In2, bool IsSigned = false) { 58 Result = ConstantExpr::getAdd(In1, In2); 59 60 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 63 if (hasAddOverflow(extractElement(Result, Idx), 64 extractElement(In1, Idx), 65 extractElement(In2, Idx), 66 IsSigned)) 67 return true; 68 } 69 return false; 70 } 71 72 return hasAddOverflow(cast<ConstantInt>(Result), 73 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 74 IsSigned); 75 } 76 77 static bool hasSubOverflow(ConstantInt *Result, 78 ConstantInt *In1, ConstantInt *In2, 79 bool IsSigned) { 80 if (!IsSigned) 81 return Result->getValue().ugt(In1->getValue()); 82 83 if (In2->isNegative()) 84 return Result->getValue().slt(In1->getValue()); 85 86 return Result->getValue().sgt(In1->getValue()); 87 } 88 89 /// Compute Result = In1-In2, returning true if the result overflowed for this 90 /// type. 91 static bool subWithOverflow(Constant *&Result, Constant *In1, 92 Constant *In2, bool IsSigned = false) { 93 Result = ConstantExpr::getSub(In1, In2); 94 95 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 98 if (hasSubOverflow(extractElement(Result, Idx), 99 extractElement(In1, Idx), 100 extractElement(In2, Idx), 101 IsSigned)) 102 return true; 103 } 104 return false; 105 } 106 107 return hasSubOverflow(cast<ConstantInt>(Result), 108 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 109 IsSigned); 110 } 111 112 /// Given an icmp instruction, return true if any use of this comparison is a 113 /// branch on sign bit comparison. 114 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) { 115 for (auto *U : I.users()) 116 if (isa<BranchInst>(U)) 117 return isSignBit; 118 return false; 119 } 120 121 /// Given an exploded icmp instruction, return true if the comparison only 122 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 123 /// result of the comparison is true when the input value is signed. 124 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 125 bool &TrueIfSigned) { 126 switch (Pred) { 127 case ICmpInst::ICMP_SLT: // True if LHS s< 0 128 TrueIfSigned = true; 129 return RHS == 0; 130 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 131 TrueIfSigned = true; 132 return RHS.isAllOnesValue(); 133 case ICmpInst::ICMP_SGT: // True if LHS s> -1 134 TrueIfSigned = false; 135 return RHS.isAllOnesValue(); 136 case ICmpInst::ICMP_UGT: 137 // True if LHS u> RHS and RHS == high-bit-mask - 1 138 TrueIfSigned = true; 139 return RHS.isMaxSignedValue(); 140 case ICmpInst::ICMP_UGE: 141 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 142 TrueIfSigned = true; 143 return RHS.isSignBit(); 144 default: 145 return false; 146 } 147 } 148 149 /// Returns true if the exploded icmp can be expressed as a signed comparison 150 /// to zero and updates the predicate accordingly. 151 /// The signedness of the comparison is preserved. 152 /// TODO: Refactor with decomposeBitTestICmp()? 153 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 154 if (!ICmpInst::isSigned(Pred)) 155 return false; 156 157 if (C == 0) 158 return ICmpInst::isRelational(Pred); 159 160 if (C == 1) { 161 if (Pred == ICmpInst::ICMP_SLT) { 162 Pred = ICmpInst::ICMP_SLE; 163 return true; 164 } 165 } else if (C.isAllOnesValue()) { 166 if (Pred == ICmpInst::ICMP_SGT) { 167 Pred = ICmpInst::ICMP_SGE; 168 return true; 169 } 170 } 171 172 return false; 173 } 174 175 /// Given a signed integer type and a set of known zero and one bits, compute 176 /// the maximum and minimum values that could have the specified known zero and 177 /// known one bits, returning them in Min/Max. 178 static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 179 const APInt &KnownOne, 180 APInt &Min, APInt &Max) { 181 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 182 KnownZero.getBitWidth() == Min.getBitWidth() && 183 KnownZero.getBitWidth() == Max.getBitWidth() && 184 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 185 APInt UnknownBits = ~(KnownZero|KnownOne); 186 187 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 188 // bit if it is unknown. 189 Min = KnownOne; 190 Max = KnownOne|UnknownBits; 191 192 if (UnknownBits.isNegative()) { // Sign bit is unknown 193 Min.setBit(Min.getBitWidth()-1); 194 Max.clearBit(Max.getBitWidth()-1); 195 } 196 } 197 198 /// Given an unsigned integer type and a set of known zero and one bits, compute 199 /// the maximum and minimum values that could have the specified known zero and 200 /// known one bits, returning them in Min/Max. 201 static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 202 const APInt &KnownOne, 203 APInt &Min, APInt &Max) { 204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 205 KnownZero.getBitWidth() == Min.getBitWidth() && 206 KnownZero.getBitWidth() == Max.getBitWidth() && 207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 208 APInt UnknownBits = ~(KnownZero|KnownOne); 209 210 // The minimum value is when the unknown bits are all zeros. 211 Min = KnownOne; 212 // The maximum value is when the unknown bits are all ones. 213 Max = KnownOne|UnknownBits; 214 } 215 216 /// This is called when we see this pattern: 217 /// cmp pred (load (gep GV, ...)), cmpcst 218 /// where GV is a global variable with a constant initializer. Try to simplify 219 /// this into some simple computation that does not need the load. For example 220 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 221 /// 222 /// If AndCst is non-null, then the loaded value is masked with that constant 223 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 224 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 225 GlobalVariable *GV, 226 CmpInst &ICI, 227 ConstantInt *AndCst) { 228 Constant *Init = GV->getInitializer(); 229 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 230 return nullptr; 231 232 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 233 // Don't blow up on huge arrays. 234 if (ArrayElementCount > MaxArraySizeForCombine) 235 return nullptr; 236 237 // There are many forms of this optimization we can handle, for now, just do 238 // the simple index into a single-dimensional array. 239 // 240 // Require: GEP GV, 0, i {{, constant indices}} 241 if (GEP->getNumOperands() < 3 || 242 !isa<ConstantInt>(GEP->getOperand(1)) || 243 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 244 isa<Constant>(GEP->getOperand(2))) 245 return nullptr; 246 247 // Check that indices after the variable are constants and in-range for the 248 // type they index. Collect the indices. This is typically for arrays of 249 // structs. 250 SmallVector<unsigned, 4> LaterIndices; 251 252 Type *EltTy = Init->getType()->getArrayElementType(); 253 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 254 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 255 if (!Idx) return nullptr; // Variable index. 256 257 uint64_t IdxVal = Idx->getZExtValue(); 258 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 259 260 if (StructType *STy = dyn_cast<StructType>(EltTy)) 261 EltTy = STy->getElementType(IdxVal); 262 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 263 if (IdxVal >= ATy->getNumElements()) return nullptr; 264 EltTy = ATy->getElementType(); 265 } else { 266 return nullptr; // Unknown type. 267 } 268 269 LaterIndices.push_back(IdxVal); 270 } 271 272 enum { Overdefined = -3, Undefined = -2 }; 273 274 // Variables for our state machines. 275 276 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 277 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 278 // and 87 is the second (and last) index. FirstTrueElement is -2 when 279 // undefined, otherwise set to the first true element. SecondTrueElement is 280 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 281 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 282 283 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 284 // form "i != 47 & i != 87". Same state transitions as for true elements. 285 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 286 287 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 288 /// define a state machine that triggers for ranges of values that the index 289 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 290 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 291 /// index in the range (inclusive). We use -2 for undefined here because we 292 /// use relative comparisons and don't want 0-1 to match -1. 293 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 294 295 // MagicBitvector - This is a magic bitvector where we set a bit if the 296 // comparison is true for element 'i'. If there are 64 elements or less in 297 // the array, this will fully represent all the comparison results. 298 uint64_t MagicBitvector = 0; 299 300 // Scan the array and see if one of our patterns matches. 301 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 302 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 303 Constant *Elt = Init->getAggregateElement(i); 304 if (!Elt) return nullptr; 305 306 // If this is indexing an array of structures, get the structure element. 307 if (!LaterIndices.empty()) 308 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 309 310 // If the element is masked, handle it. 311 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 312 313 // Find out if the comparison would be true or false for the i'th element. 314 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 315 CompareRHS, DL, &TLI); 316 // If the result is undef for this element, ignore it. 317 if (isa<UndefValue>(C)) { 318 // Extend range state machines to cover this element in case there is an 319 // undef in the middle of the range. 320 if (TrueRangeEnd == (int)i-1) 321 TrueRangeEnd = i; 322 if (FalseRangeEnd == (int)i-1) 323 FalseRangeEnd = i; 324 continue; 325 } 326 327 // If we can't compute the result for any of the elements, we have to give 328 // up evaluating the entire conditional. 329 if (!isa<ConstantInt>(C)) return nullptr; 330 331 // Otherwise, we know if the comparison is true or false for this element, 332 // update our state machines. 333 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 334 335 // State machine for single/double/range index comparison. 336 if (IsTrueForElt) { 337 // Update the TrueElement state machine. 338 if (FirstTrueElement == Undefined) 339 FirstTrueElement = TrueRangeEnd = i; // First true element. 340 else { 341 // Update double-compare state machine. 342 if (SecondTrueElement == Undefined) 343 SecondTrueElement = i; 344 else 345 SecondTrueElement = Overdefined; 346 347 // Update range state machine. 348 if (TrueRangeEnd == (int)i-1) 349 TrueRangeEnd = i; 350 else 351 TrueRangeEnd = Overdefined; 352 } 353 } else { 354 // Update the FalseElement state machine. 355 if (FirstFalseElement == Undefined) 356 FirstFalseElement = FalseRangeEnd = i; // First false element. 357 else { 358 // Update double-compare state machine. 359 if (SecondFalseElement == Undefined) 360 SecondFalseElement = i; 361 else 362 SecondFalseElement = Overdefined; 363 364 // Update range state machine. 365 if (FalseRangeEnd == (int)i-1) 366 FalseRangeEnd = i; 367 else 368 FalseRangeEnd = Overdefined; 369 } 370 } 371 372 // If this element is in range, update our magic bitvector. 373 if (i < 64 && IsTrueForElt) 374 MagicBitvector |= 1ULL << i; 375 376 // If all of our states become overdefined, bail out early. Since the 377 // predicate is expensive, only check it every 8 elements. This is only 378 // really useful for really huge arrays. 379 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 380 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 381 FalseRangeEnd == Overdefined) 382 return nullptr; 383 } 384 385 // Now that we've scanned the entire array, emit our new comparison(s). We 386 // order the state machines in complexity of the generated code. 387 Value *Idx = GEP->getOperand(2); 388 389 // If the index is larger than the pointer size of the target, truncate the 390 // index down like the GEP would do implicitly. We don't have to do this for 391 // an inbounds GEP because the index can't be out of range. 392 if (!GEP->isInBounds()) { 393 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 394 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 395 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 396 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 397 } 398 399 // If the comparison is only true for one or two elements, emit direct 400 // comparisons. 401 if (SecondTrueElement != Overdefined) { 402 // None true -> false. 403 if (FirstTrueElement == Undefined) 404 return replaceInstUsesWith(ICI, Builder->getFalse()); 405 406 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 407 408 // True for one element -> 'i == 47'. 409 if (SecondTrueElement == Undefined) 410 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 411 412 // True for two elements -> 'i == 47 | i == 72'. 413 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 414 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 415 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 416 return BinaryOperator::CreateOr(C1, C2); 417 } 418 419 // If the comparison is only false for one or two elements, emit direct 420 // comparisons. 421 if (SecondFalseElement != Overdefined) { 422 // None false -> true. 423 if (FirstFalseElement == Undefined) 424 return replaceInstUsesWith(ICI, Builder->getTrue()); 425 426 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 427 428 // False for one element -> 'i != 47'. 429 if (SecondFalseElement == Undefined) 430 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 431 432 // False for two elements -> 'i != 47 & i != 72'. 433 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 434 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 435 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 436 return BinaryOperator::CreateAnd(C1, C2); 437 } 438 439 // If the comparison can be replaced with a range comparison for the elements 440 // where it is true, emit the range check. 441 if (TrueRangeEnd != Overdefined) { 442 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 443 444 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 445 if (FirstTrueElement) { 446 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 447 Idx = Builder->CreateAdd(Idx, Offs); 448 } 449 450 Value *End = ConstantInt::get(Idx->getType(), 451 TrueRangeEnd-FirstTrueElement+1); 452 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 453 } 454 455 // False range check. 456 if (FalseRangeEnd != Overdefined) { 457 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 458 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 459 if (FirstFalseElement) { 460 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 461 Idx = Builder->CreateAdd(Idx, Offs); 462 } 463 464 Value *End = ConstantInt::get(Idx->getType(), 465 FalseRangeEnd-FirstFalseElement); 466 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 467 } 468 469 // If a magic bitvector captures the entire comparison state 470 // of this load, replace it with computation that does: 471 // ((magic_cst >> i) & 1) != 0 472 { 473 Type *Ty = nullptr; 474 475 // Look for an appropriate type: 476 // - The type of Idx if the magic fits 477 // - The smallest fitting legal type if we have a DataLayout 478 // - Default to i32 479 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 480 Ty = Idx->getType(); 481 else 482 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 483 484 if (Ty) { 485 Value *V = Builder->CreateIntCast(Idx, Ty, false); 486 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 487 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 488 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 489 } 490 } 491 492 return nullptr; 493 } 494 495 /// Return a value that can be used to compare the *offset* implied by a GEP to 496 /// zero. For example, if we have &A[i], we want to return 'i' for 497 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 498 /// are involved. The above expression would also be legal to codegen as 499 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 500 /// This latter form is less amenable to optimization though, and we are allowed 501 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 502 /// 503 /// If we can't emit an optimized form for this expression, this returns null. 504 /// 505 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 506 const DataLayout &DL) { 507 gep_type_iterator GTI = gep_type_begin(GEP); 508 509 // Check to see if this gep only has a single variable index. If so, and if 510 // any constant indices are a multiple of its scale, then we can compute this 511 // in terms of the scale of the variable index. For example, if the GEP 512 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 513 // because the expression will cross zero at the same point. 514 unsigned i, e = GEP->getNumOperands(); 515 int64_t Offset = 0; 516 for (i = 1; i != e; ++i, ++GTI) { 517 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 518 // Compute the aggregate offset of constant indices. 519 if (CI->isZero()) continue; 520 521 // Handle a struct index, which adds its field offset to the pointer. 522 if (StructType *STy = GTI.getStructTypeOrNull()) { 523 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 524 } else { 525 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 526 Offset += Size*CI->getSExtValue(); 527 } 528 } else { 529 // Found our variable index. 530 break; 531 } 532 } 533 534 // If there are no variable indices, we must have a constant offset, just 535 // evaluate it the general way. 536 if (i == e) return nullptr; 537 538 Value *VariableIdx = GEP->getOperand(i); 539 // Determine the scale factor of the variable element. For example, this is 540 // 4 if the variable index is into an array of i32. 541 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 542 543 // Verify that there are no other variable indices. If so, emit the hard way. 544 for (++i, ++GTI; i != e; ++i, ++GTI) { 545 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 546 if (!CI) return nullptr; 547 548 // Compute the aggregate offset of constant indices. 549 if (CI->isZero()) continue; 550 551 // Handle a struct index, which adds its field offset to the pointer. 552 if (StructType *STy = GTI.getStructTypeOrNull()) { 553 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 554 } else { 555 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 556 Offset += Size*CI->getSExtValue(); 557 } 558 } 559 560 // Okay, we know we have a single variable index, which must be a 561 // pointer/array/vector index. If there is no offset, life is simple, return 562 // the index. 563 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 564 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 565 if (Offset == 0) { 566 // Cast to intptrty in case a truncation occurs. If an extension is needed, 567 // we don't need to bother extending: the extension won't affect where the 568 // computation crosses zero. 569 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 570 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 571 } 572 return VariableIdx; 573 } 574 575 // Otherwise, there is an index. The computation we will do will be modulo 576 // the pointer size, so get it. 577 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 578 579 Offset &= PtrSizeMask; 580 VariableScale &= PtrSizeMask; 581 582 // To do this transformation, any constant index must be a multiple of the 583 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 584 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 585 // multiple of the variable scale. 586 int64_t NewOffs = Offset / (int64_t)VariableScale; 587 if (Offset != NewOffs*(int64_t)VariableScale) 588 return nullptr; 589 590 // Okay, we can do this evaluation. Start by converting the index to intptr. 591 if (VariableIdx->getType() != IntPtrTy) 592 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 593 true /*Signed*/); 594 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 595 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 596 } 597 598 /// Returns true if we can rewrite Start as a GEP with pointer Base 599 /// and some integer offset. The nodes that need to be re-written 600 /// for this transformation will be added to Explored. 601 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 602 const DataLayout &DL, 603 SetVector<Value *> &Explored) { 604 SmallVector<Value *, 16> WorkList(1, Start); 605 Explored.insert(Base); 606 607 // The following traversal gives us an order which can be used 608 // when doing the final transformation. Since in the final 609 // transformation we create the PHI replacement instructions first, 610 // we don't have to get them in any particular order. 611 // 612 // However, for other instructions we will have to traverse the 613 // operands of an instruction first, which means that we have to 614 // do a post-order traversal. 615 while (!WorkList.empty()) { 616 SetVector<PHINode *> PHIs; 617 618 while (!WorkList.empty()) { 619 if (Explored.size() >= 100) 620 return false; 621 622 Value *V = WorkList.back(); 623 624 if (Explored.count(V) != 0) { 625 WorkList.pop_back(); 626 continue; 627 } 628 629 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 630 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 631 // We've found some value that we can't explore which is different from 632 // the base. Therefore we can't do this transformation. 633 return false; 634 635 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 636 auto *CI = dyn_cast<CastInst>(V); 637 if (!CI->isNoopCast(DL)) 638 return false; 639 640 if (Explored.count(CI->getOperand(0)) == 0) 641 WorkList.push_back(CI->getOperand(0)); 642 } 643 644 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 645 // We're limiting the GEP to having one index. This will preserve 646 // the original pointer type. We could handle more cases in the 647 // future. 648 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 649 GEP->getType() != Start->getType()) 650 return false; 651 652 if (Explored.count(GEP->getOperand(0)) == 0) 653 WorkList.push_back(GEP->getOperand(0)); 654 } 655 656 if (WorkList.back() == V) { 657 WorkList.pop_back(); 658 // We've finished visiting this node, mark it as such. 659 Explored.insert(V); 660 } 661 662 if (auto *PN = dyn_cast<PHINode>(V)) { 663 // We cannot transform PHIs on unsplittable basic blocks. 664 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 665 return false; 666 Explored.insert(PN); 667 PHIs.insert(PN); 668 } 669 } 670 671 // Explore the PHI nodes further. 672 for (auto *PN : PHIs) 673 for (Value *Op : PN->incoming_values()) 674 if (Explored.count(Op) == 0) 675 WorkList.push_back(Op); 676 } 677 678 // Make sure that we can do this. Since we can't insert GEPs in a basic 679 // block before a PHI node, we can't easily do this transformation if 680 // we have PHI node users of transformed instructions. 