1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DIBuilder.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include <numeric>
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Analyze 'Val', seeing if it is a simple linear expression.
29 /// If so, decompose it, returning some value X, such that Val is
30 /// X*Scale+Offset.
31 ///
32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33                                         uint64_t &Offset) {
34   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35     Offset = CI->getZExtValue();
36     Scale  = 0;
37     return ConstantInt::get(Val->getType(), 0);
38   }
39 
40   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41     // Cannot look past anything that might overflow.
42     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
43     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
44       Scale = 1;
45       Offset = 0;
46       return Val;
47     }
48 
49     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
50       if (I->getOpcode() == Instruction::Shl) {
51         // This is a value scaled by '1 << the shift amt'.
52         Scale = UINT64_C(1) << RHS->getZExtValue();
53         Offset = 0;
54         return I->getOperand(0);
55       }
56 
57       if (I->getOpcode() == Instruction::Mul) {
58         // This value is scaled by 'RHS'.
59         Scale = RHS->getZExtValue();
60         Offset = 0;
61         return I->getOperand(0);
62       }
63 
64       if (I->getOpcode() == Instruction::Add) {
65         // We have X+C.  Check to see if we really have (X*C2)+C1,
66         // where C1 is divisible by C2.
67         unsigned SubScale;
68         Value *SubVal =
69           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
70         Offset += RHS->getZExtValue();
71         Scale = SubScale;
72         return SubVal;
73       }
74     }
75   }
76 
77   // Otherwise, we can't look past this.
78   Scale = 1;
79   Offset = 0;
80   return Val;
81 }
82 
83 /// If we find a cast of an allocation instruction, try to eliminate the cast by
84 /// moving the type information into the alloc.
85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
86                                                        AllocaInst &AI) {
87   PointerType *PTy = cast<PointerType>(CI.getType());
88 
89   IRBuilderBase::InsertPointGuard Guard(Builder);
90   Builder.SetInsertPoint(&AI);
91 
92   // Get the type really allocated and the type casted to.
93   Type *AllocElTy = AI.getAllocatedType();
94   Type *CastElTy = PTy->getElementType();
95   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96 
97   // This optimisation does not work for cases where the cast type
98   // is scalable and the allocated type is not. This because we need to
99   // know how many times the casted type fits into the allocated type.
100   // For the opposite case where the allocated type is scalable and the
101   // cast type is not this leads to poor code quality due to the
102   // introduction of 'vscale' into the calculations. It seems better to
103   // bail out for this case too until we've done a proper cost-benefit
104   // analysis.
105   bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106   bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107   if (AllocIsScalable != CastIsScalable) return nullptr;
108 
109   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111   if (CastElTyAlign < AllocElTyAlign) return nullptr;
112 
113   // If the allocation has multiple uses, only promote it if we are strictly
114   // increasing the alignment of the resultant allocation.  If we keep it the
115   // same, we open the door to infinite loops of various kinds.
116   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117 
118   // The alloc and cast types should be either both fixed or both scalable.
119   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122 
123   // If the allocation has multiple uses, only promote it if we're not
124   // shrinking the amount of memory being allocated.
125   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128 
129   // See if we can satisfy the modulus by pulling a scale out of the array
130   // size argument.
131   unsigned ArraySizeScale;
132   uint64_t ArrayOffset;
133   Value *NumElements = // See if the array size is a decomposable linear expr.
134     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135 
136   // If we can now satisfy the modulus, by using a non-1 scale, we really can
137   // do the xform.
138   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
140 
141   // We don't currently support arrays of scalable types.
142   assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143 
144   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145   Value *Amt = nullptr;
146   if (Scale == 1) {
147     Amt = NumElements;
148   } else {
149     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150     // Insert before the alloca, not before the cast.
151     Amt = Builder.CreateMul(Amt, NumElements);
152   }
153 
154   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156                                   Offset, true);
157     Amt = Builder.CreateAdd(Amt, Off);
158   }
159 
160   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
161   New->setAlignment(AI.getAlign());
162   New->takeName(&AI);
163   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164 
165   // If the allocation has multiple real uses, insert a cast and change all
166   // things that used it to use the new cast.  This will also hack on CI, but it
167   // will die soon.
168   if (!AI.hasOneUse()) {
169     // New is the allocation instruction, pointer typed. AI is the original
170     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172     replaceInstUsesWith(AI, NewCast);
173     eraseInstFromFunction(AI);
174   }
175   return replaceInstUsesWith(CI, New);
176 }
177 
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181                                                  bool isSigned) {
182   if (Constant *C = dyn_cast<Constant>(V)) {
183     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184     // If we got a constantexpr back, try to simplify it with DL info.
185     return ConstantFoldConstant(C, DL, &TLI);
186   }
187 
188   // Otherwise, it must be an instruction.
189   Instruction *I = cast<Instruction>(V);
190   Instruction *Res = nullptr;
191   unsigned Opc = I->getOpcode();
192   switch (Opc) {
193   case Instruction::Add:
194   case Instruction::Sub:
195   case Instruction::Mul:
196   case Instruction::And:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::AShr:
200   case Instruction::LShr:
201   case Instruction::Shl:
202   case Instruction::UDiv:
203   case Instruction::URem: {
204     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207     break;
208   }
209   case Instruction::Trunc:
210   case Instruction::ZExt:
211   case Instruction::SExt:
212     // If the source type of the cast is the type we're trying for then we can
213     // just return the source.  There's no need to insert it because it is not
214     // new.
215     if (I->getOperand(0)->getType() == Ty)
216       return I->getOperand(0);
217 
218     // Otherwise, must be the same type of cast, so just reinsert a new one.
219     // This also handles the case of zext(trunc(x)) -> zext(x).
220     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221                                       Opc == Instruction::SExt);
222     break;
223   case Instruction::Select: {
224     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226     Res = SelectInst::Create(I->getOperand(0), True, False);
227     break;
228   }
229   case Instruction::PHI: {
230     PHINode *OPN = cast<PHINode>(I);
231     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233       Value *V =
234           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235       NPN->addIncoming(V, OPN->getIncomingBlock(i));
236     }
237     Res = NPN;
238     break;
239   }
240   default:
241     // TODO: Can handle more cases here.
242     llvm_unreachable("Unreachable!");
243   }
244 
245   Res->takeName(I);
246   return InsertNewInstWith(Res, *I);
247 }
248 
249 Instruction::CastOps
250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251                                        const CastInst *CI2) {
252   Type *SrcTy = CI1->getSrcTy();
253   Type *MidTy = CI1->getDestTy();
254   Type *DstTy = CI2->getDestTy();
255 
256   Instruction::CastOps firstOp = CI1->getOpcode();
257   Instruction::CastOps secondOp = CI2->getOpcode();
258   Type *SrcIntPtrTy =
259       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260   Type *MidIntPtrTy =
261       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262   Type *DstIntPtrTy =
263       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
266                                                 DstIntPtrTy);
267 
268   // We don't want to form an inttoptr or ptrtoint that converts to an integer
269   // type that differs from the pointer size.
270   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272     Res = 0;
273 
274   return Instruction::CastOps(Res);
275 }
276 
277 /// Implement the transforms common to all CastInst visitors.
278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279   Value *Src = CI.getOperand(0);
280 
281   // Try to eliminate a cast of a cast.
282   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
283     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
284       // The first cast (CSrc) is eliminable so we need to fix up or replace
285       // the second cast (CI). CSrc will then have a good chance of being dead.
286       auto *Ty = CI.getType();
287       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288       // Point debug users of the dying cast to the new one.
289       if (CSrc->hasOneUse())
290         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291       return Res;
292     }
293   }
294 
295   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296     // We are casting a select. Try to fold the cast into the select if the
297     // select does not have a compare instruction with matching operand types
298     // or the select is likely better done in a narrow type.
299     // Creating a select with operands that are different sizes than its
300     // condition may inhibit other folds and lead to worse codegen.
301     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303         (CI.getOpcode() == Instruction::Trunc &&
304          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307         return NV;
308       }
309     }
310   }
311 
312   // If we are casting a PHI, then fold the cast into the PHI.
313   if (auto *PN = dyn_cast<PHINode>(Src)) {
314     // Don't do this if it would create a PHI node with an illegal type from a
315     // legal type.
316     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317         shouldChangeType(CI.getSrcTy(), CI.getType()))
318       if (Instruction *NV = foldOpIntoPhi(CI, PN))
319         return NV;
320   }
321 
322   return nullptr;
323 }
324 
325 /// Constants and extensions/truncates from the destination type are always
326 /// free to be evaluated in that type. This is a helper for canEvaluate*.
327 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
328   if (isa<Constant>(V))
329     return true;
330   Value *X;
331   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
332       X->getType() == Ty)
333     return true;
334 
335   return false;
336 }
337 
338 /// Filter out values that we can not evaluate in the destination type for free.
339 /// This is a helper for canEvaluate*.
340 static bool canNotEvaluateInType(Value *V, Type *Ty) {
341   assert(!isa<Constant>(V) && "Constant should already be handled.");
342   if (!isa<Instruction>(V))
343     return true;
344   // We don't extend or shrink something that has multiple uses --  doing so
345   // would require duplicating the instruction which isn't profitable.
346   if (!V->hasOneUse())
347     return true;
348 
349   return false;
350 }
351 
352 /// Return true if we can evaluate the specified expression tree as type Ty
353 /// instead of its larger type, and arrive with the same value.
354 /// This is used by code that tries to eliminate truncates.
355 ///
356 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
357 /// can be computed by computing V in the smaller type.  If V is an instruction,
358 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
359 /// makes sense if x and y can be efficiently truncated.
360 ///
361 /// This function works on both vectors and scalars.
362 ///
363 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
364                                  Instruction *CxtI) {
365   if (canAlwaysEvaluateInType(V, Ty))
366     return true;
367   if (canNotEvaluateInType(V, Ty))
368     return false;
369 
370   auto *I = cast<Instruction>(V);
371   Type *OrigTy = V->getType();
372   switch (I->getOpcode()) {
373   case Instruction::Add:
374   case Instruction::Sub:
375   case Instruction::Mul:
376   case Instruction::And:
377   case Instruction::Or:
378   case Instruction::Xor:
379     // These operators can all arbitrarily be extended or truncated.
380     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
381            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
382 
383   case Instruction::UDiv:
384   case Instruction::URem: {
385     // UDiv and URem can be truncated if all the truncated bits are zero.
