1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction * 109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 110 GlobalVariable *GV, CmpInst &ICI, 111 ConstantInt *AndCst) { 112 Constant *Init = GV->getInitializer(); 113 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 114 return nullptr; 115 116 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 117 // Don't blow up on huge arrays. 118 if (ArrayElementCount > MaxArraySizeForCombine) 119 return nullptr; 120 121 // There are many forms of this optimization we can handle, for now, just do 122 // the simple index into a single-dimensional array. 123 // 124 // Require: GEP GV, 0, i {{, constant indices}} 125 if (GEP->getNumOperands() < 3 || 126 !isa<ConstantInt>(GEP->getOperand(1)) || 127 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 128 isa<Constant>(GEP->getOperand(2))) 129 return nullptr; 130 131 // Check that indices after the variable are constants and in-range for the 132 // type they index. Collect the indices. This is typically for arrays of 133 // structs. 134 SmallVector<unsigned, 4> LaterIndices; 135 136 Type *EltTy = Init->getType()->getArrayElementType(); 137 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 138 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 139 if (!Idx) return nullptr; // Variable index. 140 141 uint64_t IdxVal = Idx->getZExtValue(); 142 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 143 144 if (StructType *STy = dyn_cast<StructType>(EltTy)) 145 EltTy = STy->getElementType(IdxVal); 146 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 147 if (IdxVal >= ATy->getNumElements()) return nullptr; 148 EltTy = ATy->getElementType(); 149 } else { 150 return nullptr; // Unknown type. 151 } 152 153 LaterIndices.push_back(IdxVal); 154 } 155 156 enum { Overdefined = -3, Undefined = -2 }; 157 158 // Variables for our state machines. 159 160 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 161 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 162 // and 87 is the second (and last) index. FirstTrueElement is -2 when 163 // undefined, otherwise set to the first true element. SecondTrueElement is 164 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 165 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 166 167 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 168 // form "i != 47 & i != 87". Same state transitions as for true elements. 169 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 170 171 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 172 /// define a state machine that triggers for ranges of values that the index 173 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 174 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 175 /// index in the range (inclusive). We use -2 for undefined here because we 176 /// use relative comparisons and don't want 0-1 to match -1. 177 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 178 179 // MagicBitvector - This is a magic bitvector where we set a bit if the 180 // comparison is true for element 'i'. If there are 64 elements or less in 181 // the array, this will fully represent all the comparison results. 182 uint64_t MagicBitvector = 0; 183 184 // Scan the array and see if one of our patterns matches. 185 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 186 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 187 Constant *Elt = Init->getAggregateElement(i); 188 if (!Elt) return nullptr; 189 190 // If this is indexing an array of structures, get the structure element. 191 if (!LaterIndices.empty()) 192 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 193 194 // If the element is masked, handle it. 195 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 196 197 // Find out if the comparison would be true or false for the i'th element. 198 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 199 CompareRHS, DL, &TLI); 200 // If the result is undef for this element, ignore it. 201 if (isa<UndefValue>(C)) { 202 // Extend range state machines to cover this element in case there is an 203 // undef in the middle of the range. 204 if (TrueRangeEnd == (int)i-1) 205 TrueRangeEnd = i; 206 if (FalseRangeEnd == (int)i-1) 207 FalseRangeEnd = i; 208 continue; 209 } 210 211 // If we can't compute the result for any of the elements, we have to give 212 // up evaluating the entire conditional. 213 if (!isa<ConstantInt>(C)) return nullptr; 214 215 // Otherwise, we know if the comparison is true or false for this element, 216 // update our state machines. 217 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 218 219 // State machine for single/double/range index comparison. 220 if (IsTrueForElt) { 221 // Update the TrueElement state machine. 222 if (FirstTrueElement == Undefined) 223 FirstTrueElement = TrueRangeEnd = i; // First true element. 224 else { 225 // Update double-compare state machine. 226 if (SecondTrueElement == Undefined) 227 SecondTrueElement = i; 228 else 229 SecondTrueElement = Overdefined; 230 231 // Update range state machine. 232 if (TrueRangeEnd == (int)i-1) 233 TrueRangeEnd = i; 234 else 235 TrueRangeEnd = Overdefined; 236 } 237 } else { 238 // Update the FalseElement state machine. 239 if (FirstFalseElement == Undefined) 240 FirstFalseElement = FalseRangeEnd = i; // First false element. 241 else { 242 // Update double-compare state machine. 243 if (SecondFalseElement == Undefined) 244 SecondFalseElement = i; 245 else 246 SecondFalseElement = Overdefined; 247 248 // Update range state machine. 249 if (FalseRangeEnd == (int)i-1) 250 FalseRangeEnd = i; 251 else 252 FalseRangeEnd = Overdefined; 253 } 254 } 255 256 // If this element is in range, update our magic bitvector. 257 if (i < 64 && IsTrueForElt) 258 MagicBitvector |= 1ULL << i; 259 260 // If all of our states become overdefined, bail out early. Since the 261 // predicate is expensive, only check it every 8 elements. This is only 262 // really useful for really huge arrays. 263 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 264 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 265 FalseRangeEnd == Overdefined) 266 return nullptr; 267 } 268 269 // Now that we've scanned the entire array, emit our new comparison(s). We 270 // order the state machines in complexity of the generated code. 271 Value *Idx = GEP->getOperand(2); 272 273 // If the index is larger than the pointer size of the target, truncate the 274 // index down like the GEP would do implicitly. We don't have to do this for 275 // an inbounds GEP because the index can't be out of range. 276 if (!GEP->isInBounds()) { 277 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 278 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 279 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 280 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 281 } 282 283 // If inbounds keyword is not present, Idx * ElementSize can overflow. 284 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 285 // Then, there are two possible values for Idx to match offset 0: 286 // 0x00..00, 0x80..00. 287 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 288 // comparison is false if Idx was 0x80..00. 289 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 290 unsigned ElementSize = 291 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 292 auto MaskIdx = [&](Value* Idx){ 293 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 294 Value *Mask = ConstantInt::get(Idx->getType(), -1); 295 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 296 Idx = Builder.CreateAnd(Idx, Mask); 297 } 298 return Idx; 299 }; 300 301 // If the comparison is only true for one or two elements, emit direct 302 // comparisons. 303 if (SecondTrueElement != Overdefined) { 304 Idx = MaskIdx(Idx); 305 // None true -> false. 306 if (FirstTrueElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getFalse()); 308 309 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 310 311 // True for one element -> 'i == 47'. 312 if (SecondTrueElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 314 315 // True for two elements -> 'i == 47 | i == 72'. 316 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 317 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 318 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 319 return BinaryOperator::CreateOr(C1, C2); 320 } 321 322 // If the comparison is only false for one or two elements, emit direct 323 // comparisons. 324 if (SecondFalseElement != Overdefined) { 325 Idx = MaskIdx(Idx); 326 // None false -> true. 327 if (FirstFalseElement == Undefined) 328 return replaceInstUsesWith(ICI, Builder.getTrue()); 329 330 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 331 332 // False for one element -> 'i != 47'. 333 if (SecondFalseElement == Undefined) 334 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 335 336 // False for two elements -> 'i != 47 & i != 72'. 337 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 338 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 339 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 340 return BinaryOperator::CreateAnd(C1, C2); 341 } 342 343 // If the comparison can be replaced with a range comparison for the elements 344 // where it is true, emit the range check. 345 if (TrueRangeEnd != Overdefined) { 346 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 347 Idx = MaskIdx(Idx); 348 349 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 350 if (FirstTrueElement) { 351 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 352 Idx = Builder.CreateAdd(Idx, Offs); 353 } 354 355 Value *End = ConstantInt::get(Idx->getType(), 356 TrueRangeEnd-FirstTrueElement+1); 357 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 358 } 359 360 // False range check. 361 if (FalseRangeEnd != Overdefined) { 362 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 363 Idx = MaskIdx(Idx); 364 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 365 if (FirstFalseElement) { 366 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 367 Idx = Builder.CreateAdd(Idx, Offs); 368 } 369 370 Value *End = ConstantInt::get(Idx->getType(), 371 FalseRangeEnd-FirstFalseElement); 372 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 373 } 374 375 // If a magic bitvector captures the entire comparison state 376 // of this load, replace it with computation that does: 377 // ((magic_cst >> i) & 1) != 0 378 { 379 Type *Ty = nullptr; 380 381 // Look for an appropriate type: 382 // - The type of Idx if the magic fits 383 // - The smallest fitting legal type 384 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 385 Ty = Idx->getType(); 386 else 387 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 388 389 if (Ty) { 390 Idx = MaskIdx(Idx); 391 Value *V = Builder.CreateIntCast(Idx, Ty, false); 392 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 393 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 394 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 395 } 396 } 397 398 return nullptr; 399 } 400 401 /// Return a value that can be used to compare the *offset* implied by a GEP to 402 /// zero. For example, if we have &A[i], we want to return 'i' for 403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 404 /// are involved. The above expression would also be legal to codegen as 405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 406 /// This latter form is less amenable to optimization though, and we are allowed 407 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 408 /// 409 /// If we can't emit an optimized form for this expression, this returns null. 410 /// 411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 412 const DataLayout &DL) { 413 gep_type_iterator GTI = gep_type_begin(GEP); 414 415 // Check to see if this gep only has a single variable index. If so, and if 416 // any constant indices are a multiple of its scale, then we can compute this 417 // in terms of the scale of the variable index. For example, if the GEP 418 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 419 // because the expression will cross zero at the same point. 420 unsigned i, e = GEP->getNumOperands(); 421 int64_t Offset = 0; 422 for (i = 1; i != e; ++i, ++GTI) { 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 424 // Compute the aggregate offset of constant indices. 425 if (CI->isZero()) continue; 426 427 // Handle a struct index, which adds its field offset to the pointer. 428 if (StructType *STy = GTI.getStructTypeOrNull()) { 429 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 430 } else { 431 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 432 Offset += Size*CI->getSExtValue(); 433 } 434 } else { 435 // Found our variable index. 436 break; 437 } 438 } 439 440 // If there are no variable indices, we must have a constant offset, just 441 // evaluate it the general way. 442 if (i == e) return nullptr; 443 444 Value *VariableIdx = GEP->getOperand(i); 445 // Determine the scale factor of the variable element. For example, this is 446 // 4 if the variable index is into an array of i32. 447 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 448 449 // Verify that there are no other variable indices. If so, emit the hard way. 450 for (++i, ++GTI; i != e; ++i, ++GTI) { 451 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 452 if (!CI) return nullptr; 453 454 // Compute the aggregate offset of constant indices. 455 if (CI->isZero()) continue; 456 457 // Handle a struct index, which adds its field offset to the pointer. 458 if (StructType *STy = GTI.getStructTypeOrNull()) { 459 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 460 } else { 461 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 462 Offset += Size*CI->getSExtValue(); 463 } 464 } 465 466 // Okay, we know we have a single variable index, which must be a 467 // pointer/array/vector index. If there is no offset, life is simple, return 468 // the index. 469 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 470 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 471 if (Offset == 0) { 472 // Cast to intptrty in case a truncation occurs. If an extension is needed, 473 // we don't need to bother extending: the extension won't affect where the 474 // computation crosses zero. 475 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 476 IntPtrWidth) { 477 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 478 } 479 return VariableIdx; 480 } 481 482 // Otherwise, there is an index. The computation we will do will be modulo 483 // the pointer size. 484 Offset = SignExtend64(Offset, IntPtrWidth); 485 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 486 487 // To do this transformation, any constant index must be a multiple of the 488 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 489 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 490 // multiple of the variable scale. 491 int64_t NewOffs = Offset / (int64_t)VariableScale; 492 if (Offset != NewOffs*(int64_t)VariableScale) 493 return nullptr; 494 495 // Okay, we can do this evaluation. Start by converting the index to intptr. 496 if (VariableIdx->getType() != IntPtrTy) 497 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 498 true /*Signed*/); 499 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 500 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 501 } 502 503 /// Returns true if we can rewrite Start as a GEP with pointer Base 504 /// and some integer offset. The nodes that need to be re-written 505 /// for this transformation will be added to Explored. 506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 507 const DataLayout &DL, 508 SetVector<Value *> &Explored) { 509 SmallVector<Value *, 16> WorkList(1, Start); 510 Explored.insert(Base); 511 512 // The following traversal gives us an order which can be used 513 // when doing the final transformation. Since in the final 514 // transformation we create the PHI replacement instructions first, 515 // we don't have to get them in any particular order. 516 // 517 // However, for other instructions we will have to traverse the 518 // operands of an instruction first, which means that we have to 519 // do a post-order traversal. 520 while (!WorkList.empty()) { 521 SetVector<PHINode *> PHIs; 522 523 while (!WorkList.empty()) { 524 if (Explored.size() >= 100) 525 return false; 526 527 Value *V = WorkList.back(); 528 529 if (Explored.contains(V)) { 530 WorkList.pop_back(); 531 continue; 532 } 533 534 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 535 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 536 // We've found some value that we can't explore which is different from 537 // the base. Therefore we can't do this transformation. 538 return false; 539 540 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 541 auto *CI = cast<CastInst>(V); 542 if (!CI->isNoopCast(DL)) 543 return false; 544 545 if (!Explored.contains(CI->getOperand(0))) 546 WorkList.push_back(CI->getOperand(0)); 547 } 548 549 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 550 // We're limiting the GEP to having one index. This will preserve 551 // the original pointer type. We could handle more cases in the 552 // future. 553 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 554 GEP->getSourceElementType() != ElemTy) 555 return false; 556 557 if (!Explored.contains(GEP->getOperand(0))) 558 WorkList.push_back(GEP->getOperand(0)); 559 } 560 561 if (WorkList.back() == V) { 562 WorkList.pop_back(); 563 // We've finished visiting this node, mark it as such. 564 Explored.insert(V); 565 } 566 567 if (auto *PN = dyn_cast<PHINode>(V)) { 568 // We cannot transform PHIs on unsplittable basic blocks. 569 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 570 return false; 571 Explored.insert(PN); 572 PHIs.insert(PN); 573 } 574 } 575 576 // Explore the PHI nodes further. 577 for (auto *PN : PHIs) 578 for (Value *Op : PN->incoming_values()) 579 if (!Explored.contains(Op)) 580 WorkList.push_back(Op); 581 } 582 583 // Make sure that we can do this. Since we can't insert GEPs in a basic 584 // block before a PHI node, we can't easily do this transformation if 585 // we have PHI node users of transformed instructions. 586 for (Value *Val : Explored) { 587 for (Value *Use : Val->uses()) { 588 589 auto *PHI = dyn_cast<PHINode>(Use); 590 auto *Inst = dyn_cast<Instruction>(Val); 591 592 if (Inst == Base || Inst == PHI || !Inst || !PHI || 593 !Explored.contains(PHI)) 594 continue; 595 596 if (PHI->getParent() == Inst->getParent()) 597 return false; 598 } 599 } 600 return true; 601 } 602 603 // Sets the appropriate insert point on Builder where we can add 604 // a replacement Instruction for V (if that is possible). 605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 606 bool Before = true) { 607 if (auto *PHI = dyn_cast<PHINode>(V)) { 608 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 609 return; 610 } 611 if (auto *I = dyn_cast<Instruction>(V)) { 612 if (!Before) 613 I = &*std::next(I->getIterator()); 614 Builder.SetInsertPoint(I); 615 return; 616 } 617 if (auto *A = dyn_cast<Argument>(V)) { 618 // Set the insertion point in the entry block. 619 BasicBlock &Entry = A->getParent()->getEntryBlock(); 620 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 621 return; 622 } 623 // Otherwise, this is a constant and we don't need to set a new 624 // insertion point. 625 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 626 } 627 628 /// Returns a re-written value of Start as an indexed GEP using Base as a 629 /// pointer. 630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 631 const DataLayout &DL, 632 SetVector<Value *> &Explored) { 633 // Perform all the substitutions. This is a bit tricky because we can 634 // have cycles in our use-def chains. 635 // 1. Create the PHI nodes without any incoming values. 636 // 2. Create all the other values. 637 // 3. Add the edges for the PHI nodes. 638 // 4. Emit GEPs to get the original pointers. 639 // 5. Remove the original instructions. 640 Type *IndexType = IntegerType::get( 641 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 642 643 DenseMap<Value *, Value *> NewInsts; 644 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 645 646 // Create the new PHI nodes, without adding any incoming values. 647 for (Value *Val : Explored) { 648 if (Val == Base) 649 continue; 650 // Create empty phi nodes. This avoids cyclic dependencies when creating 651 // the remaining instructions. 652 if (auto *PHI = dyn_cast<PHINode>(Val)) 653 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 654 PHI->getName() + ".idx", PHI); 655 } 656 IRBuilder<> Builder(Base->getContext()); 657 658 // Create all the other instructions. 659 for (Value *Val : Explored) { 660 661 if (NewInsts.find(Val) != NewInsts.end()) 662 continue; 663 664 if (auto *CI = dyn_cast<CastInst>(Val)) { 665 // Don't get rid of the intermediate variable here; the store can grow 666 // the map which will invalidate the reference to the input value. 667 Value *V = NewInsts[CI->getOperand(0)]; 668 NewInsts[CI] = V; 669 continue; 670 } 671 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 672 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 673 : GEP->getOperand(1); 674 setInsertionPoint(Builder, GEP); 675 // Indices might need to be sign extended. GEPs will magically do 676 // this, but we need to do it ourselves here. 677 if (Index->getType()->getScalarSizeInBits() != 678 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 679 Index = Builder.CreateSExtOrTrunc( 680 Index, NewInsts[GEP->getOperand(0)]->getType(), 681 GEP->getOperand(0)->getName() + ".sext"); 682 } 683 684 auto *Op = NewInsts[GEP->getOperand(0)]; 685 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 686 NewInsts[GEP] = Index; 687 else 688 NewInsts[GEP] = Builder.CreateNSWAdd( 689 Op, Index, GEP->getOperand(0)->getName() + ".add"); 690 continue; 691 } 692 if (isa<PHINode>(Val)) 693 continue; 694 695 llvm_unreachable("Unexpected instruction type"); 696 } 697 698 // Add the incoming values to the PHI nodes. 699 for (Value *Val : Explored) { 700 if (Val == Base) 701 continue; 702 // All the instructions have been created, we can now add edges to the 703 // phi nodes. 704 if (auto *PHI = dyn_cast<PHINode>(Val)) { 705 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 706 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 707 Value *NewIncoming = PHI->getIncomingValue(I); 708 709 if (NewInsts.find(NewIncoming) != NewInsts.end()) 710 NewIncoming = NewInsts[NewIncoming]; 711 712 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 713 } 714 } 715 } 716 717 PointerType *PtrTy = 718 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 719 for (Value *Val : Explored) { 720 if (Val == Base) 721 continue; 722 723 // Depending on the type, for external users we have to emit 724 // a GEP or a GEP + ptrtoint. 725 setInsertionPoint(Builder, Val, false); 726 727 // Cast base to the expected type. 728 Value *NewVal = Builder.CreateBitOrPointerCast( 729 Base, PtrTy, Start->getName() + "to.ptr"); 730 NewVal = Builder.CreateInBoundsGEP( 731 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 732 NewVal = Builder.CreateBitOrPointerCast( 733 NewVal, Val->getType(), Val->getName() + ".conv"); 734 Val->replaceAllUsesWith(NewVal); 735 } 736 737 return NewInsts[Start]; 738 } 739 740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 741 /// the input Value as a constant indexed GEP. Returns a pair containing 742 /// the GEPs Pointer and Index. 743 static std::pair<Value *, Value *> 744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 745 Type *IndexType = IntegerType::get(V->getContext(), 746 DL.getIndexTypeSizeInBits(V->getType())); 747 748 Constant *Index = ConstantInt::getNullValue(IndexType); 749 while (true) { 750 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 751 // We accept only inbouds GEPs here to exclude the possibility of 752 // overflow. 753 if (!GEP->isInBounds()) 754 break; 755 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 756 GEP->getSourceElementType() == ElemTy) { 757 V = GEP->getOperand(0); 758 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 759 Index = ConstantExpr::getAdd( 760 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 761 continue; 762 } 763 break; 764 } 765 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 766 if (!CI->isNoopCast(DL)) 767 break; 768 V = CI->getOperand(0); 769 continue; 770 } 771 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 772 if (!CI->isNoopCast(DL)) 773 break; 774 V = CI->getOperand(0); 775 continue; 776 } 777 break; 778 } 779 return {V, Index}; 780 } 781 782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 783 /// We can look through PHIs, GEPs and casts in order to determine a common base 784 /// between GEPLHS and RHS. 785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 786 ICmpInst::Predicate Cond, 787 const DataLayout &DL) { 788 // FIXME: Support vector of pointers. 789 if (GEPLHS->getType()->isVectorTy()) 790 return nullptr; 791 792 if (!GEPLHS->hasAllConstantIndices()) 793 return nullptr; 794 795 Type *ElemTy = GEPLHS->getSourceElementType(); 796 Value *PtrBase, *Index; 797 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 798 799 // The set of nodes that will take part in this transformation. 800 SetVector<Value *> Nodes; 801 802 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 803 return nullptr; 804 805 // We know we can re-write this as 806 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 807 // Since we've only looked through inbouds GEPs we know that we 808 // can't have overflow on either side. We can therefore re-write 809 // this as: 810 // OFFSET1 cmp OFFSET2 811 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 812 813 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 814 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 815 // offset. Since Index is the offset of LHS to the base pointer, we will now 816 // compare the offsets instead of comparing the pointers. 817 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 818 } 819 820 /// Fold comparisons between a GEP instruction and something else. At this point 821 /// we know that the GEP is on the LHS of the comparison. 822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 823 ICmpInst::Predicate Cond, 824 Instruction &I) { 825 // Don't transform signed compares of GEPs into index compares. Even if the 826 // GEP is inbounds, the final add of the base pointer can have signed overflow 827 // and would change the result of the icmp. 828 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 829 // the maximum signed value for the pointer type. 830 if (ICmpInst::isSigned(Cond)) 831 return nullptr; 832 833 // Look through bitcasts and addrspacecasts. We do not however want to remove 834 // 0 GEPs. 835 if (!isa<GetElementPtrInst>(RHS)) 836 RHS = RHS->stripPointerCasts(); 837 838 Value *PtrBase = GEPLHS->getOperand(0); 839 // FIXME: Support vector pointer GEPs. 840 if (PtrBase == RHS && GEPLHS->isInBounds() && 841 !GEPLHS->getType()->isVectorTy()) { 842 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 843 // This transformation (ignoring the base and scales) is valid because we 844 // know pointers can't overflow since the gep is inbounds. See if we can 845 // output an optimized form. 846 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 847 848 // If not, synthesize the offset the hard way. 849 if (!Offset) 850 Offset = EmitGEPOffset(GEPLHS); 851 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 852 Constant::getNullValue(Offset->getType())); 853 } 854 855 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 856 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 857 !NullPointerIsDefined(I.getFunction(), 858 RHS->getType()->getPointerAddressSpace())) { 859 // For most address spaces, an allocation can't be placed at null, but null 860 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 861 // the only valid inbounds address derived from null, is null itself. 862 // Thus, we have four cases to consider: 863 // 1) Base == nullptr, Offset == 0 -> inbounds, null 864 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 865 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 866 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 867 // 868 // (Note if we're indexing a type of size 0, that simply collapses into one 869 // of the buckets above.) 870 // 871 // In general, we're allowed to make values less poison (i.e. remove 872 // sources of full UB), so in this case, we just select between the two 873 // non-poison cases (1 and 4 above). 874 // 875 // For vectors, we apply the same reasoning on a per-lane basis. 876 auto *Base = GEPLHS->getPointerOperand(); 877 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 878 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 879 Base = Builder.CreateVectorSplat(EC, Base); 880 } 881 return new ICmpInst(Cond, Base, 882 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 883 cast<Constant>(RHS), Base->getType())); 884 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 885 // If the base pointers are different, but the indices are the same, just 886 // compare the base pointer. 887 if (PtrBase != GEPRHS->getOperand(0)) { 888 bool IndicesTheSame = 889 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 890 GEPLHS->getType() == GEPRHS->getType() && 891 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 892 if (IndicesTheSame) 893 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 894 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 895 IndicesTheSame = false; 896 break; 897 } 898 899 // If all indices are the same, just compare the base pointers. 900 Type *BaseType = GEPLHS->getOperand(0)->getType(); 901 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 902 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 903 904 // If we're comparing GEPs with two base pointers that only differ in type 905 // and both GEPs have only constant indices or just one use, then fold 906 // the compare with the adjusted indices. 907 // FIXME: Support vector of pointers. 908 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 909 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 910 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 911 PtrBase->stripPointerCasts() == 912 GEPRHS->getOperand(0)->stripPointerCasts() && 913 !GEPLHS->getType()->isVectorTy()) { 914 Value *LOffset = EmitGEPOffset(GEPLHS); 915 Value *ROffset = EmitGEPOffset(GEPRHS); 916 917 // If we looked through an addrspacecast between different sized address 918 // spaces, the LHS and RHS pointers are different sized 919 // integers. Truncate to the smaller one. 920 Type *LHSIndexTy = LOffset->getType(); 921 Type *RHSIndexTy = ROffset->getType(); 922 if (LHSIndexTy != RHSIndexTy) { 923 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 924 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 925 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 926 } else 927 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 928 } 929 930 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 931 LOffset, ROffset); 932 return replaceInstUsesWith(I, Cmp); 933 } 934 935 // Otherwise, the base pointers are different and the indices are 936 // different. Try convert this to an indexed compare by looking through 937 // PHIs/casts. 