681 for (Value *Val : Explored) { 682 for (Value *Use : Val->uses()) { 683 684 auto *PHI = dyn_cast<PHINode>(Use); 685 auto *Inst = dyn_cast<Instruction>(Val); 686 687 if (Inst == Base || Inst == PHI || !Inst || !PHI || 688 Explored.count(PHI) == 0) 689 continue; 690 691 if (PHI->getParent() == Inst->getParent()) 692 return false; 693 } 694 } 695 return true; 696 } 697 698 // Sets the appropriate insert point on Builder where we can add 699 // a replacement Instruction for V (if that is possible). 700 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 701 bool Before = true) { 702 if (auto *PHI = dyn_cast<PHINode>(V)) { 703 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 704 return; 705 } 706 if (auto *I = dyn_cast<Instruction>(V)) { 707 if (!Before) 708 I = &*std::next(I->getIterator()); 709 Builder.SetInsertPoint(I); 710 return; 711 } 712 if (auto *A = dyn_cast<Argument>(V)) { 713 // Set the insertion point in the entry block. 714 BasicBlock &Entry = A->getParent()->getEntryBlock(); 715 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 716 return; 717 } 718 // Otherwise, this is a constant and we don't need to set a new 719 // insertion point. 720 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 721 } 722 723 /// Returns a re-written value of Start as an indexed GEP using Base as a 724 /// pointer. 725 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 726 const DataLayout &DL, 727 SetVector<Value *> &Explored) { 728 // Perform all the substitutions. This is a bit tricky because we can 729 // have cycles in our use-def chains. 730 // 1. Create the PHI nodes without any incoming values. 731 // 2. Create all the other values. 732 // 3. Add the edges for the PHI nodes. 733 // 4. Emit GEPs to get the original pointers. 734 // 5. Remove the original instructions. 735 Type *IndexType = IntegerType::get( 736 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 737 738 DenseMap<Value *, Value *> NewInsts; 739 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 740 741 // Create the new PHI nodes, without adding any incoming values. 742 for (Value *Val : Explored) { 743 if (Val == Base) 744 continue; 745 // Create empty phi nodes. This avoids cyclic dependencies when creating 746 // the remaining instructions. 747 if (auto *PHI = dyn_cast<PHINode>(Val)) 748 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 749 PHI->getName() + ".idx", PHI); 750 } 751 IRBuilder<> Builder(Base->getContext()); 752 753 // Create all the other instructions. 754 for (Value *Val : Explored) { 755 756 if (NewInsts.find(Val) != NewInsts.end()) 757 continue; 758 759 if (auto *CI = dyn_cast<CastInst>(Val)) { 760 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 761 continue; 762 } 763 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 764 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 765 : GEP->getOperand(1); 766 setInsertionPoint(Builder, GEP); 767 // Indices might need to be sign extended. GEPs will magically do 768 // this, but we need to do it ourselves here. 769 if (Index->getType()->getScalarSizeInBits() != 770 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 771 Index = Builder.CreateSExtOrTrunc( 772 Index, NewInsts[GEP->getOperand(0)]->getType(), 773 GEP->getOperand(0)->getName() + ".sext"); 774 } 775 776 auto *Op = NewInsts[GEP->getOperand(0)]; 777 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 778 NewInsts[GEP] = Index; 779 else 780 NewInsts[GEP] = Builder.CreateNSWAdd( 781 Op, Index, GEP->getOperand(0)->getName() + ".add"); 782 continue; 783 } 784 if (isa<PHINode>(Val)) 785 continue; 786 787 llvm_unreachable("Unexpected instruction type"); 788 } 789 790 // Add the incoming values to the PHI nodes. 791 for (Value *Val : Explored) { 792 if (Val == Base) 793 continue; 794 // All the instructions have been created, we can now add edges to the 795 // phi nodes. 796 if (auto *PHI = dyn_cast<PHINode>(Val)) { 797 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 798 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 799 Value *NewIncoming = PHI->getIncomingValue(I); 800 801 if (NewInsts.find(NewIncoming) != NewInsts.end()) 802 NewIncoming = NewInsts[NewIncoming]; 803 804 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 805 } 806 } 807 } 808 809 for (Value *Val : Explored) { 810 if (Val == Base) 811 continue; 812 813 // Depending on the type, for external users we have to emit 814 // a GEP or a GEP + ptrtoint. 815 setInsertionPoint(Builder, Val, false); 816 817 // If required, create an inttoptr instruction for Base. 818 Value *NewBase = Base; 819 if (!Base->getType()->isPointerTy()) 820 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 821 Start->getName() + "to.ptr"); 822 823 Value *GEP = Builder.CreateInBoundsGEP( 824 Start->getType()->getPointerElementType(), NewBase, 825 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 826 827 if (!Val->getType()->isPointerTy()) { 828 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 829 Val->getName() + ".conv"); 830 GEP = Cast; 831 } 832 Val->replaceAllUsesWith(GEP); 833 } 834 835 return NewInsts[Start]; 836 } 837 838 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 839 /// the input Value as a constant indexed GEP. Returns a pair containing 840 /// the GEPs Pointer and Index. 841 static std::pair<Value *, Value *> 842 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 843 Type *IndexType = IntegerType::get(V->getContext(), 844 DL.getPointerTypeSizeInBits(V->getType())); 845 846 Constant *Index = ConstantInt::getNullValue(IndexType); 847 while (true) { 848 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 849 // We accept only inbouds GEPs here to exclude the possibility of 850 // overflow. 851 if (!GEP->isInBounds()) 852 break; 853 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 854 GEP->getType() == V->getType()) { 855 V = GEP->getOperand(0); 856 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 857 Index = ConstantExpr::getAdd( 858 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 859 continue; 860 } 861 break; 862 } 863 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 864 if (!CI->isNoopCast(DL)) 865 break; 866 V = CI->getOperand(0); 867 continue; 868 } 869 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 870 if (!CI->isNoopCast(DL)) 871 break; 872 V = CI->getOperand(0); 873 continue; 874 } 875 break; 876 } 877 return {V, Index}; 878 } 879 880 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 881 /// We can look through PHIs, GEPs and casts in order to determine a common base 882 /// between GEPLHS and RHS. 883 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 884 ICmpInst::Predicate Cond, 885 const DataLayout &DL) { 886 if (!GEPLHS->hasAllConstantIndices()) 887 return nullptr; 888 889 // Make sure the pointers have the same type. 890 if (GEPLHS->getType() != RHS->getType()) 891 return nullptr; 892 893 Value *PtrBase, *Index; 894 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 895 896 // The set of nodes that will take part in this transformation. 897 SetVector<Value *> Nodes; 898 899 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 900 return nullptr; 901 902 // We know we can re-write this as 903 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 904 // Since we've only looked through inbouds GEPs we know that we 905 // can't have overflow on either side. We can therefore re-write 906 // this as: 907 // OFFSET1 cmp OFFSET2 908 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 909 910 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 911 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 912 // offset. Since Index is the offset of LHS to the base pointer, we will now 913 // compare the offsets instead of comparing the pointers. 914 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 915 } 916 917 /// Fold comparisons between a GEP instruction and something else. At this point 918 /// we know that the GEP is on the LHS of the comparison. 919 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 920 ICmpInst::Predicate Cond, 921 Instruction &I) { 922 // Don't transform signed compares of GEPs into index compares. Even if the 923 // GEP is inbounds, the final add of the base pointer can have signed overflow 924 // and would change the result of the icmp. 925 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 926 // the maximum signed value for the pointer type. 927 if (ICmpInst::isSigned(Cond)) 928 return nullptr; 929 930 // Look through bitcasts and addrspacecasts. We do not however want to remove 931 // 0 GEPs. 932 if (!isa<GetElementPtrInst>(RHS)) 933 RHS = RHS->stripPointerCasts(); 934 935 Value *PtrBase = GEPLHS->getOperand(0); 936 if (PtrBase == RHS && GEPLHS->isInBounds()) { 937 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 938 // This transformation (ignoring the base and scales) is valid because we 939 // know pointers can't overflow since the gep is inbounds. See if we can 940 // output an optimized form. 941 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 942 943 // If not, synthesize the offset the hard way. 944 if (!Offset) 945 Offset = EmitGEPOffset(GEPLHS); 946 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 947 Constant::getNullValue(Offset->getType())); 948 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 949 // If the base pointers are different, but the indices are the same, just 950 // compare the base pointer. 951 if (PtrBase != GEPRHS->getOperand(0)) { 952 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 953 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 954 GEPRHS->getOperand(0)->getType(); 955 if (IndicesTheSame) 956 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 957 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 958 IndicesTheSame = false; 959 break; 960 } 961 962 // If all indices are the same, just compare the base pointers. 963 if (IndicesTheSame) 964 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 965 966 // If we're comparing GEPs with two base pointers that only differ in type 967 // and both GEPs have only constant indices or just one use, then fold 968 // the compare with the adjusted indices. 969 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 970 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 971 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 972 PtrBase->stripPointerCasts() == 973 GEPRHS->getOperand(0)->stripPointerCasts()) { 974 Value *LOffset = EmitGEPOffset(GEPLHS); 975 Value *ROffset = EmitGEPOffset(GEPRHS); 976 977 // If we looked through an addrspacecast between different sized address 978 // spaces, the LHS and RHS pointers are different sized 979 // integers. Truncate to the smaller one. 980 Type *LHSIndexTy = LOffset->getType(); 981 Type *RHSIndexTy = ROffset->getType(); 982 if (LHSIndexTy != RHSIndexTy) { 983 if (LHSIndexTy->getPrimitiveSizeInBits() < 984 RHSIndexTy->getPrimitiveSizeInBits()) { 985 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 986 } else 987 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 988 } 989 990 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 991 LOffset, ROffset); 992 return replaceInstUsesWith(I, Cmp); 993 } 994 995 // Otherwise, the base pointers are different and the indices are 996 // different. Try convert this to an indexed compare by looking through 997 // PHIs/casts. 998 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 999 } 1000 1001 // If one of the GEPs has all zero indices, recurse. 1002 if (GEPLHS->hasAllZeroIndices()) 1003 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 1004 ICmpInst::getSwappedPredicate(Cond), I); 1005 1006 // If the other GEP has all zero indices, recurse. 1007 if (GEPRHS->hasAllZeroIndices()) 1008 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1009 1010 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1011 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1012 // If the GEPs only differ by one index, compare it. 1013 unsigned NumDifferences = 0; // Keep track of # differences. 1014 unsigned DiffOperand = 0; // The operand that differs. 1015 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1016 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1017 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 1018 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 1019 // Irreconcilable differences. 1020 NumDifferences = 2; 1021 break; 1022 } else { 1023 if (NumDifferences++) break; 1024 DiffOperand = i; 1025 } 1026 } 1027 1028 if (NumDifferences == 0) // SAME GEP? 1029 return replaceInstUsesWith(I, // No comparison is needed here. 1030 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 1031 1032 else if (NumDifferences == 1 && GEPsInBounds) { 1033 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1034 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1035 // Make sure we do a signed comparison here. 1036 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1037 } 1038 } 1039 1040 // Only lower this if the icmp is the only user of the GEP or if we expect 1041 // the result to fold to a constant! 1042 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1043 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1044 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1045 Value *L = EmitGEPOffset(GEPLHS); 1046 Value *R = EmitGEPOffset(GEPRHS); 1047 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1048 } 1049 } 1050 1051 // Try convert this to an indexed compare by looking through PHIs/casts as a 1052 // last resort. 1053 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1054 } 1055 1056 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1057 const AllocaInst *Alloca, 1058 const Value *Other) { 1059 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1060 1061 // It would be tempting to fold away comparisons between allocas and any 1062 // pointer not based on that alloca (e.g. an argument). However, even 1063 // though such pointers cannot alias, they can still compare equal. 1064 // 1065 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1066 // doesn't escape we can argue that it's impossible to guess its value, and we 1067 // can therefore act as if any such guesses are wrong. 1068 // 1069 // The code below checks that the alloca doesn't escape, and that it's only 1070 // used in a comparison once (the current instruction). The 1071 // single-comparison-use condition ensures that we're trivially folding all 1072 // comparisons against the alloca consistently, and avoids the risk of 1073 // erroneously folding a comparison of the pointer with itself. 1074 1075 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1076 1077 SmallVector<const Use *, 32> Worklist; 1078 for (const Use &U : Alloca->uses()) { 1079 if (Worklist.size() >= MaxIter) 1080 return nullptr; 1081 Worklist.push_back(&U); 1082 } 1083 1084 unsigned NumCmps = 0; 1085 while (!Worklist.empty()) { 1086 assert(Worklist.size() <= MaxIter); 1087 const Use *U = Worklist.pop_back_val(); 1088 const Value *V = U->getUser(); 1089 --MaxIter; 1090 1091 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1092 isa<SelectInst>(V)) { 1093 // Track the uses. 1094 } else if (isa<LoadInst>(V)) { 1095 // Loading from the pointer doesn't escape it. 1096 continue; 1097 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1098 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1099 if (SI->getValueOperand() == U->get()) 1100 return nullptr; 1101 continue; 1102 } else if (isa<ICmpInst>(V)) { 1103 if (NumCmps++) 1104 return nullptr; // Found more than one cmp. 1105 continue; 1106 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1107 switch (Intrin->getIntrinsicID()) { 1108 // These intrinsics don't escape or compare the pointer. Memset is safe 1109 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1110 // we don't allow stores, so src cannot point to V. 1111 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1112 case Intrinsic::dbg_declare: case Intrinsic::dbg_value: 1113 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1114 continue; 1115 default: 1116 return nullptr; 1117 } 1118 } else { 1119 return nullptr; 1120 } 1121 for (const Use &U : V->uses()) { 1122 if (Worklist.size() >= MaxIter) 1123 return nullptr; 1124 Worklist.push_back(&U); 1125 } 1126 } 1127 1128 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1129 return replaceInstUsesWith( 1130 ICI, 1131 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1132 } 1133 1134 /// Fold "icmp pred (X+CI), X". 1135 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI, 1136 Value *X, ConstantInt *CI, 1137 ICmpInst::Predicate Pred) { 1138 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1139 // so the values can never be equal. Similarly for all other "or equals" 1140 // operators. 1141 1142 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1143 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1144 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1145 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1146 Value *R = 1147 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1148 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1149 } 1150 1151 // (X+1) >u X --> X <u (0-1) --> X != 255 1152 // (X+2) >u X --> X <u (0-2) --> X <u 254 1153 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1154 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1155 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1156 1157 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1158 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1159 APInt::getSignedMaxValue(BitWidth)); 1160 1161 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1162 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1163 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1164 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1165 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1166 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1167 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1168 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1169 1170 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1171 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1172 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1173 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1174 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1175 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1176 1177 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1178 Constant *C = Builder->getInt(CI->getValue()-1); 1179 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1180 } 1181 1182 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1183 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1184 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1185 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1186 const APInt &AP1, 1187 const APInt &AP2) { 1188 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1189 1190 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1191 if (I.getPredicate() == I.ICMP_NE) 1192 Pred = CmpInst::getInversePredicate(Pred); 1193 return new ICmpInst(Pred, LHS, RHS); 1194 }; 1195 1196 // Don't bother doing any work for cases which InstSimplify handles. 1197 if (AP2 == 0) 1198 return nullptr; 1199 1200 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1201 if (IsAShr) { 1202 if (AP2.isAllOnesValue()) 1203 return nullptr; 1204 if (AP2.isNegative() != AP1.isNegative()) 1205 return nullptr; 1206 if (AP2.sgt(AP1)) 1207 return nullptr; 1208 } 1209 1210 if (!AP1) 1211 // 'A' must be large enough to shift out the highest set bit. 1212 return getICmp(I.ICMP_UGT, A, 1213 ConstantInt::get(A->getType(), AP2.logBase2())); 1214 1215 if (AP1 == AP2) 1216 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1217 1218 int Shift; 1219 if (IsAShr && AP1.isNegative()) 1220 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1221 else 1222 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1223 1224 if (Shift > 0) { 1225 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1226 // There are multiple solutions if we are comparing against -1 and the LHS 1227 // of the ashr is not a power of two. 1228 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1229 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1230 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1231 } else if (AP1 == AP2.lshr(Shift)) { 1232 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1233 } 1234 } 1235 1236 // Shifting const2 will never be equal to const1. 1237 // FIXME: This should always be handled by InstSimplify? 1238 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1239 return replaceInstUsesWith(I, TorF); 1240 } 1241 1242 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1243 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1244 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1245 const APInt &AP1, 1246 const APInt &AP2) { 1247 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1248 1249 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1250 if (I.getPredicate() == I.ICMP_NE) 1251 Pred = CmpInst::getInversePredicate(Pred); 1252 return new ICmpInst(Pred, LHS, RHS); 1253 }; 1254 1255 // Don't bother doing any work for cases which InstSimplify handles. 1256 if (AP2 == 0) 1257 return nullptr; 1258 1259 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1260 1261 if (!AP1 && AP2TrailingZeros != 0) 1262 return getICmp( 1263 I.ICMP_UGE, A, 1264 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1265 1266 if (AP1 == AP2) 1267 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1268 1269 // Get the distance between the lowest bits that are set. 1270 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1271 1272 if (Shift > 0 && AP2.shl(Shift) == AP1) 1273 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1274 1275 // Shifting const2 will never be equal to const1. 1276 // FIXME: This should always be handled by InstSimplify? 1277 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1278 return replaceInstUsesWith(I, TorF); 1279 } 1280 1281 /// The caller has matched a pattern of the form: 1282 /// I = icmp ugt (add (add A, B), CI2), CI1 1283 /// If this is of the form: 1284 /// sum = a + b 1285 /// if (sum+128 >u 255) 1286 /// Then replace it with llvm.sadd.with.overflow.i8. 1287 /// 1288 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1289 ConstantInt *CI2, ConstantInt *CI1, 1290 InstCombiner &IC) { 1291 // The transformation we're trying to do here is to transform this into an 1292 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1293 // with a narrower add, and discard the add-with-constant that is part of the 1294 // range check (if we can't eliminate it, this isn't profitable). 