386     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
387     uint32_t BitWidth = Ty->getScalarSizeInBits();
388     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
389     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
390     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
391         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
392       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
393              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
394     }
395     break;
396   }
397   case Instruction::Shl: {
398     // If we are truncating the result of this SHL, and if it's a shift of an
399     // inrange amount, we can always perform a SHL in a smaller type.
400     uint32_t BitWidth = Ty->getScalarSizeInBits();
401     KnownBits AmtKnownBits =
402         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
403     if (AmtKnownBits.getMaxValue().ult(BitWidth))
404       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
405              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
406     break;
407   }
408   case Instruction::LShr: {
409     // If this is a truncate of a logical shr, we can truncate it to a smaller
410     // lshr iff we know that the bits we would otherwise be shifting in are
411     // already zeros.
412     // TODO: It is enough to check that the bits we would be shifting in are
413     //       zero - use AmtKnownBits.getMaxValue().
414     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415     uint32_t BitWidth = Ty->getScalarSizeInBits();
416     KnownBits AmtKnownBits =
417         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
418     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
419     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
420         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
421       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
422              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
423     }
424     break;
425   }
426   case Instruction::AShr: {
427     // If this is a truncate of an arithmetic shr, we can truncate it to a
428     // smaller ashr iff we know that all the bits from the sign bit of the
429     // original type and the sign bit of the truncate type are similar.
430     // TODO: It is enough to check that the bits we would be shifting in are
431     //       similar to sign bit of the truncate type.
432     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433     uint32_t BitWidth = Ty->getScalarSizeInBits();
434     KnownBits AmtKnownBits =
435         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436     unsigned ShiftedBits = OrigBitWidth - BitWidth;
437     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
439       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441     break;
442   }
443   case Instruction::Trunc:
444     // trunc(trunc(x)) -> trunc(x)
445     return true;
446   case Instruction::ZExt:
447   case Instruction::SExt:
448     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
449     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
450     return true;
451   case Instruction::Select: {
452     SelectInst *SI = cast<SelectInst>(I);
453     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
454            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
455   }
456   case Instruction::PHI: {
457     // We can change a phi if we can change all operands.  Note that we never
458     // get into trouble with cyclic PHIs here because we only consider
459     // instructions with a single use.
460     PHINode *PN = cast<PHINode>(I);
461     for (Value *IncValue : PN->incoming_values())
462       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
463         return false;
464     return true;
465   }
466   default:
467     // TODO: Can handle more cases here.
468     break;
469   }
470 
471   return false;
472 }
473 
474 /// Given a vector that is bitcast to an integer, optionally logically
475 /// right-shifted, and truncated, convert it to an extractelement.
476 /// Example (big endian):
477 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
478 ///   --->
479 ///   extractelement <4 x i32> %X, 1
480 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
481                                          InstCombinerImpl &IC) {
482   Value *TruncOp = Trunc.getOperand(0);
483   Type *DestType = Trunc.getType();
484   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
485     return nullptr;
486 
487   Value *VecInput = nullptr;
488   ConstantInt *ShiftVal = nullptr;
489   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
490                                   m_LShr(m_BitCast(m_Value(VecInput)),
491                                          m_ConstantInt(ShiftVal)))) ||
492       !isa<VectorType>(VecInput->getType()))
493     return nullptr;
494 
495   VectorType *VecType = cast<VectorType>(VecInput->getType());
496   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
497   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
498   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
499 
500   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
501     return nullptr;
502 
503   // If the element type of the vector doesn't match the result type,
504   // bitcast it to a vector type that we can extract from.
505   unsigned NumVecElts = VecWidth / DestWidth;
506   if (VecType->getElementType() != DestType) {
507     VecType = FixedVectorType::get(DestType, NumVecElts);
508     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
509   }
510 
511   unsigned Elt = ShiftAmount / DestWidth;
512   if (IC.getDataLayout().isBigEndian())
513     Elt = NumVecElts - 1 - Elt;
514 
515   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
516 }
517 
518 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
519 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
520 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
521   assert((isa<VectorType>(Trunc.getSrcTy()) ||
522           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
523          "Don't narrow to an illegal scalar type");
524 
525   // Bail out on strange types. It is possible to handle some of these patterns
526   // even with non-power-of-2 sizes, but it is not a likely scenario.
527   Type *DestTy = Trunc.getType();
528   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
529   if (!isPowerOf2_32(NarrowWidth))
530     return nullptr;
531 
532   // First, find an or'd pair of opposite shifts:
533   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
534   BinaryOperator *Or0, *Or1;
535   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
536     return nullptr;
537 
538   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
539   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
540       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
541       Or0->getOpcode() == Or1->getOpcode())
542     return nullptr;
543 
544   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
545   if (Or0->getOpcode() == BinaryOperator::LShr) {
546     std::swap(Or0, Or1);
547     std::swap(ShVal0, ShVal1);
548     std::swap(ShAmt0, ShAmt1);
549   }
550   assert(Or0->getOpcode() == BinaryOperator::Shl &&
551          Or1->getOpcode() == BinaryOperator::LShr &&
552          "Illegal or(shift,shift) pair");
553 
554   // Match the shift amount operands for a funnel/rotate pattern. This always
555   // matches a subtraction on the R operand.
556   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
557     // The shift amounts may add up to the narrow bit width:
558     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
559     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
560       return L;
561 
562     // The shift amount may be masked with negation:
563     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
564     Value *X;
565     unsigned Mask = Width - 1;
566     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
567         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
568       return X;
569 
570     // Same as above, but the shift amount may be extended after masking:
571     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
572         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
573       return X;
574 
575     return nullptr;
576   };
577 
578   // TODO: Add support for funnel shifts (ShVal0 != ShVal1).
579   if (ShVal0 != ShVal1)
580     return nullptr;
581   Value *ShVal = ShVal0;
582 
583   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
584   bool IsFshl = true; // Sub on LSHR.
585   if (!ShAmt) {
586     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
587     IsFshl = false; // Sub on SHL.
588   }
589   if (!ShAmt)
590     return nullptr;
591 
592   // The shifted value must have high zeros in the wide type. Typically, this
593   // will be a zext, but it could also be the result of an 'and' or 'shift'.
594   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
595   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
596   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
597     return nullptr;
598 
599   // We have an unnecessarily wide rotate!
600   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
601   // Narrow the inputs and convert to funnel shift intrinsic:
602   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
603   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
604   Value *X = Builder.CreateTrunc(ShVal, DestTy);
605   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
606   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
607   return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
608 }
609 
610 /// Try to narrow the width of math or bitwise logic instructions by pulling a
611 /// truncate ahead of binary operators.
612 /// TODO: Transforms for truncated shifts should be moved into here.
613 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
614   Type *SrcTy = Trunc.getSrcTy();
615   Type *DestTy = Trunc.getType();
616   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
617     return nullptr;
618 
619   BinaryOperator *BinOp;
620   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
621     return nullptr;
622 
623   Value *BinOp0 = BinOp->getOperand(0);
624   Value *BinOp1 = BinOp->getOperand(1);
625   switch (BinOp->getOpcode()) {
626   case Instruction::And:
627   case Instruction::Or:
628   case Instruction::Xor:
629   case Instruction::Add:
630   case Instruction::Sub:
631   case Instruction::Mul: {
632     Constant *C;
633     if (match(BinOp0, m_Constant(C))) {
634       // trunc (binop C, X) --> binop (trunc C', X)
635       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
636       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
637       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
638     }
639     if (match(BinOp1, m_Constant(C))) {
640       // trunc (binop X, C) --> binop (trunc X, C')
641       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
642       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
643       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
644     }
645     Value *X;
646     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
647       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
648       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
649       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
650     }
651     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
652       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
653       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
654       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
655     }
656     break;
657   }
658 
659   default: break;
660   }
661 
662   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
663     return NarrowOr;
664 
665   return nullptr;
666 }
667 
668 /// Try to narrow the width of a splat shuffle. This could be generalized to any
669 /// shuffle with a constant operand, but we limit the transform to avoid
670 /// creating a shuffle type that targets may not be able to lower effectively.
671 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
672                                        InstCombiner::BuilderTy &Builder) {
673   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
674   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
675       is_splat(Shuf->getShuffleMask()) &&
676       Shuf->getType() == Shuf->getOperand(0)->getType()) {
677     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
678     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
679     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
680     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
681   }
682 
683   return nullptr;
684 }
685 
686 /// Try to narrow the width of an insert element. This could be generalized for
687 /// any vector constant, but we limit the transform to insertion into undef to
688 /// avoid potential backend problems from unsupported insertion widths. This
689 /// could also be extended to handle the case of inserting a scalar constant
690 /// into a vector variable.
691 static Instruction *shrinkInsertElt(CastInst &Trunc,
692                                     InstCombiner::BuilderTy &Builder) {
693   Instruction::CastOps Opcode = Trunc.getOpcode();
694   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
695          "Unexpected instruction for shrinking");
696 
697   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
698   if (!InsElt || !InsElt->hasOneUse())
699     return nullptr;
700 
701   Type *DestTy = Trunc.getType();
702   Type *DestScalarTy = DestTy->getScalarType();
703   Value *VecOp = InsElt->getOperand(0);
704   Value *ScalarOp = InsElt->getOperand(1);
705   Value *Index = InsElt->getOperand(2);
706 
707   if (isa<UndefValue>(VecOp)) {
708     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
709     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
710     UndefValue *NarrowUndef = UndefValue::get(DestTy);
711     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
712     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
713   }
714 
715   return nullptr;
716 }
717 
718 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
719   if (Instruction *Result = commonCastTransforms(Trunc))
720     return Result;
721 
722   Value *Src = Trunc.getOperand(0);
723   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
724   unsigned DestWidth = DestTy->getScalarSizeInBits();
725   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
726 
727   // Attempt to truncate the entire input expression tree to the destination
728   // type.   Only do this if the dest type is a simple type, don't convert the
729   // expression tree to something weird like i93 unless the source is also
730   // strange.
731   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
732       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
733 
734     // If this cast is a truncate, evaluting in a different type always
735     // eliminates the cast, so it is always a win.
736     LLVM_DEBUG(
737         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
738                   " to avoid cast: "
739                << Trunc << '\n');
740     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
741     assert(Res->getType() == DestTy);
742     return replaceInstUsesWith(Trunc, Res);
743   }
744 
745   // For integer types, check if we can shorten the entire input expression to
746   // DestWidth * 2, which won't allow removing the truncate, but reducing the
747   // width may enable further optimizations, e.g. allowing for larger
748   // vectorization factors.
