1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Target/TargetLibraryInfo.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 23 /// expression. If so, decompose it, returning some value X, such that Val is 24 /// X*Scale+Offset. 25 /// 26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 27 uint64_t &Offset) { 28 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 29 Offset = CI->getZExtValue(); 30 Scale = 0; 31 return ConstantInt::get(Val->getType(), 0); 32 } 33 34 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 35 // Cannot look past anything that might overflow. 36 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 37 if (OBI && !OBI->hasNoUnsignedWrap()) { 38 Scale = 1; 39 Offset = 0; 40 return Val; 41 } 42 43 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 44 if (I->getOpcode() == Instruction::Shl) { 45 // This is a value scaled by '1 << the shift amt'. 46 Scale = UINT64_C(1) << RHS->getZExtValue(); 47 Offset = 0; 48 return I->getOperand(0); 49 } 50 51 if (I->getOpcode() == Instruction::Mul) { 52 // This value is scaled by 'RHS'. 53 Scale = RHS->getZExtValue(); 54 Offset = 0; 55 return I->getOperand(0); 56 } 57 58 if (I->getOpcode() == Instruction::Add) { 59 // We have X+C. Check to see if we really have (X*C2)+C1, 60 // where C1 is divisible by C2. 61 unsigned SubScale; 62 Value *SubVal = 63 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 64 Offset += RHS->getZExtValue(); 65 Scale = SubScale; 66 return SubVal; 67 } 68 } 69 } 70 71 // Otherwise, we can't look past this. 72 Scale = 1; 73 Offset = 0; 74 return Val; 75 } 76 77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 78 /// try to eliminate the cast by moving the type information into the alloc. 79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 80 AllocaInst &AI) { 81 // This requires TargetData to get the alloca alignment and size information. 82 if (!TD) return 0; 83 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; 93 94 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return 0; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; 102 103 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return 0; 106 107 // See if we can satisfy the modulus by pulling a scale out of the array 108 // size argument. 109 unsigned ArraySizeScale; 110 uint64_t ArrayOffset; 111 Value *NumElements = // See if the array size is a decomposable linear expr. 112 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 113 114 // If we can now satisfy the modulus, by using a non-1 scale, we really can 115 // do the xform. 116 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 117 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; 118 119 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 120 Value *Amt = 0; 121 if (Scale == 1) { 122 Amt = NumElements; 123 } else { 124 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 125 // Insert before the alloca, not before the cast. 126 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 127 } 128 129 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 130 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 131 Offset, true); 132 Amt = AllocaBuilder.CreateAdd(Amt, Off); 133 } 134 135 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 136 New->setAlignment(AI.getAlignment()); 137 New->takeName(&AI); 138 139 // If the allocation has multiple real uses, insert a cast and change all 140 // things that used it to use the new cast. This will also hack on CI, but it 141 // will die soon. 142 if (!AI.hasOneUse()) { 143 // New is the allocation instruction, pointer typed. AI is the original 144 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 145 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 146 ReplaceInstUsesWith(AI, NewCast); 147 } 148 return ReplaceInstUsesWith(CI, New); 149 } 150 151 /// EvaluateInDifferentType - Given an expression that 152 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 153 /// insert the code to evaluate the expression. 154 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 155 bool isSigned) { 156 if (Constant *C = dyn_cast<Constant>(V)) { 157 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 158 // If we got a constantexpr back, try to simplify it with TD info. 159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 160 C = ConstantFoldConstantExpression(CE, TD, TLI); 161 return C; 162 } 163 164 // Otherwise, it must be an instruction. 165 Instruction *I = cast<Instruction>(V); 166 Instruction *Res = 0; 167 unsigned Opc = I->getOpcode(); 168 switch (Opc) { 169 case Instruction::Add: 170 case Instruction::Sub: 171 case Instruction::Mul: 172 case Instruction::And: 173 case Instruction::Or: 174 case Instruction::Xor: 175 case Instruction::AShr: 176 case Instruction::LShr: 177 case Instruction::Shl: 178 case Instruction::UDiv: 179 case Instruction::URem: { 180 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 181 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 182 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 183 break; 184 } 185 case Instruction::Trunc: 186 case Instruction::ZExt: 187 case Instruction::SExt: 188 // If the source type of the cast is the type we're trying for then we can 189 // just return the source. There's no need to insert it because it is not 190 // new. 191 if (I->getOperand(0)->getType() == Ty) 192 return I->getOperand(0); 193 194 // Otherwise, must be the same type of cast, so just reinsert a new one. 195 // This also handles the case of zext(trunc(x)) -> zext(x). 196 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 197 Opc == Instruction::SExt); 198 break; 199 case Instruction::Select: { 200 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 201 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 202 Res = SelectInst::Create(I->getOperand(0), True, False); 203 break; 204 } 205 case Instruction::PHI: { 206 PHINode *OPN = cast<PHINode>(I); 207 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 208 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 209 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 210 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 211 } 212 Res = NPN; 213 break; 214 } 215 default: 216 // TODO: Can handle more cases here. 217 llvm_unreachable("Unreachable!"); 218 } 219 220 Res->takeName(I); 221 return InsertNewInstWith(Res, *I); 222 } 223 224 225 /// This function is a wrapper around CastInst::isEliminableCastPair. It 226 /// simply extracts arguments and returns what that function returns. 227 static Instruction::CastOps 228 isEliminableCastPair( 229 const CastInst *CI, ///< The first cast instruction 230 unsigned opcode, ///< The opcode of the second cast instruction 231 Type *DstTy, ///< The target type for the second cast instruction 232 TargetData *TD ///< The target data for pointer size 233 ) { 234 235 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 236 Type *MidTy = CI->getType(); // B from above 237 238 // Get the opcodes of the two Cast instructions 239 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 240 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 241 242 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 243 DstTy, 244 TD ? TD->getIntPtrType(CI->getContext()) : 0); 245 246 // We don't want to form an inttoptr or ptrtoint that converts to an integer 247 // type that differs from the pointer size. 248 if ((Res == Instruction::IntToPtr && 249 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || 250 (Res == Instruction::PtrToInt && 251 (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) 252 Res = 0; 253 254 return Instruction::CastOps(Res); 255 } 256 257 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 258 /// results in any code being generated and is interesting to optimize out. If 259 /// the cast can be eliminated by some other simple transformation, we prefer 260 /// to do the simplification first. 261 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 262 Type *Ty) { 263 // Noop casts and casts of constants should be eliminated trivially. 264 if (V->getType() == Ty || isa<Constant>(V)) return false; 265 266 // If this is another cast that can be eliminated, we prefer to have it 267 // eliminated. 268 if (const CastInst *CI = dyn_cast<CastInst>(V)) 269 if (isEliminableCastPair(CI, opc, Ty, TD)) 270 return false; 271 272 // If this is a vector sext from a compare, then we don't want to break the 273 // idiom where each element of the extended vector is either zero or all ones. 274 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 275 return false; 276 277 return true; 278 } 279 280 281 /// @brief Implement the transforms common to all CastInst visitors. 