1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Given an exploded icmp instruction, return true if the comparison only 74 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 75 /// result of the comparison is true when the input value is signed. 76 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 77 bool &TrueIfSigned) { 78 switch (Pred) { 79 case ICmpInst::ICMP_SLT: // True if LHS s< 0 80 TrueIfSigned = true; 81 return RHS.isNullValue(); 82 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 83 TrueIfSigned = true; 84 return RHS.isAllOnesValue(); 85 case ICmpInst::ICMP_SGT: // True if LHS s> -1 86 TrueIfSigned = false; 87 return RHS.isAllOnesValue(); 88 case ICmpInst::ICMP_UGT: 89 // True if LHS u> RHS and RHS == high-bit-mask - 1 90 TrueIfSigned = true; 91 return RHS.isMaxSignedValue(); 92 case ICmpInst::ICMP_UGE: 93 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 94 TrueIfSigned = true; 95 return RHS.isSignMask(); 96 default: 97 return false; 98 } 99 } 100 101 /// Returns true if the exploded icmp can be expressed as a signed comparison 102 /// to zero and updates the predicate accordingly. 103 /// The signedness of the comparison is preserved. 104 /// TODO: Refactor with decomposeBitTestICmp()? 105 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 106 if (!ICmpInst::isSigned(Pred)) 107 return false; 108 109 if (C.isNullValue()) 110 return ICmpInst::isRelational(Pred); 111 112 if (C.isOneValue()) { 113 if (Pred == ICmpInst::ICMP_SLT) { 114 Pred = ICmpInst::ICMP_SLE; 115 return true; 116 } 117 } else if (C.isAllOnesValue()) { 118 if (Pred == ICmpInst::ICMP_SGT) { 119 Pred = ICmpInst::ICMP_SGE; 120 return true; 121 } 122 } 123 124 return false; 125 } 126 127 /// Given a signed integer type and a set of known zero and one bits, compute 128 /// the maximum and minimum values that could have the specified known zero and 129 /// known one bits, returning them in Min/Max. 130 /// TODO: Move to method on KnownBits struct? 131 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 132 APInt &Min, APInt &Max) { 133 assert(Known.getBitWidth() == Min.getBitWidth() && 134 Known.getBitWidth() == Max.getBitWidth() && 135 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 136 APInt UnknownBits = ~(Known.Zero|Known.One); 137 138 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 139 // bit if it is unknown. 140 Min = Known.One; 141 Max = Known.One|UnknownBits; 142 143 if (UnknownBits.isNegative()) { // Sign bit is unknown 144 Min.setSignBit(); 145 Max.clearSignBit(); 146 } 147 } 148 149 /// Given an unsigned integer type and a set of known zero and one bits, compute 150 /// the maximum and minimum values that could have the specified known zero and 151 /// known one bits, returning them in Min/Max. 152 /// TODO: Move to method on KnownBits struct? 153 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 154 APInt &Min, APInt &Max) { 155 assert(Known.getBitWidth() == Min.getBitWidth() && 156 Known.getBitWidth() == Max.getBitWidth() && 157 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 158 APInt UnknownBits = ~(Known.Zero|Known.One); 159 160 // The minimum value is when the unknown bits are all zeros. 161 Min = Known.One; 162 // The maximum value is when the unknown bits are all ones. 163 Max = Known.One|UnknownBits; 164 } 165 166 /// This is called when we see this pattern: 167 /// cmp pred (load (gep GV, ...)), cmpcst 168 /// where GV is a global variable with a constant initializer. Try to simplify 169 /// this into some simple computation that does not need the load. For example 170 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 171 /// 172 /// If AndCst is non-null, then the loaded value is masked with that constant 173 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 174 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 175 GlobalVariable *GV, 176 CmpInst &ICI, 177 ConstantInt *AndCst) { 178 Constant *Init = GV->getInitializer(); 179 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 180 return nullptr; 181 182 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 183 // Don't blow up on huge arrays. 184 if (ArrayElementCount > MaxArraySizeForCombine) 185 return nullptr; 186 187 // There are many forms of this optimization we can handle, for now, just do 188 // the simple index into a single-dimensional array. 189 // 190 // Require: GEP GV, 0, i {{, constant indices}} 191 if (GEP->getNumOperands() < 3 || 192 !isa<ConstantInt>(GEP->getOperand(1)) || 193 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 194 isa<Constant>(GEP->getOperand(2))) 195 return nullptr; 196 197 // Check that indices after the variable are constants and in-range for the 198 // type they index. Collect the indices. This is typically for arrays of 199 // structs. 200 SmallVector<unsigned, 4> LaterIndices; 201 202 Type *EltTy = Init->getType()->getArrayElementType(); 203 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 204 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 205 if (!Idx) return nullptr; // Variable index. 206 207 uint64_t IdxVal = Idx->getZExtValue(); 208 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 209 210 if (StructType *STy = dyn_cast<StructType>(EltTy)) 211 EltTy = STy->getElementType(IdxVal); 212 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 213 if (IdxVal >= ATy->getNumElements()) return nullptr; 214 EltTy = ATy->getElementType(); 215 } else { 216 return nullptr; // Unknown type. 217 } 218 219 LaterIndices.push_back(IdxVal); 220 } 221 222 enum { Overdefined = -3, Undefined = -2 }; 223 224 // Variables for our state machines. 225 226 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 227 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 228 // and 87 is the second (and last) index. FirstTrueElement is -2 when 229 // undefined, otherwise set to the first true element. SecondTrueElement is 230 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 231 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 232 233 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 234 // form "i != 47 & i != 87". Same state transitions as for true elements. 235 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 236 237 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 238 /// define a state machine that triggers for ranges of values that the index 239 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 240 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 241 /// index in the range (inclusive). We use -2 for undefined here because we 242 /// use relative comparisons and don't want 0-1 to match -1. 243 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 244 245 // MagicBitvector - This is a magic bitvector where we set a bit if the 246 // comparison is true for element 'i'. If there are 64 elements or less in 247 // the array, this will fully represent all the comparison results. 248 uint64_t MagicBitvector = 0; 249 250 // Scan the array and see if one of our patterns matches. 251 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 252 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 253 Constant *Elt = Init->getAggregateElement(i); 254 if (!Elt) return nullptr; 255 256 // If this is indexing an array of structures, get the structure element. 257 if (!LaterIndices.empty()) 258 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 259 260 // If the element is masked, handle it. 261 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 262 263 // Find out if the comparison would be true or false for the i'th element. 264 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 265 CompareRHS, DL, &TLI); 266 // If the result is undef for this element, ignore it. 267 if (isa<UndefValue>(C)) { 268 // Extend range state machines to cover this element in case there is an 269 // undef in the middle of the range. 270 if (TrueRangeEnd == (int)i-1) 271 TrueRangeEnd = i; 272 if (FalseRangeEnd == (int)i-1) 273 FalseRangeEnd = i; 274 continue; 275 } 276 277 // If we can't compute the result for any of the elements, we have to give 278 // up evaluating the entire conditional. 279 if (!isa<ConstantInt>(C)) return nullptr; 280 281 // Otherwise, we know if the comparison is true or false for this element, 282 // update our state machines. 283 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 284 285 // State machine for single/double/range index comparison. 286 if (IsTrueForElt) { 287 // Update the TrueElement state machine. 288 if (FirstTrueElement == Undefined) 289 FirstTrueElement = TrueRangeEnd = i; // First true element. 290 else { 291 // Update double-compare state machine. 292 if (SecondTrueElement == Undefined) 293 SecondTrueElement = i; 294 else 295 SecondTrueElement = Overdefined; 296 297 // Update range state machine. 298 if (TrueRangeEnd == (int)i-1) 299 TrueRangeEnd = i; 300 else 301 TrueRangeEnd = Overdefined; 302 } 303 } else { 304 // Update the FalseElement state machine. 305 if (FirstFalseElement == Undefined) 306 FirstFalseElement = FalseRangeEnd = i; // First false element. 307 else { 308 // Update double-compare state machine. 309 if (SecondFalseElement == Undefined) 310 SecondFalseElement = i; 311 else 312 SecondFalseElement = Overdefined; 313 314 // Update range state machine. 315 if (FalseRangeEnd == (int)i-1) 316 FalseRangeEnd = i; 317 else 318 FalseRangeEnd = Overdefined; 319 } 320 } 321 322 // If this element is in range, update our magic bitvector. 323 if (i < 64 && IsTrueForElt) 324 MagicBitvector |= 1ULL << i; 325 326 // If all of our states become overdefined, bail out early. Since the 327 // predicate is expensive, only check it every 8 elements. This is only 328 // really useful for really huge arrays. 329 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 330 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 331 FalseRangeEnd == Overdefined) 332 return nullptr; 333 } 334 335 // Now that we've scanned the entire array, emit our new comparison(s). We 336 // order the state machines in complexity of the generated code. 337 Value *Idx = GEP->getOperand(2); 338 339 // If the index is larger than the pointer size of the target, truncate the 340 // index down like the GEP would do implicitly. We don't have to do this for 341 // an inbounds GEP because the index can't be out of range. 342 if (!GEP->isInBounds()) { 343 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 344 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 345 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 346 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 347 } 348 349 // If the comparison is only true for one or two elements, emit direct 350 // comparisons. 351 if (SecondTrueElement != Overdefined) { 352 // None true -> false. 353 if (FirstTrueElement == Undefined) 354 return replaceInstUsesWith(ICI, Builder.getFalse()); 355 356 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 357 358 // True for one element -> 'i == 47'. 359 if (SecondTrueElement == Undefined) 360 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 361 362 // True for two elements -> 'i == 47 | i == 72'. 363 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 364 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 365 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 366 return BinaryOperator::CreateOr(C1, C2); 367 } 368 369 // If the comparison is only false for one or two elements, emit direct 370 // comparisons. 371 if (SecondFalseElement != Overdefined) { 372 // None false -> true. 373 if (FirstFalseElement == Undefined) 374 return replaceInstUsesWith(ICI, Builder.getTrue()); 375 376 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 377 378 // False for one element -> 'i != 47'. 379 if (SecondFalseElement == Undefined) 380 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 381 382 // False for two elements -> 'i != 47 & i != 72'. 383 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 384 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 385 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 386 return BinaryOperator::CreateAnd(C1, C2); 387 } 388 389 // If the comparison can be replaced with a range comparison for the elements 390 // where it is true, emit the range check. 391 if (TrueRangeEnd != Overdefined) { 392 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 393 394 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 395 if (FirstTrueElement) { 396 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 397 Idx = Builder.CreateAdd(Idx, Offs); 398 } 399 400 Value *End = ConstantInt::get(Idx->getType(), 401 TrueRangeEnd-FirstTrueElement+1); 402 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 403 } 404 405 // False range check. 406 if (FalseRangeEnd != Overdefined) { 407 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 408 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 409 if (FirstFalseElement) { 410 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 411 Idx = Builder.CreateAdd(Idx, Offs); 412 } 413 414 Value *End = ConstantInt::get(Idx->getType(), 415 FalseRangeEnd-FirstFalseElement); 416 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 417 } 418 419 // If a magic bitvector captures the entire comparison state 420 // of this load, replace it with computation that does: 421 // ((magic_cst >> i) & 1) != 0 422 { 423 Type *Ty = nullptr; 424 425 // Look for an appropriate type: 426 // - The type of Idx if the magic fits 427 // - The smallest fitting legal type 428 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 429 Ty = Idx->getType(); 430 else 431 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 432 433 if (Ty) { 434 Value *V = Builder.CreateIntCast(Idx, Ty, false); 435 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 436 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 437 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 438 } 439 } 440 441 return nullptr; 442 } 443 444 /// Return a value that can be used to compare the *offset* implied by a GEP to 445 /// zero. For example, if we have &A[i], we want to return 'i' for 446 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 447 /// are involved. The above expression would also be legal to codegen as 448 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 449 /// This latter form is less amenable to optimization though, and we are allowed 450 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 451 /// 452 /// If we can't emit an optimized form for this expression, this returns null. 453 /// 454 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 455 const DataLayout &DL) { 456 gep_type_iterator GTI = gep_type_begin(GEP); 457 458 // Check to see if this gep only has a single variable index. If so, and if 459 // any constant indices are a multiple of its scale, then we can compute this 460 // in terms of the scale of the variable index. For example, if the GEP 461 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 462 // because the expression will cross zero at the same point. 463 unsigned i, e = GEP->getNumOperands(); 464 int64_t Offset = 0; 465 for (i = 1; i != e; ++i, ++GTI) { 466 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 467 // Compute the aggregate offset of constant indices. 468 if (CI->isZero()) continue; 469 470 // Handle a struct index, which adds its field offset to the pointer. 471 if (StructType *STy = GTI.getStructTypeOrNull()) { 472 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 473 } else { 474 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 475 Offset += Size*CI->getSExtValue(); 476 } 477 } else { 478 // Found our variable index. 479 break; 480 } 481 } 482 483 // If there are no variable indices, we must have a constant offset, just 484 // evaluate it the general way. 485 if (i == e) return nullptr; 486 487 Value *VariableIdx = GEP->getOperand(i); 488 // Determine the scale factor of the variable element. For example, this is 489 // 4 if the variable index is into an array of i32. 490 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 491 492 // Verify that there are no other variable indices. If so, emit the hard way. 493 for (++i, ++GTI; i != e; ++i, ++GTI) { 494 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 495 if (!CI) return nullptr; 496 497 // Compute the aggregate offset of constant indices. 498 if (CI->isZero()) continue; 499 500 // Handle a struct index, which adds its field offset to the pointer. 501 if (StructType *STy = GTI.getStructTypeOrNull()) { 502 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 503 } else { 504 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 505 Offset += Size*CI->getSExtValue(); 506 } 507 } 508 509 // Okay, we know we have a single variable index, which must be a 510 // pointer/array/vector index. If there is no offset, life is simple, return 511 // the index. 512 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 513 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 514 if (Offset == 0) { 515 // Cast to intptrty in case a truncation occurs. If an extension is needed, 516 // we don't need to bother extending: the extension won't affect where the 517 // computation crosses zero. 518 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 519 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 520 } 521 return VariableIdx; 522 } 523 524 // Otherwise, there is an index. The computation we will do will be modulo 525 // the pointer size, so get it. 526 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 527 528 Offset &= PtrSizeMask; 529 VariableScale &= PtrSizeMask; 530 531 // To do this transformation, any constant index must be a multiple of the 532 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 533 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 534 // multiple of the variable scale. 535 int64_t NewOffs = Offset / (int64_t)VariableScale; 536 if (Offset != NewOffs*(int64_t)VariableScale) 537 return nullptr; 538 539 // Okay, we can do this evaluation. Start by converting the index to intptr. 540 if (VariableIdx->getType() != IntPtrTy) 541 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 542 true /*Signed*/); 543 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 544 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 545 } 546 547 /// Returns true if we can rewrite Start as a GEP with pointer Base 548 /// and some integer offset. The nodes that need to be re-written 549 /// for this transformation will be added to Explored. 550 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 551 const DataLayout &DL, 552 SetVector<Value *> &Explored) { 553 SmallVector<Value *, 16> WorkList(1, Start); 554 Explored.insert(Base); 555 556 // The following traversal gives us an order which can be used 557 // when doing the final transformation. Since in the final 558 // transformation we create the PHI replacement instructions first, 559 // we don't have to get them in any particular order. 560 // 561 // However, for other instructions we will have to traverse the 562 // operands of an instruction first, which means that we have to 563 // do a post-order traversal. 564 while (!WorkList.empty()) { 565 SetVector<PHINode *> PHIs; 566 567 while (!WorkList.empty()) { 568 if (Explored.size() >= 100) 569 return false; 570 571 Value *V = WorkList.back(); 572 573 if (Explored.count(V) != 0) { 574 WorkList.pop_back(); 575 continue; 576 } 577 578 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 579 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 580 // We've found some value that we can't explore which is different from 581 // the base. Therefore we can't do this transformation. 582 return false; 583 584 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 585 auto *CI = dyn_cast<CastInst>(V); 586 if (!CI->isNoopCast(DL)) 587 return false; 588 589 if (Explored.count(CI->getOperand(0)) == 0) 590 WorkList.push_back(CI->getOperand(0)); 591 } 592 593 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 594 // We're limiting the GEP to having one index. This will preserve 595 // the original pointer type. We could handle more cases in the 596 // future. 597 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 598 GEP->getType() != Start->getType()) 599 return false; 600 601 if (Explored.count(GEP->getOperand(0)) == 0) 602 WorkList.push_back(GEP->getOperand(0)); 603 } 604 605 if (WorkList.back() == V) { 606 WorkList.pop_back(); 607 // We've finished visiting this node, mark it as such. 608 Explored.insert(V); 609 } 610 611 if (auto *PN = dyn_cast<PHINode>(V)) { 612 // We cannot transform PHIs on unsplittable basic blocks. 613 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 614 return false; 615 Explored.insert(PN); 616 PHIs.insert(PN); 617 } 618 } 619 620 // Explore the PHI nodes further. 621 for (auto *PN : PHIs) 622 for (Value *Op : PN->incoming_values()) 623 if (Explored.count(Op) == 0) 624 WorkList.push_back(Op); 625 } 626 627 // Make sure that we can do this. Since we can't insert GEPs in a basic 628 // block before a PHI node, we can't easily do this transformation if 629 // we have PHI node users of transformed instructions. 630 for (Value *Val : Explored) { 631 for (Value *Use : Val->uses()) { 632 633 auto *PHI = dyn_cast<PHINode>(Use); 634 auto *Inst = dyn_cast<Instruction>(Val); 635 636 if (Inst == Base || Inst == PHI || !Inst || !PHI || 637 Explored.count(PHI) == 0) 638 continue; 639 640 if (PHI->getParent() == Inst->getParent()) 641 return false; 642 } 643 } 644 return true; 645 } 646 647 // Sets the appropriate insert point on Builder where we can add 648 // a replacement Instruction for V (if that is possible). 649 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 650 bool Before = true) { 651 if (auto *PHI = dyn_cast<PHINode>(V)) { 652 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 653 return; 654 } 655 if (auto *I = dyn_cast<Instruction>(V)) { 656 if (!Before) 657 I = &*std::next(I->getIterator()); 658 Builder.SetInsertPoint(I); 659 return; 660 } 661 if (auto *A = dyn_cast<Argument>(V)) { 662 // Set the insertion point in the entry block. 663 BasicBlock &Entry = A->getParent()->getEntryBlock(); 664 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 665 return; 666 } 667 // Otherwise, this is a constant and we don't need to set a new 668 // insertion point. 669 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 670 } 671 672 /// Returns a re-written value of Start as an indexed GEP using Base as a 673 /// pointer. 674 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 675 const DataLayout &DL, 676 SetVector<Value *> &Explored) { 677 // Perform all the substitutions. This is a bit tricky because we can 678 // have cycles in our use-def chains. 679 // 1. Create the PHI nodes without any incoming values. 680 // 2. Create all the other values. 681 // 3. Add the edges for the PHI nodes. 682 // 4. Emit GEPs to get the original pointers. 683 // 5. Remove the original instructions. 