938 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 939 } 940 941 // If one of the GEPs has all zero indices, recurse. 942 // FIXME: Handle vector of pointers. 943 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 944 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 945 ICmpInst::getSwappedPredicate(Cond), I); 946 947 // If the other GEP has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 951 952 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 953 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 954 // If the GEPs only differ by one index, compare it. 955 unsigned NumDifferences = 0; // Keep track of # differences. 956 unsigned DiffOperand = 0; // The operand that differs. 957 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 958 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 959 Type *LHSType = GEPLHS->getOperand(i)->getType(); 960 Type *RHSType = GEPRHS->getOperand(i)->getType(); 961 // FIXME: Better support for vector of pointers. 962 if (LHSType->getPrimitiveSizeInBits() != 963 RHSType->getPrimitiveSizeInBits() || 964 (GEPLHS->getType()->isVectorTy() && 965 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 966 // Irreconcilable differences. 967 NumDifferences = 2; 968 break; 969 } 970 971 if (NumDifferences++) break; 972 DiffOperand = i; 973 } 974 975 if (NumDifferences == 0) // SAME GEP? 976 return replaceInstUsesWith(I, // No comparison is needed here. 977 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 978 979 else if (NumDifferences == 1 && GEPsInBounds) { 980 Value *LHSV = GEPLHS->getOperand(DiffOperand); 981 Value *RHSV = GEPRHS->getOperand(DiffOperand); 982 // Make sure we do a signed comparison here. 983 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 984 } 985 } 986 987 // Only lower this if the icmp is the only user of the GEP or if we expect 988 // the result to fold to a constant! 989 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 990 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 991 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 992 Value *L = EmitGEPOffset(GEPLHS); 993 Value *R = EmitGEPOffset(GEPRHS); 994 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 995 } 996 } 997 998 // Try convert this to an indexed compare by looking through PHIs/casts as a 999 // last resort. 1000 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1001 } 1002 1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1004 const AllocaInst *Alloca, 1005 const Value *Other) { 1006 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1007 1008 // It would be tempting to fold away comparisons between allocas and any 1009 // pointer not based on that alloca (e.g. an argument). However, even 1010 // though such pointers cannot alias, they can still compare equal. 1011 // 1012 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1013 // doesn't escape we can argue that it's impossible to guess its value, and we 1014 // can therefore act as if any such guesses are wrong. 1015 // 1016 // The code below checks that the alloca doesn't escape, and that it's only 1017 // used in a comparison once (the current instruction). The 1018 // single-comparison-use condition ensures that we're trivially folding all 1019 // comparisons against the alloca consistently, and avoids the risk of 1020 // erroneously folding a comparison of the pointer with itself. 1021 1022 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1023 1024 SmallVector<const Use *, 32> Worklist; 1025 for (const Use &U : Alloca->uses()) { 1026 if (Worklist.size() >= MaxIter) 1027 return nullptr; 1028 Worklist.push_back(&U); 1029 } 1030 1031 unsigned NumCmps = 0; 1032 while (!Worklist.empty()) { 1033 assert(Worklist.size() <= MaxIter); 1034 const Use *U = Worklist.pop_back_val(); 1035 const Value *V = U->getUser(); 1036 --MaxIter; 1037 1038 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1039 isa<SelectInst>(V)) { 1040 // Track the uses. 1041 } else if (isa<LoadInst>(V)) { 1042 // Loading from the pointer doesn't escape it. 1043 continue; 1044 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1045 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1046 if (SI->getValueOperand() == U->get()) 1047 return nullptr; 1048 continue; 1049 } else if (isa<ICmpInst>(V)) { 1050 if (NumCmps++) 1051 return nullptr; // Found more than one cmp. 1052 continue; 1053 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1054 switch (Intrin->getIntrinsicID()) { 1055 // These intrinsics don't escape or compare the pointer. Memset is safe 1056 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1057 // we don't allow stores, so src cannot point to V. 1058 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1059 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1060 continue; 1061 default: 1062 return nullptr; 1063 } 1064 } else { 1065 return nullptr; 1066 } 1067 for (const Use &U : V->uses()) { 1068 if (Worklist.size() >= MaxIter) 1069 return nullptr; 1070 Worklist.push_back(&U); 1071 } 1072 } 1073 1074 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1075 return replaceInstUsesWith( 1076 ICI, 1077 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1078 } 1079 1080 /// Fold "icmp pred (X+C), X". 1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1082 ICmpInst::Predicate Pred) { 1083 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1084 // so the values can never be equal. Similarly for all other "or equals" 1085 // operators. 1086 assert(!!C && "C should not be zero!"); 1087 1088 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1089 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1090 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1091 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1092 Constant *R = ConstantInt::get(X->getType(), 1093 APInt::getMaxValue(C.getBitWidth()) - C); 1094 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1095 } 1096 1097 // (X+1) >u X --> X <u (0-1) --> X != 255 1098 // (X+2) >u X --> X <u (0-2) --> X <u 254 1099 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1100 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1101 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1102 ConstantInt::get(X->getType(), -C)); 1103 1104 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1105 1106 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1107 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1108 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1109 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1110 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1111 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1112 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1113 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1114 ConstantInt::get(X->getType(), SMax - C)); 1115 1116 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1117 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1118 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1119 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1120 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1121 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1122 1123 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1124 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1125 ConstantInt::get(X->getType(), SMax - (C - 1))); 1126 } 1127 1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1129 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1132 const APInt &AP1, 1133 const APInt &AP2) { 1134 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1135 1136 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1137 if (I.getPredicate() == I.ICMP_NE) 1138 Pred = CmpInst::getInversePredicate(Pred); 1139 return new ICmpInst(Pred, LHS, RHS); 1140 }; 1141 1142 // Don't bother doing any work for cases which InstSimplify handles. 1143 if (AP2.isZero()) 1144 return nullptr; 1145 1146 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1147 if (IsAShr) { 1148 if (AP2.isAllOnes()) 1149 return nullptr; 1150 if (AP2.isNegative() != AP1.isNegative()) 1151 return nullptr; 1152 if (AP2.sgt(AP1)) 1153 return nullptr; 1154 } 1155 1156 if (!AP1) 1157 // 'A' must be large enough to shift out the highest set bit. 1158 return getICmp(I.ICMP_UGT, A, 1159 ConstantInt::get(A->getType(), AP2.logBase2())); 1160 1161 if (AP1 == AP2) 1162 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1163 1164 int Shift; 1165 if (IsAShr && AP1.isNegative()) 1166 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1167 else 1168 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1169 1170 if (Shift > 0) { 1171 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1172 // There are multiple solutions if we are comparing against -1 and the LHS 1173 // of the ashr is not a power of two. 1174 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1175 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1176 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1177 } else if (AP1 == AP2.lshr(Shift)) { 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1179 } 1180 } 1181 1182 // Shifting const2 will never be equal to const1. 1183 // FIXME: This should always be handled by InstSimplify? 1184 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1185 return replaceInstUsesWith(I, TorF); 1186 } 1187 1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1191 const APInt &AP1, 1192 const APInt &AP2) { 1193 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1194 1195 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1196 if (I.getPredicate() == I.ICMP_NE) 1197 Pred = CmpInst::getInversePredicate(Pred); 1198 return new ICmpInst(Pred, LHS, RHS); 1199 }; 1200 1201 // Don't bother doing any work for cases which InstSimplify handles. 1202 if (AP2.isZero()) 1203 return nullptr; 1204 1205 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1206 1207 if (!AP1 && AP2TrailingZeros != 0) 1208 return getICmp( 1209 I.ICMP_UGE, A, 1210 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1211 1212 if (AP1 == AP2) 1213 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1214 1215 // Get the distance between the lowest bits that are set. 1216 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1217 1218 if (Shift > 0 && AP2.shl(Shift) == AP1) 1219 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1220 1221 // Shifting const2 will never be equal to const1. 1222 // FIXME: This should always be handled by InstSimplify? 1223 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1224 return replaceInstUsesWith(I, TorF); 1225 } 1226 1227 /// The caller has matched a pattern of the form: 1228 /// I = icmp ugt (add (add A, B), CI2), CI1 1229 /// If this is of the form: 1230 /// sum = a + b 1231 /// if (sum+128 >u 255) 1232 /// Then replace it with llvm.sadd.with.overflow.i8. 1233 /// 1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1235 ConstantInt *CI2, ConstantInt *CI1, 1236 InstCombinerImpl &IC) { 1237 // The transformation we're trying to do here is to transform this into an 1238 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1239 // with a narrower add, and discard the add-with-constant that is part of the 1240 // range check (if we can't eliminate it, this isn't profitable). 1241 1242 // In order to eliminate the add-with-constant, the compare can be its only 1243 // use. 1244 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1245 if (!AddWithCst->hasOneUse()) 1246 return nullptr; 1247 1248 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1249 if (!CI2->getValue().isPowerOf2()) 1250 return nullptr; 1251 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1252 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1253 return nullptr; 1254 1255 // The width of the new add formed is 1 more than the bias. 1256 ++NewWidth; 1257 1258 // Check to see that CI1 is an all-ones value with NewWidth bits. 1259 if (CI1->getBitWidth() == NewWidth || 1260 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1261 return nullptr; 1262 1263 // This is only really a signed overflow check if the inputs have been 1264 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1265 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1266 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1267 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1268 return nullptr; 1269 1270 // In order to replace the original add with a narrower 1271 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1272 // and truncates that discard the high bits of the add. Verify that this is 1273 // the case. 1274 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1275 for (User *U : OrigAdd->users()) { 1276 if (U == AddWithCst) 1277 continue; 1278 1279 // Only accept truncates for now. We would really like a nice recursive 1280 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1281 // chain to see which bits of a value are actually demanded. If the 1282 // original add had another add which was then immediately truncated, we 1283 // could still do the transformation. 1284 TruncInst *TI = dyn_cast<TruncInst>(U); 1285 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1286 return nullptr; 1287 } 1288 1289 // If the pattern matches, truncate the inputs to the narrower type and 1290 // use the sadd_with_overflow intrinsic to efficiently compute both the 1291 // result and the overflow bit. 1292 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1293 Function *F = Intrinsic::getDeclaration( 1294 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1295 1296 InstCombiner::BuilderTy &Builder = IC.Builder; 1297 1298 // Put the new code above the original add, in case there are any uses of the 1299 // add between the add and the compare. 1300 Builder.SetInsertPoint(OrigAdd); 1301 1302 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1303 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1304 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1305 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1306 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1307 1308 // The inner add was the result of the narrow add, zero extended to the 1309 // wider type. Replace it with the result computed by the intrinsic. 1310 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1311 IC.eraseInstFromFunction(*OrigAdd); 1312 1313 // The original icmp gets replaced with the overflow value. 1314 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1315 } 1316 1317 /// If we have: 1318 /// icmp eq/ne (urem/srem %x, %y), 0 1319 /// iff %y is a power-of-two, we can replace this with a bit test: 1320 /// icmp eq/ne (and %x, (add %y, -1)), 0 1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1322 // This fold is only valid for equality predicates. 1323 if (!I.isEquality()) 1324 return nullptr; 1325 ICmpInst::Predicate Pred; 1326 Value *X, *Y, *Zero; 1327 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1328 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1329 return nullptr; 1330 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1331 return nullptr; 1332 // This may increase instruction count, we don't enforce that Y is a constant. 1333 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1334 Value *Masked = Builder.CreateAnd(X, Mask); 1335 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1336 } 1337 1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1339 /// by one-less-than-bitwidth into a sign test on the original value. 1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1341 Instruction *Val; 1342 ICmpInst::Predicate Pred; 1343 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1344 return nullptr; 1345 1346 Value *X; 1347 Type *XTy; 1348 1349 Constant *C; 1350 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1351 XTy = X->getType(); 1352 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1353 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1354 APInt(XBitWidth, XBitWidth - 1)))) 1355 return nullptr; 1356 } else if (isa<BinaryOperator>(Val) && 1357 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1358 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1359 /*AnalyzeForSignBitExtraction=*/true))) { 1360 XTy = X->getType(); 1361 } else 1362 return nullptr; 1363 1364 return ICmpInst::Create(Instruction::ICmp, 1365 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1366 : ICmpInst::ICMP_SLT, 1367 X, ConstantInt::getNullValue(XTy)); 1368 } 1369 1370 // Handle icmp pred X, 0 1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1372 CmpInst::Predicate Pred = Cmp.getPredicate(); 1373 if (!match(Cmp.getOperand(1), m_Zero())) 1374 return nullptr; 1375 1376 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1377 if (Pred == ICmpInst::ICMP_SGT) { 1378 Value *A, *B; 1379 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1380 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1381 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1382 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1383 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1384 } 1385 } 1386 1387 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1388 return New; 1389 1390 // Given: 1391 // icmp eq/ne (urem %x, %y), 0 1392 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1393 // icmp eq/ne %x, 0 1394 Value *X, *Y; 1395 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1396 ICmpInst::isEquality(Pred)) { 1397 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1398 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1399 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1400 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1401 } 1402 1403 return nullptr; 1404 } 1405 1406 /// Fold icmp Pred X, C. 1407 /// TODO: This code structure does not make sense. The saturating add fold 1408 /// should be moved to some other helper and extended as noted below (it is also 1409 /// possible that code has been made unnecessary - do we canonicalize IR to 1410 /// overflow/saturating intrinsics or not?). 1411 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1412 // Match the following pattern, which is a common idiom when writing 1413 // overflow-safe integer arithmetic functions. The source performs an addition 1414 // in wider type and explicitly checks for overflow using comparisons against 1415 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1416 // 1417 // TODO: This could probably be generalized to handle other overflow-safe 1418 // operations if we worked out the formulas to compute the appropriate magic 1419 // constants. 1420 // 1421 // sum = a + b 1422 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1423 CmpInst::Predicate Pred = Cmp.getPredicate(); 1424 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1425 Value *A, *B; 1426 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1427 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1428 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1429 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1430 return Res; 1431 1432 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1433 Constant *C = dyn_cast<Constant>(Op1); 1434 if (!C || C->canTrap()) 1435 return nullptr; 1436 1437 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1438 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1439 Type *Ty = Cmp.getType(); 1440 Builder.SetInsertPoint(Phi); 1441 PHINode *NewPhi = 1442 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1443 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1444 auto *Input = 1445 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1446 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1447 NewPhi->addIncoming(BoolInput, Predecessor); 1448 } 1449 NewPhi->takeName(&Cmp); 1450 return replaceInstUsesWith(Cmp, NewPhi); 1451 } 1452 1453 return nullptr; 1454 } 1455 1456 /// Canonicalize icmp instructions based on dominating conditions. 1457 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1458 // This is a cheap/incomplete check for dominance - just match a single 1459 // predecessor with a conditional branch. 1460 BasicBlock *CmpBB = Cmp.getParent(); 1461 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1462 if (!DomBB) 1463 return nullptr; 1464 1465 Value *DomCond; 1466 BasicBlock *TrueBB, *FalseBB; 1467 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1468 return nullptr; 1469 1470 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1471 "Predecessor block does not point to successor?"); 1472 1473 // The branch should get simplified. Don't bother simplifying this condition. 1474 if (TrueBB == FalseBB) 1475 return nullptr; 1476 1477 // Try to simplify this compare to T/F based on the dominating condition. 1478 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1479 if (Imp) 1480 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1481 1482 CmpInst::Predicate Pred = Cmp.getPredicate(); 1483 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1484 ICmpInst::Predicate DomPred; 1485 const APInt *C, *DomC; 1486 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1487 match(Y, m_APInt(C))) { 1488 // We have 2 compares of a variable with constants. Calculate the constant 1489 // ranges of those compares to see if we can transform the 2nd compare: 1490 // DomBB: 1491 // DomCond = icmp DomPred X, DomC 1492 // br DomCond, CmpBB, FalseBB 1493 // CmpBB: 1494 // Cmp = icmp Pred X, C 1495 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1496 ConstantRange DominatingCR = 1497 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1498 : ConstantRange::makeExactICmpRegion( 1499 CmpInst::getInversePredicate(DomPred), *DomC); 1500 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1501 ConstantRange Difference = DominatingCR.difference(CR); 1502 if (Intersection.isEmptySet()) 1503 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1504 if (Difference.isEmptySet()) 1505 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1506 1507 // Canonicalizing a sign bit comparison that gets used in a branch, 1508 // pessimizes codegen by generating branch on zero instruction instead 1509 // of a test and branch. So we avoid canonicalizing in such situations 1510 // because test and branch instruction has better branch displacement 1511 // than compare and branch instruction. 1512 bool UnusedBit; 1513 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1514 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1515 return nullptr; 1516 1517 // Avoid an infinite loop with min/max canonicalization. 1518 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1519 if (Cmp.hasOneUse() && 1520 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1521 return nullptr; 1522 1523 if (const APInt *EqC = Intersection.getSingleElement()) 1524 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1525 if (const APInt *NeC = Difference.getSingleElement()) 1526 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1527 } 1528 1529 return nullptr; 1530 } 1531 1532 /// Fold icmp (trunc X, Y), C. 1533 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1534 TruncInst *Trunc, 1535 const APInt &C) { 1536 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1537 Value *X = Trunc->getOperand(0); 1538 if (C.isOne() && C.getBitWidth() > 1) { 1539 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1540 Value *V = nullptr; 1541 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1542 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1543 ConstantInt::get(V->getType(), 1)); 1544 } 1545 1546 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1547 SrcBits = X->getType()->getScalarSizeInBits(); 1548 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1549 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1550 // of the high bits truncated out of x are known. 1551 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1552 1553 // If all the high bits are known, we can do this xform. 1554 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1555 // Pull in the high bits from known-ones set. 1556 APInt NewRHS = C.zext(SrcBits); 1557 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1558 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1559 } 1560 } 1561 1562 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1563 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1564 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1565 Value *ShOp; 1566 const APInt *ShAmtC; 1567 bool TrueIfSigned; 1568 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1569 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1570 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1571 return TrueIfSigned 1572 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1573 ConstantInt::getNullValue(X->getType())) 1574 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1575 ConstantInt::getAllOnesValue(X->getType())); 1576 } 1577 1578 return nullptr; 1579 } 1580 1581 /// Fold icmp (xor X, Y), C. 1582 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1583 BinaryOperator *Xor, 1584 const APInt &C) { 1585 Value *X = Xor->getOperand(0); 1586 Value *Y = Xor->getOperand(1); 1587 const APInt *XorC; 1588 if (!match(Y, m_APInt(XorC))) 1589 return nullptr; 1590 1591 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1592 // fold the xor. 1593 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1594 bool TrueIfSigned = false; 1595 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1596 1597 // If the sign bit of the XorCst is not set, there is no change to 1598 // the operation, just stop using the Xor. 1599 if (!XorC->isNegative()) 1600 return replaceOperand(Cmp, 0, X); 1601 1602 // Emit the opposite comparison. 1603 if (TrueIfSigned) 1604 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1605 ConstantInt::getAllOnesValue(X->getType())); 1606 else 1607 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1608 ConstantInt::getNullValue(X->getType())); 1609 } 1610 1611 if (Xor->hasOneUse()) { 1612 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1613 if (!Cmp.isEquality() && XorC->isSignMask()) { 1614 Pred = Cmp.getFlippedSignednessPredicate(); 1615 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1616 } 1617 1618 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1619 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1620 Pred = Cmp.getFlippedSignednessPredicate(); 1621 Pred = Cmp.getSwappedPredicate(Pred); 1622 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1623 } 1624 } 1625 1626 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1627 if (Pred == ICmpInst::ICMP_UGT) { 1628 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1629 if (*XorC == ~C && (C + 1).isPowerOf2()) 1630 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1631 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1632 if (*XorC == C && (C + 1).isPowerOf2()) 1633 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1634 } 1635 if (Pred == ICmpInst::ICMP_ULT) { 1636 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1637 if (*XorC == -C && C.isPowerOf2()) 1638 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1639 ConstantInt::get(X->getType(), ~C)); 1640 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1641 if (*XorC == C && (-C).isPowerOf2()) 1642 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1643 ConstantInt::get(X->getType(), ~C)); 1644 } 1645 return nullptr; 1646 } 1647 1648 /// Fold icmp (and (sh X, Y), C2), C1. 1649 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1650 BinaryOperator *And, 1651 const APInt &C1, 1652 const APInt &C2) { 1653 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1654 if (!Shift || !Shift->isShift()) 1655 return nullptr; 1656 1657 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1658 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1659 // code produced by the clang front-end, for bitfield access. 1660 // This seemingly simple opportunity to fold away a shift turns out to be 1661 // rather complicated. See PR17827 for details. 1662 unsigned ShiftOpcode = Shift->getOpcode(); 1663 bool IsShl = ShiftOpcode == Instruction::Shl; 1664 const APInt *C3; 1665 if (match(Shift->getOperand(1), m_APInt(C3))) { 1666 APInt NewAndCst, NewCmpCst; 1667 bool AnyCmpCstBitsShiftedOut; 1668 if (ShiftOpcode == Instruction::Shl) { 1669 // For a left shift, we can fold if the comparison is not signed. We can 1670 // also fold a signed comparison if the mask value and comparison value 1671 // are not negative. These constraints may not be obvious, but we can 1672 // prove that they are correct using an SMT solver. 1673 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1674 return nullptr; 1675 1676 NewCmpCst = C1.lshr(*C3); 1677 NewAndCst = C2.lshr(*C3); 1678 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1679 } else if (ShiftOpcode == Instruction::LShr) { 1680 // For a logical right shift, we can fold if the comparison is not signed. 1681 // We can also fold a signed comparison if the shifted mask value and the 1682 // shifted comparison value are not negative. These constraints may not be 1683 // obvious, but we can prove that they are correct using an SMT solver. 1684 NewCmpCst = C1.shl(*C3); 1685 NewAndCst = C2.shl(*C3); 1686 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1687 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1688 return nullptr; 1689 } else { 1690 // For an arithmetic shift, check that both constants don't use (in a 1691 // signed sense) the top bits being shifted out. 1692 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1693 NewCmpCst = C1.shl(*C3); 1694 NewAndCst = C2.shl(*C3); 1695 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1696 if (NewAndCst.ashr(*C3) != C2) 1697 return nullptr; 1698 } 1699 1700 if (AnyCmpCstBitsShiftedOut) { 1701 // If we shifted bits out, the fold is not going to work out. As a 1702 // special case, check to see if this means that the result is always 1703 // true or false now. 1704 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1705 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1706 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1707 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1708 } else { 1709 Value *NewAnd = Builder.CreateAnd( 1710 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1711 return new ICmpInst(Cmp.getPredicate(), 1712 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1713 } 1714 } 1715 1716 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1717 // preferable because it allows the C2 << Y expression to be hoisted out of a 1718 // loop if Y is invariant and X is not. 1719 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1720 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1721 // Compute C2 << Y. 1722 Value *NewShift = 1723 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1724 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1725 1726 // Compute X & (C2 << Y). 1727 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1728 return replaceOperand(Cmp, 0, NewAnd); 1729 } 1730 1731 return nullptr; 1732 } 1733 1734 /// Fold icmp (and X, C2), C1. 