282 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 283 Value *Src = CI.getOperand(0); 284 285 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 286 // eliminate it now. 287 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 288 if (Instruction::CastOps opc = 289 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { 290 // The first cast (CSrc) is eliminable so we need to fix up or replace 291 // the second cast (CI). CSrc will then have a good chance of being dead. 292 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 293 } 294 } 295 296 // If we are casting a select then fold the cast into the select 297 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 298 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 299 return NV; 300 301 // If we are casting a PHI then fold the cast into the PHI 302 if (isa<PHINode>(Src)) { 303 // We don't do this if this would create a PHI node with an illegal type if 304 // it is currently legal. 305 if (!Src->getType()->isIntegerTy() || 306 !CI.getType()->isIntegerTy() || 307 ShouldChangeType(CI.getType(), Src->getType())) 308 if (Instruction *NV = FoldOpIntoPhi(CI)) 309 return NV; 310 } 311 312 return 0; 313 } 314 315 /// CanEvaluateTruncated - Return true if we can evaluate the specified 316 /// expression tree as type Ty instead of its larger type, and arrive with the 317 /// same value. This is used by code that tries to eliminate truncates. 318 /// 319 /// Ty will always be a type smaller than V. We should return true if trunc(V) 320 /// can be computed by computing V in the smaller type. If V is an instruction, 321 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 322 /// makes sense if x and y can be efficiently truncated. 323 /// 324 /// This function works on both vectors and scalars. 325 /// 326 static bool CanEvaluateTruncated(Value *V, Type *Ty) { 327 // We can always evaluate constants in another type. 328 if (isa<Constant>(V)) 329 return true; 330 331 Instruction *I = dyn_cast<Instruction>(V); 332 if (!I) return false; 333 334 Type *OrigTy = V->getType(); 335 336 // If this is an extension from the dest type, we can eliminate it, even if it 337 // has multiple uses. 338 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 339 I->getOperand(0)->getType() == Ty) 340 return true; 341 342 // We can't extend or shrink something that has multiple uses: doing so would 343 // require duplicating the instruction in general, which isn't profitable. 344 if (!I->hasOneUse()) return false; 345 346 unsigned Opc = I->getOpcode(); 347 switch (Opc) { 348 case Instruction::Add: 349 case Instruction::Sub: 350 case Instruction::Mul: 351 case Instruction::And: 352 case Instruction::Or: 353 case Instruction::Xor: 354 // These operators can all arbitrarily be extended or truncated. 355 return CanEvaluateTruncated(I->getOperand(0), Ty) && 356 CanEvaluateTruncated(I->getOperand(1), Ty); 357 358 case Instruction::UDiv: 359 case Instruction::URem: { 360 // UDiv and URem can be truncated if all the truncated bits are zero. 361 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 362 uint32_t BitWidth = Ty->getScalarSizeInBits(); 363 if (BitWidth < OrigBitWidth) { 364 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 365 if (MaskedValueIsZero(I->getOperand(0), Mask) && 366 MaskedValueIsZero(I->getOperand(1), Mask)) { 367 return CanEvaluateTruncated(I->getOperand(0), Ty) && 368 CanEvaluateTruncated(I->getOperand(1), Ty); 369 } 370 } 371 break; 372 } 373 case Instruction::Shl: 374 // If we are truncating the result of this SHL, and if it's a shift of a 375 // constant amount, we can always perform a SHL in a smaller type. 376 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 377 uint32_t BitWidth = Ty->getScalarSizeInBits(); 378 if (CI->getLimitedValue(BitWidth) < BitWidth) 379 return CanEvaluateTruncated(I->getOperand(0), Ty); 380 } 381 break; 382 case Instruction::LShr: 383 // If this is a truncate of a logical shr, we can truncate it to a smaller 384 // lshr iff we know that the bits we would otherwise be shifting in are 385 // already zeros. 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 387 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 388 uint32_t BitWidth = Ty->getScalarSizeInBits(); 389 if (MaskedValueIsZero(I->getOperand(0), 390 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 391 CI->getLimitedValue(BitWidth) < BitWidth) { 392 return CanEvaluateTruncated(I->getOperand(0), Ty); 393 } 394 } 395 break; 396 case Instruction::Trunc: 397 // trunc(trunc(x)) -> trunc(x) 398 return true; 399 case Instruction::ZExt: 400 case Instruction::SExt: 401 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 402 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 403 return true; 404 case Instruction::Select: { 405 SelectInst *SI = cast<SelectInst>(I); 406 return CanEvaluateTruncated(SI->getTrueValue(), Ty) && 407 CanEvaluateTruncated(SI->getFalseValue(), Ty); 408 } 409 case Instruction::PHI: { 410 // We can change a phi if we can change all operands. Note that we never 411 // get into trouble with cyclic PHIs here because we only consider 412 // instructions with a single use. 413 PHINode *PN = cast<PHINode>(I); 414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 415 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) 416 return false; 417 return true; 418 } 419 default: 420 // TODO: Can handle more cases here. 421 break; 422 } 423 424 return false; 425 } 426 427 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 428 if (Instruction *Result = commonCastTransforms(CI)) 429 return Result; 430 431 // See if we can simplify any instructions used by the input whose sole 432 // purpose is to compute bits we don't care about. 433 if (SimplifyDemandedInstructionBits(CI)) 434 return &CI; 435 436 Value *Src = CI.getOperand(0); 437 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 438 439 // Attempt to truncate the entire input expression tree to the destination 440 // type. Only do this if the dest type is a simple type, don't convert the 441 // expression tree to something weird like i93 unless the source is also 442 // strange. 443 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 444 CanEvaluateTruncated(Src, DestTy)) { 445 446 // If this cast is a truncate, evaluting in a different type always 447 // eliminates the cast, so it is always a win. 448 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 449 " to avoid cast: " << CI << '\n'); 450 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 451 assert(Res->getType() == DestTy); 452 return ReplaceInstUsesWith(CI, Res); 453 } 454 455 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 456 if (DestTy->getScalarSizeInBits() == 1) { 457 Constant *One = ConstantInt::get(Src->getType(), 1); 458 Src = Builder->CreateAnd(Src, One); 459 Value *Zero = Constant::getNullValue(Src->getType()); 460 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 461 } 462 463 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 464 Value *A = 0; ConstantInt *Cst = 0; 465 if (Src->hasOneUse() && 466 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 467 // We have three types to worry about here, the type of A, the source of 468 // the truncate (MidSize), and the destination of the truncate. We know that 469 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 470 // between ASize and ResultSize. 471 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 472 473 // If the shift amount is larger than the size of A, then the result is 474 // known to be zero because all the input bits got shifted out. 475 if (Cst->getZExtValue() >= ASize) 476 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 477 478 // Since we're doing an lshr and a zero extend, and know that the shift 479 // amount is smaller than ASize, it is always safe to do the shift in A's 480 // type, then zero extend or truncate to the result. 481 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 482 Shift->takeName(Src); 483 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 484 } 485 486 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 487 // type isn't non-native. 