1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *
109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
110                                                GlobalVariable *GV, CmpInst &ICI,
111                                                ConstantInt *AndCst) {
112   Constant *Init = GV->getInitializer();
113   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
114     return nullptr;
115 
116   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
117   // Don't blow up on huge arrays.
118   if (ArrayElementCount > MaxArraySizeForCombine)
119     return nullptr;
120 
121   // There are many forms of this optimization we can handle, for now, just do
122   // the simple index into a single-dimensional array.
123   //
124   // Require: GEP GV, 0, i {{, constant indices}}
125   if (GEP->getNumOperands() < 3 ||
126       !isa<ConstantInt>(GEP->getOperand(1)) ||
127       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
128       isa<Constant>(GEP->getOperand(2)))
129     return nullptr;
130 
131   // Check that indices after the variable are constants and in-range for the
132   // type they index.  Collect the indices.  This is typically for arrays of
133   // structs.
134   SmallVector<unsigned, 4> LaterIndices;
135 
136   Type *EltTy = Init->getType()->getArrayElementType();
137   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
138     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
139     if (!Idx) return nullptr;  // Variable index.
140 
141     uint64_t IdxVal = Idx->getZExtValue();
142     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
143 
144     if (StructType *STy = dyn_cast<StructType>(EltTy))
145       EltTy = STy->getElementType(IdxVal);
146     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
147       if (IdxVal >= ATy->getNumElements()) return nullptr;
148       EltTy = ATy->getElementType();
149     } else {
150       return nullptr; // Unknown type.
151     }
152 
153     LaterIndices.push_back(IdxVal);
154   }
155 
156   enum { Overdefined = -3, Undefined = -2 };
157 
158   // Variables for our state machines.
159 
160   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
161   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
162   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
163   // undefined, otherwise set to the first true element.  SecondTrueElement is
164   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
165   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
166 
167   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
168   // form "i != 47 & i != 87".  Same state transitions as for true elements.
169   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
170 
171   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
172   /// define a state machine that triggers for ranges of values that the index
173   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
174   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
175   /// index in the range (inclusive).  We use -2 for undefined here because we
176   /// use relative comparisons and don't want 0-1 to match -1.
177   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
178 
179   // MagicBitvector - This is a magic bitvector where we set a bit if the
180   // comparison is true for element 'i'.  If there are 64 elements or less in
181   // the array, this will fully represent all the comparison results.
182   uint64_t MagicBitvector = 0;
183 
184   // Scan the array and see if one of our patterns matches.
185   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
186   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
187     Constant *Elt = Init->getAggregateElement(i);
188     if (!Elt) return nullptr;
189 
190     // If this is indexing an array of structures, get the structure element.
191     if (!LaterIndices.empty())
192       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
193 
194     // If the element is masked, handle it.
195     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
196 
197     // Find out if the comparison would be true or false for the i'th element.
198     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
199                                                   CompareRHS, DL, &TLI);
200     // If the result is undef for this element, ignore it.
201     if (isa<UndefValue>(C)) {
202       // Extend range state machines to cover this element in case there is an
203       // undef in the middle of the range.
204       if (TrueRangeEnd == (int)i-1)
205         TrueRangeEnd = i;
206       if (FalseRangeEnd == (int)i-1)
207         FalseRangeEnd = i;
208       continue;
209     }
210 
211     // If we can't compute the result for any of the elements, we have to give
212     // up evaluating the entire conditional.
213     if (!isa<ConstantInt>(C)) return nullptr;
214 
215     // Otherwise, we know if the comparison is true or false for this element,
216     // update our state machines.
217     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
218 
219     // State machine for single/double/range index comparison.
220     if (IsTrueForElt) {
221       // Update the TrueElement state machine.
222       if (FirstTrueElement == Undefined)
223         FirstTrueElement = TrueRangeEnd = i;  // First true element.
224       else {
225         // Update double-compare state machine.
226         if (SecondTrueElement == Undefined)
227           SecondTrueElement = i;
228         else
229           SecondTrueElement = Overdefined;
230 
231         // Update range state machine.
232         if (TrueRangeEnd == (int)i-1)
233           TrueRangeEnd = i;
234         else
235           TrueRangeEnd = Overdefined;
236       }
237     } else {
238       // Update the FalseElement state machine.
239       if (FirstFalseElement == Undefined)
240         FirstFalseElement = FalseRangeEnd = i; // First false element.
241       else {
242         // Update double-compare state machine.
243         if (SecondFalseElement == Undefined)
244           SecondFalseElement = i;
245         else
246           SecondFalseElement = Overdefined;
247 
248         // Update range state machine.
249         if (FalseRangeEnd == (int)i-1)
250           FalseRangeEnd = i;
251         else
252           FalseRangeEnd = Overdefined;
253       }
254     }
255 
256     // If this element is in range, update our magic bitvector.
257     if (i < 64 && IsTrueForElt)
258       MagicBitvector |= 1ULL << i;
259 
260     // If all of our states become overdefined, bail out early.  Since the
261     // predicate is expensive, only check it every 8 elements.  This is only
262     // really useful for really huge arrays.
263     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
264         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
265         FalseRangeEnd == Overdefined)
266       return nullptr;
267   }
268 
269   // Now that we've scanned the entire array, emit our new comparison(s).  We
270   // order the state machines in complexity of the generated code.
271   Value *Idx = GEP->getOperand(2);
272 
273   // If the index is larger than the pointer size of the target, truncate the
274   // index down like the GEP would do implicitly.  We don't have to do this for
275   // an inbounds GEP because the index can't be out of range.
276   if (!GEP->isInBounds()) {
277     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
278     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
279     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
280       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
281   }
282 
283   // If inbounds keyword is not present, Idx * ElementSize can overflow.
284   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
285   // Then, there are two possible values for Idx to match offset 0:
286   // 0x00..00, 0x80..00.
287   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
288   // comparison is false if Idx was 0x80..00.
289   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
290   unsigned ElementSize =
291       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
292   auto MaskIdx = [&](Value* Idx){
293     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
294       Value *Mask = ConstantInt::get(Idx->getType(), -1);
295       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
296       Idx = Builder.CreateAnd(Idx, Mask);
297     }
298     return Idx;
299   };
300 
301   // If the comparison is only true for one or two elements, emit direct
302   // comparisons.
303   if (SecondTrueElement != Overdefined) {
304     Idx = MaskIdx(Idx);
305     // None true -> false.
306     if (FirstTrueElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getFalse());
308 
309     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
310 
311     // True for one element -> 'i == 47'.
312     if (SecondTrueElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
314 
315     // True for two elements -> 'i == 47 | i == 72'.
316     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
317     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
318     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
319     return BinaryOperator::CreateOr(C1, C2);
320   }
321 
322   // If the comparison is only false for one or two elements, emit direct
323   // comparisons.
324   if (SecondFalseElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None false -> true.
327     if (FirstFalseElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getTrue());
329 
330     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
331 
332     // False for one element -> 'i != 47'.
333     if (SecondFalseElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
335 
336     // False for two elements -> 'i != 47 & i != 72'.
337     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
338     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
339     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
340     return BinaryOperator::CreateAnd(C1, C2);
341   }
342 
343   // If the comparison can be replaced with a range comparison for the elements
344   // where it is true, emit the range check.
345   if (TrueRangeEnd != Overdefined) {
346     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
347     Idx = MaskIdx(Idx);
348 
349     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
350     if (FirstTrueElement) {
351       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
352       Idx = Builder.CreateAdd(Idx, Offs);
353     }
354 
355     Value *End = ConstantInt::get(Idx->getType(),
356                                   TrueRangeEnd-FirstTrueElement+1);
357     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
358   }
359 
360   // False range check.
361   if (FalseRangeEnd != Overdefined) {
362     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
363     Idx = MaskIdx(Idx);
364     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
365     if (FirstFalseElement) {
366       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
367       Idx = Builder.CreateAdd(Idx, Offs);
368     }
369 
370     Value *End = ConstantInt::get(Idx->getType(),
371                                   FalseRangeEnd-FirstFalseElement);
372     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
373   }
374 
375   // If a magic bitvector captures the entire comparison state
376   // of this load, replace it with computation that does:
377   //   ((magic_cst >> i) & 1) != 0
378   {
379     Type *Ty = nullptr;
380 
381     // Look for an appropriate type:
382     // - The type of Idx if the magic fits
383     // - The smallest fitting legal type
384     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
385       Ty = Idx->getType();
386     else
387       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
388 
389     if (Ty) {
390       Idx = MaskIdx(Idx);
391       Value *V = Builder.CreateIntCast(Idx, Ty, false);
392       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
393       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
394       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
395     }
396   }
397 
398   return nullptr;
399 }
400 
401 /// Return a value that can be used to compare the *offset* implied by a GEP to
402 /// zero. For example, if we have &A[i], we want to return 'i' for
403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
404 /// are involved. The above expression would also be legal to codegen as
405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
406 /// This latter form is less amenable to optimization though, and we are allowed
407 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 ///
409 /// If we can't emit an optimized form for this expression, this returns null.
410 ///
411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
412                                           const DataLayout &DL) {
413   gep_type_iterator GTI = gep_type_begin(GEP);
414 
415   // Check to see if this gep only has a single variable index.  If so, and if
416   // any constant indices are a multiple of its scale, then we can compute this
417   // in terms of the scale of the variable index.  For example, if the GEP
418   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
419   // because the expression will cross zero at the same point.
420   unsigned i, e = GEP->getNumOperands();
421   int64_t Offset = 0;
422   for (i = 1; i != e; ++i, ++GTI) {
423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
424       // Compute the aggregate offset of constant indices.
425       if (CI->isZero()) continue;
426 
427       // Handle a struct index, which adds its field offset to the pointer.
428       if (StructType *STy = GTI.getStructTypeOrNull()) {
429         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
430       } else {
431         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
432         Offset += Size*CI->getSExtValue();
433       }
434     } else {
435       // Found our variable index.
436       break;
437     }
438   }
439 
440   // If there are no variable indices, we must have a constant offset, just
441   // evaluate it the general way.
442   if (i == e) return nullptr;
443 
444   Value *VariableIdx = GEP->getOperand(i);
445   // Determine the scale factor of the variable element.  For example, this is
446   // 4 if the variable index is into an array of i32.
447   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
448 
449   // Verify that there are no other variable indices.  If so, emit the hard way.
450   for (++i, ++GTI; i != e; ++i, ++GTI) {
451     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
452     if (!CI) return nullptr;
453 
454     // Compute the aggregate offset of constant indices.
455     if (CI->isZero()) continue;
456 
457     // Handle a struct index, which adds its field offset to the pointer.
458     if (StructType *STy = GTI.getStructTypeOrNull()) {
459       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
460     } else {
461       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
462       Offset += Size*CI->getSExtValue();
463     }
464   }
465 
466   // Okay, we know we have a single variable index, which must be a
467   // pointer/array/vector index.  If there is no offset, life is simple, return
468   // the index.
469   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
470   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
471   if (Offset == 0) {
472     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
473     // we don't need to bother extending: the extension won't affect where the
474     // computation crosses zero.
475     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
476         IntPtrWidth) {
477       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
478     }
479     return VariableIdx;
480   }
481 
482   // Otherwise, there is an index.  The computation we will do will be modulo
483   // the pointer size.
484   Offset = SignExtend64(Offset, IntPtrWidth);
485   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
486 
487   // To do this transformation, any constant index must be a multiple of the
488   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
489   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
490   // multiple of the variable scale.
491   int64_t NewOffs = Offset / (int64_t)VariableScale;
492   if (Offset != NewOffs*(int64_t)VariableScale)
493     return nullptr;
494 
495   // Okay, we can do this evaluation.  Start by converting the index to intptr.
496   if (VariableIdx->getType() != IntPtrTy)
497     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
498                                             true /*Signed*/);
499   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
500   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
501 }
502 
503 /// Returns true if we can rewrite Start as a GEP with pointer Base
504 /// and some integer offset. The nodes that need to be re-written
505 /// for this transformation will be added to Explored.
506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
507                                   const DataLayout &DL,
508                                   SetVector<Value *> &Explored) {
509   SmallVector<Value *, 16> WorkList(1, Start);
510   Explored.insert(Base);
511 
512   // The following traversal gives us an order which can be used
513   // when doing the final transformation. Since in the final
514   // transformation we create the PHI replacement instructions first,
515   // we don't have to get them in any particular order.
516   //
517   // However, for other instructions we will have to traverse the
518   // operands of an instruction first, which means that we have to
519   // do a post-order traversal.
520   while (!WorkList.empty()) {
521     SetVector<PHINode *> PHIs;
522 
523     while (!WorkList.empty()) {
524       if (Explored.size() >= 100)
525         return false;
526 
527       Value *V = WorkList.back();
528 
529       if (Explored.contains(V)) {
530         WorkList.pop_back();
531         continue;
532       }
533 
534       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
535           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
536         // We've found some value that we can't explore which is different from
537         // the base. Therefore we can't do this transformation.
538         return false;
539 
540       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
541         auto *CI = cast<CastInst>(V);
542         if (!CI->isNoopCast(DL))
543           return false;
544 
545         if (!Explored.contains(CI->getOperand(0)))
546           WorkList.push_back(CI->getOperand(0));
547       }
548 
549       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
550         // We're limiting the GEP to having one index. This will preserve
551         // the original pointer type. We could handle more cases in the
552         // future.
553         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
554             GEP->getSourceElementType() != ElemTy)
555           return false;
556 
557         if (!Explored.contains(GEP->getOperand(0)))
558           WorkList.push_back(GEP->getOperand(0));
559       }
560 
561       if (WorkList.back() == V) {
562         WorkList.pop_back();
563         // We've finished visiting this node, mark it as such.
564         Explored.insert(V);
565       }
566 
567       if (auto *PN = dyn_cast<PHINode>(V)) {
568         // We cannot transform PHIs on unsplittable basic blocks.
569         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
570           return false;
571         Explored.insert(PN);
572         PHIs.insert(PN);
573       }
574     }
575 
576     // Explore the PHI nodes further.
577     for (auto *PN : PHIs)
578       for (Value *Op : PN->incoming_values())
579         if (!Explored.contains(Op))
580           WorkList.push_back(Op);
581   }
582 
583   // Make sure that we can do this. Since we can't insert GEPs in a basic
584   // block before a PHI node, we can't easily do this transformation if
585   // we have PHI node users of transformed instructions.
586   for (Value *Val : Explored) {
587     for (Value *Use : Val->uses()) {
588 
589       auto *PHI = dyn_cast<PHINode>(Use);
590       auto *Inst = dyn_cast<Instruction>(Val);
591 
592       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
593           !Explored.contains(PHI))
594         continue;
595 
596       if (PHI->getParent() == Inst->getParent())
597         return false;
598     }
599   }
600   return true;
601 }
602 
603 // Sets the appropriate insert point on Builder where we can add
604 // a replacement Instruction for V (if that is possible).
605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
606                               bool Before = true) {
607   if (auto *PHI = dyn_cast<PHINode>(V)) {
608     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
609     return;
610   }
611   if (auto *I = dyn_cast<Instruction>(V)) {
612     if (!Before)
613       I = &*std::next(I->getIterator());
614     Builder.SetInsertPoint(I);
615     return;
616   }
617   if (auto *A = dyn_cast<Argument>(V)) {
618     // Set the insertion point in the entry block.
619     BasicBlock &Entry = A->getParent()->getEntryBlock();
620     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
621     return;
622   }
623   // Otherwise, this is a constant and we don't need to set a new
624   // insertion point.
625   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
626 }
627 
628 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 /// pointer.
630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
631                                  const DataLayout &DL,
632                                  SetVector<Value *> &Explored) {
633   // Perform all the substitutions. This is a bit tricky because we can
634   // have cycles in our use-def chains.
635   // 1. Create the PHI nodes without any incoming values.
636   // 2. Create all the other values.
637   // 3. Add the edges for the PHI nodes.
638   // 4. Emit GEPs to get the original pointers.
639   // 5. Remove the original instructions.
640   Type *IndexType = IntegerType::get(
641       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
642 
643   DenseMap<Value *, Value *> NewInsts;
644   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
645 
646   // Create the new PHI nodes, without adding any incoming values.
647   for (Value *Val : Explored) {
648     if (Val == Base)
649       continue;
650     // Create empty phi nodes. This avoids cyclic dependencies when creating
651     // the remaining instructions.
652     if (auto *PHI = dyn_cast<PHINode>(Val))
653       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
654                                       PHI->getName() + ".idx", PHI);
655   }
656   IRBuilder<> Builder(Base->getContext());
657 
658   // Create all the other instructions.
659   for (Value *Val : Explored) {
660 
661     if (NewInsts.find(Val) != NewInsts.end())
662       continue;
663 
664     if (auto *CI = dyn_cast<CastInst>(Val)) {
665       // Don't get rid of the intermediate variable here; the store can grow
666       // the map which will invalidate the reference to the input value.
667       Value *V = NewInsts[CI->getOperand(0)];
668       NewInsts[CI] = V;
669       continue;
670     }
671     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
672       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
673                                                   : GEP->getOperand(1);
674       setInsertionPoint(Builder, GEP);
675       // Indices might need to be sign extended. GEPs will magically do
676       // this, but we need to do it ourselves here.
677       if (Index->getType()->getScalarSizeInBits() !=
678           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
679         Index = Builder.CreateSExtOrTrunc(
680             Index, NewInsts[GEP->getOperand(0)]->getType(),
681             GEP->getOperand(0)->getName() + ".sext");
682       }
683 
684       auto *Op = NewInsts[GEP->getOperand(0)];
685       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
686         NewInsts[GEP] = Index;
687       else
688         NewInsts[GEP] = Builder.CreateNSWAdd(
689             Op, Index, GEP->getOperand(0)->getName() + ".add");
690       continue;
691     }
692     if (isa<PHINode>(Val))
693       continue;
694 
695     llvm_unreachable("Unexpected instruction type");
696   }
697 
698   // Add the incoming values to the PHI nodes.
699   for (Value *Val : Explored) {
700     if (Val == Base)
701       continue;
702     // All the instructions have been created, we can now add edges to the
703     // phi nodes.
704     if (auto *PHI = dyn_cast<PHINode>(Val)) {
705       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
706       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
707         Value *NewIncoming = PHI->getIncomingValue(I);
708 
709         if (NewInsts.find(NewIncoming) != NewInsts.end())
710           NewIncoming = NewInsts[NewIncoming];
711 
712         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
713       }
714     }
715   }
716 
717   PointerType *PtrTy =
718       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
719   for (Value *Val : Explored) {
720     if (Val == Base)
721       continue;
722 
723     // Depending on the type, for external users we have to emit
724     // a GEP or a GEP + ptrtoint.
725     setInsertionPoint(Builder, Val, false);
726 
727     // Cast base to the expected type.
728     Value *NewVal = Builder.CreateBitOrPointerCast(
729         Base, PtrTy, Start->getName() + "to.ptr");
730     NewVal = Builder.CreateInBoundsGEP(
731         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
732     NewVal = Builder.CreateBitOrPointerCast(
733         NewVal, Val->getType(), Val->getName() + ".conv");
734     Val->replaceAllUsesWith(NewVal);
735   }
736 
737   return NewInsts[Start];
738 }
739 
740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
741 /// the input Value as a constant indexed GEP. Returns a pair containing
742 /// the GEPs Pointer and Index.
743 static std::pair<Value *, Value *>
744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
745   Type *IndexType = IntegerType::get(V->getContext(),
746                                      DL.getIndexTypeSizeInBits(V->getType()));
747 
748   Constant *Index = ConstantInt::getNullValue(IndexType);
749   while (true) {
750     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
751       // We accept only inbouds GEPs here to exclude the possibility of
752       // overflow.
753       if (!GEP->isInBounds())
754         break;
755       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
756           GEP->getSourceElementType() == ElemTy) {
757         V = GEP->getOperand(0);
758         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
759         Index = ConstantExpr::getAdd(
760             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
761         continue;
762       }
763       break;
764     }
765     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
766       if (!CI->isNoopCast(DL))
767         break;
768       V = CI->getOperand(0);
769       continue;
770     }
771     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
772       if (!CI->isNoopCast(DL))
773         break;
774       V = CI->getOperand(0);
775       continue;
776     }
777     break;
778   }
779   return {V, Index};
780 }
781 
782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
783 /// We can look through PHIs, GEPs and casts in order to determine a common base
784 /// between GEPLHS and RHS.
785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
786                                               ICmpInst::Predicate Cond,
787                                               const DataLayout &DL) {
788   // FIXME: Support vector of pointers.
789   if (GEPLHS->getType()->isVectorTy())
790     return nullptr;
791 
792   if (!GEPLHS->hasAllConstantIndices())
793     return nullptr;
794 
795   Type *ElemTy = GEPLHS->getSourceElementType();
796   Value *PtrBase, *Index;
797   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
798 
799   // The set of nodes that will take part in this transformation.
800   SetVector<Value *> Nodes;
801 
802   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
803     return nullptr;
804 
805   // We know we can re-write this as
806   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
807   // Since we've only looked through inbouds GEPs we know that we
808   // can't have overflow on either side. We can therefore re-write
809   // this as:
810   //   OFFSET1 cmp OFFSET2
811   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
812 
813   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
814   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
815   // offset. Since Index is the offset of LHS to the base pointer, we will now
816   // compare the offsets instead of comparing the pointers.
817   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
818 }
819 
820 /// Fold comparisons between a GEP instruction and something else. At this point
821 /// we know that the GEP is on the LHS of the comparison.
822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
823                                            ICmpInst::Predicate Cond,
824                                            Instruction &I) {
825   // Don't transform signed compares of GEPs into index compares. Even if the
826   // GEP is inbounds, the final add of the base pointer can have signed overflow
827   // and would change the result of the icmp.
828   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
829   // the maximum signed value for the pointer type.
830   if (ICmpInst::isSigned(Cond))
831     return nullptr;
832 
833   // Look through bitcasts and addrspacecasts. We do not however want to remove
834   // 0 GEPs.
835   if (!isa<GetElementPtrInst>(RHS))
836     RHS = RHS->stripPointerCasts();
837 
838   Value *PtrBase = GEPLHS->getOperand(0);
839   // FIXME: Support vector pointer GEPs.
840   if (PtrBase == RHS && GEPLHS->isInBounds() &&
841       !GEPLHS->getType()->isVectorTy()) {
842     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
843     // This transformation (ignoring the base and scales) is valid because we
844     // know pointers can't overflow since the gep is inbounds.  See if we can
845     // output an optimized form.
846     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
847 
848     // If not, synthesize the offset the hard way.
849     if (!Offset)
850       Offset = EmitGEPOffset(GEPLHS);
851     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
852                         Constant::getNullValue(Offset->getType()));
853   }
854 
855   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
856       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
857       !NullPointerIsDefined(I.getFunction(),
858                             RHS->getType()->getPointerAddressSpace())) {
859     // For most address spaces, an allocation can't be placed at null, but null
860     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
861     // the only valid inbounds address derived from null, is null itself.
862     // Thus, we have four cases to consider:
863     // 1) Base == nullptr, Offset == 0 -> inbounds, null
864     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
865     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
866     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
867     //
868     // (Note if we're indexing a type of size 0, that simply collapses into one
869     //  of the buckets above.)
870     //
871     // In general, we're allowed to make values less poison (i.e. remove
872     //   sources of full UB), so in this case, we just select between the two
873     //   non-poison cases (1 and 4 above).
874     //
875     // For vectors, we apply the same reasoning on a per-lane basis.
876     auto *Base = GEPLHS->getPointerOperand();
877     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
878       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
879       Base = Builder.CreateVectorSplat(EC, Base);
880     }
881     return new ICmpInst(Cond, Base,
882                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
883                             cast<Constant>(RHS), Base->getType()));
884   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
885     // If the base pointers are different, but the indices are the same, just
886     // compare the base pointer.
887     if (PtrBase != GEPRHS->getOperand(0)) {
888       bool IndicesTheSame =
889           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
890           GEPLHS->getType() == GEPRHS->getType() &&
891           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
892       if (IndicesTheSame)
893         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
894           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
895             IndicesTheSame = false;
896             break;
897           }
898 
899       // If all indices are the same, just compare the base pointers.
900       Type *BaseType = GEPLHS->getOperand(0)->getType();
901       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
902         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
903 
904       // If we're comparing GEPs with two base pointers that only differ in type
905       // and both GEPs have only constant indices or just one use, then fold
906       // the compare with the adjusted indices.
907       // FIXME: Support vector of pointers.