749   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
750     if (DestWidth * 2 < SrcWidth) {
751       auto *NewDestTy = DestITy->getExtendedType();
752       if (shouldChangeType(SrcTy, NewDestTy) &&
753           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
754         LLVM_DEBUG(
755             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
756                       " to reduce the width of operand of"
757                    << Trunc << '\n');
758         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
759         return new TruncInst(Res, DestTy);
760       }
761     }
762   }
763 
764   // Test if the trunc is the user of a select which is part of a
765   // minimum or maximum operation. If so, don't do any more simplification.
766   // Even simplifying demanded bits can break the canonical form of a
767   // min/max.
768   Value *LHS, *RHS;
769   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
770     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
771       return nullptr;
772 
773   // See if we can simplify any instructions used by the input whose sole
774   // purpose is to compute bits we don't care about.
775   if (SimplifyDemandedInstructionBits(Trunc))
776     return &Trunc;
777 
778   if (DestWidth == 1) {
779     Value *Zero = Constant::getNullValue(SrcTy);
780     if (DestTy->isIntegerTy()) {
781       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
782       // TODO: We canonicalize to more instructions here because we are probably
783       // lacking equivalent analysis for trunc relative to icmp. There may also
784       // be codegen concerns. If those trunc limitations were removed, we could
785       // remove this transform.
786       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
787       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
788     }
789 
790     // For vectors, we do not canonicalize all truncs to icmp, so optimize
791     // patterns that would be covered within visitICmpInst.
792     Value *X;
793     Constant *C;
794     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
795       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
796       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
797       Constant *MaskC = ConstantExpr::getShl(One, C);
798       Value *And = Builder.CreateAnd(X, MaskC);
799       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
800     }
801     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
802                                    m_Deferred(X))))) {
803       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
804       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
805       Constant *MaskC = ConstantExpr::getShl(One, C);
806       MaskC = ConstantExpr::getOr(MaskC, One);
807       Value *And = Builder.CreateAnd(X, MaskC);
808       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
809     }
810   }
811 
812   Value *A;
813   Constant *C;
814   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
815     unsigned AWidth = A->getType()->getScalarSizeInBits();
816     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
817     auto *OldSh = cast<Instruction>(Src);
818     bool IsExact = OldSh->isExact();
819 
820     // If the shift is small enough, all zero bits created by the shift are
821     // removed by the trunc.
822     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
823                                     APInt(SrcWidth, MaxShiftAmt)))) {
824       // trunc (lshr (sext A), C) --> ashr A, C
825       if (A->getType() == DestTy) {
826         Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
827         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
828         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
829         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
830         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
831                        : BinaryOperator::CreateAShr(A, ShAmt);
832       }
833       // The types are mismatched, so create a cast after shifting:
834       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
835       if (Src->hasOneUse()) {
836         Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
837         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
838         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
839         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
840         return CastInst::CreateIntegerCast(Shift, DestTy, true);
841       }
842     }
843     // TODO: Mask high bits with 'and'.
844   }
845 
846   // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
847   if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
848     unsigned MaxShiftAmt = SrcWidth - DestWidth;
849 
850     // If the shift is small enough, all zero/sign bits created by the shift are
851     // removed by the trunc.
852     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
853                                     APInt(SrcWidth, MaxShiftAmt)))) {
854       auto *OldShift = cast<Instruction>(Src);
855       bool IsExact = OldShift->isExact();
856       auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
857       ShAmt = Constant::mergeUndefsWith(ShAmt, C);
858       Value *Shift =
859           OldShift->getOpcode() == Instruction::AShr
860               ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
861               : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
862       return CastInst::CreateTruncOrBitCast(Shift, DestTy);
863     }
864   }
865 
866   if (Instruction *I = narrowBinOp(Trunc))
867     return I;
868 
869   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
870     return I;
871 
872   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
873     return I;
874 
875   if (Src->hasOneUse() &&
876       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
877     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
878     // dest type is native and cst < dest size.
879     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
880         !match(A, m_Shr(m_Value(), m_Constant()))) {
881       // Skip shifts of shift by constants. It undoes a combine in
882       // FoldShiftByConstant and is the extend in reg pattern.
883       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
884       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
885         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
886         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
887                                       ConstantExpr::getTrunc(C, DestTy));
888       }
889     }
890   }
891 
892   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
893     return I;
894 
895   // Whenever an element is extracted from a vector, and then truncated,
896   // canonicalize by converting it to a bitcast followed by an
897   // extractelement.
898   //
899   // Example (little endian):
900   //   trunc (extractelement <4 x i64> %X, 0) to i32
901   //   --->
902   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
903   Value *VecOp;
904   ConstantInt *Cst;
905   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
906     auto *VecOpTy = cast<FixedVectorType>(VecOp->getType());
907     unsigned VecNumElts = VecOpTy->getNumElements();
908 
909     // A badly fit destination size would result in an invalid cast.
910     if (SrcWidth % DestWidth == 0) {
911       uint64_t TruncRatio = SrcWidth / DestWidth;
912       uint64_t BitCastNumElts = VecNumElts * TruncRatio;
913       uint64_t VecOpIdx = Cst->getZExtValue();
914       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
915                                          : VecOpIdx * TruncRatio;
916       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
917              "overflow 32-bits");
918 
919       auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
920       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
921       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
922     }
923   }
924 
925   return nullptr;
926 }
927 
928 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
929                                                  bool DoTransform) {
930   // If we are just checking for a icmp eq of a single bit and zext'ing it
931   // to an integer, then shift the bit to the appropriate place and then
932   // cast to integer to avoid the comparison.
933   const APInt *Op1CV;
934   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
935 
936     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
937     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
938     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
939         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
940       if (!DoTransform) return Cmp;
941 
942       Value *In = Cmp->getOperand(0);
943       Value *Sh = ConstantInt::get(In->getType(),
944                                    In->getType()->getScalarSizeInBits() - 1);
945       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
946       if (In->getType() != Zext.getType())
947         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
948 
949       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
950         Constant *One = ConstantInt::get(In->getType(), 1);
951         In = Builder.CreateXor(In, One, In->getName() + ".not");
952       }
953 
954       return replaceInstUsesWith(Zext, In);
955     }
956 
957     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
958     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
959     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
960     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
961     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
962     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
963     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
964     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
965     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
966         // This only works for EQ and NE
967         Cmp->isEquality()) {
968       // If Op1C some other power of two, convert:
969       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
970 
971       APInt KnownZeroMask(~Known.Zero);
972       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
973         if (!DoTransform) return Cmp;
974 
975         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
976         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
977           // (X&4) == 2 --> false
978           // (X&4) != 2 --> true
979           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
980           return replaceInstUsesWith(Zext, Res);
981         }
982 
983         uint32_t ShAmt = KnownZeroMask.logBase2();
984         Value *In = Cmp->getOperand(0);
985         if (ShAmt) {
986           // Perform a logical shr by shiftamt.
987           // Insert the shift to put the result in the low bit.
988           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
989                                   In->getName() + ".lobit");
990         }
991 
992         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
993           Constant *One = ConstantInt::get(In->getType(), 1);
994           In = Builder.CreateXor(In, One);
995         }
996 
997         if (Zext.getType() == In->getType())
998           return replaceInstUsesWith(Zext, In);
999 
1000         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1001         return replaceInstUsesWith(Zext, IntCast);
1002       }
1003     }
1004   }
1005 
1006   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1007   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
1008   // may lead to additional simplifications.
1009   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1010     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1011       Value *LHS = Cmp->getOperand(0);
1012       Value *RHS = Cmp->getOperand(1);
1013 
1014       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1015       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1016 
1017       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1018         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1019         APInt UnknownBit = ~KnownBits;
1020         if (UnknownBit.countPopulation() == 1) {
1021           if (!DoTransform) return Cmp;
1022 
1023           Value *Result = Builder.CreateXor(LHS, RHS);
1024 
1025           // Mask off any bits that are set and won't be shifted away.
1026           if (KnownLHS.One.uge(UnknownBit))
1027             Result = Builder.CreateAnd(Result,
1028                                         ConstantInt::get(ITy, UnknownBit));
1029 
1030           // Shift the bit we're testing down to the lsb.
1031           Result = Builder.CreateLShr(
1032                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1033 
1034           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1035             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1036           Result->takeName(Cmp);
1037           return replaceInstUsesWith(Zext, Result);
1038         }
1039       }
1040     }
1041   }
1042 
1043   return nullptr;
1044 }
1045 
1046 /// Determine if the specified value can be computed in the specified wider type
1047 /// and produce the same low bits. If not, return false.
1048 ///
1049 /// If this function returns true, it can also return a non-zero number of bits
1050 /// (in BitsToClear) which indicates that the value it computes is correct for
1051 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1052 /// out.  For example, to promote something like:
1053 ///
1054 ///   %B = trunc i64 %A to i32
1055 ///   %C = lshr i32 %B, 8
1056 ///   %E = zext i32 %C to i64
1057 ///
1058 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1059 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1060 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1061 /// clear the top bits anyway, doing this has no extra cost.
1062 ///
1063 /// This function works on both vectors and scalars.
1064 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1065                              InstCombinerImpl &IC, Instruction *CxtI) {
1066   BitsToClear = 0;
1067   if (canAlwaysEvaluateInType(V, Ty))
1068     return true;
1069   if (canNotEvaluateInType(V, Ty))
1070     return false;
1071 
1072   auto *I = cast<Instruction>(V);
1073   unsigned Tmp;
1074   switch (I->getOpcode()) {
1075   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1076   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1077   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1078     return true;
1079   case Instruction::And:
1080   case Instruction::Or:
1081   case Instruction::Xor:
1082   case Instruction::Add:
1083   case Instruction::Sub:
1084   case Instruction::Mul:
1085     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1086         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1087       return false;
1088     // These can all be promoted if neither operand has 'bits to clear'.
1089     if (BitsToClear == 0 && Tmp == 0)
1090       return true;
1091 
1092     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1093     // other side, BitsToClear is ok.
1094     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1095       // We use MaskedValueIsZero here for generality, but the case we care
1096       // about the most is constant RHS.
1097       unsigned VSize = V->getType()->getScalarSizeInBits();
1098       if (IC.MaskedValueIsZero(I->getOperand(1),
1099                                APInt::getHighBitsSet(VSize, BitsToClear),
1100                                0, CxtI)) {
1101         // If this is an And instruction and all of the BitsToClear are
1102         // known to be zero we can reset BitsToClear.
1103         if (I->getOpcode() == Instruction::And)
1104           BitsToClear = 0;
1105         return true;
1106       }
1107     }
1108 
1109     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1110     return false;
1111 
1112   case Instruction::Shl: {
1113     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1114     // upper bits we can reduce BitsToClear by the shift amount.