488 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 489 ShouldChangeType(Src->getType(), CI.getType()) && 490 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 491 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 492 return BinaryOperator::CreateAnd(NewTrunc, 493 ConstantExpr::getTrunc(Cst, CI.getType())); 494 } 495 496 return 0; 497 } 498 499 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 500 /// in order to eliminate the icmp. 501 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 502 bool DoXform) { 503 // If we are just checking for a icmp eq of a single bit and zext'ing it 504 // to an integer, then shift the bit to the appropriate place and then 505 // cast to integer to avoid the comparison. 506 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 507 const APInt &Op1CV = Op1C->getValue(); 508 509 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 510 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 511 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 512 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 513 if (!DoXform) return ICI; 514 515 Value *In = ICI->getOperand(0); 516 Value *Sh = ConstantInt::get(In->getType(), 517 In->getType()->getScalarSizeInBits()-1); 518 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 519 if (In->getType() != CI.getType()) 520 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 521 522 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 523 Constant *One = ConstantInt::get(In->getType(), 1); 524 In = Builder->CreateXor(In, One, In->getName()+".not"); 525 } 526 527 return ReplaceInstUsesWith(CI, In); 528 } 529 530 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 531 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 532 // zext (X == 1) to i32 --> X iff X has only the low bit set. 533 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 534 // zext (X != 0) to i32 --> X iff X has only the low bit set. 535 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 536 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 537 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 538 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 539 // This only works for EQ and NE 540 ICI->isEquality()) { 541 // If Op1C some other power of two, convert: 542 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 543 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 544 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 545 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); 546 547 APInt KnownZeroMask(~KnownZero); 548 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 549 if (!DoXform) return ICI; 550 551 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 552 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 553 // (X&4) == 2 --> false 554 // (X&4) != 2 --> true 555 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 556 isNE); 557 Res = ConstantExpr::getZExt(Res, CI.getType()); 558 return ReplaceInstUsesWith(CI, Res); 559 } 560 561 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 562 Value *In = ICI->getOperand(0); 563 if (ShiftAmt) { 564 // Perform a logical shr by shiftamt. 565 // Insert the shift to put the result in the low bit. 566 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 567 In->getName()+".lobit"); 568 } 569 570 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 571 Constant *One = ConstantInt::get(In->getType(), 1); 572 In = Builder->CreateXor(In, One); 573 } 574 575 if (CI.getType() == In->getType()) 576 return ReplaceInstUsesWith(CI, In); 577 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 578 } 579 } 580 } 581 582 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 583 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 584 // may lead to additional simplifications. 585 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 586 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 587 uint32_t BitWidth = ITy->getBitWidth(); 588 Value *LHS = ICI->getOperand(0); 589 Value *RHS = ICI->getOperand(1); 590 591 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 592 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 593 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 594 ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); 595 ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); 596 597 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 598 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 599 APInt UnknownBit = ~KnownBits; 600 if (UnknownBit.countPopulation() == 1) { 601 if (!DoXform) return ICI; 602 603 Value *Result = Builder->CreateXor(LHS, RHS); 604 605 // Mask off any bits that are set and won't be shifted away. 606 if (KnownOneLHS.uge(UnknownBit)) 607 Result = Builder->CreateAnd(Result, 608 ConstantInt::get(ITy, UnknownBit)); 609 610 // Shift the bit we're testing down to the lsb. 611 Result = Builder->CreateLShr( 612 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 613 614 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 615 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 616 Result->takeName(ICI); 617 return ReplaceInstUsesWith(CI, Result); 618 } 619 } 620 } 621 } 622 623 return 0; 624 } 625 626 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 627 /// specified wider type and produce the same low bits. If not, return false. 628 /// 629 /// If this function returns true, it can also return a non-zero number of bits 630 /// (in BitsToClear) which indicates that the value it computes is correct for 631 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 632 /// out. For example, to promote something like: 633 /// 634 /// %B = trunc i64 %A to i32 635 /// %C = lshr i32 %B, 8 636 /// %E = zext i32 %C to i64 637 /// 638 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 639 /// set to 8 to indicate that the promoted value needs to have bits 24-31 640 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 641 /// clear the top bits anyway, doing this has no extra cost. 642 /// 643 /// This function works on both vectors and scalars. 644 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { 645 BitsToClear = 0; 646 if (isa<Constant>(V)) 647 return true; 648 649 Instruction *I = dyn_cast<Instruction>(V); 650 if (!I) return false; 651 652 // If the input is a truncate from the destination type, we can trivially 653 // eliminate it, even if it has multiple uses. 654 // FIXME: This is currently disabled until codegen can handle this without 655 // pessimizing code, PR5997. 656 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 657 return true; 658 659 // We can't extend or shrink something that has multiple uses: doing so would 660 // require duplicating the instruction in general, which isn't profitable. 661 if (!I->hasOneUse()) return false; 662 663 unsigned Opc = I->getOpcode(), Tmp; 664 switch (Opc) { 665 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 666 case Instruction::SExt: // zext(sext(x)) -> sext(x). 667 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 668 return true; 669 case Instruction::And: 670 case Instruction::Or: 671 case Instruction::Xor: 672 case Instruction::Add: 673 case Instruction::Sub: 674 case Instruction::Mul: 675 case Instruction::Shl: 676 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || 677 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) 678 return false; 679 // These can all be promoted if neither operand has 'bits to clear'. 680 if (BitsToClear == 0 && Tmp == 0) 681 return true; 682 683 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 684 // other side, BitsToClear is ok. 685 if (Tmp == 0 && 686 (Opc == Instruction::And || Opc == Instruction::Or || 687 Opc == Instruction::Xor)) { 688 // We use MaskedValueIsZero here for generality, but the case we care 689 // about the most is constant RHS. 690 unsigned VSize = V->getType()->getScalarSizeInBits(); 691 if (MaskedValueIsZero(I->getOperand(1), 692 APInt::getHighBitsSet(VSize, BitsToClear))) 693 return true; 694 } 695 696 // Otherwise, we don't know how to analyze this BitsToClear case yet. 697 return false; 698 699 case Instruction::LShr: 700 // We can promote lshr(x, cst) if we can promote x. This requires the 701 // ultimate 'and' to clear out the high zero bits we're clearing out though. 