908       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
909           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
910           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
911           PtrBase->stripPointerCasts() ==
912               GEPRHS->getOperand(0)->stripPointerCasts() &&
913           !GEPLHS->getType()->isVectorTy()) {
914         Value *LOffset = EmitGEPOffset(GEPLHS);
915         Value *ROffset = EmitGEPOffset(GEPRHS);
916 
917         // If we looked through an addrspacecast between different sized address
918         // spaces, the LHS and RHS pointers are different sized
919         // integers. Truncate to the smaller one.
920         Type *LHSIndexTy = LOffset->getType();
921         Type *RHSIndexTy = ROffset->getType();
922         if (LHSIndexTy != RHSIndexTy) {
923           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
924               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
925             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
926           } else
927             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
928         }
929 
930         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
931                                         LOffset, ROffset);
932         return replaceInstUsesWith(I, Cmp);
933       }
934 
935       // Otherwise, the base pointers are different and the indices are
936       // different. Try convert this to an indexed compare by looking through
937       // PHIs/casts.
938       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
939     }
940 
941     // If one of the GEPs has all zero indices, recurse.
942     // FIXME: Handle vector of pointers.
943     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
944       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
945                          ICmpInst::getSwappedPredicate(Cond), I);
946 
947     // If the other GEP has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
951 
952     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
953     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
954       // If the GEPs only differ by one index, compare it.
955       unsigned NumDifferences = 0;  // Keep track of # differences.
956       unsigned DiffOperand = 0;     // The operand that differs.
957       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
958         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
959           Type *LHSType = GEPLHS->getOperand(i)->getType();
960           Type *RHSType = GEPRHS->getOperand(i)->getType();
961           // FIXME: Better support for vector of pointers.
962           if (LHSType->getPrimitiveSizeInBits() !=
963                    RHSType->getPrimitiveSizeInBits() ||
964               (GEPLHS->getType()->isVectorTy() &&
965                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
966             // Irreconcilable differences.
967             NumDifferences = 2;
968             break;
969           }
970 
971           if (NumDifferences++) break;
972           DiffOperand = i;
973         }
974 
975       if (NumDifferences == 0)   // SAME GEP?
976         return replaceInstUsesWith(I, // No comparison is needed here.
977           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
978 
979       else if (NumDifferences == 1 && GEPsInBounds) {
980         Value *LHSV = GEPLHS->getOperand(DiffOperand);
981         Value *RHSV = GEPRHS->getOperand(DiffOperand);
982         // Make sure we do a signed comparison here.
983         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
984       }
985     }
986 
987     // Only lower this if the icmp is the only user of the GEP or if we expect
988     // the result to fold to a constant!
989     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
990         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
991       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
992       Value *L = EmitGEPOffset(GEPLHS);
993       Value *R = EmitGEPOffset(GEPRHS);
994       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
995     }
996   }
997 
998   // Try convert this to an indexed compare by looking through PHIs/casts as a
999   // last resort.
1000   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1001 }
1002 
1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1004                                              const AllocaInst *Alloca,
1005                                              const Value *Other) {
1006   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1007 
1008   // It would be tempting to fold away comparisons between allocas and any
1009   // pointer not based on that alloca (e.g. an argument). However, even
1010   // though such pointers cannot alias, they can still compare equal.
1011   //
1012   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1013   // doesn't escape we can argue that it's impossible to guess its value, and we
1014   // can therefore act as if any such guesses are wrong.
1015   //
1016   // The code below checks that the alloca doesn't escape, and that it's only
1017   // used in a comparison once (the current instruction). The
1018   // single-comparison-use condition ensures that we're trivially folding all
1019   // comparisons against the alloca consistently, and avoids the risk of
1020   // erroneously folding a comparison of the pointer with itself.
1021 
1022   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1023 
1024   SmallVector<const Use *, 32> Worklist;
1025   for (const Use &U : Alloca->uses()) {
1026     if (Worklist.size() >= MaxIter)
1027       return nullptr;
1028     Worklist.push_back(&U);
1029   }
1030 
1031   unsigned NumCmps = 0;
1032   while (!Worklist.empty()) {
1033     assert(Worklist.size() <= MaxIter);
1034     const Use *U = Worklist.pop_back_val();
1035     const Value *V = U->getUser();
1036     --MaxIter;
1037 
1038     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1039         isa<SelectInst>(V)) {
1040       // Track the uses.
1041     } else if (isa<LoadInst>(V)) {
1042       // Loading from the pointer doesn't escape it.
1043       continue;
1044     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1045       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1046       if (SI->getValueOperand() == U->get())
1047         return nullptr;
1048       continue;
1049     } else if (isa<ICmpInst>(V)) {
1050       if (NumCmps++)
1051         return nullptr; // Found more than one cmp.
1052       continue;
1053     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1054       switch (Intrin->getIntrinsicID()) {
1055         // These intrinsics don't escape or compare the pointer. Memset is safe
1056         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1057         // we don't allow stores, so src cannot point to V.
1058         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1059         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1060           continue;
1061         default:
1062           return nullptr;
1063       }
1064     } else {
1065       return nullptr;
1066     }
1067     for (const Use &U : V->uses()) {
1068       if (Worklist.size() >= MaxIter)
1069         return nullptr;
1070       Worklist.push_back(&U);
1071     }
1072   }
1073 
1074   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1075   return replaceInstUsesWith(
1076       ICI,
1077       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1078 }
1079 
1080 /// Fold "icmp pred (X+C), X".
1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1082                                                   ICmpInst::Predicate Pred) {
1083   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1084   // so the values can never be equal.  Similarly for all other "or equals"
1085   // operators.
1086   assert(!!C && "C should not be zero!");
1087 
1088   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1089   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1090   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1091   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1092     Constant *R = ConstantInt::get(X->getType(),
1093                                    APInt::getMaxValue(C.getBitWidth()) - C);
1094     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1095   }
1096 
1097   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1098   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1099   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1100   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1101     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1102                         ConstantInt::get(X->getType(), -C));
1103 
1104   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1105 
1106   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1107   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1108   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1109   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1110   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1111   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1112   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1113     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1114                         ConstantInt::get(X->getType(), SMax - C));
1115 
1116   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1117   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1118   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1119   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1120   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1121   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1122 
1123   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1124   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1125                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1126 }
1127 
1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1129 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1132                                                      const APInt &AP1,
1133                                                      const APInt &AP2) {
1134   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1135 
1136   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1137     if (I.getPredicate() == I.ICMP_NE)
1138       Pred = CmpInst::getInversePredicate(Pred);
1139     return new ICmpInst(Pred, LHS, RHS);
1140   };
1141 
1142   // Don't bother doing any work for cases which InstSimplify handles.
1143   if (AP2.isZero())
1144     return nullptr;
1145 
1146   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1147   if (IsAShr) {
1148     if (AP2.isAllOnes())
1149       return nullptr;
1150     if (AP2.isNegative() != AP1.isNegative())
1151       return nullptr;
1152     if (AP2.sgt(AP1))
1153       return nullptr;
1154   }
1155 
1156   if (!AP1)
1157     // 'A' must be large enough to shift out the highest set bit.
1158     return getICmp(I.ICMP_UGT, A,
1159                    ConstantInt::get(A->getType(), AP2.logBase2()));
1160 
1161   if (AP1 == AP2)
1162     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1163 
1164   int Shift;
1165   if (IsAShr && AP1.isNegative())
1166     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1167   else
1168     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1169 
1170   if (Shift > 0) {
1171     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1172       // There are multiple solutions if we are comparing against -1 and the LHS
1173       // of the ashr is not a power of two.
1174       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1175         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1176       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1177     } else if (AP1 == AP2.lshr(Shift)) {
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     }
1180   }
1181 
1182   // Shifting const2 will never be equal to const1.
1183   // FIXME: This should always be handled by InstSimplify?
1184   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1185   return replaceInstUsesWith(I, TorF);
1186 }
1187 
1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1191                                                      const APInt &AP1,
1192                                                      const APInt &AP2) {
1193   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1194 
1195   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1196     if (I.getPredicate() == I.ICMP_NE)
1197       Pred = CmpInst::getInversePredicate(Pred);
1198     return new ICmpInst(Pred, LHS, RHS);
1199   };
1200 
1201   // Don't bother doing any work for cases which InstSimplify handles.
1202   if (AP2.isZero())
1203     return nullptr;
1204 
1205   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1206 
1207   if (!AP1 && AP2TrailingZeros != 0)
1208     return getICmp(
1209         I.ICMP_UGE, A,
1210         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1211 
1212   if (AP1 == AP2)
1213     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1214 
1215   // Get the distance between the lowest bits that are set.
1216   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1217 
1218   if (Shift > 0 && AP2.shl(Shift) == AP1)
1219     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1220 
1221   // Shifting const2 will never be equal to const1.
1222   // FIXME: This should always be handled by InstSimplify?
1223   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1224   return replaceInstUsesWith(I, TorF);
1225 }
1226 
1227 /// The caller has matched a pattern of the form:
1228 ///   I = icmp ugt (add (add A, B), CI2), CI1
1229 /// If this is of the form:
1230 ///   sum = a + b
1231 ///   if (sum+128 >u 255)
1232 /// Then replace it with llvm.sadd.with.overflow.i8.
1233 ///
1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1235                                           ConstantInt *CI2, ConstantInt *CI1,
1236                                           InstCombinerImpl &IC) {
1237   // The transformation we're trying to do here is to transform this into an
1238   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1239   // with a narrower add, and discard the add-with-constant that is part of the
1240   // range check (if we can't eliminate it, this isn't profitable).
1241 
1242   // In order to eliminate the add-with-constant, the compare can be its only
1243   // use.
1244   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1245   if (!AddWithCst->hasOneUse())
1246     return nullptr;
1247 
1248   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1249   if (!CI2->getValue().isPowerOf2())
1250     return nullptr;
1251   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1252   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1253     return nullptr;
1254 
1255   // The width of the new add formed is 1 more than the bias.
1256   ++NewWidth;
1257 
1258   // Check to see that CI1 is an all-ones value with NewWidth bits.
1259   if (CI1->getBitWidth() == NewWidth ||
1260       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1261     return nullptr;
1262 
1263   // This is only really a signed overflow check if the inputs have been
1264   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1265   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1266   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1267       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1268     return nullptr;
1269 
1270   // In order to replace the original add with a narrower
1271   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1272   // and truncates that discard the high bits of the add.  Verify that this is
1273   // the case.
1274   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1275   for (User *U : OrigAdd->users()) {
1276     if (U == AddWithCst)
1277       continue;
1278 
1279     // Only accept truncates for now.  We would really like a nice recursive
1280     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1281     // chain to see which bits of a value are actually demanded.  If the
1282     // original add had another add which was then immediately truncated, we
1283     // could still do the transformation.
1284     TruncInst *TI = dyn_cast<TruncInst>(U);
1285     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1286       return nullptr;
1287   }
1288 
1289   // If the pattern matches, truncate the inputs to the narrower type and
1290   // use the sadd_with_overflow intrinsic to efficiently compute both the
1291   // result and the overflow bit.
1292   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1293   Function *F = Intrinsic::getDeclaration(
1294       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1295 
1296   InstCombiner::BuilderTy &Builder = IC.Builder;
1297 
1298   // Put the new code above the original add, in case there are any uses of the
1299   // add between the add and the compare.
1300   Builder.SetInsertPoint(OrigAdd);
1301 
1302   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1303   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1304   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1305   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1306   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1307 
1308   // The inner add was the result of the narrow add, zero extended to the
1309   // wider type.  Replace it with the result computed by the intrinsic.
1310   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1311   IC.eraseInstFromFunction(*OrigAdd);
1312 
1313   // The original icmp gets replaced with the overflow value.
1314   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1315 }
1316 
1317 /// If we have:
1318 ///   icmp eq/ne (urem/srem %x, %y), 0
1319 /// iff %y is a power-of-two, we can replace this with a bit test:
1320 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1322   // This fold is only valid for equality predicates.
1323   if (!I.isEquality())
1324     return nullptr;
1325   ICmpInst::Predicate Pred;
1326   Value *X, *Y, *Zero;
1327   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1328                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1329     return nullptr;
1330   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1331     return nullptr;
1332   // This may increase instruction count, we don't enforce that Y is a constant.
1333   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1334   Value *Masked = Builder.CreateAnd(X, Mask);
1335   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1336 }
1337 
1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1339 /// by one-less-than-bitwidth into a sign test on the original value.
1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1341   Instruction *Val;
1342   ICmpInst::Predicate Pred;
1343   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1344     return nullptr;
1345 
1346   Value *X;
1347   Type *XTy;
1348 
1349   Constant *C;
1350   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1351     XTy = X->getType();
1352     unsigned XBitWidth = XTy->getScalarSizeInBits();
1353     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1354                                      APInt(XBitWidth, XBitWidth - 1))))
1355       return nullptr;
1356   } else if (isa<BinaryOperator>(Val) &&
1357              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1358                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1359                   /*AnalyzeForSignBitExtraction=*/true))) {
1360     XTy = X->getType();
1361   } else
1362     return nullptr;
1363 
1364   return ICmpInst::Create(Instruction::ICmp,
1365                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1366                                                     : ICmpInst::ICMP_SLT,
1367                           X, ConstantInt::getNullValue(XTy));
1368 }
1369 
1370 // Handle  icmp pred X, 0
1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1372   CmpInst::Predicate Pred = Cmp.getPredicate();
1373   if (!match(Cmp.getOperand(1), m_Zero()))
1374     return nullptr;
1375 
1376   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1377   if (Pred == ICmpInst::ICMP_SGT) {
1378     Value *A, *B;
1379     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1380       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1381         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1382       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1383         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1384     }
1385   }
1386 
1387   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1388     return New;
1389 
1390   // Given:
1391   //   icmp eq/ne (urem %x, %y), 0
1392   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1393   //   icmp eq/ne %x, 0
1394   Value *X, *Y;
1395   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1396       ICmpInst::isEquality(Pred)) {
1397     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1398     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1399     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1400       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1401   }
1402 
1403   return nullptr;
1404 }
1405 
1406 /// Fold icmp Pred X, C.
1407 /// TODO: This code structure does not make sense. The saturating add fold
1408 /// should be moved to some other helper and extended as noted below (it is also
1409 /// possible that code has been made unnecessary - do we canonicalize IR to
1410 /// overflow/saturating intrinsics or not?).
1411 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1412   // Match the following pattern, which is a common idiom when writing
1413   // overflow-safe integer arithmetic functions. The source performs an addition
1414   // in wider type and explicitly checks for overflow using comparisons against
1415   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1416   //
1417   // TODO: This could probably be generalized to handle other overflow-safe
1418   // operations if we worked out the formulas to compute the appropriate magic
1419   // constants.
1420   //
1421   // sum = a + b
1422   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1423   CmpInst::Predicate Pred = Cmp.getPredicate();
1424   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1425   Value *A, *B;
1426   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1427   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1428       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1429     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1430       return Res;
1431 
1432   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1433   Constant *C = dyn_cast<Constant>(Op1);
1434   if (!C || C->canTrap())
1435     return nullptr;
1436 
1437   if (auto *Phi = dyn_cast<PHINode>(Op0))
1438     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1439       Type *Ty = Cmp.getType();
1440       Builder.SetInsertPoint(Phi);
1441       PHINode *NewPhi =
1442           Builder.CreatePHI(Ty, Phi->getNumOperands());
1443       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1444         auto *Input =
1445             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1446         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1447         NewPhi->addIncoming(BoolInput, Predecessor);
1448       }
1449       NewPhi->takeName(&Cmp);
1450       return replaceInstUsesWith(Cmp, NewPhi);
1451     }
1452 
1453   return nullptr;
1454 }
1455 
1456 /// Canonicalize icmp instructions based on dominating conditions.
1457 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1458   // This is a cheap/incomplete check for dominance - just match a single
1459   // predecessor with a conditional branch.
1460   BasicBlock *CmpBB = Cmp.getParent();
1461   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1462   if (!DomBB)
1463     return nullptr;
1464 
1465   Value *DomCond;
1466   BasicBlock *TrueBB, *FalseBB;
1467   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1468     return nullptr;
1469 
1470   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1471          "Predecessor block does not point to successor?");
1472 
1473   // The branch should get simplified. Don't bother simplifying this condition.
1474   if (TrueBB == FalseBB)
1475     return nullptr;
1476 
1477   // Try to simplify this compare to T/F based on the dominating condition.
1478   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1479   if (Imp)
1480     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1481 
1482   CmpInst::Predicate Pred = Cmp.getPredicate();
1483   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1484   ICmpInst::Predicate DomPred;
1485   const APInt *C, *DomC;
1486   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1487       match(Y, m_APInt(C))) {
1488     // We have 2 compares of a variable with constants. Calculate the constant
1489     // ranges of those compares to see if we can transform the 2nd compare:
1490     // DomBB:
1491     //   DomCond = icmp DomPred X, DomC
1492     //   br DomCond, CmpBB, FalseBB
1493     // CmpBB:
1494     //   Cmp = icmp Pred X, C
1495     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1496     ConstantRange DominatingCR =
1497         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1498                           : ConstantRange::makeExactICmpRegion(
1499                                 CmpInst::getInversePredicate(DomPred), *DomC);
1500     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1501     ConstantRange Difference = DominatingCR.difference(CR);
1502     if (Intersection.isEmptySet())
1503       return replaceInstUsesWith(Cmp, Builder.getFalse());
1504     if (Difference.isEmptySet())
1505       return replaceInstUsesWith(Cmp, Builder.getTrue());
1506 
1507     // Canonicalizing a sign bit comparison that gets used in a branch,
1508     // pessimizes codegen by generating branch on zero instruction instead
1509     // of a test and branch. So we avoid canonicalizing in such situations
1510     // because test and branch instruction has better branch displacement
1511     // than compare and branch instruction.
1512     bool UnusedBit;
1513     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1514     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1515       return nullptr;
1516 
1517     // Avoid an infinite loop with min/max canonicalization.
1518     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1519     if (Cmp.hasOneUse() &&
1520         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1521       return nullptr;
1522 
1523     if (const APInt *EqC = Intersection.getSingleElement())
1524       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1525     if (const APInt *NeC = Difference.getSingleElement())
1526       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1527   }
1528 
1529   return nullptr;
1530 }
1531 
1532 /// Fold icmp (trunc X, Y), C.
1533 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1534                                                      TruncInst *Trunc,
1535                                                      const APInt &C) {
1536   ICmpInst::Predicate Pred = Cmp.getPredicate();
1537   Value *X = Trunc->getOperand(0);
1538   if (C.isOne() && C.getBitWidth() > 1) {
1539     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1540     Value *V = nullptr;
1541     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1542       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1543                           ConstantInt::get(V->getType(), 1));
1544   }
1545 
1546   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1547            SrcBits = X->getType()->getScalarSizeInBits();
1548   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1549     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1550     // of the high bits truncated out of x are known.
1551     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1552 
1553     // If all the high bits are known, we can do this xform.
1554     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1555       // Pull in the high bits from known-ones set.
1556       APInt NewRHS = C.zext(SrcBits);
1557       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1558       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1559     }
1560   }
1561 
1562   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1563   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1564   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1565   Value *ShOp;
1566   const APInt *ShAmtC;
1567   bool TrueIfSigned;
1568   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1569       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1570       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1571     return TrueIfSigned
1572                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1573                               ConstantInt::getNullValue(X->getType()))
1574                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1575                               ConstantInt::getAllOnesValue(X->getType()));
1576   }
1577 
1578   return nullptr;
1579 }
1580 
1581 /// Fold icmp (xor X, Y), C.
1582 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1583                                                    BinaryOperator *Xor,
1584                                                    const APInt &C) {
1585   Value *X = Xor->getOperand(0);
1586   Value *Y = Xor->getOperand(1);
1587   const APInt *XorC;
1588   if (!match(Y, m_APInt(XorC)))
1589     return nullptr;
1590 
1591   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1592   // fold the xor.
1593   ICmpInst::Predicate Pred = Cmp.getPredicate();
1594   bool TrueIfSigned = false;
1595   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1596 
1597     // If the sign bit of the XorCst is not set, there is no change to
1598     // the operation, just stop using the Xor.
1599     if (!XorC->isNegative())
1600       return replaceOperand(Cmp, 0, X);
1601 
1602     // Emit the opposite comparison.
1603     if (TrueIfSigned)
1604       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1605                           ConstantInt::getAllOnesValue(X->getType()));
1606     else
1607       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1608                           ConstantInt::getNullValue(X->getType()));
1609   }
1610 
1611   if (Xor->hasOneUse()) {
1612     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1613     if (!Cmp.isEquality() && XorC->isSignMask()) {
1614       Pred = Cmp.getFlippedSignednessPredicate();
1615       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1616     }
1617 
1618     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1619     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1620       Pred = Cmp.getFlippedSignednessPredicate();
1621       Pred = Cmp.getSwappedPredicate(Pred);
1622       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1623     }
1624   }
1625 
1626   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1627   if (Pred == ICmpInst::ICMP_UGT) {
1628     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1629     if (*XorC == ~C && (C + 1).isPowerOf2())
1630       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1631     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1632     if (*XorC == C && (C + 1).isPowerOf2())
1633       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1634   }
1635   if (Pred == ICmpInst::ICMP_ULT) {
1636     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1637     if (*XorC == -C && C.isPowerOf2())
1638       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1639                           ConstantInt::get(X->getType(), ~C));
1640     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1641     if (*XorC == C && (-C).isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1643                           ConstantInt::get(X->getType(), ~C));
1644   }
1645   return nullptr;
1646 }
1647 
1648 /// Fold icmp (and (sh X, Y), C2), C1.
1649 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1650                                                 BinaryOperator *And,
1651                                                 const APInt &C1,
1652                                                 const APInt &C2) {
1653   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1654   if (!Shift || !Shift->isShift())
1655     return nullptr;
1656 
1657   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1658   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1659   // code produced by the clang front-end, for bitfield access.
1660   // This seemingly simple opportunity to fold away a shift turns out to be
1661   // rather complicated. See PR17827 for details.
1662   unsigned ShiftOpcode = Shift->getOpcode();
1663   bool IsShl = ShiftOpcode == Instruction::Shl;
1664   const APInt *C3;
1665   if (match(Shift->getOperand(1), m_APInt(C3))) {
1666     APInt NewAndCst, NewCmpCst;
1667     bool AnyCmpCstBitsShiftedOut;
1668     if (ShiftOpcode == Instruction::Shl) {
1669       // For a left shift, we can fold if the comparison is not signed. We can
1670       // also fold a signed comparison if the mask value and comparison value
1671       // are not negative. These constraints may not be obvious, but we can
1672       // prove that they are correct using an SMT solver.
1673       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1674         return nullptr;
1675 
1676       NewCmpCst = C1.lshr(*C3);
1677       NewAndCst = C2.lshr(*C3);
1678       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1679     } else if (ShiftOpcode == Instruction::LShr) {
1680       // For a logical right shift, we can fold if the comparison is not signed.
1681       // We can also fold a signed comparison if the shifted mask value and the
1682       // shifted comparison value are not negative. These constraints may not be
1683       // obvious, but we can prove that they are correct using an SMT solver.
1684       NewCmpCst = C1.shl(*C3);
1685       NewAndCst = C2.shl(*C3);
1686       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1687       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1688         return nullptr;
1689     } else {
1690       // For an arithmetic shift, check that both constants don't use (in a
1691       // signed sense) the top bits being shifted out.
1692       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1693       NewCmpCst = C1.shl(*C3);
1694       NewAndCst = C2.shl(*C3);
1695       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1696       if (NewAndCst.ashr(*C3) != C2)
1697         return nullptr;
1698     }
1699 
1700     if (AnyCmpCstBitsShiftedOut) {
1701       // If we shifted bits out, the fold is not going to work out. As a
1702       // special case, check to see if this means that the result is always
1703       // true or false now.
1704       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1705         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1706       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1707         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1708     } else {
1709       Value *NewAnd = Builder.CreateAnd(
1710           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1711       return new ICmpInst(Cmp.getPredicate(),
1712           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1713     }
1714   }
1715 
1716   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1717   // preferable because it allows the C2 << Y expression to be hoisted out of a
1718   // loop if Y is invariant and X is not.
1719   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1720       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1721     // Compute C2 << Y.
1722     Value *NewShift =
1723         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1724               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1725 
1726     // Compute X & (C2 << Y).
1727     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1728     return replaceOperand(Cmp, 0, NewAnd);
1729   }
1730 
1731   return nullptr;
1732 }
1733 
1734 /// Fold icmp (and X, C2), C1.
1735 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1736                                                      BinaryOperator *And,
1737                                                      const APInt &C1) {
1738   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1739 
1740   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1741   // TODO: We canonicalize to the longer form for scalars because we have
1742   // better analysis/folds for icmp, and codegen may be better with icmp.