684 Type *IndexType = IntegerType::get( 685 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 686 687 DenseMap<Value *, Value *> NewInsts; 688 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 689 690 // Create the new PHI nodes, without adding any incoming values. 691 for (Value *Val : Explored) { 692 if (Val == Base) 693 continue; 694 // Create empty phi nodes. This avoids cyclic dependencies when creating 695 // the remaining instructions. 696 if (auto *PHI = dyn_cast<PHINode>(Val)) 697 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 698 PHI->getName() + ".idx", PHI); 699 } 700 IRBuilder<> Builder(Base->getContext()); 701 702 // Create all the other instructions. 703 for (Value *Val : Explored) { 704 705 if (NewInsts.find(Val) != NewInsts.end()) 706 continue; 707 708 if (auto *CI = dyn_cast<CastInst>(Val)) { 709 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getPointerTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 if (!GEPLHS->hasAllConstantIndices()) 836 return nullptr; 837 838 // Make sure the pointers have the same type. 839 if (GEPLHS->getType() != RHS->getType()) 840 return nullptr; 841 842 Value *PtrBase, *Index; 843 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 844 845 // The set of nodes that will take part in this transformation. 846 SetVector<Value *> Nodes; 847 848 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 849 return nullptr; 850 851 // We know we can re-write this as 852 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 853 // Since we've only looked through inbouds GEPs we know that we 854 // can't have overflow on either side. We can therefore re-write 855 // this as: 856 // OFFSET1 cmp OFFSET2 857 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 858 859 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 860 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 861 // offset. Since Index is the offset of LHS to the base pointer, we will now 862 // compare the offsets instead of comparing the pointers. 863 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 864 } 865 866 /// Fold comparisons between a GEP instruction and something else. At this point 867 /// we know that the GEP is on the LHS of the comparison. 868 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 869 ICmpInst::Predicate Cond, 870 Instruction &I) { 871 // Don't transform signed compares of GEPs into index compares. Even if the 872 // GEP is inbounds, the final add of the base pointer can have signed overflow 873 // and would change the result of the icmp. 874 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 875 // the maximum signed value for the pointer type. 876 if (ICmpInst::isSigned(Cond)) 877 return nullptr; 878 879 // Look through bitcasts and addrspacecasts. We do not however want to remove 880 // 0 GEPs. 881 if (!isa<GetElementPtrInst>(RHS)) 882 RHS = RHS->stripPointerCasts(); 883 884 Value *PtrBase = GEPLHS->getOperand(0); 885 if (PtrBase == RHS && GEPLHS->isInBounds()) { 886 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 887 // This transformation (ignoring the base and scales) is valid because we 888 // know pointers can't overflow since the gep is inbounds. See if we can 889 // output an optimized form. 890 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 891 892 // If not, synthesize the offset the hard way. 893 if (!Offset) 894 Offset = EmitGEPOffset(GEPLHS); 895 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 896 Constant::getNullValue(Offset->getType())); 897 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 898 // If the base pointers are different, but the indices are the same, just 899 // compare the base pointer. 900 if (PtrBase != GEPRHS->getOperand(0)) { 901 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 902 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 903 GEPRHS->getOperand(0)->getType(); 904 if (IndicesTheSame) 905 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 906 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 907 IndicesTheSame = false; 908 break; 909 } 910 911 // If all indices are the same, just compare the base pointers. 912 if (IndicesTheSame) 913 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 914 915 // If we're comparing GEPs with two base pointers that only differ in type 916 // and both GEPs have only constant indices or just one use, then fold 917 // the compare with the adjusted indices. 918 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 919 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 920 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 921 PtrBase->stripPointerCasts() == 922 GEPRHS->getOperand(0)->stripPointerCasts()) { 923 Value *LOffset = EmitGEPOffset(GEPLHS); 924 Value *ROffset = EmitGEPOffset(GEPRHS); 925 926 // If we looked through an addrspacecast between different sized address 927 // spaces, the LHS and RHS pointers are different sized 928 // integers. Truncate to the smaller one. 929 Type *LHSIndexTy = LOffset->getType(); 930 Type *RHSIndexTy = ROffset->getType(); 931 if (LHSIndexTy != RHSIndexTy) { 932 if (LHSIndexTy->getPrimitiveSizeInBits() < 933 RHSIndexTy->getPrimitiveSizeInBits()) { 934 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 935 } else 936 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 937 } 938 939 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 940 LOffset, ROffset); 941 return replaceInstUsesWith(I, Cmp); 942 } 943 944 // Otherwise, the base pointers are different and the indices are 945 // different. Try convert this to an indexed compare by looking through 946 // PHIs/casts. 947 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 948 } 949 950 // If one of the GEPs has all zero indices, recurse. 951 if (GEPLHS->hasAllZeroIndices()) 952 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 953 ICmpInst::getSwappedPredicate(Cond), I); 954 955 // If the other GEP has all zero indices, recurse. 956 if (GEPRHS->hasAllZeroIndices()) 957 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 958 959 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 960 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 967 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 968 // Irreconcilable differences. 969 NumDifferences = 2; 970 break; 971 } else { 972 if (NumDifferences++) break; 973 DiffOperand = i; 974 } 975 } 976 977 if (NumDifferences == 0) // SAME GEP? 978 return replaceInstUsesWith(I, // No comparison is needed here. 979 Builder.getInt1(ICmpInst::isTrueWhenEqual(Cond))); 980 981 else if (NumDifferences == 1 && GEPsInBounds) { 982 Value *LHSV = GEPLHS->getOperand(DiffOperand); 983 Value *RHSV = GEPRHS->getOperand(DiffOperand); 984 // Make sure we do a signed comparison here. 985 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 986 } 987 } 988 989 // Only lower this if the icmp is the only user of the GEP or if we expect 990 // the result to fold to a constant! 991 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 992 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 993 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 994 Value *L = EmitGEPOffset(GEPLHS); 995 Value *R = EmitGEPOffset(GEPRHS); 996 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 997 } 998 } 999 1000 // Try convert this to an indexed compare by looking through PHIs/casts as a 1001 // last resort. 1002 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1003 } 1004 1005 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1006 const AllocaInst *Alloca, 1007 const Value *Other) { 1008 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1009 1010 // It would be tempting to fold away comparisons between allocas and any 1011 // pointer not based on that alloca (e.g. an argument). However, even 1012 // though such pointers cannot alias, they can still compare equal. 1013 // 1014 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1015 // doesn't escape we can argue that it's impossible to guess its value, and we 1016 // can therefore act as if any such guesses are wrong. 1017 // 1018 // The code below checks that the alloca doesn't escape, and that it's only 1019 // used in a comparison once (the current instruction). The 1020 // single-comparison-use condition ensures that we're trivially folding all 1021 // comparisons against the alloca consistently, and avoids the risk of 1022 // erroneously folding a comparison of the pointer with itself. 1023 1024 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1025 1026 SmallVector<const Use *, 32> Worklist; 1027 for (const Use &U : Alloca->uses()) { 1028 if (Worklist.size() >= MaxIter) 1029 return nullptr; 1030 Worklist.push_back(&U); 1031 } 1032 1033 unsigned NumCmps = 0; 1034 while (!Worklist.empty()) { 1035 assert(Worklist.size() <= MaxIter); 1036 const Use *U = Worklist.pop_back_val(); 1037 const Value *V = U->getUser(); 1038 --MaxIter; 1039 1040 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1041 isa<SelectInst>(V)) { 1042 // Track the uses. 1043 } else if (isa<LoadInst>(V)) { 1044 // Loading from the pointer doesn't escape it. 1045 continue; 1046 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1047 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1048 if (SI->getValueOperand() == U->get()) 1049 return nullptr; 1050 continue; 1051 } else if (isa<ICmpInst>(V)) { 1052 if (NumCmps++) 1053 return nullptr; // Found more than one cmp. 1054 continue; 1055 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1056 switch (Intrin->getIntrinsicID()) { 1057 // These intrinsics don't escape or compare the pointer. Memset is safe 1058 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1059 // we don't allow stores, so src cannot point to V. 1060 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1061 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1062 continue; 1063 default: 1064 return nullptr; 1065 } 1066 } else { 1067 return nullptr; 1068 } 1069 for (const Use &U : V->uses()) { 1070 if (Worklist.size() >= MaxIter) 1071 return nullptr; 1072 Worklist.push_back(&U); 1073 } 1074 } 1075 1076 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1077 return replaceInstUsesWith( 1078 ICI, 1079 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1080 } 1081 1082 /// Fold "icmp pred (X+CI), X". 1083 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, ConstantInt *CI, 1084 ICmpInst::Predicate Pred) { 1085 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1086 // so the values can never be equal. Similarly for all other "or equals" 1087 // operators. 1088 1089 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1090 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1091 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1092 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1093 Value *R = 1094 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1095 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1096 } 1097 1098 // (X+1) >u X --> X <u (0-1) --> X != 255 1099 // (X+2) >u X --> X <u (0-2) --> X <u 254 1100 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1101 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1102 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1103 1104 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1105 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1106 APInt::getSignedMaxValue(BitWidth)); 1107 1108 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1109 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1110 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1111 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1112 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1113 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1114 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1115 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1116 1117 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1118 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1119 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1120 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1121 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1122 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1123 1124 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1125 Constant *C = Builder.getInt(CI->getValue() - 1); 1126 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1127 } 1128 1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1130 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1132 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1133 const APInt &AP1, 1134 const APInt &AP2) { 1135 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1136 1137 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1138 if (I.getPredicate() == I.ICMP_NE) 1139 Pred = CmpInst::getInversePredicate(Pred); 1140 return new ICmpInst(Pred, LHS, RHS); 1141 }; 1142 1143 // Don't bother doing any work for cases which InstSimplify handles. 1144 if (AP2.isNullValue()) 1145 return nullptr; 1146 1147 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1148 if (IsAShr) { 1149 if (AP2.isAllOnesValue()) 1150 return nullptr; 1151 if (AP2.isNegative() != AP1.isNegative()) 1152 return nullptr; 1153 if (AP2.sgt(AP1)) 1154 return nullptr; 1155 } 1156 1157 if (!AP1) 1158 // 'A' must be large enough to shift out the highest set bit. 1159 return getICmp(I.ICMP_UGT, A, 1160 ConstantInt::get(A->getType(), AP2.logBase2())); 1161 1162 if (AP1 == AP2) 1163 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1164 1165 int Shift; 1166 if (IsAShr && AP1.isNegative()) 1167 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1168 else 1169 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1170 1171 if (Shift > 0) { 1172 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1173 // There are multiple solutions if we are comparing against -1 and the LHS 1174 // of the ashr is not a power of two. 1175 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1176 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1177 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1178 } else if (AP1 == AP2.lshr(Shift)) { 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } 1181 } 1182 1183 // Shifting const2 will never be equal to const1. 1184 // FIXME: This should always be handled by InstSimplify? 1185 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1186 return replaceInstUsesWith(I, TorF); 1187 } 1188 1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1191 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1192 const APInt &AP1, 1193 const APInt &AP2) { 1194 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1195 1196 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1197 if (I.getPredicate() == I.ICMP_NE) 1198 Pred = CmpInst::getInversePredicate(Pred); 1199 return new ICmpInst(Pred, LHS, RHS); 1200 }; 1201 1202 // Don't bother doing any work for cases which InstSimplify handles. 1203 if (AP2.isNullValue()) 1204 return nullptr; 1205 1206 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1207 1208 if (!AP1 && AP2TrailingZeros != 0) 1209 return getICmp( 1210 I.ICMP_UGE, A, 1211 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1212 1213 if (AP1 == AP2) 1214 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1215 1216 // Get the distance between the lowest bits that are set. 1217 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1218 1219 if (Shift > 0 && AP2.shl(Shift) == AP1) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1221 1222 // Shifting const2 will never be equal to const1. 1223 // FIXME: This should always be handled by InstSimplify? 1224 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1225 return replaceInstUsesWith(I, TorF); 1226 } 1227 1228 /// The caller has matched a pattern of the form: 1229 /// I = icmp ugt (add (add A, B), CI2), CI1 1230 /// If this is of the form: 1231 /// sum = a + b 1232 /// if (sum+128 >u 255) 1233 /// Then replace it with llvm.sadd.with.overflow.i8. 1234 /// 1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1236 ConstantInt *CI2, ConstantInt *CI1, 1237 InstCombiner &IC) { 1238 // The transformation we're trying to do here is to transform this into an 1239 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1240 // with a narrower add, and discard the add-with-constant that is part of the 1241 // range check (if we can't eliminate it, this isn't profitable). 1242 1243 // In order to eliminate the add-with-constant, the compare can be its only 1244 // use. 1245 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1246 if (!AddWithCst->hasOneUse()) 1247 return nullptr; 1248 1249 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1250 if (!CI2->getValue().isPowerOf2()) 1251 return nullptr; 1252 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1253 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1254 return nullptr; 1255 1256 // The width of the new add formed is 1 more than the bias. 1257 ++NewWidth; 1258 1259 // Check to see that CI1 is an all-ones value with NewWidth bits. 1260 if (CI1->getBitWidth() == NewWidth || 1261 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1262 return nullptr; 1263 1264 // This is only really a signed overflow check if the inputs have been 1265 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1266 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1267 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1268 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1269 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1270 return nullptr; 1271 1272 // In order to replace the original add with a narrower 1273 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1274 // and truncates that discard the high bits of the add. Verify that this is 1275 // the case. 1276 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1277 for (User *U : OrigAdd->users()) { 1278 if (U == AddWithCst) 1279 continue; 1280 1281 // Only accept truncates for now. We would really like a nice recursive 1282 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1283 // chain to see which bits of a value are actually demanded. If the 1284 // original add had another add which was then immediately truncated, we 1285 // could still do the transformation. 1286 TruncInst *TI = dyn_cast<TruncInst>(U); 1287 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1288 return nullptr; 1289 } 1290 1291 // If the pattern matches, truncate the inputs to the narrower type and 1292 // use the sadd_with_overflow intrinsic to efficiently compute both the 1293 // result and the overflow bit. 1294 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1295 Value *F = Intrinsic::getDeclaration(I.getModule(), 1296 Intrinsic::sadd_with_overflow, NewType); 1297 1298 InstCombiner::BuilderTy &Builder = IC.Builder; 1299 1300 // Put the new code above the original add, in case there are any uses of the 1301 // add between the add and the compare. 1302 Builder.SetInsertPoint(OrigAdd); 1303 1304 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1305 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1306 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1307 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1308 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1309 1310 // The inner add was the result of the narrow add, zero extended to the 1311 // wider type. Replace it with the result computed by the intrinsic. 1312 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1313 1314 // The original icmp gets replaced with the overflow value. 1315 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1316 } 1317 1318 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1319 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1320 CmpInst::Predicate Pred = Cmp.getPredicate(); 1321 Value *X = Cmp.getOperand(0); 1322 1323 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1324 Value *A, *B; 1325 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1326 if (SPR.Flavor == SPF_SMIN) { 1327 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1328 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1329 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1330 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1331 } 1332 } 1333 return nullptr; 1334 } 1335 1336 // Fold icmp Pred X, C. 1337 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1338 CmpInst::Predicate Pred = Cmp.getPredicate(); 1339 Value *X = Cmp.getOperand(0); 1340 1341 const APInt *C; 1342 if (!match(Cmp.getOperand(1), m_APInt(C))) 1343 return nullptr; 1344 1345 Value *A = nullptr, *B = nullptr; 1346 1347 // Match the following pattern, which is a common idiom when writing 1348 // overflow-safe integer arithmetic functions. The source performs an addition 1349 // in wider type and explicitly checks for overflow using comparisons against 1350 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1351 // 1352 // TODO: This could probably be generalized to handle other overflow-safe 1353 // operations if we worked out the formulas to compute the appropriate magic 1354 // constants. 1355 // 1356 // sum = a + b 1357 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1358 { 1359 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1360 if (Pred == ICmpInst::ICMP_UGT && 1361 match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1362 if (Instruction *Res = processUGT_ADDCST_ADD( 1363 Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this)) 1364 return Res; 1365 } 1366 1367 // FIXME: Use m_APInt to allow folds for splat constants. 1368 ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1)); 1369 if (!CI) 1370 return nullptr; 1371 1372 // Canonicalize icmp instructions based on dominating conditions. 1373 BasicBlock *Parent = Cmp.getParent(); 1374 BasicBlock *Dom = Parent->getSinglePredecessor(); 1375 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr; 1376 ICmpInst::Predicate Pred2; 1377 BasicBlock *TrueBB, *FalseBB; 1378 ConstantInt *CI2; 1379 if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)), 1380 TrueBB, FalseBB)) && 1381 TrueBB != FalseBB) { 1382 ConstantRange CR = 1383 ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue()); 1384 ConstantRange DominatingCR = 1385 (Parent == TrueBB) 1386 ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue()) 1387 : ConstantRange::makeExactICmpRegion( 1388 CmpInst::getInversePredicate(Pred2), CI2->getValue()); 1389 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1390 ConstantRange Difference = DominatingCR.difference(CR); 1391 if (Intersection.isEmptySet()) 1392 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1393 if (Difference.isEmptySet()) 1394 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1395 1396 // If this is a normal comparison, it demands all bits. If it is a sign 1397 // bit comparison, it only demands the sign bit. 1398 bool UnusedBit; 1399 bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit); 1400 1401 // Canonicalizing a sign bit comparison that gets used in a branch, 1402 // pessimizes codegen by generating branch on zero instruction instead 1403 // of a test and branch. So we avoid canonicalizing in such situations 1404 // because test and branch instruction has better branch displacement 1405 // than compare and branch instruction. 