702 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 703 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 704 return false; 705 BitsToClear += Amt->getZExtValue(); 706 if (BitsToClear > V->getType()->getScalarSizeInBits()) 707 BitsToClear = V->getType()->getScalarSizeInBits(); 708 return true; 709 } 710 // Cannot promote variable LSHR. 711 return false; 712 case Instruction::Select: 713 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || 714 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || 715 // TODO: If important, we could handle the case when the BitsToClear are 716 // known zero in the disagreeing side. 717 Tmp != BitsToClear) 718 return false; 719 return true; 720 721 case Instruction::PHI: { 722 // We can change a phi if we can change all operands. Note that we never 723 // get into trouble with cyclic PHIs here because we only consider 724 // instructions with a single use. 725 PHINode *PN = cast<PHINode>(I); 726 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) 727 return false; 728 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 729 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || 730 // TODO: If important, we could handle the case when the BitsToClear 731 // are known zero in the disagreeing input. 732 Tmp != BitsToClear) 733 return false; 734 return true; 735 } 736 default: 737 // TODO: Can handle more cases here. 738 return false; 739 } 740 } 741 742 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 743 // If this zero extend is only used by a truncate, let the truncate by 744 // eliminated before we try to optimize this zext. 745 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 746 return 0; 747 748 // If one of the common conversion will work, do it. 749 if (Instruction *Result = commonCastTransforms(CI)) 750 return Result; 751 752 // See if we can simplify any instructions used by the input whose sole 753 // purpose is to compute bits we don't care about. 754 if (SimplifyDemandedInstructionBits(CI)) 755 return &CI; 756 757 Value *Src = CI.getOperand(0); 758 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 759 760 // Attempt to extend the entire input expression tree to the destination 761 // type. Only do this if the dest type is a simple type, don't convert the 762 // expression tree to something weird like i93 unless the source is also 763 // strange. 764 unsigned BitsToClear; 765 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 766 CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 767 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 768 "Unreasonable BitsToClear"); 769 770 // Okay, we can transform this! Insert the new expression now. 771 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 772 " to avoid zero extend: " << CI); 773 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 774 assert(Res->getType() == DestTy); 775 776 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 777 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 778 779 // If the high bits are already filled with zeros, just replace this 780 // cast with the result. 781 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, 782 DestBitSize-SrcBitsKept))) 783 return ReplaceInstUsesWith(CI, Res); 784 785 // We need to emit an AND to clear the high bits. 786 Constant *C = ConstantInt::get(Res->getType(), 787 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 788 return BinaryOperator::CreateAnd(Res, C); 789 } 790 791 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 792 // types and if the sizes are just right we can convert this into a logical 793 // 'and' which will be much cheaper than the pair of casts. 794 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 795 // TODO: Subsume this into EvaluateInDifferentType. 796 797 // Get the sizes of the types involved. We know that the intermediate type 798 // will be smaller than A or C, but don't know the relation between A and C. 799 Value *A = CSrc->getOperand(0); 800 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 801 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 802 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 803 // If we're actually extending zero bits, then if 804 // SrcSize < DstSize: zext(a & mask) 805 // SrcSize == DstSize: a & mask 806 // SrcSize > DstSize: trunc(a) & mask 807 if (SrcSize < DstSize) { 808 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 809 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 810 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 811 return new ZExtInst(And, CI.getType()); 812 } 813 814 if (SrcSize == DstSize) { 815 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 816 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 817 AndValue)); 818 } 819 if (SrcSize > DstSize) { 820 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 821 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 822 return BinaryOperator::CreateAnd(Trunc, 823 ConstantInt::get(Trunc->getType(), 824 AndValue)); 825 } 826 } 827 828 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 829 return transformZExtICmp(ICI, CI); 830 831 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 832 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 833 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 834 // of the (zext icmp) will be transformed. 835 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 836 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 837 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 838 (transformZExtICmp(LHS, CI, false) || 839 transformZExtICmp(RHS, CI, false))) { 840 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 841 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 842 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 843 } 844 } 845 846 // zext(trunc(t) & C) -> (t & zext(C)). 847 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) 848 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 849 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { 850 Value *TI0 = TI->getOperand(0); 851 if (TI0->getType() == CI.getType()) 852 return 853 BinaryOperator::CreateAnd(TI0, 854 ConstantExpr::getZExt(C, CI.getType())); 855 } 856 857 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). 858 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) 859 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 860 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) 861 if (And->getOpcode() == Instruction::And && And->hasOneUse() && 862 And->getOperand(1) == C) 863 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { 864 Value *TI0 = TI->getOperand(0); 865 if (TI0->getType() == CI.getType()) { 866 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 867 Value *NewAnd = Builder->CreateAnd(TI0, ZC); 868 return BinaryOperator::CreateXor(NewAnd, ZC); 869 } 870 } 871 872 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 873 Value *X; 874 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) && 875 match(SrcI, m_Not(m_Value(X))) && 876 (!X->hasOneUse() || !isa<CmpInst>(X))) { 877 Value *New = Builder->CreateZExt(X, CI.getType()); 878 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 879 } 880 881 return 0; 882 } 883 884 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 885 /// in order to eliminate the icmp. 886 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 887 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 888 ICmpInst::Predicate Pred = ICI->getPredicate(); 889 890 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 891 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 892 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 893 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) || 894 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 895 896 Value *Sh = ConstantInt::get(Op0->getType(), 897 Op0->getType()->getScalarSizeInBits()-1); 898 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 899 if (In->getType() != CI.getType()) 900 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 901 902 if (Pred == ICmpInst::ICMP_SGT) 903 In = Builder->CreateNot(In, In->getName()+".not"); 904 return ReplaceInstUsesWith(CI, In); 905 } 906 907 // If we know that only one bit of the LHS of the icmp can be set and we 908 // have an equality comparison with zero or a power of 2, we can transform 909 // the icmp and sext into bitwise/integer operations. 910 if (ICI->hasOneUse() && 911 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 912 unsigned BitWidth = Op1C->getType()->getBitWidth(); 913 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 914 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 915 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne); 916 917 APInt KnownZeroMask(~KnownZero); 918 if (KnownZeroMask.isPowerOf2()) { 919 Value *In = ICI->getOperand(0); 920 921 // If the icmp tests for a known zero bit we can constant fold it. 922 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 923 Value *V = Pred == ICmpInst::ICMP_NE ? 