1743   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1744       match(And->getOperand(1), m_One()))
1745     return new TruncInst(And->getOperand(0), Cmp.getType());
1746 
1747   const APInt *C2;
1748   Value *X;
1749   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1750     return nullptr;
1751 
1752   // Don't perform the following transforms if the AND has multiple uses
1753   if (!And->hasOneUse())
1754     return nullptr;
1755 
1756   if (Cmp.isEquality() && C1.isZero()) {
1757     // Restrict this fold to single-use 'and' (PR10267).
1758     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1759     if (C2->isSignMask()) {
1760       Constant *Zero = Constant::getNullValue(X->getType());
1761       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1762       return new ICmpInst(NewPred, X, Zero);
1763     }
1764 
1765     // Restrict this fold only for single-use 'and' (PR10267).
1766     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1767     if ((~(*C2) + 1).isPowerOf2()) {
1768       Constant *NegBOC =
1769           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1770       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1771       return new ICmpInst(NewPred, X, NegBOC);
1772     }
1773   }
1774 
1775   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1776   // the input width without changing the value produced, eliminate the cast:
1777   //
1778   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1779   //
1780   // We can do this transformation if the constants do not have their sign bits
1781   // set or if it is an equality comparison. Extending a relational comparison
1782   // when we're checking the sign bit would not work.
1783   Value *W;
1784   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1785       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1786     // TODO: Is this a good transform for vectors? Wider types may reduce
1787     // throughput. Should this transform be limited (even for scalars) by using
1788     // shouldChangeType()?
1789     if (!Cmp.getType()->isVectorTy()) {
1790       Type *WideType = W->getType();
1791       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1792       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1793       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1794       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1795       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1796     }
1797   }
1798 
1799   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1800     return I;
1801 
1802   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1803   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1804   //
1805   // iff pred isn't signed
1806   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1807       match(And->getOperand(1), m_One())) {
1808     Constant *One = cast<Constant>(And->getOperand(1));
1809     Value *Or = And->getOperand(0);
1810     Value *A, *B, *LShr;
1811     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1812         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1813       unsigned UsesRemoved = 0;
1814       if (And->hasOneUse())
1815         ++UsesRemoved;
1816       if (Or->hasOneUse())
1817         ++UsesRemoved;
1818       if (LShr->hasOneUse())
1819         ++UsesRemoved;
1820 
1821       // Compute A & ((1 << B) | 1)
1822       Value *NewOr = nullptr;
1823       if (auto *C = dyn_cast<Constant>(B)) {
1824         if (UsesRemoved >= 1)
1825           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1826       } else {
1827         if (UsesRemoved >= 3)
1828           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1829                                                      /*HasNUW=*/true),
1830                                    One, Or->getName());
1831       }
1832       if (NewOr) {
1833         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1834         return replaceOperand(Cmp, 0, NewAnd);
1835       }
1836     }
1837   }
1838 
1839   return nullptr;
1840 }
1841 
1842 /// Fold icmp (and X, Y), C.
1843 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1844                                                    BinaryOperator *And,
1845                                                    const APInt &C) {
1846   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1847     return I;
1848 
1849   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1850   bool TrueIfNeg;
1851   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1852     // ((X - 1) & ~X) <  0 --> X == 0
1853     // ((X - 1) & ~X) >= 0 --> X != 0
1854     Value *X;
1855     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1856         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1857       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1858       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1859     }
1860   }
1861 
1862   // TODO: These all require that Y is constant too, so refactor with the above.
1863 
1864   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1865   Value *X = And->getOperand(0);
1866   Value *Y = And->getOperand(1);
1867   if (auto *LI = dyn_cast<LoadInst>(X))
1868     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1869       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1870         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1871             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1872           ConstantInt *C2 = cast<ConstantInt>(Y);
1873           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1874             return Res;
1875         }
1876 
1877   if (!Cmp.isEquality())
1878     return nullptr;
1879 
1880   // X & -C == -C -> X >  u ~C
1881   // X & -C != -C -> X <= u ~C
1882   //   iff C is a power of 2
1883   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1884     auto NewPred =
1885         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1886     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1887   }
1888 
1889   return nullptr;
1890 }
1891 
1892 /// Fold icmp (or X, Y), C.
1893 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1894                                                   BinaryOperator *Or,
1895                                                   const APInt &C) {
1896   ICmpInst::Predicate Pred = Cmp.getPredicate();
1897   if (C.isOne()) {
1898     // icmp slt signum(V) 1 --> icmp slt V, 1
1899     Value *V = nullptr;
1900     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1901       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1902                           ConstantInt::get(V->getType(), 1));
1903   }
1904 
1905   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1906   const APInt *MaskC;
1907   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1908     if (*MaskC == C && (C + 1).isPowerOf2()) {
1909       // X | C == C --> X <=u C
1910       // X | C != C --> X  >u C
1911       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1912       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1913       return new ICmpInst(Pred, OrOp0, OrOp1);
1914     }
1915 
1916     // More general: canonicalize 'equality with set bits mask' to
1917     // 'equality with clear bits mask'.
1918     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1919     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1920     if (Or->hasOneUse()) {
1921       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1922       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1923       return new ICmpInst(Pred, And, NewC);
1924     }
1925   }
1926 
1927   // (X | (X-1)) s<  0 --> X s< 1
1928   // (X | (X-1)) s> -1 --> X s> 0
1929   Value *X;
1930   bool TrueIfSigned;
1931   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1932       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1933     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1934     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1935     return new ICmpInst(NewPred, X, NewC);
1936   }
1937 
1938   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1939     return nullptr;
1940 
1941   Value *P, *Q;
1942   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1943     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1944     // -> and (icmp eq P, null), (icmp eq Q, null).
1945     Value *CmpP =
1946         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1947     Value *CmpQ =
1948         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1949     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1950     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1951   }
1952 
1953   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1954   // a shorter form that has more potential to be folded even further.
1955   Value *X1, *X2, *X3, *X4;
1956   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1957       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1958     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1959     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1960     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1961     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1962     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1963     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1964   }
1965 
1966   return nullptr;
1967 }
1968 
1969 /// Fold icmp (mul X, Y), C.
1970 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1971                                                    BinaryOperator *Mul,
1972                                                    const APInt &C) {
1973   const APInt *MulC;
1974   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1975     return nullptr;
1976 
1977   // If this is a test of the sign bit and the multiply is sign-preserving with
1978   // a constant operand, use the multiply LHS operand instead.
1979   ICmpInst::Predicate Pred = Cmp.getPredicate();
1980   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1981     if (MulC->isNegative())
1982       Pred = ICmpInst::getSwappedPredicate(Pred);
1983     return new ICmpInst(Pred, Mul->getOperand(0),
1984                         Constant::getNullValue(Mul->getType()));
1985   }
1986 
1987   // If the multiply does not wrap, try to divide the compare constant by the
1988   // multiplication factor.
1989   if (Cmp.isEquality() && !MulC->isZero()) {
1990     // (mul nsw X, MulC) == C --> X == C /s MulC
1991     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1992       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1993       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1994     }
1995     // (mul nuw X, MulC) == C --> X == C /u MulC
1996     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1997       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1998       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1999     }
2000   }
2001 
2002   return nullptr;
2003 }
2004 
2005 /// Fold icmp (shl 1, Y), C.
2006 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2007                                    const APInt &C) {
2008   Value *Y;
2009   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2010     return nullptr;
2011 
2012   Type *ShiftType = Shl->getType();
2013   unsigned TypeBits = C.getBitWidth();
2014   bool CIsPowerOf2 = C.isPowerOf2();
2015   ICmpInst::Predicate Pred = Cmp.getPredicate();
2016   if (Cmp.isUnsigned()) {
2017     // (1 << Y) pred C -> Y pred Log2(C)
2018     if (!CIsPowerOf2) {
2019       // (1 << Y) <  30 -> Y <= 4
2020       // (1 << Y) <= 30 -> Y <= 4
2021       // (1 << Y) >= 30 -> Y >  4
2022       // (1 << Y) >  30 -> Y >  4
2023       if (Pred == ICmpInst::ICMP_ULT)
2024         Pred = ICmpInst::ICMP_ULE;
2025       else if (Pred == ICmpInst::ICMP_UGE)
2026         Pred = ICmpInst::ICMP_UGT;
2027     }
2028 
2029     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2030     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2031     unsigned CLog2 = C.logBase2();
2032     if (CLog2 == TypeBits - 1) {
2033       if (Pred == ICmpInst::ICMP_UGE)
2034         Pred = ICmpInst::ICMP_EQ;
2035       else if (Pred == ICmpInst::ICMP_ULT)
2036         Pred = ICmpInst::ICMP_NE;
2037     }
2038     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2039   } else if (Cmp.isSigned()) {
2040     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2041     if (C.isAllOnes()) {
2042       // (1 << Y) <= -1 -> Y == 31
2043       if (Pred == ICmpInst::ICMP_SLE)
2044         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2045 
2046       // (1 << Y) >  -1 -> Y != 31
2047       if (Pred == ICmpInst::ICMP_SGT)
2048         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2049     } else if (!C) {
2050       // (1 << Y) <  0 -> Y == 31
2051       // (1 << Y) <= 0 -> Y == 31
2052       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2053         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2054 
2055       // (1 << Y) >= 0 -> Y != 31
2056       // (1 << Y) >  0 -> Y != 31
2057       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2058         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2059     }
2060   } else if (Cmp.isEquality() && CIsPowerOf2) {
2061     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2062   }
2063 
2064   return nullptr;
2065 }
2066 
2067 /// Fold icmp (shl X, Y), C.
2068 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2069                                                    BinaryOperator *Shl,
2070                                                    const APInt &C) {
2071   const APInt *ShiftVal;
2072   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2073     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2074 
2075   const APInt *ShiftAmt;
2076   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2077     return foldICmpShlOne(Cmp, Shl, C);
2078 
2079   // Check that the shift amount is in range. If not, don't perform undefined
2080   // shifts. When the shift is visited, it will be simplified.
2081   unsigned TypeBits = C.getBitWidth();
2082   if (ShiftAmt->uge(TypeBits))
2083     return nullptr;
2084 
2085   ICmpInst::Predicate Pred = Cmp.getPredicate();
2086   Value *X = Shl->getOperand(0);
2087   Type *ShType = Shl->getType();
2088 
2089   // NSW guarantees that we are only shifting out sign bits from the high bits,
2090   // so we can ASHR the compare constant without needing a mask and eliminate
2091   // the shift.
2092   if (Shl->hasNoSignedWrap()) {
2093     if (Pred == ICmpInst::ICMP_SGT) {
2094       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2095       APInt ShiftedC = C.ashr(*ShiftAmt);
2096       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2097     }
2098     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2099         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2100       APInt ShiftedC = C.ashr(*ShiftAmt);
2101       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2102     }
2103     if (Pred == ICmpInst::ICMP_SLT) {
2104       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2105       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2106       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2107       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2108       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2109       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2110       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111     }
2112     // If this is a signed comparison to 0 and the shift is sign preserving,
2113     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2114     // do that if we're sure to not continue on in this function.
2115     if (isSignTest(Pred, C))
2116       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2117   }
2118 
2119   // NUW guarantees that we are only shifting out zero bits from the high bits,
2120   // so we can LSHR the compare constant without needing a mask and eliminate
2121   // the shift.
2122   if (Shl->hasNoUnsignedWrap()) {
2123     if (Pred == ICmpInst::ICMP_UGT) {
2124       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2125       APInt ShiftedC = C.lshr(*ShiftAmt);
2126       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2127     }
2128     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2129         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2130       APInt ShiftedC = C.lshr(*ShiftAmt);
2131       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2132     }
2133     if (Pred == ICmpInst::ICMP_ULT) {
2134       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2135       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2136       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2137       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2138       assert(C.ugt(0) && "ult 0 should have been eliminated");
2139       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2140       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2141     }
2142   }
2143 
2144   if (Cmp.isEquality() && Shl->hasOneUse()) {
2145     // Strength-reduce the shift into an 'and'.
2146     Constant *Mask = ConstantInt::get(
2147         ShType,
2148         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2149     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2150     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2151     return new ICmpInst(Pred, And, LShrC);
2152   }
2153 
2154   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2155   bool TrueIfSigned = false;
2156   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2157     // (X << 31) <s 0  --> (X & 1) != 0
2158     Constant *Mask = ConstantInt::get(
2159         ShType,
2160         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2161     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2162     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2163                         And, Constant::getNullValue(ShType));
2164   }
2165 
2166   // Simplify 'shl' inequality test into 'and' equality test.
2167   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2168     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2169     if ((C + 1).isPowerOf2() &&
2170         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2171       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2172       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2173                                                      : ICmpInst::ICMP_NE,
2174                           And, Constant::getNullValue(ShType));
2175     }
2176     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2177     if (C.isPowerOf2() &&
2178         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2179       Value *And =
2180           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2181       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2182                                                      : ICmpInst::ICMP_NE,
2183                           And, Constant::getNullValue(ShType));
2184     }
2185   }
2186 
2187   // Transform (icmp pred iM (shl iM %v, N), C)
2188   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2189   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2190   // This enables us to get rid of the shift in favor of a trunc that may be
2191   // free on the target. It has the additional benefit of comparing to a
2192   // smaller constant that may be more target-friendly.
2193   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2194   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2195       DL.isLegalInteger(TypeBits - Amt)) {
2196     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2197     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2198       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2199     Constant *NewC =
2200         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2201     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2202   }
2203 
2204   return nullptr;
2205 }
2206 
2207 /// Fold icmp ({al}shr X, Y), C.
2208 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2209                                                    BinaryOperator *Shr,
2210                                                    const APInt &C) {
2211   // An exact shr only shifts out zero bits, so:
2212   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2213   Value *X = Shr->getOperand(0);
2214   CmpInst::Predicate Pred = Cmp.getPredicate();
2215   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2216     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2217 
2218   const APInt *ShiftVal;
2219   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2220     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2221 
2222   const APInt *ShiftAmt;
2223   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2224     return nullptr;
2225 
2226   // Check that the shift amount is in range. If not, don't perform undefined
2227   // shifts. When the shift is visited it will be simplified.
2228   unsigned TypeBits = C.getBitWidth();
2229   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2230   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2231     return nullptr;
2232 
2233   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2234   bool IsExact = Shr->isExact();
2235   Type *ShrTy = Shr->getType();
2236   // TODO: If we could guarantee that InstSimplify would handle all of the
2237   // constant-value-based preconditions in the folds below, then we could assert
2238   // those conditions rather than checking them. This is difficult because of
2239   // undef/poison (PR34838).
2240   if (IsAShr) {
2241     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2242       // When ShAmtC can be shifted losslessly:
2243       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2244       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2245       APInt ShiftedC = C.shl(ShAmtVal);
2246       if (ShiftedC.ashr(ShAmtVal) == C)
2247         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2248     }
2249     if (Pred == CmpInst::ICMP_SGT) {
2250       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2251       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2252       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2253           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2254         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2255     }
2256     if (Pred == CmpInst::ICMP_UGT) {
2257       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2258       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2259       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2260         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2261     }
2262 
2263     // If the compare constant has significant bits above the lowest sign-bit,
2264     // then convert an unsigned cmp to a test of the sign-bit:
2265     // (ashr X, ShiftC) u> C --> X s< 0
2266     // (ashr X, ShiftC) u< C --> X s> -1
2267     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2268       if (Pred == CmpInst::ICMP_UGT) {
2269         return new ICmpInst(CmpInst::ICMP_SLT, X,
2270                             ConstantInt::getNullValue(ShrTy));
2271       }
2272       if (Pred == CmpInst::ICMP_ULT) {
2273         return new ICmpInst(CmpInst::ICMP_SGT, X,
2274                             ConstantInt::getAllOnesValue(ShrTy));
2275       }
2276     }
2277   } else {
2278     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2279       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2280       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2281       APInt ShiftedC = C.shl(ShAmtVal);
2282       if (ShiftedC.lshr(ShAmtVal) == C)
2283         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2284     }
2285     if (Pred == CmpInst::ICMP_UGT) {
2286       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2287       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2288       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2289         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2290     }
2291   }
2292 
2293   if (!Cmp.isEquality())
2294     return nullptr;
2295 
2296   // Handle equality comparisons of shift-by-constant.
2297 
2298   // If the comparison constant changes with the shift, the comparison cannot
2299   // succeed (bits of the comparison constant cannot match the shifted value).
2300   // This should be known by InstSimplify and already be folded to true/false.
2301   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2302           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2303          "Expected icmp+shr simplify did not occur.");
2304 
2305   // If the bits shifted out are known zero, compare the unshifted value:
2306   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2307   if (Shr->isExact())
2308     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2309 
2310   if (C.isZero()) {
2311     // == 0 is u< 1.
2312     if (Pred == CmpInst::ICMP_EQ)
2313       return new ICmpInst(CmpInst::ICMP_ULT, X,
2314                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2315     else
2316       return new ICmpInst(CmpInst::ICMP_UGT, X,
2317                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2318   }
2319 
2320   if (Shr->hasOneUse()) {
2321     // Canonicalize the shift into an 'and':
2322     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2323     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2324     Constant *Mask = ConstantInt::get(ShrTy, Val);
2325     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2326     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2327   }
2328 
2329   return nullptr;
2330 }
2331 
2332 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2333                                                     BinaryOperator *SRem,
2334                                                     const APInt &C) {
2335   // Match an 'is positive' or 'is negative' comparison of remainder by a
2336   // constant power-of-2 value:
2337   // (X % pow2C) sgt/slt 0
2338   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2339   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2340     return nullptr;
2341 
2342   // TODO: The one-use check is standard because we do not typically want to
2343   //       create longer instruction sequences, but this might be a special-case
2344   //       because srem is not good for analysis or codegen.
2345   if (!SRem->hasOneUse())
2346     return nullptr;
2347 
2348   const APInt *DivisorC;
2349   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2350     return nullptr;
2351 
2352   // Mask off the sign bit and the modulo bits (low-bits).
2353   Type *Ty = SRem->getType();
2354   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2355   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2356   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2357 
2358   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2359   // bit is set. Example:
2360   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2361   if (Pred == ICmpInst::ICMP_SGT)
2362     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2363 
2364   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2365   // bit is set. Example:
2366   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2367   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2368 }
2369 
2370 /// Fold icmp (udiv X, Y), C.
2371 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2372                                                     BinaryOperator *UDiv,
2373                                                     const APInt &C) {
2374   const APInt *C2;
2375   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2376     return nullptr;
2377 
2378   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2379 
2380   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2381   Value *Y = UDiv->getOperand(1);
2382   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2383     assert(!C.isMaxValue() &&
2384            "icmp ugt X, UINT_MAX should have been simplified already.");
2385     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2386                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2387   }
2388 
2389   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2390   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2391     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2392     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2393                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2394   }
2395 
2396   return nullptr;
2397 }
2398 
2399 /// Fold icmp ({su}div X, Y), C.
2400 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2401                                                    BinaryOperator *Div,
2402                                                    const APInt &C) {
2403   // Fold: icmp pred ([us]div X, C2), C -> range test
2404   // Fold this div into the comparison, producing a range check.
2405   // Determine, based on the divide type, what the range is being
2406   // checked.  If there is an overflow on the low or high side, remember
2407   // it, otherwise compute the range [low, hi) bounding the new value.
2408   // See: InsertRangeTest above for the kinds of replacements possible.
2409   const APInt *C2;
2410   if (!match(Div->getOperand(1), m_APInt(C2)))
2411     return nullptr;
2412 
2413   // FIXME: If the operand types don't match the type of the divide
2414   // then don't attempt this transform. The code below doesn't have the
2415   // logic to deal with a signed divide and an unsigned compare (and
2416   // vice versa). This is because (x /s C2) <s C  produces different
2417   // results than (x /s C2) <u C or (x /u C2) <s C or even
2418   // (x /u C2) <u C.  Simply casting the operands and result won't
2419   // work. :(  The if statement below tests that condition and bails
2420   // if it finds it.
2421   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2422   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2423     return nullptr;
2424 
2425   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2426   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2427   // division-by-constant cases should be present, we can not assert that they
2428   // have happened before we reach this icmp instruction.
2429   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2430     return nullptr;
2431 
2432   // Compute Prod = C * C2. We are essentially solving an equation of
2433   // form X / C2 = C. We solve for X by multiplying C2 and C.
2434   // By solving for X, we can turn this into a range check instead of computing
2435   // a divide.
2436   APInt Prod = C * *C2;
2437 
2438   // Determine if the product overflows by seeing if the product is not equal to
2439   // the divide. Make sure we do the same kind of divide as in the LHS
2440   // instruction that we're folding.
2441   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2442 
2443   ICmpInst::Predicate Pred = Cmp.getPredicate();
2444 
2445   // If the division is known to be exact, then there is no remainder from the
2446   // divide, so the covered range size is unit, otherwise it is the divisor.
2447   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2448 
2449   // Figure out the interval that is being checked.  For example, a comparison
2450   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2451   // Compute this interval based on the constants involved and the signedness of
2452   // the compare/divide.  This computes a half-open interval, keeping track of
2453   // whether either value in the interval overflows.  After analysis each
2454   // overflow variable is set to 0 if it's corresponding bound variable is valid
2455   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2456   int LoOverflow = 0, HiOverflow = 0;
2457   APInt LoBound, HiBound;
2458 
2459   if (!DivIsSigned) {  // udiv
2460     // e.g. X/5 op 3  --> [15, 20)
2461     LoBound = Prod;
2462     HiOverflow = LoOverflow = ProdOV;
2463     if (!HiOverflow) {
2464       // If this is not an exact divide, then many values in the range collapse
2465       // to the same result value.
2466       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2467     }
2468   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2469     if (C.isZero()) {                    // (X / pos) op 0
2470       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2471       LoBound = -(RangeSize - 1);
2472       HiBound = RangeSize;
2473     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2474       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2475       HiOverflow = LoOverflow = ProdOV;
2476       if (!HiOverflow)
2477         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2478     } else { // (X / pos) op neg
2479       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2480       HiBound = Prod + 1;
2481       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2482       if (!LoOverflow) {
2483         APInt DivNeg = -RangeSize;
2484         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2485       }
2486     }
2487   } else if (C2->isNegative()) { // Divisor is < 0.
2488     if (Div->isExact())
2489       RangeSize.negate();
2490     if (C.isZero()) { // (X / neg) op 0
2491       // e.g. X/-5 op 0  --> [-4, 5)
2492       LoBound = RangeSize + 1;
2493       HiBound = -RangeSize;
2494       if (HiBound == *C2) {        // -INTMIN = INTMIN
2495         HiOverflow = 1;            // [INTMIN+1, overflow)
2496         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2497       }
2498     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2499       // e.g. X/-5 op 3  --> [-19, -14)
2500       HiBound = Prod + 1;
2501       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2502       if (!LoOverflow)
2503         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2504     } else {                // (X / neg) op neg
2505       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2506       LoOverflow = HiOverflow = ProdOV;
2507       if (!HiOverflow)
2508         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2509     }
2510 
2511     // Dividing by a negative swaps the condition.  LT <-> GT
2512     Pred = ICmpInst::getSwappedPredicate(Pred);
2513   }
2514 
2515   Value *X = Div->getOperand(0);
2516   switch (Pred) {
2517     default: llvm_unreachable("Unhandled icmp opcode!");
2518     case ICmpInst::ICMP_EQ:
2519       if (LoOverflow && HiOverflow)
2520         return replaceInstUsesWith(Cmp, Builder.getFalse());
2521       if (HiOverflow)
2522         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2523                             ICmpInst::ICMP_UGE, X,
2524                             ConstantInt::get(Div->getType(), LoBound));
2525       if (LoOverflow)
2526         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2527                             ICmpInst::ICMP_ULT, X,
2528                             ConstantInt::get(Div->getType(), HiBound));
2529       return replaceInstUsesWith(
2530           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2531     case ICmpInst::ICMP_NE:
2532       if (LoOverflow && HiOverflow)
2533         return replaceInstUsesWith(Cmp, Builder.getTrue());
2534       if (HiOverflow)
2535         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2536                             ICmpInst::ICMP_ULT, X,
2537                             ConstantInt::get(Div->getType(), LoBound));
2538       if (LoOverflow)
2539         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2540                             ICmpInst::ICMP_UGE, X,
2541                             ConstantInt::get(Div->getType(), HiBound));
2542       return replaceInstUsesWith(Cmp,
2543                                  insertRangeTest(X, LoBound, HiBound,
2544                                                  DivIsSigned, false));
2545     case ICmpInst::ICMP_ULT:
2546     case ICmpInst::ICMP_SLT:
2547       if (LoOverflow == +1)   // Low bound is greater than input range.
2548         return replaceInstUsesWith(Cmp, Builder.getTrue());
2549       if (LoOverflow == -1)   // Low bound is less than input range.