1735 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1736 BinaryOperator *And, 1737 const APInt &C1) { 1738 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1739 1740 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1741 // TODO: We canonicalize to the longer form for scalars because we have 1742 // better analysis/folds for icmp, and codegen may be better with icmp. 1743 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1744 match(And->getOperand(1), m_One())) 1745 return new TruncInst(And->getOperand(0), Cmp.getType()); 1746 1747 const APInt *C2; 1748 Value *X; 1749 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1750 return nullptr; 1751 1752 // Don't perform the following transforms if the AND has multiple uses 1753 if (!And->hasOneUse()) 1754 return nullptr; 1755 1756 if (Cmp.isEquality() && C1.isZero()) { 1757 // Restrict this fold to single-use 'and' (PR10267). 1758 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1759 if (C2->isSignMask()) { 1760 Constant *Zero = Constant::getNullValue(X->getType()); 1761 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1762 return new ICmpInst(NewPred, X, Zero); 1763 } 1764 1765 // Restrict this fold only for single-use 'and' (PR10267). 1766 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1767 if ((~(*C2) + 1).isPowerOf2()) { 1768 Constant *NegBOC = 1769 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1770 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1771 return new ICmpInst(NewPred, X, NegBOC); 1772 } 1773 } 1774 1775 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1776 // the input width without changing the value produced, eliminate the cast: 1777 // 1778 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1779 // 1780 // We can do this transformation if the constants do not have their sign bits 1781 // set or if it is an equality comparison. Extending a relational comparison 1782 // when we're checking the sign bit would not work. 1783 Value *W; 1784 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1785 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1786 // TODO: Is this a good transform for vectors? Wider types may reduce 1787 // throughput. Should this transform be limited (even for scalars) by using 1788 // shouldChangeType()? 1789 if (!Cmp.getType()->isVectorTy()) { 1790 Type *WideType = W->getType(); 1791 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1792 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1793 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1794 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1795 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1796 } 1797 } 1798 1799 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1800 return I; 1801 1802 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1803 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1804 // 1805 // iff pred isn't signed 1806 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1807 match(And->getOperand(1), m_One())) { 1808 Constant *One = cast<Constant>(And->getOperand(1)); 1809 Value *Or = And->getOperand(0); 1810 Value *A, *B, *LShr; 1811 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1812 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1813 unsigned UsesRemoved = 0; 1814 if (And->hasOneUse()) 1815 ++UsesRemoved; 1816 if (Or->hasOneUse()) 1817 ++UsesRemoved; 1818 if (LShr->hasOneUse()) 1819 ++UsesRemoved; 1820 1821 // Compute A & ((1 << B) | 1) 1822 Value *NewOr = nullptr; 1823 if (auto *C = dyn_cast<Constant>(B)) { 1824 if (UsesRemoved >= 1) 1825 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1826 } else { 1827 if (UsesRemoved >= 3) 1828 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1829 /*HasNUW=*/true), 1830 One, Or->getName()); 1831 } 1832 if (NewOr) { 1833 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1834 return replaceOperand(Cmp, 0, NewAnd); 1835 } 1836 } 1837 } 1838 1839 return nullptr; 1840 } 1841 1842 /// Fold icmp (and X, Y), C. 1843 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1844 BinaryOperator *And, 1845 const APInt &C) { 1846 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1847 return I; 1848 1849 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1850 bool TrueIfNeg; 1851 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1852 // ((X - 1) & ~X) < 0 --> X == 0 1853 // ((X - 1) & ~X) >= 0 --> X != 0 1854 Value *X; 1855 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1856 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1857 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1858 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1859 } 1860 } 1861 1862 // TODO: These all require that Y is constant too, so refactor with the above. 1863 1864 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1865 Value *X = And->getOperand(0); 1866 Value *Y = And->getOperand(1); 1867 if (auto *LI = dyn_cast<LoadInst>(X)) 1868 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1869 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1870 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1871 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1872 ConstantInt *C2 = cast<ConstantInt>(Y); 1873 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1874 return Res; 1875 } 1876 1877 if (!Cmp.isEquality()) 1878 return nullptr; 1879 1880 // X & -C == -C -> X > u ~C 1881 // X & -C != -C -> X <= u ~C 1882 // iff C is a power of 2 1883 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1884 auto NewPred = 1885 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1886 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 /// Fold icmp (or X, Y), C. 1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1894 BinaryOperator *Or, 1895 const APInt &C) { 1896 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1897 if (C.isOne()) { 1898 // icmp slt signum(V) 1 --> icmp slt V, 1 1899 Value *V = nullptr; 1900 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1901 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1902 ConstantInt::get(V->getType(), 1)); 1903 } 1904 1905 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1906 const APInt *MaskC; 1907 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1908 if (*MaskC == C && (C + 1).isPowerOf2()) { 1909 // X | C == C --> X <=u C 1910 // X | C != C --> X >u C 1911 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1912 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1913 return new ICmpInst(Pred, OrOp0, OrOp1); 1914 } 1915 1916 // More general: canonicalize 'equality with set bits mask' to 1917 // 'equality with clear bits mask'. 1918 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1919 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1920 if (Or->hasOneUse()) { 1921 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1922 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1923 return new ICmpInst(Pred, And, NewC); 1924 } 1925 } 1926 1927 // (X | (X-1)) s< 0 --> X s< 1 1928 // (X | (X-1)) s> -1 --> X s> 0 1929 Value *X; 1930 bool TrueIfSigned; 1931 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1932 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1933 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1934 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1935 return new ICmpInst(NewPred, X, NewC); 1936 } 1937 1938 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1939 return nullptr; 1940 1941 Value *P, *Q; 1942 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1943 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1944 // -> and (icmp eq P, null), (icmp eq Q, null). 1945 Value *CmpP = 1946 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1947 Value *CmpQ = 1948 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1949 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1950 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1951 } 1952 1953 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1954 // a shorter form that has more potential to be folded even further. 1955 Value *X1, *X2, *X3, *X4; 1956 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1957 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1958 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1959 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1960 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1961 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1962 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1963 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1964 } 1965 1966 return nullptr; 1967 } 1968 1969 /// Fold icmp (mul X, Y), C. 1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1971 BinaryOperator *Mul, 1972 const APInt &C) { 1973 const APInt *MulC; 1974 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1975 return nullptr; 1976 1977 // If this is a test of the sign bit and the multiply is sign-preserving with 1978 // a constant operand, use the multiply LHS operand instead. 1979 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1980 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1981 if (MulC->isNegative()) 1982 Pred = ICmpInst::getSwappedPredicate(Pred); 1983 return new ICmpInst(Pred, Mul->getOperand(0), 1984 Constant::getNullValue(Mul->getType())); 1985 } 1986 1987 // If the multiply does not wrap, try to divide the compare constant by the 1988 // multiplication factor. 1989 if (Cmp.isEquality() && !MulC->isZero()) { 1990 // (mul nsw X, MulC) == C --> X == C /s MulC 1991 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 1992 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 1993 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1994 } 1995 // (mul nuw X, MulC) == C --> X == C /u MulC 1996 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 1997 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 1998 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 1999 } 2000 } 2001 2002 return nullptr; 2003 } 2004 2005 /// Fold icmp (shl 1, Y), C. 2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2007 const APInt &C) { 2008 Value *Y; 2009 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2010 return nullptr; 2011 2012 Type *ShiftType = Shl->getType(); 2013 unsigned TypeBits = C.getBitWidth(); 2014 bool CIsPowerOf2 = C.isPowerOf2(); 2015 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2016 if (Cmp.isUnsigned()) { 2017 // (1 << Y) pred C -> Y pred Log2(C) 2018 if (!CIsPowerOf2) { 2019 // (1 << Y) < 30 -> Y <= 4 2020 // (1 << Y) <= 30 -> Y <= 4 2021 // (1 << Y) >= 30 -> Y > 4 2022 // (1 << Y) > 30 -> Y > 4 2023 if (Pred == ICmpInst::ICMP_ULT) 2024 Pred = ICmpInst::ICMP_ULE; 2025 else if (Pred == ICmpInst::ICMP_UGE) 2026 Pred = ICmpInst::ICMP_UGT; 2027 } 2028 2029 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2030 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2031 unsigned CLog2 = C.logBase2(); 2032 if (CLog2 == TypeBits - 1) { 2033 if (Pred == ICmpInst::ICMP_UGE) 2034 Pred = ICmpInst::ICMP_EQ; 2035 else if (Pred == ICmpInst::ICMP_ULT) 2036 Pred = ICmpInst::ICMP_NE; 2037 } 2038 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2039 } else if (Cmp.isSigned()) { 2040 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2041 if (C.isAllOnes()) { 2042 // (1 << Y) <= -1 -> Y == 31 2043 if (Pred == ICmpInst::ICMP_SLE) 2044 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2045 2046 // (1 << Y) > -1 -> Y != 31 2047 if (Pred == ICmpInst::ICMP_SGT) 2048 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2049 } else if (!C) { 2050 // (1 << Y) < 0 -> Y == 31 2051 // (1 << Y) <= 0 -> Y == 31 2052 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2053 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2054 2055 // (1 << Y) >= 0 -> Y != 31 2056 // (1 << Y) > 0 -> Y != 31 2057 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2058 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2059 } 2060 } else if (Cmp.isEquality() && CIsPowerOf2) { 2061 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2062 } 2063 2064 return nullptr; 2065 } 2066 2067 /// Fold icmp (shl X, Y), C. 2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2069 BinaryOperator *Shl, 2070 const APInt &C) { 2071 const APInt *ShiftVal; 2072 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2073 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2074 2075 const APInt *ShiftAmt; 2076 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2077 return foldICmpShlOne(Cmp, Shl, C); 2078 2079 // Check that the shift amount is in range. If not, don't perform undefined 2080 // shifts. When the shift is visited, it will be simplified. 2081 unsigned TypeBits = C.getBitWidth(); 2082 if (ShiftAmt->uge(TypeBits)) 2083 return nullptr; 2084 2085 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2086 Value *X = Shl->getOperand(0); 2087 Type *ShType = Shl->getType(); 2088 2089 // NSW guarantees that we are only shifting out sign bits from the high bits, 2090 // so we can ASHR the compare constant without needing a mask and eliminate 2091 // the shift. 2092 if (Shl->hasNoSignedWrap()) { 2093 if (Pred == ICmpInst::ICMP_SGT) { 2094 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2095 APInt ShiftedC = C.ashr(*ShiftAmt); 2096 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2097 } 2098 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2099 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2100 APInt ShiftedC = C.ashr(*ShiftAmt); 2101 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2102 } 2103 if (Pred == ICmpInst::ICMP_SLT) { 2104 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2105 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2106 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2107 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2108 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2109 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2111 } 2112 // If this is a signed comparison to 0 and the shift is sign preserving, 2113 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2114 // do that if we're sure to not continue on in this function. 2115 if (isSignTest(Pred, C)) 2116 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2117 } 2118 2119 // NUW guarantees that we are only shifting out zero bits from the high bits, 2120 // so we can LSHR the compare constant without needing a mask and eliminate 2121 // the shift. 2122 if (Shl->hasNoUnsignedWrap()) { 2123 if (Pred == ICmpInst::ICMP_UGT) { 2124 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2125 APInt ShiftedC = C.lshr(*ShiftAmt); 2126 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2127 } 2128 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2129 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2130 APInt ShiftedC = C.lshr(*ShiftAmt); 2131 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2132 } 2133 if (Pred == ICmpInst::ICMP_ULT) { 2134 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2135 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2136 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2137 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2138 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2139 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2140 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2141 } 2142 } 2143 2144 if (Cmp.isEquality() && Shl->hasOneUse()) { 2145 // Strength-reduce the shift into an 'and'. 2146 Constant *Mask = ConstantInt::get( 2147 ShType, 2148 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2149 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2150 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2151 return new ICmpInst(Pred, And, LShrC); 2152 } 2153 2154 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2155 bool TrueIfSigned = false; 2156 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2157 // (X << 31) <s 0 --> (X & 1) != 0 2158 Constant *Mask = ConstantInt::get( 2159 ShType, 2160 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2161 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2162 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2163 And, Constant::getNullValue(ShType)); 2164 } 2165 2166 // Simplify 'shl' inequality test into 'and' equality test. 2167 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2168 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2169 if ((C + 1).isPowerOf2() && 2170 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2171 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2172 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2173 : ICmpInst::ICMP_NE, 2174 And, Constant::getNullValue(ShType)); 2175 } 2176 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2177 if (C.isPowerOf2() && 2178 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2179 Value *And = 2180 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2181 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2182 : ICmpInst::ICMP_NE, 2183 And, Constant::getNullValue(ShType)); 2184 } 2185 } 2186 2187 // Transform (icmp pred iM (shl iM %v, N), C) 2188 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2189 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2190 // This enables us to get rid of the shift in favor of a trunc that may be 2191 // free on the target. It has the additional benefit of comparing to a 2192 // smaller constant that may be more target-friendly. 2193 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2194 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2195 DL.isLegalInteger(TypeBits - Amt)) { 2196 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2197 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2198 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2199 Constant *NewC = 2200 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2201 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2202 } 2203 2204 return nullptr; 2205 } 2206 2207 /// Fold icmp ({al}shr X, Y), C. 2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2209 BinaryOperator *Shr, 2210 const APInt &C) { 2211 // An exact shr only shifts out zero bits, so: 2212 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2213 Value *X = Shr->getOperand(0); 2214 CmpInst::Predicate Pred = Cmp.getPredicate(); 2215 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2216 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2217 2218 const APInt *ShiftVal; 2219 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2220 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2221 2222 const APInt *ShiftAmt; 2223 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2224 return nullptr; 2225 2226 // Check that the shift amount is in range. If not, don't perform undefined 2227 // shifts. When the shift is visited it will be simplified. 2228 unsigned TypeBits = C.getBitWidth(); 2229 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2230 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2231 return nullptr; 2232 2233 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2234 bool IsExact = Shr->isExact(); 2235 Type *ShrTy = Shr->getType(); 2236 // TODO: If we could guarantee that InstSimplify would handle all of the 2237 // constant-value-based preconditions in the folds below, then we could assert 2238 // those conditions rather than checking them. This is difficult because of 2239 // undef/poison (PR34838). 2240 if (IsAShr) { 2241 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2242 // When ShAmtC can be shifted losslessly: 2243 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2244 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2245 APInt ShiftedC = C.shl(ShAmtVal); 2246 if (ShiftedC.ashr(ShAmtVal) == C) 2247 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2248 } 2249 if (Pred == CmpInst::ICMP_SGT) { 2250 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2251 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2252 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2253 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2254 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2255 } 2256 if (Pred == CmpInst::ICMP_UGT) { 2257 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2258 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2259 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2260 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2261 } 2262 2263 // If the compare constant has significant bits above the lowest sign-bit, 2264 // then convert an unsigned cmp to a test of the sign-bit: 2265 // (ashr X, ShiftC) u> C --> X s< 0 2266 // (ashr X, ShiftC) u< C --> X s> -1 2267 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2268 if (Pred == CmpInst::ICMP_UGT) { 2269 return new ICmpInst(CmpInst::ICMP_SLT, X, 2270 ConstantInt::getNullValue(ShrTy)); 2271 } 2272 if (Pred == CmpInst::ICMP_ULT) { 2273 return new ICmpInst(CmpInst::ICMP_SGT, X, 2274 ConstantInt::getAllOnesValue(ShrTy)); 2275 } 2276 } 2277 } else { 2278 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2279 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2280 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2281 APInt ShiftedC = C.shl(ShAmtVal); 2282 if (ShiftedC.lshr(ShAmtVal) == C) 2283 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2284 } 2285 if (Pred == CmpInst::ICMP_UGT) { 2286 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2287 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2288 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2289 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2290 } 2291 } 2292 2293 if (!Cmp.isEquality()) 2294 return nullptr; 2295 2296 // Handle equality comparisons of shift-by-constant. 2297 2298 // If the comparison constant changes with the shift, the comparison cannot 2299 // succeed (bits of the comparison constant cannot match the shifted value). 2300 // This should be known by InstSimplify and already be folded to true/false. 2301 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2302 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2303 "Expected icmp+shr simplify did not occur."); 2304 2305 // If the bits shifted out are known zero, compare the unshifted value: 2306 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2307 if (Shr->isExact()) 2308 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2309 2310 if (C.isZero()) { 2311 // == 0 is u< 1. 2312 if (Pred == CmpInst::ICMP_EQ) 2313 return new ICmpInst(CmpInst::ICMP_ULT, X, 2314 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2315 else 2316 return new ICmpInst(CmpInst::ICMP_UGT, X, 2317 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2318 } 2319 2320 if (Shr->hasOneUse()) { 2321 // Canonicalize the shift into an 'and': 2322 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2323 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2324 Constant *Mask = ConstantInt::get(ShrTy, Val); 2325 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2326 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2327 } 2328 2329 return nullptr; 2330 } 2331 2332 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2333 BinaryOperator *SRem, 2334 const APInt &C) { 2335 // Match an 'is positive' or 'is negative' comparison of remainder by a 2336 // constant power-of-2 value: 2337 // (X % pow2C) sgt/slt 0 2338 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2339 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2340 return nullptr; 2341 2342 // TODO: The one-use check is standard because we do not typically want to 2343 // create longer instruction sequences, but this might be a special-case 2344 // because srem is not good for analysis or codegen. 2345 if (!SRem->hasOneUse()) 2346 return nullptr; 2347 2348 const APInt *DivisorC; 2349 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2350 return nullptr; 2351 2352 // Mask off the sign bit and the modulo bits (low-bits). 2353 Type *Ty = SRem->getType(); 2354 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2355 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2356 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2357 2358 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2359 // bit is set. Example: 2360 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2361 if (Pred == ICmpInst::ICMP_SGT) 2362 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2363 2364 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2365 // bit is set. Example: 2366 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2367 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2368 } 2369 2370 /// Fold icmp (udiv X, Y), C. 2371 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2372 BinaryOperator *UDiv, 2373 const APInt &C) { 2374 const APInt *C2; 2375 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2376 return nullptr; 2377 2378 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2379 2380 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2381 Value *Y = UDiv->getOperand(1); 2382 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2383 assert(!C.isMaxValue() && 2384 "icmp ugt X, UINT_MAX should have been simplified already."); 2385 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2386 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2387 } 2388 2389 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2390 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2391 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2392 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2393 ConstantInt::get(Y->getType(), C2->udiv(C))); 2394 } 2395 2396 return nullptr; 2397 } 2398 2399 /// Fold icmp ({su}div X, Y), C. 2400 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2401 BinaryOperator *Div, 2402 const APInt &C) { 2403 // Fold: icmp pred ([us]div X, C2), C -> range test 2404 // Fold this div into the comparison, producing a range check. 2405 // Determine, based on the divide type, what the range is being 2406 // checked. If there is an overflow on the low or high side, remember 2407 // it, otherwise compute the range [low, hi) bounding the new value. 2408 // See: InsertRangeTest above for the kinds of replacements possible. 2409 const APInt *C2; 2410 if (!match(Div->getOperand(1), m_APInt(C2))) 2411 return nullptr; 2412 2413 // FIXME: If the operand types don't match the type of the divide 2414 // then don't attempt this transform. The code below doesn't have the 2415 // logic to deal with a signed divide and an unsigned compare (and 2416 // vice versa). This is because (x /s C2) <s C produces different 2417 // results than (x /s C2) <u C or (x /u C2) <s C or even 2418 // (x /u C2) <u C. Simply casting the operands and result won't 2419 // work. :( The if statement below tests that condition and bails 2420 // if it finds it. 2421 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2422 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2423 return nullptr; 2424 2425 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2426 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2427 // division-by-constant cases should be present, we can not assert that they 2428 // have happened before we reach this icmp instruction. 2429 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2430 return nullptr; 2431 2432 // Compute Prod = C * C2. We are essentially solving an equation of 2433 // form X / C2 = C. We solve for X by multiplying C2 and C. 2434 // By solving for X, we can turn this into a range check instead of computing 2435 // a divide. 2436 APInt Prod = C * *C2; 2437 2438 // Determine if the product overflows by seeing if the product is not equal to 2439 // the divide. Make sure we do the same kind of divide as in the LHS 2440 // instruction that we're folding. 2441 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2442 2443 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2444 2445 // If the division is known to be exact, then there is no remainder from the 2446 // divide, so the covered range size is unit, otherwise it is the divisor. 2447 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2448 2449 // Figure out the interval that is being checked. For example, a comparison 2450 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2451 // Compute this interval based on the constants involved and the signedness of 2452 // the compare/divide. This computes a half-open interval, keeping track of 2453 // whether either value in the interval overflows. After analysis each 2454 // overflow variable is set to 0 if it's corresponding bound variable is valid 2455 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2456 int LoOverflow = 0, HiOverflow = 0; 2457 APInt LoBound, HiBound; 2458 2459 if (!DivIsSigned) { // udiv 2460 // e.g. X/5 op 3 --> [15, 20) 2461 LoBound = Prod; 2462 HiOverflow = LoOverflow = ProdOV; 2463 if (!HiOverflow) { 2464 // If this is not an exact divide, then many values in the range collapse 2465 // to the same result value. 2466 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2467 } 2468 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2469 if (C.isZero()) { // (X / pos) op 0 2470 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2471 LoBound = -(RangeSize - 1); 2472 HiBound = RangeSize; 2473 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2474 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2475 HiOverflow = LoOverflow = ProdOV; 2476 if (!HiOverflow) 2477 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2478 } else { // (X / pos) op neg 2479 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2480 HiBound = Prod + 1; 2481 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2482 if (!LoOverflow) { 2483 APInt DivNeg = -RangeSize; 2484 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2485 } 2486 } 2487 } else if (C2->isNegative()) { // Divisor is < 0. 2488 if (Div->isExact()) 2489 RangeSize.negate(); 2490 if (C.isZero()) { // (X / neg) op 0 2491 // e.g. X/-5 op 0 --> [-4, 5) 2492 LoBound = RangeSize + 1; 2493 HiBound = -RangeSize; 2494 if (HiBound == *C2) { // -INTMIN = INTMIN 2495 HiOverflow = 1; // [INTMIN+1, overflow) 2496 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2497 } 2498 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2499 // e.g. X/-5 op 3 --> [-19, -14) 2500 HiBound = Prod + 1; 2501 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2502 if (!LoOverflow) 2503 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2504 } else { // (X / neg) op neg 2505 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2506 LoOverflow = HiOverflow = ProdOV; 2507 if (!HiOverflow) 2508 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2509 } 2510 2511 // Dividing by a negative swaps the condition. LT <-> GT 2512 Pred = ICmpInst::getSwappedPredicate(Pred); 2513 } 2514 2515 Value *X = Div->getOperand(0); 2516 switch (Pred) { 2517 default: llvm_unreachable("Unhandled icmp opcode!"); 2518 case ICmpInst::ICMP_EQ: 2519 if (LoOverflow && HiOverflow) 2520 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2521 if (HiOverflow) 2522 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2523 ICmpInst::ICMP_UGE, X, 2524 ConstantInt::get(Div->getType(), LoBound)); 2525 if (LoOverflow) 2526 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2527 ICmpInst::ICMP_ULT, X, 2528 ConstantInt::get(Div->getType(), HiBound)); 2529 return replaceInstUsesWith( 2530 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2531 case ICmpInst::ICMP_NE: 2532 if (LoOverflow && HiOverflow) 2533 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2534 if (HiOverflow) 2535 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2536 ICmpInst::ICMP_ULT, X, 2537 ConstantInt::get(Div->getType(), LoBound)); 2538 if (LoOverflow) 2539 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2540 ICmpInst::ICMP_UGE, X, 2541 ConstantInt::get(Div->getType(), HiBound)); 2542 return replaceInstUsesWith(Cmp, 2543 insertRangeTest(X, LoBound, HiBound, 2544 DivIsSigned, false)); 2545 case ICmpInst::ICMP_ULT: 2546 case ICmpInst::ICMP_SLT: 2547 if (LoOverflow == +1) // Low bound is greater than input range. 