924 ConstantInt::getAllOnesValue(CI.getType()) : 925 ConstantInt::getNullValue(CI.getType()); 926 return ReplaceInstUsesWith(CI, V); 927 } 928 929 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 930 // sext ((x & 2^n) == 0) -> (x >> n) - 1 931 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 932 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 933 // Perform a right shift to place the desired bit in the LSB. 934 if (ShiftAmt) 935 In = Builder->CreateLShr(In, 936 ConstantInt::get(In->getType(), ShiftAmt)); 937 938 // At this point "In" is either 1 or 0. Subtract 1 to turn 939 // {1, 0} -> {0, -1}. 940 In = Builder->CreateAdd(In, 941 ConstantInt::getAllOnesValue(In->getType()), 942 "sext"); 943 } else { 944 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 945 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 946 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 947 // Perform a left shift to place the desired bit in the MSB. 948 if (ShiftAmt) 949 In = Builder->CreateShl(In, 950 ConstantInt::get(In->getType(), ShiftAmt)); 951 952 // Distribute the bit over the whole bit width. 953 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 954 BitWidth - 1), "sext"); 955 } 956 957 if (CI.getType() == In->getType()) 958 return ReplaceInstUsesWith(CI, In); 959 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 960 } 961 } 962 } 963 964 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed. 965 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { 966 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && 967 Op0->getType() == CI.getType()) { 968 Type *EltTy = VTy->getElementType(); 969 970 // splat the shift constant to a constant vector. 971 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); 972 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit"); 973 return ReplaceInstUsesWith(CI, In); 974 } 975 } 976 977 return 0; 978 } 979 980 /// CanEvaluateSExtd - Return true if we can take the specified value 981 /// and return it as type Ty without inserting any new casts and without 982 /// changing the value of the common low bits. This is used by code that tries 983 /// to promote integer operations to a wider types will allow us to eliminate 984 /// the extension. 985 /// 986 /// This function works on both vectors and scalars. 987 /// 988 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 989 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 990 "Can't sign extend type to a smaller type"); 991 // If this is a constant, it can be trivially promoted. 992 if (isa<Constant>(V)) 993 return true; 994 995 Instruction *I = dyn_cast<Instruction>(V); 996 if (!I) return false; 997 998 // If this is a truncate from the dest type, we can trivially eliminate it, 999 // even if it has multiple uses. 1000 // FIXME: This is currently disabled until codegen can handle this without 1001 // pessimizing code, PR5997. 1002 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1003 return true; 1004 1005 // We can't extend or shrink something that has multiple uses: doing so would 1006 // require duplicating the instruction in general, which isn't profitable. 1007 if (!I->hasOneUse()) return false; 1008 1009 switch (I->getOpcode()) { 1010 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1011 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1012 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1013 return true; 1014 case Instruction::And: 1015 case Instruction::Or: 1016 case Instruction::Xor: 1017 case Instruction::Add: 1018 case Instruction::Sub: 1019 case Instruction::Mul: 1020 // These operators can all arbitrarily be extended if their inputs can. 1021 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1022 CanEvaluateSExtd(I->getOperand(1), Ty); 1023 1024 //case Instruction::Shl: TODO 1025 //case Instruction::LShr: TODO 1026 1027 case Instruction::Select: 1028 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1029 CanEvaluateSExtd(I->getOperand(2), Ty); 1030 1031 case Instruction::PHI: { 1032 // We can change a phi if we can change all operands. Note that we never 1033 // get into trouble with cyclic PHIs here because we only consider 1034 // instructions with a single use. 1035 PHINode *PN = cast<PHINode>(I); 1036 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1037 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 1038 return true; 1039 } 1040 default: 1041 // TODO: Can handle more cases here. 1042 break; 1043 } 1044 1045 return false; 1046 } 1047 1048 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1049 // If this sign extend is only used by a truncate, let the truncate by 1050 // eliminated before we try to optimize this zext. 1051 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 1052 return 0; 1053 1054 if (Instruction *I = commonCastTransforms(CI)) 1055 return I; 1056 1057 // See if we can simplify any instructions used by the input whose sole 1058 // purpose is to compute bits we don't care about. 1059 if (SimplifyDemandedInstructionBits(CI)) 1060 return &CI; 1061 1062 Value *Src = CI.getOperand(0); 1063 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1064 1065 // Attempt to extend the entire input expression tree to the destination 1066 // type. Only do this if the dest type is a simple type, don't convert the 1067 // expression tree to something weird like i93 unless the source is also 1068 // strange. 1069 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1070 CanEvaluateSExtd(Src, DestTy)) { 1071 // Okay, we can transform this! Insert the new expression now. 1072 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1073 " to avoid sign extend: " << CI); 1074 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1075 assert(Res->getType() == DestTy); 1076 1077 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1078 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1079 1080 // If the high bits are already filled with sign bit, just replace this 1081 // cast with the result. 1082 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) 1083 return ReplaceInstUsesWith(CI, Res); 1084 1085 // We need to emit a shl + ashr to do the sign extend. 1086 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1087 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1088 ShAmt); 1089 } 1090 1091 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1092 // into shifts. 1093 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1094 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1095 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1096 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1097 1098 // We need to emit a shl + ashr to do the sign extend. 1099 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1100 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1101 return BinaryOperator::CreateAShr(Res, ShAmt); 1102 } 1103 1104 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1105 return transformSExtICmp(ICI, CI); 1106 1107 // If the input is a shl/ashr pair of a same constant, then this is a sign 1108 // extension from a smaller value. If we could trust arbitrary bitwidth 1109 // integers, we could turn this into a truncate to the smaller bit and then 1110 // use a sext for the whole extension. Since we don't, look deeper and check 1111 // for a truncate. If the source and dest are the same type, eliminate the 1112 // trunc and extend and just do shifts. For example, turn: 1113 // %a = trunc i32 %i to i8 1114 // %b = shl i8 %a, 6 1115 // %c = ashr i8 %b, 6 1116 // %d = sext i8 %c to i32 1117 // into: 1118 // %a = shl i32 %i, 30 1119 // %d = ashr i32 %a, 30 1120 Value *A = 0; 1121 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1122 ConstantInt *BA = 0, *CA = 0; 1123 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1124 m_ConstantInt(CA))) && 1125 BA == CA && A->getType() == CI.getType()) { 1126 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1127 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1128 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1129 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1130 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1131 return BinaryOperator::CreateAShr(A, ShAmtV); 1132 } 1133 1134 return 0; 1135 } 1136 1137 1138 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1139 /// in the specified FP type without changing its value. 