1115     const APInt *Amt;
1116     if (match(I->getOperand(1), m_APInt(Amt))) {
1117       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1118         return false;
1119       uint64_t ShiftAmt = Amt->getZExtValue();
1120       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1121       return true;
1122     }
1123     return false;
1124   }
1125   case Instruction::LShr: {
1126     // We can promote lshr(x, cst) if we can promote x.  This requires the
1127     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1128     const APInt *Amt;
1129     if (match(I->getOperand(1), m_APInt(Amt))) {
1130       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1131         return false;
1132       BitsToClear += Amt->getZExtValue();
1133       if (BitsToClear > V->getType()->getScalarSizeInBits())
1134         BitsToClear = V->getType()->getScalarSizeInBits();
1135       return true;
1136     }
1137     // Cannot promote variable LSHR.
1138     return false;
1139   }
1140   case Instruction::Select:
1141     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1142         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1143         // TODO: If important, we could handle the case when the BitsToClear are
1144         // known zero in the disagreeing side.
1145         Tmp != BitsToClear)
1146       return false;
1147     return true;
1148 
1149   case Instruction::PHI: {
1150     // We can change a phi if we can change all operands.  Note that we never
1151     // get into trouble with cyclic PHIs here because we only consider
1152     // instructions with a single use.
1153     PHINode *PN = cast<PHINode>(I);
1154     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1155       return false;
1156     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1157       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1158           // TODO: If important, we could handle the case when the BitsToClear
1159           // are known zero in the disagreeing input.
1160           Tmp != BitsToClear)
1161         return false;
1162     return true;
1163   }
1164   default:
1165     // TODO: Can handle more cases here.
1166     return false;
1167   }
1168 }
1169 
1170 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1171   // If this zero extend is only used by a truncate, let the truncate be
1172   // eliminated before we try to optimize this zext.
1173   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1174     return nullptr;
1175 
1176   // If one of the common conversion will work, do it.
1177   if (Instruction *Result = commonCastTransforms(CI))
1178     return Result;
1179 
1180   Value *Src = CI.getOperand(0);
1181   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1182 
1183   // Try to extend the entire expression tree to the wide destination type.
1184   unsigned BitsToClear;
1185   if (shouldChangeType(SrcTy, DestTy) &&
1186       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1187     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1188            "Can't clear more bits than in SrcTy");
1189 
1190     // Okay, we can transform this!  Insert the new expression now.
1191     LLVM_DEBUG(
1192         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1193                   " to avoid zero extend: "
1194                << CI << '\n');
1195     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1196     assert(Res->getType() == DestTy);
1197 
1198     // Preserve debug values referring to Src if the zext is its last use.
1199     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1200       if (SrcOp->hasOneUse())
1201         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1202 
1203     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1204     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1205 
1206     // If the high bits are already filled with zeros, just replace this
1207     // cast with the result.
1208     if (MaskedValueIsZero(Res,
1209                           APInt::getHighBitsSet(DestBitSize,
1210                                                 DestBitSize-SrcBitsKept),
1211                              0, &CI))
1212       return replaceInstUsesWith(CI, Res);
1213 
1214     // We need to emit an AND to clear the high bits.
1215     Constant *C = ConstantInt::get(Res->getType(),
1216                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1217     return BinaryOperator::CreateAnd(Res, C);
1218   }
1219 
1220   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1221   // types and if the sizes are just right we can convert this into a logical
1222   // 'and' which will be much cheaper than the pair of casts.
1223   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1224     // TODO: Subsume this into EvaluateInDifferentType.
1225 
1226     // Get the sizes of the types involved.  We know that the intermediate type
1227     // will be smaller than A or C, but don't know the relation between A and C.
1228     Value *A = CSrc->getOperand(0);
1229     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1230     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1231     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1232     // If we're actually extending zero bits, then if
1233     // SrcSize <  DstSize: zext(a & mask)
1234     // SrcSize == DstSize: a & mask
1235     // SrcSize  > DstSize: trunc(a) & mask
1236     if (SrcSize < DstSize) {
1237       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1238       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1239       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1240       return new ZExtInst(And, CI.getType());
1241     }
1242 
1243     if (SrcSize == DstSize) {
1244       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1245       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1246                                                            AndValue));
1247     }
1248     if (SrcSize > DstSize) {
1249       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1250       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1251       return BinaryOperator::CreateAnd(Trunc,
1252                                        ConstantInt::get(Trunc->getType(),
1253                                                         AndValue));
1254     }
1255   }
1256 
1257   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1258     return transformZExtICmp(Cmp, CI);
1259 
1260   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1261   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1262     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1263     // of the (zext icmp) can be eliminated. If so, immediately perform the
1264     // according elimination.
1265     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1266     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1267     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1268         (transformZExtICmp(LHS, CI, false) ||
1269          transformZExtICmp(RHS, CI, false))) {
1270       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1271       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1272       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1273       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1274       if (auto *OrInst = dyn_cast<Instruction>(Or))
1275         Builder.SetInsertPoint(OrInst);
1276 
1277       // Perform the elimination.
1278       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1279         transformZExtICmp(LHS, *LZExt);
1280       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1281         transformZExtICmp(RHS, *RZExt);
1282 
1283       return replaceInstUsesWith(CI, Or);
1284     }
1285   }
1286 
1287   // zext(trunc(X) & C) -> (X & zext(C)).
1288   Constant *C;
1289   Value *X;
1290   if (SrcI &&
1291       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1292       X->getType() == CI.getType())
1293     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1294 
1295   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1296   Value *And;
1297   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1298       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1299       X->getType() == CI.getType()) {
1300     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1301     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1302   }
1303 
1304   return nullptr;
1305 }
1306 
1307 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1308 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1309                                                  Instruction &CI) {
1310   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1311   ICmpInst::Predicate Pred = ICI->getPredicate();
1312 
1313   // Don't bother if Op1 isn't of vector or integer type.
1314   if (!Op1->getType()->isIntOrIntVectorTy())
1315     return nullptr;
1316 
1317   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1318       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1319     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1320     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1321     Value *Sh = ConstantInt::get(Op0->getType(),
1322                                  Op0->getType()->getScalarSizeInBits() - 1);
1323     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1324     if (In->getType() != CI.getType())
1325       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1326 
1327     if (Pred == ICmpInst::ICMP_SGT)
1328       In = Builder.CreateNot(In, In->getName() + ".not");
1329     return replaceInstUsesWith(CI, In);
1330   }
1331 
1332   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1333     // If we know that only one bit of the LHS of the icmp can be set and we
1334     // have an equality comparison with zero or a power of 2, we can transform
1335     // the icmp and sext into bitwise/integer operations.
1336     if (ICI->hasOneUse() &&
1337         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1338       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1339 
1340       APInt KnownZeroMask(~Known.Zero);
1341       if (KnownZeroMask.isPowerOf2()) {
1342         Value *In = ICI->getOperand(0);
1343 
1344         // If the icmp tests for a known zero bit we can constant fold it.
1345         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1346           Value *V = Pred == ICmpInst::ICMP_NE ?
1347                        ConstantInt::getAllOnesValue(CI.getType()) :
1348                        ConstantInt::getNullValue(CI.getType());
1349           return replaceInstUsesWith(CI, V);
1350         }
1351 
1352         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1353           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1354           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1355           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1356           // Perform a right shift to place the desired bit in the LSB.
1357           if (ShiftAmt)
1358             In = Builder.CreateLShr(In,
1359                                     ConstantInt::get(In->getType(), ShiftAmt));
1360 
1361           // At this point "In" is either 1 or 0. Subtract 1 to turn
1362           // {1, 0} -> {0, -1}.
1363           In = Builder.CreateAdd(In,
1364                                  ConstantInt::getAllOnesValue(In->getType()),
1365                                  "sext");
1366         } else {
1367           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1368           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1369           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1370           // Perform a left shift to place the desired bit in the MSB.
1371           if (ShiftAmt)
1372             In = Builder.CreateShl(In,
1373                                    ConstantInt::get(In->getType(), ShiftAmt));
1374 
1375           // Distribute the bit over the whole bit width.
1376           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1377                                   KnownZeroMask.getBitWidth() - 1), "sext");
1378         }
1379 
1380         if (CI.getType() == In->getType())
1381           return replaceInstUsesWith(CI, In);
1382         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1383       }
1384     }
1385   }
1386 
1387   return nullptr;
1388 }
1389 
1390 /// Return true if we can take the specified value and return it as type Ty
1391 /// without inserting any new casts and without changing the value of the common
1392 /// low bits.  This is used by code that tries to promote integer operations to
1393 /// a wider types will allow us to eliminate the extension.
1394 ///
1395 /// This function works on both vectors and scalars.
1396 ///
1397 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1398   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1399          "Can't sign extend type to a smaller type");
1400   if (canAlwaysEvaluateInType(V, Ty))
1401     return true;
1402   if (canNotEvaluateInType(V, Ty))
1403     return false;
1404 
1405   auto *I = cast<Instruction>(V);
1406   switch (I->getOpcode()) {
1407   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1408   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1409   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1410     return true;
1411   case Instruction::And:
1412   case Instruction::Or:
1413   case Instruction::Xor:
1414   case Instruction::Add:
1415   case Instruction::Sub:
1416   case Instruction::Mul:
1417     // These operators can all arbitrarily be extended if their inputs can.
1418     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1419            canEvaluateSExtd(I->getOperand(1), Ty);
1420 
1421   //case Instruction::Shl:   TODO
1422   //case Instruction::LShr:  TODO
1423 
1424   case Instruction::Select:
1425     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1426            canEvaluateSExtd(I->getOperand(2), Ty);
1427 
1428   case Instruction::PHI: {
1429     // We can change a phi if we can change all operands.  Note that we never
1430     // get into trouble with cyclic PHIs here because we only consider
1431     // instructions with a single use.
1432     PHINode *PN = cast<PHINode>(I);
1433     for (Value *IncValue : PN->incoming_values())
1434       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1435     return true;
1436   }
1437   default:
1438     // TODO: Can handle more cases here.
1439     break;
1440   }
1441 
1442   return false;
1443 }
1444 
1445 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1446   // If this sign extend is only used by a truncate, let the truncate be
1447   // eliminated before we try to optimize this sext.
1448   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1449     return nullptr;
1450 
1451   if (Instruction *I = commonCastTransforms(CI))
1452     return I;
1453 
1454   Value *Src = CI.getOperand(0);
1455   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1456 
1457   // If we know that the value being extended is positive, we can use a zext
1458   // instead.