2548 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2549 if (LoOverflow == -1) // Low bound is less than input range. 2550 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2551 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2552 case ICmpInst::ICMP_UGT: 2553 case ICmpInst::ICMP_SGT: 2554 if (HiOverflow == +1) // High bound greater than input range. 2555 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2556 if (HiOverflow == -1) // High bound less than input range. 2557 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2558 if (Pred == ICmpInst::ICMP_UGT) 2559 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2560 ConstantInt::get(Div->getType(), HiBound)); 2561 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2562 ConstantInt::get(Div->getType(), HiBound)); 2563 } 2564 2565 return nullptr; 2566 } 2567 2568 /// Fold icmp (sub X, Y), C. 2569 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2570 BinaryOperator *Sub, 2571 const APInt &C) { 2572 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2573 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2574 Type *Ty = Sub->getType(); 2575 2576 // (SubC - Y) == C) --> Y == (SubC - C) 2577 // (SubC - Y) != C) --> Y != (SubC - C) 2578 Constant *SubC; 2579 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2580 return new ICmpInst(Pred, Y, 2581 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2582 } 2583 2584 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2585 const APInt *C2; 2586 APInt SubResult; 2587 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2588 bool HasNSW = Sub->hasNoSignedWrap(); 2589 bool HasNUW = Sub->hasNoUnsignedWrap(); 2590 if (match(X, m_APInt(C2)) && 2591 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2592 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2593 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2594 2595 // The following transforms are only worth it if the only user of the subtract 2596 // is the icmp. 2597 // TODO: This is an artificial restriction for all of the transforms below 2598 // that only need a single replacement icmp. 2599 if (!Sub->hasOneUse()) 2600 return nullptr; 2601 2602 // X - Y == 0 --> X == Y. 2603 // X - Y != 0 --> X != Y. 2604 if (Cmp.isEquality() && C.isZero()) 2605 return new ICmpInst(Pred, X, Y); 2606 2607 if (Sub->hasNoSignedWrap()) { 2608 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2609 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2610 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2611 2612 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2613 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2614 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2615 2616 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2617 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2618 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2619 2620 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2621 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2622 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2623 } 2624 2625 if (!match(X, m_APInt(C2))) 2626 return nullptr; 2627 2628 // C2 - Y <u C -> (Y | (C - 1)) == C2 2629 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2630 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2631 (*C2 & (C - 1)) == (C - 1)) 2632 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2633 2634 // C2 - Y >u C -> (Y | C) != C2 2635 // iff C2 & C == C and C + 1 is a power of 2 2636 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2637 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2638 2639 // We have handled special cases that reduce. 2640 // Canonicalize any remaining sub to add as: 2641 // (C2 - Y) > C --> (Y + ~C2) < ~C 2642 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2643 HasNUW, HasNSW); 2644 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2645 } 2646 2647 /// Fold icmp (add X, Y), C. 2648 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2649 BinaryOperator *Add, 2650 const APInt &C) { 2651 Value *Y = Add->getOperand(1); 2652 const APInt *C2; 2653 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2654 return nullptr; 2655 2656 // Fold icmp pred (add X, C2), C. 2657 Value *X = Add->getOperand(0); 2658 Type *Ty = Add->getType(); 2659 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2660 2661 // If the add does not wrap, we can always adjust the compare by subtracting 2662 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2663 // are canonicalized to SGT/SLT/UGT/ULT. 2664 if ((Add->hasNoSignedWrap() && 2665 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2666 (Add->hasNoUnsignedWrap() && 2667 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2668 bool Overflow; 2669 APInt NewC = 2670 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2671 // If there is overflow, the result must be true or false. 2672 // TODO: Can we assert there is no overflow because InstSimplify always 2673 // handles those cases? 2674 if (!Overflow) 2675 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2676 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2677 } 2678 2679 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2680 const APInt &Upper = CR.getUpper(); 2681 const APInt &Lower = CR.getLower(); 2682 if (Cmp.isSigned()) { 2683 if (Lower.isSignMask()) 2684 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2685 if (Upper.isSignMask()) 2686 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2687 } else { 2688 if (Lower.isMinValue()) 2689 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2690 if (Upper.isMinValue()) 2691 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2692 } 2693 2694 // This set of folds is intentionally placed after folds that use no-wrapping 2695 // flags because those folds are likely better for later analysis/codegen. 2696 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2697 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2698 2699 // Fold compare with offset to opposite sign compare if it eliminates offset: 2700 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2701 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2702 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2703 2704 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2705 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2706 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2707 2708 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2709 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2710 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2711 2712 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2713 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2714 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2715 2716 if (!Add->hasOneUse()) 2717 return nullptr; 2718 2719 // X+C <u C2 -> (X & -C2) == C 2720 // iff C & (C2-1) == 0 2721 // C2 is a power of 2 2722 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2723 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2724 ConstantExpr::getNeg(cast<Constant>(Y))); 2725 2726 // X+C >u C2 -> (X & ~C2) != C 2727 // iff C & C2 == 0 2728 // C2+1 is a power of 2 2729 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2730 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2731 ConstantExpr::getNeg(cast<Constant>(Y))); 2732 2733 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2734 // to the ult form. 2735 // X+C2 >u C -> X+(C2-C-1) <u ~C 2736 if (Pred == ICmpInst::ICMP_UGT) 2737 return new ICmpInst(ICmpInst::ICMP_ULT, 2738 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2739 ConstantInt::get(Ty, ~C)); 2740 2741 return nullptr; 2742 } 2743 2744 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2745 Value *&RHS, ConstantInt *&Less, 2746 ConstantInt *&Equal, 2747 ConstantInt *&Greater) { 2748 // TODO: Generalize this to work with other comparison idioms or ensure 2749 // they get canonicalized into this form. 2750 2751 // select i1 (a == b), 2752 // i32 Equal, 2753 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2754 // where Equal, Less and Greater are placeholders for any three constants. 2755 ICmpInst::Predicate PredA; 2756 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2757 !ICmpInst::isEquality(PredA)) 2758 return false; 2759 Value *EqualVal = SI->getTrueValue(); 2760 Value *UnequalVal = SI->getFalseValue(); 2761 // We still can get non-canonical predicate here, so canonicalize. 2762 if (PredA == ICmpInst::ICMP_NE) 2763 std::swap(EqualVal, UnequalVal); 2764 if (!match(EqualVal, m_ConstantInt(Equal))) 2765 return false; 2766 ICmpInst::Predicate PredB; 2767 Value *LHS2, *RHS2; 2768 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2769 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2770 return false; 2771 // We can get predicate mismatch here, so canonicalize if possible: 2772 // First, ensure that 'LHS' match. 2773 if (LHS2 != LHS) { 2774 // x sgt y <--> y slt x 2775 std::swap(LHS2, RHS2); 2776 PredB = ICmpInst::getSwappedPredicate(PredB); 2777 } 2778 if (LHS2 != LHS) 2779 return false; 2780 // We also need to canonicalize 'RHS'. 2781 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2782 // x sgt C-1 <--> x sge C <--> not(x slt C) 2783 auto FlippedStrictness = 2784 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2785 PredB, cast<Constant>(RHS2)); 2786 if (!FlippedStrictness) 2787 return false; 2788 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2789 "basic correctness failure"); 2790 RHS2 = FlippedStrictness->second; 2791 // And kind-of perform the result swap. 2792 std::swap(Less, Greater); 2793 PredB = ICmpInst::ICMP_SLT; 2794 } 2795 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2796 } 2797 2798 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2799 SelectInst *Select, 2800 ConstantInt *C) { 2801 2802 assert(C && "Cmp RHS should be a constant int!"); 2803 // If we're testing a constant value against the result of a three way 2804 // comparison, the result can be expressed directly in terms of the 2805 // original values being compared. Note: We could possibly be more 2806 // aggressive here and remove the hasOneUse test. The original select is 2807 // really likely to simplify or sink when we remove a test of the result. 2808 Value *OrigLHS, *OrigRHS; 2809 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2810 if (Cmp.hasOneUse() && 2811 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2812 C3GreaterThan)) { 2813 assert(C1LessThan && C2Equal && C3GreaterThan); 2814 2815 bool TrueWhenLessThan = 2816 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2817 ->isAllOnesValue(); 2818 bool TrueWhenEqual = 2819 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2820 ->isAllOnesValue(); 2821 bool TrueWhenGreaterThan = 2822 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2823 ->isAllOnesValue(); 2824 2825 // This generates the new instruction that will replace the original Cmp 2826 // Instruction. Instead of enumerating the various combinations when 2827 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2828 // false, we rely on chaining of ORs and future passes of InstCombine to 2829 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2830 2831 // When none of the three constants satisfy the predicate for the RHS (C), 2832 // the entire original Cmp can be simplified to a false. 2833 Value *Cond = Builder.getFalse(); 2834 if (TrueWhenLessThan) 2835 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2836 OrigLHS, OrigRHS)); 2837 if (TrueWhenEqual) 2838 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2839 OrigLHS, OrigRHS)); 2840 if (TrueWhenGreaterThan) 2841 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2842 OrigLHS, OrigRHS)); 2843 2844 return replaceInstUsesWith(Cmp, Cond); 2845 } 2846 return nullptr; 2847 } 2848 2849 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2850 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2851 if (!Bitcast) 2852 return nullptr; 2853 2854 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2855 Value *Op1 = Cmp.getOperand(1); 2856 Value *BCSrcOp = Bitcast->getOperand(0); 2857 2858 // Make sure the bitcast doesn't change the number of vector elements. 2859 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2860 Bitcast->getDestTy()->getScalarSizeInBits()) { 2861 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2862 Value *X; 2863 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2864 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2865 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2866 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2867 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2868 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2869 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2870 match(Op1, m_Zero())) 2871 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2872 2873 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2874 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2875 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2876 2877 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2878 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2879 return new ICmpInst(Pred, X, 2880 ConstantInt::getAllOnesValue(X->getType())); 2881 } 2882 2883 // Zero-equality checks are preserved through unsigned floating-point casts: 2884 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2885 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2886 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2887 if (Cmp.isEquality() && match(Op1, m_Zero())) 2888 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2889 2890 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2891 // the FP extend/truncate because that cast does not change the sign-bit. 2892 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2893 // The sign-bit is always the most significant bit in those types. 2894 const APInt *C; 2895 bool TrueIfSigned; 2896 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2897 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2898 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2899 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2900 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2901 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2902 Type *XType = X->getType(); 2903 2904 // We can't currently handle Power style floating point operations here. 2905 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2906 2907 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2908 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2909 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2910 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2911 if (TrueIfSigned) 2912 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2913 ConstantInt::getNullValue(NewType)); 2914 else 2915 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2916 ConstantInt::getAllOnesValue(NewType)); 2917 } 2918 } 2919 } 2920 } 2921 2922 // Test to see if the operands of the icmp are casted versions of other 2923 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2924 if (Bitcast->getType()->isPointerTy() && 2925 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2926 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2927 // so eliminate it as well. 2928 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2929 Op1 = BC2->getOperand(0); 2930 2931 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2932 return new ICmpInst(Pred, BCSrcOp, Op1); 2933 } 2934 2935 const APInt *C; 2936 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2937 !Bitcast->getType()->isIntegerTy() || 2938 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2939 return nullptr; 2940 2941 // If this is checking if all elements of a vector compare are set or not, 2942 // invert the casted vector equality compare and test if all compare 2943 // elements are clear or not. Compare against zero is generally easier for 2944 // analysis and codegen. 2945 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2946 // Example: are all elements equal? --> are zero elements not equal? 2947 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2948 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2949 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2950 Type *ScalarTy = Bitcast->getType(); 2951 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2952 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2953 } 2954 2955 // If this is checking if all elements of an extended vector are clear or not, 2956 // compare in a narrow type to eliminate the extend: 2957 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2958 Value *X; 2959 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2960 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2961 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2962 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2963 Value *NewCast = Builder.CreateBitCast(X, NewType); 2964 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2965 } 2966 } 2967 2968 // Folding: icmp <pred> iN X, C 2969 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2970 // and C is a splat of a K-bit pattern 2971 // and SC is a constant vector = <C', C', C', ..., C'> 2972 // Into: 2973 // %E = extractelement <M x iK> %vec, i32 C' 2974 // icmp <pred> iK %E, trunc(C) 2975 Value *Vec; 2976 ArrayRef<int> Mask; 2977 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2978 // Check whether every element of Mask is the same constant 2979 if (is_splat(Mask)) { 2980 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2981 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2982 if (C->isSplat(EltTy->getBitWidth())) { 2983 // Fold the icmp based on the value of C 2984 // If C is M copies of an iK sized bit pattern, 2985 // then: 2986 // => %E = extractelement <N x iK> %vec, i32 Elem 2987 // icmp <pred> iK %SplatVal, <pattern> 2988 Value *Elem = Builder.getInt32(Mask[0]); 2989 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2990 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2991 return new ICmpInst(Pred, Extract, NewC); 2992 } 2993 } 2994 } 2995 return nullptr; 2996 } 2997 2998 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2999 /// where X is some kind of instruction. 3000 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3001 const APInt *C; 3002 if (!match(Cmp.getOperand(1), m_APInt(C))) 3003 return nullptr; 3004 3005 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3006 switch (BO->getOpcode()) { 3007 case Instruction::Xor: 3008 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3009 return I; 3010 break; 3011 case Instruction::And: 3012 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3013 return I; 3014 break; 3015 case Instruction::Or: 3016 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3017 return I; 3018 break; 3019 case Instruction::Mul: 3020 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3021 return I; 3022 break; 3023 case Instruction::Shl: 3024 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3025 return I; 3026 break; 3027 case Instruction::LShr: 3028 case Instruction::AShr: 3029 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3030 return I; 3031 break; 3032 case Instruction::SRem: 3033 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3034 return I; 3035 break; 3036 case Instruction::UDiv: 3037 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3038 return I; 3039 LLVM_FALLTHROUGH; 3040 case Instruction::SDiv: 3041 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3042 return I; 3043 break; 3044 case Instruction::Sub: 3045 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3046 return I; 3047 break; 3048 case Instruction::Add: 3049 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3050 return I; 3051 break; 3052 default: 3053 break; 3054 } 3055 // TODO: These folds could be refactored to be part of the above calls. 3056 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3057 return I; 3058 } 3059 3060 // Match against CmpInst LHS being instructions other than binary operators. 3061 3062 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3063 // For now, we only support constant integers while folding the 3064 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3065 // similar to the cases handled by binary ops above. 3066 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3067 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3068 return I; 3069 } 3070 3071 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3072 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3073 return I; 3074 } 3075 3076 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3077 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3078 return I; 3079 3080 return nullptr; 3081 } 3082 3083 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3084 /// icmp eq/ne BO, C. 3085 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3086 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3087 // TODO: Some of these folds could work with arbitrary constants, but this 3088 // function is limited to scalar and vector splat constants. 3089 if (!Cmp.isEquality()) 3090 return nullptr; 3091 3092 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3093 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3094 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3095 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3096 3097 switch (BO->getOpcode()) { 3098 case Instruction::SRem: 3099 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3100 if (C.isZero() && BO->hasOneUse()) { 3101 const APInt *BOC; 3102 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3103 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3104 return new ICmpInst(Pred, NewRem, 3105 Constant::getNullValue(BO->getType())); 3106 } 3107 } 3108 break; 3109 case Instruction::Add: { 3110 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3111 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3112 if (BO->hasOneUse()) 3113 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3114 } else if (C.isZero()) { 3115 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3116 // efficiently invertible, or if the add has just this one use. 3117 if (Value *NegVal = dyn_castNegVal(BOp1)) 3118 return new ICmpInst(Pred, BOp0, NegVal); 3119 if (Value *NegVal = dyn_castNegVal(BOp0)) 3120 return new ICmpInst(Pred, NegVal, BOp1); 3121 if (BO->hasOneUse()) { 3122 Value *Neg = Builder.CreateNeg(BOp1); 3123 Neg->takeName(BO); 3124 return new ICmpInst(Pred, BOp0, Neg); 3125 } 3126 } 3127 break; 3128 } 3129 case Instruction::Xor: 3130 if (BO->hasOneUse()) { 3131 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3132 // For the xor case, we can xor two constants together, eliminating 3133 // the explicit xor. 3134 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3135 } else if (C.isZero()) { 3136 // Replace ((xor A, B) != 0) with (A != B) 3137 return new ICmpInst(Pred, BOp0, BOp1); 3138 } 3139 } 3140 break; 3141 case Instruction::Or: { 3142 const APInt *BOC; 3143 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3144 // Comparing if all bits outside of a constant mask are set? 3145 // Replace (X | C) == -1 with (X & ~C) == ~C. 3146 // This removes the -1 constant. 3147 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3148 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3149 return new ICmpInst(Pred, And, NotBOC); 3150 } 3151 break; 3152 } 3153 case Instruction::And: { 3154 const APInt *BOC; 3155 if (match(BOp1, m_APInt(BOC))) { 3156 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3157 if (C == *BOC && C.isPowerOf2()) 3158 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3159 BO, Constant::getNullValue(RHS->getType())); 3160 } 3161 break; 3162 } 3163 case Instruction::UDiv: 3164 if (C.isZero()) { 3165 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3166 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3167 return new ICmpInst(NewPred, BOp1, BOp0); 3168 } 3169 break; 3170 default: 3171 break; 3172 } 3173 return nullptr; 3174 } 3175 3176 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3177 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3178 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3179 Type *Ty = II->getType(); 3180 unsigned BitWidth = C.getBitWidth(); 3181 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3182 3183 switch (II->getIntrinsicID()) { 3184 case Intrinsic::abs: 3185 // abs(A) == 0 -> A == 0 3186 // abs(A) == INT_MIN -> A == INT_MIN 3187 if (C.isZero() || C.isMinSignedValue()) 3188 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3189 break; 3190 3191 case Intrinsic::bswap: 3192 // bswap(A) == C -> A == bswap(C) 3193 return new ICmpInst(Pred, II->getArgOperand(0), 3194 ConstantInt::get(Ty, C.byteSwap())); 3195 3196 case Intrinsic::ctlz: 3197 case Intrinsic::cttz: { 3198 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3199 if (C == BitWidth) 3200 return new ICmpInst(Pred, II->getArgOperand(0), 3201 ConstantInt::getNullValue(Ty)); 3202 3203 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3204 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3205 // Limit to one use to ensure we don't increase instruction count. 3206 unsigned Num = C.getLimitedValue(BitWidth); 3207 if (Num != BitWidth && II->hasOneUse()) { 3208 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3209 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3210 : APInt::getHighBitsSet(BitWidth, Num + 1); 3211 APInt Mask2 = IsTrailing 3212 ? APInt::getOneBitSet(BitWidth, Num) 3213 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3214 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3215 ConstantInt::get(Ty, Mask2)); 3216 } 3217 break; 3218 } 3219 3220 case Intrinsic::ctpop: { 3221 // popcount(A) == 0 -> A == 0 and likewise for != 3222 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3223 bool IsZero = C.isZero(); 3224 if (IsZero || C == BitWidth) 3225 return new ICmpInst(Pred, II->getArgOperand(0), 3226 IsZero ? Constant::getNullValue(Ty) 3227 : Constant::getAllOnesValue(Ty)); 3228 3229 break; 3230 } 3231 3232 case Intrinsic::fshl: 3233 case Intrinsic::fshr: 3234 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3235 // (rot X, ?) == 0/-1 --> X == 0/-1 3236 // TODO: This transform is safe to re-use undef elts in a vector, but 3237 // the constant value passed in by the caller doesn't allow that. 3238 if (C.isZero() || C.isAllOnes()) 3239 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3240 3241 const APInt *RotAmtC; 3242 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3243 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3244 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3245 return new ICmpInst(Pred, II->getArgOperand(0), 3246 II->getIntrinsicID() == Intrinsic::fshl 3247 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3248 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3249 } 3250 break; 3251 3252 case Intrinsic::uadd_sat: { 3253 // uadd.sat(a, b) == 0 -> (a | b) == 0 3254 if (C.isZero()) { 3255 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3256 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3257 } 3258 break; 3259 } 3260 3261 case Intrinsic::usub_sat: { 3262 // usub.sat(a, b) == 0 -> a <= b 3263 if (C.isZero()) { 3264 ICmpInst::Predicate NewPred = 3265 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3266 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3267 } 3268 break; 3269 } 3270 default: 3271 break; 3272 } 3273 3274 return nullptr; 3275 } 3276 3277 /// Fold an icmp with LLVM intrinsics 3278 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3279 assert(Cmp.isEquality()); 3280 3281 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3282 Value *Op0 = Cmp.getOperand(0); 3283 Value *Op1 = Cmp.getOperand(1); 3284 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3285 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3286 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3287 return nullptr; 3288 3289 switch (IIOp0->getIntrinsicID()) { 3290 case Intrinsic::bswap: 3291 case Intrinsic::bitreverse: 3292 // If both operands are byte-swapped or bit-reversed, just compare the 3293 // original values. 3294 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3295 case Intrinsic::fshl: 3296 case Intrinsic::fshr: 3297 // If both operands are rotated by same amount, just compare the 3298 // original values. 3299 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3300 break; 3301 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3302 break; 3303 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3304 break; 3305 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3306 default: 3307 break; 3308 } 3309 3310 return nullptr; 3311 } 3312 3313 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3314 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3315 IntrinsicInst *II, 3316 const APInt &C) { 3317 if (Cmp.isEquality()) 3318 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3319 3320 Type *Ty = II->getType(); 3321 unsigned BitWidth = C.getBitWidth(); 3322 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3323 switch (II->getIntrinsicID()) { 3324 case Intrinsic::ctpop: { 3325 // (ctpop X > BitWidth - 1) --> X == -1 3326 Value *X = II->getArgOperand(0); 3327 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3328 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3329 ConstantInt::getAllOnesValue(Ty)); 3330 // (ctpop X < BitWidth) --> X != -1 3331 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3332 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3333 ConstantInt::getAllOnesValue(Ty)); 3334 break; 3335 } 3336 case Intrinsic::ctlz: { 3337 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3338 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3339 unsigned Num = C.getLimitedValue(); 3340 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3341 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3342 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3343 } 3344 3345 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3346 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3347 unsigned Num = C.getLimitedValue(); 3348 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3349 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3350 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3351 } 3352 break; 3353 } 3354 case Intrinsic::cttz: { 3355 // Limit to one use to ensure we don't increase instruction count. 