1406 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1407 return nullptr; 1408 1409 if (auto *AI = Intersection.getSingleElement()) 1410 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*AI)); 1411 if (auto *AD = Difference.getSingleElement()) 1412 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*AD)); 1413 } 1414 1415 return nullptr; 1416 } 1417 1418 /// Fold icmp (trunc X, Y), C. 1419 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1420 TruncInst *Trunc, 1421 const APInt &C) { 1422 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1423 Value *X = Trunc->getOperand(0); 1424 if (C.isOneValue() && C.getBitWidth() > 1) { 1425 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1426 Value *V = nullptr; 1427 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1428 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1429 ConstantInt::get(V->getType(), 1)); 1430 } 1431 1432 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1433 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1434 // of the high bits truncated out of x are known. 1435 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1436 SrcBits = X->getType()->getScalarSizeInBits(); 1437 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1438 1439 // If all the high bits are known, we can do this xform. 1440 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1441 // Pull in the high bits from known-ones set. 1442 APInt NewRHS = C.zext(SrcBits); 1443 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1444 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1445 } 1446 } 1447 1448 return nullptr; 1449 } 1450 1451 /// Fold icmp (xor X, Y), C. 1452 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1453 BinaryOperator *Xor, 1454 const APInt &C) { 1455 Value *X = Xor->getOperand(0); 1456 Value *Y = Xor->getOperand(1); 1457 const APInt *XorC; 1458 if (!match(Y, m_APInt(XorC))) 1459 return nullptr; 1460 1461 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1462 // fold the xor. 1463 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1464 bool TrueIfSigned = false; 1465 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1466 1467 // If the sign bit of the XorCst is not set, there is no change to 1468 // the operation, just stop using the Xor. 1469 if (!XorC->isNegative()) { 1470 Cmp.setOperand(0, X); 1471 Worklist.Add(Xor); 1472 return &Cmp; 1473 } 1474 1475 // Emit the opposite comparison. 1476 if (TrueIfSigned) 1477 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1478 ConstantInt::getAllOnesValue(X->getType())); 1479 else 1480 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1481 ConstantInt::getNullValue(X->getType())); 1482 } 1483 1484 if (Xor->hasOneUse()) { 1485 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1486 if (!Cmp.isEquality() && XorC->isSignMask()) { 1487 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1488 : Cmp.getSignedPredicate(); 1489 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1490 } 1491 1492 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1493 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1494 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1495 : Cmp.getSignedPredicate(); 1496 Pred = Cmp.getSwappedPredicate(Pred); 1497 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1498 } 1499 } 1500 1501 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1502 // iff -C is a power of 2 1503 if (Pred == ICmpInst::ICMP_UGT && *XorC == ~C && (C + 1).isPowerOf2()) 1504 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1505 1506 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1507 // iff -C is a power of 2 1508 if (Pred == ICmpInst::ICMP_ULT && *XorC == -C && C.isPowerOf2()) 1509 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 1510 1511 return nullptr; 1512 } 1513 1514 /// Fold icmp (and (sh X, Y), C2), C1. 1515 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1516 const APInt &C1, const APInt &C2) { 1517 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1518 if (!Shift || !Shift->isShift()) 1519 return nullptr; 1520 1521 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1522 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1523 // code produced by the clang front-end, for bitfield access. 1524 // This seemingly simple opportunity to fold away a shift turns out to be 1525 // rather complicated. See PR17827 for details. 1526 unsigned ShiftOpcode = Shift->getOpcode(); 1527 bool IsShl = ShiftOpcode == Instruction::Shl; 1528 const APInt *C3; 1529 if (match(Shift->getOperand(1), m_APInt(C3))) { 1530 bool CanFold = false; 1531 if (ShiftOpcode == Instruction::Shl) { 1532 // For a left shift, we can fold if the comparison is not signed. We can 1533 // also fold a signed comparison if the mask value and comparison value 1534 // are not negative. These constraints may not be obvious, but we can 1535 // prove that they are correct using an SMT solver. 1536 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1537 CanFold = true; 1538 } else { 1539 bool IsAshr = ShiftOpcode == Instruction::AShr; 1540 // For a logical right shift, we can fold if the comparison is not signed. 1541 // We can also fold a signed comparison if the shifted mask value and the 1542 // shifted comparison value are not negative. These constraints may not be 1543 // obvious, but we can prove that they are correct using an SMT solver. 1544 // For an arithmetic shift right we can do the same, if we ensure 1545 // the And doesn't use any bits being shifted in. Normally these would 1546 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1547 // additional user. 1548 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1549 if (!Cmp.isSigned() || 1550 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1551 CanFold = true; 1552 } 1553 } 1554 1555 if (CanFold) { 1556 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1557 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1558 // Check to see if we are shifting out any of the bits being compared. 1559 if (SameAsC1 != C1) { 1560 // If we shifted bits out, the fold is not going to work out. As a 1561 // special case, check to see if this means that the result is always 1562 // true or false now. 1563 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1564 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1565 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1566 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1567 } else { 1568 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1569 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1570 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1571 And->setOperand(0, Shift->getOperand(0)); 1572 Worklist.Add(Shift); // Shift is dead. 1573 return &Cmp; 1574 } 1575 } 1576 } 1577 1578 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1579 // preferable because it allows the C2 << Y expression to be hoisted out of a 1580 // loop if Y is invariant and X is not. 1581 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1582 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1583 // Compute C2 << Y. 1584 Value *NewShift = 1585 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1586 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1587 1588 // Compute X & (C2 << Y). 1589 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1590 Cmp.setOperand(0, NewAnd); 1591 return &Cmp; 1592 } 1593 1594 return nullptr; 1595 } 1596 1597 /// Fold icmp (and X, C2), C1. 1598 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1599 BinaryOperator *And, 1600 const APInt &C1) { 1601 const APInt *C2; 1602 if (!match(And->getOperand(1), m_APInt(C2))) 1603 return nullptr; 1604 1605 if (!And->hasOneUse()) 1606 return nullptr; 1607 1608 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1609 // the input width without changing the value produced, eliminate the cast: 1610 // 1611 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1612 // 1613 // We can do this transformation if the constants do not have their sign bits 1614 // set or if it is an equality comparison. Extending a relational comparison 1615 // when we're checking the sign bit would not work. 1616 Value *W; 1617 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1618 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1619 // TODO: Is this a good transform for vectors? Wider types may reduce 1620 // throughput. Should this transform be limited (even for scalars) by using 1621 // shouldChangeType()? 1622 if (!Cmp.getType()->isVectorTy()) { 1623 Type *WideType = W->getType(); 1624 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1625 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1626 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1627 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1628 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1629 } 1630 } 1631 1632 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1633 return I; 1634 1635 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1636 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1637 // 1638 // iff pred isn't signed 1639 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1640 match(And->getOperand(1), m_One())) { 1641 Constant *One = cast<Constant>(And->getOperand(1)); 1642 Value *Or = And->getOperand(0); 1643 Value *A, *B, *LShr; 1644 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1645 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1646 unsigned UsesRemoved = 0; 1647 if (And->hasOneUse()) 1648 ++UsesRemoved; 1649 if (Or->hasOneUse()) 1650 ++UsesRemoved; 1651 if (LShr->hasOneUse()) 1652 ++UsesRemoved; 1653 1654 // Compute A & ((1 << B) | 1) 1655 Value *NewOr = nullptr; 1656 if (auto *C = dyn_cast<Constant>(B)) { 1657 if (UsesRemoved >= 1) 1658 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1659 } else { 1660 if (UsesRemoved >= 3) 1661 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1662 /*HasNUW=*/true), 1663 One, Or->getName()); 1664 } 1665 if (NewOr) { 1666 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1667 Cmp.setOperand(0, NewAnd); 1668 return &Cmp; 1669 } 1670 } 1671 } 1672 1673 return nullptr; 1674 } 1675 1676 /// Fold icmp (and X, Y), C. 1677 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1678 BinaryOperator *And, 1679 const APInt &C) { 1680 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1681 return I; 1682 1683 // TODO: These all require that Y is constant too, so refactor with the above. 1684 1685 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1686 Value *X = And->getOperand(0); 1687 Value *Y = And->getOperand(1); 1688 if (auto *LI = dyn_cast<LoadInst>(X)) 1689 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1690 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1691 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1692 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1693 ConstantInt *C2 = cast<ConstantInt>(Y); 1694 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1695 return Res; 1696 } 1697 1698 if (!Cmp.isEquality()) 1699 return nullptr; 1700 1701 // X & -C == -C -> X > u ~C 1702 // X & -C != -C -> X <= u ~C 1703 // iff C is a power of 2 1704 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1705 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1706 : CmpInst::ICMP_ULE; 1707 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1708 } 1709 1710 // (X & C2) == 0 -> (trunc X) >= 0 1711 // (X & C2) != 0 -> (trunc X) < 0 1712 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1713 const APInt *C2; 1714 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1715 int32_t ExactLogBase2 = C2->exactLogBase2(); 1716 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1717 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1718 if (And->getType()->isVectorTy()) 1719 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1720 Value *Trunc = Builder.CreateTrunc(X, NTy); 1721 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1722 : CmpInst::ICMP_SLT; 1723 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1724 } 1725 } 1726 1727 return nullptr; 1728 } 1729 1730 /// Fold icmp (or X, Y), C. 1731 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1732 const APInt &C) { 1733 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1734 if (C.isOneValue()) { 1735 // icmp slt signum(V) 1 --> icmp slt V, 1 1736 Value *V = nullptr; 1737 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1738 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1739 ConstantInt::get(V->getType(), 1)); 1740 } 1741 1742 // X | C == C --> X <=u C 1743 // X | C != C --> X >u C 1744 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1745 if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) && 1746 (C + 1).isPowerOf2()) { 1747 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1748 return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1)); 1749 } 1750 1751 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1752 return nullptr; 1753 1754 Value *P, *Q; 1755 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1756 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1757 // -> and (icmp eq P, null), (icmp eq Q, null). 1758 Value *CmpP = 1759 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1760 Value *CmpQ = 1761 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1762 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1763 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1764 } 1765 1766 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1767 // a shorter form that has more potential to be folded even further. 1768 Value *X1, *X2, *X3, *X4; 1769 if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1770 match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1771 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1772 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1773 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1774 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1775 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1776 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1777 } 1778 1779 return nullptr; 1780 } 1781 1782 /// Fold icmp (mul X, Y), C. 1783 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1784 BinaryOperator *Mul, 1785 const APInt &C) { 1786 const APInt *MulC; 1787 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1788 return nullptr; 1789 1790 // If this is a test of the sign bit and the multiply is sign-preserving with 1791 // a constant operand, use the multiply LHS operand instead. 1792 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1793 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1794 if (MulC->isNegative()) 1795 Pred = ICmpInst::getSwappedPredicate(Pred); 1796 return new ICmpInst(Pred, Mul->getOperand(0), 1797 Constant::getNullValue(Mul->getType())); 1798 } 1799 1800 return nullptr; 1801 } 1802 1803 /// Fold icmp (shl 1, Y), C. 1804 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1805 const APInt &C) { 1806 Value *Y; 1807 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1808 return nullptr; 1809 1810 Type *ShiftType = Shl->getType(); 1811 unsigned TypeBits = C.getBitWidth(); 1812 bool CIsPowerOf2 = C.isPowerOf2(); 1813 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1814 if (Cmp.isUnsigned()) { 1815 // (1 << Y) pred C -> Y pred Log2(C) 1816 if (!CIsPowerOf2) { 1817 // (1 << Y) < 30 -> Y <= 4 1818 // (1 << Y) <= 30 -> Y <= 4 1819 // (1 << Y) >= 30 -> Y > 4 1820 // (1 << Y) > 30 -> Y > 4 1821 if (Pred == ICmpInst::ICMP_ULT) 1822 Pred = ICmpInst::ICMP_ULE; 1823 else if (Pred == ICmpInst::ICMP_UGE) 1824 Pred = ICmpInst::ICMP_UGT; 1825 } 1826 1827 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1828 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1829 unsigned CLog2 = C.logBase2(); 1830 if (CLog2 == TypeBits - 1) { 1831 if (Pred == ICmpInst::ICMP_UGE) 1832 Pred = ICmpInst::ICMP_EQ; 1833 else if (Pred == ICmpInst::ICMP_ULT) 1834 Pred = ICmpInst::ICMP_NE; 1835 } 1836 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1837 } else if (Cmp.isSigned()) { 1838 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1839 if (C.isAllOnesValue()) { 1840 // (1 << Y) <= -1 -> Y == 31 1841 if (Pred == ICmpInst::ICMP_SLE) 1842 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1843 1844 // (1 << Y) > -1 -> Y != 31 1845 if (Pred == ICmpInst::ICMP_SGT) 1846 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1847 } else if (!C) { 1848 // (1 << Y) < 0 -> Y == 31 1849 // (1 << Y) <= 0 -> Y == 31 1850 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1851 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1852 1853 // (1 << Y) >= 0 -> Y != 31 1854 // (1 << Y) > 0 -> Y != 31 1855 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1856 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1857 } 1858 } else if (Cmp.isEquality() && CIsPowerOf2) { 1859 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1860 } 1861 1862 return nullptr; 1863 } 1864 1865 /// Fold icmp (shl X, Y), C. 1866 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1867 BinaryOperator *Shl, 1868 const APInt &C) { 1869 const APInt *ShiftVal; 1870 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1871 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1872 1873 const APInt *ShiftAmt; 1874 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1875 return foldICmpShlOne(Cmp, Shl, C); 1876 1877 // Check that the shift amount is in range. If not, don't perform undefined 1878 // shifts. When the shift is visited, it will be simplified. 1879 unsigned TypeBits = C.getBitWidth(); 1880 if (ShiftAmt->uge(TypeBits)) 1881 return nullptr; 1882 1883 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1884 Value *X = Shl->getOperand(0); 1885 Type *ShType = Shl->getType(); 1886 1887 // NSW guarantees that we are only shifting out sign bits from the high bits, 1888 // so we can ASHR the compare constant without needing a mask and eliminate 1889 // the shift. 1890 if (Shl->hasNoSignedWrap()) { 1891 if (Pred == ICmpInst::ICMP_SGT) { 1892 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1893 APInt ShiftedC = C.ashr(*ShiftAmt); 1894 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1895 } 1896 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1897 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1898 APInt ShiftedC = C.ashr(*ShiftAmt); 1899 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1900 } 1901 if (Pred == ICmpInst::ICMP_SLT) { 1902 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1903 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1904 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1905 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1906 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1907 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1908 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1909 } 1910 // If this is a signed comparison to 0 and the shift is sign preserving, 1911 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1912 // do that if we're sure to not continue on in this function. 1913 if (isSignTest(Pred, C)) 1914 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1915 } 1916 1917 // NUW guarantees that we are only shifting out zero bits from the high bits, 1918 // so we can LSHR the compare constant without needing a mask and eliminate 1919 // the shift. 1920 if (Shl->hasNoUnsignedWrap()) { 1921 if (Pred == ICmpInst::ICMP_UGT) { 1922 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1923 APInt ShiftedC = C.lshr(*ShiftAmt); 1924 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1925 } 1926 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1927 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1928 APInt ShiftedC = C.lshr(*ShiftAmt); 1929 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1930 } 1931 if (Pred == ICmpInst::ICMP_ULT) { 1932 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1933 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1934 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1935 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1936 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1937 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1938 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1939 } 1940 } 1941 1942 if (Cmp.isEquality() && Shl->hasOneUse()) { 1943 // Strength-reduce the shift into an 'and'. 1944 Constant *Mask = ConstantInt::get( 1945 ShType, 1946 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1947 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1948 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 1949 return new ICmpInst(Pred, And, LShrC); 1950 } 1951 1952 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1953 bool TrueIfSigned = false; 1954 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 1955 // (X << 31) <s 0 --> (X & 1) != 0 1956 Constant *Mask = ConstantInt::get( 1957 ShType, 1958 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 1959 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1960 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1961 And, Constant::getNullValue(ShType)); 1962 } 1963 1964 // Transform (icmp pred iM (shl iM %v, N), C) 1965 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 1966 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 1967 // This enables us to get rid of the shift in favor of a trunc that may be 1968 // free on the target. It has the additional benefit of comparing to a 1969 // smaller constant that may be more target-friendly. 1970 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 1971 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 1972 DL.isLegalInteger(TypeBits - Amt)) { 1973 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 1974 if (ShType->isVectorTy()) 1975 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 1976 Constant *NewC = 1977 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 1978 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 1979 } 1980 1981 return nullptr; 1982 } 1983 1984 /// Fold icmp ({al}shr X, Y), C. 1985 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 1986 BinaryOperator *Shr, 1987 const APInt &C) { 1988 // An exact shr only shifts out zero bits, so: 1989 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 1990 Value *X = Shr->getOperand(0); 1991 CmpInst::Predicate Pred = Cmp.getPredicate(); 1992 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 1993 C.isNullValue()) 1994 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1995 1996 const APInt *ShiftVal; 1997 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 1998 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 1999 2000 const APInt *ShiftAmt; 2001 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2002 return nullptr; 2003 2004 // Check that the shift amount is in range. If not, don't perform undefined 2005 // shifts. When the shift is visited it will be simplified. 