1140 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1141 bool losesInfo; 1142 APFloat F = CFP->getValueAPF(); 1143 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1144 if (!losesInfo) 1145 return ConstantFP::get(CFP->getContext(), F); 1146 return 0; 1147 } 1148 1149 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1150 /// through it until we get the source value. 1151 static Value *LookThroughFPExtensions(Value *V) { 1152 if (Instruction *I = dyn_cast<Instruction>(V)) 1153 if (I->getOpcode() == Instruction::FPExt) 1154 return LookThroughFPExtensions(I->getOperand(0)); 1155 1156 // If this value is a constant, return the constant in the smallest FP type 1157 // that can accurately represent it. This allows us to turn 1158 // (float)((double)X+2.0) into x+2.0f. 1159 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1160 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1161 return V; // No constant folding of this. 1162 // See if the value can be truncated to half and then reextended. 1163 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 1164 return V; 1165 // See if the value can be truncated to float and then reextended. 1166 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1167 return V; 1168 if (CFP->getType()->isDoubleTy()) 1169 return V; // Won't shrink. 1170 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1171 return V; 1172 // Don't try to shrink to various long double types. 1173 } 1174 1175 return V; 1176 } 1177 1178 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1179 if (Instruction *I = commonCastTransforms(CI)) 1180 return I; 1181 1182 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are 1183 // smaller than the destination type, we can eliminate the truncate by doing 1184 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well 1185 // as many builtins (sqrt, etc). 1186 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1187 if (OpI && OpI->hasOneUse()) { 1188 switch (OpI->getOpcode()) { 1189 default: break; 1190 case Instruction::FAdd: 1191 case Instruction::FSub: 1192 case Instruction::FMul: 1193 case Instruction::FDiv: 1194 case Instruction::FRem: 1195 Type *SrcTy = OpI->getType(); 1196 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); 1197 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); 1198 if (LHSTrunc->getType() != SrcTy && 1199 RHSTrunc->getType() != SrcTy) { 1200 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1201 // If the source types were both smaller than the destination type of 1202 // the cast, do this xform. 1203 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && 1204 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { 1205 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); 1206 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); 1207 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); 1208 } 1209 } 1210 break; 1211 } 1212 } 1213 1214 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 1215 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 1216 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && 1217 Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) && 1218 Call->getNumArgOperands() == 1 && 1219 Call->hasOneUse()) { 1220 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 1221 if (Arg && Arg->getOpcode() == Instruction::FPExt && 1222 CI.getType()->isFloatTy() && 1223 Call->getType()->isDoubleTy() && 1224 Arg->getType()->isDoubleTy() && 1225 Arg->getOperand(0)->getType()->isFloatTy()) { 1226 Function *Callee = Call->getCalledFunction(); 1227 Module *M = CI.getParent()->getParent()->getParent(); 1228 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", 1229 Callee->getAttributes(), 1230 Builder->getFloatTy(), 1231 Builder->getFloatTy(), 1232 NULL); 1233 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 1234 "sqrtfcall"); 1235 ret->setAttributes(Callee->getAttributes()); 1236 1237 1238 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 1239 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 1240 EraseInstFromFunction(*Call); 1241 return ret; 1242 } 1243 } 1244 1245 return 0; 1246 } 1247 1248 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1249 return commonCastTransforms(CI); 1250 } 1251 1252 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1253 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1254 if (OpI == 0) 1255 return commonCastTransforms(FI); 1256 1257 // fptoui(uitofp(X)) --> X 1258 // fptoui(sitofp(X)) --> X 1259 // This is safe if the intermediate type has enough bits in its mantissa to 1260 // accurately represent all values of X. For example, do not do this with 1261 // i64->float->i64. This is also safe for sitofp case, because any negative 1262 // 'X' value would cause an undefined result for the fptoui. 1263 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1264 OpI->getOperand(0)->getType() == FI.getType() && 1265 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 1266 OpI->getType()->getFPMantissaWidth()) 1267 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1268 1269 return commonCastTransforms(FI); 1270 } 1271 1272 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1273 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1274 if (OpI == 0) 1275 return commonCastTransforms(FI); 1276 1277 // fptosi(sitofp(X)) --> X 1278 // fptosi(uitofp(X)) --> X 1279 // This is safe if the intermediate type has enough bits in its mantissa to 1280 // accurately represent all values of X. For example, do not do this with 1281 // i64->float->i64. This is also safe for sitofp case, because any negative 1282 // 'X' value would cause an undefined result for the fptoui. 1283 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1284 OpI->getOperand(0)->getType() == FI.getType() && 1285 (int)FI.getType()->getScalarSizeInBits() <= 1286 OpI->getType()->getFPMantissaWidth()) 1287 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1288 1289 return commonCastTransforms(FI); 1290 } 1291 1292 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1293 return commonCastTransforms(CI); 1294 } 1295 1296 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1297 return commonCastTransforms(CI); 1298 } 1299 1300 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1301 // If the source integer type is not the intptr_t type for this target, do a 1302 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1303 // cast to be exposed to other transforms. 1304 if (TD) { 1305 if (CI.getOperand(0)->getType()->getScalarSizeInBits() > 1306 TD->getPointerSizeInBits()) { 1307 Value *P = Builder->CreateTrunc(CI.getOperand(0), 1308 TD->getIntPtrType(CI.getContext())); 1309 return new IntToPtrInst(P, CI.getType()); 1310 } 1311 if (CI.getOperand(0)->getType()->getScalarSizeInBits() < 1312 TD->getPointerSizeInBits()) { 1313 Value *P = Builder->CreateZExt(CI.getOperand(0), 1314 TD->getIntPtrType(CI.getContext())); 1315 return new IntToPtrInst(P, CI.getType()); 1316 } 1317 } 1318 1319 if (Instruction *I = commonCastTransforms(CI)) 1320 return I; 1321 1322 return 0; 1323 } 1324 1325 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1326 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1327 Value *Src = CI.getOperand(0); 1328 1329 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1330 // If casting the result of a getelementptr instruction with no offset, turn 1331 // this into a cast of the original pointer! 1332 if (GEP->hasAllZeroIndices()) { 1333 // Changing the cast operand is usually not a good idea but it is safe 1334 // here because the pointer operand is being replaced with another 1335 // pointer operand so the opcode doesn't need to change. 1336 Worklist.Add(GEP); 1337 CI.setOperand(0, GEP->getOperand(0)); 1338 return &CI; 1339 } 1340 1341 // If the GEP has a single use, and the base pointer is a bitcast, and the 1342 // GEP computes a constant offset, see if we can convert these three 1343 // instructions into fewer. This typically happens with unions and other 1344 // non-type-safe code. 1345 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) && 1346 GEP->hasAllConstantIndices()) { 1347 // We are guaranteed to get a constant from EmitGEPOffset. 