2550         return replaceInstUsesWith(Cmp, Builder.getFalse());
2551       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2552     case ICmpInst::ICMP_UGT:
2553     case ICmpInst::ICMP_SGT:
2554       if (HiOverflow == +1)       // High bound greater than input range.
2555         return replaceInstUsesWith(Cmp, Builder.getFalse());
2556       if (HiOverflow == -1)       // High bound less than input range.
2557         return replaceInstUsesWith(Cmp, Builder.getTrue());
2558       if (Pred == ICmpInst::ICMP_UGT)
2559         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2560                             ConstantInt::get(Div->getType(), HiBound));
2561       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2562                           ConstantInt::get(Div->getType(), HiBound));
2563   }
2564 
2565   return nullptr;
2566 }
2567 
2568 /// Fold icmp (sub X, Y), C.
2569 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2570                                                    BinaryOperator *Sub,
2571                                                    const APInt &C) {
2572   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2573   ICmpInst::Predicate Pred = Cmp.getPredicate();
2574   Type *Ty = Sub->getType();
2575 
2576   // (SubC - Y) == C) --> Y == (SubC - C)
2577   // (SubC - Y) != C) --> Y != (SubC - C)
2578   Constant *SubC;
2579   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2580     return new ICmpInst(Pred, Y,
2581                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2582   }
2583 
2584   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2585   const APInt *C2;
2586   APInt SubResult;
2587   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2588   bool HasNSW = Sub->hasNoSignedWrap();
2589   bool HasNUW = Sub->hasNoUnsignedWrap();
2590   if (match(X, m_APInt(C2)) &&
2591       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2592       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2593     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2594 
2595   // The following transforms are only worth it if the only user of the subtract
2596   // is the icmp.
2597   // TODO: This is an artificial restriction for all of the transforms below
2598   //       that only need a single replacement icmp.
2599   if (!Sub->hasOneUse())
2600     return nullptr;
2601 
2602   // X - Y == 0 --> X == Y.
2603   // X - Y != 0 --> X != Y.
2604   if (Cmp.isEquality() && C.isZero())
2605     return new ICmpInst(Pred, X, Y);
2606 
2607   if (Sub->hasNoSignedWrap()) {
2608     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2609     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2610       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2611 
2612     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2613     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2614       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2615 
2616     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2617     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2618       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2619 
2620     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2621     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2622       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2623   }
2624 
2625   if (!match(X, m_APInt(C2)))
2626     return nullptr;
2627 
2628   // C2 - Y <u C -> (Y | (C - 1)) == C2
2629   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2630   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2631       (*C2 & (C - 1)) == (C - 1))
2632     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2633 
2634   // C2 - Y >u C -> (Y | C) != C2
2635   //   iff C2 & C == C and C + 1 is a power of 2
2636   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2637     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2638 
2639   // We have handled special cases that reduce.
2640   // Canonicalize any remaining sub to add as:
2641   // (C2 - Y) > C --> (Y + ~C2) < ~C
2642   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2643                                  HasNUW, HasNSW);
2644   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2645 }
2646 
2647 /// Fold icmp (add X, Y), C.
2648 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2649                                                    BinaryOperator *Add,
2650                                                    const APInt &C) {
2651   Value *Y = Add->getOperand(1);
2652   const APInt *C2;
2653   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2654     return nullptr;
2655 
2656   // Fold icmp pred (add X, C2), C.
2657   Value *X = Add->getOperand(0);
2658   Type *Ty = Add->getType();
2659   const CmpInst::Predicate Pred = Cmp.getPredicate();
2660 
2661   // If the add does not wrap, we can always adjust the compare by subtracting
2662   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2663   // are canonicalized to SGT/SLT/UGT/ULT.
2664   if ((Add->hasNoSignedWrap() &&
2665        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2666       (Add->hasNoUnsignedWrap() &&
2667        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2668     bool Overflow;
2669     APInt NewC =
2670         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2671     // If there is overflow, the result must be true or false.
2672     // TODO: Can we assert there is no overflow because InstSimplify always
2673     // handles those cases?
2674     if (!Overflow)
2675       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2676       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2677   }
2678 
2679   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2680   const APInt &Upper = CR.getUpper();
2681   const APInt &Lower = CR.getLower();
2682   if (Cmp.isSigned()) {
2683     if (Lower.isSignMask())
2684       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2685     if (Upper.isSignMask())
2686       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2687   } else {
2688     if (Lower.isMinValue())
2689       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2690     if (Upper.isMinValue())
2691       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2692   }
2693 
2694   // This set of folds is intentionally placed after folds that use no-wrapping
2695   // flags because those folds are likely better for later analysis/codegen.
2696   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2697   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2698 
2699   // Fold compare with offset to opposite sign compare if it eliminates offset:
2700   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2701   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2702     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2703 
2704   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2705   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2706     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2707 
2708   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2709   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2710     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2711 
2712   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2713   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2714     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2715 
2716   if (!Add->hasOneUse())
2717     return nullptr;
2718 
2719   // X+C <u C2 -> (X & -C2) == C
2720   //   iff C & (C2-1) == 0
2721   //       C2 is a power of 2
2722   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2723     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2724                         ConstantExpr::getNeg(cast<Constant>(Y)));
2725 
2726   // X+C >u C2 -> (X & ~C2) != C
2727   //   iff C & C2 == 0
2728   //       C2+1 is a power of 2
2729   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2730     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2731                         ConstantExpr::getNeg(cast<Constant>(Y)));
2732 
2733   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2734   // to the ult form.
2735   // X+C2 >u C -> X+(C2-C-1) <u ~C
2736   if (Pred == ICmpInst::ICMP_UGT)
2737     return new ICmpInst(ICmpInst::ICMP_ULT,
2738                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2739                         ConstantInt::get(Ty, ~C));
2740 
2741   return nullptr;
2742 }
2743 
2744 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2745                                                Value *&RHS, ConstantInt *&Less,
2746                                                ConstantInt *&Equal,
2747                                                ConstantInt *&Greater) {
2748   // TODO: Generalize this to work with other comparison idioms or ensure
2749   // they get canonicalized into this form.
2750 
2751   // select i1 (a == b),
2752   //        i32 Equal,
2753   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2754   // where Equal, Less and Greater are placeholders for any three constants.
2755   ICmpInst::Predicate PredA;
2756   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2757       !ICmpInst::isEquality(PredA))
2758     return false;
2759   Value *EqualVal = SI->getTrueValue();
2760   Value *UnequalVal = SI->getFalseValue();
2761   // We still can get non-canonical predicate here, so canonicalize.
2762   if (PredA == ICmpInst::ICMP_NE)
2763     std::swap(EqualVal, UnequalVal);
2764   if (!match(EqualVal, m_ConstantInt(Equal)))
2765     return false;
2766   ICmpInst::Predicate PredB;
2767   Value *LHS2, *RHS2;
2768   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2769                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2770     return false;
2771   // We can get predicate mismatch here, so canonicalize if possible:
2772   // First, ensure that 'LHS' match.
2773   if (LHS2 != LHS) {
2774     // x sgt y <--> y slt x
2775     std::swap(LHS2, RHS2);
2776     PredB = ICmpInst::getSwappedPredicate(PredB);
2777   }
2778   if (LHS2 != LHS)
2779     return false;
2780   // We also need to canonicalize 'RHS'.
2781   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2782     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2783     auto FlippedStrictness =
2784         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2785             PredB, cast<Constant>(RHS2));
2786     if (!FlippedStrictness)
2787       return false;
2788     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2789            "basic correctness failure");
2790     RHS2 = FlippedStrictness->second;
2791     // And kind-of perform the result swap.
2792     std::swap(Less, Greater);
2793     PredB = ICmpInst::ICMP_SLT;
2794   }
2795   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2796 }
2797 
2798 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2799                                                       SelectInst *Select,
2800                                                       ConstantInt *C) {
2801 
2802   assert(C && "Cmp RHS should be a constant int!");
2803   // If we're testing a constant value against the result of a three way
2804   // comparison, the result can be expressed directly in terms of the
2805   // original values being compared.  Note: We could possibly be more
2806   // aggressive here and remove the hasOneUse test. The original select is
2807   // really likely to simplify or sink when we remove a test of the result.
2808   Value *OrigLHS, *OrigRHS;
2809   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2810   if (Cmp.hasOneUse() &&
2811       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2812                               C3GreaterThan)) {
2813     assert(C1LessThan && C2Equal && C3GreaterThan);
2814 
2815     bool TrueWhenLessThan =
2816         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2817             ->isAllOnesValue();
2818     bool TrueWhenEqual =
2819         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2820             ->isAllOnesValue();
2821     bool TrueWhenGreaterThan =
2822         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2823             ->isAllOnesValue();
2824 
2825     // This generates the new instruction that will replace the original Cmp
2826     // Instruction. Instead of enumerating the various combinations when
2827     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2828     // false, we rely on chaining of ORs and future passes of InstCombine to
2829     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2830 
2831     // When none of the three constants satisfy the predicate for the RHS (C),
2832     // the entire original Cmp can be simplified to a false.
2833     Value *Cond = Builder.getFalse();
2834     if (TrueWhenLessThan)
2835       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2836                                                        OrigLHS, OrigRHS));
2837     if (TrueWhenEqual)
2838       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2839                                                        OrigLHS, OrigRHS));
2840     if (TrueWhenGreaterThan)
2841       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2842                                                        OrigLHS, OrigRHS));
2843 
2844     return replaceInstUsesWith(Cmp, Cond);
2845   }
2846   return nullptr;
2847 }
2848 
2849 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2850   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2851   if (!Bitcast)
2852     return nullptr;
2853 
2854   ICmpInst::Predicate Pred = Cmp.getPredicate();
2855   Value *Op1 = Cmp.getOperand(1);
2856   Value *BCSrcOp = Bitcast->getOperand(0);
2857 
2858   // Make sure the bitcast doesn't change the number of vector elements.
2859   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2860           Bitcast->getDestTy()->getScalarSizeInBits()) {
2861     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2862     Value *X;
2863     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2864       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2865       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2866       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2867       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2868       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2869            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2870           match(Op1, m_Zero()))
2871         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2872 
2873       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2874       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2875         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2876 
2877       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2878       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2879         return new ICmpInst(Pred, X,
2880                             ConstantInt::getAllOnesValue(X->getType()));
2881     }
2882 
2883     // Zero-equality checks are preserved through unsigned floating-point casts:
2884     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2885     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2886     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2887       if (Cmp.isEquality() && match(Op1, m_Zero()))
2888         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2889 
2890     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2891     // the FP extend/truncate because that cast does not change the sign-bit.
2892     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2893     // The sign-bit is always the most significant bit in those types.
2894     const APInt *C;
2895     bool TrueIfSigned;
2896     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2897         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2898       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2899           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2900         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2901         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2902         Type *XType = X->getType();
2903 
2904         // We can't currently handle Power style floating point operations here.
2905         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2906 
2907           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2908           if (auto *XVTy = dyn_cast<VectorType>(XType))
2909             NewType = VectorType::get(NewType, XVTy->getElementCount());
2910           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2911           if (TrueIfSigned)
2912             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2913                                 ConstantInt::getNullValue(NewType));
2914           else
2915             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2916                                 ConstantInt::getAllOnesValue(NewType));
2917         }
2918       }
2919     }
2920   }
2921 
2922   // Test to see if the operands of the icmp are casted versions of other
2923   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2924   if (Bitcast->getType()->isPointerTy() &&
2925       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2926     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2927     // so eliminate it as well.
2928     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2929       Op1 = BC2->getOperand(0);
2930 
2931     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2932     return new ICmpInst(Pred, BCSrcOp, Op1);
2933   }
2934 
2935   const APInt *C;
2936   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2937       !Bitcast->getType()->isIntegerTy() ||
2938       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2939     return nullptr;
2940 
2941   // If this is checking if all elements of a vector compare are set or not,
2942   // invert the casted vector equality compare and test if all compare
2943   // elements are clear or not. Compare against zero is generally easier for
2944   // analysis and codegen.
2945   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2946   // Example: are all elements equal? --> are zero elements not equal?
2947   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2948   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2949       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2950     Type *ScalarTy = Bitcast->getType();
2951     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2952     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2953   }
2954 
2955   // If this is checking if all elements of an extended vector are clear or not,
2956   // compare in a narrow type to eliminate the extend:
2957   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2958   Value *X;
2959   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2960       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2961     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2962       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2963       Value *NewCast = Builder.CreateBitCast(X, NewType);
2964       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2965     }
2966   }
2967 
2968   // Folding: icmp <pred> iN X, C
2969   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2970   //    and C is a splat of a K-bit pattern
2971   //    and SC is a constant vector = <C', C', C', ..., C'>
2972   // Into:
2973   //   %E = extractelement <M x iK> %vec, i32 C'
2974   //   icmp <pred> iK %E, trunc(C)
2975   Value *Vec;
2976   ArrayRef<int> Mask;
2977   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2978     // Check whether every element of Mask is the same constant
2979     if (is_splat(Mask)) {
2980       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2981       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2982       if (C->isSplat(EltTy->getBitWidth())) {
2983         // Fold the icmp based on the value of C
2984         // If C is M copies of an iK sized bit pattern,
2985         // then:
2986         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2987         //       icmp <pred> iK %SplatVal, <pattern>
2988         Value *Elem = Builder.getInt32(Mask[0]);
2989         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2990         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2991         return new ICmpInst(Pred, Extract, NewC);
2992       }
2993     }
2994   }
2995   return nullptr;
2996 }
2997 
2998 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2999 /// where X is some kind of instruction.
3000 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3001   const APInt *C;
3002   if (!match(Cmp.getOperand(1), m_APInt(C)))
3003     return nullptr;
3004 
3005   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3006     switch (BO->getOpcode()) {
3007     case Instruction::Xor:
3008       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3009         return I;
3010       break;
3011     case Instruction::And:
3012       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3013         return I;
3014       break;
3015     case Instruction::Or:
3016       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3017         return I;
3018       break;
3019     case Instruction::Mul:
3020       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3021         return I;
3022       break;
3023     case Instruction::Shl:
3024       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3025         return I;
3026       break;
3027     case Instruction::LShr:
3028     case Instruction::AShr:
3029       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3030         return I;
3031       break;
3032     case Instruction::SRem:
3033       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3034         return I;
3035       break;
3036     case Instruction::UDiv:
3037       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3038         return I;
3039       LLVM_FALLTHROUGH;
3040     case Instruction::SDiv:
3041       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3042         return I;
3043       break;
3044     case Instruction::Sub:
3045       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3046         return I;
3047       break;
3048     case Instruction::Add:
3049       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3050         return I;
3051       break;
3052     default:
3053       break;
3054     }
3055     // TODO: These folds could be refactored to be part of the above calls.
3056     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3057       return I;
3058   }
3059 
3060   // Match against CmpInst LHS being instructions other than binary operators.
3061 
3062   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3063     // For now, we only support constant integers while folding the
3064     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3065     // similar to the cases handled by binary ops above.
3066     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3067       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3068         return I;
3069   }
3070 
3071   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3072     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3073       return I;
3074   }
3075 
3076   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3077     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3078       return I;
3079 
3080   return nullptr;
3081 }
3082 
3083 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3084 /// icmp eq/ne BO, C.
3085 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3086     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3087   // TODO: Some of these folds could work with arbitrary constants, but this
3088   // function is limited to scalar and vector splat constants.
3089   if (!Cmp.isEquality())
3090     return nullptr;
3091 
3092   ICmpInst::Predicate Pred = Cmp.getPredicate();
3093   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3094   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3095   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3096 
3097   switch (BO->getOpcode()) {
3098   case Instruction::SRem:
3099     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3100     if (C.isZero() && BO->hasOneUse()) {
3101       const APInt *BOC;
3102       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3103         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3104         return new ICmpInst(Pred, NewRem,
3105                             Constant::getNullValue(BO->getType()));
3106       }
3107     }
3108     break;
3109   case Instruction::Add: {
3110     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3111     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3112       if (BO->hasOneUse())
3113         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3114     } else if (C.isZero()) {
3115       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3116       // efficiently invertible, or if the add has just this one use.
3117       if (Value *NegVal = dyn_castNegVal(BOp1))
3118         return new ICmpInst(Pred, BOp0, NegVal);
3119       if (Value *NegVal = dyn_castNegVal(BOp0))
3120         return new ICmpInst(Pred, NegVal, BOp1);
3121       if (BO->hasOneUse()) {
3122         Value *Neg = Builder.CreateNeg(BOp1);
3123         Neg->takeName(BO);
3124         return new ICmpInst(Pred, BOp0, Neg);
3125       }
3126     }
3127     break;
3128   }
3129   case Instruction::Xor:
3130     if (BO->hasOneUse()) {
3131       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3132         // For the xor case, we can xor two constants together, eliminating
3133         // the explicit xor.
3134         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3135       } else if (C.isZero()) {
3136         // Replace ((xor A, B) != 0) with (A != B)
3137         return new ICmpInst(Pred, BOp0, BOp1);
3138       }
3139     }
3140     break;
3141   case Instruction::Or: {
3142     const APInt *BOC;
3143     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3144       // Comparing if all bits outside of a constant mask are set?
3145       // Replace (X | C) == -1 with (X & ~C) == ~C.
3146       // This removes the -1 constant.
3147       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3148       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3149       return new ICmpInst(Pred, And, NotBOC);
3150     }
3151     break;
3152   }
3153   case Instruction::And: {
3154     const APInt *BOC;
3155     if (match(BOp1, m_APInt(BOC))) {
3156       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3157       if (C == *BOC && C.isPowerOf2())
3158         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3159                             BO, Constant::getNullValue(RHS->getType()));
3160     }
3161     break;
3162   }
3163   case Instruction::UDiv:
3164     if (C.isZero()) {
3165       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3166       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3167       return new ICmpInst(NewPred, BOp1, BOp0);
3168     }
3169     break;
3170   default:
3171     break;
3172   }
3173   return nullptr;
3174 }
3175 
3176 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3177 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3178     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3179   Type *Ty = II->getType();
3180   unsigned BitWidth = C.getBitWidth();
3181   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3182 
3183   switch (II->getIntrinsicID()) {
3184   case Intrinsic::abs:
3185     // abs(A) == 0  ->  A == 0
3186     // abs(A) == INT_MIN  ->  A == INT_MIN
3187     if (C.isZero() || C.isMinSignedValue())
3188       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3189     break;
3190 
3191   case Intrinsic::bswap:
3192     // bswap(A) == C  ->  A == bswap(C)
3193     return new ICmpInst(Pred, II->getArgOperand(0),
3194                         ConstantInt::get(Ty, C.byteSwap()));
3195 
3196   case Intrinsic::ctlz:
3197   case Intrinsic::cttz: {
3198     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3199     if (C == BitWidth)
3200       return new ICmpInst(Pred, II->getArgOperand(0),
3201                           ConstantInt::getNullValue(Ty));
3202 
3203     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3204     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3205     // Limit to one use to ensure we don't increase instruction count.
3206     unsigned Num = C.getLimitedValue(BitWidth);
3207     if (Num != BitWidth && II->hasOneUse()) {
3208       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3209       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3210                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3211       APInt Mask2 = IsTrailing
3212         ? APInt::getOneBitSet(BitWidth, Num)
3213         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3214       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3215                           ConstantInt::get(Ty, Mask2));
3216     }
3217     break;
3218   }
3219 
3220   case Intrinsic::ctpop: {
3221     // popcount(A) == 0  ->  A == 0 and likewise for !=
3222     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3223     bool IsZero = C.isZero();
3224     if (IsZero || C == BitWidth)
3225       return new ICmpInst(Pred, II->getArgOperand(0),
3226                           IsZero ? Constant::getNullValue(Ty)
3227                                  : Constant::getAllOnesValue(Ty));
3228 
3229     break;
3230   }
3231 
3232   case Intrinsic::fshl:
3233   case Intrinsic::fshr:
3234     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3235       // (rot X, ?) == 0/-1 --> X == 0/-1
3236       // TODO: This transform is safe to re-use undef elts in a vector, but
3237       //       the constant value passed in by the caller doesn't allow that.
3238       if (C.isZero() || C.isAllOnes())
3239         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3240 
3241       const APInt *RotAmtC;
3242       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3243       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3244       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3245         return new ICmpInst(Pred, II->getArgOperand(0),
3246                             II->getIntrinsicID() == Intrinsic::fshl
3247                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3248                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3249     }
3250     break;
3251 
3252   case Intrinsic::uadd_sat: {
3253     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3254     if (C.isZero()) {
3255       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3256       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3257     }
3258     break;
3259   }
3260 
3261   case Intrinsic::usub_sat: {
3262     // usub.sat(a, b) == 0  ->  a <= b
3263     if (C.isZero()) {
3264       ICmpInst::Predicate NewPred =
3265           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3266       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3267     }
3268     break;
3269   }
3270   default:
3271     break;
3272   }
3273 
3274   return nullptr;
3275 }
3276 
3277 /// Fold an icmp with LLVM intrinsics
3278 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3279   assert(Cmp.isEquality());
3280 
3281   ICmpInst::Predicate Pred = Cmp.getPredicate();
3282   Value *Op0 = Cmp.getOperand(0);
3283   Value *Op1 = Cmp.getOperand(1);
3284   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3285   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3286   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3287     return nullptr;
3288 
3289   switch (IIOp0->getIntrinsicID()) {
3290   case Intrinsic::bswap:
3291   case Intrinsic::bitreverse:
3292     // If both operands are byte-swapped or bit-reversed, just compare the
3293     // original values.
3294     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3295   case Intrinsic::fshl:
3296   case Intrinsic::fshr:
3297     // If both operands are rotated by same amount, just compare the
3298     // original values.
3299     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3300       break;
3301     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3302       break;
3303     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3304       break;
3305     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3306   default:
3307     break;
3308   }
3309 
3310   return nullptr;
3311 }
3312 
3313 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3314 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3315                                                              IntrinsicInst *II,
3316                                                              const APInt &C) {
3317   if (Cmp.isEquality())
3318     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3319 
3320   Type *Ty = II->getType();
3321   unsigned BitWidth = C.getBitWidth();
3322   ICmpInst::Predicate Pred = Cmp.getPredicate();
3323   switch (II->getIntrinsicID()) {
3324   case Intrinsic::ctpop: {
3325     // (ctpop X > BitWidth - 1) --> X == -1
3326     Value *X = II->getArgOperand(0);
3327     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3328       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3329                              ConstantInt::getAllOnesValue(Ty));
3330     // (ctpop X < BitWidth) --> X != -1
3331     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3332       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3333                              ConstantInt::getAllOnesValue(Ty));
3334     break;
3335   }
3336   case Intrinsic::ctlz: {
3337     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3338     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3339       unsigned Num = C.getLimitedValue();
3340       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3341       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3342                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3343     }
3344 
3345     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3346     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3347       unsigned Num = C.getLimitedValue();
3348       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3349       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3350                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3351     }
3352     break;
3353   }
3354   case Intrinsic::cttz: {
3355     // Limit to one use to ensure we don't increase instruction count.
3356     if (!II->hasOneUse())
3357       return nullptr;
3358 
3359     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3360     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3361       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3362       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3363                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3364                              ConstantInt::getNullValue(Ty));
3365     }
3366 
3367     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3368     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3369       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3370       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3371                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3372                              ConstantInt::getNullValue(Ty));
3373     }
3374     break;
3375   }
3376   default:
3377     break;
3378   }
3379 
3380   return nullptr;
3381 }
3382 
3383 /// Handle icmp with constant (but not simple integer constant) RHS.
3384 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3385   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3386   Constant *RHSC = dyn_cast<Constant>(Op1);
3387   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3388   if (!RHSC || !LHSI)
3389     return nullptr;
3390 
3391   switch (LHSI->getOpcode()) {
3392   case Instruction::GetElementPtr:
3393     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3394     if (RHSC->isNullValue() &&
3395         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3396       return new ICmpInst(
3397           I.getPredicate(), LHSI->getOperand(0),
3398           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3399     break;
3400   case Instruction::PHI:
3401     // Only fold icmp into the PHI if the phi and icmp are in the same
3402     // block.  If in the same block, we're encouraging jump threading.  If
3403     // not, we are just pessimizing the code by making an i1 phi.
3404     if (LHSI->getParent() == I.getParent())
3405       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3406         return NV;
3407     break;
3408   case Instruction::Select: {
3409     // If either operand of the select is a constant, we can fold the
3410     // comparison into the select arms, which will cause one to be
3411     // constant folded and the select turned into a bitwise or.