2006 unsigned TypeBits = C.getBitWidth(); 2007 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2008 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2009 return nullptr; 2010 2011 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2012 bool IsExact = Shr->isExact(); 2013 Type *ShrTy = Shr->getType(); 2014 // TODO: If we could guarantee that InstSimplify would handle all of the 2015 // constant-value-based preconditions in the folds below, then we could assert 2016 // those conditions rather than checking them. This is difficult because of 2017 // undef/poison (PR34838). 2018 if (IsAShr) { 2019 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2020 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2021 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2022 APInt ShiftedC = C.shl(ShAmtVal); 2023 if (ShiftedC.ashr(ShAmtVal) == C) 2024 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2025 } 2026 if (Pred == CmpInst::ICMP_SGT) { 2027 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2028 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2029 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2030 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2031 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2032 } 2033 } else { 2034 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2035 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2036 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2037 APInt ShiftedC = C.shl(ShAmtVal); 2038 if (ShiftedC.lshr(ShAmtVal) == C) 2039 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2040 } 2041 if (Pred == CmpInst::ICMP_UGT) { 2042 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2043 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2044 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2045 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2046 } 2047 } 2048 2049 if (!Cmp.isEquality()) 2050 return nullptr; 2051 2052 // Handle equality comparisons of shift-by-constant. 2053 2054 // If the comparison constant changes with the shift, the comparison cannot 2055 // succeed (bits of the comparison constant cannot match the shifted value). 2056 // This should be known by InstSimplify and already be folded to true/false. 2057 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2058 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2059 "Expected icmp+shr simplify did not occur."); 2060 2061 // If the bits shifted out are known zero, compare the unshifted value: 2062 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2063 if (Shr->isExact()) 2064 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2065 2066 if (Shr->hasOneUse()) { 2067 // Canonicalize the shift into an 'and': 2068 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2069 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2070 Constant *Mask = ConstantInt::get(ShrTy, Val); 2071 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2072 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2073 } 2074 2075 return nullptr; 2076 } 2077 2078 /// Fold icmp (udiv X, Y), C. 2079 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2080 BinaryOperator *UDiv, 2081 const APInt &C) { 2082 const APInt *C2; 2083 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2084 return nullptr; 2085 2086 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2087 2088 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2089 Value *Y = UDiv->getOperand(1); 2090 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2091 assert(!C.isMaxValue() && 2092 "icmp ugt X, UINT_MAX should have been simplified already."); 2093 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2094 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2095 } 2096 2097 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2098 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2099 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2100 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2101 ConstantInt::get(Y->getType(), C2->udiv(C))); 2102 } 2103 2104 return nullptr; 2105 } 2106 2107 /// Fold icmp ({su}div X, Y), C. 2108 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2109 BinaryOperator *Div, 2110 const APInt &C) { 2111 // Fold: icmp pred ([us]div X, C2), C -> range test 2112 // Fold this div into the comparison, producing a range check. 2113 // Determine, based on the divide type, what the range is being 2114 // checked. If there is an overflow on the low or high side, remember 2115 // it, otherwise compute the range [low, hi) bounding the new value. 2116 // See: InsertRangeTest above for the kinds of replacements possible. 2117 const APInt *C2; 2118 if (!match(Div->getOperand(1), m_APInt(C2))) 2119 return nullptr; 2120 2121 // FIXME: If the operand types don't match the type of the divide 2122 // then don't attempt this transform. The code below doesn't have the 2123 // logic to deal with a signed divide and an unsigned compare (and 2124 // vice versa). This is because (x /s C2) <s C produces different 2125 // results than (x /s C2) <u C or (x /u C2) <s C or even 2126 // (x /u C2) <u C. Simply casting the operands and result won't 2127 // work. :( The if statement below tests that condition and bails 2128 // if it finds it. 2129 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2130 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2131 return nullptr; 2132 2133 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2134 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2135 // division-by-constant cases should be present, we can not assert that they 2136 // have happened before we reach this icmp instruction. 2137 if (C2->isNullValue() || C2->isOneValue() || 2138 (DivIsSigned && C2->isAllOnesValue())) 2139 return nullptr; 2140 2141 // Compute Prod = C * C2. We are essentially solving an equation of 2142 // form X / C2 = C. We solve for X by multiplying C2 and C. 2143 // By solving for X, we can turn this into a range check instead of computing 2144 // a divide. 2145 APInt Prod = C * *C2; 2146 2147 // Determine if the product overflows by seeing if the product is not equal to 2148 // the divide. Make sure we do the same kind of divide as in the LHS 2149 // instruction that we're folding. 2150 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2151 2152 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2153 2154 // If the division is known to be exact, then there is no remainder from the 2155 // divide, so the covered range size is unit, otherwise it is the divisor. 2156 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2157 2158 // Figure out the interval that is being checked. For example, a comparison 2159 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2160 // Compute this interval based on the constants involved and the signedness of 2161 // the compare/divide. This computes a half-open interval, keeping track of 2162 // whether either value in the interval overflows. After analysis each 2163 // overflow variable is set to 0 if it's corresponding bound variable is valid 2164 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2165 int LoOverflow = 0, HiOverflow = 0; 2166 APInt LoBound, HiBound; 2167 2168 if (!DivIsSigned) { // udiv 2169 // e.g. X/5 op 3 --> [15, 20) 2170 LoBound = Prod; 2171 HiOverflow = LoOverflow = ProdOV; 2172 if (!HiOverflow) { 2173 // If this is not an exact divide, then many values in the range collapse 2174 // to the same result value. 2175 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2176 } 2177 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2178 if (C.isNullValue()) { // (X / pos) op 0 2179 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2180 LoBound = -(RangeSize - 1); 2181 HiBound = RangeSize; 2182 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2183 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2184 HiOverflow = LoOverflow = ProdOV; 2185 if (!HiOverflow) 2186 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2187 } else { // (X / pos) op neg 2188 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2189 HiBound = Prod + 1; 2190 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2191 if (!LoOverflow) { 2192 APInt DivNeg = -RangeSize; 2193 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2194 } 2195 } 2196 } else if (C2->isNegative()) { // Divisor is < 0. 2197 if (Div->isExact()) 2198 RangeSize.negate(); 2199 if (C.isNullValue()) { // (X / neg) op 0 2200 // e.g. X/-5 op 0 --> [-4, 5) 2201 LoBound = RangeSize + 1; 2202 HiBound = -RangeSize; 2203 if (HiBound == *C2) { // -INTMIN = INTMIN 2204 HiOverflow = 1; // [INTMIN+1, overflow) 2205 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2206 } 2207 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2208 // e.g. X/-5 op 3 --> [-19, -14) 2209 HiBound = Prod + 1; 2210 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2211 if (!LoOverflow) 2212 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2213 } else { // (X / neg) op neg 2214 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2215 LoOverflow = HiOverflow = ProdOV; 2216 if (!HiOverflow) 2217 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2218 } 2219 2220 // Dividing by a negative swaps the condition. LT <-> GT 2221 Pred = ICmpInst::getSwappedPredicate(Pred); 2222 } 2223 2224 Value *X = Div->getOperand(0); 2225 switch (Pred) { 2226 default: llvm_unreachable("Unhandled icmp opcode!"); 2227 case ICmpInst::ICMP_EQ: 2228 if (LoOverflow && HiOverflow) 2229 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2230 if (HiOverflow) 2231 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2232 ICmpInst::ICMP_UGE, X, 2233 ConstantInt::get(Div->getType(), LoBound)); 2234 if (LoOverflow) 2235 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2236 ICmpInst::ICMP_ULT, X, 2237 ConstantInt::get(Div->getType(), HiBound)); 2238 return replaceInstUsesWith( 2239 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2240 case ICmpInst::ICMP_NE: 2241 if (LoOverflow && HiOverflow) 2242 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2243 if (HiOverflow) 2244 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2245 ICmpInst::ICMP_ULT, X, 2246 ConstantInt::get(Div->getType(), LoBound)); 2247 if (LoOverflow) 2248 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2249 ICmpInst::ICMP_UGE, X, 2250 ConstantInt::get(Div->getType(), HiBound)); 2251 return replaceInstUsesWith(Cmp, 2252 insertRangeTest(X, LoBound, HiBound, 2253 DivIsSigned, false)); 2254 case ICmpInst::ICMP_ULT: 2255 case ICmpInst::ICMP_SLT: 2256 if (LoOverflow == +1) // Low bound is greater than input range. 2257 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2258 if (LoOverflow == -1) // Low bound is less than input range. 2259 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2260 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2261 case ICmpInst::ICMP_UGT: 2262 case ICmpInst::ICMP_SGT: 2263 if (HiOverflow == +1) // High bound greater than input range. 2264 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2265 if (HiOverflow == -1) // High bound less than input range. 2266 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2267 if (Pred == ICmpInst::ICMP_UGT) 2268 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2269 ConstantInt::get(Div->getType(), HiBound)); 2270 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2271 ConstantInt::get(Div->getType(), HiBound)); 2272 } 2273 2274 return nullptr; 2275 } 2276 2277 /// Fold icmp (sub X, Y), C. 2278 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2279 BinaryOperator *Sub, 2280 const APInt &C) { 2281 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2282 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2283 2284 // The following transforms are only worth it if the only user of the subtract 2285 // is the icmp. 2286 if (!Sub->hasOneUse()) 2287 return nullptr; 2288 2289 if (Sub->hasNoSignedWrap()) { 2290 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2291 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2292 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2293 2294 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2295 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2296 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2297 2298 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2299 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2300 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2301 2302 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2303 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2304 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2305 } 2306 2307 const APInt *C2; 2308 if (!match(X, m_APInt(C2))) 2309 return nullptr; 2310 2311 // C2 - Y <u C -> (Y | (C - 1)) == C2 2312 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2313 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2314 (*C2 & (C - 1)) == (C - 1)) 2315 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2316 2317 // C2 - Y >u C -> (Y | C) != C2 2318 // iff C2 & C == C and C + 1 is a power of 2 2319 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2320 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2321 2322 return nullptr; 2323 } 2324 2325 /// Fold icmp (add X, Y), C. 2326 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2327 BinaryOperator *Add, 2328 const APInt &C) { 2329 Value *Y = Add->getOperand(1); 2330 const APInt *C2; 2331 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2332 return nullptr; 2333 2334 // Fold icmp pred (add X, C2), C. 2335 Value *X = Add->getOperand(0); 2336 Type *Ty = Add->getType(); 2337 CmpInst::Predicate Pred = Cmp.getPredicate(); 2338 2339 // If the add does not wrap, we can always adjust the compare by subtracting 2340 // the constants. Equality comparisons are handled elsewhere. SGE/SLE are 2341 // canonicalized to SGT/SLT. 2342 if (Add->hasNoSignedWrap() && 2343 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) { 2344 bool Overflow; 2345 APInt NewC = C.ssub_ov(*C2, Overflow); 2346 // If there is overflow, the result must be true or false. 2347 // TODO: Can we assert there is no overflow because InstSimplify always 2348 // handles those cases? 2349 if (!Overflow) 2350 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2351 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2352 } 2353 2354 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2355 const APInt &Upper = CR.getUpper(); 2356 const APInt &Lower = CR.getLower(); 2357 if (Cmp.isSigned()) { 2358 if (Lower.isSignMask()) 2359 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2360 if (Upper.isSignMask()) 2361 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2362 } else { 2363 if (Lower.isMinValue()) 2364 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2365 if (Upper.isMinValue()) 2366 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2367 } 2368 2369 if (!Add->hasOneUse()) 2370 return nullptr; 2371 2372 // X+C <u C2 -> (X & -C2) == C 2373 // iff C & (C2-1) == 0 2374 // C2 is a power of 2 2375 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2376 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2377 ConstantExpr::getNeg(cast<Constant>(Y))); 2378 2379 // X+C >u C2 -> (X & ~C2) != C 2380 // iff C & C2 == 0 2381 // C2+1 is a power of 2 2382 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2383 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2384 ConstantExpr::getNeg(cast<Constant>(Y))); 2385 2386 return nullptr; 2387 } 2388 2389 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2390 Value *&RHS, ConstantInt *&Less, 2391 ConstantInt *&Equal, 2392 ConstantInt *&Greater) { 2393 // TODO: Generalize this to work with other comparison idioms or ensure 2394 // they get canonicalized into this form. 2395 2396 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2397 // Greater), where Equal, Less and Greater are placeholders for any three 2398 // constants. 2399 ICmpInst::Predicate PredA, PredB; 2400 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2401 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2402 PredA == ICmpInst::ICMP_EQ && 2403 match(SI->getFalseValue(), 2404 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2405 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2406 PredB == ICmpInst::ICMP_SLT) { 2407 return true; 2408 } 2409 return false; 2410 } 2411 2412 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2413 SelectInst *Select, 2414 ConstantInt *C) { 2415 2416 assert(C && "Cmp RHS should be a constant int!"); 2417 // If we're testing a constant value against the result of a three way 2418 // comparison, the result can be expressed directly in terms of the 2419 // original values being compared. Note: We could possibly be more 2420 // aggressive here and remove the hasOneUse test. The original select is 2421 // really likely to simplify or sink when we remove a test of the result. 2422 Value *OrigLHS, *OrigRHS; 2423 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2424 if (Cmp.hasOneUse() && 2425 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2426 C3GreaterThan)) { 2427 assert(C1LessThan && C2Equal && C3GreaterThan); 2428 2429 bool TrueWhenLessThan = 2430 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2431 ->isAllOnesValue(); 2432 bool TrueWhenEqual = 2433 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2434 ->isAllOnesValue(); 2435 bool TrueWhenGreaterThan = 2436 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2437 ->isAllOnesValue(); 2438 2439 // This generates the new instruction that will replace the original Cmp 2440 // Instruction. Instead of enumerating the various combinations when 2441 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2442 // false, we rely on chaining of ORs and future passes of InstCombine to 2443 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2444 2445 // When none of the three constants satisfy the predicate for the RHS (C), 2446 // the entire original Cmp can be simplified to a false. 2447 Value *Cond = Builder.getFalse(); 2448 if (TrueWhenLessThan) 2449 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); 2450 if (TrueWhenEqual) 2451 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); 2452 if (TrueWhenGreaterThan) 2453 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); 2454 2455 return replaceInstUsesWith(Cmp, Cond); 2456 } 2457 return nullptr; 2458 } 2459 2460 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2461 /// where X is some kind of instruction. 2462 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2463 const APInt *C; 2464 if (!match(Cmp.getOperand(1), m_APInt(C))) 2465 return nullptr; 2466 2467 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2468 switch (BO->getOpcode()) { 2469 case Instruction::Xor: 2470 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2471 return I; 2472 break; 2473 case Instruction::And: 2474 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2475 return I; 2476 break; 2477 case Instruction::Or: 2478 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2479 return I; 2480 break; 2481 case Instruction::Mul: 2482 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2483 return I; 2484 break; 2485 case Instruction::Shl: 2486 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2487 return I; 2488 break; 2489 case Instruction::LShr: 2490 case Instruction::AShr: 2491 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2492 return I; 2493 break; 2494 case Instruction::UDiv: 2495 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2496 return I; 2497 LLVM_FALLTHROUGH; 2498 case Instruction::SDiv: 2499 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2500 return I; 2501 break; 2502 case Instruction::Sub: 2503 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2504 return I; 2505 break; 2506 case Instruction::Add: 2507 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2508 return I; 2509 break; 2510 default: 2511 break; 2512 } 2513 // TODO: These folds could be refactored to be part of the above calls. 2514 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2515 return I; 2516 } 2517 2518 // Match against CmpInst LHS being instructions other than binary operators. 2519 2520 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2521 // For now, we only support constant integers while folding the 2522 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2523 // similar to the cases handled by binary ops above. 2524 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2525 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2526 return I; 2527 } 2528 2529 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2530 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2531 return I; 2532 } 2533 2534 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C)) 2535 return I; 2536 2537 return nullptr; 2538 } 2539 2540 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2541 /// icmp eq/ne BO, C. 2542 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2543 BinaryOperator *BO, 2544 const APInt &C) { 2545 // TODO: Some of these folds could work with arbitrary constants, but this 2546 // function is limited to scalar and vector splat constants. 2547 if (!Cmp.isEquality()) 2548 return nullptr; 2549 2550 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2551 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2552 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2553 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2554 2555 switch (BO->getOpcode()) { 2556 case Instruction::SRem: 2557 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2558 if (C.isNullValue() && BO->hasOneUse()) { 2559 const APInt *BOC; 2560 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2561 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2562 return new ICmpInst(Pred, NewRem, 2563 Constant::getNullValue(BO->getType())); 2564 } 2565 } 2566 break; 2567 case Instruction::Add: { 2568 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2569 const APInt *BOC; 2570 if (match(BOp1, m_APInt(BOC))) { 2571 if (BO->hasOneUse()) { 2572 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2573 return new ICmpInst(Pred, BOp0, SubC); 2574 } 2575 } else if (C.isNullValue()) { 2576 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2577 // efficiently invertible, or if the add has just this one use. 2578 if (Value *NegVal = dyn_castNegVal(BOp1)) 2579 return new ICmpInst(Pred, BOp0, NegVal); 2580 if (Value *NegVal = dyn_castNegVal(BOp0)) 2581 return new ICmpInst(Pred, NegVal, BOp1); 2582 if (BO->hasOneUse()) { 2583 Value *Neg = Builder.CreateNeg(BOp1); 2584 Neg->takeName(BO); 2585 return new ICmpInst(Pred, BOp0, Neg); 2586 } 2587 } 2588 break; 2589 } 2590 case Instruction::Xor: 2591 if (BO->hasOneUse()) { 2592 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2593 // For the xor case, we can xor two constants together, eliminating 2594 // the explicit xor. 2595 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2596 } else if (C.isNullValue()) { 2597 // Replace ((xor A, B) != 0) with (A != B) 2598 return new ICmpInst(Pred, BOp0, BOp1); 2599 } 2600 } 2601 break; 2602 case Instruction::Sub: 2603 if (BO->hasOneUse()) { 2604 const APInt *BOC; 2605 if (match(BOp0, m_APInt(BOC))) { 2606 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2607 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2608 return new ICmpInst(Pred, BOp1, SubC); 2609 } else if (C.isNullValue()) { 2610 // Replace ((sub A, B) != 0) with (A != B). 