1295 1296 // In order to eliminate the add-with-constant, the compare can be its only 1297 // use. 1298 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1299 if (!AddWithCst->hasOneUse()) 1300 return nullptr; 1301 1302 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1303 if (!CI2->getValue().isPowerOf2()) 1304 return nullptr; 1305 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1306 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1307 return nullptr; 1308 1309 // The width of the new add formed is 1 more than the bias. 1310 ++NewWidth; 1311 1312 // Check to see that CI1 is an all-ones value with NewWidth bits. 1313 if (CI1->getBitWidth() == NewWidth || 1314 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1315 return nullptr; 1316 1317 // This is only really a signed overflow check if the inputs have been 1318 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1319 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1320 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1321 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1322 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1323 return nullptr; 1324 1325 // In order to replace the original add with a narrower 1326 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1327 // and truncates that discard the high bits of the add. Verify that this is 1328 // the case. 1329 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1330 for (User *U : OrigAdd->users()) { 1331 if (U == AddWithCst) 1332 continue; 1333 1334 // Only accept truncates for now. We would really like a nice recursive 1335 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1336 // chain to see which bits of a value are actually demanded. If the 1337 // original add had another add which was then immediately truncated, we 1338 // could still do the transformation. 1339 TruncInst *TI = dyn_cast<TruncInst>(U); 1340 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1341 return nullptr; 1342 } 1343 1344 // If the pattern matches, truncate the inputs to the narrower type and 1345 // use the sadd_with_overflow intrinsic to efficiently compute both the 1346 // result and the overflow bit. 1347 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1348 Value *F = Intrinsic::getDeclaration(I.getModule(), 1349 Intrinsic::sadd_with_overflow, NewType); 1350 1351 InstCombiner::BuilderTy *Builder = IC.Builder; 1352 1353 // Put the new code above the original add, in case there are any uses of the 1354 // add between the add and the compare. 1355 Builder->SetInsertPoint(OrigAdd); 1356 1357 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc"); 1358 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc"); 1359 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 1360 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 1361 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 1362 1363 // The inner add was the result of the narrow add, zero extended to the 1364 // wider type. Replace it with the result computed by the intrinsic. 1365 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1366 1367 // The original icmp gets replaced with the overflow value. 1368 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1369 } 1370 1371 // Fold icmp Pred X, C. 1372 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1373 CmpInst::Predicate Pred = Cmp.getPredicate(); 1374 Value *X = Cmp.getOperand(0); 1375 1376 const APInt *C; 1377 if (!match(Cmp.getOperand(1), m_APInt(C))) 1378 return nullptr; 1379 1380 Value *A = nullptr, *B = nullptr; 1381 1382 // Match the following pattern, which is a common idiom when writing 1383 // overflow-safe integer arithmetic functions. The source performs an addition 1384 // in wider type and explicitly checks for overflow using comparisons against 1385 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1386 // 1387 // TODO: This could probably be generalized to handle other overflow-safe 1388 // operations if we worked out the formulas to compute the appropriate magic 1389 // constants. 1390 // 1391 // sum = a + b 1392 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1393 { 1394 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1395 if (Pred == ICmpInst::ICMP_UGT && 1396 match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1397 if (Instruction *Res = processUGT_ADDCST_ADD( 1398 Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this)) 1399 return Res; 1400 } 1401 1402 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1403 if (*C == 0 && Pred == ICmpInst::ICMP_SGT) { 1404 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1405 if (SPR.Flavor == SPF_SMIN) { 1406 if (isKnownPositive(A, DL)) 1407 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1408 if (isKnownPositive(B, DL)) 1409 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1410 } 1411 } 1412 1413 // FIXME: Use m_APInt to allow folds for splat constants. 1414 ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1)); 1415 if (!CI) 1416 return nullptr; 1417 1418 // Canonicalize icmp instructions based on dominating conditions. 1419 BasicBlock *Parent = Cmp.getParent(); 1420 BasicBlock *Dom = Parent->getSinglePredecessor(); 1421 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr; 1422 ICmpInst::Predicate Pred2; 1423 BasicBlock *TrueBB, *FalseBB; 1424 ConstantInt *CI2; 1425 if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)), 1426 TrueBB, FalseBB)) && 1427 TrueBB != FalseBB) { 1428 ConstantRange CR = 1429 ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue()); 1430 ConstantRange DominatingCR = 1431 (Parent == TrueBB) 1432 ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue()) 1433 : ConstantRange::makeExactICmpRegion( 1434 CmpInst::getInversePredicate(Pred2), CI2->getValue()); 1435 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1436 ConstantRange Difference = DominatingCR.difference(CR); 1437 if (Intersection.isEmptySet()) 1438 return replaceInstUsesWith(Cmp, Builder->getFalse()); 1439 if (Difference.isEmptySet()) 1440 return replaceInstUsesWith(Cmp, Builder->getTrue()); 1441 1442 // If this is a normal comparison, it demands all bits. If it is a sign 1443 // bit comparison, it only demands the sign bit. 1444 bool UnusedBit; 1445 bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit); 1446 1447 // Canonicalizing a sign bit comparison that gets used in a branch, 1448 // pessimizes codegen by generating branch on zero instruction instead 1449 // of a test and branch. So we avoid canonicalizing in such situations 1450 // because test and branch instruction has better branch displacement 1451 // than compare and branch instruction. 1452 if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) { 1453 if (auto *AI = Intersection.getSingleElement()) 1454 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI)); 1455 if (auto *AD = Difference.getSingleElement()) 1456 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD)); 1457 } 1458 } 1459 1460 return nullptr; 1461 } 1462 1463 /// Fold icmp (trunc X, Y), C. 1464 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1465 Instruction *Trunc, 1466 const APInt *C) { 1467 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1468 Value *X = Trunc->getOperand(0); 1469 if (*C == 1 && C->getBitWidth() > 1) { 1470 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1471 Value *V = nullptr; 1472 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1473 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1474 ConstantInt::get(V->getType(), 1)); 1475 } 1476 1477 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1478 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1479 // of the high bits truncated out of x are known. 1480 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1481 SrcBits = X->getType()->getScalarSizeInBits(); 1482 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1483 computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp); 1484 1485 // If all the high bits are known, we can do this xform. 1486 if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) { 1487 // Pull in the high bits from known-ones set. 1488 APInt NewRHS = C->zext(SrcBits); 1489 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1490 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1491 } 1492 } 1493 1494 return nullptr; 1495 } 1496 1497 /// Fold icmp (xor X, Y), C. 1498 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1499 BinaryOperator *Xor, 1500 const APInt *C) { 1501 Value *X = Xor->getOperand(0); 1502 Value *Y = Xor->getOperand(1); 1503 const APInt *XorC; 1504 if (!match(Y, m_APInt(XorC))) 1505 return nullptr; 1506 1507 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1508 // fold the xor. 1509 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1510 if ((Pred == ICmpInst::ICMP_SLT && *C == 0) || 1511 (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) { 1512 1513 // If the sign bit of the XorCst is not set, there is no change to 1514 // the operation, just stop using the Xor. 1515 if (!XorC->isNegative()) { 1516 Cmp.setOperand(0, X); 1517 Worklist.Add(Xor); 1518 return &Cmp; 1519 } 1520 1521 // Was the old condition true if the operand is positive? 1522 bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT; 1523 1524 // If so, the new one isn't. 1525 isTrueIfPositive ^= true; 1526 1527 Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1)); 1528 if (isTrueIfPositive) 1529 return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant)); 1530 else 1531 return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant)); 1532 } 1533 1534 if (Xor->hasOneUse()) { 1535 // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit)) 1536 if (!Cmp.isEquality() && XorC->isSignBit()) { 1537 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1538 : Cmp.getSignedPredicate(); 1539 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC)); 1540 } 1541 1542 // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit)) 1543 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1544 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1545 : Cmp.getSignedPredicate(); 1546 Pred = Cmp.getSwappedPredicate(Pred); 1547 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC)); 1548 } 1549 } 1550 1551 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1552 // iff -C is a power of 2 1553 if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2()) 1554 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1555 1556 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1557 // iff -C is a power of 2 1558 if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2()) 1559 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 1560 1561 return nullptr; 1562 } 1563 1564 /// Fold icmp (and (sh X, Y), C2), C1. 1565 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1566 const APInt *C1, const APInt *C2) { 1567 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1568 if (!Shift || !Shift->isShift()) 1569 return nullptr; 1570 1571 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1572 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1573 // code produced by the clang front-end, for bitfield access. 1574 // This seemingly simple opportunity to fold away a shift turns out to be 1575 // rather complicated. See PR17827 for details. 1576 unsigned ShiftOpcode = Shift->getOpcode(); 1577 bool IsShl = ShiftOpcode == Instruction::Shl; 1578 const APInt *C3; 1579 if (match(Shift->getOperand(1), m_APInt(C3))) { 1580 bool CanFold = false; 1581 if (ShiftOpcode == Instruction::AShr) { 1582 // There may be some constraints that make this possible, but nothing 1583 // simple has been discovered yet. 1584 CanFold = false; 1585 } else if (ShiftOpcode == Instruction::Shl) { 1586 // For a left shift, we can fold if the comparison is not signed. We can 1587 // also fold a signed comparison if the mask value and comparison value 1588 // are not negative. These constraints may not be obvious, but we can 1589 // prove that they are correct using an SMT solver. 1590 if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative())) 1591 CanFold = true; 1592 } else if (ShiftOpcode == Instruction::LShr) { 1593 // For a logical right shift, we can fold if the comparison is not signed. 1594 // We can also fold a signed comparison if the shifted mask value and the 1595 // shifted comparison value are not negative. These constraints may not be 1596 // obvious, but we can prove that they are correct using an SMT solver. 1597 if (!Cmp.isSigned() || 1598 (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative())) 1599 CanFold = true; 1600 } 1601 1602 if (CanFold) { 1603 APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3); 1604 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1605 // Check to see if we are shifting out any of the bits being compared. 1606 if (SameAsC1 != *C1) { 1607 // If we shifted bits out, the fold is not going to work out. As a 1608 // special case, check to see if this means that the result is always 1609 // true or false now. 1610 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1611 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1612 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1613 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1614 } else { 1615 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1616 APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3); 1617 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1618 And->setOperand(0, Shift->getOperand(0)); 1619 Worklist.Add(Shift); // Shift is dead. 1620 return &Cmp; 1621 } 1622 } 1623 } 1624 1625 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1626 // preferable because it allows the C2 << Y expression to be hoisted out of a 1627 // loop if Y is invariant and X is not. 1628 if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() && 1629 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1630 // Compute C2 << Y. 1631 Value *NewShift = 1632 IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1633 : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1)); 1634 1635 // Compute X & (C2 << Y). 1636 Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift); 1637 Cmp.setOperand(0, NewAnd); 1638 return &Cmp; 1639 } 1640 1641 return nullptr; 1642 } 1643 1644 /// Fold icmp (and X, C2), C1. 1645 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1646 BinaryOperator *And, 1647 const APInt *C1) { 1648 const APInt *C2; 1649 if (!match(And->getOperand(1), m_APInt(C2))) 1650 return nullptr; 1651 1652 if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse()) 1653 return nullptr; 1654 1655 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1656 // the input width without changing the value produced, eliminate the cast: 1657 // 1658 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1659 // 1660 // We can do this transformation if the constants do not have their sign bits 1661 // set or if it is an equality comparison. Extending a relational comparison 1662 // when we're checking the sign bit would not work. 1663 Value *W; 1664 if (match(And->getOperand(0), m_Trunc(m_Value(W))) && 1665 (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) { 1666 // TODO: Is this a good transform for vectors? Wider types may reduce 1667 // throughput. Should this transform be limited (even for scalars) by using 1668 // shouldChangeType()? 1669 if (!Cmp.getType()->isVectorTy()) { 1670 Type *WideType = W->getType(); 1671 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1672 Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits)); 1673 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1674 Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName()); 1675 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1676 } 1677 } 1678 1679 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2)) 1680 return I; 1681 1682 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1683 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1684 // 1685 // iff pred isn't signed 1686 if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) { 1687 Constant *One = cast<Constant>(And->getOperand(1)); 1688 Value *Or = And->getOperand(0); 1689 Value *A, *B, *LShr; 1690 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1691 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1692 unsigned UsesRemoved = 0; 1693 if (And->hasOneUse()) 1694 ++UsesRemoved; 1695 if (Or->hasOneUse()) 1696 ++UsesRemoved; 1697 if (LShr->hasOneUse()) 1698 ++UsesRemoved; 1699 1700 // Compute A & ((1 << B) | 1) 1701 Value *NewOr = nullptr; 1702 if (auto *C = dyn_cast<Constant>(B)) { 1703 if (UsesRemoved >= 1) 1704 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1705 } else { 1706 if (UsesRemoved >= 3) 1707 NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(), 1708 /*HasNUW=*/true), 1709 One, Or->getName()); 1710 } 1711 if (NewOr) { 1712 Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName()); 1713 Cmp.setOperand(0, NewAnd); 1714 return &Cmp; 1715 } 1716 } 1717 } 1718 1719 // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a 1720 // result greater than C1. 1721 unsigned NumTZ = C2->countTrailingZeros(); 1722 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() && 1723 APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) { 1724 Constant *Zero = Constant::getNullValue(And->getType()); 1725 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 1726 } 1727 1728 return nullptr; 1729 } 1730 1731 /// Fold icmp (and X, Y), C. 1732 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1733 BinaryOperator *And, 1734 const APInt *C) { 1735 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1736 return I; 1737 1738 // TODO: These all require that Y is constant too, so refactor with the above. 1739 1740 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1741 Value *X = And->getOperand(0); 1742 Value *Y = And->getOperand(1); 1743 if (auto *LI = dyn_cast<LoadInst>(X)) 1744 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1745 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1746 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1747 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1748 ConstantInt *C2 = cast<ConstantInt>(Y); 1749 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1750 return Res; 1751 } 1752 1753 if (!Cmp.isEquality()) 1754 return nullptr; 1755 1756 // X & -C == -C -> X > u ~C 1757 // X & -C != -C -> X <= u ~C 1758 // iff C is a power of 2 1759 if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) { 1760 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1761 : CmpInst::ICMP_ULE; 1762 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1763 } 1764 1765 // (X & C2) == 0 -> (trunc X) >= 0 1766 // (X & C2) != 0 -> (trunc X) < 0 1767 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1768 const APInt *C2; 1769 if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) { 1770 int32_t ExactLogBase2 = C2->exactLogBase2(); 1771 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1772 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1773 if (And->getType()->isVectorTy()) 1774 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1775 Value *Trunc = Builder->CreateTrunc(X, NTy); 1776 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1777 : CmpInst::ICMP_SLT; 1778 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1779 } 1780 } 1781 1782 return nullptr; 1783 } 1784 1785 /// Fold icmp (or X, Y), C. 1786 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1787 const APInt *C) { 1788 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1789 if (*C == 1) { 1790 // icmp slt signum(V) 1 --> icmp slt V, 1 1791 Value *V = nullptr; 1792 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1793 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1794 ConstantInt::get(V->getType(), 1)); 1795 } 1796 1797 if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse()) 1798 return nullptr; 1799 1800 Value *P, *Q; 1801 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1802 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1803 // -> and (icmp eq P, null), (icmp eq Q, null). 1804 Value *CmpP = 1805 Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1806 Value *CmpQ = 1807 Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1808 auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And 1809 : Instruction::Or; 1810 return BinaryOperator::Create(LogicOpc, CmpP, CmpQ); 1811 } 1812 1813 return nullptr; 1814 } 1815 1816 /// Fold icmp (mul X, Y), C. 1817 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1818 BinaryOperator *Mul, 1819 const APInt *C) { 1820 const APInt *MulC; 1821 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1822 return nullptr; 1823 1824 // If this is a test of the sign bit and the multiply is sign-preserving with 1825 // a constant operand, use the multiply LHS operand instead. 1826 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1827 if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) { 1828 if (MulC->isNegative()) 1829 Pred = ICmpInst::getSwappedPredicate(Pred); 1830 return new ICmpInst(Pred, Mul->getOperand(0), 1831 Constant::getNullValue(Mul->getType())); 1832 } 1833 1834 return nullptr; 1835 } 1836 1837 /// Fold icmp (shl 1, Y), C. 1838 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1839 const APInt *C) { 1840 Value *Y; 1841 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1842 return nullptr; 1843 1844 Type *ShiftType = Shl->getType(); 1845 uint32_t TypeBits = C->getBitWidth(); 1846 bool CIsPowerOf2 = C->isPowerOf2(); 1847 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1848 if (Cmp.isUnsigned()) { 1849 // (1 << Y) pred C -> Y pred Log2(C) 1850 if (!CIsPowerOf2) { 1851 // (1 << Y) < 30 -> Y <= 4 1852 // (1 << Y) <= 30 -> Y <= 4 1853 // (1 << Y) >= 30 -> Y > 4 1854 // (1 << Y) > 30 -> Y > 4 1855 if (Pred == ICmpInst::ICMP_ULT) 1856 Pred = ICmpInst::ICMP_ULE; 1857 else if (Pred == ICmpInst::ICMP_UGE) 1858 Pred = ICmpInst::ICMP_UGT; 1859 } 1860 1861 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1862 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1863 unsigned CLog2 = C->logBase2(); 1864 if (CLog2 == TypeBits - 1) { 1865 if (Pred == ICmpInst::ICMP_UGE) 1866 Pred = ICmpInst::ICMP_EQ; 1867 else if (Pred == ICmpInst::ICMP_ULT) 1868 Pred = ICmpInst::ICMP_NE; 1869 } 1870 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1871 } else if (Cmp.isSigned()) { 1872 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1873 if (C->isAllOnesValue()) { 1874 // (1 << Y) <= -1 -> Y == 31 1875 if (Pred == ICmpInst::ICMP_SLE) 1876 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1877 1878 // (1 << Y) > -1 -> Y != 31 1879 if (Pred == ICmpInst::ICMP_SGT) 1880 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1881 } else if (!