3356 if (!II->hasOneUse()) 3357 return nullptr; 3358 3359 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3360 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3361 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3362 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3363 Builder.CreateAnd(II->getArgOperand(0), Mask), 3364 ConstantInt::getNullValue(Ty)); 3365 } 3366 3367 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3368 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3369 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3370 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3371 Builder.CreateAnd(II->getArgOperand(0), Mask), 3372 ConstantInt::getNullValue(Ty)); 3373 } 3374 break; 3375 } 3376 default: 3377 break; 3378 } 3379 3380 return nullptr; 3381 } 3382 3383 /// Handle icmp with constant (but not simple integer constant) RHS. 3384 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3385 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3386 Constant *RHSC = dyn_cast<Constant>(Op1); 3387 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3388 if (!RHSC || !LHSI) 3389 return nullptr; 3390 3391 switch (LHSI->getOpcode()) { 3392 case Instruction::GetElementPtr: 3393 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3394 if (RHSC->isNullValue() && 3395 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3396 return new ICmpInst( 3397 I.getPredicate(), LHSI->getOperand(0), 3398 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3399 break; 3400 case Instruction::PHI: 3401 // Only fold icmp into the PHI if the phi and icmp are in the same 3402 // block. If in the same block, we're encouraging jump threading. If 3403 // not, we are just pessimizing the code by making an i1 phi. 3404 if (LHSI->getParent() == I.getParent()) 3405 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3406 return NV; 3407 break; 3408 case Instruction::Select: { 3409 // If either operand of the select is a constant, we can fold the 3410 // comparison into the select arms, which will cause one to be 3411 // constant folded and the select turned into a bitwise or. 3412 Value *Op1 = nullptr, *Op2 = nullptr; 3413 ConstantInt *CI = nullptr; 3414 3415 auto SimplifyOp = [&](Value *V) { 3416 Value *Op = nullptr; 3417 if (Constant *C = dyn_cast<Constant>(V)) { 3418 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3419 } else if (RHSC->isNullValue()) { 3420 // If null is being compared, check if it can be further simplified. 3421 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3422 } 3423 return Op; 3424 }; 3425 Op1 = SimplifyOp(LHSI->getOperand(1)); 3426 if (Op1) 3427 CI = dyn_cast<ConstantInt>(Op1); 3428 3429 Op2 = SimplifyOp(LHSI->getOperand(2)); 3430 if (Op2) 3431 CI = dyn_cast<ConstantInt>(Op2); 3432 3433 // We only want to perform this transformation if it will not lead to 3434 // additional code. This is true if either both sides of the select 3435 // fold to a constant (in which case the icmp is replaced with a select 3436 // which will usually simplify) or this is the only user of the 3437 // select (in which case we are trading a select+icmp for a simpler 3438 // select+icmp) or all uses of the select can be replaced based on 3439 // dominance information ("Global cases"). 3440 bool Transform = false; 3441 if (Op1 && Op2) 3442 Transform = true; 3443 else if (Op1 || Op2) { 3444 // Local case 3445 if (LHSI->hasOneUse()) 3446 Transform = true; 3447 // Global cases 3448 else if (CI && !CI->isZero()) 3449 // When Op1 is constant try replacing select with second operand. 3450 // Otherwise Op2 is constant and try replacing select with first 3451 // operand. 3452 Transform = 3453 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3454 } 3455 if (Transform) { 3456 if (!Op1) 3457 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3458 I.getName()); 3459 if (!Op2) 3460 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3461 I.getName()); 3462 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3463 } 3464 break; 3465 } 3466 case Instruction::IntToPtr: 3467 // icmp pred inttoptr(X), null -> icmp pred X, 0 3468 if (RHSC->isNullValue() && 3469 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3470 return new ICmpInst( 3471 I.getPredicate(), LHSI->getOperand(0), 3472 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3473 break; 3474 3475 case Instruction::Load: 3476 // Try to optimize things like "A[i] > 4" to index computations. 3477 if (GetElementPtrInst *GEP = 3478 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3479 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3480 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3481 !cast<LoadInst>(LHSI)->isVolatile()) 3482 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3483 return Res; 3484 } 3485 break; 3486 } 3487 3488 return nullptr; 3489 } 3490 3491 /// Some comparisons can be simplified. 3492 /// In this case, we are looking for comparisons that look like 3493 /// a check for a lossy truncation. 3494 /// Folds: 3495 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3496 /// Where Mask is some pattern that produces all-ones in low bits: 3497 /// (-1 >> y) 3498 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3499 /// ~(-1 << y) 3500 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3501 /// The Mask can be a constant, too. 3502 /// For some predicates, the operands are commutative. 3503 /// For others, x can only be on a specific side. 3504 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3505 InstCombiner::BuilderTy &Builder) { 3506 ICmpInst::Predicate SrcPred; 3507 Value *X, *M, *Y; 3508 auto m_VariableMask = m_CombineOr( 3509 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3510 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3511 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3512 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3513 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3514 if (!match(&I, m_c_ICmp(SrcPred, 3515 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3516 m_Deferred(X)))) 3517 return nullptr; 3518 3519 ICmpInst::Predicate DstPred; 3520 switch (SrcPred) { 3521 case ICmpInst::Predicate::ICMP_EQ: 3522 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3523 DstPred = ICmpInst::Predicate::ICMP_ULE; 3524 break; 3525 case ICmpInst::Predicate::ICMP_NE: 3526 // x & (-1 >> y) != x -> x u> (-1 >> y) 3527 DstPred = ICmpInst::Predicate::ICMP_UGT; 3528 break; 3529 case ICmpInst::Predicate::ICMP_ULT: 3530 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3531 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3532 DstPred = ICmpInst::Predicate::ICMP_UGT; 3533 break; 3534 case ICmpInst::Predicate::ICMP_UGE: 3535 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3536 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3537 DstPred = ICmpInst::Predicate::ICMP_ULE; 3538 break; 3539 case ICmpInst::Predicate::ICMP_SLT: 3540 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3541 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3542 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3543 return nullptr; 3544 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3545 return nullptr; 3546 DstPred = ICmpInst::Predicate::ICMP_SGT; 3547 break; 3548 case ICmpInst::Predicate::ICMP_SGE: 3549 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3550 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3551 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3552 return nullptr; 3553 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3554 return nullptr; 3555 DstPred = ICmpInst::Predicate::ICMP_SLE; 3556 break; 3557 case ICmpInst::Predicate::ICMP_SGT: 3558 case ICmpInst::Predicate::ICMP_SLE: 3559 return nullptr; 3560 case ICmpInst::Predicate::ICMP_UGT: 3561 case ICmpInst::Predicate::ICMP_ULE: 3562 llvm_unreachable("Instsimplify took care of commut. variant"); 3563 break; 3564 default: 3565 llvm_unreachable("All possible folds are handled."); 3566 } 3567 3568 // The mask value may be a vector constant that has undefined elements. But it 3569 // may not be safe to propagate those undefs into the new compare, so replace 3570 // those elements by copying an existing, defined, and safe scalar constant. 3571 Type *OpTy = M->getType(); 3572 auto *VecC = dyn_cast<Constant>(M); 3573 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3574 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3575 Constant *SafeReplacementConstant = nullptr; 3576 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3577 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3578 SafeReplacementConstant = VecC->getAggregateElement(i); 3579 break; 3580 } 3581 } 3582 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3583 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3584 } 3585 3586 return Builder.CreateICmp(DstPred, X, M); 3587 } 3588 3589 /// Some comparisons can be simplified. 3590 /// In this case, we are looking for comparisons that look like 3591 /// a check for a lossy signed truncation. 3592 /// Folds: (MaskedBits is a constant.) 3593 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3594 /// Into: 3595 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3596 /// Where KeptBits = bitwidth(%x) - MaskedBits 3597 static Value * 3598 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3599 InstCombiner::BuilderTy &Builder) { 3600 ICmpInst::Predicate SrcPred; 3601 Value *X; 3602 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3603 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3604 if (!match(&I, m_c_ICmp(SrcPred, 3605 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3606 m_APInt(C1))), 3607 m_Deferred(X)))) 3608 return nullptr; 3609 3610 // Potential handling of non-splats: for each element: 3611 // * if both are undef, replace with constant 0. 3612 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3613 // * if both are not undef, and are different, bailout. 3614 // * else, only one is undef, then pick the non-undef one. 3615 3616 // The shift amount must be equal. 3617 if (*C0 != *C1) 3618 return nullptr; 3619 const APInt &MaskedBits = *C0; 3620 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3621 3622 ICmpInst::Predicate DstPred; 3623 switch (SrcPred) { 3624 case ICmpInst::Predicate::ICMP_EQ: 3625 // ((%x << MaskedBits) a>> MaskedBits) == %x 3626 // => 3627 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3628 DstPred = ICmpInst::Predicate::ICMP_ULT; 3629 break; 3630 case ICmpInst::Predicate::ICMP_NE: 3631 // ((%x << MaskedBits) a>> MaskedBits) != %x 3632 // => 3633 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3634 DstPred = ICmpInst::Predicate::ICMP_UGE; 3635 break; 3636 // FIXME: are more folds possible? 3637 default: 3638 return nullptr; 3639 } 3640 3641 auto *XType = X->getType(); 3642 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3643 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3644 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3645 3646 // KeptBits = bitwidth(%x) - MaskedBits 3647 const APInt KeptBits = BitWidth - MaskedBits; 3648 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3649 // ICmpCst = (1 << KeptBits) 3650 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3651 assert(ICmpCst.isPowerOf2()); 3652 // AddCst = (1 << (KeptBits-1)) 3653 const APInt AddCst = ICmpCst.lshr(1); 3654 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3655 3656 // T0 = add %x, AddCst 3657 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3658 // T1 = T0 DstPred ICmpCst 3659 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3660 3661 return T1; 3662 } 3663 3664 // Given pattern: 3665 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3666 // we should move shifts to the same hand of 'and', i.e. rewrite as 3667 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3668 // We are only interested in opposite logical shifts here. 3669 // One of the shifts can be truncated. 3670 // If we can, we want to end up creating 'lshr' shift. 3671 static Value * 3672 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3673 InstCombiner::BuilderTy &Builder) { 3674 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3675 !I.getOperand(0)->hasOneUse()) 3676 return nullptr; 3677 3678 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3679 3680 // Look for an 'and' of two logical shifts, one of which may be truncated. 3681 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3682 Instruction *XShift, *MaybeTruncation, *YShift; 3683 if (!match( 3684 I.getOperand(0), 3685 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3686 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3687 m_AnyLogicalShift, m_Instruction(YShift))), 3688 m_Instruction(MaybeTruncation))))) 3689 return nullptr; 3690 3691 // We potentially looked past 'trunc', but only when matching YShift, 3692 // therefore YShift must have the widest type. 3693 Instruction *WidestShift = YShift; 3694 // Therefore XShift must have the shallowest type. 3695 // Or they both have identical types if there was no truncation. 3696 Instruction *NarrowestShift = XShift; 3697 3698 Type *WidestTy = WidestShift->getType(); 3699 Type *NarrowestTy = NarrowestShift->getType(); 3700 assert(NarrowestTy == I.getOperand(0)->getType() && 3701 "We did not look past any shifts while matching XShift though."); 3702 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3703 3704 // If YShift is a 'lshr', swap the shifts around. 3705 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3706 std::swap(XShift, YShift); 3707 3708 // The shifts must be in opposite directions. 3709 auto XShiftOpcode = XShift->getOpcode(); 3710 if (XShiftOpcode == YShift->getOpcode()) 3711 return nullptr; // Do not care about same-direction shifts here. 3712 3713 Value *X, *XShAmt, *Y, *YShAmt; 3714 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3715 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3716 3717 // If one of the values being shifted is a constant, then we will end with 3718 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3719 // however, we will need to ensure that we won't increase instruction count. 3720 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3721 // At least one of the hands of the 'and' should be one-use shift. 3722 if (!match(I.getOperand(0), 3723 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3724 return nullptr; 3725 if (HadTrunc) { 3726 // Due to the 'trunc', we will need to widen X. For that either the old 3727 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3728 if (!MaybeTruncation->hasOneUse() && 3729 !NarrowestShift->getOperand(1)->hasOneUse()) 3730 return nullptr; 3731 } 3732 } 3733 3734 // We have two shift amounts from two different shifts. The types of those 3735 // shift amounts may not match. If that's the case let's bailout now. 3736 if (XShAmt->getType() != YShAmt->getType()) 3737 return nullptr; 3738 3739 // As input, we have the following pattern: 3740 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3741 // We want to rewrite that as: 3742 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3743 // While we know that originally (Q+K) would not overflow 3744 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3745 // shift amounts. so it may now overflow in smaller bitwidth. 3746 // To ensure that does not happen, we need to ensure that the total maximal 3747 // shift amount is still representable in that smaller bit width. 3748 unsigned MaximalPossibleTotalShiftAmount = 3749 (WidestTy->getScalarSizeInBits() - 1) + 3750 (NarrowestTy->getScalarSizeInBits() - 1); 3751 APInt MaximalRepresentableShiftAmount = 3752 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3753 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3754 return nullptr; 3755 3756 // Can we fold (XShAmt+YShAmt) ? 3757 auto *NewShAmt = dyn_cast_or_null<Constant>( 3758 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3759 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3760 if (!NewShAmt) 3761 return nullptr; 3762 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3763 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3764 3765 // Is the new shift amount smaller than the bit width? 3766 // FIXME: could also rely on ConstantRange. 3767 if (!match(NewShAmt, 3768 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3769 APInt(WidestBitWidth, WidestBitWidth)))) 3770 return nullptr; 3771 3772 // An extra legality check is needed if we had trunc-of-lshr. 3773 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3774 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3775 WidestShift]() { 3776 // It isn't obvious whether it's worth it to analyze non-constants here. 3777 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3778 // If *any* of these preconditions matches we can perform the fold. 3779 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3780 ? NewShAmt->getSplatValue() 3781 : NewShAmt; 3782 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3783 if (NewShAmtSplat && 3784 (NewShAmtSplat->isNullValue() || 3785 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3786 return true; 3787 // We consider *min* leading zeros so a single outlier 3788 // blocks the transform as opposed to allowing it. 3789 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3790 KnownBits Known = computeKnownBits(C, SQ.DL); 3791 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3792 // If the value being shifted has at most lowest bit set we can fold. 3793 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3794 if (MaxActiveBits <= 1) 3795 return true; 3796 // Precondition: NewShAmt u<= countLeadingZeros(C) 3797 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3798 return true; 3799 } 3800 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3801 KnownBits Known = computeKnownBits(C, SQ.DL); 3802 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3803 // If the value being shifted has at most lowest bit set we can fold. 3804 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3805 if (MaxActiveBits <= 1) 3806 return true; 3807 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3808 if (NewShAmtSplat) { 3809 APInt AdjNewShAmt = 3810 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3811 if (AdjNewShAmt.ule(MinLeadZero)) 3812 return true; 3813 } 3814 } 3815 return false; // Can't tell if it's ok. 3816 }; 3817 if (!CanFold()) 3818 return nullptr; 3819 } 3820 3821 // All good, we can do this fold. 3822 X = Builder.CreateZExt(X, WidestTy); 3823 Y = Builder.CreateZExt(Y, WidestTy); 3824 // The shift is the same that was for X. 3825 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3826 ? Builder.CreateLShr(X, NewShAmt) 3827 : Builder.CreateShl(X, NewShAmt); 3828 Value *T1 = Builder.CreateAnd(T0, Y); 3829 return Builder.CreateICmp(I.getPredicate(), T1, 3830 Constant::getNullValue(WidestTy)); 3831 } 3832 3833 /// Fold 3834 /// (-1 u/ x) u< y 3835 /// ((x * y) ?/ x) != y 3836 /// to 3837 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3838 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3839 /// will mean that we are looking for the opposite answer. 3840 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3841 ICmpInst::Predicate Pred; 3842 Value *X, *Y; 3843 Instruction *Mul; 3844 Instruction *Div; 3845 bool NeedNegation; 3846 // Look for: (-1 u/ x) u</u>= y 3847 if (!I.isEquality() && 3848 match(&I, m_c_ICmp(Pred, 3849 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3850 m_Instruction(Div)), 3851 m_Value(Y)))) { 3852 Mul = nullptr; 3853 3854 // Are we checking that overflow does not happen, or does happen? 3855 switch (Pred) { 3856 case ICmpInst::Predicate::ICMP_ULT: 3857 NeedNegation = false; 3858 break; // OK 3859 case ICmpInst::Predicate::ICMP_UGE: 3860 NeedNegation = true; 3861 break; // OK 3862 default: 3863 return nullptr; // Wrong predicate. 3864 } 3865 } else // Look for: ((x * y) / x) !=/== y 3866 if (I.isEquality() && 3867 match(&I, 3868 m_c_ICmp(Pred, m_Value(Y), 3869 m_CombineAnd( 3870 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3871 m_Value(X)), 3872 m_Instruction(Mul)), 3873 m_Deferred(X))), 3874 m_Instruction(Div))))) { 3875 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3876 } else 3877 return nullptr; 3878 3879 BuilderTy::InsertPointGuard Guard(Builder); 3880 // If the pattern included (x * y), we'll want to insert new instructions 3881 // right before that original multiplication so that we can replace it. 3882 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3883 if (MulHadOtherUses) 3884 Builder.SetInsertPoint(Mul); 3885 3886 Function *F = Intrinsic::getDeclaration(I.getModule(), 3887 Div->getOpcode() == Instruction::UDiv 3888 ? Intrinsic::umul_with_overflow 3889 : Intrinsic::smul_with_overflow, 3890 X->getType()); 3891 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3892 3893 // If the multiplication was used elsewhere, to ensure that we don't leave 3894 // "duplicate" instructions, replace uses of that original multiplication 3895 // with the multiplication result from the with.overflow intrinsic. 3896 if (MulHadOtherUses) 3897 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3898 3899 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3900 if (NeedNegation) // This technically increases instruction count. 3901 Res = Builder.CreateNot(Res, "mul.not.ov"); 3902 3903 // If we replaced the mul, erase it. Do this after all uses of Builder, 3904 // as the mul is used as insertion point. 3905 if (MulHadOtherUses) 3906 eraseInstFromFunction(*Mul); 3907 3908 return Res; 3909 } 3910 3911 static Instruction *foldICmpXNegX(ICmpInst &I) { 3912 CmpInst::Predicate Pred; 3913 Value *X; 3914 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3915 return nullptr; 3916 3917 if (ICmpInst::isSigned(Pred)) 3918 Pred = ICmpInst::getSwappedPredicate(Pred); 3919 else if (ICmpInst::isUnsigned(Pred)) 3920 Pred = ICmpInst::getSignedPredicate(Pred); 3921 // else for equality-comparisons just keep the predicate. 3922 3923 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3924 Constant::getNullValue(X->getType()), I.getName()); 3925 } 3926 3927 /// Try to fold icmp (binop), X or icmp X, (binop). 3928 /// TODO: A large part of this logic is duplicated in InstSimplify's 3929 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3930 /// duplication. 3931 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3932 const SimplifyQuery &SQ) { 3933 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3934 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3935 3936 // Special logic for binary operators. 3937 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3938 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3939 if (!BO0 && !BO1) 3940 return nullptr; 3941 3942 if (Instruction *NewICmp = foldICmpXNegX(I)) 3943 return NewICmp; 3944 3945 const CmpInst::Predicate Pred = I.getPredicate(); 3946 Value *X; 3947 3948 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3949 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3950 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3951 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3952 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3953 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3954 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3955 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3956 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3957 3958 { 3959 // Similar to above: an unsigned overflow comparison may use offset + mask: 3960 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 3961 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 3962 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 3963 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 3964 BinaryOperator *BO; 3965 const APInt *C; 3966 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 3967 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3968 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 3969 CmpInst::Predicate NewPred = 3970 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3971 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3972 return new ICmpInst(NewPred, Op1, Zero); 3973 } 3974 3975 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 3976 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 3977 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 3978 CmpInst::Predicate NewPred = 3979 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 3980 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 3981 return new ICmpInst(NewPred, Op0, Zero); 3982 } 3983 } 3984 3985 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3986 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3987 NoOp0WrapProblem = 3988 ICmpInst::isEquality(Pred) || 3989 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3990 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3991 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3992 NoOp1WrapProblem = 3993 ICmpInst::isEquality(Pred) || 3994 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3995 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3996 3997 // Analyze the case when either Op0 or Op1 is an add instruction. 3998 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3999 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4000 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4001 A = BO0->getOperand(0); 4002 B = BO0->getOperand(1); 4003 } 4004 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4005 C = BO1->getOperand(0); 4006 D = BO1->getOperand(1); 4007 } 4008 4009 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4010 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4011 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4012 return new ICmpInst(Pred, A == Op1 ? B : A, 4013 Constant::getNullValue(Op1->getType())); 4014 4015 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4016 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4017 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4018 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4019 C == Op0 ? D : C); 4020 4021 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4022 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4023 NoOp1WrapProblem) { 4024 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4025 Value *Y, *Z; 4026 if (A == C) { 4027 // C + B == C + D -> B == D 4028 Y = B; 4029 Z = D; 4030 } else if (A == D) { 4031 // D + B == C + D -> B == C 4032 Y = B; 4033 Z = C; 4034 } else if (B == C) { 4035 // A + C == C + D -> A == D 4036 Y = A; 4037 Z = D; 4038 } else { 4039 assert(B == D); 4040 // A + D == C + D -> A == C 4041 Y = A; 4042 Z = C; 4043 } 4044 return new ICmpInst(Pred, Y, Z); 4045 } 4046 4047 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4048 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4049 match(B, m_AllOnes())) 4050 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4051 4052 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4053 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4054 match(B, m_AllOnes())) 4055 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4056 4057 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4058 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4059 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4060 4061 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4062 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4063 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4064 4065 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4066 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4067 match(D, m_AllOnes())) 4068 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4069 4070 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4071 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4072 match(D, m_AllOnes())) 4073 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4074 4075 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4076 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4077 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4078 4079 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4080 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4081 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4082 4083 // TODO: The subtraction-related identities shown below also hold, but 4084 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4085 // wouldn't happen even if they were implemented. 4086 // 4087 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4088 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4089 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4090 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4091 4092 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4093 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4094 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4095 4096 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4097 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4098 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4099 4100 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4101 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4102 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4103 4104 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4105 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4106 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4107 4108 // if C1 has greater magnitude than C2: 4109 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4110 // s.t. C3 = C1 - C2 4111 // 4112 // if C2 has greater magnitude than C1: 4113 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4114 // s.t. C3 = C2 - C1 4115 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4116 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4117 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4118 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4119 const APInt &AP1 = C1->getValue(); 4120 const APInt &AP2 = C2->getValue(); 4121 if (AP1.isNegative() == AP2.isNegative()) { 4122 APInt AP1Abs = C1->getValue().abs(); 4123 APInt AP2Abs = C2->getValue().abs(); 4124 if (AP1Abs.uge(AP2Abs)) { 4125 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4126 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4127 bool HasNSW = BO0->hasNoSignedWrap(); 4128 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4129 return new ICmpInst(Pred, NewAdd, C); 4130 } else { 4131 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4132 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4133 bool HasNSW = BO1->hasNoSignedWrap(); 4134 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4135 return new ICmpInst(Pred, A, NewAdd); 4136 } 4137 } 4138 } 4139 4140 // Analyze the case when either Op0 or Op1 is a sub instruction. 