3412     Value *Op1 = nullptr, *Op2 = nullptr;
3413     ConstantInt *CI = nullptr;
3414 
3415     auto SimplifyOp = [&](Value *V) {
3416       Value *Op = nullptr;
3417       if (Constant *C = dyn_cast<Constant>(V)) {
3418         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3419       } else if (RHSC->isNullValue()) {
3420         // If null is being compared, check if it can be further simplified.
3421         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3422       }
3423       return Op;
3424     };
3425     Op1 = SimplifyOp(LHSI->getOperand(1));
3426     if (Op1)
3427       CI = dyn_cast<ConstantInt>(Op1);
3428 
3429     Op2 = SimplifyOp(LHSI->getOperand(2));
3430     if (Op2)
3431       CI = dyn_cast<ConstantInt>(Op2);
3432 
3433     // We only want to perform this transformation if it will not lead to
3434     // additional code. This is true if either both sides of the select
3435     // fold to a constant (in which case the icmp is replaced with a select
3436     // which will usually simplify) or this is the only user of the
3437     // select (in which case we are trading a select+icmp for a simpler
3438     // select+icmp) or all uses of the select can be replaced based on
3439     // dominance information ("Global cases").
3440     bool Transform = false;
3441     if (Op1 && Op2)
3442       Transform = true;
3443     else if (Op1 || Op2) {
3444       // Local case
3445       if (LHSI->hasOneUse())
3446         Transform = true;
3447       // Global cases
3448       else if (CI && !CI->isZero())
3449         // When Op1 is constant try replacing select with second operand.
3450         // Otherwise Op2 is constant and try replacing select with first
3451         // operand.
3452         Transform =
3453             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3454     }
3455     if (Transform) {
3456       if (!Op1)
3457         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3458                                  I.getName());
3459       if (!Op2)
3460         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3461                                  I.getName());
3462       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3463     }
3464     break;
3465   }
3466   case Instruction::IntToPtr:
3467     // icmp pred inttoptr(X), null -> icmp pred X, 0
3468     if (RHSC->isNullValue() &&
3469         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3470       return new ICmpInst(
3471           I.getPredicate(), LHSI->getOperand(0),
3472           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3473     break;
3474 
3475   case Instruction::Load:
3476     // Try to optimize things like "A[i] > 4" to index computations.
3477     if (GetElementPtrInst *GEP =
3478             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3479       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3480         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3481             !cast<LoadInst>(LHSI)->isVolatile())
3482           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3483             return Res;
3484     }
3485     break;
3486   }
3487 
3488   return nullptr;
3489 }
3490 
3491 /// Some comparisons can be simplified.
3492 /// In this case, we are looking for comparisons that look like
3493 /// a check for a lossy truncation.
3494 /// Folds:
3495 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3496 /// Where Mask is some pattern that produces all-ones in low bits:
3497 ///    (-1 >> y)
3498 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3499 ///   ~(-1 << y)
3500 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3501 /// The Mask can be a constant, too.
3502 /// For some predicates, the operands are commutative.
3503 /// For others, x can only be on a specific side.
3504 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3505                                           InstCombiner::BuilderTy &Builder) {
3506   ICmpInst::Predicate SrcPred;
3507   Value *X, *M, *Y;
3508   auto m_VariableMask = m_CombineOr(
3509       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3510                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3511       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3512                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3513   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3514   if (!match(&I, m_c_ICmp(SrcPred,
3515                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3516                           m_Deferred(X))))
3517     return nullptr;
3518 
3519   ICmpInst::Predicate DstPred;
3520   switch (SrcPred) {
3521   case ICmpInst::Predicate::ICMP_EQ:
3522     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3523     DstPred = ICmpInst::Predicate::ICMP_ULE;
3524     break;
3525   case ICmpInst::Predicate::ICMP_NE:
3526     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3527     DstPred = ICmpInst::Predicate::ICMP_UGT;
3528     break;
3529   case ICmpInst::Predicate::ICMP_ULT:
3530     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3531     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3532     DstPred = ICmpInst::Predicate::ICMP_UGT;
3533     break;
3534   case ICmpInst::Predicate::ICMP_UGE:
3535     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3536     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3537     DstPred = ICmpInst::Predicate::ICMP_ULE;
3538     break;
3539   case ICmpInst::Predicate::ICMP_SLT:
3540     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3541     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3542     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3543       return nullptr;
3544     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3545       return nullptr;
3546     DstPred = ICmpInst::Predicate::ICMP_SGT;
3547     break;
3548   case ICmpInst::Predicate::ICMP_SGE:
3549     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3550     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3551     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3552       return nullptr;
3553     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3554       return nullptr;
3555     DstPred = ICmpInst::Predicate::ICMP_SLE;
3556     break;
3557   case ICmpInst::Predicate::ICMP_SGT:
3558   case ICmpInst::Predicate::ICMP_SLE:
3559     return nullptr;
3560   case ICmpInst::Predicate::ICMP_UGT:
3561   case ICmpInst::Predicate::ICMP_ULE:
3562     llvm_unreachable("Instsimplify took care of commut. variant");
3563     break;
3564   default:
3565     llvm_unreachable("All possible folds are handled.");
3566   }
3567 
3568   // The mask value may be a vector constant that has undefined elements. But it
3569   // may not be safe to propagate those undefs into the new compare, so replace
3570   // those elements by copying an existing, defined, and safe scalar constant.
3571   Type *OpTy = M->getType();
3572   auto *VecC = dyn_cast<Constant>(M);
3573   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3574   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3575     Constant *SafeReplacementConstant = nullptr;
3576     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3577       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3578         SafeReplacementConstant = VecC->getAggregateElement(i);
3579         break;
3580       }
3581     }
3582     assert(SafeReplacementConstant && "Failed to find undef replacement");
3583     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3584   }
3585 
3586   return Builder.CreateICmp(DstPred, X, M);
3587 }
3588 
3589 /// Some comparisons can be simplified.
3590 /// In this case, we are looking for comparisons that look like
3591 /// a check for a lossy signed truncation.
3592 /// Folds:   (MaskedBits is a constant.)
3593 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3594 /// Into:
3595 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3596 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3597 static Value *
3598 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3599                                  InstCombiner::BuilderTy &Builder) {
3600   ICmpInst::Predicate SrcPred;
3601   Value *X;
3602   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3603   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3604   if (!match(&I, m_c_ICmp(SrcPred,
3605                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3606                                           m_APInt(C1))),
3607                           m_Deferred(X))))
3608     return nullptr;
3609 
3610   // Potential handling of non-splats: for each element:
3611   //  * if both are undef, replace with constant 0.
3612   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3613   //  * if both are not undef, and are different, bailout.
3614   //  * else, only one is undef, then pick the non-undef one.
3615 
3616   // The shift amount must be equal.
3617   if (*C0 != *C1)
3618     return nullptr;
3619   const APInt &MaskedBits = *C0;
3620   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3621 
3622   ICmpInst::Predicate DstPred;
3623   switch (SrcPred) {
3624   case ICmpInst::Predicate::ICMP_EQ:
3625     // ((%x << MaskedBits) a>> MaskedBits) == %x
3626     //   =>
3627     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3628     DstPred = ICmpInst::Predicate::ICMP_ULT;
3629     break;
3630   case ICmpInst::Predicate::ICMP_NE:
3631     // ((%x << MaskedBits) a>> MaskedBits) != %x
3632     //   =>
3633     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3634     DstPred = ICmpInst::Predicate::ICMP_UGE;
3635     break;
3636   // FIXME: are more folds possible?
3637   default:
3638     return nullptr;
3639   }
3640 
3641   auto *XType = X->getType();
3642   const unsigned XBitWidth = XType->getScalarSizeInBits();
3643   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3644   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3645 
3646   // KeptBits = bitwidth(%x) - MaskedBits
3647   const APInt KeptBits = BitWidth - MaskedBits;
3648   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3649   // ICmpCst = (1 << KeptBits)
3650   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3651   assert(ICmpCst.isPowerOf2());
3652   // AddCst = (1 << (KeptBits-1))
3653   const APInt AddCst = ICmpCst.lshr(1);
3654   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3655 
3656   // T0 = add %x, AddCst
3657   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3658   // T1 = T0 DstPred ICmpCst
3659   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3660 
3661   return T1;
3662 }
3663 
3664 // Given pattern:
3665 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3666 // we should move shifts to the same hand of 'and', i.e. rewrite as
3667 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3668 // We are only interested in opposite logical shifts here.
3669 // One of the shifts can be truncated.
3670 // If we can, we want to end up creating 'lshr' shift.
3671 static Value *
3672 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3673                                            InstCombiner::BuilderTy &Builder) {
3674   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3675       !I.getOperand(0)->hasOneUse())
3676     return nullptr;
3677 
3678   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3679 
3680   // Look for an 'and' of two logical shifts, one of which may be truncated.
3681   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3682   Instruction *XShift, *MaybeTruncation, *YShift;
3683   if (!match(
3684           I.getOperand(0),
3685           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3686                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3687                                    m_AnyLogicalShift, m_Instruction(YShift))),
3688                                m_Instruction(MaybeTruncation)))))
3689     return nullptr;
3690 
3691   // We potentially looked past 'trunc', but only when matching YShift,
3692   // therefore YShift must have the widest type.
3693   Instruction *WidestShift = YShift;
3694   // Therefore XShift must have the shallowest type.
3695   // Or they both have identical types if there was no truncation.
3696   Instruction *NarrowestShift = XShift;
3697 
3698   Type *WidestTy = WidestShift->getType();
3699   Type *NarrowestTy = NarrowestShift->getType();
3700   assert(NarrowestTy == I.getOperand(0)->getType() &&
3701          "We did not look past any shifts while matching XShift though.");
3702   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3703 
3704   // If YShift is a 'lshr', swap the shifts around.
3705   if (match(YShift, m_LShr(m_Value(), m_Value())))
3706     std::swap(XShift, YShift);
3707 
3708   // The shifts must be in opposite directions.
3709   auto XShiftOpcode = XShift->getOpcode();
3710   if (XShiftOpcode == YShift->getOpcode())
3711     return nullptr; // Do not care about same-direction shifts here.
3712 
3713   Value *X, *XShAmt, *Y, *YShAmt;
3714   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3715   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3716 
3717   // If one of the values being shifted is a constant, then we will end with
3718   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3719   // however, we will need to ensure that we won't increase instruction count.
3720   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3721     // At least one of the hands of the 'and' should be one-use shift.
3722     if (!match(I.getOperand(0),
3723                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3724       return nullptr;
3725     if (HadTrunc) {
3726       // Due to the 'trunc', we will need to widen X. For that either the old
3727       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3728       if (!MaybeTruncation->hasOneUse() &&
3729           !NarrowestShift->getOperand(1)->hasOneUse())
3730         return nullptr;
3731     }
3732   }
3733 
3734   // We have two shift amounts from two different shifts. The types of those
3735   // shift amounts may not match. If that's the case let's bailout now.
3736   if (XShAmt->getType() != YShAmt->getType())
3737     return nullptr;
3738 
3739   // As input, we have the following pattern:
3740   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3741   // We want to rewrite that as:
3742   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3743   // While we know that originally (Q+K) would not overflow
3744   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3745   // shift amounts. so it may now overflow in smaller bitwidth.
3746   // To ensure that does not happen, we need to ensure that the total maximal
3747   // shift amount is still representable in that smaller bit width.
3748   unsigned MaximalPossibleTotalShiftAmount =
3749       (WidestTy->getScalarSizeInBits() - 1) +
3750       (NarrowestTy->getScalarSizeInBits() - 1);
3751   APInt MaximalRepresentableShiftAmount =
3752       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3753   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3754     return nullptr;
3755 
3756   // Can we fold (XShAmt+YShAmt) ?
3757   auto *NewShAmt = dyn_cast_or_null<Constant>(
3758       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3759                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3760   if (!NewShAmt)
3761     return nullptr;
3762   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3763   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3764 
3765   // Is the new shift amount smaller than the bit width?
3766   // FIXME: could also rely on ConstantRange.
3767   if (!match(NewShAmt,
3768              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3769                                 APInt(WidestBitWidth, WidestBitWidth))))
3770     return nullptr;
3771 
3772   // An extra legality check is needed if we had trunc-of-lshr.
3773   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3774     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3775                     WidestShift]() {
3776       // It isn't obvious whether it's worth it to analyze non-constants here.
3777       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3778       // If *any* of these preconditions matches we can perform the fold.
3779       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3780                                     ? NewShAmt->getSplatValue()
3781                                     : NewShAmt;
3782       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3783       if (NewShAmtSplat &&
3784           (NewShAmtSplat->isNullValue() ||
3785            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3786         return true;
3787       // We consider *min* leading zeros so a single outlier
3788       // blocks the transform as opposed to allowing it.
3789       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3790         KnownBits Known = computeKnownBits(C, SQ.DL);
3791         unsigned MinLeadZero = Known.countMinLeadingZeros();
3792         // If the value being shifted has at most lowest bit set we can fold.
3793         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3794         if (MaxActiveBits <= 1)
3795           return true;
3796         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3797         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3798           return true;
3799       }
3800       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3801         KnownBits Known = computeKnownBits(C, SQ.DL);
3802         unsigned MinLeadZero = Known.countMinLeadingZeros();
3803         // If the value being shifted has at most lowest bit set we can fold.
3804         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3805         if (MaxActiveBits <= 1)
3806           return true;
3807         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3808         if (NewShAmtSplat) {
3809           APInt AdjNewShAmt =
3810               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3811           if (AdjNewShAmt.ule(MinLeadZero))
3812             return true;
3813         }
3814       }
3815       return false; // Can't tell if it's ok.
3816     };
3817     if (!CanFold())
3818       return nullptr;
3819   }
3820 
3821   // All good, we can do this fold.
3822   X = Builder.CreateZExt(X, WidestTy);
3823   Y = Builder.CreateZExt(Y, WidestTy);
3824   // The shift is the same that was for X.
3825   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3826                   ? Builder.CreateLShr(X, NewShAmt)
3827                   : Builder.CreateShl(X, NewShAmt);
3828   Value *T1 = Builder.CreateAnd(T0, Y);
3829   return Builder.CreateICmp(I.getPredicate(), T1,
3830                             Constant::getNullValue(WidestTy));
3831 }
3832 
3833 /// Fold
3834 ///   (-1 u/ x) u< y
3835 ///   ((x * y) ?/ x) != y
3836 /// to
3837 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3838 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3839 /// will mean that we are looking for the opposite answer.
3840 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3841   ICmpInst::Predicate Pred;
3842   Value *X, *Y;
3843   Instruction *Mul;
3844   Instruction *Div;
3845   bool NeedNegation;
3846   // Look for: (-1 u/ x) u</u>= y
3847   if (!I.isEquality() &&
3848       match(&I, m_c_ICmp(Pred,
3849                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3850                                       m_Instruction(Div)),
3851                          m_Value(Y)))) {
3852     Mul = nullptr;
3853 
3854     // Are we checking that overflow does not happen, or does happen?
3855     switch (Pred) {
3856     case ICmpInst::Predicate::ICMP_ULT:
3857       NeedNegation = false;
3858       break; // OK
3859     case ICmpInst::Predicate::ICMP_UGE:
3860       NeedNegation = true;
3861       break; // OK
3862     default:
3863       return nullptr; // Wrong predicate.
3864     }
3865   } else // Look for: ((x * y) / x) !=/== y
3866       if (I.isEquality() &&
3867           match(&I,
3868                 m_c_ICmp(Pred, m_Value(Y),
3869                          m_CombineAnd(
3870                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3871                                                                   m_Value(X)),
3872                                                           m_Instruction(Mul)),
3873                                              m_Deferred(X))),
3874                              m_Instruction(Div))))) {
3875     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3876   } else
3877     return nullptr;
3878 
3879   BuilderTy::InsertPointGuard Guard(Builder);
3880   // If the pattern included (x * y), we'll want to insert new instructions
3881   // right before that original multiplication so that we can replace it.
3882   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3883   if (MulHadOtherUses)
3884     Builder.SetInsertPoint(Mul);
3885 
3886   Function *F = Intrinsic::getDeclaration(I.getModule(),
3887                                           Div->getOpcode() == Instruction::UDiv
3888                                               ? Intrinsic::umul_with_overflow
3889                                               : Intrinsic::smul_with_overflow,
3890                                           X->getType());
3891   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3892 
3893   // If the multiplication was used elsewhere, to ensure that we don't leave
3894   // "duplicate" instructions, replace uses of that original multiplication
3895   // with the multiplication result from the with.overflow intrinsic.
3896   if (MulHadOtherUses)
3897     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3898 
3899   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3900   if (NeedNegation) // This technically increases instruction count.
3901     Res = Builder.CreateNot(Res, "mul.not.ov");
3902 
3903   // If we replaced the mul, erase it. Do this after all uses of Builder,
3904   // as the mul is used as insertion point.
3905   if (MulHadOtherUses)
3906     eraseInstFromFunction(*Mul);
3907 
3908   return Res;
3909 }
3910 
3911 static Instruction *foldICmpXNegX(ICmpInst &I) {
3912   CmpInst::Predicate Pred;
3913   Value *X;
3914   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3915     return nullptr;
3916 
3917   if (ICmpInst::isSigned(Pred))
3918     Pred = ICmpInst::getSwappedPredicate(Pred);
3919   else if (ICmpInst::isUnsigned(Pred))
3920     Pred = ICmpInst::getSignedPredicate(Pred);
3921   // else for equality-comparisons just keep the predicate.
3922 
3923   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3924                           Constant::getNullValue(X->getType()), I.getName());
3925 }
3926 
3927 /// Try to fold icmp (binop), X or icmp X, (binop).
3928 /// TODO: A large part of this logic is duplicated in InstSimplify's
3929 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3930 /// duplication.
3931 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3932                                              const SimplifyQuery &SQ) {
3933   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3934   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3935 
3936   // Special logic for binary operators.
3937   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3938   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3939   if (!BO0 && !BO1)
3940     return nullptr;
3941 
3942   if (Instruction *NewICmp = foldICmpXNegX(I))
3943     return NewICmp;
3944 
3945   const CmpInst::Predicate Pred = I.getPredicate();
3946   Value *X;
3947 
3948   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3949   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3950   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3951       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3952     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3953   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3954   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3955       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3956     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3957 
3958   {
3959     // Similar to above: an unsigned overflow comparison may use offset + mask:
3960     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3961     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3962     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3963     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3964     BinaryOperator *BO;
3965     const APInt *C;
3966     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3967         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3968         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3969       CmpInst::Predicate NewPred =
3970           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3971       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3972       return new ICmpInst(NewPred, Op1, Zero);
3973     }
3974 
3975     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
3976         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3977         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
3978       CmpInst::Predicate NewPred =
3979           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3980       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3981       return new ICmpInst(NewPred, Op0, Zero);
3982     }
3983   }
3984 
3985   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3986   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3987     NoOp0WrapProblem =
3988         ICmpInst::isEquality(Pred) ||
3989         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3990         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3991   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3992     NoOp1WrapProblem =
3993         ICmpInst::isEquality(Pred) ||
3994         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3995         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3996 
3997   // Analyze the case when either Op0 or Op1 is an add instruction.
3998   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3999   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4000   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4001     A = BO0->getOperand(0);
4002     B = BO0->getOperand(1);
4003   }
4004   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4005     C = BO1->getOperand(0);
4006     D = BO1->getOperand(1);
4007   }
4008 
4009   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4010   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4011   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4012     return new ICmpInst(Pred, A == Op1 ? B : A,
4013                         Constant::getNullValue(Op1->getType()));
4014 
4015   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4016   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4017   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4018     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4019                         C == Op0 ? D : C);
4020 
4021   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4022   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4023       NoOp1WrapProblem) {
4024     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4025     Value *Y, *Z;
4026     if (A == C) {
4027       // C + B == C + D  ->  B == D
4028       Y = B;
4029       Z = D;
4030     } else if (A == D) {
4031       // D + B == C + D  ->  B == C
4032       Y = B;
4033       Z = C;
4034     } else if (B == C) {
4035       // A + C == C + D  ->  A == D
4036       Y = A;
4037       Z = D;
4038     } else {
4039       assert(B == D);
4040       // A + D == C + D  ->  A == C
4041       Y = A;
4042       Z = C;
4043     }
4044     return new ICmpInst(Pred, Y, Z);
4045   }
4046 
4047   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4048   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4049       match(B, m_AllOnes()))
4050     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4051 
4052   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4053   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4054       match(B, m_AllOnes()))
4055     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4056 
4057   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4058   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4059     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4060 
4061   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4062   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4063     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4064 
4065   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4066   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4067       match(D, m_AllOnes()))
4068     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4069 
4070   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4071   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4072       match(D, m_AllOnes()))
4073     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4074 
4075   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4076   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4077     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4078 
4079   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4080   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4081     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4082 
4083   // TODO: The subtraction-related identities shown below also hold, but
4084   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4085   // wouldn't happen even if they were implemented.
4086   //
4087   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4088   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4089   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4090   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4091 
4092   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4093   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4094     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4095 
4096   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4097   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4098     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4099 
4100   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4101   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4102     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4103 
4104   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4105   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4106     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4107 
4108   // if C1 has greater magnitude than C2:
4109   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4110   //  s.t. C3 = C1 - C2
4111   //
4112   // if C2 has greater magnitude than C1:
4113   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4114   //  s.t. C3 = C2 - C1
4115   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4116       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4117     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4118       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4119         const APInt &AP1 = C1->getValue();
4120         const APInt &AP2 = C2->getValue();
4121         if (AP1.isNegative() == AP2.isNegative()) {
4122           APInt AP1Abs = C1->getValue().abs();
4123           APInt AP2Abs = C2->getValue().abs();
4124           if (AP1Abs.uge(AP2Abs)) {
4125             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4126             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4127             bool HasNSW = BO0->hasNoSignedWrap();
4128             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4129             return new ICmpInst(Pred, NewAdd, C);
4130           } else {
4131             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4132             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4133             bool HasNSW = BO1->hasNoSignedWrap();
4134             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4135             return new ICmpInst(Pred, A, NewAdd);
4136           }
4137         }
4138       }
4139 
4140   // Analyze the case when either Op0 or Op1 is a sub instruction.
4141   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4142   A = nullptr;
4143   B = nullptr;
4144   C = nullptr;
4145   D = nullptr;
4146   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4147     A = BO0->getOperand(0);
4148     B = BO0->getOperand(1);
4149   }
4150   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4151     C = BO1->getOperand(0);
4152     D = BO1->getOperand(1);
4153   }
4154 
4155   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4156   if (A == Op1 && NoOp0WrapProblem)
4157     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4158   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4159   if (C == Op0 && NoOp1WrapProblem)
4160     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4161 
4162   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4163   // (A - B) u>/u<= A --> B u>/u<= A
4164   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4165     return new ICmpInst(Pred, B, A);
4166   // C u</u>= (C - D) --> C u</u>= D
4167   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4168     return new ICmpInst(Pred, C, D);
4169   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4170   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4171       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4172     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4173   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4174   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4175       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4176     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4177 
4178   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4179   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4180     return new ICmpInst(Pred, A, C);
4181 
4182   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4183   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4184     return new ICmpInst(Pred, D, B);
4185 
4186   // icmp (0-X) < cst --> x > -cst
4187   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4188     Value *X;
4189     if (match(BO0, m_Neg(m_Value(X))))
4190       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4191         if (RHSC->isNotMinSignedValue())
4192           return new ICmpInst(I.getSwappedPredicate(), X,
4193                               ConstantExpr::getNeg(RHSC));
4194   }
4195 
4196   {
4197     // Try to remove shared constant multiplier from equality comparison:
4198     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4199     Value *X, *Y;
4200     const APInt *C;
4201     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4202         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4203       if (!C->countTrailingZeros() ||
4204           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4205           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4206       return new ICmpInst(Pred, X, Y);
4207   }
4208 
4209   BinaryOperator *SRem = nullptr;
4210   // icmp (srem X, Y), Y
4211   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4212     SRem = BO0;
4213   // icmp Y, (srem X, Y)
4214   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4215            Op0 == BO1->getOperand(1))
4216     SRem = BO1;
4217   if (SRem) {
4218     // We don't check hasOneUse to avoid increasing register pressure because
4219     // the value we use is the same value this instruction was already using.