(*C)) { 1882 // (1 << Y) < 0 -> Y == 31 1883 // (1 << Y) <= 0 -> Y == 31 1884 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1885 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1886 1887 // (1 << Y) >= 0 -> Y != 31 1888 // (1 << Y) > 0 -> Y != 31 1889 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1890 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1891 } 1892 } else if (Cmp.isEquality() && CIsPowerOf2) { 1893 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2())); 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 /// Fold icmp (shl X, Y), C. 1900 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1901 BinaryOperator *Shl, 1902 const APInt *C) { 1903 const APInt *ShiftVal; 1904 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1905 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal); 1906 1907 const APInt *ShiftAmt; 1908 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1909 return foldICmpShlOne(Cmp, Shl, C); 1910 1911 // Check that the shift amount is in range. If not, don't perform undefined 1912 // shifts. When the shift is visited, it will be simplified. 1913 unsigned TypeBits = C->getBitWidth(); 1914 if (ShiftAmt->uge(TypeBits)) 1915 return nullptr; 1916 1917 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1918 Value *X = Shl->getOperand(0); 1919 Type *ShType = Shl->getType(); 1920 1921 // NSW guarantees that we are only shifting out sign bits from the high bits, 1922 // so we can ASHR the compare constant without needing a mask and eliminate 1923 // the shift. 1924 if (Shl->hasNoSignedWrap()) { 1925 if (Pred == ICmpInst::ICMP_SGT) { 1926 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1927 APInt ShiftedC = C->ashr(*ShiftAmt); 1928 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1929 } 1930 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) { 1931 // This is the same code as the SGT case, but assert the pre-condition 1932 // that is needed for this to work with equality predicates. 1933 assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C && 1934 "Compare known true or false was not folded"); 1935 APInt ShiftedC = C->ashr(*ShiftAmt); 1936 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1937 } 1938 if (Pred == ICmpInst::ICMP_SLT) { 1939 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1940 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1941 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1942 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1943 assert(!C->isMinSignedValue() && "Unexpected icmp slt"); 1944 APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1; 1945 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1946 } 1947 // If this is a signed comparison to 0 and the shift is sign preserving, 1948 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1949 // do that if we're sure to not continue on in this function. 1950 if (isSignTest(Pred, *C)) 1951 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1952 } 1953 1954 // NUW guarantees that we are only shifting out zero bits from the high bits, 1955 // so we can LSHR the compare constant without needing a mask and eliminate 1956 // the shift. 1957 if (Shl->hasNoUnsignedWrap()) { 1958 if (Pred == ICmpInst::ICMP_UGT) { 1959 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1960 APInt ShiftedC = C->lshr(*ShiftAmt); 1961 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1962 } 1963 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) { 1964 // This is the same code as the UGT case, but assert the pre-condition 1965 // that is needed for this to work with equality predicates. 1966 assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C && 1967 "Compare known true or false was not folded"); 1968 APInt ShiftedC = C->lshr(*ShiftAmt); 1969 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1970 } 1971 if (Pred == ICmpInst::ICMP_ULT) { 1972 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1973 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1974 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1975 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1976 assert(C->ugt(0) && "ult 0 should have been eliminated"); 1977 APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1; 1978 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1979 } 1980 } 1981 1982 if (Cmp.isEquality() && Shl->hasOneUse()) { 1983 // Strength-reduce the shift into an 'and'. 1984 Constant *Mask = ConstantInt::get( 1985 ShType, 1986 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1987 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask"); 1988 Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt)); 1989 return new ICmpInst(Pred, And, LShrC); 1990 } 1991 1992 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1993 bool TrueIfSigned = false; 1994 if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) { 1995 // (X << 31) <s 0 --> (X & 1) != 0 1996 Constant *Mask = ConstantInt::get( 1997 ShType, 1998 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 1999 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask"); 2000 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2001 And, Constant::getNullValue(ShType)); 2002 } 2003 2004 // Transform (icmp pred iM (shl iM %v, N), C) 2005 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2006 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2007 // This enables us to get rid of the shift in favor of a trunc that may be 2008 // free on the target. It has the additional benefit of comparing to a 2009 // smaller constant that may be more target-friendly. 2010 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2011 if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt && 2012 DL.isLegalInteger(TypeBits - Amt)) { 2013 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2014 if (ShType->isVectorTy()) 2015 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2016 Constant *NewC = 2017 ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2018 return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC); 2019 } 2020 2021 return nullptr; 2022 } 2023 2024 /// Fold icmp ({al}shr X, Y), C. 2025 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2026 BinaryOperator *Shr, 2027 const APInt *C) { 2028 // An exact shr only shifts out zero bits, so: 2029 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2030 Value *X = Shr->getOperand(0); 2031 CmpInst::Predicate Pred = Cmp.getPredicate(); 2032 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0) 2033 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2034 2035 const APInt *ShiftVal; 2036 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2037 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal); 2038 2039 const APInt *ShiftAmt; 2040 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2041 return nullptr; 2042 2043 // Check that the shift amount is in range. If not, don't perform undefined 2044 // shifts. When the shift is visited it will be simplified. 2045 unsigned TypeBits = C->getBitWidth(); 2046 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2047 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2048 return nullptr; 2049 2050 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2051 if (!Cmp.isEquality()) { 2052 // If we have an unsigned comparison and an ashr, we can't simplify this. 2053 // Similarly for signed comparisons with lshr. 2054 if (Cmp.isSigned() != IsAShr) 2055 return nullptr; 2056 2057 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 2058 // by a power of 2. Since we already have logic to simplify these, 2059 // transform to div and then simplify the resultant comparison. 2060 if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 2061 return nullptr; 2062 2063 // Revisit the shift (to delete it). 2064 Worklist.Add(Shr); 2065 2066 Constant *DivCst = ConstantInt::get( 2067 Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 2068 2069 Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact()) 2070 : Builder->CreateUDiv(X, DivCst, "", Shr->isExact()); 2071 2072 Cmp.setOperand(0, Tmp); 2073 2074 // If the builder folded the binop, just return it. 2075 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 2076 if (!TheDiv) 2077 return &Cmp; 2078 2079 // Otherwise, fold this div/compare. 2080 assert(TheDiv->getOpcode() == Instruction::SDiv || 2081 TheDiv->getOpcode() == Instruction::UDiv); 2082 2083 Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C); 2084 assert(Res && "This div/cst should have folded!"); 2085 return Res; 2086 } 2087 2088 // Handle equality comparisons of shift-by-constant. 2089 2090 // If the comparison constant changes with the shift, the comparison cannot 2091 // succeed (bits of the comparison constant cannot match the shifted value). 2092 // This should be known by InstSimplify and already be folded to true/false. 2093 assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) || 2094 (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) && 2095 "Expected icmp+shr simplify did not occur."); 2096 2097 // Check if the bits shifted out are known to be zero. If so, we can compare 2098 // against the unshifted value: 2099 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2100 Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal); 2101 if (Shr->hasOneUse()) { 2102 if (Shr->isExact()) 2103 return new ICmpInst(Pred, X, ShiftedCmpRHS); 2104 2105 // Otherwise strength reduce the shift into an 'and'. 2106 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2107 Constant *Mask = ConstantInt::get(Shr->getType(), Val); 2108 Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask"); 2109 return new ICmpInst(Pred, And, ShiftedCmpRHS); 2110 } 2111 2112 return nullptr; 2113 } 2114 2115 /// Fold icmp (udiv X, Y), C. 2116 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2117 BinaryOperator *UDiv, 2118 const APInt *C) { 2119 const APInt *C2; 2120 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2121 return nullptr; 2122 2123 assert(C2 != 0 && "udiv 0, X should have been simplified already."); 2124 2125 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2126 Value *Y = UDiv->getOperand(1); 2127 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2128 assert(!C->isMaxValue() && 2129 "icmp ugt X, UINT_MAX should have been simplified already."); 2130 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2131 ConstantInt::get(Y->getType(), C2->udiv(*C + 1))); 2132 } 2133 2134 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2135 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2136 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2137 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2138 ConstantInt::get(Y->getType(), C2->udiv(*C))); 2139 } 2140 2141 return nullptr; 2142 } 2143 2144 /// Fold icmp ({su}div X, Y), C. 2145 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2146 BinaryOperator *Div, 2147 const APInt *C) { 2148 // Fold: icmp pred ([us]div X, C2), C -> range test 2149 // Fold this div into the comparison, producing a range check. 2150 // Determine, based on the divide type, what the range is being 2151 // checked. If there is an overflow on the low or high side, remember 2152 // it, otherwise compute the range [low, hi) bounding the new value. 2153 // See: InsertRangeTest above for the kinds of replacements possible. 2154 const APInt *C2; 2155 if (!match(Div->getOperand(1), m_APInt(C2))) 2156 return nullptr; 2157 2158 // FIXME: If the operand types don't match the type of the divide 2159 // then don't attempt this transform. The code below doesn't have the 2160 // logic to deal with a signed divide and an unsigned compare (and 2161 // vice versa). This is because (x /s C2) <s C produces different 2162 // results than (x /s C2) <u C or (x /u C2) <s C or even 2163 // (x /u C2) <u C. Simply casting the operands and result won't 2164 // work. :( The if statement below tests that condition and bails 2165 // if it finds it. 2166 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2167 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2168 return nullptr; 2169 2170 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2171 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2172 // division-by-constant cases should be present, we can not assert that they 2173 // have happened before we reach this icmp instruction. 2174 if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue())) 2175 return nullptr; 2176 2177 // TODO: We could do all of the computations below using APInt. 2178 Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1)); 2179 Constant *DivRHS = cast<Constant>(Div->getOperand(1)); 2180 2181 // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of 2182 // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS). 2183 // By solving for X, we can turn this into a range check instead of computing 2184 // a divide. 2185 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 2186 2187 // Determine if the product overflows by seeing if the product is not equal to 2188 // the divide. Make sure we do the same kind of divide as in the LHS 2189 // instruction that we're folding. 2190 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) 2191 : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 2192 2193 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2194 2195 // If the division is known to be exact, then there is no remainder from the 2196 // divide, so the covered range size is unit, otherwise it is the divisor. 2197 Constant *RangeSize = 2198 Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS; 2199 2200 // Figure out the interval that is being checked. For example, a comparison 2201 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2202 // Compute this interval based on the constants involved and the signedness of 2203 // the compare/divide. This computes a half-open interval, keeping track of 2204 // whether either value in the interval overflows. After analysis each 2205 // overflow variable is set to 0 if it's corresponding bound variable is valid 2206 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2207 int LoOverflow = 0, HiOverflow = 0; 2208 Constant *LoBound = nullptr, *HiBound = nullptr; 2209 2210 if (!DivIsSigned) { // udiv 2211 // e.g. X/5 op 3 --> [15, 20) 2212 LoBound = Prod; 2213 HiOverflow = LoOverflow = ProdOV; 2214 if (!HiOverflow) { 2215 // If this is not an exact divide, then many values in the range collapse 2216 // to the same result value. 2217 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2218 } 2219 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2220 if (*C == 0) { // (X / pos) op 0 2221 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2222 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 2223 HiBound = RangeSize; 2224 } else if (C->isStrictlyPositive()) { // (X / pos) op pos 2225 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2226 HiOverflow = LoOverflow = ProdOV; 2227 if (!HiOverflow) 2228 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2229 } else { // (X / pos) op neg 2230 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2231 HiBound = AddOne(Prod); 2232 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2233 if (!LoOverflow) { 2234 Constant *DivNeg = ConstantExpr::getNeg(RangeSize); 2235 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2236 } 2237 } 2238 } else if (C2->isNegative()) { // Divisor is < 0. 2239 if (Div->isExact()) 2240 RangeSize = ConstantExpr::getNeg(RangeSize); 2241 if (*C == 0) { // (X / neg) op 0 2242 // e.g. X/-5 op 0 --> [-4, 5) 2243 LoBound = AddOne(RangeSize); 2244 HiBound = ConstantExpr::getNeg(RangeSize); 2245 if (HiBound == DivRHS) { // -INTMIN = INTMIN 2246 HiOverflow = 1; // [INTMIN+1, overflow) 2247 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 2248 } 2249 } else if (C->isStrictlyPositive()) { // (X / neg) op pos 2250 // e.g. X/-5 op 3 --> [-19, -14) 2251 HiBound = AddOne(Prod); 2252 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2253 if (!LoOverflow) 2254 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2255 } else { // (X / neg) op neg 2256 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2257 LoOverflow = HiOverflow = ProdOV; 2258 if (!HiOverflow) 2259 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2260 } 2261 2262 // Dividing by a negative swaps the condition. LT <-> GT 2263 Pred = ICmpInst::getSwappedPredicate(Pred); 2264 } 2265 2266 Value *X = Div->getOperand(0); 2267 switch (Pred) { 2268 default: llvm_unreachable("Unhandled icmp opcode!"); 2269 case ICmpInst::ICMP_EQ: 2270 if (LoOverflow && HiOverflow) 2271 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2272 if (HiOverflow) 2273 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2274 ICmpInst::ICMP_UGE, X, LoBound); 2275 if (LoOverflow) 2276 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2277 ICmpInst::ICMP_ULT, X, HiBound); 2278 return replaceInstUsesWith( 2279 Cmp, insertRangeTest(X, LoBound->getUniqueInteger(), 2280 HiBound->getUniqueInteger(), DivIsSigned, true)); 2281 case ICmpInst::ICMP_NE: 2282 if (LoOverflow && HiOverflow) 2283 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2284 if (HiOverflow) 2285 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2286 ICmpInst::ICMP_ULT, X, LoBound); 2287 if (LoOverflow) 2288 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2289 ICmpInst::ICMP_UGE, X, HiBound); 2290 return replaceInstUsesWith(Cmp, 2291 insertRangeTest(X, LoBound->getUniqueInteger(), 2292 HiBound->getUniqueInteger(), 2293 DivIsSigned, false)); 2294 case ICmpInst::ICMP_ULT: 2295 case ICmpInst::ICMP_SLT: 2296 if (LoOverflow == +1) // Low bound is greater than input range. 2297 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2298 if (LoOverflow == -1) // Low bound is less than input range. 2299 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2300 return new ICmpInst(Pred, X, LoBound); 2301 case ICmpInst::ICMP_UGT: 2302 case ICmpInst::ICMP_SGT: 2303 if (HiOverflow == +1) // High bound greater than input range. 2304 return replaceInstUsesWith(Cmp, Builder->getFalse()); 2305 if (HiOverflow == -1) // High bound less than input range. 2306 return replaceInstUsesWith(Cmp, Builder->getTrue()); 2307 if (Pred == ICmpInst::ICMP_UGT) 2308 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 2309 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 2310 } 2311 2312 return nullptr; 2313 } 2314 2315 /// Fold icmp (sub X, Y), C. 2316 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2317 BinaryOperator *Sub, 2318 const APInt *C) { 2319 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2320 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2321 2322 // The following transforms are only worth it if the only user of the subtract 2323 // is the icmp. 2324 if (!Sub->hasOneUse()) 2325 return nullptr; 2326 2327 if (Sub->hasNoSignedWrap()) { 2328 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2329 if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue()) 2330 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2331 2332 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2333 if (Pred == ICmpInst::ICMP_SGT && *C == 0) 2334 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2335 2336 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2337 if (Pred == ICmpInst::ICMP_SLT && *C == 0) 2338 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2339 2340 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2341 if (Pred == ICmpInst::ICMP_SLT && *C == 1) 2342 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2343 } 2344 2345 const APInt *C2; 2346 if (!match(X, m_APInt(C2))) 2347 return nullptr; 2348 2349 // C2 - Y <u C -> (Y | (C - 1)) == C2 2350 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2351 if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && 2352 (*C2 & (*C - 1)) == (*C - 1)) 2353 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X); 2354 2355 // C2 - Y >u C -> (Y | C) != C2 2356 // iff C2 & C == C and C + 1 is a power of 2 2357 if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C) 2358 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X); 2359 2360 return nullptr; 2361 } 2362 2363 /// Fold icmp (add X, Y), C. 2364 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2365 BinaryOperator *Add, 2366 const APInt *C) { 2367 Value *Y = Add->getOperand(1); 2368 const APInt *C2; 2369 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2370 return nullptr; 2371 2372 // Fold icmp pred (add X, C2), C. 2373 Value *X = Add->getOperand(0); 2374 Type *Ty = Add->getType(); 2375 CmpInst::Predicate Pred = Cmp.getPredicate(); 2376 2377 // If the add does not wrap, we can always adjust the compare by subtracting 2378 // the constants. Equality comparisons are handled elsewhere. SGE/SLE are 2379 // canonicalized to SGT/SLT. 2380 if (Add->hasNoSignedWrap() && 2381 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) { 2382 bool Overflow; 2383 APInt NewC = C->ssub_ov(*C2, Overflow); 2384 // If there is overflow, the result must be true or false. 2385 // TODO: Can we assert there is no overflow because InstSimplify always 2386 // handles those cases? 2387 if (!Overflow) 2388 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2389 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2390 } 2391 2392 auto CR = ConstantRange::makeExactICmpRegion(Pred, *C).subtract(*C2); 2393 const APInt &Upper = CR.getUpper(); 2394 const APInt &Lower = CR.getLower(); 2395 if (Cmp.isSigned()) { 2396 if (Lower.isSignBit()) 2397 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2398 if (Upper.isSignBit()) 2399 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2400 } else { 2401 if (Lower.isMinValue()) 2402 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2403 if (Upper.isMinValue()) 2404 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2405 } 2406 2407 if (!Add->hasOneUse()) 2408 return nullptr; 2409 2410 // X+C <u C2 -> (X & -C2) == C 2411 // iff C & (C2-1) == 0 2412 // C2 is a power of 2 2413 if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && (*C2 & (*C - 1)) == 0) 2414 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)), 2415 ConstantExpr::getNeg(cast<Constant>(Y))); 2416 2417 // X+C >u C2 -> (X & ~C2) != C 2418 // iff C & C2 == 0 2419 // C2+1 is a power of 2 2420 if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == 0) 2421 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)), 2422 ConstantExpr::getNeg(cast<Constant>(Y))); 2423 2424 return nullptr; 2425 } 2426 2427 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2428 /// where X is some kind of instruction. 2429 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2430 const APInt *C; 2431 if (!match(Cmp.getOperand(1), m_APInt(C))) 2432 return nullptr; 2433 2434 BinaryOperator *BO; 2435 if (match(Cmp.getOperand(0), m_BinOp(BO))) { 2436 switch (BO->getOpcode()) { 2437 case Instruction::Xor: 2438 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 2439 return I; 2440 break; 2441 case Instruction::And: 2442 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 2443 return I; 2444 break; 2445 case Instruction::Or: 2446 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 2447 return I; 2448 break; 2449 case Instruction::Mul: 2450 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 2451 return I; 2452 break; 2453 case Instruction::Shl: 2454 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 2455 return I; 2456 break; 2457 case Instruction::LShr: 2458 case Instruction::AShr: 2459 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 2460 return I; 2461 break; 2462 case Instruction::UDiv: 2463 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 2464 return I; 2465 LLVM_FALLTHROUGH; 2466 case Instruction::SDiv: 2467 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 2468 return I; 2469 break; 2470 case Instruction::Sub: 2471 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 2472 return I; 2473 break; 2474 case Instruction::Add: 2475 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 2476 return I; 2477 break; 2478 default: 2479 break; 2480 } 2481 // TODO: These folds could be refactored to be part of the above calls. 