1348 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP)); 1349 int64_t Offset = OffsetV->getSExtValue(); 1350 1351 // Get the base pointer input of the bitcast, and the type it points to. 1352 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); 1353 Type *GEPIdxTy = 1354 cast<PointerType>(OrigBase->getType())->getElementType(); 1355 SmallVector<Value*, 8> NewIndices; 1356 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { 1357 // If we were able to index down into an element, create the GEP 1358 // and bitcast the result. This eliminates one bitcast, potentially 1359 // two. 1360 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 1361 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 1362 Builder->CreateGEP(OrigBase, NewIndices); 1363 NGEP->takeName(GEP); 1364 1365 if (isa<BitCastInst>(CI)) 1366 return new BitCastInst(NGEP, CI.getType()); 1367 assert(isa<PtrToIntInst>(CI)); 1368 return new PtrToIntInst(NGEP, CI.getType()); 1369 } 1370 } 1371 } 1372 1373 return commonCastTransforms(CI); 1374 } 1375 1376 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1377 // If the destination integer type is not the intptr_t type for this target, 1378 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1379 // to be exposed to other transforms. 1380 if (TD) { 1381 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { 1382 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), 1383 TD->getIntPtrType(CI.getContext())); 1384 return new TruncInst(P, CI.getType()); 1385 } 1386 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) { 1387 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), 1388 TD->getIntPtrType(CI.getContext())); 1389 return new ZExtInst(P, CI.getType()); 1390 } 1391 } 1392 1393 return commonPointerCastTransforms(CI); 1394 } 1395 1396 /// OptimizeVectorResize - This input value (which is known to have vector type) 1397 /// is being zero extended or truncated to the specified vector type. Try to 1398 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1399 /// 1400 /// The source and destination vector types may have different element types. 1401 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1402 InstCombiner &IC) { 1403 // We can only do this optimization if the output is a multiple of the input 1404 // element size, or the input is a multiple of the output element size. 1405 // Convert the input type to have the same element type as the output. 1406 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1407 1408 if (SrcTy->getElementType() != DestTy->getElementType()) { 1409 // The input types don't need to be identical, but for now they must be the 1410 // same size. There is no specific reason we couldn't handle things like 1411 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1412 // there yet. 1413 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1414 DestTy->getElementType()->getPrimitiveSizeInBits()) 1415 return 0; 1416 1417 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1418 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1419 } 1420 1421 // Now that the element types match, get the shuffle mask and RHS of the 1422 // shuffle to use, which depends on whether we're increasing or decreasing the 1423 // size of the input. 1424 SmallVector<uint32_t, 16> ShuffleMask; 1425 Value *V2; 1426 1427 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1428 // If we're shrinking the number of elements, just shuffle in the low 1429 // elements from the input and use undef as the second shuffle input. 1430 V2 = UndefValue::get(SrcTy); 1431 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1432 ShuffleMask.push_back(i); 1433 1434 } else { 1435 // If we're increasing the number of elements, shuffle in all of the 1436 // elements from InVal and fill the rest of the result elements with zeros 1437 // from a constant zero. 1438 V2 = Constant::getNullValue(SrcTy); 1439 unsigned SrcElts = SrcTy->getNumElements(); 1440 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1441 ShuffleMask.push_back(i); 1442 1443 // The excess elements reference the first element of the zero input. 1444 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1445 ShuffleMask.push_back(SrcElts); 1446 } 1447 1448 return new ShuffleVectorInst(InVal, V2, 1449 ConstantDataVector::get(V2->getContext(), 1450 ShuffleMask)); 1451 } 1452 1453 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1454 return Value % Ty->getPrimitiveSizeInBits() == 0; 1455 } 1456 1457 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1458 return Value / Ty->getPrimitiveSizeInBits(); 1459 } 1460 1461 /// CollectInsertionElements - V is a value which is inserted into a vector of 1462 /// VecEltTy. Look through the value to see if we can decompose it into 1463 /// insertions into the vector. See the example in the comment for 1464 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1465 /// The type of V is always a non-zero multiple of VecEltTy's size. 1466 /// 1467 /// This returns false if the pattern can't be matched or true if it can, 1468 /// filling in Elements with the elements found here. 1469 static bool CollectInsertionElements(Value *V, unsigned ElementIndex, 1470 SmallVectorImpl<Value*> &Elements, 1471 Type *VecEltTy) { 1472 // Undef values never contribute useful bits to the result. 1473 if (isa<UndefValue>(V)) return true; 1474 1475 // If we got down to a value of the right type, we win, try inserting into the 1476 // right element. 1477 if (V->getType() == VecEltTy) { 1478 // Inserting null doesn't actually insert any elements. 1479 if (Constant *C = dyn_cast<Constant>(V)) 1480 if (C->isNullValue()) 1481 return true; 1482 1483 // Fail if multiple elements are inserted into this slot. 1484 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) 1485 return false; 1486 1487 Elements[ElementIndex] = V; 1488 return true; 1489 } 1490 1491 if (Constant *C = dyn_cast<Constant>(V)) { 1492 // Figure out the # elements this provides, and bitcast it or slice it up 1493 // as required. 1494 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1495 VecEltTy); 1496 // If the constant is the size of a vector element, we just need to bitcast 1497 // it to the right type so it gets properly inserted. 1498 if (NumElts == 1) 1499 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1500 ElementIndex, Elements, VecEltTy); 1501 1502 // Okay, this is a constant that covers multiple elements. Slice it up into 1503 // pieces and insert each element-sized piece into the vector. 1504 if (!isa<IntegerType>(C->getType())) 1505 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1506 C->getType()->getPrimitiveSizeInBits())); 1507 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1508 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1509 1510 for (unsigned i = 0; i != NumElts; ++i) { 1511 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1512 i*ElementSize)); 1513 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1514 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy)) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 if (!V->hasOneUse()) return false; 1521 1522 Instruction *I = dyn_cast<Instruction>(V); 1523 if (I == 0) return false; 1524 switch (I->getOpcode()) { 1525 default: return false; // Unhandled case. 1526 case Instruction::BitCast: 1527 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1528 Elements, VecEltTy); 1529 case Instruction::ZExt: 1530 if (!isMultipleOfTypeSize( 1531 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1532 VecEltTy)) 1533 return false; 1534 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1535 Elements, VecEltTy); 1536 case Instruction::Or: 1537 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1538 Elements, VecEltTy) && 1539 CollectInsertionElements(I->getOperand(1), ElementIndex, 1540 Elements, VecEltTy); 1541 case Instruction::Shl: { 1542 // Must be shifting by a constant that is a multiple of the element size. 1543 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1544 if (CI == 0) return false; 1545 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; 1546 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); 1547 1548 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, 1549 Elements, VecEltTy); 1550 } 1551 1552 } 1553 } 1554 1555 1556 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1557 /// may be doing shifts and ors to assemble the elements of the vector manually. 