4141 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4142 A = nullptr; 4143 B = nullptr; 4144 C = nullptr; 4145 D = nullptr; 4146 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4147 A = BO0->getOperand(0); 4148 B = BO0->getOperand(1); 4149 } 4150 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4151 C = BO1->getOperand(0); 4152 D = BO1->getOperand(1); 4153 } 4154 4155 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4156 if (A == Op1 && NoOp0WrapProblem) 4157 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4158 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4159 if (C == Op0 && NoOp1WrapProblem) 4160 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4161 4162 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4163 // (A - B) u>/u<= A --> B u>/u<= A 4164 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4165 return new ICmpInst(Pred, B, A); 4166 // C u</u>= (C - D) --> C u</u>= D 4167 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4168 return new ICmpInst(Pred, C, D); 4169 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4170 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4171 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4172 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4173 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4174 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4175 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4176 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4177 4178 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4179 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4180 return new ICmpInst(Pred, A, C); 4181 4182 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4183 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4184 return new ICmpInst(Pred, D, B); 4185 4186 // icmp (0-X) < cst --> x > -cst 4187 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4188 Value *X; 4189 if (match(BO0, m_Neg(m_Value(X)))) 4190 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4191 if (RHSC->isNotMinSignedValue()) 4192 return new ICmpInst(I.getSwappedPredicate(), X, 4193 ConstantExpr::getNeg(RHSC)); 4194 } 4195 4196 { 4197 // Try to remove shared constant multiplier from equality comparison: 4198 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4199 Value *X, *Y; 4200 const APInt *C; 4201 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4202 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4203 if (!C->countTrailingZeros() || 4204 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4205 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4206 return new ICmpInst(Pred, X, Y); 4207 } 4208 4209 BinaryOperator *SRem = nullptr; 4210 // icmp (srem X, Y), Y 4211 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4212 SRem = BO0; 4213 // icmp Y, (srem X, Y) 4214 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4215 Op0 == BO1->getOperand(1)) 4216 SRem = BO1; 4217 if (SRem) { 4218 // We don't check hasOneUse to avoid increasing register pressure because 4219 // the value we use is the same value this instruction was already using. 4220 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4221 default: 4222 break; 4223 case ICmpInst::ICMP_EQ: 4224 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4225 case ICmpInst::ICMP_NE: 4226 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4227 case ICmpInst::ICMP_SGT: 4228 case ICmpInst::ICMP_SGE: 4229 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4230 Constant::getAllOnesValue(SRem->getType())); 4231 case ICmpInst::ICMP_SLT: 4232 case ICmpInst::ICMP_SLE: 4233 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4234 Constant::getNullValue(SRem->getType())); 4235 } 4236 } 4237 4238 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4239 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4240 switch (BO0->getOpcode()) { 4241 default: 4242 break; 4243 case Instruction::Add: 4244 case Instruction::Sub: 4245 case Instruction::Xor: { 4246 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4247 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4248 4249 const APInt *C; 4250 if (match(BO0->getOperand(1), m_APInt(C))) { 4251 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4252 if (C->isSignMask()) { 4253 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4254 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4255 } 4256 4257 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4258 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4259 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4260 NewPred = I.getSwappedPredicate(NewPred); 4261 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4262 } 4263 } 4264 break; 4265 } 4266 case Instruction::Mul: { 4267 if (!I.isEquality()) 4268 break; 4269 4270 const APInt *C; 4271 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4272 !C->isOne()) { 4273 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4274 // Mask = -1 >> count-trailing-zeros(C). 4275 if (unsigned TZs = C->countTrailingZeros()) { 4276 Constant *Mask = ConstantInt::get( 4277 BO0->getType(), 4278 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4279 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4280 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4281 return new ICmpInst(Pred, And1, And2); 4282 } 4283 } 4284 break; 4285 } 4286 case Instruction::UDiv: 4287 case Instruction::LShr: 4288 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4289 break; 4290 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4291 4292 case Instruction::SDiv: 4293 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4294 break; 4295 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4296 4297 case Instruction::AShr: 4298 if (!BO0->isExact() || !BO1->isExact()) 4299 break; 4300 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4301 4302 case Instruction::Shl: { 4303 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4304 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4305 if (!NUW && !NSW) 4306 break; 4307 if (!NSW && I.isSigned()) 4308 break; 4309 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4310 } 4311 } 4312 } 4313 4314 if (BO0) { 4315 // Transform A & (L - 1) `ult` L --> L != 0 4316 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4317 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4318 4319 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4320 auto *Zero = Constant::getNullValue(BO0->getType()); 4321 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4322 } 4323 } 4324 4325 if (Value *V = foldMultiplicationOverflowCheck(I)) 4326 return replaceInstUsesWith(I, V); 4327 4328 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4329 return replaceInstUsesWith(I, V); 4330 4331 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4332 return replaceInstUsesWith(I, V); 4333 4334 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4335 return replaceInstUsesWith(I, V); 4336 4337 return nullptr; 4338 } 4339 4340 /// Fold icmp Pred min|max(X, Y), X. 4341 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4342 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4343 Value *Op0 = Cmp.getOperand(0); 4344 Value *X = Cmp.getOperand(1); 4345 4346 // Canonicalize minimum or maximum operand to LHS of the icmp. 4347 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4348 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4349 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4350 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4351 std::swap(Op0, X); 4352 Pred = Cmp.getSwappedPredicate(); 4353 } 4354 4355 Value *Y; 4356 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4357 // smin(X, Y) == X --> X s<= Y 4358 // smin(X, Y) s>= X --> X s<= Y 4359 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4360 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4361 4362 // smin(X, Y) != X --> X s> Y 4363 // smin(X, Y) s< X --> X s> Y 4364 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4365 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4366 4367 // These cases should be handled in InstSimplify: 4368 // smin(X, Y) s<= X --> true 4369 // smin(X, Y) s> X --> false 4370 return nullptr; 4371 } 4372 4373 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4374 // smax(X, Y) == X --> X s>= Y 4375 // smax(X, Y) s<= X --> X s>= Y 4376 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4377 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4378 4379 // smax(X, Y) != X --> X s< Y 4380 // smax(X, Y) s> X --> X s< Y 4381 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4382 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4383 4384 // These cases should be handled in InstSimplify: 4385 // smax(X, Y) s>= X --> true 4386 // smax(X, Y) s< X --> false 4387 return nullptr; 4388 } 4389 4390 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4391 // umin(X, Y) == X --> X u<= Y 4392 // umin(X, Y) u>= X --> X u<= Y 4393 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4394 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4395 4396 // umin(X, Y) != X --> X u> Y 4397 // umin(X, Y) u< X --> X u> Y 4398 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4399 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4400 4401 // These cases should be handled in InstSimplify: 4402 // umin(X, Y) u<= X --> true 4403 // umin(X, Y) u> X --> false 4404 return nullptr; 4405 } 4406 4407 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4408 // umax(X, Y) == X --> X u>= Y 4409 // umax(X, Y) u<= X --> X u>= Y 4410 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4411 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4412 4413 // umax(X, Y) != X --> X u< Y 4414 // umax(X, Y) u> X --> X u< Y 4415 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4416 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4417 4418 // These cases should be handled in InstSimplify: 4419 // umax(X, Y) u>= X --> true 4420 // umax(X, Y) u< X --> false 4421 return nullptr; 4422 } 4423 4424 return nullptr; 4425 } 4426 4427 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4428 if (!I.isEquality()) 4429 return nullptr; 4430 4431 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4432 const CmpInst::Predicate Pred = I.getPredicate(); 4433 Value *A, *B, *C, *D; 4434 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4435 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4436 Value *OtherVal = A == Op1 ? B : A; 4437 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4438 } 4439 4440 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4441 // A^c1 == C^c2 --> A == C^(c1^c2) 4442 ConstantInt *C1, *C2; 4443 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4444 Op1->hasOneUse()) { 4445 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4446 Value *Xor = Builder.CreateXor(C, NC); 4447 return new ICmpInst(Pred, A, Xor); 4448 } 4449 4450 // A^B == A^D -> B == D 4451 if (A == C) 4452 return new ICmpInst(Pred, B, D); 4453 if (A == D) 4454 return new ICmpInst(Pred, B, C); 4455 if (B == C) 4456 return new ICmpInst(Pred, A, D); 4457 if (B == D) 4458 return new ICmpInst(Pred, A, C); 4459 } 4460 } 4461 4462 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4463 // A == (A^B) -> B == 0 4464 Value *OtherVal = A == Op0 ? B : A; 4465 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4466 } 4467 4468 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4469 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4470 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4471 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4472 4473 if (A == C) { 4474 X = B; 4475 Y = D; 4476 Z = A; 4477 } else if (A == D) { 4478 X = B; 4479 Y = C; 4480 Z = A; 4481 } else if (B == C) { 4482 X = A; 4483 Y = D; 4484 Z = B; 4485 } else if (B == D) { 4486 X = A; 4487 Y = C; 4488 Z = B; 4489 } 4490 4491 if (X) { // Build (X^Y) & Z 4492 Op1 = Builder.CreateXor(X, Y); 4493 Op1 = Builder.CreateAnd(Op1, Z); 4494 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4495 } 4496 } 4497 4498 { 4499 // Similar to above, but specialized for constant because invert is needed: 4500 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4501 Value *X, *Y; 4502 Constant *C; 4503 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4504 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4505 Value *Xor = Builder.CreateXor(X, Y); 4506 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4507 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4508 } 4509 } 4510 4511 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4512 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4513 ConstantInt *Cst1; 4514 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4515 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4516 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4517 match(Op1, m_ZExt(m_Value(A))))) { 4518 APInt Pow2 = Cst1->getValue() + 1; 4519 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4520 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4521 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4522 } 4523 4524 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4525 // For lshr and ashr pairs. 4526 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4527 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4528 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4529 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4530 unsigned TypeBits = Cst1->getBitWidth(); 4531 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4532 if (ShAmt < TypeBits && ShAmt != 0) { 4533 ICmpInst::Predicate NewPred = 4534 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4535 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4536 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4537 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4538 } 4539 } 4540 4541 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4542 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4543 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4544 unsigned TypeBits = Cst1->getBitWidth(); 4545 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4546 if (ShAmt < TypeBits && ShAmt != 0) { 4547 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4548 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4549 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4550 I.getName() + ".mask"); 4551 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4552 } 4553 } 4554 4555 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4556 // "icmp (and X, mask), cst" 4557 uint64_t ShAmt = 0; 4558 if (Op0->hasOneUse() && 4559 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4560 match(Op1, m_ConstantInt(Cst1)) && 4561 // Only do this when A has multiple uses. This is most important to do 4562 // when it exposes other optimizations. 4563 !A->hasOneUse()) { 4564 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4565 4566 if (ShAmt < ASize) { 4567 APInt MaskV = 4568 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4569 MaskV <<= ShAmt; 4570 4571 APInt CmpV = Cst1->getValue().zext(ASize); 4572 CmpV <<= ShAmt; 4573 4574 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4575 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4576 } 4577 } 4578 4579 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4580 return ICmp; 4581 4582 // Canonicalize checking for a power-of-2-or-zero value: 4583 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4584 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4585 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4586 m_Deferred(A)))) || 4587 !match(Op1, m_ZeroInt())) 4588 A = nullptr; 4589 4590 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4591 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4592 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4593 A = Op1; 4594 else if (match(Op1, 4595 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4596 A = Op0; 4597 4598 if (A) { 4599 Type *Ty = A->getType(); 4600 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4601 return Pred == ICmpInst::ICMP_EQ 4602 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4603 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4604 } 4605 4606 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4607 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4608 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4609 // of instcombine. 4610 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4611 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4612 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4613 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4614 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4615 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4616 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4617 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4618 : ICmpInst::ICMP_UGE, 4619 Add, ConstantInt::get(A->getType(), C.shl(1))); 4620 } 4621 4622 return nullptr; 4623 } 4624 4625 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4626 InstCombiner::BuilderTy &Builder) { 4627 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4628 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4629 4630 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4631 // The trunc masks high bits while the compare may effectively mask low bits. 4632 Value *X; 4633 const APInt *C; 4634 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4635 return nullptr; 4636 4637 // This matches patterns corresponding to tests of the signbit as well as: 4638 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4639 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4640 APInt Mask; 4641 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4642 Value *And = Builder.CreateAnd(X, Mask); 4643 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4644 return new ICmpInst(Pred, And, Zero); 4645 } 4646 4647 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4648 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4649 // If C is a negative power-of-2 (high-bit mask): 4650 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4651 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4652 Value *And = Builder.CreateAnd(X, MaskC); 4653 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4654 } 4655 4656 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4657 // If C is not-of-power-of-2 (one clear bit): 4658 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4659 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4660 Value *And = Builder.CreateAnd(X, MaskC); 4661 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4662 } 4663 4664 return nullptr; 4665 } 4666 4667 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4668 InstCombiner::BuilderTy &Builder) { 4669 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4670 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4671 Value *X; 4672 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4673 return nullptr; 4674 4675 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4676 bool IsSignedCmp = ICmp.isSigned(); 4677 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4678 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4679 // and the other is a zext), then we can't handle this. 4680 // TODO: This is too strict. We can handle some predicates (equality?). 4681 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4682 return nullptr; 4683 4684 // Not an extension from the same type? 4685 Value *Y = CastOp1->getOperand(0); 4686 Type *XTy = X->getType(), *YTy = Y->getType(); 4687 if (XTy != YTy) { 4688 // One of the casts must have one use because we are creating a new cast. 4689 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4690 return nullptr; 4691 // Extend the narrower operand to the type of the wider operand. 4692 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4693 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4694 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4695 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4696 else 4697 return nullptr; 4698 } 4699 4700 // (zext X) == (zext Y) --> X == Y 4701 // (sext X) == (sext Y) --> X == Y 4702 if (ICmp.isEquality()) 4703 return new ICmpInst(ICmp.getPredicate(), X, Y); 4704 4705 // A signed comparison of sign extended values simplifies into a 4706 // signed comparison. 4707 if (IsSignedCmp && IsSignedExt) 4708 return new ICmpInst(ICmp.getPredicate(), X, Y); 4709 4710 // The other three cases all fold into an unsigned comparison. 4711 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4712 } 4713 4714 // Below here, we are only folding a compare with constant. 4715 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4716 if (!C) 4717 return nullptr; 4718 4719 // Compute the constant that would happen if we truncated to SrcTy then 4720 // re-extended to DestTy. 4721 Type *SrcTy = CastOp0->getSrcTy(); 4722 Type *DestTy = CastOp0->getDestTy(); 4723 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4724 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4725 4726 // If the re-extended constant didn't change... 4727 if (Res2 == C) { 4728 if (ICmp.isEquality()) 4729 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4730 4731 // A signed comparison of sign extended values simplifies into a 4732 // signed comparison. 4733 if (IsSignedExt && IsSignedCmp) 4734 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4735 4736 // The other three cases all fold into an unsigned comparison. 4737 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4738 } 4739 4740 // The re-extended constant changed, partly changed (in the case of a vector), 4741 // or could not be determined to be equal (in the case of a constant 4742 // expression), so the constant cannot be represented in the shorter type. 4743 // All the cases that fold to true or false will have already been handled 4744 // by SimplifyICmpInst, so only deal with the tricky case. 4745 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4746 return nullptr; 4747 4748 // Is source op positive? 4749 // icmp ult (sext X), C --> icmp sgt X, -1 4750 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4751 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4752 4753 // Is source op negative? 4754 // icmp ugt (sext X), C --> icmp slt X, 0 4755 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4756 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4757 } 4758 4759 /// Handle icmp (cast x), (cast or constant). 4760 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4761 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4762 // icmp compares only pointer's value. 4763 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4764 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4765 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4766 if (SimplifiedOp0 || SimplifiedOp1) 4767 return new ICmpInst(ICmp.getPredicate(), 4768 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4769 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4770 4771 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4772 if (!CastOp0) 4773 return nullptr; 4774 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4775 return nullptr; 4776 4777 Value *Op0Src = CastOp0->getOperand(0); 4778 Type *SrcTy = CastOp0->getSrcTy(); 4779 Type *DestTy = CastOp0->getDestTy(); 4780 4781 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4782 // integer type is the same size as the pointer type. 4783 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4784 if (isa<VectorType>(SrcTy)) { 4785 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4786 DestTy = cast<VectorType>(DestTy)->getElementType(); 4787 } 4788 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4789 }; 4790 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4791 CompatibleSizes(SrcTy, DestTy)) { 4792 Value *NewOp1 = nullptr; 4793 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4794 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4795 if (PtrSrc->getType()->getPointerAddressSpace() == 4796 Op0Src->getType()->getPointerAddressSpace()) { 4797 NewOp1 = PtrToIntOp1->getOperand(0); 4798 // If the pointer types don't match, insert a bitcast. 4799 if (Op0Src->getType() != NewOp1->getType()) 4800 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4801 } 4802 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4803 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4804 } 4805 4806 if (NewOp1) 4807 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4808 } 4809 4810 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4811 return R; 4812 4813 return foldICmpWithZextOrSext(ICmp, Builder); 4814 } 4815 4816 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4817 switch (BinaryOp) { 4818 default: 4819 llvm_unreachable("Unsupported binary op"); 4820 case Instruction::Add: 4821 case Instruction::Sub: 4822 return match(RHS, m_Zero()); 4823 case Instruction::Mul: 4824 return match(RHS, m_One()); 4825 } 4826 } 4827 4828 OverflowResult 4829 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4830 bool IsSigned, Value *LHS, Value *RHS, 4831 Instruction *CxtI) const { 4832 switch (BinaryOp) { 4833 default: 4834 llvm_unreachable("Unsupported binary op"); 4835 case Instruction::Add: 4836 if (IsSigned) 4837 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4838 else 4839 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4840 case Instruction::Sub: 4841 if (IsSigned) 4842 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4843 else 4844 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4845 case Instruction::Mul: 4846 if (IsSigned) 4847 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4848 else 4849 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4850 } 4851 } 4852 4853 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4854 bool IsSigned, Value *LHS, 4855 Value *RHS, Instruction &OrigI, 4856 Value *&Result, 4857 Constant *&Overflow) { 4858 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4859 std::swap(LHS, RHS); 4860 4861 // If the overflow check was an add followed by a compare, the insertion point 4862 // may be pointing to the compare. We want to insert the new instructions 4863 // before the add in case there are uses of the add between the add and the 4864 // compare. 4865 Builder.SetInsertPoint(&OrigI); 4866 4867 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4868 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4869 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4870 4871 if (isNeutralValue(BinaryOp, RHS)) { 4872 Result = LHS; 4873 Overflow = ConstantInt::getFalse(OverflowTy); 4874 return true; 4875 } 4876 4877 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4878 case OverflowResult::MayOverflow: 4879 return false; 4880 case OverflowResult::AlwaysOverflowsLow: 4881 case OverflowResult::AlwaysOverflowsHigh: 4882 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4883 Result->takeName(&OrigI); 4884 Overflow = ConstantInt::getTrue(OverflowTy); 4885 return true; 4886 case OverflowResult::NeverOverflows: 4887 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4888 Result->takeName(&OrigI); 4889 Overflow = ConstantInt::getFalse(OverflowTy); 4890 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4891 if (IsSigned) 4892 Inst->setHasNoSignedWrap(); 4893 else 4894 Inst->setHasNoUnsignedWrap(); 4895 } 4896 return true; 4897 } 4898 4899 llvm_unreachable("Unexpected overflow result"); 4900 } 4901 4902 /// Recognize and process idiom involving test for multiplication 4903 /// overflow. 4904 /// 4905 /// The caller has matched a pattern of the form: 4906 /// I = cmp u (mul(zext A, zext B), V 4907 /// The function checks if this is a test for overflow and if so replaces 4908 /// multiplication with call to 'mul.with.overflow' intrinsic. 4909 /// 4910 /// \param I Compare instruction. 4911 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4912 /// the compare instruction. Must be of integer type. 4913 /// \param OtherVal The other argument of compare instruction. 4914 /// \returns Instruction which must replace the compare instruction, NULL if no 4915 /// replacement required. 4916 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4917 Value *OtherVal, 4918 InstCombinerImpl &IC) { 4919 // Don't bother doing this transformation for pointers, don't do it for 4920 // vectors. 4921 if (!isa<IntegerType>(MulVal->getType())) 4922 return nullptr; 4923 4924 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4925 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4926 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4927 if (!MulInstr) 4928 return nullptr; 4929 assert(MulInstr->getOpcode() == Instruction::Mul); 4930 4931 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4932 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4933 assert(LHS->getOpcode() == Instruction::ZExt); 4934 assert(RHS->getOpcode() == Instruction::ZExt); 4935 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4936 4937 // Calculate type and width of the result produced by mul.with.overflow. 4938 Type *TyA = A->getType(), *TyB = B->getType(); 4939 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4940 WidthB = TyB->getPrimitiveSizeInBits(); 4941 unsigned MulWidth; 4942 Type *MulType; 4943 if (WidthB > WidthA) { 4944 MulWidth = WidthB; 4945 MulType = TyB; 4946 } else { 4947 MulWidth = WidthA; 4948 MulType = TyA; 4949 } 4950 4951 // In order to replace the original mul with a narrower mul.with.overflow, 4952 // all uses must ignore upper bits of the product. The number of used low 4953 // bits must be not greater than the width of mul.with.overflow. 4954 if (MulVal->hasNUsesOrMore(2)) 4955 for (User *U : MulVal->users()) { 4956 if (U == &I) 4957 continue; 4958 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4959 // Check if truncation ignores bits above MulWidth. 4960 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4961 if (TruncWidth > MulWidth) 4962 return nullptr; 4963 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4964 // Check if AND ignores bits above MulWidth. 4965 if (BO->getOpcode() != Instruction::And) 4966 return nullptr; 4967 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4968 const APInt &CVal = CI->getValue(); 4969 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4970 return nullptr; 4971 } else { 4972 // In this case we could have the operand of the binary operation 4973 // being defined in another block, and performing the replacement 4974 // could break the dominance relation. 4975 return nullptr; 4976 } 4977 } else { 4978 // Other uses prohibit this transformation. 