2611 return new ICmpInst(Pred, BOp0, BOp1); 2612 } 2613 } 2614 break; 2615 case Instruction::Or: { 2616 const APInt *BOC; 2617 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2618 // Comparing if all bits outside of a constant mask are set? 2619 // Replace (X | C) == -1 with (X & ~C) == ~C. 2620 // This removes the -1 constant. 2621 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2622 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2623 return new ICmpInst(Pred, And, NotBOC); 2624 } 2625 break; 2626 } 2627 case Instruction::And: { 2628 const APInt *BOC; 2629 if (match(BOp1, m_APInt(BOC))) { 2630 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2631 if (C == *BOC && C.isPowerOf2()) 2632 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2633 BO, Constant::getNullValue(RHS->getType())); 2634 2635 // Don't perform the following transforms if the AND has multiple uses 2636 if (!BO->hasOneUse()) 2637 break; 2638 2639 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2640 if (BOC->isSignMask()) { 2641 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2642 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2643 return new ICmpInst(NewPred, BOp0, Zero); 2644 } 2645 2646 // ((X & ~7) == 0) --> X < 8 2647 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2648 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2649 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2650 return new ICmpInst(NewPred, BOp0, NegBOC); 2651 } 2652 } 2653 break; 2654 } 2655 case Instruction::Mul: 2656 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2657 const APInt *BOC; 2658 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2659 // The trivial case (mul X, 0) is handled by InstSimplify. 2660 // General case : (mul X, C) != 0 iff X != 0 2661 // (mul X, C) == 0 iff X == 0 2662 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2663 } 2664 } 2665 break; 2666 case Instruction::UDiv: 2667 if (C.isNullValue()) { 2668 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2669 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2670 return new ICmpInst(NewPred, BOp1, BOp0); 2671 } 2672 break; 2673 default: 2674 break; 2675 } 2676 return nullptr; 2677 } 2678 2679 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2680 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2681 const APInt &C) { 2682 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); 2683 if (!II || !Cmp.isEquality()) 2684 return nullptr; 2685 2686 // Handle icmp {eq|ne} <intrinsic>, Constant. 2687 Type *Ty = II->getType(); 2688 switch (II->getIntrinsicID()) { 2689 case Intrinsic::bswap: 2690 Worklist.Add(II); 2691 Cmp.setOperand(0, II->getArgOperand(0)); 2692 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2693 return &Cmp; 2694 2695 case Intrinsic::ctlz: 2696 case Intrinsic::cttz: 2697 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2698 if (C == C.getBitWidth()) { 2699 Worklist.Add(II); 2700 Cmp.setOperand(0, II->getArgOperand(0)); 2701 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2702 return &Cmp; 2703 } 2704 break; 2705 2706 case Intrinsic::ctpop: { 2707 // popcount(A) == 0 -> A == 0 and likewise for != 2708 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2709 bool IsZero = C.isNullValue(); 2710 if (IsZero || C == C.getBitWidth()) { 2711 Worklist.Add(II); 2712 Cmp.setOperand(0, II->getArgOperand(0)); 2713 auto *NewOp = 2714 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2715 Cmp.setOperand(1, NewOp); 2716 return &Cmp; 2717 } 2718 break; 2719 } 2720 default: 2721 break; 2722 } 2723 2724 return nullptr; 2725 } 2726 2727 /// Handle icmp with constant (but not simple integer constant) RHS. 2728 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2729 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2730 Constant *RHSC = dyn_cast<Constant>(Op1); 2731 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2732 if (!RHSC || !LHSI) 2733 return nullptr; 2734 2735 switch (LHSI->getOpcode()) { 2736 case Instruction::GetElementPtr: 2737 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2738 if (RHSC->isNullValue() && 2739 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2740 return new ICmpInst( 2741 I.getPredicate(), LHSI->getOperand(0), 2742 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2743 break; 2744 case Instruction::PHI: 2745 // Only fold icmp into the PHI if the phi and icmp are in the same 2746 // block. If in the same block, we're encouraging jump threading. If 2747 // not, we are just pessimizing the code by making an i1 phi. 2748 if (LHSI->getParent() == I.getParent()) 2749 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2750 return NV; 2751 break; 2752 case Instruction::Select: { 2753 // If either operand of the select is a constant, we can fold the 2754 // comparison into the select arms, which will cause one to be 2755 // constant folded and the select turned into a bitwise or. 2756 Value *Op1 = nullptr, *Op2 = nullptr; 2757 ConstantInt *CI = nullptr; 2758 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2759 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2760 CI = dyn_cast<ConstantInt>(Op1); 2761 } 2762 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2763 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2764 CI = dyn_cast<ConstantInt>(Op2); 2765 } 2766 2767 // We only want to perform this transformation if it will not lead to 2768 // additional code. This is true if either both sides of the select 2769 // fold to a constant (in which case the icmp is replaced with a select 2770 // which will usually simplify) or this is the only user of the 2771 // select (in which case we are trading a select+icmp for a simpler 2772 // select+icmp) or all uses of the select can be replaced based on 2773 // dominance information ("Global cases"). 2774 bool Transform = false; 2775 if (Op1 && Op2) 2776 Transform = true; 2777 else if (Op1 || Op2) { 2778 // Local case 2779 if (LHSI->hasOneUse()) 2780 Transform = true; 2781 // Global cases 2782 else if (CI && !CI->isZero()) 2783 // When Op1 is constant try replacing select with second operand. 2784 // Otherwise Op2 is constant and try replacing select with first 2785 // operand. 2786 Transform = 2787 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 2788 } 2789 if (Transform) { 2790 if (!Op1) 2791 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 2792 I.getName()); 2793 if (!Op2) 2794 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 2795 I.getName()); 2796 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2797 } 2798 break; 2799 } 2800 case Instruction::IntToPtr: 2801 // icmp pred inttoptr(X), null -> icmp pred X, 0 2802 if (RHSC->isNullValue() && 2803 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 2804 return new ICmpInst( 2805 I.getPredicate(), LHSI->getOperand(0), 2806 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2807 break; 2808 2809 case Instruction::Load: 2810 // Try to optimize things like "A[i] > 4" to index computations. 2811 if (GetElementPtrInst *GEP = 2812 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2813 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2814 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2815 !cast<LoadInst>(LHSI)->isVolatile()) 2816 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2817 return Res; 2818 } 2819 break; 2820 } 2821 2822 return nullptr; 2823 } 2824 2825 /// Try to fold icmp (binop), X or icmp X, (binop). 2826 /// TODO: A large part of this logic is duplicated in InstSimplify's 2827 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 2828 /// duplication. 2829 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 2830 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2831 2832 // Special logic for binary operators. 2833 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2834 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2835 if (!BO0 && !BO1) 2836 return nullptr; 2837 2838 const CmpInst::Predicate Pred = I.getPredicate(); 2839 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2840 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2841 NoOp0WrapProblem = 2842 ICmpInst::isEquality(Pred) || 2843 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2844 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2845 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2846 NoOp1WrapProblem = 2847 ICmpInst::isEquality(Pred) || 2848 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2849 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2850 2851 // Analyze the case when either Op0 or Op1 is an add instruction. 2852 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2853 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2854 if (BO0 && BO0->getOpcode() == Instruction::Add) { 2855 A = BO0->getOperand(0); 2856 B = BO0->getOperand(1); 2857 } 2858 if (BO1 && BO1->getOpcode() == Instruction::Add) { 2859 C = BO1->getOperand(0); 2860 D = BO1->getOperand(1); 2861 } 2862 2863 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2864 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2865 return new ICmpInst(Pred, A == Op1 ? B : A, 2866 Constant::getNullValue(Op1->getType())); 2867 2868 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2869 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2870 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2871 C == Op0 ? D : C); 2872 2873 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2874 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 2875 NoOp1WrapProblem && 2876 // Try not to increase register pressure. 2877 BO0->hasOneUse() && BO1->hasOneUse()) { 2878 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2879 Value *Y, *Z; 2880 if (A == C) { 2881 // C + B == C + D -> B == D 2882 Y = B; 2883 Z = D; 2884 } else if (A == D) { 2885 // D + B == C + D -> B == C 2886 Y = B; 2887 Z = C; 2888 } else if (B == C) { 2889 // A + C == C + D -> A == D 2890 Y = A; 2891 Z = D; 2892 } else { 2893 assert(B == D); 2894 // A + D == C + D -> A == C 2895 Y = A; 2896 Z = C; 2897 } 2898 return new ICmpInst(Pred, Y, Z); 2899 } 2900 2901 // icmp slt (X + -1), Y -> icmp sle X, Y 2902 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 2903 match(B, m_AllOnes())) 2904 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 2905 2906 // icmp sge (X + -1), Y -> icmp sgt X, Y 2907 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 2908 match(B, m_AllOnes())) 2909 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 2910 2911 // icmp sle (X + 1), Y -> icmp slt X, Y 2912 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 2913 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 2914 2915 // icmp sgt (X + 1), Y -> icmp sge X, Y 2916 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 2917 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 2918 2919 // icmp sgt X, (Y + -1) -> icmp sge X, Y 2920 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 2921 match(D, m_AllOnes())) 2922 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 2923 2924 // icmp sle X, (Y + -1) -> icmp slt X, Y 2925 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 2926 match(D, m_AllOnes())) 2927 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 2928 2929 // icmp sge X, (Y + 1) -> icmp sgt X, Y 2930 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 2931 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 2932 2933 // icmp slt X, (Y + 1) -> icmp sle X, Y 2934 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 2935 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 2936 2937 // TODO: The subtraction-related identities shown below also hold, but 2938 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 2939 // wouldn't happen even if they were implemented. 2940 // 2941 // icmp ult (X - 1), Y -> icmp ule X, Y 2942 // icmp uge (X - 1), Y -> icmp ugt X, Y 2943 // icmp ugt X, (Y - 1) -> icmp uge X, Y 2944 // icmp ule X, (Y - 1) -> icmp ult X, Y 2945 2946 // icmp ule (X + 1), Y -> icmp ult X, Y 2947 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 2948 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 2949 2950 // icmp ugt (X + 1), Y -> icmp uge X, Y 2951 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 2952 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 2953 2954 // icmp uge X, (Y + 1) -> icmp ugt X, Y 2955 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 2956 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 2957 2958 // icmp ult X, (Y + 1) -> icmp ule X, Y 2959 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 2960 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 2961 2962 // if C1 has greater magnitude than C2: 2963 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 2964 // s.t. C3 = C1 - C2 2965 // 2966 // if C2 has greater magnitude than C1: 2967 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 2968 // s.t. C3 = C2 - C1 2969 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 2970 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 2971 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 2972 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 2973 const APInt &AP1 = C1->getValue(); 2974 const APInt &AP2 = C2->getValue(); 2975 if (AP1.isNegative() == AP2.isNegative()) { 2976 APInt AP1Abs = C1->getValue().abs(); 2977 APInt AP2Abs = C2->getValue().abs(); 2978 if (AP1Abs.uge(AP2Abs)) { 2979 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 2980 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 2981 return new ICmpInst(Pred, NewAdd, C); 2982 } else { 2983 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 2984 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 2985 return new ICmpInst(Pred, A, NewAdd); 2986 } 2987 } 2988 } 2989 2990 // Analyze the case when either Op0 or Op1 is a sub instruction. 2991 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2992 A = nullptr; 2993 B = nullptr; 2994 C = nullptr; 2995 D = nullptr; 2996 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 2997 A = BO0->getOperand(0); 2998 B = BO0->getOperand(1); 2999 } 3000 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3001 C = BO1->getOperand(0); 3002 D = BO1->getOperand(1); 3003 } 3004 3005 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3006 if (A == Op1 && NoOp0WrapProblem) 3007 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3008 3009 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3010 if (C == Op0 && NoOp1WrapProblem) 3011 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3012 3013 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3014 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3015 // Try not to increase register pressure. 3016 BO0->hasOneUse() && BO1->hasOneUse()) 3017 return new ICmpInst(Pred, A, C); 3018 3019 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3020 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3021 // Try not to increase register pressure. 3022 BO0->hasOneUse() && BO1->hasOneUse()) 3023 return new ICmpInst(Pred, D, B); 3024 3025 // icmp (0-X) < cst --> x > -cst 3026 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3027 Value *X; 3028 if (match(BO0, m_Neg(m_Value(X)))) 3029 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3030 if (!RHSC->isMinValue(/*isSigned=*/true)) 3031 return new ICmpInst(I.getSwappedPredicate(), X, 3032 ConstantExpr::getNeg(RHSC)); 3033 } 3034 3035 BinaryOperator *SRem = nullptr; 3036 // icmp (srem X, Y), Y 3037 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3038 SRem = BO0; 3039 // icmp Y, (srem X, Y) 3040 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3041 Op0 == BO1->getOperand(1)) 3042 SRem = BO1; 3043 if (SRem) { 3044 // We don't check hasOneUse to avoid increasing register pressure because 3045 // the value we use is the same value this instruction was already using. 3046 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3047 default: 3048 break; 3049 case ICmpInst::ICMP_EQ: 3050 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3051 case ICmpInst::ICMP_NE: 3052 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3053 case ICmpInst::ICMP_SGT: 3054 case ICmpInst::ICMP_SGE: 3055 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3056 Constant::getAllOnesValue(SRem->getType())); 3057 case ICmpInst::ICMP_SLT: 3058 case ICmpInst::ICMP_SLE: 3059 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3060 Constant::getNullValue(SRem->getType())); 3061 } 3062 } 3063 3064 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3065 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3066 switch (BO0->getOpcode()) { 3067 default: 3068 break; 3069 case Instruction::Add: 3070 case Instruction::Sub: 3071 case Instruction::Xor: { 3072 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3073 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3074 3075 const APInt *C; 3076 if (match(BO0->getOperand(1), m_APInt(C))) { 3077 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3078 if (C->isSignMask()) { 3079 ICmpInst::Predicate NewPred = 3080 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3081 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3082 } 3083 3084 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3085 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3086 ICmpInst::Predicate NewPred = 3087 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3088 NewPred = I.getSwappedPredicate(NewPred); 3089 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3090 } 3091 } 3092 break; 3093 } 3094 case Instruction::Mul: { 3095 if (!I.isEquality()) 3096 break; 3097 3098 const APInt *C; 3099 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3100 !C->isOneValue()) { 3101 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3102 // Mask = -1 >> count-trailing-zeros(C). 3103 if (unsigned TZs = C->countTrailingZeros()) { 3104 Constant *Mask = ConstantInt::get( 3105 BO0->getType(), 3106 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3107 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3108 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3109 return new ICmpInst(Pred, And1, And2); 3110 } 3111 // If there are no trailing zeros in the multiplier, just eliminate 3112 // the multiplies (no masking is needed): 3113 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3114 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3115 } 3116 break; 3117 } 3118 case Instruction::UDiv: 3119 case Instruction::LShr: 3120 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3121 break; 3122 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3123 3124 case Instruction::SDiv: 3125 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3126 break; 3127 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3128 3129 case Instruction::AShr: 3130 if (!BO0->isExact() || !BO1->isExact()) 3131 break; 3132 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3133 3134 case Instruction::Shl: { 3135 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3136 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3137 if (!NUW && !NSW) 3138 break; 3139 if (!NSW && I.isSigned()) 3140 break; 3141 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3142 } 3143 } 3144 } 3145 3146 if (BO0) { 3147 // Transform A & (L - 1) `ult` L --> L != 0 3148 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3149 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3150 3151 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3152 auto *Zero = Constant::getNullValue(BO0->getType()); 3153 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3154 } 3155 } 3156 3157 return nullptr; 3158 } 3159 3160 /// Fold icmp Pred min|max(X, Y), X. 3161 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3162 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3163 Value *Op0 = Cmp.getOperand(0); 3164 Value *X = Cmp.getOperand(1); 3165 3166 // Canonicalize minimum or maximum operand to LHS of the icmp. 3167 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3168 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3169 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3170 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3171 std::swap(Op0, X); 3172 Pred = Cmp.getSwappedPredicate(); 3173 } 3174 3175 Value *Y; 3176 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3177 // smin(X, Y) == X --> X s<= Y 3178 // smin(X, Y) s>= X --> X s<= Y 3179 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3180 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3181 3182 // smin(X, Y) != X --> X s> Y 3183 // smin(X, Y) s< X --> X s> Y 3184 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3185 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3186 3187 // These cases should be handled in InstSimplify: 3188 // smin(X, Y) s<= X --> true 3189 // smin(X, Y) s> X --> false 3190 return nullptr; 3191 } 3192 3193 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3194 // smax(X, Y) == X --> X s>= Y 3195 // smax(X, Y) s<= X --> X s>= Y 3196 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3197 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3198 3199 // smax(X, Y) != X --> X s< Y 3200 // smax(X, Y) s> X --> X s< Y 3201 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3202 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3203 3204 // These cases should be handled in InstSimplify: 3205 // smax(X, Y) s>= X --> true 3206 // smax(X, Y) s< X --> false 3207 return nullptr; 3208 } 3209 3210 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3211 // umin(X, Y) == X --> X u<= Y 3212 // umin(X, Y) u>= X --> X u<= Y 3213 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3214 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3215 3216 // umin(X, Y) != X --> X u> Y 3217 // umin(X, Y) u< X --> X u> Y 3218 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3219 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3220 3221 // These cases should be handled in InstSimplify: 3222 // umin(X, Y) u<= X --> true 3223 // umin(X, Y) u> X --> false 3224 return nullptr; 3225 } 3226 3227 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3228 // umax(X, Y) == X --> X u>= Y 3229 // umax(X, Y) u<= X --> X u>= Y 3230 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3231 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3232 3233 // umax(X, Y) != X --> X u< Y 3234 // umax(X, Y) u> X --> X u< Y 3235 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3236 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3237 3238 // These cases should be handled in InstSimplify: 3239 // umax(X, Y) u>= X --> true 3240 // umax(X, Y) u< X --> false 3241 return nullptr; 3242 } 3243 3244 return nullptr; 3245 } 3246 3247 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3248 if (!I.isEquality()) 3249 return nullptr; 3250 3251 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3252 const CmpInst::Predicate Pred = I.getPredicate(); 3253 Value *A, *B, *C, *D; 3254 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3255 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3256 Value *OtherVal = A == Op1 ? B : A; 3257 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3258 } 3259 3260 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3261 // A^c1 == C^c2 --> A == C^(c1^c2) 3262 ConstantInt *C1, *C2; 3263 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3264 Op1->hasOneUse()) { 3265 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3266 Value *Xor = Builder.CreateXor(C, NC); 3267 return new ICmpInst(Pred, A, Xor); 3268 } 3269 3270 // A^B == A^D -> B == D 3271 if (A == C) 3272 return new ICmpInst(Pred, B, D); 3273 if (A == D) 3274 return new ICmpInst(Pred, B, C); 3275 if (B == C) 3276 return new ICmpInst(Pred, A, D); 3277 if (B == D) 3278 return new ICmpInst(Pred, A, C); 3279 } 3280 } 3281 3282 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3283 // A == (A^B) -> B == 0 3284 Value *OtherVal = A == Op0 ? B : A; 3285 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3286 } 3287 3288 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3289 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3290 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3291 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3292 3293 if (A == C) { 3294 X = B; 3295 Y = D; 3296 Z = A; 3297 } else if (A == D) { 3298 X = B; 3299 Y = C; 3300 Z = A; 3301 } else if (B == C) { 3302 X = A; 3303 Y = D; 3304 Z = B; 3305 } else if (B == D) { 3306 X = A; 3307 Y = C; 3308 Z = B; 3309 } 3310 3311 if (X) { // Build (X^Y) & Z 3312 Op1 = Builder.CreateXor(X, Y); 3313 Op1 = Builder.CreateAnd(Op1, Z); 3314 I.setOperand(0, Op1); 3315 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3316 return &I; 3317 } 3318 } 3319 3320 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3321 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3322 ConstantInt *Cst1; 3323 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3324 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3325 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3326 match(Op1, m_ZExt(m_Value(A))))) { 3327 APInt Pow2 = Cst1->getValue() + 1; 3328 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3329 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3330 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3331 } 3332 3333 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3334 // For lshr and ashr pairs. 