1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/DIBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include <numeric> 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 IRBuilderBase::InsertPointGuard Guard(Builder); 89 Builder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = Builder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = Builder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlign()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 eraseInstFromFunction(AI); 157 } 158 return replaceInstUsesWith(CI, New); 159 } 160 161 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 162 /// true for, actually insert the code to evaluate the expression. 163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 164 bool isSigned) { 165 if (Constant *C = dyn_cast<Constant>(V)) { 166 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 167 // If we got a constantexpr back, try to simplify it with DL info. 168 return ConstantFoldConstant(C, DL, &TLI); 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 auto *Ty = CI.getType(); 269 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 270 // Point debug users of the dying cast to the new one. 271 if (CSrc->hasOneUse()) 272 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 273 return Res; 274 } 275 } 276 277 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 278 // We are casting a select. Try to fold the cast into the select if the 279 // select does not have a compare instruction with matching operand types 280 // or the select is likely better done in a narrow type. 281 // Creating a select with operands that are different sizes than its 282 // condition may inhibit other folds and lead to worse codegen. 283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 285 (CI.getOpcode() == Instruction::Trunc && 286 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 287 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 288 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 289 return NV; 290 } 291 } 292 } 293 294 // If we are casting a PHI, then fold the cast into the PHI. 295 if (auto *PN = dyn_cast<PHINode>(Src)) { 296 // Don't do this if it would create a PHI node with an illegal type from a 297 // legal type. 298 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 299 shouldChangeType(CI.getSrcTy(), CI.getType())) 300 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 301 return NV; 302 } 303 304 return nullptr; 305 } 306 307 /// Constants and extensions/truncates from the destination type are always 308 /// free to be evaluated in that type. This is a helper for canEvaluate*. 309 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 310 if (isa<Constant>(V)) 311 return true; 312 Value *X; 313 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 314 X->getType() == Ty) 315 return true; 316 317 return false; 318 } 319 320 /// Filter out values that we can not evaluate in the destination type for free. 321 /// This is a helper for canEvaluate*. 322 static bool canNotEvaluateInType(Value *V, Type *Ty) { 323 assert(!isa<Constant>(V) && "Constant should already be handled."); 324 if (!isa<Instruction>(V)) 325 return true; 326 // We don't extend or shrink something that has multiple uses -- doing so 327 // would require duplicating the instruction which isn't profitable. 328 if (!V->hasOneUse()) 329 return true; 330 331 return false; 332 } 333 334 /// Return true if we can evaluate the specified expression tree as type Ty 335 /// instead of its larger type, and arrive with the same value. 336 /// This is used by code that tries to eliminate truncates. 337 /// 338 /// Ty will always be a type smaller than V. We should return true if trunc(V) 339 /// can be computed by computing V in the smaller type. If V is an instruction, 340 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 341 /// makes sense if x and y can be efficiently truncated. 342 /// 343 /// This function works on both vectors and scalars. 344 /// 345 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 346 Instruction *CxtI) { 347 if (canAlwaysEvaluateInType(V, Ty)) 348 return true; 349 if (canNotEvaluateInType(V, Ty)) 350 return false; 351 352 auto *I = cast<Instruction>(V); 353 Type *OrigTy = V->getType(); 354 switch (I->getOpcode()) { 355 case Instruction::Add: 356 case Instruction::Sub: 357 case Instruction::Mul: 358 case Instruction::And: 359 case Instruction::Or: 360 case Instruction::Xor: 361 // These operators can all arbitrarily be extended or truncated. 362 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 363 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 364 365 case Instruction::UDiv: 366 case Instruction::URem: { 367 // UDiv and URem can be truncated if all the truncated bits are zero. 368 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 369 uint32_t BitWidth = Ty->getScalarSizeInBits(); 370 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 371 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 372 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 373 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 374 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 375 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 376 } 377 break; 378 } 379 case Instruction::Shl: { 380 // If we are truncating the result of this SHL, and if it's a shift of a 381 // constant amount, we can always perform a SHL in a smaller type. 382 const APInt *Amt; 383 if (match(I->getOperand(1), m_APInt(Amt))) { 384 uint32_t BitWidth = Ty->getScalarSizeInBits(); 385 if (Amt->getLimitedValue(BitWidth) < BitWidth) 386 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 387 } 388 break; 389 } 390 case Instruction::LShr: { 391 // If this is a truncate of a logical shr, we can truncate it to a smaller 392 // lshr iff we know that the bits we would otherwise be shifting in are 393 // already zeros. 394 const APInt *Amt; 395 if (match(I->getOperand(1), m_APInt(Amt))) { 396 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 397 uint32_t BitWidth = Ty->getScalarSizeInBits(); 398 if (Amt->getLimitedValue(BitWidth) < BitWidth && 399 IC.MaskedValueIsZero(I->getOperand(0), 400 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 401 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 402 } 403 } 404 break; 405 } 406 case Instruction::AShr: { 407 // If this is a truncate of an arithmetic shr, we can truncate it to a 408 // smaller ashr iff we know that all the bits from the sign bit of the 409 // original type and the sign bit of the truncate type are similar. 