1459   KnownBits Known = computeKnownBits(Src, 0, &CI);
1460   if (Known.isNonNegative())
1461     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1462 
1463   // Try to extend the entire expression tree to the wide destination type.
1464   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1465     // Okay, we can transform this!  Insert the new expression now.
1466     LLVM_DEBUG(
1467         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1468                   " to avoid sign extend: "
1469                << CI << '\n');
1470     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1471     assert(Res->getType() == DestTy);
1472 
1473     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1474     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1475 
1476     // If the high bits are already filled with sign bit, just replace this
1477     // cast with the result.
1478     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1479       return replaceInstUsesWith(CI, Res);
1480 
1481     // We need to emit a shl + ashr to do the sign extend.
1482     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1483     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1484                                       ShAmt);
1485   }
1486 
1487   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1488   // into shifts.
1489   Value *X;
1490   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1491     // sext(trunc(X)) --> ashr(shl(X, C), C)
1492     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1493     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1494     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1495     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1496   }
1497 
1498   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1499     return transformSExtICmp(ICI, CI);
1500 
1501   // If the input is a shl/ashr pair of a same constant, then this is a sign
1502   // extension from a smaller value.  If we could trust arbitrary bitwidth
1503   // integers, we could turn this into a truncate to the smaller bit and then
1504   // use a sext for the whole extension.  Since we don't, look deeper and check
1505   // for a truncate.  If the source and dest are the same type, eliminate the
1506   // trunc and extend and just do shifts.  For example, turn:
1507   //   %a = trunc i32 %i to i8
1508   //   %b = shl i8 %a, 6
1509   //   %c = ashr i8 %b, 6
1510   //   %d = sext i8 %c to i32
1511   // into:
1512   //   %a = shl i32 %i, 30
1513   //   %d = ashr i32 %a, 30
1514   Value *A = nullptr;
1515   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1516   Constant *BA = nullptr, *CA = nullptr;
1517   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1518                         m_Constant(CA))) &&
1519       BA == CA && A->getType() == CI.getType()) {
1520     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1521     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1522     Constant *SizeDiff = ConstantInt::get(CA->getType(), SrcDstSize - MidSize);
1523     Constant *ShAmt = ConstantExpr::getAdd(CA, SizeDiff);
1524     Constant *ShAmtExt = ConstantExpr::getSExt(ShAmt, CI.getType());
1525     A = Builder.CreateShl(A, ShAmtExt, CI.getName());
1526     return BinaryOperator::CreateAShr(A, ShAmtExt);
1527   }
1528 
1529   return nullptr;
1530 }
1531 
1532 /// Return a Constant* for the specified floating-point constant if it fits
1533 /// in the specified FP type without changing its value.
1534 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1535   bool losesInfo;
1536   APFloat F = CFP->getValueAPF();
1537   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1538   return !losesInfo;
1539 }
1540 
1541 static Type *shrinkFPConstant(ConstantFP *CFP) {
1542   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1543     return nullptr;  // No constant folding of this.
1544   // See if the value can be truncated to half and then reextended.
1545   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1546     return Type::getHalfTy(CFP->getContext());
1547   // See if the value can be truncated to float and then reextended.
1548   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1549     return Type::getFloatTy(CFP->getContext());
1550   if (CFP->getType()->isDoubleTy())
1551     return nullptr;  // Won't shrink.
1552   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1553     return Type::getDoubleTy(CFP->getContext());
1554   // Don't try to shrink to various long double types.
1555   return nullptr;
1556 }
1557 
1558 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1559 // type we can safely truncate all elements to.
1560 // TODO: Make these support undef elements.
1561 static Type *shrinkFPConstantVector(Value *V) {
1562   auto *CV = dyn_cast<Constant>(V);
1563   auto *CVVTy = dyn_cast<VectorType>(V->getType());
1564   if (!CV || !CVVTy)
1565     return nullptr;
1566 
1567   Type *MinType = nullptr;
1568 
1569   unsigned NumElts = cast<FixedVectorType>(CVVTy)->getNumElements();
1570   for (unsigned i = 0; i != NumElts; ++i) {
1571     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1572     if (!CFP)
1573       return nullptr;
1574 
1575     Type *T = shrinkFPConstant(CFP);
1576     if (!T)
1577       return nullptr;
1578 
1579     // If we haven't found a type yet or this type has a larger mantissa than
1580     // our previous type, this is our new minimal type.
1581     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1582       MinType = T;
1583   }
1584 
1585   // Make a vector type from the minimal type.
1586   return FixedVectorType::get(MinType, NumElts);
1587 }
1588 
1589 /// Find the minimum FP type we can safely truncate to.
1590 static Type *getMinimumFPType(Value *V) {
1591   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1592     return FPExt->getOperand(0)->getType();
1593 
1594   // If this value is a constant, return the constant in the smallest FP type
1595   // that can accurately represent it.  This allows us to turn
1596   // (float)((double)X+2.0) into x+2.0f.
1597   if (auto *CFP = dyn_cast<ConstantFP>(V))
1598     if (Type *T = shrinkFPConstant(CFP))
1599       return T;
1600 
1601   // Try to shrink a vector of FP constants.
1602   if (Type *T = shrinkFPConstantVector(V))
1603     return T;
1604 
1605   return V->getType();
1606 }
1607 
1608 /// Return true if the cast from integer to FP can be proven to be exact for all
1609 /// possible inputs (the conversion does not lose any precision).
1610 static bool isKnownExactCastIntToFP(CastInst &I) {
1611   CastInst::CastOps Opcode = I.getOpcode();
1612   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1613          "Unexpected cast");
1614   Value *Src = I.getOperand(0);
1615   Type *SrcTy = Src->getType();
1616   Type *FPTy = I.getType();
1617   bool IsSigned = Opcode == Instruction::SIToFP;
1618   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1619 
1620   // Easy case - if the source integer type has less bits than the FP mantissa,
1621   // then the cast must be exact.
1622   int DestNumSigBits = FPTy->getFPMantissaWidth();
1623   if (SrcSize <= DestNumSigBits)
1624     return true;
1625 
1626   // Cast from FP to integer and back to FP is independent of the intermediate
1627   // integer width because of poison on overflow.
1628   Value *F;
1629   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1630     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1631     // potential rounding of negative FP input values.
1632     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1633     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1634       SrcNumSigBits++;
1635 
1636     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1637     // significant bits than the destination (and make sure neither type is
1638     // weird -- ppc_fp128).
1639     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1640         SrcNumSigBits <= DestNumSigBits)
1641       return true;
1642   }
1643 
1644   // TODO:
1645   // Try harder to find if the source integer type has less significant bits.
1646   // For example, compute number of sign bits or compute low bit mask.
1647   return false;
1648 }
1649 
1650 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1651   if (Instruction *I = commonCastTransforms(FPT))
1652     return I;
1653 
1654   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1655   // simplify this expression to avoid one or more of the trunc/extend
1656   // operations if we can do so without changing the numerical results.
1657   //
1658   // The exact manner in which the widths of the operands interact to limit
1659   // what we can and cannot do safely varies from operation to operation, and
1660   // is explained below in the various case statements.
1661   Type *Ty = FPT.getType();
1662   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1663   if (BO && BO->hasOneUse()) {
1664     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1665     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1666     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1667     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1668     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1669     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1670     unsigned DstWidth = Ty->getFPMantissaWidth();
1671     switch (BO->getOpcode()) {
1672       default: break;
1673       case Instruction::FAdd:
1674       case Instruction::FSub:
1675         // For addition and subtraction, the infinitely precise result can
1676         // essentially be arbitrarily wide; proving that double rounding
1677         // will not occur because the result of OpI is exact (as we will for
1678         // FMul, for example) is hopeless.  However, we *can* nonetheless
1679         // frequently know that double rounding cannot occur (or that it is
1680         // innocuous) by taking advantage of the specific structure of
1681         // infinitely-precise results that admit double rounding.
1682         //
1683         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1684         // to represent both sources, we can guarantee that the double
1685         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1686         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1687         // for proof of this fact).
1688         //
1689         // Note: Figueroa does not consider the case where DstFormat !=
1690         // SrcFormat.  It's possible (likely even!) that this analysis
1691         // could be tightened for those cases, but they are rare (the main
1692         // case of interest here is (float)((double)float + float)).
1693         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1694           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1695           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1696           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1697           RI->copyFastMathFlags(BO);
1698           return RI;
1699         }
1700         break;
1701       case Instruction::FMul:
1702         // For multiplication, the infinitely precise result has at most
1703         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1704         // that such a value can be exactly represented, then no double
1705         // rounding can possibly occur; we can safely perform the operation
1706         // in the destination format if it can represent both sources.
1707         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1708           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1709           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1710           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1711         }
1712         break;
1713       case Instruction::FDiv:
1714         // For division, we use again use the bound from Figueroa's
1715         // dissertation.  I am entirely certain that this bound can be
1716         // tightened in the unbalanced operand case by an analysis based on
1717         // the diophantine rational approximation bound, but the well-known
1718         // condition used here is a good conservative first pass.
1719         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1720         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1721           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1722           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1723           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1724         }
1725         break;
1726       case Instruction::FRem: {
1727         // Remainder is straightforward.  Remainder is always exact, so the
1728         // type of OpI doesn't enter into things at all.  We simply evaluate
1729         // in whichever source type is larger, then convert to the
1730         // destination type.
1731         if (SrcWidth == OpWidth)
1732           break;
1733         Value *LHS, *RHS;
1734         if (LHSWidth == SrcWidth) {
1735            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1736            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1737         } else {
1738            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1739            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1740         }
1741 
1742         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1743         return CastInst::CreateFPCast(ExactResult, Ty);
1744       }
1745     }
1746   }
1747 
1748   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1749   Value *X;
1750   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1751   if (Op && Op->hasOneUse()) {
1752     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1753     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1754     if (isa<FPMathOperator>(Op))
1755       Builder.setFastMathFlags(Op->getFastMathFlags());
1756 
1757     if (match(Op, m_FNeg(m_Value(X)))) {
1758       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1759 
1760       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1761     }
1762 
1763     // If we are truncating a select that has an extended operand, we can
1764     // narrow the other operand and do the select as a narrow op.