4220     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4221     default:
4222       break;
4223     case ICmpInst::ICMP_EQ:
4224       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4225     case ICmpInst::ICMP_NE:
4226       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4227     case ICmpInst::ICMP_SGT:
4228     case ICmpInst::ICMP_SGE:
4229       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4230                           Constant::getAllOnesValue(SRem->getType()));
4231     case ICmpInst::ICMP_SLT:
4232     case ICmpInst::ICMP_SLE:
4233       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4234                           Constant::getNullValue(SRem->getType()));
4235     }
4236   }
4237 
4238   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4239       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4240     switch (BO0->getOpcode()) {
4241     default:
4242       break;
4243     case Instruction::Add:
4244     case Instruction::Sub:
4245     case Instruction::Xor: {
4246       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4247         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4248 
4249       const APInt *C;
4250       if (match(BO0->getOperand(1), m_APInt(C))) {
4251         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4252         if (C->isSignMask()) {
4253           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4254           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4255         }
4256 
4257         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4258         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4259           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4260           NewPred = I.getSwappedPredicate(NewPred);
4261           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4262         }
4263       }
4264       break;
4265     }
4266     case Instruction::Mul: {
4267       if (!I.isEquality())
4268         break;
4269 
4270       const APInt *C;
4271       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4272           !C->isOne()) {
4273         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4274         // Mask = -1 >> count-trailing-zeros(C).
4275         if (unsigned TZs = C->countTrailingZeros()) {
4276           Constant *Mask = ConstantInt::get(
4277               BO0->getType(),
4278               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4279           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4280           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4281           return new ICmpInst(Pred, And1, And2);
4282         }
4283       }
4284       break;
4285     }
4286     case Instruction::UDiv:
4287     case Instruction::LShr:
4288       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4289         break;
4290       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4291 
4292     case Instruction::SDiv:
4293       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4294         break;
4295       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4296 
4297     case Instruction::AShr:
4298       if (!BO0->isExact() || !BO1->isExact())
4299         break;
4300       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4301 
4302     case Instruction::Shl: {
4303       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4304       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4305       if (!NUW && !NSW)
4306         break;
4307       if (!NSW && I.isSigned())
4308         break;
4309       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4310     }
4311     }
4312   }
4313 
4314   if (BO0) {
4315     // Transform  A & (L - 1) `ult` L --> L != 0
4316     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4317     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4318 
4319     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4320       auto *Zero = Constant::getNullValue(BO0->getType());
4321       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4322     }
4323   }
4324 
4325   if (Value *V = foldMultiplicationOverflowCheck(I))
4326     return replaceInstUsesWith(I, V);
4327 
4328   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4329     return replaceInstUsesWith(I, V);
4330 
4331   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4332     return replaceInstUsesWith(I, V);
4333 
4334   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4335     return replaceInstUsesWith(I, V);
4336 
4337   return nullptr;
4338 }
4339 
4340 /// Fold icmp Pred min|max(X, Y), X.
4341 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4342   ICmpInst::Predicate Pred = Cmp.getPredicate();
4343   Value *Op0 = Cmp.getOperand(0);
4344   Value *X = Cmp.getOperand(1);
4345 
4346   // Canonicalize minimum or maximum operand to LHS of the icmp.
4347   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4348       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4349       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4350       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4351     std::swap(Op0, X);
4352     Pred = Cmp.getSwappedPredicate();
4353   }
4354 
4355   Value *Y;
4356   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4357     // smin(X, Y)  == X --> X s<= Y
4358     // smin(X, Y) s>= X --> X s<= Y
4359     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4360       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4361 
4362     // smin(X, Y) != X --> X s> Y
4363     // smin(X, Y) s< X --> X s> Y
4364     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4365       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4366 
4367     // These cases should be handled in InstSimplify:
4368     // smin(X, Y) s<= X --> true
4369     // smin(X, Y) s> X --> false
4370     return nullptr;
4371   }
4372 
4373   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4374     // smax(X, Y)  == X --> X s>= Y
4375     // smax(X, Y) s<= X --> X s>= Y
4376     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4377       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4378 
4379     // smax(X, Y) != X --> X s< Y
4380     // smax(X, Y) s> X --> X s< Y
4381     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4382       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4383 
4384     // These cases should be handled in InstSimplify:
4385     // smax(X, Y) s>= X --> true
4386     // smax(X, Y) s< X --> false
4387     return nullptr;
4388   }
4389 
4390   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4391     // umin(X, Y)  == X --> X u<= Y
4392     // umin(X, Y) u>= X --> X u<= Y
4393     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4394       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4395 
4396     // umin(X, Y) != X --> X u> Y
4397     // umin(X, Y) u< X --> X u> Y
4398     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4399       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4400 
4401     // These cases should be handled in InstSimplify:
4402     // umin(X, Y) u<= X --> true
4403     // umin(X, Y) u> X --> false
4404     return nullptr;
4405   }
4406 
4407   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4408     // umax(X, Y)  == X --> X u>= Y
4409     // umax(X, Y) u<= X --> X u>= Y
4410     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4411       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4412 
4413     // umax(X, Y) != X --> X u< Y
4414     // umax(X, Y) u> X --> X u< Y
4415     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4416       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4417 
4418     // These cases should be handled in InstSimplify:
4419     // umax(X, Y) u>= X --> true
4420     // umax(X, Y) u< X --> false
4421     return nullptr;
4422   }
4423 
4424   return nullptr;
4425 }
4426 
4427 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4428   if (!I.isEquality())
4429     return nullptr;
4430 
4431   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4432   const CmpInst::Predicate Pred = I.getPredicate();
4433   Value *A, *B, *C, *D;
4434   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4435     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4436       Value *OtherVal = A == Op1 ? B : A;
4437       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4438     }
4439 
4440     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4441       // A^c1 == C^c2 --> A == C^(c1^c2)
4442       ConstantInt *C1, *C2;
4443       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4444           Op1->hasOneUse()) {
4445         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4446         Value *Xor = Builder.CreateXor(C, NC);
4447         return new ICmpInst(Pred, A, Xor);
4448       }
4449 
4450       // A^B == A^D -> B == D
4451       if (A == C)
4452         return new ICmpInst(Pred, B, D);
4453       if (A == D)
4454         return new ICmpInst(Pred, B, C);
4455       if (B == C)
4456         return new ICmpInst(Pred, A, D);
4457       if (B == D)
4458         return new ICmpInst(Pred, A, C);
4459     }
4460   }
4461 
4462   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4463     // A == (A^B)  ->  B == 0
4464     Value *OtherVal = A == Op0 ? B : A;
4465     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4466   }
4467 
4468   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4469   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4470       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4471     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4472 
4473     if (A == C) {
4474       X = B;
4475       Y = D;
4476       Z = A;
4477     } else if (A == D) {
4478       X = B;
4479       Y = C;
4480       Z = A;
4481     } else if (B == C) {
4482       X = A;
4483       Y = D;
4484       Z = B;
4485     } else if (B == D) {
4486       X = A;
4487       Y = C;
4488       Z = B;
4489     }
4490 
4491     if (X) { // Build (X^Y) & Z
4492       Op1 = Builder.CreateXor(X, Y);
4493       Op1 = Builder.CreateAnd(Op1, Z);
4494       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4495     }
4496   }
4497 
4498   {
4499     // Similar to above, but specialized for constant because invert is needed:
4500     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4501     Value *X, *Y;
4502     Constant *C;
4503     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4504         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4505       Value *Xor = Builder.CreateXor(X, Y);
4506       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4507       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4508     }
4509   }
4510 
4511   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4512   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4513   ConstantInt *Cst1;
4514   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4515        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4516       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4517        match(Op1, m_ZExt(m_Value(A))))) {
4518     APInt Pow2 = Cst1->getValue() + 1;
4519     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4520         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4521       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4522   }
4523 
4524   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4525   // For lshr and ashr pairs.
4526   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4527        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4528       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4529        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4530     unsigned TypeBits = Cst1->getBitWidth();
4531     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4532     if (ShAmt < TypeBits && ShAmt != 0) {
4533       ICmpInst::Predicate NewPred =
4534           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4535       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4536       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4537       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4538     }
4539   }
4540 
4541   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4542   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4543       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4544     unsigned TypeBits = Cst1->getBitWidth();
4545     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4546     if (ShAmt < TypeBits && ShAmt != 0) {
4547       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4548       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4549       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4550                                       I.getName() + ".mask");
4551       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4552     }
4553   }
4554 
4555   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4556   // "icmp (and X, mask), cst"
4557   uint64_t ShAmt = 0;
4558   if (Op0->hasOneUse() &&
4559       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4560       match(Op1, m_ConstantInt(Cst1)) &&
4561       // Only do this when A has multiple uses.  This is most important to do
4562       // when it exposes other optimizations.
4563       !A->hasOneUse()) {
4564     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4565 
4566     if (ShAmt < ASize) {
4567       APInt MaskV =
4568           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4569       MaskV <<= ShAmt;
4570 
4571       APInt CmpV = Cst1->getValue().zext(ASize);
4572       CmpV <<= ShAmt;
4573 
4574       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4575       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4576     }
4577   }
4578 
4579   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4580     return ICmp;
4581 
4582   // Canonicalize checking for a power-of-2-or-zero value:
4583   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4584   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4585   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4586                                    m_Deferred(A)))) ||
4587       !match(Op1, m_ZeroInt()))
4588     A = nullptr;
4589 
4590   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4591   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4592   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4593     A = Op1;
4594   else if (match(Op1,
4595                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4596     A = Op0;
4597 
4598   if (A) {
4599     Type *Ty = A->getType();
4600     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4601     return Pred == ICmpInst::ICMP_EQ
4602         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4603         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4604   }
4605 
4606   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4607   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4608   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4609   // of instcombine.
4610   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4611   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4612       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4613       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4614       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4615     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4616     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4617     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4618                                                   : ICmpInst::ICMP_UGE,
4619                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4620   }
4621 
4622   return nullptr;
4623 }
4624 
4625 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4626                                       InstCombiner::BuilderTy &Builder) {
4627   ICmpInst::Predicate Pred = ICmp.getPredicate();
4628   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4629 
4630   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4631   // The trunc masks high bits while the compare may effectively mask low bits.
4632   Value *X;
4633   const APInt *C;
4634   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4635     return nullptr;
4636 
4637   // This matches patterns corresponding to tests of the signbit as well as:
4638   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4639   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4640   APInt Mask;
4641   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4642     Value *And = Builder.CreateAnd(X, Mask);
4643     Constant *Zero = ConstantInt::getNullValue(X->getType());
4644     return new ICmpInst(Pred, And, Zero);
4645   }
4646 
4647   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4648   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4649     // If C is a negative power-of-2 (high-bit mask):
4650     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4651     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4652     Value *And = Builder.CreateAnd(X, MaskC);
4653     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4654   }
4655 
4656   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4657     // If C is not-of-power-of-2 (one clear bit):
4658     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4659     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4660     Value *And = Builder.CreateAnd(X, MaskC);
4661     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4662   }
4663 
4664   return nullptr;
4665 }
4666 
4667 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4668                                            InstCombiner::BuilderTy &Builder) {
4669   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4670   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4671   Value *X;
4672   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4673     return nullptr;
4674 
4675   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4676   bool IsSignedCmp = ICmp.isSigned();
4677   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4678     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4679     // and the other is a zext), then we can't handle this.
4680     // TODO: This is too strict. We can handle some predicates (equality?).
4681     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4682       return nullptr;
4683 
4684     // Not an extension from the same type?
4685     Value *Y = CastOp1->getOperand(0);
4686     Type *XTy = X->getType(), *YTy = Y->getType();
4687     if (XTy != YTy) {
4688       // One of the casts must have one use because we are creating a new cast.
4689       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4690         return nullptr;
4691       // Extend the narrower operand to the type of the wider operand.
4692       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4693         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4694       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4695         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4696       else
4697         return nullptr;
4698     }
4699 
4700     // (zext X) == (zext Y) --> X == Y
4701     // (sext X) == (sext Y) --> X == Y
4702     if (ICmp.isEquality())
4703       return new ICmpInst(ICmp.getPredicate(), X, Y);
4704 
4705     // A signed comparison of sign extended values simplifies into a
4706     // signed comparison.
4707     if (IsSignedCmp && IsSignedExt)
4708       return new ICmpInst(ICmp.getPredicate(), X, Y);
4709 
4710     // The other three cases all fold into an unsigned comparison.
4711     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4712   }
4713 
4714   // Below here, we are only folding a compare with constant.
4715   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4716   if (!C)
4717     return nullptr;
4718 
4719   // Compute the constant that would happen if we truncated to SrcTy then
4720   // re-extended to DestTy.
4721   Type *SrcTy = CastOp0->getSrcTy();
4722   Type *DestTy = CastOp0->getDestTy();
4723   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4724   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4725 
4726   // If the re-extended constant didn't change...
4727   if (Res2 == C) {
4728     if (ICmp.isEquality())
4729       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4730 
4731     // A signed comparison of sign extended values simplifies into a
4732     // signed comparison.
4733     if (IsSignedExt && IsSignedCmp)
4734       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4735 
4736     // The other three cases all fold into an unsigned comparison.
4737     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4738   }
4739 
4740   // The re-extended constant changed, partly changed (in the case of a vector),
4741   // or could not be determined to be equal (in the case of a constant
4742   // expression), so the constant cannot be represented in the shorter type.
4743   // All the cases that fold to true or false will have already been handled
4744   // by SimplifyICmpInst, so only deal with the tricky case.
4745   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4746     return nullptr;
4747 
4748   // Is source op positive?
4749   // icmp ult (sext X), C --> icmp sgt X, -1
4750   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4751     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4752 
4753   // Is source op negative?
4754   // icmp ugt (sext X), C --> icmp slt X, 0
4755   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4756   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4757 }
4758 
4759 /// Handle icmp (cast x), (cast or constant).
4760 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4761   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4762   // icmp compares only pointer's value.
4763   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4764   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4765   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4766   if (SimplifiedOp0 || SimplifiedOp1)
4767     return new ICmpInst(ICmp.getPredicate(),
4768                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4769                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4770 
4771   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4772   if (!CastOp0)
4773     return nullptr;
4774   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4775     return nullptr;
4776 
4777   Value *Op0Src = CastOp0->getOperand(0);
4778   Type *SrcTy = CastOp0->getSrcTy();
4779   Type *DestTy = CastOp0->getDestTy();
4780 
4781   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4782   // integer type is the same size as the pointer type.
4783   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4784     if (isa<VectorType>(SrcTy)) {
4785       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4786       DestTy = cast<VectorType>(DestTy)->getElementType();
4787     }
4788     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4789   };
4790   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4791       CompatibleSizes(SrcTy, DestTy)) {
4792     Value *NewOp1 = nullptr;
4793     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4794       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4795       if (PtrSrc->getType()->getPointerAddressSpace() ==
4796           Op0Src->getType()->getPointerAddressSpace()) {
4797         NewOp1 = PtrToIntOp1->getOperand(0);
4798         // If the pointer types don't match, insert a bitcast.
4799         if (Op0Src->getType() != NewOp1->getType())
4800           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4801       }
4802     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4803       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4804     }
4805 
4806     if (NewOp1)
4807       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4808   }
4809 
4810   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4811     return R;
4812 
4813   return foldICmpWithZextOrSext(ICmp, Builder);
4814 }
4815 
4816 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4817   switch (BinaryOp) {
4818     default:
4819       llvm_unreachable("Unsupported binary op");
4820     case Instruction::Add:
4821     case Instruction::Sub:
4822       return match(RHS, m_Zero());
4823     case Instruction::Mul:
4824       return match(RHS, m_One());
4825   }
4826 }
4827 
4828 OverflowResult
4829 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4830                                   bool IsSigned, Value *LHS, Value *RHS,
4831                                   Instruction *CxtI) const {
4832   switch (BinaryOp) {
4833     default:
4834       llvm_unreachable("Unsupported binary op");
4835     case Instruction::Add:
4836       if (IsSigned)
4837         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4838       else
4839         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4840     case Instruction::Sub:
4841       if (IsSigned)
4842         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4843       else
4844         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4845     case Instruction::Mul:
4846       if (IsSigned)
4847         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4848       else
4849         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4850   }
4851 }
4852 
4853 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4854                                              bool IsSigned, Value *LHS,
4855                                              Value *RHS, Instruction &OrigI,
4856                                              Value *&Result,
4857                                              Constant *&Overflow) {
4858   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4859     std::swap(LHS, RHS);
4860 
4861   // If the overflow check was an add followed by a compare, the insertion point
4862   // may be pointing to the compare.  We want to insert the new instructions
4863   // before the add in case there are uses of the add between the add and the
4864   // compare.
4865   Builder.SetInsertPoint(&OrigI);
4866 
4867   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4868   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4869     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4870 
4871   if (isNeutralValue(BinaryOp, RHS)) {
4872     Result = LHS;
4873     Overflow = ConstantInt::getFalse(OverflowTy);
4874     return true;
4875   }
4876 
4877   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4878     case OverflowResult::MayOverflow:
4879       return false;
4880     case OverflowResult::AlwaysOverflowsLow:
4881     case OverflowResult::AlwaysOverflowsHigh:
4882       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4883       Result->takeName(&OrigI);
4884       Overflow = ConstantInt::getTrue(OverflowTy);
4885       return true;
4886     case OverflowResult::NeverOverflows:
4887       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4888       Result->takeName(&OrigI);
4889       Overflow = ConstantInt::getFalse(OverflowTy);
4890       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4891         if (IsSigned)
4892           Inst->setHasNoSignedWrap();
4893         else
4894           Inst->setHasNoUnsignedWrap();
4895       }
4896       return true;
4897   }
4898 
4899   llvm_unreachable("Unexpected overflow result");
4900 }
4901 
4902 /// Recognize and process idiom involving test for multiplication
4903 /// overflow.
4904 ///
4905 /// The caller has matched a pattern of the form:
4906 ///   I = cmp u (mul(zext A, zext B), V
4907 /// The function checks if this is a test for overflow and if so replaces
4908 /// multiplication with call to 'mul.with.overflow' intrinsic.
4909 ///
4910 /// \param I Compare instruction.
4911 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4912 ///               the compare instruction.  Must be of integer type.
4913 /// \param OtherVal The other argument of compare instruction.
4914 /// \returns Instruction which must replace the compare instruction, NULL if no
4915 ///          replacement required.
4916 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4917                                          Value *OtherVal,
4918                                          InstCombinerImpl &IC) {
4919   // Don't bother doing this transformation for pointers, don't do it for
4920   // vectors.
4921   if (!isa<IntegerType>(MulVal->getType()))
4922     return nullptr;
4923 
4924   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4925   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4926   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4927   if (!MulInstr)
4928     return nullptr;
4929   assert(MulInstr->getOpcode() == Instruction::Mul);
4930 
4931   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4932        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4933   assert(LHS->getOpcode() == Instruction::ZExt);
4934   assert(RHS->getOpcode() == Instruction::ZExt);
4935   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4936 
4937   // Calculate type and width of the result produced by mul.with.overflow.
4938   Type *TyA = A->getType(), *TyB = B->getType();
4939   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4940            WidthB = TyB->getPrimitiveSizeInBits();
4941   unsigned MulWidth;
4942   Type *MulType;
4943   if (WidthB > WidthA) {
4944     MulWidth = WidthB;
4945     MulType = TyB;
4946   } else {
4947     MulWidth = WidthA;
4948     MulType = TyA;
4949   }
4950 
4951   // In order to replace the original mul with a narrower mul.with.overflow,
4952   // all uses must ignore upper bits of the product.  The number of used low
4953   // bits must be not greater than the width of mul.with.overflow.
4954   if (MulVal->hasNUsesOrMore(2))
4955     for (User *U : MulVal->users()) {
4956       if (U == &I)
4957         continue;
4958       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4959         // Check if truncation ignores bits above MulWidth.
4960         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4961         if (TruncWidth > MulWidth)
4962           return nullptr;
4963       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4964         // Check if AND ignores bits above MulWidth.
4965         if (BO->getOpcode() != Instruction::And)
4966           return nullptr;
4967         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4968           const APInt &CVal = CI->getValue();
4969           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4970             return nullptr;
4971         } else {
4972           // In this case we could have the operand of the binary operation
4973           // being defined in another block, and performing the replacement
4974           // could break the dominance relation.
4975           return nullptr;
4976         }
4977       } else {
4978         // Other uses prohibit this transformation.
4979         return nullptr;
4980       }
4981     }
4982 
4983   // Recognize patterns
4984   switch (I.getPredicate()) {
4985   case ICmpInst::ICMP_EQ:
4986   case ICmpInst::ICMP_NE:
4987     // Recognize pattern:
4988     //   mulval = mul(zext A, zext B)
4989     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4990     ConstantInt *CI;
4991     Value *ValToMask;
4992     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4993       if (ValToMask != MulVal)
4994         return nullptr;
4995       const APInt &CVal = CI->getValue() + 1;
4996       if (CVal.isPowerOf2()) {
4997         unsigned MaskWidth = CVal.logBase2();
4998         if (MaskWidth == MulWidth)
4999           break; // Recognized
5000       }
5001     }
5002     return nullptr;
5003 
5004   case ICmpInst::ICMP_UGT:
5005     // Recognize pattern:
5006     //   mulval = mul(zext A, zext B)
5007     //   cmp ugt mulval, max
5008     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5009       APInt MaxVal = APInt::getMaxValue(MulWidth);
5010       MaxVal = MaxVal.zext(CI->getBitWidth());
5011       if (MaxVal.eq(CI->getValue()))
5012         break; // Recognized
5013     }
5014     return nullptr;
5015 
5016   case ICmpInst::ICMP_UGE:
5017     // Recognize pattern:
5018     //   mulval = mul(zext A, zext B)
5019     //   cmp uge mulval, max+1
5020     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5021       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5022       if (MaxVal.eq(CI->getValue()))
5023         break; // Recognized
5024     }
5025     return nullptr;
5026 
5027   case ICmpInst::ICMP_ULE:
5028     // Recognize pattern:
5029     //   mulval = mul(zext A, zext B)
5030     //   cmp ule mulval, max
5031     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5032       APInt MaxVal = APInt::getMaxValue(MulWidth);
5033       MaxVal = MaxVal.zext(CI->getBitWidth());
5034       if (MaxVal.eq(CI->getValue()))
5035         break; // Recognized
5036     }
5037     return nullptr;
5038 
5039   case ICmpInst::ICMP_ULT:
5040     // Recognize pattern:
5041     //   mulval = mul(zext A, zext B)
5042     //   cmp ule mulval, max + 1
5043     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5044       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5045       if (MaxVal.eq(CI->getValue()))
5046         break; // Recognized
5047     }
5048     return nullptr;
5049 
5050   default:
5051     return nullptr;
5052   }
5053 
5054   InstCombiner::BuilderTy &Builder = IC.Builder;
5055   Builder.SetInsertPoint(MulInstr);
5056 
5057   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5058   Value *MulA = A, *MulB = B;
5059   if (WidthA < MulWidth)
5060     MulA = Builder.CreateZExt(A, MulType);
5061   if (WidthB < MulWidth)
5062     MulB = Builder.CreateZExt(B, MulType);
5063   Function *F = Intrinsic::getDeclaration(
5064       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5065   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5066   IC.addToWorklist(MulInstr);
5067 
5068   // If there are uses of mul result other than the comparison, we know that
5069   // they are truncation or binary AND. Change them to use result of
5070   // mul.with.overflow and adjust properly mask/size.
5071   if (MulVal->hasNUsesOrMore(2)) {
5072     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5073     for (User *U : make_early_inc_range(MulVal->users())) {
5074       if (U == &I || U == OtherVal)
5075         continue;
5076       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5077         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5078           IC.replaceInstUsesWith(*TI, Mul);
5079         else
5080           TI->setOperand(0, Mul);
5081       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5082         assert(BO->getOpcode() == Instruction::And);
5083         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5084         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5085         APInt ShortMask = CI->getValue().trunc(MulWidth);
5086         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5087         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5088         IC.replaceInstUsesWith(*BO, Zext);
5089       } else {
5090         llvm_unreachable("Unexpected Binary operation");
5091       }
5092       IC.addToWorklist(cast<Instruction>(U));
5093     }
5094   }
5095   if (isa<Instruction>(OtherVal))
5096     IC.addToWorklist(cast<Instruction>(OtherVal));
5097 
5098   // The original icmp gets replaced with the overflow value, maybe inverted
5099   // depending on predicate.
5100   bool Inverse = false;
5101   switch (I.getPredicate()) {
5102   case ICmpInst::ICMP_NE:
5103     break;
5104   case ICmpInst::ICMP_EQ:
5105     Inverse = true;
5106     break;
5107   case ICmpInst::ICMP_UGT:
5108   case ICmpInst::ICMP_UGE:
5109     if (I.getOperand(0) == MulVal)
5110       break;
5111     Inverse = true;
5112     break;
5113   case ICmpInst::ICMP_ULT:
5114   case ICmpInst::ICMP_ULE:
5115     if (I.getOperand(1) == MulVal)
5116       break;
5117     Inverse = true;
5118     break;
5119   default:
5120     llvm_unreachable("Unexpected predicate");
5121   }
5122   if (Inverse) {
5123     Value *Res = Builder.CreateExtractValue(Call, 1);
5124     return BinaryOperator::CreateNot(Res);
5125   }
5126 
5127   return ExtractValueInst::Create(Call, 1);
5128 }
5129 
5130 /// When performing a comparison against a constant, it is possible that not all
5131 /// the bits in the LHS are demanded. This helper method computes the mask that
5132 /// IS demanded.