3335 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3336 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3337 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3338 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3339 unsigned TypeBits = Cst1->getBitWidth(); 3340 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3341 if (ShAmt < TypeBits && ShAmt != 0) { 3342 ICmpInst::Predicate NewPred = 3343 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3344 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3345 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3346 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3347 } 3348 } 3349 3350 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3351 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3352 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3353 unsigned TypeBits = Cst1->getBitWidth(); 3354 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3355 if (ShAmt < TypeBits && ShAmt != 0) { 3356 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3357 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3358 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3359 I.getName() + ".mask"); 3360 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3361 } 3362 } 3363 3364 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3365 // "icmp (and X, mask), cst" 3366 uint64_t ShAmt = 0; 3367 if (Op0->hasOneUse() && 3368 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3369 match(Op1, m_ConstantInt(Cst1)) && 3370 // Only do this when A has multiple uses. This is most important to do 3371 // when it exposes other optimizations. 3372 !A->hasOneUse()) { 3373 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3374 3375 if (ShAmt < ASize) { 3376 APInt MaskV = 3377 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3378 MaskV <<= ShAmt; 3379 3380 APInt CmpV = Cst1->getValue().zext(ASize); 3381 CmpV <<= ShAmt; 3382 3383 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3384 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3385 } 3386 } 3387 3388 // If both operands are byte-swapped or bit-reversed, just compare the 3389 // original values. 3390 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3391 // and handle more intrinsics. 3392 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3393 (match(Op0, m_BitReverse(m_Value(A))) && 3394 match(Op1, m_BitReverse(m_Value(B))))) 3395 return new ICmpInst(Pred, A, B); 3396 3397 return nullptr; 3398 } 3399 3400 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3401 /// far. 3402 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3403 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3404 Value *LHSCIOp = LHSCI->getOperand(0); 3405 Type *SrcTy = LHSCIOp->getType(); 3406 Type *DestTy = LHSCI->getType(); 3407 Value *RHSCIOp; 3408 3409 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3410 // integer type is the same size as the pointer type. 3411 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3412 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 3413 Value *RHSOp = nullptr; 3414 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3415 Value *RHSCIOp = RHSC->getOperand(0); 3416 if (RHSCIOp->getType()->getPointerAddressSpace() == 3417 LHSCIOp->getType()->getPointerAddressSpace()) { 3418 RHSOp = RHSC->getOperand(0); 3419 // If the pointer types don't match, insert a bitcast. 3420 if (LHSCIOp->getType() != RHSOp->getType()) 3421 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3422 } 3423 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3424 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3425 } 3426 3427 if (RHSOp) 3428 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3429 } 3430 3431 // The code below only handles extension cast instructions, so far. 3432 // Enforce this. 3433 if (LHSCI->getOpcode() != Instruction::ZExt && 3434 LHSCI->getOpcode() != Instruction::SExt) 3435 return nullptr; 3436 3437 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3438 bool isSignedCmp = ICmp.isSigned(); 3439 3440 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3441 // Not an extension from the same type? 3442 RHSCIOp = CI->getOperand(0); 3443 if (RHSCIOp->getType() != LHSCIOp->getType()) 3444 return nullptr; 3445 3446 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3447 // and the other is a zext), then we can't handle this. 3448 if (CI->getOpcode() != LHSCI->getOpcode()) 3449 return nullptr; 3450 3451 // Deal with equality cases early. 3452 if (ICmp.isEquality()) 3453 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3454 3455 // A signed comparison of sign extended values simplifies into a 3456 // signed comparison. 3457 if (isSignedCmp && isSignedExt) 3458 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3459 3460 // The other three cases all fold into an unsigned comparison. 3461 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3462 } 3463 3464 // If we aren't dealing with a constant on the RHS, exit early. 3465 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3466 if (!C) 3467 return nullptr; 3468 3469 // Compute the constant that would happen if we truncated to SrcTy then 3470 // re-extended to DestTy. 3471 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3472 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3473 3474 // If the re-extended constant didn't change... 3475 if (Res2 == C) { 3476 // Deal with equality cases early. 3477 if (ICmp.isEquality()) 3478 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3479 3480 // A signed comparison of sign extended values simplifies into a 3481 // signed comparison. 3482 if (isSignedExt && isSignedCmp) 3483 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3484 3485 // The other three cases all fold into an unsigned comparison. 3486 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3487 } 3488 3489 // The re-extended constant changed, partly changed (in the case of a vector), 3490 // or could not be determined to be equal (in the case of a constant 3491 // expression), so the constant cannot be represented in the shorter type. 3492 // Consequently, we cannot emit a simple comparison. 3493 // All the cases that fold to true or false will have already been handled 3494 // by SimplifyICmpInst, so only deal with the tricky case. 3495 3496 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3497 return nullptr; 3498 3499 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3500 // should have been folded away previously and not enter in here. 3501 3502 // We're performing an unsigned comp with a sign extended value. 3503 // This is true if the input is >= 0. [aka >s -1] 3504 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3505 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3506 3507 // Finally, return the value computed. 3508 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3509 return replaceInstUsesWith(ICmp, Result); 3510 3511 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3512 return BinaryOperator::CreateNot(Result); 3513 } 3514 3515 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3516 Value *RHS, Instruction &OrigI, 3517 Value *&Result, Constant *&Overflow) { 3518 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3519 std::swap(LHS, RHS); 3520 3521 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3522 Result = OpResult; 3523 Overflow = OverflowVal; 3524 if (ReuseName) 3525 Result->takeName(&OrigI); 3526 return true; 3527 }; 3528 3529 // If the overflow check was an add followed by a compare, the insertion point 3530 // may be pointing to the compare. We want to insert the new instructions 3531 // before the add in case there are uses of the add between the add and the 3532 // compare. 3533 Builder.SetInsertPoint(&OrigI); 3534 3535 switch (OCF) { 3536 case OCF_INVALID: 3537 llvm_unreachable("bad overflow check kind!"); 3538 3539 case OCF_UNSIGNED_ADD: { 3540 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3541 if (OR == OverflowResult::NeverOverflows) 3542 return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), 3543 true); 3544 3545 if (OR == OverflowResult::AlwaysOverflows) 3546 return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); 3547 3548 // Fall through uadd into sadd 3549 LLVM_FALLTHROUGH; 3550 } 3551 case OCF_SIGNED_ADD: { 3552 // X + 0 -> {X, false} 3553 if (match(RHS, m_Zero())) 3554 return SetResult(LHS, Builder.getFalse(), false); 3555 3556 // We can strength reduce this signed add into a regular add if we can prove 3557 // that it will never overflow. 3558 if (OCF == OCF_SIGNED_ADD) 3559 if (willNotOverflowSignedAdd(LHS, RHS, OrigI)) 3560 return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), 3561 true); 3562 break; 3563 } 3564 3565 case OCF_UNSIGNED_SUB: 3566 case OCF_SIGNED_SUB: { 3567 // X - 0 -> {X, false} 3568 if (match(RHS, m_Zero())) 3569 return SetResult(LHS, Builder.getFalse(), false); 3570 3571 if (OCF == OCF_SIGNED_SUB) { 3572 if (willNotOverflowSignedSub(LHS, RHS, OrigI)) 3573 return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), 3574 true); 3575 } else { 3576 if (willNotOverflowUnsignedSub(LHS, RHS, OrigI)) 3577 return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), 3578 true); 3579 } 3580 break; 3581 } 3582 3583 case OCF_UNSIGNED_MUL: { 3584 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 3585 if (OR == OverflowResult::NeverOverflows) 3586 return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), 3587 true); 3588 if (OR == OverflowResult::AlwaysOverflows) 3589 return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); 3590 LLVM_FALLTHROUGH; 3591 } 3592 case OCF_SIGNED_MUL: 3593 // X * undef -> undef 3594 if (isa<UndefValue>(RHS)) 3595 return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); 3596 3597 // X * 0 -> {0, false} 3598 if (match(RHS, m_Zero())) 3599 return SetResult(RHS, Builder.getFalse(), false); 3600 3601 // X * 1 -> {X, false} 3602 if (match(RHS, m_One())) 3603 return SetResult(LHS, Builder.getFalse(), false); 3604 3605 if (OCF == OCF_SIGNED_MUL) 3606 if (willNotOverflowSignedMul(LHS, RHS, OrigI)) 3607 return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), 3608 true); 3609 break; 3610 } 3611 3612 return false; 3613 } 3614 3615 /// \brief Recognize and process idiom involving test for multiplication 3616 /// overflow. 3617 /// 3618 /// The caller has matched a pattern of the form: 3619 /// I = cmp u (mul(zext A, zext B), V 3620 /// The function checks if this is a test for overflow and if so replaces 3621 /// multiplication with call to 'mul.with.overflow' intrinsic. 3622 /// 3623 /// \param I Compare instruction. 3624 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 3625 /// the compare instruction. Must be of integer type. 3626 /// \param OtherVal The other argument of compare instruction. 3627 /// \returns Instruction which must replace the compare instruction, NULL if no 3628 /// replacement required. 3629 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 3630 Value *OtherVal, InstCombiner &IC) { 3631 // Don't bother doing this transformation for pointers, don't do it for 3632 // vectors. 3633 if (!isa<IntegerType>(MulVal->getType())) 3634 return nullptr; 3635 3636 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 3637 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 3638 auto *MulInstr = dyn_cast<Instruction>(MulVal); 3639 if (!MulInstr) 3640 return nullptr; 3641 assert(MulInstr->getOpcode() == Instruction::Mul); 3642 3643 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 3644 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 3645 assert(LHS->getOpcode() == Instruction::ZExt); 3646 assert(RHS->getOpcode() == Instruction::ZExt); 3647 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 3648 3649 // Calculate type and width of the result produced by mul.with.overflow. 3650 Type *TyA = A->getType(), *TyB = B->getType(); 3651 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 3652 WidthB = TyB->getPrimitiveSizeInBits(); 3653 unsigned MulWidth; 3654 Type *MulType; 3655 if (WidthB > WidthA) { 3656 MulWidth = WidthB; 3657 MulType = TyB; 3658 } else { 3659 MulWidth = WidthA; 3660 MulType = TyA; 3661 } 3662 3663 // In order to replace the original mul with a narrower mul.with.overflow, 3664 // all uses must ignore upper bits of the product. The number of used low 3665 // bits must be not greater than the width of mul.with.overflow. 3666 if (MulVal->hasNUsesOrMore(2)) 3667 for (User *U : MulVal->users()) { 3668 if (U == &I) 3669 continue; 3670 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3671 // Check if truncation ignores bits above MulWidth. 3672 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 3673 if (TruncWidth > MulWidth) 3674 return nullptr; 3675 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3676 // Check if AND ignores bits above MulWidth. 3677 if (BO->getOpcode() != Instruction::And) 3678 return nullptr; 3679 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 3680 const APInt &CVal = CI->getValue(); 3681 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 3682 return nullptr; 3683 } else { 3684 // In this case we could have the operand of the binary operation 3685 // being defined in another block, and performing the replacement 3686 // could break the dominance relation. 3687 return nullptr; 3688 } 3689 } else { 3690 // Other uses prohibit this transformation. 3691 return nullptr; 3692 } 3693 } 3694 3695 // Recognize patterns 3696 switch (I.getPredicate()) { 3697 case ICmpInst::ICMP_EQ: 3698 case ICmpInst::ICMP_NE: 3699 // Recognize pattern: 3700 // mulval = mul(zext A, zext B) 3701 // cmp eq/neq mulval, zext trunc mulval 3702 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 3703 if (Zext->hasOneUse()) { 3704 Value *ZextArg = Zext->getOperand(0); 3705 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 3706 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 3707 break; //Recognized 3708 } 3709 3710 // Recognize pattern: 3711 // mulval = mul(zext A, zext B) 3712 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 3713 ConstantInt *CI; 3714 Value *ValToMask; 3715 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 3716 if (ValToMask != MulVal) 3717 return nullptr; 3718 const APInt &CVal = CI->getValue() + 1; 3719 if (CVal.isPowerOf2()) { 3720 unsigned MaskWidth = CVal.logBase2(); 3721 if (MaskWidth == MulWidth) 3722 break; // Recognized 3723 } 3724 } 3725 return nullptr; 3726 3727 case ICmpInst::ICMP_UGT: 3728 // Recognize pattern: 3729 // mulval = mul(zext A, zext B) 3730 // cmp ugt mulval, max 3731 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3732 APInt MaxVal = APInt::getMaxValue(MulWidth); 3733 MaxVal = MaxVal.zext(CI->getBitWidth()); 3734 if (MaxVal.eq(CI->getValue())) 3735 break; // Recognized 3736 } 3737 return nullptr; 3738 3739 case ICmpInst::ICMP_UGE: 3740 // Recognize pattern: 3741 // mulval = mul(zext A, zext B) 3742 // cmp uge mulval, max+1 3743 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3744 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3745 if (MaxVal.eq(CI->getValue())) 3746 break; // Recognized 3747 } 3748 return nullptr; 3749 3750 case ICmpInst::ICMP_ULE: 3751 // Recognize pattern: 3752 // mulval = mul(zext A, zext B) 3753 // cmp ule mulval, max 3754 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3755 APInt MaxVal = APInt::getMaxValue(MulWidth); 3756 MaxVal = MaxVal.zext(CI->getBitWidth()); 3757 if (MaxVal.eq(CI->getValue())) 3758 break; // Recognized 3759 } 3760 return nullptr; 3761 3762 case ICmpInst::ICMP_ULT: 3763 // Recognize pattern: 3764 // mulval = mul(zext A, zext B) 3765 // cmp ule mulval, max + 1 3766 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 3767 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 3768 if (MaxVal.eq(CI->getValue())) 3769 break; // Recognized 3770 } 3771 return nullptr; 3772 3773 default: 3774 return nullptr; 3775 } 3776 3777 InstCombiner::BuilderTy &Builder = IC.Builder; 3778 Builder.SetInsertPoint(MulInstr); 3779 3780 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 3781 Value *MulA = A, *MulB = B; 3782 if (WidthA < MulWidth) 3783 MulA = Builder.CreateZExt(A, MulType); 3784 if (WidthB < MulWidth) 3785 MulB = Builder.CreateZExt(B, MulType); 3786 Value *F = Intrinsic::getDeclaration(I.getModule(), 3787 Intrinsic::umul_with_overflow, MulType); 3788 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 3789 IC.Worklist.Add(MulInstr); 3790 3791 // If there are uses of mul result other than the comparison, we know that 3792 // they are truncation or binary AND. Change them to use result of 3793 // mul.with.overflow and adjust properly mask/size. 3794 if (MulVal->hasNUsesOrMore(2)) { 3795 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 3796 for (User *U : MulVal->users()) { 3797 if (U == &I || U == OtherVal) 3798 continue; 3799 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3800 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 3801 IC.replaceInstUsesWith(*TI, Mul); 3802 else 3803 TI->setOperand(0, Mul); 3804 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3805 assert(BO->getOpcode() == Instruction::And); 3806 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 3807 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 3808 APInt ShortMask = CI->getValue().trunc(MulWidth); 3809 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 3810 Instruction *Zext = 3811 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 3812 IC.Worklist.Add(Zext); 3813 IC.replaceInstUsesWith(*BO, Zext); 3814 } else { 3815 llvm_unreachable("Unexpected Binary operation"); 3816 } 3817 IC.Worklist.Add(cast<Instruction>(U)); 3818 } 3819 } 3820 if (isa<Instruction>(OtherVal)) 3821 IC.Worklist.Add(cast<Instruction>(OtherVal)); 3822 3823 // The original icmp gets replaced with the overflow value, maybe inverted 3824 // depending on predicate. 3825 bool Inverse = false; 3826 switch (I.getPredicate()) { 3827 case ICmpInst::ICMP_NE: 3828 break; 3829 case ICmpInst::ICMP_EQ: 3830 Inverse = true; 3831 break; 3832 case ICmpInst::ICMP_UGT: 3833 case ICmpInst::ICMP_UGE: 3834 if (I.getOperand(0) == MulVal) 3835 break; 3836 Inverse = true; 3837 break; 3838 case ICmpInst::ICMP_ULT: 3839 case ICmpInst::ICMP_ULE: 3840 if (I.getOperand(1) == MulVal) 3841 break; 3842 Inverse = true; 3843 break; 3844 default: 3845 llvm_unreachable("Unexpected predicate"); 3846 } 3847 if (Inverse) { 3848 Value *Res = Builder.CreateExtractValue(Call, 1); 3849 return BinaryOperator::CreateNot(Res); 3850 } 3851 3852 return ExtractValueInst::Create(Call, 1); 3853 } 3854 3855 /// When performing a comparison against a constant, it is possible that not all 3856 /// the bits in the LHS are demanded. This helper method computes the mask that 3857 /// IS demanded. 3858 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 3859 const APInt *RHS; 3860 if (!match(I.getOperand(1), m_APInt(RHS))) 3861 return APInt::getAllOnesValue(BitWidth); 3862 3863 // If this is a normal comparison, it demands all bits. If it is a sign bit 3864 // comparison, it only demands the sign bit. 3865 bool UnusedBit; 3866 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 3867 return APInt::getSignMask(BitWidth); 3868 3869 switch (I.getPredicate()) { 3870 // For a UGT comparison, we don't care about any bits that 3871 // correspond to the trailing ones of the comparand. The value of these 3872 // bits doesn't impact the outcome of the comparison, because any value 3873 // greater than the RHS must differ in a bit higher than these due to carry. 3874 case ICmpInst::ICMP_UGT: 3875 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 3876 3877 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 3878 // Any value less than the RHS must differ in a higher bit because of carries. 3879 case ICmpInst::ICMP_ULT: 3880 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 3881 3882 default: 3883 return APInt::getAllOnesValue(BitWidth); 3884 } 3885 } 3886 3887 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 3888 /// should be swapped. 