1765     Value *Cond, *X, *Y;
1766     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1767         X->getType() == Ty) {
1768       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1769       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1770       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1771       return replaceInstUsesWith(FPT, Sel);
1772     }
1773     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1774         X->getType() == Ty) {
1775       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1776       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1777       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1778       return replaceInstUsesWith(FPT, Sel);
1779     }
1780   }
1781 
1782   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1783     switch (II->getIntrinsicID()) {
1784     default: break;
1785     case Intrinsic::ceil:
1786     case Intrinsic::fabs:
1787     case Intrinsic::floor:
1788     case Intrinsic::nearbyint:
1789     case Intrinsic::rint:
1790     case Intrinsic::round:
1791     case Intrinsic::roundeven:
1792     case Intrinsic::trunc: {
1793       Value *Src = II->getArgOperand(0);
1794       if (!Src->hasOneUse())
1795         break;
1796 
1797       // Except for fabs, this transformation requires the input of the unary FP
1798       // operation to be itself an fpext from the type to which we're
1799       // truncating.
1800       if (II->getIntrinsicID() != Intrinsic::fabs) {
1801         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1802         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1803           break;
1804       }
1805 
1806       // Do unary FP operation on smaller type.
1807       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1808       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1809       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1810                                                      II->getIntrinsicID(), Ty);
1811       SmallVector<OperandBundleDef, 1> OpBundles;
1812       II->getOperandBundlesAsDefs(OpBundles);
1813       CallInst *NewCI =
1814           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1815       NewCI->copyFastMathFlags(II);
1816       return NewCI;
1817     }
1818     }
1819   }
1820 
1821   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1822     return I;
1823 
1824   Value *Src = FPT.getOperand(0);
1825   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1826     auto *FPCast = cast<CastInst>(Src);
1827     if (isKnownExactCastIntToFP(*FPCast))
1828       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1829   }
1830 
1831   return nullptr;
1832 }
1833 
1834 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1835   // If the source operand is a cast from integer to FP and known exact, then
1836   // cast the integer operand directly to the destination type.
1837   Type *Ty = FPExt.getType();
1838   Value *Src = FPExt.getOperand(0);
1839   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1840     auto *FPCast = cast<CastInst>(Src);
1841     if (isKnownExactCastIntToFP(*FPCast))
1842       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1843   }
1844 
1845   return commonCastTransforms(FPExt);
1846 }
1847 
1848 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1849 /// This is safe if the intermediate type has enough bits in its mantissa to
1850 /// accurately represent all values of X.  For example, this won't work with
1851 /// i64 -> float -> i64.
1852 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1853   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1854     return nullptr;
1855 
1856   auto *OpI = cast<CastInst>(FI.getOperand(0));
1857   Value *X = OpI->getOperand(0);
1858   Type *XType = X->getType();
1859   Type *DestType = FI.getType();
1860   bool IsOutputSigned = isa<FPToSIInst>(FI);
1861 
1862   // Since we can assume the conversion won't overflow, our decision as to
1863   // whether the input will fit in the float should depend on the minimum
1864   // of the input range and output range.
1865 
1866   // This means this is also safe for a signed input and unsigned output, since
1867   // a negative input would lead to undefined behavior.
1868   if (!isKnownExactCastIntToFP(*OpI)) {
1869     // The first cast may not round exactly based on the source integer width
1870     // and FP width, but the overflow UB rules can still allow this to fold.
1871     // If the destination type is narrow, that means the intermediate FP value
1872     // must be large enough to hold the source value exactly.
1873     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1874     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1875     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1876       return nullptr;
1877   }
1878 
1879   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1880     bool IsInputSigned = isa<SIToFPInst>(OpI);
1881     if (IsInputSigned && IsOutputSigned)
1882       return new SExtInst(X, DestType);
1883     return new ZExtInst(X, DestType);
1884   }
1885   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1886     return new TruncInst(X, DestType);
1887 
1888   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1889   return replaceInstUsesWith(FI, X);
1890 }
1891 
1892 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1893   if (Instruction *I = foldItoFPtoI(FI))
1894     return I;
1895 
1896   return commonCastTransforms(FI);
1897 }
1898 
1899 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1900   if (Instruction *I = foldItoFPtoI(FI))
1901     return I;
1902 
1903   return commonCastTransforms(FI);
1904 }
1905 
1906 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1907   return commonCastTransforms(CI);
1908 }
1909 
1910 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1911   return commonCastTransforms(CI);
1912 }
1913 
1914 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1915   // If the source integer type is not the intptr_t type for this target, do a
1916   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1917   // cast to be exposed to other transforms.
1918   unsigned AS = CI.getAddressSpace();
1919   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1920       DL.getPointerSizeInBits(AS)) {
1921     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1922     // Handle vectors of pointers.
1923     if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
1924       Ty = VectorType::get(Ty, CIVTy->getElementCount());
1925 
1926     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1927     return new IntToPtrInst(P, CI.getType());
1928   }
1929 
1930   if (Instruction *I = commonCastTransforms(CI))
1931     return I;
1932 
1933   return nullptr;
1934 }
1935 
1936 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1937 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
1938   Value *Src = CI.getOperand(0);
1939 
1940   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1941     // If casting the result of a getelementptr instruction with no offset, turn
1942     // this into a cast of the original pointer!
1943     if (GEP->hasAllZeroIndices() &&
1944         // If CI is an addrspacecast and GEP changes the poiner type, merging
1945         // GEP into CI would undo canonicalizing addrspacecast with different
1946         // pointer types, causing infinite loops.
1947         (!isa<AddrSpaceCastInst>(CI) ||
1948          GEP->getType() == GEP->getPointerOperandType())) {
1949       // Changing the cast operand is usually not a good idea but it is safe
1950       // here because the pointer operand is being replaced with another
1951       // pointer operand so the opcode doesn't need to change.
1952       return replaceOperand(CI, 0, GEP->getOperand(0));
1953     }
1954   }
1955 
1956   return commonCastTransforms(CI);
1957 }
1958 
1959 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1960   // If the destination integer type is not the intptr_t type for this target,
1961   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1962   // to be exposed to other transforms.
1963   Value *SrcOp = CI.getPointerOperand();
1964   Type *Ty = CI.getType();
1965   unsigned AS = CI.getPointerAddressSpace();
1966   unsigned TySize = Ty->getScalarSizeInBits();
1967   unsigned PtrSize = DL.getPointerSizeInBits(AS);
1968   if (TySize != PtrSize) {
1969     Type *IntPtrTy = DL.getIntPtrType(CI.getContext(), AS);
1970     if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
1971       // Handle vectors of pointers.
1972       // FIXME: what should happen for scalable vectors?
1973       IntPtrTy = FixedVectorType::get(
1974           IntPtrTy, cast<FixedVectorType>(VecTy)->getNumElements());
1975     }
1976 
1977     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1978     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1979   }
1980 
1981   Value *Vec, *Scalar, *Index;
1982   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
1983                                         m_Value(Scalar), m_Value(Index)))) &&
1984       Vec->getType() == Ty) {
1985     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
1986     // Convert the scalar to int followed by insert to eliminate one cast:
1987     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
1988     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
1989     return InsertElementInst::Create(Vec, NewCast, Index);
1990   }
1991 
1992   return commonPointerCastTransforms(CI);
1993 }
1994 
1995 /// This input value (which is known to have vector type) is being zero extended
1996 /// or truncated to the specified vector type. Since the zext/trunc is done
1997 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
1998 /// endianness will impact which end of the vector that is extended or
1999 /// truncated.
2000 ///
2001 /// A vector is always stored with index 0 at the lowest address, which
2002 /// corresponds to the most significant bits for a big endian stored integer and
2003 /// the least significant bits for little endian. A trunc/zext of an integer
2004 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2005 /// the front of the vector for big endian targets, and the back of the vector
2006 /// for little endian targets.
2007 ///
2008 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2009 ///
2010 /// The source and destination vector types may have different element types.
2011 static Instruction *
2012 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2013                                         InstCombinerImpl &IC) {
2014   // We can only do this optimization if the output is a multiple of the input
2015   // element size, or the input is a multiple of the output element size.
2016   // Convert the input type to have the same element type as the output.
2017   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2018 
2019   if (SrcTy->getElementType() != DestTy->getElementType()) {
2020     // The input types don't need to be identical, but for now they must be the
2021     // same size.  There is no specific reason we couldn't handle things like
2022     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2023     // there yet.
2024     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2025         DestTy->getElementType()->getPrimitiveSizeInBits())
2026       return nullptr;
2027 
2028     SrcTy =
2029         FixedVectorType::get(DestTy->getElementType(),
2030                              cast<FixedVectorType>(SrcTy)->getNumElements());
2031     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2032   }
2033 
2034   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2035   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2036   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2037 
2038   assert(SrcElts != DestElts && "Element counts should be different.");
2039 
2040   // Now that the element types match, get the shuffle mask and RHS of the
2041   // shuffle to use, which depends on whether we're increasing or decreasing the
2042   // size of the input.
2043   SmallVector<int, 16> ShuffleMaskStorage;
2044   ArrayRef<int> ShuffleMask;
2045   Value *V2;
2046 
2047   // Produce an identify shuffle mask for the src vector.
2048   ShuffleMaskStorage.resize(SrcElts);
2049   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2050 
2051   if (SrcElts > DestElts) {
2052     // If we're shrinking the number of elements (rewriting an integer
2053     // truncate), just shuffle in the elements corresponding to the least
2054     // significant bits from the input and use undef as the second shuffle
2055     // input.
2056     V2 = UndefValue::get(SrcTy);
2057     // Make sure the shuffle mask selects the "least significant bits" by
2058     // keeping elements from back of the src vector for big endian, and from the
2059     // front for little endian.
2060     ShuffleMask = ShuffleMaskStorage;
2061     if (IsBigEndian)
2062       ShuffleMask = ShuffleMask.take_back(DestElts);
2063     else
2064       ShuffleMask = ShuffleMask.take_front(DestElts);
2065   } else {
2066     // If we're increasing the number of elements (rewriting an integer zext),
2067     // shuffle in all of the elements from InVal. Fill the rest of the result
2068     // elements with zeros from a constant zero.
2069     V2 = Constant::getNullValue(SrcTy);
2070     // Use first elt from V2 when indicating zero in the shuffle mask.
2071     uint32_t NullElt = SrcElts;
2072     // Extend with null values in the "most significant bits" by adding elements
2073     // in front of the src vector for big endian, and at the back for little
2074     // endian.
2075     unsigned DeltaElts = DestElts - SrcElts;
2076     if (IsBigEndian)
2077       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2078     else
2079       ShuffleMaskStorage.append(DeltaElts, NullElt);
2080     ShuffleMask = ShuffleMaskStorage;
2081   }
2082 
2083   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2084 }
2085 
2086 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2087   return Value % Ty->getPrimitiveSizeInBits() == 0;
2088 }
2089 
2090 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2091   return Value / Ty->getPrimitiveSizeInBits();
2092 }
2093 
2094 /// V is a value which is inserted into a vector of VecEltTy.