4979 return nullptr; 4980 } 4981 } 4982 4983 // Recognize patterns 4984 switch (I.getPredicate()) { 4985 case ICmpInst::ICMP_EQ: 4986 case ICmpInst::ICMP_NE: 4987 // Recognize pattern: 4988 // mulval = mul(zext A, zext B) 4989 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4990 ConstantInt *CI; 4991 Value *ValToMask; 4992 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4993 if (ValToMask != MulVal) 4994 return nullptr; 4995 const APInt &CVal = CI->getValue() + 1; 4996 if (CVal.isPowerOf2()) { 4997 unsigned MaskWidth = CVal.logBase2(); 4998 if (MaskWidth == MulWidth) 4999 break; // Recognized 5000 } 5001 } 5002 return nullptr; 5003 5004 case ICmpInst::ICMP_UGT: 5005 // Recognize pattern: 5006 // mulval = mul(zext A, zext B) 5007 // cmp ugt mulval, max 5008 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5009 APInt MaxVal = APInt::getMaxValue(MulWidth); 5010 MaxVal = MaxVal.zext(CI->getBitWidth()); 5011 if (MaxVal.eq(CI->getValue())) 5012 break; // Recognized 5013 } 5014 return nullptr; 5015 5016 case ICmpInst::ICMP_UGE: 5017 // Recognize pattern: 5018 // mulval = mul(zext A, zext B) 5019 // cmp uge mulval, max+1 5020 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5021 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5022 if (MaxVal.eq(CI->getValue())) 5023 break; // Recognized 5024 } 5025 return nullptr; 5026 5027 case ICmpInst::ICMP_ULE: 5028 // Recognize pattern: 5029 // mulval = mul(zext A, zext B) 5030 // cmp ule mulval, max 5031 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5032 APInt MaxVal = APInt::getMaxValue(MulWidth); 5033 MaxVal = MaxVal.zext(CI->getBitWidth()); 5034 if (MaxVal.eq(CI->getValue())) 5035 break; // Recognized 5036 } 5037 return nullptr; 5038 5039 case ICmpInst::ICMP_ULT: 5040 // Recognize pattern: 5041 // mulval = mul(zext A, zext B) 5042 // cmp ule mulval, max + 1 5043 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5044 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5045 if (MaxVal.eq(CI->getValue())) 5046 break; // Recognized 5047 } 5048 return nullptr; 5049 5050 default: 5051 return nullptr; 5052 } 5053 5054 InstCombiner::BuilderTy &Builder = IC.Builder; 5055 Builder.SetInsertPoint(MulInstr); 5056 5057 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5058 Value *MulA = A, *MulB = B; 5059 if (WidthA < MulWidth) 5060 MulA = Builder.CreateZExt(A, MulType); 5061 if (WidthB < MulWidth) 5062 MulB = Builder.CreateZExt(B, MulType); 5063 Function *F = Intrinsic::getDeclaration( 5064 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5065 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5066 IC.addToWorklist(MulInstr); 5067 5068 // If there are uses of mul result other than the comparison, we know that 5069 // they are truncation or binary AND. Change them to use result of 5070 // mul.with.overflow and adjust properly mask/size. 5071 if (MulVal->hasNUsesOrMore(2)) { 5072 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5073 for (User *U : make_early_inc_range(MulVal->users())) { 5074 if (U == &I || U == OtherVal) 5075 continue; 5076 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5077 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5078 IC.replaceInstUsesWith(*TI, Mul); 5079 else 5080 TI->setOperand(0, Mul); 5081 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5082 assert(BO->getOpcode() == Instruction::And); 5083 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5084 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5085 APInt ShortMask = CI->getValue().trunc(MulWidth); 5086 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5087 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5088 IC.replaceInstUsesWith(*BO, Zext); 5089 } else { 5090 llvm_unreachable("Unexpected Binary operation"); 5091 } 5092 IC.addToWorklist(cast<Instruction>(U)); 5093 } 5094 } 5095 if (isa<Instruction>(OtherVal)) 5096 IC.addToWorklist(cast<Instruction>(OtherVal)); 5097 5098 // The original icmp gets replaced with the overflow value, maybe inverted 5099 // depending on predicate. 5100 bool Inverse = false; 5101 switch (I.getPredicate()) { 5102 case ICmpInst::ICMP_NE: 5103 break; 5104 case ICmpInst::ICMP_EQ: 5105 Inverse = true; 5106 break; 5107 case ICmpInst::ICMP_UGT: 5108 case ICmpInst::ICMP_UGE: 5109 if (I.getOperand(0) == MulVal) 5110 break; 5111 Inverse = true; 5112 break; 5113 case ICmpInst::ICMP_ULT: 5114 case ICmpInst::ICMP_ULE: 5115 if (I.getOperand(1) == MulVal) 5116 break; 5117 Inverse = true; 5118 break; 5119 default: 5120 llvm_unreachable("Unexpected predicate"); 5121 } 5122 if (Inverse) { 5123 Value *Res = Builder.CreateExtractValue(Call, 1); 5124 return BinaryOperator::CreateNot(Res); 5125 } 5126 5127 return ExtractValueInst::Create(Call, 1); 5128 } 5129 5130 /// When performing a comparison against a constant, it is possible that not all 5131 /// the bits in the LHS are demanded. This helper method computes the mask that 5132 /// IS demanded. 5133 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5134 const APInt *RHS; 5135 if (!match(I.getOperand(1), m_APInt(RHS))) 5136 return APInt::getAllOnes(BitWidth); 5137 5138 // If this is a normal comparison, it demands all bits. If it is a sign bit 5139 // comparison, it only demands the sign bit. 5140 bool UnusedBit; 5141 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5142 return APInt::getSignMask(BitWidth); 5143 5144 switch (I.getPredicate()) { 5145 // For a UGT comparison, we don't care about any bits that 5146 // correspond to the trailing ones of the comparand. The value of these 5147 // bits doesn't impact the outcome of the comparison, because any value 5148 // greater than the RHS must differ in a bit higher than these due to carry. 5149 case ICmpInst::ICMP_UGT: 5150 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5151 5152 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5153 // Any value less than the RHS must differ in a higher bit because of carries. 5154 case ICmpInst::ICMP_ULT: 5155 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5156 5157 default: 5158 return APInt::getAllOnes(BitWidth); 5159 } 5160 } 5161 5162 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5163 /// should be swapped. 5164 /// The decision is based on how many times these two operands are reused 5165 /// as subtract operands and their positions in those instructions. 5166 /// The rationale is that several architectures use the same instruction for 5167 /// both subtract and cmp. Thus, it is better if the order of those operands 5168 /// match. 5169 /// \return true if Op0 and Op1 should be swapped. 5170 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5171 // Filter out pointer values as those cannot appear directly in subtract. 5172 // FIXME: we may want to go through inttoptrs or bitcasts. 5173 if (Op0->getType()->isPointerTy()) 5174 return false; 5175 // If a subtract already has the same operands as a compare, swapping would be 5176 // bad. If a subtract has the same operands as a compare but in reverse order, 5177 // then swapping is good. 5178 int GoodToSwap = 0; 5179 for (const User *U : Op0->users()) { 5180 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5181 GoodToSwap++; 5182 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5183 GoodToSwap--; 5184 } 5185 return GoodToSwap > 0; 5186 } 5187 5188 /// Check that one use is in the same block as the definition and all 5189 /// other uses are in blocks dominated by a given block. 5190 /// 5191 /// \param DI Definition 5192 /// \param UI Use 5193 /// \param DB Block that must dominate all uses of \p DI outside 5194 /// the parent block 5195 /// \return true when \p UI is the only use of \p DI in the parent block 5196 /// and all other uses of \p DI are in blocks dominated by \p DB. 5197 /// 5198 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5199 const Instruction *UI, 5200 const BasicBlock *DB) const { 5201 assert(DI && UI && "Instruction not defined\n"); 5202 // Ignore incomplete definitions. 5203 if (!DI->getParent()) 5204 return false; 5205 // DI and UI must be in the same block. 5206 if (DI->getParent() != UI->getParent()) 5207 return false; 5208 // Protect from self-referencing blocks. 5209 if (DI->getParent() == DB) 5210 return false; 5211 for (const User *U : DI->users()) { 5212 auto *Usr = cast<Instruction>(U); 5213 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5214 return false; 5215 } 5216 return true; 5217 } 5218 5219 /// Return true when the instruction sequence within a block is select-cmp-br. 5220 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5221 const BasicBlock *BB = SI->getParent(); 5222 if (!BB) 5223 return false; 5224 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5225 if (!BI || BI->getNumSuccessors() != 2) 5226 return false; 5227 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5228 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5229 return false; 5230 return true; 5231 } 5232 5233 /// True when a select result is replaced by one of its operands 5234 /// in select-icmp sequence. This will eventually result in the elimination 5235 /// of the select. 5236 /// 5237 /// \param SI Select instruction 5238 /// \param Icmp Compare instruction 5239 /// \param SIOpd Operand that replaces the select 5240 /// 5241 /// Notes: 5242 /// - The replacement is global and requires dominator information 5243 /// - The caller is responsible for the actual replacement 5244 /// 5245 /// Example: 5246 /// 5247 /// entry: 5248 /// %4 = select i1 %3, %C* %0, %C* null 5249 /// %5 = icmp eq %C* %4, null 5250 /// br i1 %5, label %9, label %7 5251 /// ... 5252 /// ; <label>:7 ; preds = %entry 5253 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5254 /// ... 5255 /// 5256 /// can be transformed to 5257 /// 5258 /// %5 = icmp eq %C* %0, null 5259 /// %6 = select i1 %3, i1 %5, i1 true 5260 /// br i1 %6, label %9, label %7 5261 /// ... 5262 /// ; <label>:7 ; preds = %entry 5263 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5264 /// 5265 /// Similar when the first operand of the select is a constant or/and 5266 /// the compare is for not equal rather than equal. 5267 /// 5268 /// NOTE: The function is only called when the select and compare constants 5269 /// are equal, the optimization can work only for EQ predicates. This is not a 5270 /// major restriction since a NE compare should be 'normalized' to an equal 5271 /// compare, which usually happens in the combiner and test case 5272 /// select-cmp-br.ll checks for it. 5273 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5274 const ICmpInst *Icmp, 5275 const unsigned SIOpd) { 5276 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5277 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5278 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5279 // The check for the single predecessor is not the best that can be 5280 // done. But it protects efficiently against cases like when SI's 5281 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5282 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5283 // replaced can be reached on either path. So the uniqueness check 5284 // guarantees that the path all uses of SI (outside SI's parent) are on 5285 // is disjoint from all other paths out of SI. But that information 5286 // is more expensive to compute, and the trade-off here is in favor 5287 // of compile-time. It should also be noticed that we check for a single 5288 // predecessor and not only uniqueness. This to handle the situation when 5289 // Succ and Succ1 points to the same basic block. 5290 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5291 NumSel++; 5292 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5293 return true; 5294 } 5295 } 5296 return false; 5297 } 5298 5299 /// Try to fold the comparison based on range information we can get by checking 5300 /// whether bits are known to be zero or one in the inputs. 5301 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5302 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5303 Type *Ty = Op0->getType(); 5304 ICmpInst::Predicate Pred = I.getPredicate(); 5305 5306 // Get scalar or pointer size. 5307 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5308 ? Ty->getScalarSizeInBits() 5309 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5310 5311 if (!BitWidth) 5312 return nullptr; 5313 5314 KnownBits Op0Known(BitWidth); 5315 KnownBits Op1Known(BitWidth); 5316 5317 if (SimplifyDemandedBits(&I, 0, 5318 getDemandedBitsLHSMask(I, BitWidth), 5319 Op0Known, 0)) 5320 return &I; 5321 5322 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5323 return &I; 5324 5325 // Given the known and unknown bits, compute a range that the LHS could be 5326 // in. Compute the Min, Max and RHS values based on the known bits. For the 5327 // EQ and NE we use unsigned values. 5328 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5329 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5330 if (I.isSigned()) { 5331 Op0Min = Op0Known.getSignedMinValue(); 5332 Op0Max = Op0Known.getSignedMaxValue(); 5333 Op1Min = Op1Known.getSignedMinValue(); 5334 Op1Max = Op1Known.getSignedMaxValue(); 5335 } else { 5336 Op0Min = Op0Known.getMinValue(); 5337 Op0Max = Op0Known.getMaxValue(); 5338 Op1Min = Op1Known.getMinValue(); 5339 Op1Max = Op1Known.getMaxValue(); 5340 } 5341 5342 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5343 // out that the LHS or RHS is a constant. Constant fold this now, so that 5344 // code below can assume that Min != Max. 5345 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5346 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5347 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5348 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5349 5350 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5351 // min/max canonical compare with some other compare. That could lead to 5352 // conflict with select canonicalization and infinite looping. 5353 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5354 auto isMinMaxCmp = [&](Instruction &Cmp) { 5355 if (!Cmp.hasOneUse()) 5356 return false; 5357 Value *A, *B; 5358 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5359 if (!SelectPatternResult::isMinOrMax(SPF)) 5360 return false; 5361 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5362 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5363 }; 5364 if (!isMinMaxCmp(I)) { 5365 switch (Pred) { 5366 default: 5367 break; 5368 case ICmpInst::ICMP_ULT: { 5369 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5370 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5371 const APInt *CmpC; 5372 if (match(Op1, m_APInt(CmpC))) { 5373 // A <u C -> A == C-1 if min(A)+1 == C 5374 if (*CmpC == Op0Min + 1) 5375 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5376 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5377 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5378 // exceeds the log2 of C. 5379 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5380 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5381 Constant::getNullValue(Op1->getType())); 5382 } 5383 break; 5384 } 5385 case ICmpInst::ICMP_UGT: { 5386 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5387 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5388 const APInt *CmpC; 5389 if (match(Op1, m_APInt(CmpC))) { 5390 // A >u C -> A == C+1 if max(a)-1 == C 5391 if (*CmpC == Op0Max - 1) 5392 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5393 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5394 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5395 // exceeds the log2 of C. 5396 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5397 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5398 Constant::getNullValue(Op1->getType())); 5399 } 5400 break; 5401 } 5402 case ICmpInst::ICMP_SLT: { 5403 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5404 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5405 const APInt *CmpC; 5406 if (match(Op1, m_APInt(CmpC))) { 5407 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5408 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5409 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5410 } 5411 break; 5412 } 5413 case ICmpInst::ICMP_SGT: { 5414 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5415 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5416 const APInt *CmpC; 5417 if (match(Op1, m_APInt(CmpC))) { 5418 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5419 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5420 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5421 } 5422 break; 5423 } 5424 } 5425 } 5426 5427 // Based on the range information we know about the LHS, see if we can 5428 // simplify this comparison. For example, (x&4) < 8 is always true. 5429 switch (Pred) { 5430 default: 5431 llvm_unreachable("Unknown icmp opcode!"); 5432 case ICmpInst::ICMP_EQ: 5433 case ICmpInst::ICMP_NE: { 5434 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5435 return replaceInstUsesWith( 5436 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5437 5438 // If all bits are known zero except for one, then we know at most one bit 5439 // is set. If the comparison is against zero, then this is a check to see if 5440 // *that* bit is set. 5441 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5442 if (Op1Known.isZero()) { 5443 // If the LHS is an AND with the same constant, look through it. 5444 Value *LHS = nullptr; 5445 const APInt *LHSC; 5446 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5447 *LHSC != Op0KnownZeroInverted) 5448 LHS = Op0; 5449 5450 Value *X; 5451 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5452 APInt ValToCheck = Op0KnownZeroInverted; 5453 Type *XTy = X->getType(); 5454 if (ValToCheck.isPowerOf2()) { 5455 // ((1 << X) & 8) == 0 -> X != 3 5456 // ((1 << X) & 8) != 0 -> X == 3 5457 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5458 auto NewPred = ICmpInst::getInversePredicate(Pred); 5459 return new ICmpInst(NewPred, X, CmpC); 5460 } else if ((++ValToCheck).isPowerOf2()) { 5461 // ((1 << X) & 7) == 0 -> X >= 3 5462 // ((1 << X) & 7) != 0 -> X < 3 5463 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5464 auto NewPred = 5465 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5466 return new ICmpInst(NewPred, X, CmpC); 5467 } 5468 } 5469 5470 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5471 const APInt *CI; 5472 if (Op0KnownZeroInverted.isOne() && 5473 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5474 // ((8 >>u X) & 1) == 0 -> X != 3 5475 // ((8 >>u X) & 1) != 0 -> X == 3 5476 unsigned CmpVal = CI->countTrailingZeros(); 5477 auto NewPred = ICmpInst::getInversePredicate(Pred); 5478 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5479 } 5480 } 5481 break; 5482 } 5483 case ICmpInst::ICMP_ULT: { 5484 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5485 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5486 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5487 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5488 break; 5489 } 5490 case ICmpInst::ICMP_UGT: { 5491 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5492 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5493 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5494 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5495 break; 5496 } 5497 case ICmpInst::ICMP_SLT: { 5498 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5499 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5500 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5501 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5502 break; 5503 } 5504 case ICmpInst::ICMP_SGT: { 5505 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5506 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5507 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5508 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5509 break; 5510 } 5511 case ICmpInst::ICMP_SGE: 5512 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5513 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5514 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5515 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5516 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5517 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5518 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5519 break; 5520 case ICmpInst::ICMP_SLE: 5521 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5522 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5523 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5524 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5525 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5526 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5527 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5528 break; 5529 case ICmpInst::ICMP_UGE: 5530 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5531 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5532 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5533 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5534 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5535 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5536 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5537 break; 5538 case ICmpInst::ICMP_ULE: 5539 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5540 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5541 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5542 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5543 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5544 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5545 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5546 break; 5547 } 5548 5549 // Turn a signed comparison into an unsigned one if both operands are known to 5550 // have the same sign. 5551 if (I.isSigned() && 5552 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5553 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5554 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5555 5556 return nullptr; 5557 } 5558 5559 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5560 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5561 Constant *C) { 5562 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5563 "Only for relational integer predicates."); 5564 5565 Type *Type = C->getType(); 5566 bool IsSigned = ICmpInst::isSigned(Pred); 5567 5568 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5569 bool WillIncrement = 5570 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5571 5572 // Check if the constant operand can be safely incremented/decremented 5573 // without overflowing/underflowing. 5574 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5575 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5576 }; 5577 5578 Constant *SafeReplacementConstant = nullptr; 5579 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5580 // Bail out if the constant can't be safely incremented/decremented. 5581 if (!ConstantIsOk(CI)) 5582 return llvm::None; 5583 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5584 unsigned NumElts = FVTy->getNumElements(); 5585 for (unsigned i = 0; i != NumElts; ++i) { 5586 Constant *Elt = C->getAggregateElement(i); 5587 if (!Elt) 5588 return llvm::None; 5589 5590 if (isa<UndefValue>(Elt)) 5591 continue; 5592 5593 // Bail out if we can't determine if this constant is min/max or if we 5594 // know that this constant is min/max. 5595 auto *CI = dyn_cast<ConstantInt>(Elt); 5596 if (!CI || !ConstantIsOk(CI)) 5597 return llvm::None; 5598 5599 if (!SafeReplacementConstant) 5600 SafeReplacementConstant = CI; 5601 } 5602 } else { 5603 // ConstantExpr? 5604 return llvm::None; 5605 } 5606 5607 // It may not be safe to change a compare predicate in the presence of 5608 // undefined elements, so replace those elements with the first safe constant 5609 // that we found. 5610 // TODO: in case of poison, it is safe; let's replace undefs only. 5611 if (C->containsUndefOrPoisonElement()) { 5612 assert(SafeReplacementConstant && "Replacement constant not set"); 5613 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5614 } 5615 5616 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5617 5618 // Increment or decrement the constant. 5619 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5620 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5621 5622 return std::make_pair(NewPred, NewC); 5623 } 5624 5625 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5626 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5627 /// allows them to be folded in visitICmpInst. 5628 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5629 ICmpInst::Predicate Pred = I.getPredicate(); 5630 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5631 InstCombiner::isCanonicalPredicate(Pred)) 5632 return nullptr; 5633 5634 Value *Op0 = I.getOperand(0); 5635 Value *Op1 = I.getOperand(1); 5636 auto *Op1C = dyn_cast<Constant>(Op1); 5637 if (!Op1C) 5638 return nullptr; 5639 5640 auto FlippedStrictness = 5641 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5642 if (!FlippedStrictness) 5643 return nullptr; 5644 5645 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5646 } 5647 5648 /// If we have a comparison with a non-canonical predicate, if we can update 5649 /// all the users, invert the predicate and adjust all the users. 5650 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5651 // Is the predicate already canonical? 5652 CmpInst::Predicate Pred = I.getPredicate(); 5653 if (InstCombiner::isCanonicalPredicate(Pred)) 5654 return nullptr; 5655 5656 // Can all users be adjusted to predicate inversion? 5657 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5658 return nullptr; 5659 5660 // Ok, we can canonicalize comparison! 5661 // Let's first invert the comparison's predicate. 5662 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5663 I.setName(I.getName() + ".not"); 5664 5665 // And, adapt users. 5666 freelyInvertAllUsersOf(&I); 5667 5668 return &I; 5669 } 5670 5671 /// Integer compare with boolean values can always be turned into bitwise ops. 5672 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5673 InstCombiner::BuilderTy &Builder) { 5674 Value *A = I.getOperand(0), *B = I.getOperand(1); 5675 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5676 5677 // A boolean compared to true/false can be simplified to Op0/true/false in 5678 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5679 // Cases not handled by InstSimplify are always 'not' of Op0. 5680 if (match(B, m_Zero())) { 5681 switch (I.getPredicate()) { 5682 case CmpInst::ICMP_EQ: // A == 0 -> !A 5683 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5684 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5685 return BinaryOperator::CreateNot(A); 5686 default: 5687 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5688 } 5689 } else if (match(B, m_One())) { 5690 switch (I.getPredicate()) { 5691 case CmpInst::ICMP_NE: // A != 1 -> !A 5692 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5693 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5694 return BinaryOperator::CreateNot(A); 5695 default: 5696 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5697 } 5698 } 5699 5700 switch (I.getPredicate()) { 5701 default: 5702 llvm_unreachable("Invalid icmp instruction!"); 5703 case ICmpInst::ICMP_EQ: 5704 // icmp eq i1 A, B -> ~(A ^ B) 5705 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5706 5707 case ICmpInst::ICMP_NE: 5708 // icmp ne i1 A, B -> A ^ B 5709 return BinaryOperator::CreateXor(A, B); 5710 5711 case ICmpInst::ICMP_UGT: 5712 // icmp ugt -> icmp ult 5713 std::swap(A, B); 5714 LLVM_FALLTHROUGH; 5715 case ICmpInst::ICMP_ULT: 5716 // icmp ult i1 A, B -> ~A & B 5717 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5718 5719 case ICmpInst::ICMP_SGT: 5720 // icmp sgt -> icmp slt 5721 std::swap(A, B); 5722 LLVM_FALLTHROUGH; 5723 case ICmpInst::ICMP_SLT: 5724 // icmp slt i1 A, B -> A & ~B 5725 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5726 5727 case ICmpInst::ICMP_UGE: 5728 // icmp uge -> icmp ule 5729 std::swap(A, B); 5730 LLVM_FALLTHROUGH; 5731 case ICmpInst::ICMP_ULE: 5732 // icmp ule i1 A, B -> ~A | B 5733 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5734 5735 case ICmpInst::ICMP_SGE: 5736 // icmp sge -> icmp sle 5737 std::swap(A, B); 5738 LLVM_FALLTHROUGH; 5739 case ICmpInst::ICMP_SLE: 5740 // icmp sle i1 A, B -> A | ~B 5741 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5742 } 5743 } 5744 5745 // Transform pattern like: 5746 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5747 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5748 // Into: 5749 // (X l>> Y) != 0 5750 // (X l>> Y) == 0 5751 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5752 InstCombiner::BuilderTy &Builder) { 5753 ICmpInst::Predicate Pred, NewPred; 5754 Value *X, *Y; 5755 if (match(&Cmp, 5756 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5757 switch (Pred) { 5758 case ICmpInst::ICMP_ULE: 5759 NewPred = ICmpInst::ICMP_NE; 5760 break; 5761 case ICmpInst::ICMP_UGT: 5762 NewPred = ICmpInst::ICMP_EQ; 5763 break; 5764 default: 5765 return nullptr; 5766 } 5767 } else if (match(&Cmp, m_c_ICmp(Pred, 5768 m_OneUse(m_CombineOr( 5769 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5770 m_Add(m_Shl(m_One(), m_Value(Y)), 5771 m_AllOnes()))), 5772 m_Value(X)))) { 5773 // The variant with 'add' is not canonical, (the variant with 'not' is) 5774 // we only get it because it has extra uses, and can't be canonicalized, 5775 5776 switch (Pred) { 5777 case ICmpInst::ICMP_ULT: 5778 NewPred = ICmpInst::ICMP_NE; 5779 break; 5780 case ICmpInst::ICMP_UGE: 5781 NewPred = ICmpInst::ICMP_EQ; 5782 break; 5783 default: 5784 return nullptr; 5785 } 5786 } else 5787 return nullptr; 5788 5789 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5790 Constant *Zero = Constant::getNullValue(NewX->getType()); 5791 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5792 } 5793 5794 static Instruction *foldVectorCmp(CmpInst &Cmp, 5795 InstCombiner::BuilderTy &Builder) { 5796 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5797 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5798 Value *V1, *V2; 5799 ArrayRef<int> M; 5800 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5801 return nullptr; 5802 5803 // If both arguments of the cmp are shuffles that use the same mask and 5804 // shuffle within a single vector, move the shuffle after the cmp: 5805 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5806 Type *V1Ty = V1->getType(); 5807 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5808 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5809 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5810 return new ShuffleVectorInst(NewCmp, M); 5811 } 5812 5813 // Try to canonicalize compare with splatted operand and splat constant. 5814 // TODO: We could generalize this for more than splats. See/use the code in 5815 // InstCombiner::foldVectorBinop(). 5816 Constant *C; 5817 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5818 return nullptr; 5819 5820 // Length-changing splats are ok, so adjust the constants as needed: 5821 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5822 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5823 int MaskSplatIndex; 5824 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5825 // We allow undefs in matching, but this transform removes those for safety. 