2482 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C)) 2483 return I; 2484 } 2485 2486 Instruction *LHSI; 2487 if (match(Cmp.getOperand(0), m_Instruction(LHSI)) && 2488 LHSI->getOpcode() == Instruction::Trunc) 2489 if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C)) 2490 return I; 2491 2492 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C)) 2493 return I; 2494 2495 return nullptr; 2496 } 2497 2498 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2499 /// icmp eq/ne BO, C. 2500 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2501 BinaryOperator *BO, 2502 const APInt *C) { 2503 // TODO: Some of these folds could work with arbitrary constants, but this 2504 // function is limited to scalar and vector splat constants. 2505 if (!Cmp.isEquality()) 2506 return nullptr; 2507 2508 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2509 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2510 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2511 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2512 2513 switch (BO->getOpcode()) { 2514 case Instruction::SRem: 2515 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2516 if (*C == 0 && BO->hasOneUse()) { 2517 const APInt *BOC; 2518 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2519 Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName()); 2520 return new ICmpInst(Pred, NewRem, 2521 Constant::getNullValue(BO->getType())); 2522 } 2523 } 2524 break; 2525 case Instruction::Add: { 2526 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2527 const APInt *BOC; 2528 if (match(BOp1, m_APInt(BOC))) { 2529 if (BO->hasOneUse()) { 2530 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2531 return new ICmpInst(Pred, BOp0, SubC); 2532 } 2533 } else if (*C == 0) { 2534 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2535 // efficiently invertible, or if the add has just this one use. 2536 if (Value *NegVal = dyn_castNegVal(BOp1)) 2537 return new ICmpInst(Pred, BOp0, NegVal); 2538 if (Value *NegVal = dyn_castNegVal(BOp0)) 2539 return new ICmpInst(Pred, NegVal, BOp1); 2540 if (BO->hasOneUse()) { 2541 Value *Neg = Builder->CreateNeg(BOp1); 2542 Neg->takeName(BO); 2543 return new ICmpInst(Pred, BOp0, Neg); 2544 } 2545 } 2546 break; 2547 } 2548 case Instruction::Xor: 2549 if (BO->hasOneUse()) { 2550 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2551 // For the xor case, we can xor two constants together, eliminating 2552 // the explicit xor. 2553 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2554 } else if (*C == 0) { 2555 // Replace ((xor A, B) != 0) with (A != B) 2556 return new ICmpInst(Pred, BOp0, BOp1); 2557 } 2558 } 2559 break; 2560 case Instruction::Sub: 2561 if (BO->hasOneUse()) { 2562 const APInt *BOC; 2563 if (match(BOp0, m_APInt(BOC))) { 2564 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2565 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2566 return new ICmpInst(Pred, BOp1, SubC); 2567 } else if (*C == 0) { 2568 // Replace ((sub A, B) != 0) with (A != B). 2569 return new ICmpInst(Pred, BOp0, BOp1); 2570 } 2571 } 2572 break; 2573 case Instruction::Or: { 2574 const APInt *BOC; 2575 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2576 // Comparing if all bits outside of a constant mask are set? 2577 // Replace (X | C) == -1 with (X & ~C) == ~C. 2578 // This removes the -1 constant. 2579 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2580 Value *And = Builder->CreateAnd(BOp0, NotBOC); 2581 return new ICmpInst(Pred, And, NotBOC); 2582 } 2583 break; 2584 } 2585 case Instruction::And: { 2586 const APInt *BOC; 2587 if (match(BOp1, m_APInt(BOC))) { 2588 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2589 if (C == BOC && C->isPowerOf2()) 2590 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2591 BO, Constant::getNullValue(RHS->getType())); 2592 2593 // Don't perform the following transforms if the AND has multiple uses 2594 if (!BO->hasOneUse()) 2595 break; 2596 2597 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2598 if (BOC->isSignBit()) { 2599 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2600 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2601 return new ICmpInst(NewPred, BOp0, Zero); 2602 } 2603 2604 // ((X & ~7) == 0) --> X < 8 2605 if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) { 2606 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2607 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2608 return new ICmpInst(NewPred, BOp0, NegBOC); 2609 } 2610 } 2611 break; 2612 } 2613 case Instruction::Mul: 2614 if (*C == 0 && BO->hasNoSignedWrap()) { 2615 const APInt *BOC; 2616 if (match(BOp1, m_APInt(BOC)) && *BOC != 0) { 2617 // The trivial case (mul X, 0) is handled by InstSimplify. 2618 // General case : (mul X, C) != 0 iff X != 0 2619 // (mul X, C) == 0 iff X == 0 2620 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2621 } 2622 } 2623 break; 2624 case Instruction::UDiv: 2625 if (*C == 0) { 2626 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2627 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2628 return new ICmpInst(NewPred, BOp1, BOp0); 2629 } 2630 break; 2631 default: 2632 break; 2633 } 2634 return nullptr; 2635 } 2636 2637 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2638 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2639 const APInt *C) { 2640 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); 2641 if (!II || !Cmp.isEquality()) 2642 return nullptr; 2643 2644 // Handle icmp {eq|ne} <intrinsic>, intcst. 2645 switch (II->getIntrinsicID()) { 2646 case Intrinsic::bswap: 2647 Worklist.Add(II); 2648 Cmp.setOperand(0, II->getArgOperand(0)); 2649 Cmp.setOperand(1, Builder->getInt(C->byteSwap())); 2650 return &Cmp; 2651 case Intrinsic::ctlz: 2652 case Intrinsic::cttz: 2653 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2654 if (*C == C->getBitWidth()) { 2655 Worklist.Add(II); 2656 Cmp.setOperand(0, II->getArgOperand(0)); 2657 Cmp.setOperand(1, ConstantInt::getNullValue(II->getType())); 2658 return &Cmp; 2659 } 2660 break; 2661 case Intrinsic::ctpop: { 2662 // popcount(A) == 0 -> A == 0 and likewise for != 2663 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2664 bool IsZero = *C == 0; 2665 if (IsZero || *C == C->getBitWidth()) { 2666 Worklist.Add(II); 2667 Cmp.setOperand(0, II->getArgOperand(0)); 2668 auto *NewOp = IsZero ? Constant::getNullValue(II->getType()) 2669 : Constant::getAllOnesValue(II->getType()); 2670 Cmp.setOperand(1, NewOp); 2671 return &Cmp; 2672 } 2673 break; 2674 } 2675 default: 2676 break; 2677 } 2678 return nullptr; 2679 } 2680 2681 /// Handle icmp with constant (but not simple integer constant) RHS. 2682 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2683 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2684 Constant *RHSC = dyn_cast<Constant>(Op1); 2685 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2686 if (!RHSC || !LHSI) 2687 return nullptr; 2688 2689 switch (LHSI->getOpcode()) { 2690 case Instruction::GetElementPtr: 2691 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2692 if (RHSC->isNullValue() && 2693 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2694 return new ICmpInst( 2695 I.getPredicate(), LHSI->getOperand(0), 2696 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2697 break; 2698 case Instruction::PHI: 2699 // Only fold icmp into the PHI if the phi and icmp are in the same 2700 // block. If in the same block, we're encouraging jump threading. If 2701 // not, we are just pessimizing the code by making an i1 phi. 2702 if (LHSI->getParent() == I.getParent()) 2703 if (Instruction *NV = FoldOpIntoPhi(I)) 2704 return NV; 2705 break; 2706 case Instruction::Select: { 2707 // If either operand of the select is a constant, we can fold the 2708 // comparison into the select arms, which will cause one to be 2709 // constant folded and the select turned into a bitwise or. 2710 Value *Op1 = nullptr, *Op2 = nullptr; 2711 ConstantInt *CI = nullptr; 2712 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2713 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2714 CI = dyn_cast<ConstantInt>(Op1); 2715 } 2716 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2717 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2718 CI = dyn_cast<ConstantInt>(Op2); 2719 } 2720 2721 // We only want to perform this transformation if it will not lead to 2722 // additional code. This is true if either both sides of the select 2723 // fold to a constant (in which case the icmp is replaced with a select 2724 // which will usually simplify) or this is the only user of the 2725 // select (in which case we are trading a select+icmp for a simpler 2726 // select+icmp) or all uses of the select can be replaced based on 2727 // dominance information ("Global cases"). 2728 bool Transform = false; 2729 if (Op1 && Op2) 2730 Transform = true; 2731 else if (Op1 || Op2) { 2732 // Local case 2733 if (LHSI->hasOneUse()) 2734 Transform = true; 2735 // Global cases 2736 else if (CI && !CI->isZero()) 2737 // When Op1 is constant try replacing select with second operand. 2738 // Otherwise Op2 is constant and try replacing select with first 2739 // operand. 2740 Transform = 2741 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 2742 } 2743 if (Transform) { 2744 if (!Op1) 2745 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 2746 I.getName()); 2747 if (!Op2) 2748 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 2749 I.getName()); 2750 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2751 } 2752 break; 2753 } 2754 case Instruction::IntToPtr: 2755 // icmp pred inttoptr(X), null -> icmp pred X, 0 2756 if (RHSC->isNullValue() && 2757 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 2758 return new ICmpInst( 2759 I.getPredicate(), LHSI->getOperand(0), 2760 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2761 break; 2762 2763 case Instruction::Load: 2764 // Try to optimize things like "A[i] > 4" to index computations. 2765 if (GetElementPtrInst *GEP = 2766 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2767 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2768 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2769 !cast<LoadInst>(LHSI)->isVolatile()) 2770 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2771 return Res; 2772 } 2773 break; 2774 } 2775 2776 return nullptr; 2777 } 2778 2779 /// Try to fold icmp (binop), X or icmp X, (binop). 2780 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 2781 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2782 2783 // Special logic for binary operators. 2784 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2785 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2786 if (!BO0 && !BO1) 2787 return nullptr; 2788 2789 CmpInst::Predicate Pred = I.getPredicate(); 2790 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2791 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2792 NoOp0WrapProblem = 2793 ICmpInst::isEquality(Pred) || 2794 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2795 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2796 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2797 NoOp1WrapProblem = 2798 ICmpInst::isEquality(Pred) || 2799 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2800 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2801 2802 // Analyze the case when either Op0 or Op1 is an add instruction. 2803 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2804 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2805 if (BO0 && BO0->getOpcode() == Instruction::Add) { 2806 A = BO0->getOperand(0); 2807 B = BO0->getOperand(1); 2808 } 2809 if (BO1 && BO1->getOpcode() == Instruction::Add) { 2810 C = BO1->getOperand(0); 2811 D = BO1->getOperand(1); 2812 } 2813 2814 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2815 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2816 return new ICmpInst(Pred, A == Op1 ? B : A, 2817 Constant::getNullValue(Op1->getType())); 2818 2819 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2820 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2821 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2822 C == Op0 ? D : C); 2823 2824 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2825 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 2826 NoOp1WrapProblem && 2827 // Try not to increase register pressure. 2828 BO0->hasOneUse() && BO1->hasOneUse()) { 2829 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2830 Value *Y, *Z; 2831 if (A == C) { 2832 // C + B == C + D -> B == D 2833 Y = B; 2834 Z = D; 2835 } else if (A == D) { 2836 // D + B == C + D -> B == C 2837 Y = B; 2838 Z = C; 2839 } else if (B == C) { 2840 // A + C == C + D -> A == D 2841 Y = A; 2842 Z = D; 2843 } else { 2844 assert(B == D); 2845 // A + D == C + D -> A == C 2846 Y = A; 2847 Z = C; 2848 } 2849 return new ICmpInst(Pred, Y, Z); 2850 } 2851 2852 // icmp slt (X + -1), Y -> icmp sle X, Y 2853 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 2854 match(B, m_AllOnes())) 2855 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 2856 2857 // icmp sge (X + -1), Y -> icmp sgt X, Y 2858 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 2859 match(B, m_AllOnes())) 2860 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 2861 2862 // icmp sle (X + 1), Y -> icmp slt X, Y 2863 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 2864 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 2865 2866 // icmp sgt (X + 1), Y -> icmp sge X, Y 2867 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 2868 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 2869 2870 // icmp sgt X, (Y + -1) -> icmp sge X, Y 2871 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 2872 match(D, m_AllOnes())) 2873 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 2874 2875 // icmp sle X, (Y + -1) -> icmp slt X, Y 2876 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 2877 match(D, m_AllOnes())) 2878 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 2879 2880 // icmp sge X, (Y + 1) -> icmp sgt X, Y 2881 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 2882 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 2883 2884 // icmp slt X, (Y + 1) -> icmp sle X, Y 2885 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 2886 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 2887 2888 // TODO: The subtraction-related identities shown below also hold, but 2889 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 2890 // wouldn't happen even if they were implemented. 2891 // 2892 // icmp ult (X - 1), Y -> icmp ule X, Y 2893 // icmp uge (X - 1), Y -> icmp ugt X, Y 2894 // icmp ugt X, (Y - 1) -> icmp uge X, Y 2895 // icmp ule X, (Y - 1) -> icmp ult X, Y 2896 2897 // icmp ule (X + 1), Y -> icmp ult X, Y 2898 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 2899 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 2900 2901 // icmp ugt (X + 1), Y -> icmp uge X, Y 2902 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 2903 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 2904 2905 // icmp uge X, (Y + 1) -> icmp ugt X, Y 2906 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 2907 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 2908 2909 // icmp ult X, (Y + 1) -> icmp ule X, Y 2910 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 2911 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 2912 2913 // if C1 has greater magnitude than C2: 2914 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 2915 // s.t. C3 = C1 - C2 2916 // 2917 // if C2 has greater magnitude than C1: 2918 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 2919 // s.t. C3 = C2 - C1 2920 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 2921 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 2922 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 2923 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 2924 const APInt &AP1 = C1->getValue(); 2925 const APInt &AP2 = C2->getValue(); 2926 if (AP1.isNegative() == AP2.isNegative()) { 2927 APInt AP1Abs = C1->getValue().abs(); 2928 APInt AP2Abs = C2->getValue().abs(); 2929 if (AP1Abs.uge(AP2Abs)) { 2930 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 2931 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 2932 return new ICmpInst(Pred, NewAdd, C); 2933 } else { 2934 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 2935 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 2936 return new ICmpInst(Pred, A, NewAdd); 2937 } 2938 } 2939 } 2940 2941 // Analyze the case when either Op0 or Op1 is a sub instruction. 2942 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2943 A = nullptr; 2944 B = nullptr; 2945 C = nullptr; 2946 D = nullptr; 2947 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 2948 A = BO0->getOperand(0); 2949 B = BO0->getOperand(1); 2950 } 2951 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 2952 C = BO1->getOperand(0); 2953 D = BO1->getOperand(1); 2954 } 2955 2956 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 2957 if (A == Op1 && NoOp0WrapProblem) 2958 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 2959 2960 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 2961 if (C == Op0 && NoOp1WrapProblem) 2962 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 2963 2964 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 2965 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 2966 // Try not to increase register pressure. 2967 BO0->hasOneUse() && BO1->hasOneUse()) 2968 return new ICmpInst(Pred, A, C); 2969 2970 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 2971 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 2972 // Try not to increase register pressure. 2973 BO0->hasOneUse() && BO1->hasOneUse()) 2974 return new ICmpInst(Pred, D, B); 2975 2976 // icmp (0-X) < cst --> x > -cst 2977 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 2978 Value *X; 2979 if (match(BO0, m_Neg(m_Value(X)))) 2980 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 2981 if (!RHSC->isMinValue(/*isSigned=*/true)) 2982 return new ICmpInst(I.getSwappedPredicate(), X, 2983 ConstantExpr::getNeg(RHSC)); 2984 } 2985 2986 BinaryOperator *SRem = nullptr; 2987 // icmp (srem X, Y), Y 2988 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 2989 SRem = BO0; 2990 // icmp Y, (srem X, Y) 2991 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 2992 Op0 == BO1->getOperand(1)) 2993 SRem = BO1; 2994 if (SRem) { 2995 // We don't check hasOneUse to avoid increasing register pressure because 2996 // the value we use is the same value this instruction was already using. 2997 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 2998 default: 2999 break; 3000 case ICmpInst::ICMP_EQ: 3001 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3002 case ICmpInst::ICMP_NE: 3003 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3004 case ICmpInst::ICMP_SGT: 3005 case ICmpInst::ICMP_SGE: 3006 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3007 Constant::getAllOnesValue(SRem->getType())); 3008 case ICmpInst::ICMP_SLT: 3009 case ICmpInst::ICMP_SLE: 3010 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3011 Constant::getNullValue(SRem->getType())); 3012 } 3013 } 3014 3015 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3016 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3017 switch (BO0->getOpcode()) { 3018 default: 3019 break; 3020 case Instruction::Add: 3021 case Instruction::Sub: 3022 case Instruction::Xor: 3023 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3024 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3025 BO1->getOperand(0)); 3026 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 3027 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3028 if (CI->getValue().isSignBit()) { 3029 ICmpInst::Predicate Pred = 3030 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3031 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3032 } 3033 3034 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) { 3035 ICmpInst::Predicate Pred = 3036 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3037 Pred = I.getSwappedPredicate(Pred); 3038 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3039 } 3040 } 3041 break; 3042 case Instruction::Mul: 3043 if (!I.isEquality()) 3044 break; 3045 3046 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3047 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 3048 // Mask = -1 >> count-trailing-zeros(Cst). 