5133 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5134   const APInt *RHS;
5135   if (!match(I.getOperand(1), m_APInt(RHS)))
5136     return APInt::getAllOnes(BitWidth);
5137 
5138   // If this is a normal comparison, it demands all bits. If it is a sign bit
5139   // comparison, it only demands the sign bit.
5140   bool UnusedBit;
5141   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5142     return APInt::getSignMask(BitWidth);
5143 
5144   switch (I.getPredicate()) {
5145   // For a UGT comparison, we don't care about any bits that
5146   // correspond to the trailing ones of the comparand.  The value of these
5147   // bits doesn't impact the outcome of the comparison, because any value
5148   // greater than the RHS must differ in a bit higher than these due to carry.
5149   case ICmpInst::ICMP_UGT:
5150     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5151 
5152   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5153   // Any value less than the RHS must differ in a higher bit because of carries.
5154   case ICmpInst::ICMP_ULT:
5155     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5156 
5157   default:
5158     return APInt::getAllOnes(BitWidth);
5159   }
5160 }
5161 
5162 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5163 /// should be swapped.
5164 /// The decision is based on how many times these two operands are reused
5165 /// as subtract operands and their positions in those instructions.
5166 /// The rationale is that several architectures use the same instruction for
5167 /// both subtract and cmp. Thus, it is better if the order of those operands
5168 /// match.
5169 /// \return true if Op0 and Op1 should be swapped.
5170 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5171   // Filter out pointer values as those cannot appear directly in subtract.
5172   // FIXME: we may want to go through inttoptrs or bitcasts.
5173   if (Op0->getType()->isPointerTy())
5174     return false;
5175   // If a subtract already has the same operands as a compare, swapping would be
5176   // bad. If a subtract has the same operands as a compare but in reverse order,
5177   // then swapping is good.
5178   int GoodToSwap = 0;
5179   for (const User *U : Op0->users()) {
5180     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5181       GoodToSwap++;
5182     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5183       GoodToSwap--;
5184   }
5185   return GoodToSwap > 0;
5186 }
5187 
5188 /// Check that one use is in the same block as the definition and all
5189 /// other uses are in blocks dominated by a given block.
5190 ///
5191 /// \param DI Definition
5192 /// \param UI Use
5193 /// \param DB Block that must dominate all uses of \p DI outside
5194 ///           the parent block
5195 /// \return true when \p UI is the only use of \p DI in the parent block
5196 /// and all other uses of \p DI are in blocks dominated by \p DB.
5197 ///
5198 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5199                                         const Instruction *UI,
5200                                         const BasicBlock *DB) const {
5201   assert(DI && UI && "Instruction not defined\n");
5202   // Ignore incomplete definitions.
5203   if (!DI->getParent())
5204     return false;
5205   // DI and UI must be in the same block.
5206   if (DI->getParent() != UI->getParent())
5207     return false;
5208   // Protect from self-referencing blocks.
5209   if (DI->getParent() == DB)
5210     return false;
5211   for (const User *U : DI->users()) {
5212     auto *Usr = cast<Instruction>(U);
5213     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5214       return false;
5215   }
5216   return true;
5217 }
5218 
5219 /// Return true when the instruction sequence within a block is select-cmp-br.
5220 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5221   const BasicBlock *BB = SI->getParent();
5222   if (!BB)
5223     return false;
5224   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5225   if (!BI || BI->getNumSuccessors() != 2)
5226     return false;
5227   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5228   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5229     return false;
5230   return true;
5231 }
5232 
5233 /// True when a select result is replaced by one of its operands
5234 /// in select-icmp sequence. This will eventually result in the elimination
5235 /// of the select.
5236 ///
5237 /// \param SI    Select instruction
5238 /// \param Icmp  Compare instruction
5239 /// \param SIOpd Operand that replaces the select
5240 ///
5241 /// Notes:
5242 /// - The replacement is global and requires dominator information
5243 /// - The caller is responsible for the actual replacement
5244 ///
5245 /// Example:
5246 ///
5247 /// entry:
5248 ///  %4 = select i1 %3, %C* %0, %C* null
5249 ///  %5 = icmp eq %C* %4, null
5250 ///  br i1 %5, label %9, label %7
5251 ///  ...
5252 ///  ; <label>:7                                       ; preds = %entry
5253 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5254 ///  ...
5255 ///
5256 /// can be transformed to
5257 ///
5258 ///  %5 = icmp eq %C* %0, null
5259 ///  %6 = select i1 %3, i1 %5, i1 true
5260 ///  br i1 %6, label %9, label %7
5261 ///  ...
5262 ///  ; <label>:7                                       ; preds = %entry
5263 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5264 ///
5265 /// Similar when the first operand of the select is a constant or/and
5266 /// the compare is for not equal rather than equal.
5267 ///
5268 /// NOTE: The function is only called when the select and compare constants
5269 /// are equal, the optimization can work only for EQ predicates. This is not a
5270 /// major restriction since a NE compare should be 'normalized' to an equal
5271 /// compare, which usually happens in the combiner and test case
5272 /// select-cmp-br.ll checks for it.
5273 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5274                                                  const ICmpInst *Icmp,
5275                                                  const unsigned SIOpd) {
5276   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5277   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5278     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5279     // The check for the single predecessor is not the best that can be
5280     // done. But it protects efficiently against cases like when SI's
5281     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5282     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5283     // replaced can be reached on either path. So the uniqueness check
5284     // guarantees that the path all uses of SI (outside SI's parent) are on
5285     // is disjoint from all other paths out of SI. But that information
5286     // is more expensive to compute, and the trade-off here is in favor
5287     // of compile-time. It should also be noticed that we check for a single
5288     // predecessor and not only uniqueness. This to handle the situation when
5289     // Succ and Succ1 points to the same basic block.
5290     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5291       NumSel++;
5292       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5293       return true;
5294     }
5295   }
5296   return false;
5297 }
5298 
5299 /// Try to fold the comparison based on range information we can get by checking
5300 /// whether bits are known to be zero or one in the inputs.
5301 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5302   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5303   Type *Ty = Op0->getType();
5304   ICmpInst::Predicate Pred = I.getPredicate();
5305 
5306   // Get scalar or pointer size.
5307   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5308                           ? Ty->getScalarSizeInBits()
5309                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5310 
5311   if (!BitWidth)
5312     return nullptr;
5313 
5314   KnownBits Op0Known(BitWidth);
5315   KnownBits Op1Known(BitWidth);
5316 
5317   if (SimplifyDemandedBits(&I, 0,
5318                            getDemandedBitsLHSMask(I, BitWidth),
5319                            Op0Known, 0))
5320     return &I;
5321 
5322   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5323     return &I;
5324 
5325   // Given the known and unknown bits, compute a range that the LHS could be
5326   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5327   // EQ and NE we use unsigned values.
5328   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5329   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5330   if (I.isSigned()) {
5331     Op0Min = Op0Known.getSignedMinValue();
5332     Op0Max = Op0Known.getSignedMaxValue();
5333     Op1Min = Op1Known.getSignedMinValue();
5334     Op1Max = Op1Known.getSignedMaxValue();
5335   } else {
5336     Op0Min = Op0Known.getMinValue();
5337     Op0Max = Op0Known.getMaxValue();
5338     Op1Min = Op1Known.getMinValue();
5339     Op1Max = Op1Known.getMaxValue();
5340   }
5341 
5342   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5343   // out that the LHS or RHS is a constant. Constant fold this now, so that
5344   // code below can assume that Min != Max.
5345   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5346     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5347   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5348     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5349 
5350   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5351   // min/max canonical compare with some other compare. That could lead to
5352   // conflict with select canonicalization and infinite looping.
5353   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5354   auto isMinMaxCmp = [&](Instruction &Cmp) {
5355     if (!Cmp.hasOneUse())
5356       return false;
5357     Value *A, *B;
5358     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5359     if (!SelectPatternResult::isMinOrMax(SPF))
5360       return false;
5361     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5362            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5363   };
5364   if (!isMinMaxCmp(I)) {
5365     switch (Pred) {
5366     default:
5367       break;
5368     case ICmpInst::ICMP_ULT: {
5369       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5370         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5371       const APInt *CmpC;
5372       if (match(Op1, m_APInt(CmpC))) {
5373         // A <u C -> A == C-1 if min(A)+1 == C
5374         if (*CmpC == Op0Min + 1)
5375           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5376                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5377         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5378         // exceeds the log2 of C.
5379         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5380           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5381                               Constant::getNullValue(Op1->getType()));
5382       }
5383       break;
5384     }
5385     case ICmpInst::ICMP_UGT: {
5386       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5387         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5388       const APInt *CmpC;
5389       if (match(Op1, m_APInt(CmpC))) {
5390         // A >u C -> A == C+1 if max(a)-1 == C
5391         if (*CmpC == Op0Max - 1)
5392           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5393                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5394         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5395         // exceeds the log2 of C.
5396         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5397           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5398                               Constant::getNullValue(Op1->getType()));
5399       }
5400       break;
5401     }
5402     case ICmpInst::ICMP_SLT: {
5403       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5404         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5405       const APInt *CmpC;
5406       if (match(Op1, m_APInt(CmpC))) {
5407         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5408           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5409                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5410       }
5411       break;
5412     }
5413     case ICmpInst::ICMP_SGT: {
5414       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5415         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5416       const APInt *CmpC;
5417       if (match(Op1, m_APInt(CmpC))) {
5418         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5419           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5420                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5421       }
5422       break;
5423     }
5424     }
5425   }
5426 
5427   // Based on the range information we know about the LHS, see if we can
5428   // simplify this comparison.  For example, (x&4) < 8 is always true.
5429   switch (Pred) {
5430   default:
5431     llvm_unreachable("Unknown icmp opcode!");
5432   case ICmpInst::ICMP_EQ:
5433   case ICmpInst::ICMP_NE: {
5434     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5435       return replaceInstUsesWith(
5436           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5437 
5438     // If all bits are known zero except for one, then we know at most one bit
5439     // is set. If the comparison is against zero, then this is a check to see if
5440     // *that* bit is set.
5441     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5442     if (Op1Known.isZero()) {
5443       // If the LHS is an AND with the same constant, look through it.
5444       Value *LHS = nullptr;
5445       const APInt *LHSC;
5446       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5447           *LHSC != Op0KnownZeroInverted)
5448         LHS = Op0;
5449 
5450       Value *X;
5451       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5452         APInt ValToCheck = Op0KnownZeroInverted;
5453         Type *XTy = X->getType();
5454         if (ValToCheck.isPowerOf2()) {
5455           // ((1 << X) & 8) == 0 -> X != 3
5456           // ((1 << X) & 8) != 0 -> X == 3
5457           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5458           auto NewPred = ICmpInst::getInversePredicate(Pred);
5459           return new ICmpInst(NewPred, X, CmpC);
5460         } else if ((++ValToCheck).isPowerOf2()) {
5461           // ((1 << X) & 7) == 0 -> X >= 3
5462           // ((1 << X) & 7) != 0 -> X  < 3
5463           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5464           auto NewPred =
5465               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5466           return new ICmpInst(NewPred, X, CmpC);
5467         }
5468       }
5469 
5470       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5471       const APInt *CI;
5472       if (Op0KnownZeroInverted.isOne() &&
5473           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5474         // ((8 >>u X) & 1) == 0 -> X != 3
5475         // ((8 >>u X) & 1) != 0 -> X == 3
5476         unsigned CmpVal = CI->countTrailingZeros();
5477         auto NewPred = ICmpInst::getInversePredicate(Pred);
5478         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5479       }
5480     }
5481     break;
5482   }
5483   case ICmpInst::ICMP_ULT: {
5484     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5485       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5486     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5487       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5488     break;
5489   }
5490   case ICmpInst::ICMP_UGT: {
5491     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5492       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5493     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5494       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5495     break;
5496   }
5497   case ICmpInst::ICMP_SLT: {
5498     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5499       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5500     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5501       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5502     break;
5503   }
5504   case ICmpInst::ICMP_SGT: {
5505     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5506       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5507     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5508       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5509     break;
5510   }
5511   case ICmpInst::ICMP_SGE:
5512     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5513     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5514       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5515     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5516       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5517     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5518       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5519     break;
5520   case ICmpInst::ICMP_SLE:
5521     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5522     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5523       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5524     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5525       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5526     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5527       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5528     break;
5529   case ICmpInst::ICMP_UGE:
5530     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5531     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5532       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5533     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5534       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5535     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5536       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5537     break;
5538   case ICmpInst::ICMP_ULE:
5539     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5540     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5541       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5542     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5543       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5544     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5545       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5546     break;
5547   }
5548 
5549   // Turn a signed comparison into an unsigned one if both operands are known to
5550   // have the same sign.
5551   if (I.isSigned() &&
5552       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5553        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5554     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5555 
5556   return nullptr;
5557 }
5558 
5559 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5560 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5561                                                        Constant *C) {
5562   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5563          "Only for relational integer predicates.");
5564 
5565   Type *Type = C->getType();
5566   bool IsSigned = ICmpInst::isSigned(Pred);
5567 
5568   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5569   bool WillIncrement =
5570       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5571 
5572   // Check if the constant operand can be safely incremented/decremented
5573   // without overflowing/underflowing.
5574   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5575     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5576   };
5577 
5578   Constant *SafeReplacementConstant = nullptr;
5579   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5580     // Bail out if the constant can't be safely incremented/decremented.
5581     if (!ConstantIsOk(CI))
5582       return llvm::None;
5583   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5584     unsigned NumElts = FVTy->getNumElements();
5585     for (unsigned i = 0; i != NumElts; ++i) {
5586       Constant *Elt = C->getAggregateElement(i);
5587       if (!Elt)
5588         return llvm::None;
5589 
5590       if (isa<UndefValue>(Elt))
5591         continue;
5592 
5593       // Bail out if we can't determine if this constant is min/max or if we
5594       // know that this constant is min/max.
5595       auto *CI = dyn_cast<ConstantInt>(Elt);
5596       if (!CI || !ConstantIsOk(CI))
5597         return llvm::None;
5598 
5599       if (!SafeReplacementConstant)
5600         SafeReplacementConstant = CI;
5601     }
5602   } else {
5603     // ConstantExpr?
5604     return llvm::None;
5605   }
5606 
5607   // It may not be safe to change a compare predicate in the presence of
5608   // undefined elements, so replace those elements with the first safe constant
5609   // that we found.
5610   // TODO: in case of poison, it is safe; let's replace undefs only.
5611   if (C->containsUndefOrPoisonElement()) {
5612     assert(SafeReplacementConstant && "Replacement constant not set");
5613     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5614   }
5615 
5616   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5617 
5618   // Increment or decrement the constant.
5619   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5620   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5621 
5622   return std::make_pair(NewPred, NewC);
5623 }
5624 
5625 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5626 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5627 /// allows them to be folded in visitICmpInst.
5628 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5629   ICmpInst::Predicate Pred = I.getPredicate();
5630   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5631       InstCombiner::isCanonicalPredicate(Pred))
5632     return nullptr;
5633 
5634   Value *Op0 = I.getOperand(0);
5635   Value *Op1 = I.getOperand(1);
5636   auto *Op1C = dyn_cast<Constant>(Op1);
5637   if (!Op1C)
5638     return nullptr;
5639 
5640   auto FlippedStrictness =
5641       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5642   if (!FlippedStrictness)
5643     return nullptr;
5644 
5645   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5646 }
5647 
5648 /// If we have a comparison with a non-canonical predicate, if we can update
5649 /// all the users, invert the predicate and adjust all the users.
5650 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5651   // Is the predicate already canonical?
5652   CmpInst::Predicate Pred = I.getPredicate();
5653   if (InstCombiner::isCanonicalPredicate(Pred))
5654     return nullptr;
5655 
5656   // Can all users be adjusted to predicate inversion?
5657   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5658     return nullptr;
5659 
5660   // Ok, we can canonicalize comparison!
5661   // Let's first invert the comparison's predicate.
5662   I.setPredicate(CmpInst::getInversePredicate(Pred));
5663   I.setName(I.getName() + ".not");
5664 
5665   // And, adapt users.
5666   freelyInvertAllUsersOf(&I);
5667 
5668   return &I;
5669 }
5670 
5671 /// Integer compare with boolean values can always be turned into bitwise ops.
5672 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5673                                          InstCombiner::BuilderTy &Builder) {
5674   Value *A = I.getOperand(0), *B = I.getOperand(1);
5675   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5676 
5677   // A boolean compared to true/false can be simplified to Op0/true/false in
5678   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5679   // Cases not handled by InstSimplify are always 'not' of Op0.
5680   if (match(B, m_Zero())) {
5681     switch (I.getPredicate()) {
5682       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5683       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5684       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5685         return BinaryOperator::CreateNot(A);
5686       default:
5687         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5688     }
5689   } else if (match(B, m_One())) {
5690     switch (I.getPredicate()) {
5691       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5692       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5693       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5694         return BinaryOperator::CreateNot(A);
5695       default:
5696         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5697     }
5698   }
5699 
5700   switch (I.getPredicate()) {
5701   default:
5702     llvm_unreachable("Invalid icmp instruction!");
5703   case ICmpInst::ICMP_EQ:
5704     // icmp eq i1 A, B -> ~(A ^ B)
5705     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5706 
5707   case ICmpInst::ICMP_NE:
5708     // icmp ne i1 A, B -> A ^ B
5709     return BinaryOperator::CreateXor(A, B);
5710 
5711   case ICmpInst::ICMP_UGT:
5712     // icmp ugt -> icmp ult
5713     std::swap(A, B);
5714     LLVM_FALLTHROUGH;
5715   case ICmpInst::ICMP_ULT:
5716     // icmp ult i1 A, B -> ~A & B
5717     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5718 
5719   case ICmpInst::ICMP_SGT:
5720     // icmp sgt -> icmp slt
5721     std::swap(A, B);
5722     LLVM_FALLTHROUGH;
5723   case ICmpInst::ICMP_SLT:
5724     // icmp slt i1 A, B -> A & ~B
5725     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5726 
5727   case ICmpInst::ICMP_UGE:
5728     // icmp uge -> icmp ule
5729     std::swap(A, B);
5730     LLVM_FALLTHROUGH;
5731   case ICmpInst::ICMP_ULE:
5732     // icmp ule i1 A, B -> ~A | B
5733     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5734 
5735   case ICmpInst::ICMP_SGE:
5736     // icmp sge -> icmp sle
5737     std::swap(A, B);
5738     LLVM_FALLTHROUGH;
5739   case ICmpInst::ICMP_SLE:
5740     // icmp sle i1 A, B -> A | ~B
5741     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5742   }
5743 }
5744 
5745 // Transform pattern like:
5746 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5747 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5748 // Into:
5749 //   (X l>> Y) != 0
5750 //   (X l>> Y) == 0
5751 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5752                                             InstCombiner::BuilderTy &Builder) {
5753   ICmpInst::Predicate Pred, NewPred;
5754   Value *X, *Y;
5755   if (match(&Cmp,
5756             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5757     switch (Pred) {
5758     case ICmpInst::ICMP_ULE:
5759       NewPred = ICmpInst::ICMP_NE;
5760       break;
5761     case ICmpInst::ICMP_UGT:
5762       NewPred = ICmpInst::ICMP_EQ;
5763       break;
5764     default:
5765       return nullptr;
5766     }
5767   } else if (match(&Cmp, m_c_ICmp(Pred,
5768                                   m_OneUse(m_CombineOr(
5769                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5770                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5771                                             m_AllOnes()))),
5772                                   m_Value(X)))) {
5773     // The variant with 'add' is not canonical, (the variant with 'not' is)
5774     // we only get it because it has extra uses, and can't be canonicalized,
5775 
5776     switch (Pred) {
5777     case ICmpInst::ICMP_ULT:
5778       NewPred = ICmpInst::ICMP_NE;
5779       break;
5780     case ICmpInst::ICMP_UGE:
5781       NewPred = ICmpInst::ICMP_EQ;
5782       break;
5783     default:
5784       return nullptr;
5785     }
5786   } else
5787     return nullptr;
5788 
5789   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5790   Constant *Zero = Constant::getNullValue(NewX->getType());
5791   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5792 }
5793 
5794 static Instruction *foldVectorCmp(CmpInst &Cmp,
5795                                   InstCombiner::BuilderTy &Builder) {
5796   const CmpInst::Predicate Pred = Cmp.getPredicate();
5797   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5798   Value *V1, *V2;
5799   ArrayRef<int> M;
5800   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5801     return nullptr;
5802 
5803   // If both arguments of the cmp are shuffles that use the same mask and
5804   // shuffle within a single vector, move the shuffle after the cmp:
5805   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5806   Type *V1Ty = V1->getType();
5807   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5808       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5809     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5810     return new ShuffleVectorInst(NewCmp, M);
5811   }
5812 
5813   // Try to canonicalize compare with splatted operand and splat constant.
5814   // TODO: We could generalize this for more than splats. See/use the code in
5815   //       InstCombiner::foldVectorBinop().
5816   Constant *C;
5817   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5818     return nullptr;
5819 
5820   // Length-changing splats are ok, so adjust the constants as needed:
5821   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5822   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5823   int MaskSplatIndex;
5824   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5825     // We allow undefs in matching, but this transform removes those for safety.
5826     // Demanded elements analysis should be able to recover some/all of that.
5827     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5828                                  ScalarC);
5829     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5830     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5831     return new ShuffleVectorInst(NewCmp, NewM);
5832   }
5833 
5834   return nullptr;
5835 }
5836 
5837 // extract(uadd.with.overflow(A, B), 0) ult A
5838 //  -> extract(uadd.with.overflow(A, B), 1)
5839 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5840   CmpInst::Predicate Pred = I.getPredicate();
5841   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5842 
5843   Value *UAddOv;
5844   Value *A, *B;
5845   auto UAddOvResultPat = m_ExtractValue<0>(
5846       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5847   if (match(Op0, UAddOvResultPat) &&
5848       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5849        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5850         (match(A, m_One()) || match(B, m_One()))) ||
5851        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5852         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5853     // extract(uadd.with.overflow(A, B), 0) < A
5854     // extract(uadd.with.overflow(A, 1), 0) == 0
5855     // extract(uadd.with.overflow(A, -1), 0) != -1
5856     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5857   else if (match(Op1, UAddOvResultPat) &&
5858            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5859     // A > extract(uadd.with.overflow(A, B), 0)
5860     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5861   else
5862     return nullptr;
5863 
5864   return ExtractValueInst::Create(UAddOv, 1);
5865 }
5866 
5867 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5868   if (!I.getOperand(0)->getType()->isPointerTy() ||
5869       NullPointerIsDefined(
5870           I.getParent()->getParent(),
5871           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5872     return nullptr;
5873   }
5874   Instruction *Op;
5875   if (match(I.getOperand(0), m_Instruction(Op)) &&
5876       match(I.getOperand(1), m_Zero()) &&
5877       Op->isLaunderOrStripInvariantGroup()) {
5878     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5879                             Op->getOperand(0), I.getOperand(1));
5880   }
5881   return nullptr;
5882 }
5883 
5884 /// This function folds patterns produced by lowering of reduce idioms, such as
5885 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
5886 /// attempts to generate fewer number of scalar comparisons instead of vector
5887 /// comparisons when possible.
5888 static Instruction *foldReductionIdiom(ICmpInst &I,
5889                                        InstCombiner::BuilderTy &Builder,
5890                                        const DataLayout &DL) {
5891   if (I.getType()->isVectorTy())
5892     return nullptr;
5893   ICmpInst::Predicate OuterPred, InnerPred;
5894   Value *LHS, *RHS;
5895 
5896   // Match lowering of @llvm.vector.reduce.and. Turn
5897   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
5898   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
5899   ///   %res = icmp <pred> i8 %scalar_ne, 0
5900   ///
5901   /// into
5902   ///
5903   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
5904   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
5905   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
5906   ///
5907   /// for <pred> in {ne, eq}.
5908   if (!match(&I, m_ICmp(OuterPred,
5909                         m_OneUse(m_BitCast(m_OneUse(
5910                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
5911                         m_Zero())))
5912     return nullptr;
5913   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
5914   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
5915     return nullptr;
5916   unsigned NumBits =
5917       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
5918   // TODO: Relax this to "not wider than max legal integer type"?