3889 /// The decision is based on how many times these two operands are reused 3890 /// as subtract operands and their positions in those instructions. 3891 /// The rational is that several architectures use the same instruction for 3892 /// both subtract and cmp, thus it is better if the order of those operands 3893 /// match. 3894 /// \return true if Op0 and Op1 should be swapped. 3895 static bool swapMayExposeCSEOpportunities(const Value * Op0, 3896 const Value * Op1) { 3897 // Filter out pointer value as those cannot appears directly in subtract. 3898 // FIXME: we may want to go through inttoptrs or bitcasts. 3899 if (Op0->getType()->isPointerTy()) 3900 return false; 3901 // Count every uses of both Op0 and Op1 in a subtract. 3902 // Each time Op0 is the first operand, count -1: swapping is bad, the 3903 // subtract has already the same layout as the compare. 3904 // Each time Op0 is the second operand, count +1: swapping is good, the 3905 // subtract has a different layout as the compare. 3906 // At the end, if the benefit is greater than 0, Op0 should come second to 3907 // expose more CSE opportunities. 3908 int GlobalSwapBenefits = 0; 3909 for (const User *U : Op0->users()) { 3910 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 3911 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 3912 continue; 3913 // If Op0 is the first argument, this is not beneficial to swap the 3914 // arguments. 3915 int LocalSwapBenefits = -1; 3916 unsigned Op1Idx = 1; 3917 if (BinOp->getOperand(Op1Idx) == Op0) { 3918 Op1Idx = 0; 3919 LocalSwapBenefits = 1; 3920 } 3921 if (BinOp->getOperand(Op1Idx) != Op1) 3922 continue; 3923 GlobalSwapBenefits += LocalSwapBenefits; 3924 } 3925 return GlobalSwapBenefits > 0; 3926 } 3927 3928 /// \brief Check that one use is in the same block as the definition and all 3929 /// other uses are in blocks dominated by a given block. 3930 /// 3931 /// \param DI Definition 3932 /// \param UI Use 3933 /// \param DB Block that must dominate all uses of \p DI outside 3934 /// the parent block 3935 /// \return true when \p UI is the only use of \p DI in the parent block 3936 /// and all other uses of \p DI are in blocks dominated by \p DB. 3937 /// 3938 bool InstCombiner::dominatesAllUses(const Instruction *DI, 3939 const Instruction *UI, 3940 const BasicBlock *DB) const { 3941 assert(DI && UI && "Instruction not defined\n"); 3942 // Ignore incomplete definitions. 3943 if (!DI->getParent()) 3944 return false; 3945 // DI and UI must be in the same block. 3946 if (DI->getParent() != UI->getParent()) 3947 return false; 3948 // Protect from self-referencing blocks. 3949 if (DI->getParent() == DB) 3950 return false; 3951 for (const User *U : DI->users()) { 3952 auto *Usr = cast<Instruction>(U); 3953 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 3954 return false; 3955 } 3956 return true; 3957 } 3958 3959 /// Return true when the instruction sequence within a block is select-cmp-br. 3960 static bool isChainSelectCmpBranch(const SelectInst *SI) { 3961 const BasicBlock *BB = SI->getParent(); 3962 if (!BB) 3963 return false; 3964 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 3965 if (!BI || BI->getNumSuccessors() != 2) 3966 return false; 3967 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3968 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3969 return false; 3970 return true; 3971 } 3972 3973 /// \brief True when a select result is replaced by one of its operands 3974 /// in select-icmp sequence. This will eventually result in the elimination 3975 /// of the select. 3976 /// 3977 /// \param SI Select instruction 3978 /// \param Icmp Compare instruction 3979 /// \param SIOpd Operand that replaces the select 3980 /// 3981 /// Notes: 3982 /// - The replacement is global and requires dominator information 3983 /// - The caller is responsible for the actual replacement 3984 /// 3985 /// Example: 3986 /// 3987 /// entry: 3988 /// %4 = select i1 %3, %C* %0, %C* null 3989 /// %5 = icmp eq %C* %4, null 3990 /// br i1 %5, label %9, label %7 3991 /// ... 3992 /// ; <label>:7 ; preds = %entry 3993 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3994 /// ... 3995 /// 3996 /// can be transformed to 3997 /// 3998 /// %5 = icmp eq %C* %0, null 3999 /// %6 = select i1 %3, i1 %5, i1 true 4000 /// br i1 %6, label %9, label %7 4001 /// ... 4002 /// ; <label>:7 ; preds = %entry 4003 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4004 /// 4005 /// Similar when the first operand of the select is a constant or/and 4006 /// the compare is for not equal rather than equal. 4007 /// 4008 /// NOTE: The function is only called when the select and compare constants 4009 /// are equal, the optimization can work only for EQ predicates. This is not a 4010 /// major restriction since a NE compare should be 'normalized' to an equal 4011 /// compare, which usually happens in the combiner and test case 4012 /// select-cmp-br.ll checks for it. 4013 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4014 const ICmpInst *Icmp, 4015 const unsigned SIOpd) { 4016 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4017 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4018 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4019 // The check for the single predecessor is not the best that can be 4020 // done. But it protects efficiently against cases like when SI's 4021 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4022 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4023 // replaced can be reached on either path. So the uniqueness check 4024 // guarantees that the path all uses of SI (outside SI's parent) are on 4025 // is disjoint from all other paths out of SI. But that information 4026 // is more expensive to compute, and the trade-off here is in favor 4027 // of compile-time. It should also be noticed that we check for a single 4028 // predecessor and not only uniqueness. This to handle the situation when 4029 // Succ and Succ1 points to the same basic block. 4030 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4031 NumSel++; 4032 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4033 return true; 4034 } 4035 } 4036 return false; 4037 } 4038 4039 /// Try to fold the comparison based on range information we can get by checking 4040 /// whether bits are known to be zero or one in the inputs. 4041 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4042 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4043 Type *Ty = Op0->getType(); 4044 ICmpInst::Predicate Pred = I.getPredicate(); 4045 4046 // Get scalar or pointer size. 4047 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4048 ? Ty->getScalarSizeInBits() 4049 : DL.getTypeSizeInBits(Ty->getScalarType()); 4050 4051 if (!BitWidth) 4052 return nullptr; 4053 4054 KnownBits Op0Known(BitWidth); 4055 KnownBits Op1Known(BitWidth); 4056 4057 if (SimplifyDemandedBits(&I, 0, 4058 getDemandedBitsLHSMask(I, BitWidth), 4059 Op0Known, 0)) 4060 return &I; 4061 4062 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4063 Op1Known, 0)) 4064 return &I; 4065 4066 // Given the known and unknown bits, compute a range that the LHS could be 4067 // in. Compute the Min, Max and RHS values based on the known bits. For the 4068 // EQ and NE we use unsigned values. 4069 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4070 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4071 if (I.isSigned()) { 4072 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4073 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4074 } else { 4075 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4076 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4077 } 4078 4079 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4080 // out that the LHS or RHS is a constant. Constant fold this now, so that 4081 // code below can assume that Min != Max. 4082 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4083 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4084 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4085 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4086 4087 // Based on the range information we know about the LHS, see if we can 4088 // simplify this comparison. For example, (x&4) < 8 is always true. 4089 switch (Pred) { 4090 default: 4091 llvm_unreachable("Unknown icmp opcode!"); 4092 case ICmpInst::ICMP_EQ: 4093 case ICmpInst::ICMP_NE: { 4094 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4095 return Pred == CmpInst::ICMP_EQ 4096 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4097 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4098 } 4099 4100 // If all bits are known zero except for one, then we know at most one bit 4101 // is set. If the comparison is against zero, then this is a check to see if 4102 // *that* bit is set. 4103 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4104 if (Op1Known.isZero()) { 4105 // If the LHS is an AND with the same constant, look through it. 4106 Value *LHS = nullptr; 4107 const APInt *LHSC; 4108 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4109 *LHSC != Op0KnownZeroInverted) 4110 LHS = Op0; 4111 4112 Value *X; 4113 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4114 APInt ValToCheck = Op0KnownZeroInverted; 4115 Type *XTy = X->getType(); 4116 if (ValToCheck.isPowerOf2()) { 4117 // ((1 << X) & 8) == 0 -> X != 3 4118 // ((1 << X) & 8) != 0 -> X == 3 4119 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4120 auto NewPred = ICmpInst::getInversePredicate(Pred); 4121 return new ICmpInst(NewPred, X, CmpC); 4122 } else if ((++ValToCheck).isPowerOf2()) { 4123 // ((1 << X) & 7) == 0 -> X >= 3 4124 // ((1 << X) & 7) != 0 -> X < 3 4125 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4126 auto NewPred = 4127 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4128 return new ICmpInst(NewPred, X, CmpC); 4129 } 4130 } 4131 4132 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4133 const APInt *CI; 4134 if (Op0KnownZeroInverted.isOneValue() && 4135 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4136 // ((8 >>u X) & 1) == 0 -> X != 3 4137 // ((8 >>u X) & 1) != 0 -> X == 3 4138 unsigned CmpVal = CI->countTrailingZeros(); 4139 auto NewPred = ICmpInst::getInversePredicate(Pred); 4140 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4141 } 4142 } 4143 break; 4144 } 4145 case ICmpInst::ICMP_ULT: { 4146 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4147 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4148 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4149 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4150 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4151 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4152 4153 const APInt *CmpC; 4154 if (match(Op1, m_APInt(CmpC))) { 4155 // A <u C -> A == C-1 if min(A)+1 == C 4156 if (*CmpC == Op0Min + 1) 4157 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4158 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4159 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4160 // exceeds the log2 of C. 4161 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4162 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4163 Constant::getNullValue(Op1->getType())); 4164 } 4165 break; 4166 } 4167 case ICmpInst::ICMP_UGT: { 4168 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4169 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4170 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4171 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4172 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4173 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4174 4175 const APInt *CmpC; 4176 if (match(Op1, m_APInt(CmpC))) { 4177 // A >u C -> A == C+1 if max(a)-1 == C 4178 if (*CmpC == Op0Max - 1) 4179 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4180 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4181 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4182 // exceeds the log2 of C. 4183 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4184 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4185 Constant::getNullValue(Op1->getType())); 4186 } 4187 break; 4188 } 4189 case ICmpInst::ICMP_SLT: { 4190 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4191 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4192 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4193 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4194 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4195 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4196 const APInt *CmpC; 4197 if (match(Op1, m_APInt(CmpC))) { 4198 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4199 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4200 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4201 } 4202 break; 4203 } 4204 case ICmpInst::ICMP_SGT: { 4205 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4206 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4207 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4208 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4209 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4210 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4211 const APInt *CmpC; 4212 if (match(Op1, m_APInt(CmpC))) { 4213 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4214 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4215 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4216 } 4217 break; 4218 } 4219 case ICmpInst::ICMP_SGE: 4220 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4221 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4222 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4223 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4224 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4225 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4226 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4227 break; 4228 case ICmpInst::ICMP_SLE: 4229 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4230 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4231 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4232 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4233 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4234 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4235 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4236 break; 4237 case ICmpInst::ICMP_UGE: 4238 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4239 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4240 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4241 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4242 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4243 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4244 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4245 break; 4246 case ICmpInst::ICMP_ULE: 4247 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4248 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4249 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4250 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4251 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4252 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4253 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4254 break; 4255 } 4256 4257 // Turn a signed comparison into an unsigned one if both operands are known to 4258 // have the same sign. 4259 if (I.isSigned() && 4260 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4261 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4262 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4263 4264 return nullptr; 4265 } 4266 4267 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4268 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4269 /// allows them to be folded in visitICmpInst. 4270 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4271 ICmpInst::Predicate Pred = I.getPredicate(); 4272 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4273 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4274 return nullptr; 4275 4276 Value *Op0 = I.getOperand(0); 4277 Value *Op1 = I.getOperand(1); 4278 auto *Op1C = dyn_cast<Constant>(Op1); 4279 if (!Op1C) 4280 return nullptr; 4281 4282 // Check if the constant operand can be safely incremented/decremented without 4283 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4284 // the edge cases for us, so we just assert on them. For vectors, we must 4285 // handle the edge cases. 4286 Type *Op1Type = Op1->getType(); 4287 bool IsSigned = I.isSigned(); 4288 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4289 auto *CI = dyn_cast<ConstantInt>(Op1C); 4290 if (CI) { 4291 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4292 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4293 } else if (Op1Type->isVectorTy()) { 4294 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4295 // are for scalar, we could remove the min/max checks. However, to do that, 4296 // we would have to use insertelement/shufflevector to replace edge values. 4297 unsigned NumElts = Op1Type->getVectorNumElements(); 4298 for (unsigned i = 0; i != NumElts; ++i) { 4299 Constant *Elt = Op1C->getAggregateElement(i); 4300 if (!Elt) 4301 return nullptr; 4302 4303 if (isa<UndefValue>(Elt)) 4304 continue; 4305 4306 // Bail out if we can't determine if this constant is min/max or if we 4307 // know that this constant is min/max. 4308 auto *CI = dyn_cast<ConstantInt>(Elt); 4309 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4310 return nullptr; 4311 } 4312 } else { 4313 // ConstantExpr? 4314 return nullptr; 4315 } 4316 4317 // Increment or decrement the constant and set the new comparison predicate: 4318 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4319 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4320 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4321 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4322 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4323 } 4324 4325 /// Integer compare with boolean values can always be turned into bitwise ops. 4326 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4327 InstCombiner::BuilderTy &Builder) { 4328 Value *A = I.getOperand(0), *B = I.getOperand(1); 4329 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4330 4331 // A boolean compared to true/false can be simplified to Op0/true/false in 4332 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4333 // Cases not handled by InstSimplify are always 'not' of Op0. 4334 if (match(B, m_Zero())) { 4335 switch (I.getPredicate()) { 4336 case CmpInst::ICMP_EQ: // A == 0 -> !A 4337 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4338 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4339 return BinaryOperator::CreateNot(A); 4340 default: 4341 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4342 } 4343 } else if (match(B, m_One())) { 4344 switch (I.getPredicate()) { 4345 case CmpInst::ICMP_NE: // A != 1 -> !A 4346 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4347 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4348 return BinaryOperator::CreateNot(A); 4349 default: 4350 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4351 } 4352 } 4353 4354 switch (I.getPredicate()) { 4355 default: 4356 llvm_unreachable("Invalid icmp instruction!"); 4357 case ICmpInst::ICMP_EQ: 4358 // icmp eq i1 A, B -> ~(A ^ B) 4359 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4360 4361 case ICmpInst::ICMP_NE: 4362 // icmp ne i1 A, B -> A ^ B 4363 return BinaryOperator::CreateXor(A, B); 4364 4365 case ICmpInst::ICMP_UGT: 4366 // icmp ugt -> icmp ult 4367 std::swap(A, B); 4368 LLVM_FALLTHROUGH; 4369 case ICmpInst::ICMP_ULT: 4370 // icmp ult i1 A, B -> ~A & B 4371 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4372 4373 case ICmpInst::ICMP_SGT: 4374 // icmp sgt -> icmp slt 4375 std::swap(A, B); 4376 LLVM_FALLTHROUGH; 4377 case ICmpInst::ICMP_SLT: 4378 // icmp slt i1 A, B -> A & ~B 4379 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4380 4381 case ICmpInst::ICMP_UGE: 4382 // icmp uge -> icmp ule 4383 std::swap(A, B); 4384 LLVM_FALLTHROUGH; 4385 case ICmpInst::ICMP_ULE: 4386 // icmp ule i1 A, B -> ~A | B 4387 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4388 4389 case ICmpInst::ICMP_SGE: 4390 // icmp sge -> icmp sle 4391 std::swap(A, B); 4392 LLVM_FALLTHROUGH; 4393 case ICmpInst::ICMP_SLE: 4394 // icmp sle i1 A, B -> A | ~B 4395 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4396 } 4397 } 4398 4399 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4400 bool Changed = false; 4401 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4402 unsigned Op0Cplxity = getComplexity(Op0); 4403 unsigned Op1Cplxity = getComplexity(Op1); 4404 4405 /// Orders the operands of the compare so that they are listed from most 4406 /// complex to least complex. This puts constants before unary operators, 4407 /// before binary operators. 4408 if (Op0Cplxity < Op1Cplxity || 4409 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4410 I.swapOperands(); 4411 std::swap(Op0, Op1); 4412 Changed = true; 4413 } 4414 4415 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4416 SQ.getWithInstruction(&I))) 4417 return replaceInstUsesWith(I, V); 4418 4419 // Comparing -val or val with non-zero is the same as just comparing val 4420 // ie, abs(val) != 0 -> val != 0 4421 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4422 Value *Cond, *SelectTrue, *SelectFalse; 4423 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4424 m_Value(SelectFalse)))) { 4425 if (Value *V = dyn_castNegVal(SelectTrue)) { 4426 if (V == SelectFalse) 4427 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4428 } 4429 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4430 if (V == SelectTrue) 4431 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4432 } 4433 } 4434 } 4435 4436 if (Op0->getType()->isIntOrIntVectorTy(1)) 4437 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4438 return Res; 4439 4440 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4441 return NewICmp; 4442 4443 if (Instruction *Res = foldICmpWithConstant(I)) 4444 return Res; 4445 4446 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4447 return Res; 4448 4449 // Test if the ICmpInst instruction is used exclusively by a select as 4450 // part of a minimum or maximum operation. If so, refrain from doing 4451 // any other folding. This helps out other analyses which understand 4452 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4453 // and CodeGen. And in this case, at least one of the comparison 4454 // operands has at least one user besides the compare (the select), 4455 // which would often largely negate the benefit of folding anyway. 4456 // 4457 // Do the same for the other patterns recognized by matchSelectPattern. 