3049 if (!CI->isZero() && !CI->isOne()) { 3050 const APInt &AP = CI->getValue(); 3051 ConstantInt *Mask = ConstantInt::get( 3052 I.getContext(), 3053 APInt::getLowBitsSet(AP.getBitWidth(), 3054 AP.getBitWidth() - AP.countTrailingZeros())); 3055 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 3056 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 3057 return new ICmpInst(I.getPredicate(), And1, And2); 3058 } 3059 } 3060 break; 3061 case Instruction::UDiv: 3062 case Instruction::LShr: 3063 if (I.isSigned()) 3064 break; 3065 LLVM_FALLTHROUGH; 3066 case Instruction::SDiv: 3067 case Instruction::AShr: 3068 if (!BO0->isExact() || !BO1->isExact()) 3069 break; 3070 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3071 BO1->getOperand(0)); 3072 case Instruction::Shl: { 3073 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3074 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3075 if (!NUW && !NSW) 3076 break; 3077 if (!NSW && I.isSigned()) 3078 break; 3079 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3080 BO1->getOperand(0)); 3081 } 3082 } 3083 } 3084 3085 if (BO0) { 3086 // Transform A & (L - 1) `ult` L --> L != 0 3087 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3088 auto BitwiseAnd = 3089 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 3090 3091 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 3092 auto *Zero = Constant::getNullValue(BO0->getType()); 3093 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3094 } 3095 } 3096 3097 return nullptr; 3098 } 3099 3100 /// Fold icmp Pred min|max(X, Y), X. 3101 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3102 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3103 Value *Op0 = Cmp.getOperand(0); 3104 Value *X = Cmp.getOperand(1); 3105 3106 // Canonicalize minimum or maximum operand to LHS of the icmp. 3107 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3108 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3109 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3110 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3111 std::swap(Op0, X); 3112 Pred = Cmp.getSwappedPredicate(); 3113 } 3114 3115 Value *Y; 3116 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3117 // smin(X, Y) == X --> X s<= Y 3118 // smin(X, Y) s>= X --> X s<= Y 3119 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3120 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3121 3122 // smin(X, Y) != X --> X s> Y 3123 // smin(X, Y) s< X --> X s> Y 3124 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3125 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3126 3127 // These cases should be handled in InstSimplify: 3128 // smin(X, Y) s<= X --> true 3129 // smin(X, Y) s> X --> false 3130 return nullptr; 3131 } 3132 3133 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3134 // smax(X, Y) == X --> X s>= Y 3135 // smax(X, Y) s<= X --> X s>= Y 3136 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3137 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3138 3139 // smax(X, Y) != X --> X s< Y 3140 // smax(X, Y) s> X --> X s< Y 3141 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3142 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3143 3144 // These cases should be handled in InstSimplify: 3145 // smax(X, Y) s>= X --> true 3146 // smax(X, Y) s< X --> false 3147 return nullptr; 3148 } 3149 3150 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3151 // umin(X, Y) == X --> X u<= Y 3152 // umin(X, Y) u>= X --> X u<= Y 3153 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3154 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3155 3156 // umin(X, Y) != X --> X u> Y 3157 // umin(X, Y) u< X --> X u> Y 3158 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3159 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3160 3161 // These cases should be handled in InstSimplify: 3162 // umin(X, Y) u<= X --> true 3163 // umin(X, Y) u> X --> false 3164 return nullptr; 3165 } 3166 3167 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3168 // umax(X, Y) == X --> X u>= Y 3169 // umax(X, Y) u<= X --> X u>= Y 3170 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3171 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3172 3173 // umax(X, Y) != X --> X u< Y 3174 // umax(X, Y) u> X --> X u< Y 3175 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3176 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3177 3178 // These cases should be handled in InstSimplify: 3179 // umax(X, Y) u>= X --> true 3180 // umax(X, Y) u< X --> false 3181 return nullptr; 3182 } 3183 3184 return nullptr; 3185 } 3186 3187 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3188 if (!I.isEquality()) 3189 return nullptr; 3190 3191 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3192 Value *A, *B, *C, *D; 3193 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3194 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3195 Value *OtherVal = A == Op1 ? B : A; 3196 return new ICmpInst(I.getPredicate(), OtherVal, 3197 Constant::getNullValue(A->getType())); 3198 } 3199 3200 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3201 // A^c1 == C^c2 --> A == C^(c1^c2) 3202 ConstantInt *C1, *C2; 3203 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3204 Op1->hasOneUse()) { 3205 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 3206 Value *Xor = Builder->CreateXor(C, NC); 3207 return new ICmpInst(I.getPredicate(), A, Xor); 3208 } 3209 3210 // A^B == A^D -> B == D 3211 if (A == C) 3212 return new ICmpInst(I.getPredicate(), B, D); 3213 if (A == D) 3214 return new ICmpInst(I.getPredicate(), B, C); 3215 if (B == C) 3216 return new ICmpInst(I.getPredicate(), A, D); 3217 if (B == D) 3218 return new ICmpInst(I.getPredicate(), A, C); 3219 } 3220 } 3221 3222 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3223 // A == (A^B) -> B == 0 3224 Value *OtherVal = A == Op0 ? B : A; 3225 return new ICmpInst(I.getPredicate(), OtherVal, 3226 Constant::getNullValue(A->getType())); 3227 } 3228 3229 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3230 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3231 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3232 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3233 3234 if (A == C) { 3235 X = B; 3236 Y = D; 3237 Z = A; 3238 } else if (A == D) { 3239 X = B; 3240 Y = C; 3241 Z = A; 3242 } else if (B == C) { 3243 X = A; 3244 Y = D; 3245 Z = B; 3246 } else if (B == D) { 3247 X = A; 3248 Y = C; 3249 Z = B; 3250 } 3251 3252 if (X) { // Build (X^Y) & Z 3253 Op1 = Builder->CreateXor(X, Y); 3254 Op1 = Builder->CreateAnd(Op1, Z); 3255 I.setOperand(0, Op1); 3256 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3257 return &I; 3258 } 3259 } 3260 3261 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3262 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3263 ConstantInt *Cst1; 3264 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3265 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3266 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3267 match(Op1, m_ZExt(m_Value(A))))) { 3268 APInt Pow2 = Cst1->getValue() + 1; 3269 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3270 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3271 return new ICmpInst(I.getPredicate(), A, 3272 Builder->CreateTrunc(B, A->getType())); 3273 } 3274 3275 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3276 // For lshr and ashr pairs. 3277 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3278 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3279 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3280 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3281 unsigned TypeBits = Cst1->getBitWidth(); 3282 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3283 if (ShAmt < TypeBits && ShAmt != 0) { 3284 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 3285 ? ICmpInst::ICMP_UGE 3286 : ICmpInst::ICMP_ULT; 3287 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3288 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3289 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 3290 } 3291 } 3292 3293 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3294 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3295 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3296 unsigned TypeBits = Cst1->getBitWidth(); 3297 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3298 if (ShAmt < TypeBits && ShAmt != 0) { 3299 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3300 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3301 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 3302 I.getName() + ".mask"); 3303 return new ICmpInst(I.getPredicate(), And, 3304 Constant::getNullValue(Cst1->getType())); 3305 } 3306 } 3307 3308 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3309 // "icmp (and X, mask), cst" 3310 uint64_t ShAmt = 0; 3311 if (Op0->hasOneUse() && 3312 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3313 match(Op1, m_ConstantInt(Cst1)) && 3314 // Only do this when A has multiple uses. This is most important to do 3315 // when it exposes other optimizations. 3316 !A->hasOneUse()) { 3317 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3318 3319 if (ShAmt < ASize) { 3320 APInt MaskV = 3321 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3322 MaskV <<= ShAmt; 3323 3324 APInt CmpV = Cst1->getValue().zext(ASize); 3325 CmpV <<= ShAmt; 3326 3327 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 3328 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 3329 } 3330 } 3331 3332 return nullptr; 3333 } 3334 3335 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3336 /// far. 3337 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3338 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3339 Value *LHSCIOp = LHSCI->getOperand(0); 3340 Type *SrcTy = LHSCIOp->getType(); 3341 Type *DestTy = LHSCI->getType(); 3342 Value *RHSCIOp; 3343 3344 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3345 // integer type is the same size as the pointer type. 3346 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3347 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 3348 Value *RHSOp = nullptr; 3349 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3350 Value *RHSCIOp = RHSC->getOperand(0); 3351 if (RHSCIOp->getType()->getPointerAddressSpace() == 3352 LHSCIOp->getType()->getPointerAddressSpace()) { 3353 RHSOp = RHSC->getOperand(0); 3354 // If the pointer types don't match, insert a bitcast. 3355 if (LHSCIOp->getType() != RHSOp->getType()) 3356 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 3357 } 3358 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3359 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3360 } 3361 3362 if (RHSOp) 3363 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3364 } 3365 3366 // The code below only handles extension cast instructions, so far. 3367 // Enforce this. 3368 if (LHSCI->getOpcode() != Instruction::ZExt && 3369 LHSCI->getOpcode() != Instruction::SExt) 3370 return nullptr; 3371 3372 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3373 bool isSignedCmp = ICmp.isSigned(); 3374 3375 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3376 // Not an extension from the same type? 3377 RHSCIOp = CI->getOperand(0); 3378 if (RHSCIOp->getType() != LHSCIOp->getType()) 3379 return nullptr; 3380 3381 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3382 // and the other is a zext), then we can't handle this. 3383 if (CI->getOpcode() != LHSCI->getOpcode()) 3384 return nullptr; 3385 3386 // Deal with equality cases early. 3387 if (ICmp.isEquality()) 3388 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3389 3390 // A signed comparison of sign extended values simplifies into a 3391 // signed comparison. 3392 if (isSignedCmp && isSignedExt) 3393 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3394 3395 // The other three cases all fold into an unsigned comparison. 3396 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3397 } 3398 3399 // If we aren't dealing with a constant on the RHS, exit early. 3400 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3401 if (!C) 3402 return nullptr; 3403 3404 // Compute the constant that would happen if we truncated to SrcTy then 3405 // re-extended to DestTy. 3406 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3407 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3408 3409 // If the re-extended constant didn't change... 3410 if (Res2 == C) { 3411 // Deal with equality cases early. 3412 if (ICmp.isEquality()) 3413 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3414 3415 // A signed comparison of sign extended values simplifies into a 3416 // signed comparison. 3417 if (isSignedExt && isSignedCmp) 3418 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3419 3420 // The other three cases all fold into an unsigned comparison. 3421 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3422 } 3423 3424 // The re-extended constant changed, partly changed (in the case of a vector), 3425 // or could not be determined to be equal (in the case of a constant 3426 // expression), so the constant cannot be represented in the shorter type. 3427 // Consequently, we cannot emit a simple comparison. 3428 // All the cases that fold to true or false will have already been handled 3429 // by SimplifyICmpInst, so only deal with the tricky case. 3430 3431 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3432 return nullptr; 3433 3434 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3435 // should have been folded away previously and not enter in here. 3436 3437 // We're performing an unsigned comp with a sign extended value. 3438 // This is true if the input is >= 0. [aka >s -1] 3439 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3440 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3441 3442 // Finally, return the value computed. 3443 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3444 return replaceInstUsesWith(ICmp, Result); 3445 3446 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3447 return BinaryOperator::CreateNot(Result); 3448 } 3449 3450 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3451 Value *RHS, Instruction &OrigI, 3452 Value *&Result, Constant *&Overflow) { 3453 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3454 std::swap(LHS, RHS); 3455 3456 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3457 Result = OpResult; 3458 Overflow = OverflowVal; 3459 if (ReuseName) 3460 Result->takeName(&OrigI); 3461 return true; 3462 }; 3463 3464 // If the overflow check was an add followed by a compare, the insertion point 3465 // may be pointing to the compare. We want to insert the new instructions 3466 // before the add in case there are uses of the add between the add and the 3467 // compare. 3468 Builder->SetInsertPoint(&OrigI); 3469 3470 switch (OCF) { 3471 case OCF_INVALID: 3472 llvm_unreachable("bad overflow check kind!"); 3473 3474 case OCF_UNSIGNED_ADD: { 3475 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3476 if (OR == OverflowResult::NeverOverflows) 3477 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 3478 true); 3479 3480 if (OR == OverflowResult::AlwaysOverflows) 3481 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 3482 3483 // Fall through uadd into sadd 3484 LLVM_FALLTHROUGH; 3485 } 3486 case OCF_SIGNED_ADD: { 3487 // X + 0 -> {X, false} 3488 if (match(RHS, m_Zero())) 3489 return SetResult(LHS, Builder->getFalse(), false); 3490 3491 // We can strength reduce this signed add into a regular add if we can prove 3492 // that it will never overflow. 3493 if (OCF == OCF_SIGNED_ADD) 3494 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 3495 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 3496 true); 3497 break; 3498 } 3499 3500 case OCF_UNSIGNED_SUB: 3501 case OCF_SIGNED_SUB: { 3502 // X - 0 -> {X, false} 3503 if (match(RHS, m_Zero())) 3504 return SetResult(LHS, Builder->getFalse(), false); 3505 3506 if (OCF == OCF_SIGNED_SUB) { 3507 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 3508 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 3509 true); 3510 } else { 3511 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 3512 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 3513 true); 3514 } 3515 break; 3516 } 3517 3518 case OCF_UNSIGNED_MUL: { 3519 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 3520 if (OR == OverflowResult::NeverOverflows) 3521 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 3522 true); 3523 if (OR == OverflowResult::AlwaysOverflows) 3524 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 3525 LLVM_FALLTHROUGH; 3526 } 3527 case OCF_SIGNED_MUL: 3528 // X * undef -> undef 3529 if (isa<UndefValue>(RHS)) 3530 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 3531 3532 // X * 0 -> {0, false} 3533 if (match(RHS, m_Zero())) 3534 return SetResult(RHS, Builder->getFalse(), false); 3535 3536 // X * 1 -> {X, false} 3537 if (match(RHS, m_One())) 3538 return SetResult(LHS, Builder->getFalse(), false); 3539 3540 if (OCF == OCF_SIGNED_MUL) 3541 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 3542 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 3543 true); 3544 break; 3545 } 3546 3547 return false; 3548 } 3549 3550 /// \brief Recognize and process idiom involving test for multiplication 3551 /// overflow. 3552 /// 3553 /// The caller has matched a pattern of the form: 3554 /// I = cmp u (mul(zext A, zext B), V 3555 /// The function checks if this is a test for overflow and if so replaces 3556 /// multiplication with call to 'mul.with.overflow' intrinsic. 3557 /// 3558 /// \param I Compare instruction. 3559 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 3560 /// the compare instruction. Must be of integer type. 3561 /// \param OtherVal The other argument of compare instruction. 3562 /// \returns Instruction which must replace the compare instruction, NULL if no 3563 /// replacement required. 3564 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 3565 Value *OtherVal, InstCombiner &IC) { 3566 // Don't bother doing this transformation for pointers, don't do it for 3567 // vectors. 3568 if (!isa<IntegerType>(MulVal->getType())) 3569 return nullptr; 3570 3571 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 3572 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 3573 auto *MulInstr = dyn_cast<Instruction>(MulVal); 3574 if (!MulInstr) 3575 return nullptr; 3576 assert(MulInstr->getOpcode() == Instruction::Mul); 3577 3578 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 3579 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 3580 assert(LHS->getOpcode() == Instruction::ZExt); 3581 assert(RHS->getOpcode() == Instruction::ZExt); 3582 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 3583 3584 // Calculate type and width of the result produced by mul.with.overflow. 3585 Type *TyA = A->getType(), *TyB = B->getType(); 3586 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 3587 WidthB = TyB->getPrimitiveSizeInBits(); 3588 unsigned MulWidth; 3589 Type *MulType; 3590 if (WidthB > WidthA) { 3591 MulWidth = WidthB; 3592 MulType = TyB; 3593 } else { 3594 MulWidth = WidthA; 3595 MulType = TyA; 3596 } 3597 3598 // In order to replace the original mul with a narrower mul.with.overflow, 3599 // all uses must ignore upper bits of the product. The number of used low 3600 // bits must be not greater than the width of mul.with.overflow. 3601 if (MulVal->hasNUsesOrMore(2)) 3602 for (User *U : MulVal->users()) { 3603 if (U == &I) 3604 continue; 3605 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3606 // Check if truncation ignores bits above MulWidth. 3607 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 3608 if (TruncWidth > MulWidth) 3609 return nullptr; 3610 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3611 // Check if AND ignores bits above MulWidth. 3612 if (BO->getOpcode() != Instruction::And) 3613 return nullptr; 3614 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 3615 const APInt &CVal = CI->getValue(); 3616 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 3617 return nullptr; 3618 } 3619 } else { 3620 // Other uses prohibit this transformation. 3621 return nullptr; 3622 } 3623 } 3624 3625 // Recognize patterns 3626 switch (I.getPredicate()) { 3627 case ICmpInst::ICMP_EQ: 3628 case ICmpInst::ICMP_NE: 3629 // Recognize pattern: 3630 // mulval = mul(zext A, zext B) 3631 // cmp eq/neq mulval, zext trunc mulval 3632 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 3633 if (Zext->hasOneUse()) { 3634 Value *ZextArg = Zext->getOperand(0); 3635 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 3636 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 3637 break; //Recognized 3638 } 3639 3640 // Recognize pattern: 3641 // mulval = mul(zext A, zext B) 3642 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 3643 ConstantInt *CI; 3644 Value *ValToMask; 3645 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 3646 if (ValToMask != MulVal) 3647 return nullptr; 3648 const APInt &CVal = CI->getValue() + 1; 3649 if (CVal.isPowerOf2()) { 3650 unsigned MaskWidth = CVal.logBase2(); 3651 if (MaskWidth == MulWidth) 3652 break; // Recognized 3653 } 3654 } 3655 return nullptr; 3656 3657 case ICmpInst::ICMP_UGT: 3658 // Recognize pattern: 3659 // mulval = mul(zext A, zext B) 3660 // cmp ugt mulval, max 3661 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3662 APInt MaxVal = APInt::getMaxValue(MulWidth); 3663 MaxVal = MaxVal.zext(CI->getBitWidth()); 3664 if (MaxVal.eq(CI->getValue())) 3665 break; // Recognized 3666 } 3667 return nullptr; 3668 3669 case ICmpInst::ICMP_UGE: 3670 // Recognize pattern: 3671 // mulval = mul(zext A, zext B) 3672 // cmp uge mulval, max+1 3673 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3674 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3675 if (MaxVal.eq(CI->getValue())) 3676 break; // Recognized 3677 } 3678 return nullptr; 3679 3680 case ICmpInst::ICMP_ULE: 3681 // Recognize pattern: 3682 // mulval = mul(zext A, zext B) 3683 // cmp ule mulval, max 3684 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3685 APInt MaxVal = APInt::getMaxValue(MulWidth); 3686 MaxVal = MaxVal.zext(CI->getBitWidth()); 3687 if (MaxVal.eq(CI->getValue())) 3688 break; // Recognized 3689 } 3690 return nullptr; 3691 3692 case ICmpInst::ICMP_ULT: 3693 // Recognize pattern: 3694 // mulval = mul(zext A, zext B) 3695 // cmp ule mulval, max + 1 3696 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3697 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3698 if (MaxVal.eq(CI->getValue())) 3699 break; // Recognized 3700 } 3701 return nullptr; 3702 3703 default: 3704 return nullptr; 3705 } 3706 3707 InstCombiner::BuilderTy *Builder = IC.Builder; 3708 Builder->SetInsertPoint(MulInstr); 3709 3710 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 3711 Value *MulA = A, *MulB = B; 3712 if (WidthA < MulWidth) 3713 MulA = Builder->CreateZExt(A, MulType); 3714 if (WidthB < MulWidth) 3715 MulB = Builder->CreateZExt(B, MulType); 3716 Value *F = Intrinsic::getDeclaration(I.getModule(), 3717 Intrinsic::umul_with_overflow, MulType); 3718 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 3719 IC.Worklist.Add(MulInstr); 3720 3721 // If there are uses of mul result other than the comparison, we know that 3722 // they are truncation or binary AND. Change them to use result of 3723 // mul.with.overflow and adjust properly mask/size. 3724 if (MulVal->hasNUsesOrMore(2)) { 3725 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 3726 for (User *U : MulVal->users()) { 3727 if (U == &I || U == OtherVal) 3728 continue; 3729 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3730 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 3731 IC.replaceInstUsesWith(*TI, Mul); 3732 else 3733 TI->setOperand(0, Mul); 3734 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3735 assert(BO->getOpcode() == Instruction::And); 3736 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 3737 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 3738 APInt ShortMask = CI->getValue().trunc(MulWidth); 3739 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 3740 Instruction *Zext = 3741 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 3742 IC.Worklist.Add(Zext); 3743 IC.replaceInstUsesWith(*BO, Zext); 3744 } else { 3745 llvm_unreachable("Unexpected Binary operation"); 3746 } 3747 IC.Worklist.Add(cast<Instruction>(U)); 3748 } 3749 } 3750 if (isa<Instruction>(OtherVal)) 3751 IC.Worklist.Add(cast<Instruction>(OtherVal)); 3752 3753 // The original icmp gets replaced with the overflow value, maybe inverted 3754 // depending on predicate. 