5919   if (!DL.isLegalInteger(NumBits))
5920     return nullptr;
5921 
5922   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
5923     auto *ScalarTy = Builder.getIntNTy(NumBits);
5924     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
5925     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
5926     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
5927                             I.getName());
5928   }
5929 
5930   return nullptr;
5931 }
5932 
5933 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5934   bool Changed = false;
5935   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5936   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5937   unsigned Op0Cplxity = getComplexity(Op0);
5938   unsigned Op1Cplxity = getComplexity(Op1);
5939 
5940   /// Orders the operands of the compare so that they are listed from most
5941   /// complex to least complex.  This puts constants before unary operators,
5942   /// before binary operators.
5943   if (Op0Cplxity < Op1Cplxity ||
5944       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5945     I.swapOperands();
5946     std::swap(Op0, Op1);
5947     Changed = true;
5948   }
5949 
5950   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5951     return replaceInstUsesWith(I, V);
5952 
5953   // Comparing -val or val with non-zero is the same as just comparing val
5954   // ie, abs(val) != 0 -> val != 0
5955   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5956     Value *Cond, *SelectTrue, *SelectFalse;
5957     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5958                             m_Value(SelectFalse)))) {
5959       if (Value *V = dyn_castNegVal(SelectTrue)) {
5960         if (V == SelectFalse)
5961           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5962       }
5963       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5964         if (V == SelectTrue)
5965           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5966       }
5967     }
5968   }
5969 
5970   if (Op0->getType()->isIntOrIntVectorTy(1))
5971     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5972       return Res;
5973 
5974   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5975     return Res;
5976 
5977   if (Instruction *Res = canonicalizeICmpPredicate(I))
5978     return Res;
5979 
5980   if (Instruction *Res = foldICmpWithConstant(I))
5981     return Res;
5982 
5983   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5984     return Res;
5985 
5986   if (Instruction *Res = foldICmpUsingKnownBits(I))
5987     return Res;
5988 
5989   // Test if the ICmpInst instruction is used exclusively by a select as
5990   // part of a minimum or maximum operation. If so, refrain from doing
5991   // any other folding. This helps out other analyses which understand
5992   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5993   // and CodeGen. And in this case, at least one of the comparison
5994   // operands has at least one user besides the compare (the select),
5995   // which would often largely negate the benefit of folding anyway.
5996   //
5997   // Do the same for the other patterns recognized by matchSelectPattern.
5998   if (I.hasOneUse())
5999     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6000       Value *A, *B;
6001       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6002       if (SPR.Flavor != SPF_UNKNOWN)
6003         return nullptr;
6004     }
6005 
6006   // Do this after checking for min/max to prevent infinite looping.
6007   if (Instruction *Res = foldICmpWithZero(I))
6008     return Res;
6009 
6010   // FIXME: We only do this after checking for min/max to prevent infinite
6011   // looping caused by a reverse canonicalization of these patterns for min/max.
6012   // FIXME: The organization of folds is a mess. These would naturally go into
6013   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6014   // down here after the min/max restriction.
6015   ICmpInst::Predicate Pred = I.getPredicate();
6016   const APInt *C;
6017   if (match(Op1, m_APInt(C))) {
6018     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6019     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6020       Constant *Zero = Constant::getNullValue(Op0->getType());
6021       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6022     }
6023 
6024     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6025     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6026       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6027       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6028     }
6029   }
6030 
6031   // The folds in here may rely on wrapping flags and special constants, so
6032   // they can break up min/max idioms in some cases but not seemingly similar
6033   // patterns.
6034   // FIXME: It may be possible to enhance select folding to make this
6035   //        unnecessary. It may also be moot if we canonicalize to min/max
6036   //        intrinsics.
6037   if (Instruction *Res = foldICmpBinOp(I, Q))
6038     return Res;
6039 
6040   if (Instruction *Res = foldICmpInstWithConstant(I))
6041     return Res;
6042 
6043   // Try to match comparison as a sign bit test. Intentionally do this after
6044   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6045   if (Instruction *New = foldSignBitTest(I))
6046     return New;
6047 
6048   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6049     return Res;
6050 
6051   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6052   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6053     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6054       return NI;
6055   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6056     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6057       return NI;
6058 
6059   // Try to optimize equality comparisons against alloca-based pointers.
6060   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6061     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6062     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6063       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
6064         return New;
6065     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6066       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
6067         return New;
6068   }
6069 
6070   if (Instruction *Res = foldICmpBitCast(I))
6071     return Res;
6072 
6073   // TODO: Hoist this above the min/max bailout.
6074   if (Instruction *R = foldICmpWithCastOp(I))
6075     return R;
6076 
6077   if (Instruction *Res = foldICmpWithMinMax(I))
6078     return Res;
6079 
6080   {
6081     Value *A, *B;
6082     // Transform (A & ~B) == 0 --> (A & B) != 0
6083     // and       (A & ~B) != 0 --> (A & B) == 0
6084     // if A is a power of 2.
6085     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6086         match(Op1, m_Zero()) &&
6087         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6088       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6089                           Op1);
6090 
6091     // ~X < ~Y --> Y < X
6092     // ~X < C -->  X > ~C
6093     if (match(Op0, m_Not(m_Value(A)))) {
6094       if (match(Op1, m_Not(m_Value(B))))
6095         return new ICmpInst(I.getPredicate(), B, A);
6096 
6097       const APInt *C;
6098       if (match(Op1, m_APInt(C)))
6099         return new ICmpInst(I.getSwappedPredicate(), A,
6100                             ConstantInt::get(Op1->getType(), ~(*C)));
6101     }
6102 
6103     Instruction *AddI = nullptr;
6104     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6105                                      m_Instruction(AddI))) &&
6106         isa<IntegerType>(A->getType())) {
6107       Value *Result;
6108       Constant *Overflow;
6109       // m_UAddWithOverflow can match patterns that do not include  an explicit
6110       // "add" instruction, so check the opcode of the matched op.
6111       if (AddI->getOpcode() == Instruction::Add &&
6112           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6113                                 Result, Overflow)) {
6114         replaceInstUsesWith(*AddI, Result);
6115         eraseInstFromFunction(*AddI);
6116         return replaceInstUsesWith(I, Overflow);
6117       }
6118     }
6119 
6120     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6121     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6122       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6123         return R;
6124     }
6125     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6126       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6127         return R;
6128     }
6129   }
6130 
6131   if (Instruction *Res = foldICmpEquality(I))
6132     return Res;
6133 
6134   if (Instruction *Res = foldICmpOfUAddOv(I))
6135     return Res;
6136 
6137   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6138   // an i1 which indicates whether or not we successfully did the swap.
6139   //
6140   // Replace comparisons between the old value and the expected value with the
6141   // indicator that 'cmpxchg' returns.
6142   //
6143   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6144   // spuriously fail.  In those cases, the old value may equal the expected
6145   // value but it is possible for the swap to not occur.
6146   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6147     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6148       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6149         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6150             !ACXI->isWeak())
6151           return ExtractValueInst::Create(ACXI, 1);
6152 
6153   {
6154     Value *X;
6155     const APInt *C;
6156     // icmp X+Cst, X
6157     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6158       return foldICmpAddOpConst(X, *C, I.getPredicate());
6159 
6160     // icmp X, X+Cst
6161     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6162       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6163   }
6164 
6165   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6166     return Res;
6167 
6168   if (I.getType()->isVectorTy())
6169     if (Instruction *Res = foldVectorCmp(I, Builder))
6170       return Res;
6171 
6172   if (Instruction *Res = foldICmpInvariantGroup(I))
6173     return Res;
6174 
6175   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6176     return Res;
6177 
6178   return Changed ? &I : nullptr;
6179 }
6180 
6181 /// Fold fcmp ([us]itofp x, cst) if possible.
6182 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6183                                                     Instruction *LHSI,
6184                                                     Constant *RHSC) {
6185   if (!isa<ConstantFP>(RHSC)) return nullptr;
6186   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6187 
6188   // Get the width of the mantissa.  We don't want to hack on conversions that
6189   // might lose information from the integer, e.g. "i64 -> float"
6190   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6191   if (MantissaWidth == -1) return nullptr;  // Unknown.
6192 
6193   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6194 
6195   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6196 
6197   if (I.isEquality()) {
6198     FCmpInst::Predicate P = I.getPredicate();
6199     bool IsExact = false;
6200     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6201     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6202 
6203     // If the floating point constant isn't an integer value, we know if we will
6204     // ever compare equal / not equal to it.
6205     if (!IsExact) {
6206       // TODO: Can never be -0.0 and other non-representable values
6207       APFloat RHSRoundInt(RHS);
6208       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6209       if (RHS != RHSRoundInt) {
6210         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6211           return replaceInstUsesWith(I, Builder.getFalse());
6212 
6213         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6214         return replaceInstUsesWith(I, Builder.getTrue());
6215       }
6216     }
6217 
6218     // TODO: If the constant is exactly representable, is it always OK to do
6219     // equality compares as integer?
6220   }
6221 
6222   // Check to see that the input is converted from an integer type that is small
6223   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6224   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6225   unsigned InputSize = IntTy->getScalarSizeInBits();
6226 
6227   // Following test does NOT adjust InputSize downwards for signed inputs,
6228   // because the most negative value still requires all the mantissa bits
6229   // to distinguish it from one less than that value.
6230   if ((int)InputSize > MantissaWidth) {
6231     // Conversion would lose accuracy. Check if loss can impact comparison.
6232     int Exp = ilogb(RHS);
6233     if (Exp == APFloat::IEK_Inf) {
6234       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6235       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6236         // Conversion could create infinity.
6237         return nullptr;
6238     } else {
6239       // Note that if RHS is zero or NaN, then Exp is negative
6240       // and first condition is trivially false.
6241       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6242         // Conversion could affect comparison.
6243         return nullptr;
6244     }
6245   }
6246 
6247   // Otherwise, we can potentially simplify the comparison.  We know that it
6248   // will always come through as an integer value and we know the constant is
6249   // not a NAN (it would have been previously simplified).
6250   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6251 
6252   ICmpInst::Predicate Pred;
6253   switch (I.getPredicate()) {
6254   default: llvm_unreachable("Unexpected predicate!");
6255   case FCmpInst::FCMP_UEQ:
6256   case FCmpInst::FCMP_OEQ:
6257     Pred = ICmpInst::ICMP_EQ;
6258     break;
6259   case FCmpInst::FCMP_UGT:
6260   case FCmpInst::FCMP_OGT:
6261     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6262     break;
6263   case FCmpInst::FCMP_UGE:
6264   case FCmpInst::FCMP_OGE:
6265     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6266     break;
6267   case FCmpInst::FCMP_ULT:
6268   case FCmpInst::FCMP_OLT:
6269     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6270     break;
6271   case FCmpInst::FCMP_ULE:
6272   case FCmpInst::FCMP_OLE:
6273     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6274     break;
6275   case FCmpInst::FCMP_UNE:
6276   case FCmpInst::FCMP_ONE:
6277     Pred = ICmpInst::ICMP_NE;
6278     break;
6279   case FCmpInst::FCMP_ORD:
6280     return replaceInstUsesWith(I, Builder.getTrue());
6281   case FCmpInst::FCMP_UNO:
6282     return replaceInstUsesWith(I, Builder.getFalse());
6283   }
6284 
6285   // Now we know that the APFloat is a normal number, zero or inf.
6286 
6287   // See if the FP constant is too large for the integer.  For example,
6288   // comparing an i8 to 300.0.
6289   unsigned IntWidth = IntTy->getScalarSizeInBits();
6290 
6291   if (!LHSUnsigned) {
6292     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6293     // and large values.
6294     APFloat SMax(RHS.getSemantics());
6295     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6296                           APFloat::rmNearestTiesToEven);
6297     if (SMax < RHS) { // smax < 13123.0
6298       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6299           Pred == ICmpInst::ICMP_SLE)
6300         return replaceInstUsesWith(I, Builder.getTrue());
6301       return replaceInstUsesWith(I, Builder.getFalse());
6302     }
6303   } else {
6304     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6305     // +INF and large values.
6306     APFloat UMax(RHS.getSemantics());
6307     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6308                           APFloat::rmNearestTiesToEven);
6309     if (UMax < RHS) { // umax < 13123.0
6310       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6311           Pred == ICmpInst::ICMP_ULE)
6312         return replaceInstUsesWith(I, Builder.getTrue());
6313       return replaceInstUsesWith(I, Builder.getFalse());
6314     }
6315   }
6316 
6317   if (!LHSUnsigned) {
6318     // See if the RHS value is < SignedMin.
6319     APFloat SMin(RHS.getSemantics());
6320     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6321                           APFloat::rmNearestTiesToEven);
6322     if (SMin > RHS) { // smin > 12312.0
6323       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6324           Pred == ICmpInst::ICMP_SGE)
6325         return replaceInstUsesWith(I, Builder.getTrue());
6326       return replaceInstUsesWith(I, Builder.getFalse());
6327     }
6328   } else {
6329     // See if the RHS value is < UnsignedMin.
6330     APFloat UMin(RHS.getSemantics());
6331     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6332                           APFloat::rmNearestTiesToEven);
6333     if (UMin > RHS) { // umin > 12312.0
6334       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6335           Pred == ICmpInst::ICMP_UGE)
6336         return replaceInstUsesWith(I, Builder.getTrue());
6337       return replaceInstUsesWith(I, Builder.getFalse());
6338     }
6339   }
6340 
6341   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6342   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6343   // casting the FP value to the integer value and back, checking for equality.
6344   // Don't do this for zero, because -0.0 is not fractional.
6345   Constant *RHSInt = LHSUnsigned
6346     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6347     : ConstantExpr::getFPToSI(RHSC, IntTy);
6348   if (!RHS.isZero()) {
6349     bool Equal = LHSUnsigned
6350       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6351       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6352     if (!Equal) {
6353       // If we had a comparison against a fractional value, we have to adjust
6354       // the compare predicate and sometimes the value.  RHSC is rounded towards
6355       // zero at this point.
6356       switch (Pred) {
6357       default: llvm_unreachable("Unexpected integer comparison!");
6358       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6359         return replaceInstUsesWith(I, Builder.getTrue());
6360       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6361         return replaceInstUsesWith(I, Builder.getFalse());
6362       case ICmpInst::ICMP_ULE:
6363         // (float)int <= 4.4   --> int <= 4
6364         // (float)int <= -4.4  --> false
6365         if (RHS.isNegative())
6366           return replaceInstUsesWith(I, Builder.getFalse());
6367         break;
6368       case ICmpInst::ICMP_SLE:
6369         // (float)int <= 4.4   --> int <= 4
6370         // (float)int <= -4.4  --> int < -4
6371         if (RHS.isNegative())
6372           Pred = ICmpInst::ICMP_SLT;
6373         break;
6374       case ICmpInst::ICMP_ULT:
6375         // (float)int < -4.4   --> false
6376         // (float)int < 4.4    --> int <= 4
6377         if (RHS.isNegative())
6378           return replaceInstUsesWith(I, Builder.getFalse());
6379         Pred = ICmpInst::ICMP_ULE;
6380         break;
6381       case ICmpInst::ICMP_SLT:
6382         // (float)int < -4.4   --> int < -4
6383         // (float)int < 4.4    --> int <= 4
6384         if (!RHS.isNegative())
6385           Pred = ICmpInst::ICMP_SLE;
6386         break;
6387       case ICmpInst::ICMP_UGT:
6388         // (float)int > 4.4    --> int > 4
6389         // (float)int > -4.4   --> true
6390         if (RHS.isNegative())
6391           return replaceInstUsesWith(I, Builder.getTrue());
6392         break;
6393       case ICmpInst::ICMP_SGT:
6394         // (float)int > 4.4    --> int > 4
6395         // (float)int > -4.4   --> int >= -4
6396         if (RHS.isNegative())
6397           Pred = ICmpInst::ICMP_SGE;
6398         break;
6399       case ICmpInst::ICMP_UGE:
6400         // (float)int >= -4.4   --> true
6401         // (float)int >= 4.4    --> int > 4
6402         if (RHS.isNegative())
6403           return replaceInstUsesWith(I, Builder.getTrue());
6404         Pred = ICmpInst::ICMP_UGT;
6405         break;
6406       case ICmpInst::ICMP_SGE:
6407         // (float)int >= -4.4   --> int >= -4
6408         // (float)int >= 4.4    --> int > 4
6409         if (!RHS.isNegative())
6410           Pred = ICmpInst::ICMP_SGT;
6411         break;
6412       }
6413     }
6414   }
6415 
6416   // Lower this FP comparison into an appropriate integer version of the
6417   // comparison.
6418   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6419 }
6420 
6421 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6422 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6423                                               Constant *RHSC) {
6424   // When C is not 0.0 and infinities are not allowed:
6425   // (C / X) < 0.0 is a sign-bit test of X
6426   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6427   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6428   //
6429   // Proof:
6430   // Multiply (C / X) < 0.0 by X * X / C.
6431   // - X is non zero, if it is the flag 'ninf' is violated.
6432   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6433   //   the predicate. C is also non zero by definition.
6434   //
6435   // Thus X * X / C is non zero and the transformation is valid. [qed]
6436 
6437   FCmpInst::Predicate Pred = I.getPredicate();
6438 
6439   // Check that predicates are valid.
6440   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6441       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6442     return nullptr;
6443 
6444   // Check that RHS operand is zero.
6445   if (!match(RHSC, m_AnyZeroFP()))
6446     return nullptr;
6447 
6448   // Check fastmath flags ('ninf').
6449   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6450     return nullptr;
6451 
6452   // Check the properties of the dividend. It must not be zero to avoid a
6453   // division by zero (see Proof).
6454   const APFloat *C;
6455   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6456     return nullptr;
6457 
6458   if (C->isZero())
6459     return nullptr;
6460 
6461   // Get swapped predicate if necessary.
6462   if (C->isNegative())
6463     Pred = I.getSwappedPredicate();
6464 
6465   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6466 }
6467 
6468 /// Optimize fabs(X) compared with zero.
6469 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6470   Value *X;
6471   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6472       !match(I.getOperand(1), m_PosZeroFP()))
6473     return nullptr;
6474 
6475   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6476     I->setPredicate(P);
6477     return IC.replaceOperand(*I, 0, X);
6478   };
6479 
6480   switch (I.getPredicate()) {
6481   case FCmpInst::FCMP_UGE:
6482   case FCmpInst::FCMP_OLT:
6483     // fabs(X) >= 0.0 --> true
6484     // fabs(X) <  0.0 --> false
6485     llvm_unreachable("fcmp should have simplified");
6486 
6487   case FCmpInst::FCMP_OGT:
6488     // fabs(X) > 0.0 --> X != 0.0
6489     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6490 
6491   case FCmpInst::FCMP_UGT:
6492     // fabs(X) u> 0.0 --> X u!= 0.0
6493     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6494 
6495   case FCmpInst::FCMP_OLE:
6496     // fabs(X) <= 0.0 --> X == 0.0
6497     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6498 
6499   case FCmpInst::FCMP_ULE:
6500     // fabs(X) u<= 0.0 --> X u== 0.0
6501     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6502 
6503   case FCmpInst::FCMP_OGE:
6504     // fabs(X) >= 0.0 --> !isnan(X)
6505     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6506     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6507 
6508   case FCmpInst::FCMP_ULT:
6509     // fabs(X) u< 0.0 --> isnan(X)
6510     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6511     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6512 
6513   case FCmpInst::FCMP_OEQ:
6514   case FCmpInst::FCMP_UEQ:
6515   case FCmpInst::FCMP_ONE:
6516   case FCmpInst::FCMP_UNE:
6517   case FCmpInst::FCMP_ORD:
6518   case FCmpInst::FCMP_UNO:
6519     // Look through the fabs() because it doesn't change anything but the sign.
6520     // fabs(X) == 0.0 --> X == 0.0,
6521     // fabs(X) != 0.0 --> X != 0.0
6522     // isnan(fabs(X)) --> isnan(X)
6523     // !isnan(fabs(X) --> !isnan(X)
6524     return replacePredAndOp0(&I, I.getPredicate(), X);
6525 
6526   default:
6527     return nullptr;
6528   }
6529 }
6530 
6531 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6532   bool Changed = false;
6533 
6534   /// Orders the operands of the compare so that they are listed from most
6535   /// complex to least complex.  This puts constants before unary operators,
6536   /// before binary operators.
6537   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6538     I.swapOperands();
6539     Changed = true;
6540   }
6541 
6542   const CmpInst::Predicate Pred = I.getPredicate();
6543   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6544   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6545                                   SQ.getWithInstruction(&I)))
6546     return replaceInstUsesWith(I, V);
6547 
6548   // Simplify 'fcmp pred X, X'
6549   Type *OpType = Op0->getType();
6550   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6551   if (Op0 == Op1) {
6552     switch (Pred) {
6553       default: break;
6554     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6555     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6556     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6557     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6558       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6559       I.setPredicate(FCmpInst::FCMP_UNO);
6560       I.setOperand(1, Constant::getNullValue(OpType));
6561       return &I;
6562 
6563     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6564     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6565     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6566     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6567       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6568       I.setPredicate(FCmpInst::FCMP_ORD);
6569       I.setOperand(1, Constant::getNullValue(OpType));
6570       return &I;
6571     }
6572   }
6573 
6574   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6575   // then canonicalize the operand to 0.0.
6576   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6577     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6578       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6579 
6580     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6581       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6582   }
6583 
6584   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6585   Value *X, *Y;
6586   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6587     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6588 
6589   // Test if the FCmpInst instruction is used exclusively by a select as
6590   // part of a minimum or maximum operation. If so, refrain from doing
6591   // any other folding. This helps out other analyses which understand
6592   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6593   // and CodeGen. And in this case, at least one of the comparison
6594   // operands has at least one user besides the compare (the select),
6595   // which would often largely negate the benefit of folding anyway.
6596   if (I.hasOneUse())
6597     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6598       Value *A, *B;
6599       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6600       if (SPR.Flavor != SPF_UNKNOWN)
6601         return nullptr;
6602     }
6603 
6604   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6605   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6606   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6607     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6608 
6609   // Handle fcmp with instruction LHS and constant RHS.
6610   Instruction *LHSI;
6611   Constant *RHSC;
6612   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6613     switch (LHSI->getOpcode()) {
6614     case Instruction::PHI:
6615       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6616       // block.  If in the same block, we're encouraging jump threading.  If
6617       // not, we are just pessimizing the code by making an i1 phi.
6618       if (LHSI->getParent() == I.getParent())
6619         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6620           return NV;
6621       break;
6622     case Instruction::SIToFP:
6623     case Instruction::UIToFP:
6624       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6625         return NV;
6626       break;
6627     case Instruction::FDiv:
6628       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6629         return NV;
6630       break;
6631     case Instruction::Load:
6632       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6633         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6634           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6635               !cast<LoadInst>(LHSI)->isVolatile())
6636             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6637               return Res;
6638       break;
6639   }
6640   }
6641 
6642   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6643     return R;
6644 
6645   if (match(Op0, m_FNeg(m_Value(X)))) {
6646     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6647     Constant *C;
6648     if (match(Op1, m_Constant(C))) {
6649       Constant *NegC = ConstantExpr::getFNeg(C);
6650       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6651     }
6652   }
6653 
6654   if (match(Op0, m_FPExt(m_Value(X)))) {
6655     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6656     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6657       return new FCmpInst(Pred, X, Y, "", &I);
6658 
6659     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6660     const APFloat *C;
6661     if (match(Op1, m_APFloat(C))) {
6662       const fltSemantics &FPSem =
6663           X->getType()->getScalarType()->getFltSemantics();
6664       bool Lossy;
6665       APFloat TruncC = *C;
6666       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6667 
6668       // Avoid lossy conversions and denormals.
6669       // Zero is a special case that's OK to convert.
6670       APFloat Fabs = TruncC;
6671       Fabs.clearSign();
6672       if (!Lossy &&
6673           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6674         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6675         return new FCmpInst(Pred, X, NewC, "", &I);
6676       }
6677     }
6678   }
6679 
6680   // Convert a sign-bit test of an FP value into a cast and integer compare.
6681   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6682   // TODO: Handle non-zero compare constants.
6683   // TODO: Handle other predicates.
6684   const APFloat *C;
6685   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6686                                                            m_Value(X)))) &&
6687       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6688     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6689     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6690       IntType = VectorType::get(IntType, VecTy->getElementCount());
6691 
6692     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6693     if (Pred == FCmpInst::FCMP_OLT) {
6694       Value *IntX = Builder.CreateBitCast(X, IntType);
6695       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6696                           ConstantInt::getNullValue(IntType));
6697     }
6698   }
6699 
6700   if (I.getType()->isVectorTy())
6701     if (Instruction *Res = foldVectorCmp(I, Builder))
6702       return Res;
6703 
6704   return Changed ? &I : nullptr;
6705 }
6706