4458 if (I.hasOneUse()) 4459 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4460 Value *A, *B; 4461 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4462 if (SPR.Flavor != SPF_UNKNOWN) 4463 return nullptr; 4464 } 4465 4466 // Do this after checking for min/max to prevent infinite looping. 4467 if (Instruction *Res = foldICmpWithZero(I)) 4468 return Res; 4469 4470 // FIXME: We only do this after checking for min/max to prevent infinite 4471 // looping caused by a reverse canonicalization of these patterns for min/max. 4472 // FIXME: The organization of folds is a mess. These would naturally go into 4473 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4474 // down here after the min/max restriction. 4475 ICmpInst::Predicate Pred = I.getPredicate(); 4476 const APInt *C; 4477 if (match(Op1, m_APInt(C))) { 4478 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4479 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4480 Constant *Zero = Constant::getNullValue(Op0->getType()); 4481 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4482 } 4483 4484 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4485 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4486 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4487 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4488 } 4489 } 4490 4491 if (Instruction *Res = foldICmpInstWithConstant(I)) 4492 return Res; 4493 4494 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4495 return Res; 4496 4497 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4498 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4499 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4500 return NI; 4501 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4502 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4503 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4504 return NI; 4505 4506 // Try to optimize equality comparisons against alloca-based pointers. 4507 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4508 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4509 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4510 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4511 return New; 4512 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4513 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4514 return New; 4515 } 4516 4517 // Test to see if the operands of the icmp are casted versions of other 4518 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 4519 // now. 4520 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 4521 if (Op0->getType()->isPointerTy() && 4522 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 4523 // We keep moving the cast from the left operand over to the right 4524 // operand, where it can often be eliminated completely. 4525 Op0 = CI->getOperand(0); 4526 4527 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 4528 // so eliminate it as well. 4529 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 4530 Op1 = CI2->getOperand(0); 4531 4532 // If Op1 is a constant, we can fold the cast into the constant. 4533 if (Op0->getType() != Op1->getType()) { 4534 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 4535 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 4536 } else { 4537 // Otherwise, cast the RHS right before the icmp 4538 Op1 = Builder.CreateBitCast(Op1, Op0->getType()); 4539 } 4540 } 4541 return new ICmpInst(I.getPredicate(), Op0, Op1); 4542 } 4543 } 4544 4545 if (isa<CastInst>(Op0)) { 4546 // Handle the special case of: icmp (cast bool to X), <cst> 4547 // This comes up when you have code like 4548 // int X = A < B; 4549 // if (X) ... 4550 // For generality, we handle any zero-extension of any operand comparison 4551 // with a constant or another cast from the same type. 4552 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 4553 if (Instruction *R = foldICmpWithCastAndCast(I)) 4554 return R; 4555 } 4556 4557 if (Instruction *Res = foldICmpBinOp(I)) 4558 return Res; 4559 4560 if (Instruction *Res = foldICmpWithMinMax(I)) 4561 return Res; 4562 4563 { 4564 Value *A, *B; 4565 // Transform (A & ~B) == 0 --> (A & B) != 0 4566 // and (A & ~B) != 0 --> (A & B) == 0 4567 // if A is a power of 2. 4568 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4569 match(Op1, m_Zero()) && 4570 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 4571 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 4572 Op1); 4573 4574 // ~X < ~Y --> Y < X 4575 // ~X < C --> X > ~C 4576 if (match(Op0, m_Not(m_Value(A)))) { 4577 if (match(Op1, m_Not(m_Value(B)))) 4578 return new ICmpInst(I.getPredicate(), B, A); 4579 4580 const APInt *C; 4581 if (match(Op1, m_APInt(C))) 4582 return new ICmpInst(I.getSwappedPredicate(), A, 4583 ConstantInt::get(Op1->getType(), ~(*C))); 4584 } 4585 4586 Instruction *AddI = nullptr; 4587 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4588 m_Instruction(AddI))) && 4589 isa<IntegerType>(A->getType())) { 4590 Value *Result; 4591 Constant *Overflow; 4592 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4593 Overflow)) { 4594 replaceInstUsesWith(*AddI, Result); 4595 return replaceInstUsesWith(I, Overflow); 4596 } 4597 } 4598 4599 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4600 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4601 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 4602 return R; 4603 } 4604 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4605 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 4606 return R; 4607 } 4608 } 4609 4610 if (Instruction *Res = foldICmpEquality(I)) 4611 return Res; 4612 4613 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4614 // an i1 which indicates whether or not we successfully did the swap. 4615 // 4616 // Replace comparisons between the old value and the expected value with the 4617 // indicator that 'cmpxchg' returns. 4618 // 4619 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4620 // spuriously fail. In those cases, the old value may equal the expected 4621 // value but it is possible for the swap to not occur. 4622 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4623 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4624 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4625 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4626 !ACXI->isWeak()) 4627 return ExtractValueInst::Create(ACXI, 1); 4628 4629 { 4630 Value *X; ConstantInt *Cst; 4631 // icmp X+Cst, X 4632 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4633 return foldICmpAddOpConst(X, Cst, I.getPredicate()); 4634 4635 // icmp X, X+Cst 4636 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4637 return foldICmpAddOpConst(X, Cst, I.getSwappedPredicate()); 4638 } 4639 return Changed ? &I : nullptr; 4640 } 4641 4642 /// Fold fcmp ([us]itofp x, cst) if possible. 4643 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 4644 Constant *RHSC) { 4645 if (!isa<ConstantFP>(RHSC)) return nullptr; 4646 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4647 4648 // Get the width of the mantissa. We don't want to hack on conversions that 4649 // might lose information from the integer, e.g. "i64 -> float" 4650 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4651 if (MantissaWidth == -1) return nullptr; // Unknown. 4652 4653 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4654 4655 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4656 4657 if (I.isEquality()) { 4658 FCmpInst::Predicate P = I.getPredicate(); 4659 bool IsExact = false; 4660 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4661 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4662 4663 // If the floating point constant isn't an integer value, we know if we will 4664 // ever compare equal / not equal to it. 4665 if (!IsExact) { 4666 // TODO: Can never be -0.0 and other non-representable values 4667 APFloat RHSRoundInt(RHS); 4668 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4669 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4670 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4671 return replaceInstUsesWith(I, Builder.getFalse()); 4672 4673 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4674 return replaceInstUsesWith(I, Builder.getTrue()); 4675 } 4676 } 4677 4678 // TODO: If the constant is exactly representable, is it always OK to do 4679 // equality compares as integer? 4680 } 4681 4682 // Check to see that the input is converted from an integer type that is small 4683 // enough that preserves all bits. TODO: check here for "known" sign bits. 4684 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4685 unsigned InputSize = IntTy->getScalarSizeInBits(); 4686 4687 // Following test does NOT adjust InputSize downwards for signed inputs, 4688 // because the most negative value still requires all the mantissa bits 4689 // to distinguish it from one less than that value. 4690 if ((int)InputSize > MantissaWidth) { 4691 // Conversion would lose accuracy. Check if loss can impact comparison. 4692 int Exp = ilogb(RHS); 4693 if (Exp == APFloat::IEK_Inf) { 4694 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4695 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4696 // Conversion could create infinity. 4697 return nullptr; 4698 } else { 4699 // Note that if RHS is zero or NaN, then Exp is negative 4700 // and first condition is trivially false. 4701 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4702 // Conversion could affect comparison. 4703 return nullptr; 4704 } 4705 } 4706 4707 // Otherwise, we can potentially simplify the comparison. We know that it 4708 // will always come through as an integer value and we know the constant is 4709 // not a NAN (it would have been previously simplified). 4710 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4711 4712 ICmpInst::Predicate Pred; 4713 switch (I.getPredicate()) { 4714 default: llvm_unreachable("Unexpected predicate!"); 4715 case FCmpInst::FCMP_UEQ: 4716 case FCmpInst::FCMP_OEQ: 4717 Pred = ICmpInst::ICMP_EQ; 4718 break; 4719 case FCmpInst::FCMP_UGT: 4720 case FCmpInst::FCMP_OGT: 4721 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4722 break; 4723 case FCmpInst::FCMP_UGE: 4724 case FCmpInst::FCMP_OGE: 4725 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4726 break; 4727 case FCmpInst::FCMP_ULT: 4728 case FCmpInst::FCMP_OLT: 4729 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4730 break; 4731 case FCmpInst::FCMP_ULE: 4732 case FCmpInst::FCMP_OLE: 4733 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4734 break; 4735 case FCmpInst::FCMP_UNE: 4736 case FCmpInst::FCMP_ONE: 4737 Pred = ICmpInst::ICMP_NE; 4738 break; 4739 case FCmpInst::FCMP_ORD: 4740 return replaceInstUsesWith(I, Builder.getTrue()); 4741 case FCmpInst::FCMP_UNO: 4742 return replaceInstUsesWith(I, Builder.getFalse()); 4743 } 4744 4745 // Now we know that the APFloat is a normal number, zero or inf. 4746 4747 // See if the FP constant is too large for the integer. For example, 4748 // comparing an i8 to 300.0. 4749 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4750 4751 if (!LHSUnsigned) { 4752 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4753 // and large values. 4754 APFloat SMax(RHS.getSemantics()); 4755 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4756 APFloat::rmNearestTiesToEven); 4757 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4758 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4759 Pred == ICmpInst::ICMP_SLE) 4760 return replaceInstUsesWith(I, Builder.getTrue()); 4761 return replaceInstUsesWith(I, Builder.getFalse()); 4762 } 4763 } else { 4764 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4765 // +INF and large values. 4766 APFloat UMax(RHS.getSemantics()); 4767 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4768 APFloat::rmNearestTiesToEven); 4769 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4770 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4771 Pred == ICmpInst::ICMP_ULE) 4772 return replaceInstUsesWith(I, Builder.getTrue()); 4773 return replaceInstUsesWith(I, Builder.getFalse()); 4774 } 4775 } 4776 4777 if (!LHSUnsigned) { 4778 // See if the RHS value is < SignedMin. 4779 APFloat SMin(RHS.getSemantics()); 4780 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4781 APFloat::rmNearestTiesToEven); 4782 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4783 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4784 Pred == ICmpInst::ICMP_SGE) 4785 return replaceInstUsesWith(I, Builder.getTrue()); 4786 return replaceInstUsesWith(I, Builder.getFalse()); 4787 } 4788 } else { 4789 // See if the RHS value is < UnsignedMin. 4790 APFloat SMin(RHS.getSemantics()); 4791 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4792 APFloat::rmNearestTiesToEven); 4793 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4794 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4795 Pred == ICmpInst::ICMP_UGE) 4796 return replaceInstUsesWith(I, Builder.getTrue()); 4797 return replaceInstUsesWith(I, Builder.getFalse()); 4798 } 4799 } 4800 4801 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4802 // [0, UMAX], but it may still be fractional. See if it is fractional by 4803 // casting the FP value to the integer value and back, checking for equality. 4804 // Don't do this for zero, because -0.0 is not fractional. 4805 Constant *RHSInt = LHSUnsigned 4806 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4807 : ConstantExpr::getFPToSI(RHSC, IntTy); 4808 if (!RHS.isZero()) { 4809 bool Equal = LHSUnsigned 4810 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4811 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4812 if (!Equal) { 4813 // If we had a comparison against a fractional value, we have to adjust 4814 // the compare predicate and sometimes the value. RHSC is rounded towards 4815 // zero at this point. 4816 switch (Pred) { 4817 default: llvm_unreachable("Unexpected integer comparison!"); 4818 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4819 return replaceInstUsesWith(I, Builder.getTrue()); 4820 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4821 return replaceInstUsesWith(I, Builder.getFalse()); 4822 case ICmpInst::ICMP_ULE: 4823 // (float)int <= 4.4 --> int <= 4 4824 // (float)int <= -4.4 --> false 4825 if (RHS.isNegative()) 4826 return replaceInstUsesWith(I, Builder.getFalse()); 4827 break; 4828 case ICmpInst::ICMP_SLE: 4829 // (float)int <= 4.4 --> int <= 4 4830 // (float)int <= -4.4 --> int < -4 4831 if (RHS.isNegative()) 4832 Pred = ICmpInst::ICMP_SLT; 4833 break; 4834 case ICmpInst::ICMP_ULT: 4835 // (float)int < -4.4 --> false 4836 // (float)int < 4.4 --> int <= 4 4837 if (RHS.isNegative()) 4838 return replaceInstUsesWith(I, Builder.getFalse()); 4839 Pred = ICmpInst::ICMP_ULE; 4840 break; 4841 case ICmpInst::ICMP_SLT: 4842 // (float)int < -4.4 --> int < -4 4843 // (float)int < 4.4 --> int <= 4 4844 if (!RHS.isNegative()) 4845 Pred = ICmpInst::ICMP_SLE; 4846 break; 4847 case ICmpInst::ICMP_UGT: 4848 // (float)int > 4.4 --> int > 4 4849 // (float)int > -4.4 --> true 4850 if (RHS.isNegative()) 4851 return replaceInstUsesWith(I, Builder.getTrue()); 4852 break; 4853 case ICmpInst::ICMP_SGT: 4854 // (float)int > 4.4 --> int > 4 4855 // (float)int > -4.4 --> int >= -4 4856 if (RHS.isNegative()) 4857 Pred = ICmpInst::ICMP_SGE; 4858 break; 4859 case ICmpInst::ICMP_UGE: 4860 // (float)int >= -4.4 --> true 4861 // (float)int >= 4.4 --> int > 4 4862 if (RHS.isNegative()) 4863 return replaceInstUsesWith(I, Builder.getTrue()); 4864 Pred = ICmpInst::ICMP_UGT; 4865 break; 4866 case ICmpInst::ICMP_SGE: 4867 // (float)int >= -4.4 --> int >= -4 4868 // (float)int >= 4.4 --> int > 4 4869 if (!RHS.isNegative()) 4870 Pred = ICmpInst::ICMP_SGT; 4871 break; 4872 } 4873 } 4874 } 4875 4876 // Lower this FP comparison into an appropriate integer version of the 4877 // comparison. 4878 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4879 } 4880 4881 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4882 bool Changed = false; 4883 4884 /// Orders the operands of the compare so that they are listed from most 4885 /// complex to least complex. This puts constants before unary operators, 4886 /// before binary operators. 4887 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4888 I.swapOperands(); 4889 Changed = true; 4890 } 4891 4892 const CmpInst::Predicate Pred = I.getPredicate(); 4893 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4894 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 4895 SQ.getWithInstruction(&I))) 4896 return replaceInstUsesWith(I, V); 4897 4898 // Simplify 'fcmp pred X, X' 4899 if (Op0 == Op1) { 4900 switch (Pred) { 4901 default: break; 4902 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4903 case FCmpInst::FCMP_ULT: // True if unordered or less than 4904 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4905 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4906 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4907 I.setPredicate(FCmpInst::FCMP_UNO); 4908 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4909 return &I; 4910 4911 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4912 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4913 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4914 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4915 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4916 I.setPredicate(FCmpInst::FCMP_ORD); 4917 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4918 return &I; 4919 } 4920 } 4921 4922 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 4923 // then canonicalize the operand to 0.0. 4924 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 4925 if (!match(Op0, m_Zero()) && isKnownNeverNaN(Op0)) { 4926 I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); 4927 return &I; 4928 } 4929 if (!match(Op1, m_Zero()) && isKnownNeverNaN(Op1)) { 4930 I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); 4931 return &I; 4932 } 4933 } 4934 4935 // Test if the FCmpInst instruction is used exclusively by a select as 4936 // part of a minimum or maximum operation. If so, refrain from doing 4937 // any other folding. This helps out other analyses which understand 4938 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4939 // and CodeGen. And in this case, at least one of the comparison 4940 // operands has at least one user besides the compare (the select), 4941 // which would often largely negate the benefit of folding anyway. 4942 if (I.hasOneUse()) 4943 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4944 Value *A, *B; 4945 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4946 if (SPR.Flavor != SPF_UNKNOWN) 4947 return nullptr; 4948 } 4949 4950 // Handle fcmp with constant RHS 4951 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4952 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4953 switch (LHSI->getOpcode()) { 4954 case Instruction::FPExt: { 4955 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4956 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4957 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4958 if (!RHSF) 4959 break; 4960 4961 const fltSemantics *Sem; 4962 // FIXME: This shouldn't be here. 4963 if (LHSExt->getSrcTy()->isHalfTy()) 4964 Sem = &APFloat::IEEEhalf(); 4965 else if (LHSExt->getSrcTy()->isFloatTy()) 4966 Sem = &APFloat::IEEEsingle(); 4967 else if (LHSExt->getSrcTy()->isDoubleTy()) 4968 Sem = &APFloat::IEEEdouble(); 4969 else if (LHSExt->getSrcTy()->isFP128Ty()) 4970 Sem = &APFloat::IEEEquad(); 4971 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4972 Sem = &APFloat::x87DoubleExtended(); 4973 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4974 Sem = &APFloat::PPCDoubleDouble(); 4975 else 4976 break; 4977 4978 bool Lossy; 4979 APFloat F = RHSF->getValueAPF(); 4980 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4981 4982 // Avoid lossy conversions and denormals. Zero is a special case 4983 // that's OK to convert. 4984 APFloat Fabs = F; 4985 Fabs.clearSign(); 4986 if (!Lossy && 4987 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4988 APFloat::cmpLessThan) || Fabs.isZero())) 4989 4990 return new FCmpInst(Pred, LHSExt->getOperand(0), 4991 ConstantFP::get(RHSC->getContext(), F)); 4992 break; 4993 } 4994 case Instruction::PHI: 4995 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4996 // block. If in the same block, we're encouraging jump threading. If 4997 // not, we are just pessimizing the code by making an i1 phi. 4998 if (LHSI->getParent() == I.getParent()) 4999 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5000 return NV; 5001 break; 5002 case Instruction::SIToFP: 5003 case Instruction::UIToFP: 5004 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5005 return NV; 5006 break; 5007 case Instruction::FSub: { 5008 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 5009 Value *Op; 5010 if (match(LHSI, m_FNeg(m_Value(Op)))) 5011 return new FCmpInst(I.getSwappedPredicate(), Op, 5012 ConstantExpr::getFNeg(RHSC)); 5013 break; 5014 } 5015 case Instruction::Load: 5016 if (GetElementPtrInst *GEP = 5017 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 5018 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5019 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5020 !cast<LoadInst>(LHSI)->isVolatile()) 5021 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5022 return Res; 5023 } 5024 break; 5025 case Instruction::Call: { 5026 if (!RHSC->isNullValue()) 5027 break; 5028 5029 CallInst *CI = cast<CallInst>(LHSI); 5030 Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI); 5031 if (IID != Intrinsic::fabs) 5032 break; 5033 5034 // Various optimization for fabs compared with zero. 5035 switch (Pred) { 5036 default: 5037 break; 5038 // fabs(x) < 0 --> false 5039 case FCmpInst::FCMP_OLT: 5040 llvm_unreachable("handled by SimplifyFCmpInst"); 5041 // fabs(x) > 0 --> x != 0 5042 case FCmpInst::FCMP_OGT: 5043 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 5044 // fabs(x) <= 0 --> x == 0 5045 case FCmpInst::FCMP_OLE: 5046 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 5047 // fabs(x) >= 0 --> !isnan(x) 5048 case FCmpInst::FCMP_OGE: 5049 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 5050 // fabs(x) == 0 --> x == 0 5051 // fabs(x) != 0 --> x != 0 5052 case FCmpInst::FCMP_OEQ: 5053 case FCmpInst::FCMP_UEQ: 5054 case FCmpInst::FCMP_ONE: 5055 case FCmpInst::FCMP_UNE: 5056 return new FCmpInst(Pred, CI->getArgOperand(0), RHSC); 5057 } 5058 } 5059 } 5060 } 5061 5062 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 5063 Value *X, *Y; 5064 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5065 return new FCmpInst(I.getSwappedPredicate(), X, Y); 5066 5067 // fcmp (fpext x), (fpext y) -> fcmp x, y 5068 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 5069 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 5070 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 5071 return new FCmpInst(Pred, LHSExt->getOperand(0), RHSExt->getOperand(0)); 5072 5073 return Changed ? &I : nullptr; 5074 } 5075