1558 /// Try to rip the code out and replace it with insertelements. This is to 1559 /// optimize code like this: 1560 /// 1561 /// %tmp37 = bitcast float %inc to i32 1562 /// %tmp38 = zext i32 %tmp37 to i64 1563 /// %tmp31 = bitcast float %inc5 to i32 1564 /// %tmp32 = zext i32 %tmp31 to i64 1565 /// %tmp33 = shl i64 %tmp32, 32 1566 /// %ins35 = or i64 %tmp33, %tmp38 1567 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1568 /// 1569 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1570 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1571 InstCombiner &IC) { 1572 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1573 Value *IntInput = CI.getOperand(0); 1574 1575 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1576 if (!CollectInsertionElements(IntInput, 0, Elements, 1577 DestVecTy->getElementType())) 1578 return 0; 1579 1580 // If we succeeded, we know that all of the element are specified by Elements 1581 // or are zero if Elements has a null entry. Recast this as a set of 1582 // insertions. 1583 Value *Result = Constant::getNullValue(CI.getType()); 1584 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1585 if (Elements[i] == 0) continue; // Unset element. 1586 1587 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1588 IC.Builder->getInt32(i)); 1589 } 1590 1591 return Result; 1592 } 1593 1594 1595 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1596 /// bitcast. The various long double bitcasts can't get in here. 1597 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 1598 Value *Src = CI.getOperand(0); 1599 Type *DestTy = CI.getType(); 1600 1601 // If this is a bitcast from int to float, check to see if the int is an 1602 // extraction from a vector. 1603 Value *VecInput = 0; 1604 // bitcast(trunc(bitcast(somevector))) 1605 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1606 isa<VectorType>(VecInput->getType())) { 1607 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1608 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1609 1610 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1611 // If the element type of the vector doesn't match the result type, 1612 // bitcast it to be a vector type we can extract from. 1613 if (VecTy->getElementType() != DestTy) { 1614 VecTy = VectorType::get(DestTy, 1615 VecTy->getPrimitiveSizeInBits() / DestWidth); 1616 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1617 } 1618 1619 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); 1620 } 1621 } 1622 1623 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1624 ConstantInt *ShAmt = 0; 1625 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1626 m_ConstantInt(ShAmt)))) && 1627 isa<VectorType>(VecInput->getType())) { 1628 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1629 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1630 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1631 ShAmt->getZExtValue() % DestWidth == 0) { 1632 // If the element type of the vector doesn't match the result type, 1633 // bitcast it to be a vector type we can extract from. 1634 if (VecTy->getElementType() != DestTy) { 1635 VecTy = VectorType::get(DestTy, 1636 VecTy->getPrimitiveSizeInBits() / DestWidth); 1637 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1638 } 1639 1640 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1641 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1642 } 1643 } 1644 return 0; 1645 } 1646 1647 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1648 // If the operands are integer typed then apply the integer transforms, 1649 // otherwise just apply the common ones. 1650 Value *Src = CI.getOperand(0); 1651 Type *SrcTy = Src->getType(); 1652 Type *DestTy = CI.getType(); 1653 1654 // Get rid of casts from one type to the same type. These are useless and can 1655 // be replaced by the operand. 1656 if (DestTy == Src->getType()) 1657 return ReplaceInstUsesWith(CI, Src); 1658 1659 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1660 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1661 Type *DstElTy = DstPTy->getElementType(); 1662 Type *SrcElTy = SrcPTy->getElementType(); 1663 1664 // If the address spaces don't match, don't eliminate the bitcast, which is 1665 // required for changing types. 1666 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) 1667 return 0; 1668 1669 // If we are casting a alloca to a pointer to a type of the same 1670 // size, rewrite the allocation instruction to allocate the "right" type. 1671 // There is no need to modify malloc calls because it is their bitcast that 1672 // needs to be cleaned up. 1673 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1674 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1675 return V; 1676 1677 // If the source and destination are pointers, and this cast is equivalent 1678 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1679 // This can enhance SROA and other transforms that want type-safe pointers. 1680 Constant *ZeroUInt = 1681 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 1682 unsigned NumZeros = 0; 1683 while (SrcElTy != DstElTy && 1684 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1685 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1686 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 1687 ++NumZeros; 1688 } 1689 1690 // If we found a path from the src to dest, create the getelementptr now. 1691 if (SrcElTy == DstElTy) { 1692 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 1693 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1694 } 1695 } 1696 1697 // Try to optimize int -> float bitcasts. 1698 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1699 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 1700 return I; 1701 1702 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1703 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1704 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1705 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1706 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1707 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1708 } 1709 1710 if (isa<IntegerType>(SrcTy)) { 1711 // If this is a cast from an integer to vector, check to see if the input 1712 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1713 // the casts with a shuffle and (potentially) a bitcast. 1714 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1715 CastInst *SrcCast = cast<CastInst>(Src); 1716 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1717 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1718 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1719 cast<VectorType>(DestTy), *this)) 1720 return I; 1721 } 1722 1723 // If the input is an 'or' instruction, we may be doing shifts and ors to 1724 // assemble the elements of the vector manually. Try to rip the code out 1725 // and replace it with insertelements. 1726 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1727 return ReplaceInstUsesWith(CI, V); 1728 } 1729 } 1730 1731 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1732 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) { 1733 Value *Elem = 1734 Builder->CreateExtractElement(Src, 1735 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1736 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1737 } 1738 } 1739 1740 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1741 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1742 // a bitcast to a vector with the same # elts. 1743 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1744 cast<VectorType>(DestTy)->getNumElements() == 1745 SVI->getType()->getNumElements() && 1746 SVI->getType()->getNumElements() == 1747 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { 1748 BitCastInst *Tmp; 1749 // If either of the operands is a cast from CI.getType(), then 1750 // evaluating the shuffle in the casted destination's type will allow 1751 // us to eliminate at least one cast. 1752 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1753 Tmp->getOperand(0)->getType() == DestTy) || 1754 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1755 Tmp->getOperand(0)->getType() == DestTy)) { 1756 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1757 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1758 // Return a new shuffle vector. Use the same element ID's, as we 1759 // know the vector types match #elts. 1760 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1761 } 1762 } 1763 } 1764 1765 if (SrcTy->isPointerTy()) 1766 return commonPointerCastTransforms(CI); 1767 return commonCastTransforms(CI); 1768 } 1769