5826 // Demanded elements analysis should be able to recover some/all of that. 5827 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5828 ScalarC); 5829 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5830 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5831 return new ShuffleVectorInst(NewCmp, NewM); 5832 } 5833 5834 return nullptr; 5835 } 5836 5837 // extract(uadd.with.overflow(A, B), 0) ult A 5838 // -> extract(uadd.with.overflow(A, B), 1) 5839 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5840 CmpInst::Predicate Pred = I.getPredicate(); 5841 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5842 5843 Value *UAddOv; 5844 Value *A, *B; 5845 auto UAddOvResultPat = m_ExtractValue<0>( 5846 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5847 if (match(Op0, UAddOvResultPat) && 5848 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5849 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5850 (match(A, m_One()) || match(B, m_One()))) || 5851 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5852 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5853 // extract(uadd.with.overflow(A, B), 0) < A 5854 // extract(uadd.with.overflow(A, 1), 0) == 0 5855 // extract(uadd.with.overflow(A, -1), 0) != -1 5856 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5857 else if (match(Op1, UAddOvResultPat) && 5858 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5859 // A > extract(uadd.with.overflow(A, B), 0) 5860 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5861 else 5862 return nullptr; 5863 5864 return ExtractValueInst::Create(UAddOv, 1); 5865 } 5866 5867 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5868 if (!I.getOperand(0)->getType()->isPointerTy() || 5869 NullPointerIsDefined( 5870 I.getParent()->getParent(), 5871 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5872 return nullptr; 5873 } 5874 Instruction *Op; 5875 if (match(I.getOperand(0), m_Instruction(Op)) && 5876 match(I.getOperand(1), m_Zero()) && 5877 Op->isLaunderOrStripInvariantGroup()) { 5878 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5879 Op->getOperand(0), I.getOperand(1)); 5880 } 5881 return nullptr; 5882 } 5883 5884 /// This function folds patterns produced by lowering of reduce idioms, such as 5885 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 5886 /// attempts to generate fewer number of scalar comparisons instead of vector 5887 /// comparisons when possible. 5888 static Instruction *foldReductionIdiom(ICmpInst &I, 5889 InstCombiner::BuilderTy &Builder, 5890 const DataLayout &DL) { 5891 if (I.getType()->isVectorTy()) 5892 return nullptr; 5893 ICmpInst::Predicate OuterPred, InnerPred; 5894 Value *LHS, *RHS; 5895 5896 // Match lowering of @llvm.vector.reduce.and. Turn 5897 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 5898 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 5899 /// %res = icmp <pred> i8 %scalar_ne, 0 5900 /// 5901 /// into 5902 /// 5903 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 5904 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 5905 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 5906 /// 5907 /// for <pred> in {ne, eq}. 5908 if (!match(&I, m_ICmp(OuterPred, 5909 m_OneUse(m_BitCast(m_OneUse( 5910 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 5911 m_Zero()))) 5912 return nullptr; 5913 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 5914 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 5915 return nullptr; 5916 unsigned NumBits = 5917 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 5918 // TODO: Relax this to "not wider than max legal integer type"? 5919 if (!DL.isLegalInteger(NumBits)) 5920 return nullptr; 5921 5922 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 5923 auto *ScalarTy = Builder.getIntNTy(NumBits); 5924 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 5925 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 5926 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 5927 I.getName()); 5928 } 5929 5930 return nullptr; 5931 } 5932 5933 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5934 bool Changed = false; 5935 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5936 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5937 unsigned Op0Cplxity = getComplexity(Op0); 5938 unsigned Op1Cplxity = getComplexity(Op1); 5939 5940 /// Orders the operands of the compare so that they are listed from most 5941 /// complex to least complex. This puts constants before unary operators, 5942 /// before binary operators. 5943 if (Op0Cplxity < Op1Cplxity || 5944 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5945 I.swapOperands(); 5946 std::swap(Op0, Op1); 5947 Changed = true; 5948 } 5949 5950 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5951 return replaceInstUsesWith(I, V); 5952 5953 // Comparing -val or val with non-zero is the same as just comparing val 5954 // ie, abs(val) != 0 -> val != 0 5955 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5956 Value *Cond, *SelectTrue, *SelectFalse; 5957 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5958 m_Value(SelectFalse)))) { 5959 if (Value *V = dyn_castNegVal(SelectTrue)) { 5960 if (V == SelectFalse) 5961 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5962 } 5963 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5964 if (V == SelectTrue) 5965 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5966 } 5967 } 5968 } 5969 5970 if (Op0->getType()->isIntOrIntVectorTy(1)) 5971 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5972 return Res; 5973 5974 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5975 return Res; 5976 5977 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5978 return Res; 5979 5980 if (Instruction *Res = foldICmpWithConstant(I)) 5981 return Res; 5982 5983 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5984 return Res; 5985 5986 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5987 return Res; 5988 5989 // Test if the ICmpInst instruction is used exclusively by a select as 5990 // part of a minimum or maximum operation. If so, refrain from doing 5991 // any other folding. This helps out other analyses which understand 5992 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5993 // and CodeGen. And in this case, at least one of the comparison 5994 // operands has at least one user besides the compare (the select), 5995 // which would often largely negate the benefit of folding anyway. 5996 // 5997 // Do the same for the other patterns recognized by matchSelectPattern. 5998 if (I.hasOneUse()) 5999 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6000 Value *A, *B; 6001 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6002 if (SPR.Flavor != SPF_UNKNOWN) 6003 return nullptr; 6004 } 6005 6006 // Do this after checking for min/max to prevent infinite looping. 6007 if (Instruction *Res = foldICmpWithZero(I)) 6008 return Res; 6009 6010 // FIXME: We only do this after checking for min/max to prevent infinite 6011 // looping caused by a reverse canonicalization of these patterns for min/max. 6012 // FIXME: The organization of folds is a mess. These would naturally go into 6013 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6014 // down here after the min/max restriction. 6015 ICmpInst::Predicate Pred = I.getPredicate(); 6016 const APInt *C; 6017 if (match(Op1, m_APInt(C))) { 6018 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6019 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6020 Constant *Zero = Constant::getNullValue(Op0->getType()); 6021 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6022 } 6023 6024 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6025 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6026 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6027 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6028 } 6029 } 6030 6031 // The folds in here may rely on wrapping flags and special constants, so 6032 // they can break up min/max idioms in some cases but not seemingly similar 6033 // patterns. 6034 // FIXME: It may be possible to enhance select folding to make this 6035 // unnecessary. It may also be moot if we canonicalize to min/max 6036 // intrinsics. 6037 if (Instruction *Res = foldICmpBinOp(I, Q)) 6038 return Res; 6039 6040 if (Instruction *Res = foldICmpInstWithConstant(I)) 6041 return Res; 6042 6043 // Try to match comparison as a sign bit test. Intentionally do this after 6044 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6045 if (Instruction *New = foldSignBitTest(I)) 6046 return New; 6047 6048 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6049 return Res; 6050 6051 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6052 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6053 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6054 return NI; 6055 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6056 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6057 return NI; 6058 6059 // Try to optimize equality comparisons against alloca-based pointers. 6060 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6061 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6062 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6063 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 6064 return New; 6065 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6066 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 6067 return New; 6068 } 6069 6070 if (Instruction *Res = foldICmpBitCast(I)) 6071 return Res; 6072 6073 // TODO: Hoist this above the min/max bailout. 6074 if (Instruction *R = foldICmpWithCastOp(I)) 6075 return R; 6076 6077 if (Instruction *Res = foldICmpWithMinMax(I)) 6078 return Res; 6079 6080 { 6081 Value *A, *B; 6082 // Transform (A & ~B) == 0 --> (A & B) != 0 6083 // and (A & ~B) != 0 --> (A & B) == 0 6084 // if A is a power of 2. 6085 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6086 match(Op1, m_Zero()) && 6087 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6088 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6089 Op1); 6090 6091 // ~X < ~Y --> Y < X 6092 // ~X < C --> X > ~C 6093 if (match(Op0, m_Not(m_Value(A)))) { 6094 if (match(Op1, m_Not(m_Value(B)))) 6095 return new ICmpInst(I.getPredicate(), B, A); 6096 6097 const APInt *C; 6098 if (match(Op1, m_APInt(C))) 6099 return new ICmpInst(I.getSwappedPredicate(), A, 6100 ConstantInt::get(Op1->getType(), ~(*C))); 6101 } 6102 6103 Instruction *AddI = nullptr; 6104 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6105 m_Instruction(AddI))) && 6106 isa<IntegerType>(A->getType())) { 6107 Value *Result; 6108 Constant *Overflow; 6109 // m_UAddWithOverflow can match patterns that do not include an explicit 6110 // "add" instruction, so check the opcode of the matched op. 6111 if (AddI->getOpcode() == Instruction::Add && 6112 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6113 Result, Overflow)) { 6114 replaceInstUsesWith(*AddI, Result); 6115 eraseInstFromFunction(*AddI); 6116 return replaceInstUsesWith(I, Overflow); 6117 } 6118 } 6119 6120 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6121 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6122 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6123 return R; 6124 } 6125 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6126 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6127 return R; 6128 } 6129 } 6130 6131 if (Instruction *Res = foldICmpEquality(I)) 6132 return Res; 6133 6134 if (Instruction *Res = foldICmpOfUAddOv(I)) 6135 return Res; 6136 6137 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6138 // an i1 which indicates whether or not we successfully did the swap. 6139 // 6140 // Replace comparisons between the old value and the expected value with the 6141 // indicator that 'cmpxchg' returns. 6142 // 6143 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6144 // spuriously fail. In those cases, the old value may equal the expected 6145 // value but it is possible for the swap to not occur. 6146 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6147 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6148 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6149 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6150 !ACXI->isWeak()) 6151 return ExtractValueInst::Create(ACXI, 1); 6152 6153 { 6154 Value *X; 6155 const APInt *C; 6156 // icmp X+Cst, X 6157 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6158 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6159 6160 // icmp X, X+Cst 6161 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6162 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6163 } 6164 6165 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6166 return Res; 6167 6168 if (I.getType()->isVectorTy()) 6169 if (Instruction *Res = foldVectorCmp(I, Builder)) 6170 return Res; 6171 6172 if (Instruction *Res = foldICmpInvariantGroup(I)) 6173 return Res; 6174 6175 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6176 return Res; 6177 6178 return Changed ? &I : nullptr; 6179 } 6180 6181 /// Fold fcmp ([us]itofp x, cst) if possible. 6182 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6183 Instruction *LHSI, 6184 Constant *RHSC) { 6185 if (!isa<ConstantFP>(RHSC)) return nullptr; 6186 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6187 6188 // Get the width of the mantissa. We don't want to hack on conversions that 6189 // might lose information from the integer, e.g. "i64 -> float" 6190 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6191 if (MantissaWidth == -1) return nullptr; // Unknown. 6192 6193 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6194 6195 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6196 6197 if (I.isEquality()) { 6198 FCmpInst::Predicate P = I.getPredicate(); 6199 bool IsExact = false; 6200 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6201 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6202 6203 // If the floating point constant isn't an integer value, we know if we will 6204 // ever compare equal / not equal to it. 6205 if (!IsExact) { 6206 // TODO: Can never be -0.0 and other non-representable values 6207 APFloat RHSRoundInt(RHS); 6208 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6209 if (RHS != RHSRoundInt) { 6210 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6211 return replaceInstUsesWith(I, Builder.getFalse()); 6212 6213 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6214 return replaceInstUsesWith(I, Builder.getTrue()); 6215 } 6216 } 6217 6218 // TODO: If the constant is exactly representable, is it always OK to do 6219 // equality compares as integer? 6220 } 6221 6222 // Check to see that the input is converted from an integer type that is small 6223 // enough that preserves all bits. TODO: check here for "known" sign bits. 6224 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6225 unsigned InputSize = IntTy->getScalarSizeInBits(); 6226 6227 // Following test does NOT adjust InputSize downwards for signed inputs, 6228 // because the most negative value still requires all the mantissa bits 6229 // to distinguish it from one less than that value. 6230 if ((int)InputSize > MantissaWidth) { 6231 // Conversion would lose accuracy. Check if loss can impact comparison. 6232 int Exp = ilogb(RHS); 6233 if (Exp == APFloat::IEK_Inf) { 6234 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6235 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6236 // Conversion could create infinity. 6237 return nullptr; 6238 } else { 6239 // Note that if RHS is zero or NaN, then Exp is negative 6240 // and first condition is trivially false. 6241 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6242 // Conversion could affect comparison. 6243 return nullptr; 6244 } 6245 } 6246 6247 // Otherwise, we can potentially simplify the comparison. We know that it 6248 // will always come through as an integer value and we know the constant is 6249 // not a NAN (it would have been previously simplified). 6250 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6251 6252 ICmpInst::Predicate Pred; 6253 switch (I.getPredicate()) { 6254 default: llvm_unreachable("Unexpected predicate!"); 6255 case FCmpInst::FCMP_UEQ: 6256 case FCmpInst::FCMP_OEQ: 6257 Pred = ICmpInst::ICMP_EQ; 6258 break; 6259 case FCmpInst::FCMP_UGT: 6260 case FCmpInst::FCMP_OGT: 6261 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6262 break; 6263 case FCmpInst::FCMP_UGE: 6264 case FCmpInst::FCMP_OGE: 6265 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6266 break; 6267 case FCmpInst::FCMP_ULT: 6268 case FCmpInst::FCMP_OLT: 6269 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6270 break; 6271 case FCmpInst::FCMP_ULE: 6272 case FCmpInst::FCMP_OLE: 6273 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6274 break; 6275 case FCmpInst::FCMP_UNE: 6276 case FCmpInst::FCMP_ONE: 6277 Pred = ICmpInst::ICMP_NE; 6278 break; 6279 case FCmpInst::FCMP_ORD: 6280 return replaceInstUsesWith(I, Builder.getTrue()); 6281 case FCmpInst::FCMP_UNO: 6282 return replaceInstUsesWith(I, Builder.getFalse()); 6283 } 6284 6285 // Now we know that the APFloat is a normal number, zero or inf. 6286 6287 // See if the FP constant is too large for the integer. For example, 6288 // comparing an i8 to 300.0. 6289 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6290 6291 if (!LHSUnsigned) { 6292 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6293 // and large values. 6294 APFloat SMax(RHS.getSemantics()); 6295 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6296 APFloat::rmNearestTiesToEven); 6297 if (SMax < RHS) { // smax < 13123.0 6298 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6299 Pred == ICmpInst::ICMP_SLE) 6300 return replaceInstUsesWith(I, Builder.getTrue()); 6301 return replaceInstUsesWith(I, Builder.getFalse()); 6302 } 6303 } else { 6304 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6305 // +INF and large values. 6306 APFloat UMax(RHS.getSemantics()); 6307 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6308 APFloat::rmNearestTiesToEven); 6309 if (UMax < RHS) { // umax < 13123.0 6310 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6311 Pred == ICmpInst::ICMP_ULE) 6312 return replaceInstUsesWith(I, Builder.getTrue()); 6313 return replaceInstUsesWith(I, Builder.getFalse()); 6314 } 6315 } 6316 6317 if (!LHSUnsigned) { 6318 // See if the RHS value is < SignedMin. 6319 APFloat SMin(RHS.getSemantics()); 6320 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6321 APFloat::rmNearestTiesToEven); 6322 if (SMin > RHS) { // smin > 12312.0 6323 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6324 Pred == ICmpInst::ICMP_SGE) 6325 return replaceInstUsesWith(I, Builder.getTrue()); 6326 return replaceInstUsesWith(I, Builder.getFalse()); 6327 } 6328 } else { 6329 // See if the RHS value is < UnsignedMin. 6330 APFloat UMin(RHS.getSemantics()); 6331 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6332 APFloat::rmNearestTiesToEven); 6333 if (UMin > RHS) { // umin > 12312.0 6334 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6335 Pred == ICmpInst::ICMP_UGE) 6336 return replaceInstUsesWith(I, Builder.getTrue()); 6337 return replaceInstUsesWith(I, Builder.getFalse()); 6338 } 6339 } 6340 6341 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6342 // [0, UMAX], but it may still be fractional. See if it is fractional by 6343 // casting the FP value to the integer value and back, checking for equality. 6344 // Don't do this for zero, because -0.0 is not fractional. 6345 Constant *RHSInt = LHSUnsigned 6346 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6347 : ConstantExpr::getFPToSI(RHSC, IntTy); 6348 if (!RHS.isZero()) { 6349 bool Equal = LHSUnsigned 6350 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6351 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6352 if (!Equal) { 6353 // If we had a comparison against a fractional value, we have to adjust 6354 // the compare predicate and sometimes the value. RHSC is rounded towards 6355 // zero at this point. 6356 switch (Pred) { 6357 default: llvm_unreachable("Unexpected integer comparison!"); 6358 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6359 return replaceInstUsesWith(I, Builder.getTrue()); 6360 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6361 return replaceInstUsesWith(I, Builder.getFalse()); 6362 case ICmpInst::ICMP_ULE: 6363 // (float)int <= 4.4 --> int <= 4 6364 // (float)int <= -4.4 --> false 6365 if (RHS.isNegative()) 6366 return replaceInstUsesWith(I, Builder.getFalse()); 6367 break; 6368 case ICmpInst::ICMP_SLE: 6369 // (float)int <= 4.4 --> int <= 4 6370 // (float)int <= -4.4 --> int < -4 6371 if (RHS.isNegative()) 6372 Pred = ICmpInst::ICMP_SLT; 6373 break; 6374 case ICmpInst::ICMP_ULT: 6375 // (float)int < -4.4 --> false 6376 // (float)int < 4.4 --> int <= 4 6377 if (RHS.isNegative()) 6378 return replaceInstUsesWith(I, Builder.getFalse()); 6379 Pred = ICmpInst::ICMP_ULE; 6380 break; 6381 case ICmpInst::ICMP_SLT: 6382 // (float)int < -4.4 --> int < -4 6383 // (float)int < 4.4 --> int <= 4 6384 if (!RHS.isNegative()) 6385 Pred = ICmpInst::ICMP_SLE; 6386 break; 6387 case ICmpInst::ICMP_UGT: 6388 // (float)int > 4.4 --> int > 4 6389 // (float)int > -4.4 --> true 6390 if (RHS.isNegative()) 6391 return replaceInstUsesWith(I, Builder.getTrue()); 6392 break; 6393 case ICmpInst::ICMP_SGT: 6394 // (float)int > 4.4 --> int > 4 6395 // (float)int > -4.4 --> int >= -4 6396 if (RHS.isNegative()) 6397 Pred = ICmpInst::ICMP_SGE; 6398 break; 6399 case ICmpInst::ICMP_UGE: 6400 // (float)int >= -4.4 --> true 6401 // (float)int >= 4.4 --> int > 4 6402 if (RHS.isNegative()) 6403 return replaceInstUsesWith(I, Builder.getTrue()); 6404 Pred = ICmpInst::ICMP_UGT; 6405 break; 6406 case ICmpInst::ICMP_SGE: 6407 // (float)int >= -4.4 --> int >= -4 6408 // (float)int >= 4.4 --> int > 4 6409 if (!RHS.isNegative()) 6410 Pred = ICmpInst::ICMP_SGT; 6411 break; 6412 } 6413 } 6414 } 6415 6416 // Lower this FP comparison into an appropriate integer version of the 6417 // comparison. 6418 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6419 } 6420 6421 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6422 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6423 Constant *RHSC) { 6424 // When C is not 0.0 and infinities are not allowed: 6425 // (C / X) < 0.0 is a sign-bit test of X 6426 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6427 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6428 // 6429 // Proof: 6430 // Multiply (C / X) < 0.0 by X * X / C. 6431 // - X is non zero, if it is the flag 'ninf' is violated. 6432 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6433 // the predicate. C is also non zero by definition. 6434 // 6435 // Thus X * X / C is non zero and the transformation is valid. [qed] 6436 6437 FCmpInst::Predicate Pred = I.getPredicate(); 6438 6439 // Check that predicates are valid. 6440 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6441 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6442 return nullptr; 6443 6444 // Check that RHS operand is zero. 6445 if (!match(RHSC, m_AnyZeroFP())) 6446 return nullptr; 6447 6448 // Check fastmath flags ('ninf'). 6449 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6450 return nullptr; 6451 6452 // Check the properties of the dividend. It must not be zero to avoid a 6453 // division by zero (see Proof). 6454 const APFloat *C; 6455 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6456 return nullptr; 6457 6458 if (C->isZero()) 6459 return nullptr; 6460 6461 // Get swapped predicate if necessary. 6462 if (C->isNegative()) 6463 Pred = I.getSwappedPredicate(); 6464 6465 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6466 } 6467 6468 /// Optimize fabs(X) compared with zero. 6469 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6470 Value *X; 6471 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6472 !match(I.getOperand(1), m_PosZeroFP())) 6473 return nullptr; 6474 6475 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6476 I->setPredicate(P); 6477 return IC.replaceOperand(*I, 0, X); 6478 }; 6479 6480 switch (I.getPredicate()) { 6481 case FCmpInst::FCMP_UGE: 6482 case FCmpInst::FCMP_OLT: 6483 // fabs(X) >= 0.0 --> true 6484 // fabs(X) < 0.0 --> false 6485 llvm_unreachable("fcmp should have simplified"); 6486 6487 case FCmpInst::FCMP_OGT: 6488 // fabs(X) > 0.0 --> X != 0.0 6489 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6490 6491 case FCmpInst::FCMP_UGT: 6492 // fabs(X) u> 0.0 --> X u!= 0.0 6493 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6494 6495 case FCmpInst::FCMP_OLE: 6496 // fabs(X) <= 0.0 --> X == 0.0 6497 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6498 6499 case FCmpInst::FCMP_ULE: 6500 // fabs(X) u<= 0.0 --> X u== 0.0 6501 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6502 6503 case FCmpInst::FCMP_OGE: 6504 // fabs(X) >= 0.0 --> !isnan(X) 6505 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6506 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6507 6508 case FCmpInst::FCMP_ULT: 6509 // fabs(X) u< 0.0 --> isnan(X) 6510 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6511 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6512 6513 case FCmpInst::FCMP_OEQ: 6514 case FCmpInst::FCMP_UEQ: 6515 case FCmpInst::FCMP_ONE: 6516 case FCmpInst::FCMP_UNE: 6517 case FCmpInst::FCMP_ORD: 6518 case FCmpInst::FCMP_UNO: 6519 // Look through the fabs() because it doesn't change anything but the sign. 6520 // fabs(X) == 0.0 --> X == 0.0, 6521 // fabs(X) != 0.0 --> X != 0.0 6522 // isnan(fabs(X)) --> isnan(X) 6523 // !isnan(fabs(X) --> !isnan(X) 6524 return replacePredAndOp0(&I, I.getPredicate(), X); 6525 6526 default: 6527 return nullptr; 6528 } 6529 } 6530 6531 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6532 bool Changed = false; 6533 6534 /// Orders the operands of the compare so that they are listed from most 6535 /// complex to least complex. This puts constants before unary operators, 6536 /// before binary operators. 6537 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6538 I.swapOperands(); 6539 Changed = true; 6540 } 6541 6542 const CmpInst::Predicate Pred = I.getPredicate(); 6543 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6544 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6545 SQ.getWithInstruction(&I))) 6546 return replaceInstUsesWith(I, V); 6547 6548 // Simplify 'fcmp pred X, X' 6549 Type *OpType = Op0->getType(); 6550 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6551 if (Op0 == Op1) { 6552 switch (Pred) { 6553 default: break; 6554 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6555 case FCmpInst::FCMP_ULT: // True if unordered or less than 6556 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6557 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6558 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6559 I.setPredicate(FCmpInst::FCMP_UNO); 6560 I.setOperand(1, Constant::getNullValue(OpType)); 6561 return &I; 6562 6563 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6564 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6565 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6566 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6567 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6568 I.setPredicate(FCmpInst::FCMP_ORD); 6569 I.setOperand(1, Constant::getNullValue(OpType)); 6570 return &I; 6571 } 6572 } 6573 6574 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6575 // then canonicalize the operand to 0.0. 6576 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6577 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6578 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6579 6580 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6581 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6582 } 6583 6584 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6585 Value *X, *Y; 6586 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6587 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6588 6589 // Test if the FCmpInst instruction is used exclusively by a select as 6590 // part of a minimum or maximum operation. If so, refrain from doing 6591 // any other folding. This helps out other analyses which understand 6592 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6593 // and CodeGen. And in this case, at least one of the comparison 6594 // operands has at least one user besides the compare (the select), 6595 // which would often largely negate the benefit of folding anyway. 6596 if (I.hasOneUse()) 6597 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6598 Value *A, *B; 6599 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6600 if (SPR.Flavor != SPF_UNKNOWN) 6601 return nullptr; 6602 } 6603 6604 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6605 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6606 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6607 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6608 6609 // Handle fcmp with instruction LHS and constant RHS. 6610 Instruction *LHSI; 6611 Constant *RHSC; 6612 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6613 switch (LHSI->getOpcode()) { 6614 case Instruction::PHI: 6615 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6616 // block. If in the same block, we're encouraging jump threading. If 6617 // not, we are just pessimizing the code by making an i1 phi. 6618 if (LHSI->getParent() == I.getParent()) 6619 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6620 return NV; 6621 break; 6622 case Instruction::SIToFP: 6623 case Instruction::UIToFP: 6624 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6625 return NV; 6626 break; 6627 case Instruction::FDiv: 6628 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6629 return NV; 6630 break; 6631 case Instruction::Load: 6632 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6633 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6634 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6635 !cast<LoadInst>(LHSI)->isVolatile()) 6636 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6637 return Res; 6638 break; 6639 } 6640 } 6641 6642 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6643 return R; 6644 6645 if (match(Op0, m_FNeg(m_Value(X)))) { 6646 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6647 Constant *C; 6648 if (match(Op1, m_Constant(C))) { 6649 Constant *NegC = ConstantExpr::getFNeg(C); 6650 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6651 } 6652 } 6653 6654 if (match(Op0, m_FPExt(m_Value(X)))) { 6655 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6656 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6657 return new FCmpInst(Pred, X, Y, "", &I); 6658 6659 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6660 const APFloat *C; 6661 if (match(Op1, m_APFloat(C))) { 6662 const fltSemantics &FPSem = 6663 X->getType()->getScalarType()->getFltSemantics(); 6664 bool Lossy; 6665 APFloat TruncC = *C; 6666 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6667 6668 // Avoid lossy conversions and denormals. 6669 // Zero is a special case that's OK to convert. 6670 APFloat Fabs = TruncC; 6671 Fabs.clearSign(); 6672 if (!Lossy && 6673 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6674 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6675 return new FCmpInst(Pred, X, NewC, "", &I); 6676 } 6677 } 6678 } 6679 6680 // Convert a sign-bit test of an FP value into a cast and integer compare. 6681 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6682 // TODO: Handle non-zero compare constants. 6683 // TODO: Handle other predicates. 6684 const APFloat *C; 6685 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6686 m_Value(X)))) && 6687 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6688 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6689 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6690 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6691 6692 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6693 if (Pred == FCmpInst::FCMP_OLT) { 6694 Value *IntX = Builder.CreateBitCast(X, IntType); 6695 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6696 ConstantInt::getNullValue(IntType)); 6697 } 6698 } 6699 6700 if (I.getType()->isVectorTy()) 6701 if (Instruction *Res = foldVectorCmp(I, Builder)) 6702 return Res; 6703 6704 return Changed ? &I : nullptr; 6705 } 6706