2095 /// Look through the value to see if we can decompose it into
2096 /// insertions into the vector.  See the example in the comment for
2097 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2098 /// The type of V is always a non-zero multiple of VecEltTy's size.
2099 /// Shift is the number of bits between the lsb of V and the lsb of
2100 /// the vector.
2101 ///
2102 /// This returns false if the pattern can't be matched or true if it can,
2103 /// filling in Elements with the elements found here.
2104 static bool collectInsertionElements(Value *V, unsigned Shift,
2105                                      SmallVectorImpl<Value *> &Elements,
2106                                      Type *VecEltTy, bool isBigEndian) {
2107   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2108          "Shift should be a multiple of the element type size");
2109 
2110   // Undef values never contribute useful bits to the result.
2111   if (isa<UndefValue>(V)) return true;
2112 
2113   // If we got down to a value of the right type, we win, try inserting into the
2114   // right element.
2115   if (V->getType() == VecEltTy) {
2116     // Inserting null doesn't actually insert any elements.
2117     if (Constant *C = dyn_cast<Constant>(V))
2118       if (C->isNullValue())
2119         return true;
2120 
2121     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2122     if (isBigEndian)
2123       ElementIndex = Elements.size() - ElementIndex - 1;
2124 
2125     // Fail if multiple elements are inserted into this slot.
2126     if (Elements[ElementIndex])
2127       return false;
2128 
2129     Elements[ElementIndex] = V;
2130     return true;
2131   }
2132 
2133   if (Constant *C = dyn_cast<Constant>(V)) {
2134     // Figure out the # elements this provides, and bitcast it or slice it up
2135     // as required.
2136     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2137                                         VecEltTy);
2138     // If the constant is the size of a vector element, we just need to bitcast
2139     // it to the right type so it gets properly inserted.
2140     if (NumElts == 1)
2141       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2142                                       Shift, Elements, VecEltTy, isBigEndian);
2143 
2144     // Okay, this is a constant that covers multiple elements.  Slice it up into
2145     // pieces and insert each element-sized piece into the vector.
2146     if (!isa<IntegerType>(C->getType()))
2147       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2148                                        C->getType()->getPrimitiveSizeInBits()));
2149     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2150     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2151 
2152     for (unsigned i = 0; i != NumElts; ++i) {
2153       unsigned ShiftI = Shift+i*ElementSize;
2154       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2155                                                                   ShiftI));
2156       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2157       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2158                                     isBigEndian))
2159         return false;
2160     }
2161     return true;
2162   }
2163 
2164   if (!V->hasOneUse()) return false;
2165 
2166   Instruction *I = dyn_cast<Instruction>(V);
2167   if (!I) return false;
2168   switch (I->getOpcode()) {
2169   default: return false; // Unhandled case.
2170   case Instruction::BitCast:
2171     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2172                                     isBigEndian);
2173   case Instruction::ZExt:
2174     if (!isMultipleOfTypeSize(
2175                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2176                               VecEltTy))
2177       return false;
2178     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2179                                     isBigEndian);
2180   case Instruction::Or:
2181     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2182                                     isBigEndian) &&
2183            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2184                                     isBigEndian);
2185   case Instruction::Shl: {
2186     // Must be shifting by a constant that is a multiple of the element size.
2187     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2188     if (!CI) return false;
2189     Shift += CI->getZExtValue();
2190     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2191     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2192                                     isBigEndian);
2193   }
2194 
2195   }
2196 }
2197 
2198 
2199 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2200 /// assemble the elements of the vector manually.
2201 /// Try to rip the code out and replace it with insertelements.  This is to
2202 /// optimize code like this:
2203 ///
2204 ///    %tmp37 = bitcast float %inc to i32
2205 ///    %tmp38 = zext i32 %tmp37 to i64
2206 ///    %tmp31 = bitcast float %inc5 to i32
2207 ///    %tmp32 = zext i32 %tmp31 to i64
2208 ///    %tmp33 = shl i64 %tmp32, 32
2209 ///    %ins35 = or i64 %tmp33, %tmp38
2210 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2211 ///
2212 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2213 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2214                                                 InstCombinerImpl &IC) {
2215   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2216   Value *IntInput = CI.getOperand(0);
2217 
2218   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2219   if (!collectInsertionElements(IntInput, 0, Elements,
2220                                 DestVecTy->getElementType(),
2221                                 IC.getDataLayout().isBigEndian()))
2222     return nullptr;
2223 
2224   // If we succeeded, we know that all of the element are specified by Elements
2225   // or are zero if Elements has a null entry.  Recast this as a set of
2226   // insertions.
2227   Value *Result = Constant::getNullValue(CI.getType());
2228   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2229     if (!Elements[i]) continue;  // Unset element.
2230 
2231     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2232                                             IC.Builder.getInt32(i));
2233   }
2234 
2235   return Result;
2236 }
2237 
2238 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2239 /// vector followed by extract element. The backend tends to handle bitcasts of
2240 /// vectors better than bitcasts of scalars because vector registers are
2241 /// usually not type-specific like scalar integer or scalar floating-point.
2242 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2243                                               InstCombinerImpl &IC) {
2244   // TODO: Create and use a pattern matcher for ExtractElementInst.
2245   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2246   if (!ExtElt || !ExtElt->hasOneUse())
2247     return nullptr;
2248 
2249   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2250   // type to extract from.
2251   Type *DestType = BitCast.getType();
2252   if (!VectorType::isValidElementType(DestType))
2253     return nullptr;
2254 
2255   auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2256   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2257                                          NewVecType, "bc");
2258   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2259 }
2260 
2261 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2262 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2263                                             InstCombiner::BuilderTy &Builder) {
2264   Type *DestTy = BitCast.getType();
2265   BinaryOperator *BO;
2266   if (!DestTy->isIntOrIntVectorTy() ||
2267       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2268       !BO->isBitwiseLogicOp())
2269     return nullptr;
2270 
2271   // FIXME: This transform is restricted to vector types to avoid backend
2272   // problems caused by creating potentially illegal operations. If a fix-up is
2273   // added to handle that situation, we can remove this check.
2274   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2275     return nullptr;
2276 
2277   Value *X;
2278   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2279       X->getType() == DestTy && !isa<Constant>(X)) {
2280     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2281     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2282     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2283   }
2284 
2285   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2286       X->getType() == DestTy && !isa<Constant>(X)) {
2287     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2288     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2289     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2290   }
2291 
2292   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2293   // constant. This eases recognition of special constants for later ops.
2294   // Example:
2295   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2296   Constant *C;
2297   if (match(BO->getOperand(1), m_Constant(C))) {
2298     // bitcast (logic X, C) --> logic (bitcast X, C')
2299     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2300     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2301     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2302   }
2303 
2304   return nullptr;
2305 }
2306 
2307 /// Change the type of a select if we can eliminate a bitcast.
2308 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2309                                       InstCombiner::BuilderTy &Builder) {
2310   Value *Cond, *TVal, *FVal;
2311   if (!match(BitCast.getOperand(0),
2312              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2313     return nullptr;
2314 
2315   // A vector select must maintain the same number of elements in its operands.
2316   Type *CondTy = Cond->getType();
2317   Type *DestTy = BitCast.getType();
2318   if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
2319     if (!DestTy->isVectorTy())
2320       return nullptr;
2321     if (cast<FixedVectorType>(DestTy)->getNumElements() !=
2322         cast<FixedVectorType>(CondVTy)->getNumElements())
2323       return nullptr;
2324   }
2325 
2326   // FIXME: This transform is restricted from changing the select between
2327   // scalars and vectors to avoid backend problems caused by creating
2328   // potentially illegal operations. If a fix-up is added to handle that
2329   // situation, we can remove this check.
2330   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2331     return nullptr;
2332 
2333   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2334   Value *X;
2335   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2336       !isa<Constant>(X)) {
2337     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2338     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2339     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2340   }
2341 
2342   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2343       !isa<Constant>(X)) {
2344     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2345     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2346     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2347   }
2348 
2349   return nullptr;
2350 }
2351 
2352 /// Check if all users of CI are StoreInsts.
2353 static bool hasStoreUsersOnly(CastInst &CI) {
2354   for (User *U : CI.users()) {
2355     if (!isa<StoreInst>(U))
2356       return false;
2357   }
2358   return true;
2359 }
2360 
2361 /// This function handles following case
2362 ///
2363 ///     A  ->  B    cast
2364 ///     PHI
2365 ///     B  ->  A    cast
2366 ///
2367 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2368 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2369 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2370                                                       PHINode *PN) {
2371   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2372   if (hasStoreUsersOnly(CI))
2373     return nullptr;
2374 
2375   Value *Src = CI.getOperand(0);
2376   Type *SrcTy = Src->getType();         // Type B
2377   Type *DestTy = CI.getType();          // Type A
2378 
2379   SmallVector<PHINode *, 4> PhiWorklist;
2380   SmallSetVector<PHINode *, 4> OldPhiNodes;
2381 
2382   // Find all of the A->B casts and PHI nodes.
2383   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2384   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2385   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2386   PhiWorklist.push_back(PN);
2387   OldPhiNodes.insert(PN);
2388   while (!PhiWorklist.empty()) {
2389     auto *OldPN = PhiWorklist.pop_back_val();
2390     for (Value *IncValue : OldPN->incoming_values()) {
2391       if (isa<Constant>(IncValue))
2392         continue;
2393 
2394       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2395         // If there is a sequence of one or more load instructions, each loaded
2396         // value is used as address of later load instruction, bitcast is
2397         // necessary to change the value type, don't optimize it. For
2398         // simplicity we give up if the load address comes from another load.
2399         Value *Addr = LI->getOperand(0);
2400         if (Addr == &CI || isa<LoadInst>(Addr))
2401           return nullptr;
2402         if (LI->hasOneUse() && LI->isSimple())
2403           continue;
2404         // If a LoadInst has more than one use, changing the type of loaded
2405         // value may create another bitcast.
2406         return nullptr;
2407       }
2408 
2409       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2410         if (OldPhiNodes.insert(PNode))
2411           PhiWorklist.push_back(PNode);
2412         continue;
2413       }
2414 
2415       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2416       // We can't handle other instructions.
2417       if (!BCI)
2418         return nullptr;
2419 
2420       // Verify it's a A->B cast.