3755 bool Inverse = false; 3756 switch (I.getPredicate()) { 3757 case ICmpInst::ICMP_NE: 3758 break; 3759 case ICmpInst::ICMP_EQ: 3760 Inverse = true; 3761 break; 3762 case ICmpInst::ICMP_UGT: 3763 case ICmpInst::ICMP_UGE: 3764 if (I.getOperand(0) == MulVal) 3765 break; 3766 Inverse = true; 3767 break; 3768 case ICmpInst::ICMP_ULT: 3769 case ICmpInst::ICMP_ULE: 3770 if (I.getOperand(1) == MulVal) 3771 break; 3772 Inverse = true; 3773 break; 3774 default: 3775 llvm_unreachable("Unexpected predicate"); 3776 } 3777 if (Inverse) { 3778 Value *Res = Builder->CreateExtractValue(Call, 1); 3779 return BinaryOperator::CreateNot(Res); 3780 } 3781 3782 return ExtractValueInst::Create(Call, 1); 3783 } 3784 3785 /// When performing a comparison against a constant, it is possible that not all 3786 /// the bits in the LHS are demanded. This helper method computes the mask that 3787 /// IS demanded. 3788 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth, 3789 bool isSignCheck) { 3790 if (isSignCheck) 3791 return APInt::getSignBit(BitWidth); 3792 3793 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3794 if (!CI) return APInt::getAllOnesValue(BitWidth); 3795 const APInt &RHS = CI->getValue(); 3796 3797 switch (I.getPredicate()) { 3798 // For a UGT comparison, we don't care about any bits that 3799 // correspond to the trailing ones of the comparand. The value of these 3800 // bits doesn't impact the outcome of the comparison, because any value 3801 // greater than the RHS must differ in a bit higher than these due to carry. 3802 case ICmpInst::ICMP_UGT: { 3803 unsigned trailingOnes = RHS.countTrailingOnes(); 3804 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 3805 return ~lowBitsSet; 3806 } 3807 3808 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 3809 // Any value less than the RHS must differ in a higher bit because of carries. 3810 case ICmpInst::ICMP_ULT: { 3811 unsigned trailingZeros = RHS.countTrailingZeros(); 3812 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 3813 return ~lowBitsSet; 3814 } 3815 3816 default: 3817 return APInt::getAllOnesValue(BitWidth); 3818 } 3819 } 3820 3821 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 3822 /// should be swapped. 3823 /// The decision is based on how many times these two operands are reused 3824 /// as subtract operands and their positions in those instructions. 3825 /// The rational is that several architectures use the same instruction for 3826 /// both subtract and cmp, thus it is better if the order of those operands 3827 /// match. 3828 /// \return true if Op0 and Op1 should be swapped. 3829 static bool swapMayExposeCSEOpportunities(const Value * Op0, 3830 const Value * Op1) { 3831 // Filter out pointer value as those cannot appears directly in subtract. 3832 // FIXME: we may want to go through inttoptrs or bitcasts. 3833 if (Op0->getType()->isPointerTy()) 3834 return false; 3835 // Count every uses of both Op0 and Op1 in a subtract. 3836 // Each time Op0 is the first operand, count -1: swapping is bad, the 3837 // subtract has already the same layout as the compare. 3838 // Each time Op0 is the second operand, count +1: swapping is good, the 3839 // subtract has a different layout as the compare. 3840 // At the end, if the benefit is greater than 0, Op0 should come second to 3841 // expose more CSE opportunities. 3842 int GlobalSwapBenefits = 0; 3843 for (const User *U : Op0->users()) { 3844 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 3845 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 3846 continue; 3847 // If Op0 is the first argument, this is not beneficial to swap the 3848 // arguments. 3849 int LocalSwapBenefits = -1; 3850 unsigned Op1Idx = 1; 3851 if (BinOp->getOperand(Op1Idx) == Op0) { 3852 Op1Idx = 0; 3853 LocalSwapBenefits = 1; 3854 } 3855 if (BinOp->getOperand(Op1Idx) != Op1) 3856 continue; 3857 GlobalSwapBenefits += LocalSwapBenefits; 3858 } 3859 return GlobalSwapBenefits > 0; 3860 } 3861 3862 /// \brief Check that one use is in the same block as the definition and all 3863 /// other uses are in blocks dominated by a given block. 3864 /// 3865 /// \param DI Definition 3866 /// \param UI Use 3867 /// \param DB Block that must dominate all uses of \p DI outside 3868 /// the parent block 3869 /// \return true when \p UI is the only use of \p DI in the parent block 3870 /// and all other uses of \p DI are in blocks dominated by \p DB. 3871 /// 3872 bool InstCombiner::dominatesAllUses(const Instruction *DI, 3873 const Instruction *UI, 3874 const BasicBlock *DB) const { 3875 assert(DI && UI && "Instruction not defined\n"); 3876 // Ignore incomplete definitions. 3877 if (!DI->getParent()) 3878 return false; 3879 // DI and UI must be in the same block. 3880 if (DI->getParent() != UI->getParent()) 3881 return false; 3882 // Protect from self-referencing blocks. 3883 if (DI->getParent() == DB) 3884 return false; 3885 for (const User *U : DI->users()) { 3886 auto *Usr = cast<Instruction>(U); 3887 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 3888 return false; 3889 } 3890 return true; 3891 } 3892 3893 /// Return true when the instruction sequence within a block is select-cmp-br. 3894 static bool isChainSelectCmpBranch(const SelectInst *SI) { 3895 const BasicBlock *BB = SI->getParent(); 3896 if (!BB) 3897 return false; 3898 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 3899 if (!BI || BI->getNumSuccessors() != 2) 3900 return false; 3901 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3902 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3903 return false; 3904 return true; 3905 } 3906 3907 /// \brief True when a select result is replaced by one of its operands 3908 /// in select-icmp sequence. This will eventually result in the elimination 3909 /// of the select. 3910 /// 3911 /// \param SI Select instruction 3912 /// \param Icmp Compare instruction 3913 /// \param SIOpd Operand that replaces the select 3914 /// 3915 /// Notes: 3916 /// - The replacement is global and requires dominator information 3917 /// - The caller is responsible for the actual replacement 3918 /// 3919 /// Example: 3920 /// 3921 /// entry: 3922 /// %4 = select i1 %3, %C* %0, %C* null 3923 /// %5 = icmp eq %C* %4, null 3924 /// br i1 %5, label %9, label %7 3925 /// ... 3926 /// ; <label>:7 ; preds = %entry 3927 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3928 /// ... 3929 /// 3930 /// can be transformed to 3931 /// 3932 /// %5 = icmp eq %C* %0, null 3933 /// %6 = select i1 %3, i1 %5, i1 true 3934 /// br i1 %6, label %9, label %7 3935 /// ... 3936 /// ; <label>:7 ; preds = %entry 3937 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 3938 /// 3939 /// Similar when the first operand of the select is a constant or/and 3940 /// the compare is for not equal rather than equal. 3941 /// 3942 /// NOTE: The function is only called when the select and compare constants 3943 /// are equal, the optimization can work only for EQ predicates. This is not a 3944 /// major restriction since a NE compare should be 'normalized' to an equal 3945 /// compare, which usually happens in the combiner and test case 3946 /// select-cmp-br.ll checks for it. 3947 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 3948 const ICmpInst *Icmp, 3949 const unsigned SIOpd) { 3950 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 3951 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 3952 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 3953 // The check for the single predecessor is not the best that can be 3954 // done. But it protects efficiently against cases like when SI's 3955 // home block has two successors, Succ and Succ1, and Succ1 predecessor 3956 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 3957 // replaced can be reached on either path. So the uniqueness check 3958 // guarantees that the path all uses of SI (outside SI's parent) are on 3959 // is disjoint from all other paths out of SI. But that information 3960 // is more expensive to compute, and the trade-off here is in favor 3961 // of compile-time. It should also be noticed that we check for a single 3962 // predecessor and not only uniqueness. This to handle the situation when 3963 // Succ and Succ1 points to the same basic block. 3964 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 3965 NumSel++; 3966 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 3967 return true; 3968 } 3969 } 3970 return false; 3971 } 3972 3973 /// Try to fold the comparison based on range information we can get by checking 3974 /// whether bits are known to be zero or one in the inputs. 3975 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 3976 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3977 Type *Ty = Op0->getType(); 3978 ICmpInst::Predicate Pred = I.getPredicate(); 3979 3980 // Get scalar or pointer size. 3981 unsigned BitWidth = Ty->isIntOrIntVectorTy() 3982 ? Ty->getScalarSizeInBits() 3983 : DL.getTypeSizeInBits(Ty->getScalarType()); 3984 3985 if (!BitWidth) 3986 return nullptr; 3987 3988 // If this is a normal comparison, it demands all bits. If it is a sign bit 3989 // comparison, it only demands the sign bit. 3990 bool IsSignBit = false; 3991 const APInt *CmpC; 3992 if (match(Op1, m_APInt(CmpC))) { 3993 bool UnusedBit; 3994 IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit); 3995 } 3996 3997 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 3998 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 3999 4000 if (SimplifyDemandedBits(I.getOperandUse(0), 4001 getDemandedBitsLHSMask(I, BitWidth, IsSignBit), 4002 Op0KnownZero, Op0KnownOne, 0)) 4003 return &I; 4004 4005 if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth), 4006 Op1KnownZero, Op1KnownOne, 0)) 4007 return &I; 4008 4009 // Given the known and unknown bits, compute a range that the LHS could be 4010 // in. Compute the Min, Max and RHS values based on the known bits. For the 4011 // EQ and NE we use unsigned values. 4012 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4013 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4014 if (I.isSigned()) { 4015 computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min, 4016 Op0Max); 4017 computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min, 4018 Op1Max); 4019 } else { 4020 computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min, 4021 Op0Max); 4022 computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min, 4023 Op1Max); 4024 } 4025 4026 // If Min and Max are known to be the same, then SimplifyDemandedBits 4027 // figured out that the LHS is a constant. Constant fold this now, so that 4028 // code below can assume that Min != Max. 4029 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4030 return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1); 4031 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4032 return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min)); 4033 4034 // Based on the range information we know about the LHS, see if we can 4035 // simplify this comparison. For example, (x&4) < 8 is always true. 4036 switch (Pred) { 4037 default: 4038 llvm_unreachable("Unknown icmp opcode!"); 4039 case ICmpInst::ICMP_EQ: 4040 case ICmpInst::ICMP_NE: { 4041 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4042 return Pred == CmpInst::ICMP_EQ 4043 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4044 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4045 } 4046 4047 // If all bits are known zero except for one, then we know at most one bit 4048 // is set. If the comparison is against zero, then this is a check to see if 4049 // *that* bit is set. 4050 APInt Op0KnownZeroInverted = ~Op0KnownZero; 4051 if (~Op1KnownZero == 0) { 4052 // If the LHS is an AND with the same constant, look through it. 4053 Value *LHS = nullptr; 4054 const APInt *LHSC; 4055 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4056 *LHSC != Op0KnownZeroInverted) 4057 LHS = Op0; 4058 4059 Value *X; 4060 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4061 APInt ValToCheck = Op0KnownZeroInverted; 4062 Type *XTy = X->getType(); 4063 if (ValToCheck.isPowerOf2()) { 4064 // ((1 << X) & 8) == 0 -> X != 3 4065 // ((1 << X) & 8) != 0 -> X == 3 4066 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4067 auto NewPred = ICmpInst::getInversePredicate(Pred); 4068 return new ICmpInst(NewPred, X, CmpC); 4069 } else if ((++ValToCheck).isPowerOf2()) { 4070 // ((1 << X) & 7) == 0 -> X >= 3 4071 // ((1 << X) & 7) != 0 -> X < 3 4072 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4073 auto NewPred = 4074 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4075 return new ICmpInst(NewPred, X, CmpC); 4076 } 4077 } 4078 4079 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4080 const APInt *CI; 4081 if (Op0KnownZeroInverted == 1 && 4082 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4083 // ((8 >>u X) & 1) == 0 -> X != 3 4084 // ((8 >>u X) & 1) != 0 -> X == 3 4085 unsigned CmpVal = CI->countTrailingZeros(); 4086 auto NewPred = ICmpInst::getInversePredicate(Pred); 4087 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4088 } 4089 } 4090 break; 4091 } 4092 case ICmpInst::ICMP_ULT: { 4093 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4094 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4095 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4096 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4097 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4098 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4099 4100 const APInt *CmpC; 4101 if (match(Op1, m_APInt(CmpC))) { 4102 // A <u C -> A == C-1 if min(A)+1 == C 4103 if (Op1Max == Op0Min + 1) { 4104 Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1); 4105 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1); 4106 } 4107 } 4108 break; 4109 } 4110 case ICmpInst::ICMP_UGT: { 4111 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4112 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4113 4114 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4115 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4116 4117 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4118 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4119 4120 const APInt *CmpC; 4121 if (match(Op1, m_APInt(CmpC))) { 4122 // A >u C -> A == C+1 if max(a)-1 == C 4123 if (*CmpC == Op0Max - 1) 4124 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4125 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4126 } 4127 break; 4128 } 4129 case ICmpInst::ICMP_SLT: 4130 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4131 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4132 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4133 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4134 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4135 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4136 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 4137 if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4138 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4139 Builder->getInt(CI->getValue() - 1)); 4140 } 4141 break; 4142 case ICmpInst::ICMP_SGT: 4143 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4144 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4145 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4146 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4147 4148 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4149 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4150 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 4151 if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4152 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4153 Builder->getInt(CI->getValue() + 1)); 4154 } 4155 break; 4156 case ICmpInst::ICMP_SGE: 4157 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4158 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4159 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4160 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4161 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4162 break; 4163 case ICmpInst::ICMP_SLE: 4164 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4165 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4166 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4167 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4168 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4169 break; 4170 case ICmpInst::ICMP_UGE: 4171 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4172 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4173 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4174 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4175 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4176 break; 4177 case ICmpInst::ICMP_ULE: 4178 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4179 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4180 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4181 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4182 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4183 break; 4184 } 4185 4186 // Turn a signed comparison into an unsigned one if both operands are known to 4187 // have the same sign. 4188 if (I.isSigned() && 4189 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 4190 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 4191 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4192 4193 return nullptr; 4194 } 4195 4196 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4197 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4198 /// allows them to be folded in visitICmpInst. 4199 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4200 ICmpInst::Predicate Pred = I.getPredicate(); 4201 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4202 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4203 return nullptr; 4204 4205 Value *Op0 = I.getOperand(0); 4206 Value *Op1 = I.getOperand(1); 4207 auto *Op1C = dyn_cast<Constant>(Op1); 4208 if (!Op1C) 4209 return nullptr; 4210 4211 // Check if the constant operand can be safely incremented/decremented without 4212 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4213 // the edge cases for us, so we just assert on them. For vectors, we must 4214 // handle the edge cases. 4215 Type *Op1Type = Op1->getType(); 4216 bool IsSigned = I.isSigned(); 4217 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4218 auto *CI = dyn_cast<ConstantInt>(Op1C); 4219 if (CI) { 4220 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4221 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4222 } else if (Op1Type->isVectorTy()) { 4223 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4224 // are for scalar, we could remove the min/max checks. However, to do that, 4225 // we would have to use insertelement/shufflevector to replace edge values. 4226 unsigned NumElts = Op1Type->getVectorNumElements(); 4227 for (unsigned i = 0; i != NumElts; ++i) { 4228 Constant *Elt = Op1C->getAggregateElement(i); 4229 if (!Elt) 4230 return nullptr; 4231 4232 if (isa<UndefValue>(Elt)) 4233 continue; 4234 4235 // Bail out if we can't determine if this constant is min/max or if we 4236 // know that this constant is min/max. 4237 auto *CI = dyn_cast<ConstantInt>(Elt); 4238 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4239 return nullptr; 4240 } 4241 } else { 4242 // ConstantExpr? 4243 return nullptr; 4244 } 4245 4246 // Increment or decrement the constant and set the new comparison predicate: 4247 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4248 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4249 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4250 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4251 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4252 } 4253 4254 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4255 bool Changed = false; 4256 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4257 unsigned Op0Cplxity = getComplexity(Op0); 4258 unsigned Op1Cplxity = getComplexity(Op1); 4259 4260 /// Orders the operands of the compare so that they are listed from most 4261 /// complex to least complex. This puts constants before unary operators, 4262 /// before binary operators. 4263 if (Op0Cplxity < Op1Cplxity || 4264 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4265 I.swapOperands(); 4266 std::swap(Op0, Op1); 4267 Changed = true; 4268 } 4269 4270 if (Value *V = 4271 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I)) 4272 return replaceInstUsesWith(I, V); 4273 4274 // comparing -val or val with non-zero is the same as just comparing val 4275 // ie, abs(val) != 0 -> val != 0 4276 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4277 Value *Cond, *SelectTrue, *SelectFalse; 4278 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4279 m_Value(SelectFalse)))) { 4280 if (Value *V = dyn_castNegVal(SelectTrue)) { 4281 if (V == SelectFalse) 4282 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4283 } 4284 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4285 if (V == SelectTrue) 4286 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4287 } 4288 } 4289 } 4290 4291 Type *Ty = Op0->getType(); 4292 4293 // icmp's with boolean values can always be turned into bitwise operations 4294 if (Ty->getScalarType()->isIntegerTy(1)) { 4295 switch (I.getPredicate()) { 4296 default: llvm_unreachable("Invalid icmp instruction!"); 4297 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 4298 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp"); 4299 return BinaryOperator::CreateNot(Xor); 4300 } 4301 case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B 4302 return BinaryOperator::CreateXor(Op0, Op1); 4303 4304 case ICmpInst::ICMP_UGT: 4305 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 4306 LLVM_FALLTHROUGH; 4307 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 4308 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 4309 return BinaryOperator::CreateAnd(Not, Op1); 4310 } 4311 case ICmpInst::ICMP_SGT: 4312 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 4313 LLVM_FALLTHROUGH; 4314 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 4315 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 4316 return BinaryOperator::CreateAnd(Not, Op0); 4317 } 4318 case ICmpInst::ICMP_UGE: 4319 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 4320 LLVM_FALLTHROUGH; 4321 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 4322 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 4323 return BinaryOperator::CreateOr(Not, Op1); 4324 } 4325 case ICmpInst::ICMP_SGE: 4326 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 4327 LLVM_FALLTHROUGH; 4328 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 4329 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 4330 return BinaryOperator::CreateOr(Not, Op0); 4331 } 4332 } 4333 } 4334 4335 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4336 return NewICmp; 4337 4338 if (Instruction *Res = foldICmpWithConstant(I)) 4339 return Res; 4340 4341 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4342 return Res; 4343 4344 // Test if the ICmpInst instruction is used exclusively by a select as 4345 // part of a minimum or maximum operation. If so, refrain from doing 4346 // any other folding. This helps out other analyses which understand 4347 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4348 // and CodeGen. And in this case, at least one of the comparison 4349 // operands has at least one user besides the compare (the select), 4350 // which would often largely negate the benefit of folding anyway. 