2421       Type *TyA = BCI->getOperand(0)->getType();
2422       Type *TyB = BCI->getType();
2423       if (TyA != DestTy || TyB != SrcTy)
2424         return nullptr;
2425     }
2426   }
2427 
2428   // Check that each user of each old PHI node is something that we can
2429   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2430   for (auto *OldPN : OldPhiNodes) {
2431     for (User *V : OldPN->users()) {
2432       if (auto *SI = dyn_cast<StoreInst>(V)) {
2433         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2434           return nullptr;
2435       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2436         // Verify it's a B->A cast.
2437         Type *TyB = BCI->getOperand(0)->getType();
2438         Type *TyA = BCI->getType();
2439         if (TyA != DestTy || TyB != SrcTy)
2440           return nullptr;
2441       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2442         // As long as the user is another old PHI node, then even if we don't
2443         // rewrite it, the PHI web we're considering won't have any users
2444         // outside itself, so it'll be dead.
2445         if (OldPhiNodes.count(PHI) == 0)
2446           return nullptr;
2447       } else {
2448         return nullptr;
2449       }
2450     }
2451   }
2452 
2453   // For each old PHI node, create a corresponding new PHI node with a type A.
2454   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2455   for (auto *OldPN : OldPhiNodes) {
2456     Builder.SetInsertPoint(OldPN);
2457     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2458     NewPNodes[OldPN] = NewPN;
2459   }
2460 
2461   // Fill in the operands of new PHI nodes.
2462   for (auto *OldPN : OldPhiNodes) {
2463     PHINode *NewPN = NewPNodes[OldPN];
2464     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2465       Value *V = OldPN->getOperand(j);
2466       Value *NewV = nullptr;
2467       if (auto *C = dyn_cast<Constant>(V)) {
2468         NewV = ConstantExpr::getBitCast(C, DestTy);
2469       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2470         // Explicitly perform load combine to make sure no opposing transform
2471         // can remove the bitcast in the meantime and trigger an infinite loop.
2472         Builder.SetInsertPoint(LI);
2473         NewV = combineLoadToNewType(*LI, DestTy);
2474         // Remove the old load and its use in the old phi, which itself becomes
2475         // dead once the whole transform finishes.
2476         replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2477         eraseInstFromFunction(*LI);
2478       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2479         NewV = BCI->getOperand(0);
2480       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2481         NewV = NewPNodes[PrevPN];
2482       }
2483       assert(NewV);
2484       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2485     }
2486   }
2487 
2488   // Traverse all accumulated PHI nodes and process its users,
2489   // which are Stores and BitcCasts. Without this processing
2490   // NewPHI nodes could be replicated and could lead to extra
2491   // moves generated after DeSSA.
2492   // If there is a store with type B, change it to type A.
2493 
2494 
2495   // Replace users of BitCast B->A with NewPHI. These will help
2496   // later to get rid off a closure formed by OldPHI nodes.
2497   Instruction *RetVal = nullptr;
2498   for (auto *OldPN : OldPhiNodes) {
2499     PHINode *NewPN = NewPNodes[OldPN];
2500     for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
2501       User *V = *It;
2502       // We may remove this user, advance to avoid iterator invalidation.
2503       ++It;
2504       if (auto *SI = dyn_cast<StoreInst>(V)) {
2505         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2506         Builder.SetInsertPoint(SI);
2507         auto *NewBC =
2508           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2509         SI->setOperand(0, NewBC);
2510         Worklist.push(SI);
2511         assert(hasStoreUsersOnly(*NewBC));
2512       }
2513       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2514         Type *TyB = BCI->getOperand(0)->getType();
2515         Type *TyA = BCI->getType();
2516         assert(TyA == DestTy && TyB == SrcTy);
2517         (void) TyA;
2518         (void) TyB;
2519         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2520         if (BCI == &CI)
2521           RetVal = I;
2522       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2523         assert(OldPhiNodes.count(PHI) > 0);
2524         (void) PHI;
2525       } else {
2526         llvm_unreachable("all uses should be handled");
2527       }
2528     }
2529   }
2530 
2531   return RetVal;
2532 }
2533 
2534 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2535   // If the operands are integer typed then apply the integer transforms,
2536   // otherwise just apply the common ones.
2537   Value *Src = CI.getOperand(0);
2538   Type *SrcTy = Src->getType();
2539   Type *DestTy = CI.getType();
2540 
2541   // Get rid of casts from one type to the same type. These are useless and can
2542   // be replaced by the operand.
2543   if (DestTy == Src->getType())
2544     return replaceInstUsesWith(CI, Src);
2545 
2546   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2547     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2548     PointerType *DstPTy = cast<PointerType>(DestTy);
2549     Type *DstElTy = DstPTy->getElementType();
2550     Type *SrcElTy = SrcPTy->getElementType();
2551 
2552     // Casting pointers between the same type, but with different address spaces
2553     // is an addrspace cast rather than a bitcast.
2554     if ((DstElTy == SrcElTy) &&
2555         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2556       return new AddrSpaceCastInst(Src, DestTy);
2557 
2558     // If we are casting a alloca to a pointer to a type of the same
2559     // size, rewrite the allocation instruction to allocate the "right" type.
2560     // There is no need to modify malloc calls because it is their bitcast that
2561     // needs to be cleaned up.
2562     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2563       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2564         return V;
2565 
2566     // When the type pointed to is not sized the cast cannot be
2567     // turned into a gep.
2568     Type *PointeeType =
2569         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2570     if (!PointeeType->isSized())
2571       return nullptr;
2572 
2573     // If the source and destination are pointers, and this cast is equivalent
2574     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2575     // This can enhance SROA and other transforms that want type-safe pointers.
2576     unsigned NumZeros = 0;
2577     while (SrcElTy && SrcElTy != DstElTy) {
2578       SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2579       ++NumZeros;
2580     }
2581 
2582     // If we found a path from the src to dest, create the getelementptr now.
2583     if (SrcElTy == DstElTy) {
2584       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2585       GetElementPtrInst *GEP =
2586           GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2587 
2588       // If the source pointer is dereferenceable, then assume it points to an
2589       // allocated object and apply "inbounds" to the GEP.
2590       bool CanBeNull;
2591       if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
2592         // In a non-default address space (not 0), a null pointer can not be
2593         // assumed inbounds, so ignore that case (dereferenceable_or_null).
2594         // The reason is that 'null' is not treated differently in these address
2595         // spaces, and we consequently ignore the 'gep inbounds' special case
2596         // for 'null' which allows 'inbounds' on 'null' if the indices are
2597         // zeros.
2598         if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2599           GEP->setIsInBounds();
2600       }
2601       return GEP;
2602     }
2603   }
2604 
2605   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2606     // Beware: messing with this target-specific oddity may cause trouble.
2607     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2608       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2609       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2610                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2611     }
2612 
2613     if (isa<IntegerType>(SrcTy)) {
2614       // If this is a cast from an integer to vector, check to see if the input
2615       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2616       // the casts with a shuffle and (potentially) a bitcast.
2617       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2618         CastInst *SrcCast = cast<CastInst>(Src);
2619         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2620           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2621             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2622                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2623               return I;
2624       }
2625 
2626       // If the input is an 'or' instruction, we may be doing shifts and ors to
2627       // assemble the elements of the vector manually.  Try to rip the code out
2628       // and replace it with insertelements.
2629       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2630         return replaceInstUsesWith(CI, V);
2631     }
2632   }
2633 
2634   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2635     if (SrcVTy->getNumElements() == 1) {
2636       // If our destination is not a vector, then make this a straight
2637       // scalar-scalar cast.
2638       if (!DestTy->isVectorTy()) {
2639         Value *Elem =
2640           Builder.CreateExtractElement(Src,
2641                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2642         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2643       }
2644 
2645       // Otherwise, see if our source is an insert. If so, then use the scalar
2646       // component directly:
2647       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2648       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2649         return new BitCastInst(InsElt->getOperand(1), DestTy);
2650     }
2651   }
2652 
2653   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2654     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2655     // a bitcast to a vector with the same # elts.
2656     Value *ShufOp0 = Shuf->getOperand(0);
2657     Value *ShufOp1 = Shuf->getOperand(1);
2658     unsigned NumShufElts =
2659         cast<FixedVectorType>(Shuf->getType())->getNumElements();
2660     unsigned NumSrcVecElts =
2661         cast<FixedVectorType>(ShufOp0->getType())->getNumElements();
2662     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2663         cast<FixedVectorType>(DestTy)->getNumElements() == NumShufElts &&
2664         NumShufElts == NumSrcVecElts) {
2665       BitCastInst *Tmp;
2666       // If either of the operands is a cast from CI.getType(), then
2667       // evaluating the shuffle in the casted destination's type will allow
2668       // us to eliminate at least one cast.
2669       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2670            Tmp->getOperand(0)->getType() == DestTy) ||
2671           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2672            Tmp->getOperand(0)->getType() == DestTy)) {
2673         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2674         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2675         // Return a new shuffle vector.  Use the same element ID's, as we
2676         // know the vector types match #elts.
2677         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2678       }
2679     }
2680 
2681     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2682     // a byte-swap:
2683     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2684     // TODO: We should match the related pattern for bitreverse.
2685     if (DestTy->isIntegerTy() &&
2686         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2687         SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2688         Shuf->hasOneUse() && Shuf->isReverse()) {
2689       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2690       assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2691       Function *Bswap =
2692           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2693       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2694       return IntrinsicInst::Create(Bswap, { ScalarX });
2695     }
2696   }
2697 
2698   // Handle the A->B->A cast, and there is an intervening PHI node.
2699   if (PHINode *PN = dyn_cast<PHINode>(Src))
2700     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2701       return I;
2702 
2703   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2704     return I;
2705 
2706   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2707     return I;
2708 
2709   if (Instruction *I = foldBitCastSelect(CI, Builder))
2710     return I;
2711 
2712   if (SrcTy->isPointerTy())
2713     return commonPointerCastTransforms(CI);
2714   return commonCastTransforms(CI);
2715 }
2716 
2717 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2718   // If the destination pointer element type is not the same as the source's
2719   // first do a bitcast to the destination type, and then the addrspacecast.
2720   // This allows the cast to be exposed to other transforms.
2721   Value *Src = CI.getOperand(0);
2722   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2723   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2724 
2725   Type *DestElemTy = DestTy->getElementType();
2726   if (SrcTy->getElementType() != DestElemTy) {
2727     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2728     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2729       // Handle vectors of pointers.
2730       // FIXME: what should happen for scalable vectors?
2731       MidTy = FixedVectorType::get(MidTy,
2732                                    cast<FixedVectorType>(VT)->getNumElements());
2733     }
2734 
2735     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2736     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2737   }
2738 
2739   return commonPointerCastTransforms(CI);
2740 }
2741