4351 if (I.hasOneUse()) 4352 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4353 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4354 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4355 return nullptr; 4356 4357 // FIXME: We only do this after checking for min/max to prevent infinite 4358 // looping caused by a reverse canonicalization of these patterns for min/max. 4359 // FIXME: The organization of folds is a mess. These would naturally go into 4360 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4361 // down here after the min/max restriction. 4362 ICmpInst::Predicate Pred = I.getPredicate(); 4363 const APInt *C; 4364 if (match(Op1, m_APInt(C))) { 4365 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4366 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4367 Constant *Zero = Constant::getNullValue(Op0->getType()); 4368 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4369 } 4370 4371 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4372 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4373 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4374 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4375 } 4376 } 4377 4378 if (Instruction *Res = foldICmpInstWithConstant(I)) 4379 return Res; 4380 4381 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4382 return Res; 4383 4384 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4385 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4386 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4387 return NI; 4388 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4389 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4390 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4391 return NI; 4392 4393 // Try to optimize equality comparisons against alloca-based pointers. 4394 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4395 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4396 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4397 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4398 return New; 4399 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4400 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4401 return New; 4402 } 4403 4404 // Test to see if the operands of the icmp are casted versions of other 4405 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 4406 // now. 4407 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 4408 if (Op0->getType()->isPointerTy() && 4409 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 4410 // We keep moving the cast from the left operand over to the right 4411 // operand, where it can often be eliminated completely. 4412 Op0 = CI->getOperand(0); 4413 4414 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 4415 // so eliminate it as well. 4416 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 4417 Op1 = CI2->getOperand(0); 4418 4419 // If Op1 is a constant, we can fold the cast into the constant. 4420 if (Op0->getType() != Op1->getType()) { 4421 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 4422 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 4423 } else { 4424 // Otherwise, cast the RHS right before the icmp 4425 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 4426 } 4427 } 4428 return new ICmpInst(I.getPredicate(), Op0, Op1); 4429 } 4430 } 4431 4432 if (isa<CastInst>(Op0)) { 4433 // Handle the special case of: icmp (cast bool to X), <cst> 4434 // This comes up when you have code like 4435 // int X = A < B; 4436 // if (X) ... 4437 // For generality, we handle any zero-extension of any operand comparison 4438 // with a constant or another cast from the same type. 4439 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 4440 if (Instruction *R = foldICmpWithCastAndCast(I)) 4441 return R; 4442 } 4443 4444 if (Instruction *Res = foldICmpBinOp(I)) 4445 return Res; 4446 4447 if (Instruction *Res = foldICmpWithMinMax(I)) 4448 return Res; 4449 4450 { 4451 Value *A, *B; 4452 // Transform (A & ~B) == 0 --> (A & B) != 0 4453 // and (A & ~B) != 0 --> (A & B) == 0 4454 // if A is a power of 2. 4455 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4456 match(Op1, m_Zero()) && 4457 isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality()) 4458 return new ICmpInst(I.getInversePredicate(), 4459 Builder->CreateAnd(A, B), 4460 Op1); 4461 4462 // ~x < ~y --> y < x 4463 // ~x < cst --> ~cst < x 4464 if (match(Op0, m_Not(m_Value(A)))) { 4465 if (match(Op1, m_Not(m_Value(B)))) 4466 return new ICmpInst(I.getPredicate(), B, A); 4467 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 4468 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 4469 } 4470 4471 Instruction *AddI = nullptr; 4472 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4473 m_Instruction(AddI))) && 4474 isa<IntegerType>(A->getType())) { 4475 Value *Result; 4476 Constant *Overflow; 4477 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4478 Overflow)) { 4479 replaceInstUsesWith(*AddI, Result); 4480 return replaceInstUsesWith(I, Overflow); 4481 } 4482 } 4483 4484 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4485 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4486 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 4487 return R; 4488 } 4489 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4490 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 4491 return R; 4492 } 4493 } 4494 4495 if (Instruction *Res = foldICmpEquality(I)) 4496 return Res; 4497 4498 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4499 // an i1 which indicates whether or not we successfully did the swap. 4500 // 4501 // Replace comparisons between the old value and the expected value with the 4502 // indicator that 'cmpxchg' returns. 4503 // 4504 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4505 // spuriously fail. In those cases, the old value may equal the expected 4506 // value but it is possible for the swap to not occur. 4507 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4508 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4509 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4510 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4511 !ACXI->isWeak()) 4512 return ExtractValueInst::Create(ACXI, 1); 4513 4514 { 4515 Value *X; ConstantInt *Cst; 4516 // icmp X+Cst, X 4517 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4518 return foldICmpAddOpConst(I, X, Cst, I.getPredicate()); 4519 4520 // icmp X, X+Cst 4521 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4522 return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate()); 4523 } 4524 return Changed ? &I : nullptr; 4525 } 4526 4527 /// Fold fcmp ([us]itofp x, cst) if possible. 4528 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 4529 Constant *RHSC) { 4530 if (!isa<ConstantFP>(RHSC)) return nullptr; 4531 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4532 4533 // Get the width of the mantissa. We don't want to hack on conversions that 4534 // might lose information from the integer, e.g. "i64 -> float" 4535 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4536 if (MantissaWidth == -1) return nullptr; // Unknown. 4537 4538 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4539 4540 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4541 4542 if (I.isEquality()) { 4543 FCmpInst::Predicate P = I.getPredicate(); 4544 bool IsExact = false; 4545 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4546 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4547 4548 // If the floating point constant isn't an integer value, we know if we will 4549 // ever compare equal / not equal to it. 4550 if (!IsExact) { 4551 // TODO: Can never be -0.0 and other non-representable values 4552 APFloat RHSRoundInt(RHS); 4553 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4554 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4555 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4556 return replaceInstUsesWith(I, Builder->getFalse()); 4557 4558 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4559 return replaceInstUsesWith(I, Builder->getTrue()); 4560 } 4561 } 4562 4563 // TODO: If the constant is exactly representable, is it always OK to do 4564 // equality compares as integer? 4565 } 4566 4567 // Check to see that the input is converted from an integer type that is small 4568 // enough that preserves all bits. TODO: check here for "known" sign bits. 4569 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4570 unsigned InputSize = IntTy->getScalarSizeInBits(); 4571 4572 // Following test does NOT adjust InputSize downwards for signed inputs, 4573 // because the most negative value still requires all the mantissa bits 4574 // to distinguish it from one less than that value. 4575 if ((int)InputSize > MantissaWidth) { 4576 // Conversion would lose accuracy. Check if loss can impact comparison. 4577 int Exp = ilogb(RHS); 4578 if (Exp == APFloat::IEK_Inf) { 4579 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4580 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4581 // Conversion could create infinity. 4582 return nullptr; 4583 } else { 4584 // Note that if RHS is zero or NaN, then Exp is negative 4585 // and first condition is trivially false. 4586 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4587 // Conversion could affect comparison. 4588 return nullptr; 4589 } 4590 } 4591 4592 // Otherwise, we can potentially simplify the comparison. We know that it 4593 // will always come through as an integer value and we know the constant is 4594 // not a NAN (it would have been previously simplified). 4595 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4596 4597 ICmpInst::Predicate Pred; 4598 switch (I.getPredicate()) { 4599 default: llvm_unreachable("Unexpected predicate!"); 4600 case FCmpInst::FCMP_UEQ: 4601 case FCmpInst::FCMP_OEQ: 4602 Pred = ICmpInst::ICMP_EQ; 4603 break; 4604 case FCmpInst::FCMP_UGT: 4605 case FCmpInst::FCMP_OGT: 4606 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4607 break; 4608 case FCmpInst::FCMP_UGE: 4609 case FCmpInst::FCMP_OGE: 4610 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4611 break; 4612 case FCmpInst::FCMP_ULT: 4613 case FCmpInst::FCMP_OLT: 4614 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4615 break; 4616 case FCmpInst::FCMP_ULE: 4617 case FCmpInst::FCMP_OLE: 4618 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4619 break; 4620 case FCmpInst::FCMP_UNE: 4621 case FCmpInst::FCMP_ONE: 4622 Pred = ICmpInst::ICMP_NE; 4623 break; 4624 case FCmpInst::FCMP_ORD: 4625 return replaceInstUsesWith(I, Builder->getTrue()); 4626 case FCmpInst::FCMP_UNO: 4627 return replaceInstUsesWith(I, Builder->getFalse()); 4628 } 4629 4630 // Now we know that the APFloat is a normal number, zero or inf. 4631 4632 // See if the FP constant is too large for the integer. For example, 4633 // comparing an i8 to 300.0. 4634 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4635 4636 if (!LHSUnsigned) { 4637 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4638 // and large values. 4639 APFloat SMax(RHS.getSemantics()); 4640 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4641 APFloat::rmNearestTiesToEven); 4642 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4643 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4644 Pred == ICmpInst::ICMP_SLE) 4645 return replaceInstUsesWith(I, Builder->getTrue()); 4646 return replaceInstUsesWith(I, Builder->getFalse()); 4647 } 4648 } else { 4649 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4650 // +INF and large values. 4651 APFloat UMax(RHS.getSemantics()); 4652 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4653 APFloat::rmNearestTiesToEven); 4654 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4655 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4656 Pred == ICmpInst::ICMP_ULE) 4657 return replaceInstUsesWith(I, Builder->getTrue()); 4658 return replaceInstUsesWith(I, Builder->getFalse()); 4659 } 4660 } 4661 4662 if (!LHSUnsigned) { 4663 // See if the RHS value is < SignedMin. 4664 APFloat SMin(RHS.getSemantics()); 4665 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4666 APFloat::rmNearestTiesToEven); 4667 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4668 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4669 Pred == ICmpInst::ICMP_SGE) 4670 return replaceInstUsesWith(I, Builder->getTrue()); 4671 return replaceInstUsesWith(I, Builder->getFalse()); 4672 } 4673 } else { 4674 // See if the RHS value is < UnsignedMin. 4675 APFloat SMin(RHS.getSemantics()); 4676 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4677 APFloat::rmNearestTiesToEven); 4678 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4679 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4680 Pred == ICmpInst::ICMP_UGE) 4681 return replaceInstUsesWith(I, Builder->getTrue()); 4682 return replaceInstUsesWith(I, Builder->getFalse()); 4683 } 4684 } 4685 4686 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4687 // [0, UMAX], but it may still be fractional. See if it is fractional by 4688 // casting the FP value to the integer value and back, checking for equality. 4689 // Don't do this for zero, because -0.0 is not fractional. 4690 Constant *RHSInt = LHSUnsigned 4691 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4692 : ConstantExpr::getFPToSI(RHSC, IntTy); 4693 if (!RHS.isZero()) { 4694 bool Equal = LHSUnsigned 4695 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4696 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4697 if (!Equal) { 4698 // If we had a comparison against a fractional value, we have to adjust 4699 // the compare predicate and sometimes the value. RHSC is rounded towards 4700 // zero at this point. 4701 switch (Pred) { 4702 default: llvm_unreachable("Unexpected integer comparison!"); 4703 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4704 return replaceInstUsesWith(I, Builder->getTrue()); 4705 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4706 return replaceInstUsesWith(I, Builder->getFalse()); 4707 case ICmpInst::ICMP_ULE: 4708 // (float)int <= 4.4 --> int <= 4 4709 // (float)int <= -4.4 --> false 4710 if (RHS.isNegative()) 4711 return replaceInstUsesWith(I, Builder->getFalse()); 4712 break; 4713 case ICmpInst::ICMP_SLE: 4714 // (float)int <= 4.4 --> int <= 4 4715 // (float)int <= -4.4 --> int < -4 4716 if (RHS.isNegative()) 4717 Pred = ICmpInst::ICMP_SLT; 4718 break; 4719 case ICmpInst::ICMP_ULT: 4720 // (float)int < -4.4 --> false 4721 // (float)int < 4.4 --> int <= 4 4722 if (RHS.isNegative()) 4723 return replaceInstUsesWith(I, Builder->getFalse()); 4724 Pred = ICmpInst::ICMP_ULE; 4725 break; 4726 case ICmpInst::ICMP_SLT: 4727 // (float)int < -4.4 --> int < -4 4728 // (float)int < 4.4 --> int <= 4 4729 if (!RHS.isNegative()) 4730 Pred = ICmpInst::ICMP_SLE; 4731 break; 4732 case ICmpInst::ICMP_UGT: 4733 // (float)int > 4.4 --> int > 4 4734 // (float)int > -4.4 --> true 4735 if (RHS.isNegative()) 4736 return replaceInstUsesWith(I, Builder->getTrue()); 4737 break; 4738 case ICmpInst::ICMP_SGT: 4739 // (float)int > 4.4 --> int > 4 4740 // (float)int > -4.4 --> int >= -4 4741 if (RHS.isNegative()) 4742 Pred = ICmpInst::ICMP_SGE; 4743 break; 4744 case ICmpInst::ICMP_UGE: 4745 // (float)int >= -4.4 --> true 4746 // (float)int >= 4.4 --> int > 4 4747 if (RHS.isNegative()) 4748 return replaceInstUsesWith(I, Builder->getTrue()); 4749 Pred = ICmpInst::ICMP_UGT; 4750 break; 4751 case ICmpInst::ICMP_SGE: 4752 // (float)int >= -4.4 --> int >= -4 4753 // (float)int >= 4.4 --> int > 4 4754 if (!RHS.isNegative()) 4755 Pred = ICmpInst::ICMP_SGT; 4756 break; 4757 } 4758 } 4759 } 4760 4761 // Lower this FP comparison into an appropriate integer version of the 4762 // comparison. 4763 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4764 } 4765 4766 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4767 bool Changed = false; 4768 4769 /// Orders the operands of the compare so that they are listed from most 4770 /// complex to least complex. This puts constants before unary operators, 4771 /// before binary operators. 4772 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4773 I.swapOperands(); 4774 Changed = true; 4775 } 4776 4777 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4778 4779 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 4780 I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I)) 4781 return replaceInstUsesWith(I, V); 4782 4783 // Simplify 'fcmp pred X, X' 4784 if (Op0 == Op1) { 4785 switch (I.getPredicate()) { 4786 default: llvm_unreachable("Unknown predicate!"); 4787 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4788 case FCmpInst::FCMP_ULT: // True if unordered or less than 4789 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4790 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4791 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4792 I.setPredicate(FCmpInst::FCMP_UNO); 4793 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4794 return &I; 4795 4796 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4797 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4798 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4799 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4800 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4801 I.setPredicate(FCmpInst::FCMP_ORD); 4802 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4803 return &I; 4804 } 4805 } 4806 4807 // Test if the FCmpInst instruction is used exclusively by a select as 4808 // part of a minimum or maximum operation. If so, refrain from doing 4809 // any other folding. This helps out other analyses which understand 4810 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4811 // and CodeGen. And in this case, at least one of the comparison 4812 // operands has at least one user besides the compare (the select), 4813 // which would often largely negate the benefit of folding anyway. 4814 if (I.hasOneUse()) 4815 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4816 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4817 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4818 return nullptr; 4819 4820 // Handle fcmp with constant RHS 4821 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4822 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4823 switch (LHSI->getOpcode()) { 4824 case Instruction::FPExt: { 4825 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4826 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4827 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4828 if (!RHSF) 4829 break; 4830 4831 const fltSemantics *Sem; 4832 // FIXME: This shouldn't be here. 4833 if (LHSExt->getSrcTy()->isHalfTy()) 4834 Sem = &APFloat::IEEEhalf(); 4835 else if (LHSExt->getSrcTy()->isFloatTy()) 4836 Sem = &APFloat::IEEEsingle(); 4837 else if (LHSExt->getSrcTy()->isDoubleTy()) 4838 Sem = &APFloat::IEEEdouble(); 4839 else if (LHSExt->getSrcTy()->isFP128Ty()) 4840 Sem = &APFloat::IEEEquad(); 4841 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4842 Sem = &APFloat::x87DoubleExtended(); 4843 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4844 Sem = &APFloat::PPCDoubleDouble(); 4845 else 4846 break; 4847 4848 bool Lossy; 4849 APFloat F = RHSF->getValueAPF(); 4850 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4851 4852 // Avoid lossy conversions and denormals. Zero is a special case 4853 // that's OK to convert. 4854 APFloat Fabs = F; 4855 Fabs.clearSign(); 4856 if (!Lossy && 4857 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4858 APFloat::cmpLessThan) || Fabs.isZero())) 4859 4860 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4861 ConstantFP::get(RHSC->getContext(), F)); 4862 break; 4863 } 4864 case Instruction::PHI: 4865 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4866 // block. If in the same block, we're encouraging jump threading. If 4867 // not, we are just pessimizing the code by making an i1 phi. 4868 if (LHSI->getParent() == I.getParent()) 4869 if (Instruction *NV = FoldOpIntoPhi(I)) 4870 return NV; 4871 break; 4872 case Instruction::SIToFP: 4873 case Instruction::UIToFP: 4874 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 4875 return NV; 4876 break; 4877 case Instruction::FSub: { 4878 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4879 Value *Op; 4880 if (match(LHSI, m_FNeg(m_Value(Op)))) 4881 return new FCmpInst(I.getSwappedPredicate(), Op, 4882 ConstantExpr::getFNeg(RHSC)); 4883 break; 4884 } 4885 case Instruction::Load: 4886 if (GetElementPtrInst *GEP = 4887 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4888 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4889 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4890 !cast<LoadInst>(LHSI)->isVolatile()) 4891 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4892 return Res; 4893 } 4894 break; 4895 case Instruction::Call: { 4896 if (!RHSC->isNullValue()) 4897 break; 4898 4899 CallInst *CI = cast<CallInst>(LHSI); 4900 Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI); 4901 if (IID != Intrinsic::fabs) 4902 break; 4903 4904 // Various optimization for fabs compared with zero. 4905 switch (I.getPredicate()) { 4906 default: 4907 break; 4908 // fabs(x) < 0 --> false 4909 case FCmpInst::FCMP_OLT: 4910 llvm_unreachable("handled by SimplifyFCmpInst"); 4911 // fabs(x) > 0 --> x != 0 4912 case FCmpInst::FCMP_OGT: 4913 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4914 // fabs(x) <= 0 --> x == 0 4915 case FCmpInst::FCMP_OLE: 4916 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4917 // fabs(x) >= 0 --> !isnan(x) 4918 case FCmpInst::FCMP_OGE: 4919 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4920 // fabs(x) == 0 --> x == 0 4921 // fabs(x) != 0 --> x != 0 4922 case FCmpInst::FCMP_OEQ: 4923 case FCmpInst::FCMP_UEQ: 4924 case FCmpInst::FCMP_ONE: 4925 case FCmpInst::FCMP_UNE: 4926 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4927 } 4928 } 4929 } 4930 } 4931 4932 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4933 Value *X, *Y; 4934 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4935 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4936 4937 // fcmp (fpext x), (fpext y) -> fcmp x, y 4938 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4939 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4940 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4941 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4942 RHSExt->getOperand(0)); 4943 4944 return Changed ? &I : nullptr; 4945 } 4946