410 // TODO: It is enough to check that the bits we would be shifting in are 411 // similar to sign bit of the truncate type. 412 const APInt *Amt; 413 if (match(I->getOperand(1), m_APInt(Amt))) { 414 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 415 uint32_t BitWidth = Ty->getScalarSizeInBits(); 416 if (Amt->getLimitedValue(BitWidth) < BitWidth && 417 OrigBitWidth - BitWidth < 418 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 419 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 420 } 421 break; 422 } 423 case Instruction::Trunc: 424 // trunc(trunc(x)) -> trunc(x) 425 return true; 426 case Instruction::ZExt: 427 case Instruction::SExt: 428 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 429 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 430 return true; 431 case Instruction::Select: { 432 SelectInst *SI = cast<SelectInst>(I); 433 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 434 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 435 } 436 case Instruction::PHI: { 437 // We can change a phi if we can change all operands. Note that we never 438 // get into trouble with cyclic PHIs here because we only consider 439 // instructions with a single use. 440 PHINode *PN = cast<PHINode>(I); 441 for (Value *IncValue : PN->incoming_values()) 442 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 443 return false; 444 return true; 445 } 446 default: 447 // TODO: Can handle more cases here. 448 break; 449 } 450 451 return false; 452 } 453 454 /// Given a vector that is bitcast to an integer, optionally logically 455 /// right-shifted, and truncated, convert it to an extractelement. 456 /// Example (big endian): 457 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 458 /// ---> 459 /// extractelement <4 x i32> %X, 1 460 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 461 Value *TruncOp = Trunc.getOperand(0); 462 Type *DestType = Trunc.getType(); 463 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 464 return nullptr; 465 466 Value *VecInput = nullptr; 467 ConstantInt *ShiftVal = nullptr; 468 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 469 m_LShr(m_BitCast(m_Value(VecInput)), 470 m_ConstantInt(ShiftVal)))) || 471 !isa<VectorType>(VecInput->getType())) 472 return nullptr; 473 474 VectorType *VecType = cast<VectorType>(VecInput->getType()); 475 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 476 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 477 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 478 479 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 480 return nullptr; 481 482 // If the element type of the vector doesn't match the result type, 483 // bitcast it to a vector type that we can extract from. 484 unsigned NumVecElts = VecWidth / DestWidth; 485 if (VecType->getElementType() != DestType) { 486 VecType = FixedVectorType::get(DestType, NumVecElts); 487 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 488 } 489 490 unsigned Elt = ShiftAmount / DestWidth; 491 if (IC.getDataLayout().isBigEndian()) 492 Elt = NumVecElts - 1 - Elt; 493 494 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 495 } 496 497 /// Rotate left/right may occur in a wider type than necessary because of type 498 /// promotion rules. Try to narrow the inputs and convert to funnel shift. 499 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 500 assert((isa<VectorType>(Trunc.getSrcTy()) || 501 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 502 "Don't narrow to an illegal scalar type"); 503 504 // Bail out on strange types. It is possible to handle some of these patterns 505 // even with non-power-of-2 sizes, but it is not a likely scenario. 506 Type *DestTy = Trunc.getType(); 507 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 508 if (!isPowerOf2_32(NarrowWidth)) 509 return nullptr; 510 511 // First, find an or'd pair of opposite shifts with the same shifted operand: 512 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 513 Value *Or0, *Or1; 514 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 515 return nullptr; 516 517 Value *ShVal, *ShAmt0, *ShAmt1; 518 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 519 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 520 return nullptr; 521 522 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 523 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 524 if (ShiftOpcode0 == ShiftOpcode1) 525 return nullptr; 526 527 // Match the shift amount operands for a rotate pattern. This always matches 528 // a subtraction on the R operand. 529 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 530 // The shift amounts may add up to the narrow bit width: 531 // (shl ShVal, L) | (lshr ShVal, Width - L) 532 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 533 return L; 534 535 // The shift amount may be masked with negation: 536 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 537 Value *X; 538 unsigned Mask = Width - 1; 539 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 540 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 541 return X; 542 543 // Same as above, but the shift amount may be extended after masking: 544 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 545 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 546 return X; 547 548 return nullptr; 549 }; 550 551 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 552 bool SubIsOnLHS = false; 553 if (!ShAmt) { 554 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 555 SubIsOnLHS = true; 556 } 557 if (!ShAmt) 558 return nullptr; 559 560 // The shifted value must have high zeros in the wide type. Typically, this 561 // will be a zext, but it could also be the result of an 'and' or 'shift'. 562 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 563 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 564 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 565 return nullptr; 566 567 // We have an unnecessarily wide rotate! 568 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 569 // Narrow the inputs and convert to funnel shift intrinsic: 570 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 571 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 572 Value *X = Builder.CreateTrunc(ShVal, DestTy); 573 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 574 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 575 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 576 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 577 return IntrinsicInst::Create(F, { X, X, NarrowShAmt }); 578 } 579 580 /// Try to narrow the width of math or bitwise logic instructions by pulling a 581 /// truncate ahead of binary operators. 582 /// TODO: Transforms for truncated shifts should be moved into here. 583 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 584 Type *SrcTy = Trunc.getSrcTy(); 585 Type *DestTy = Trunc.getType(); 586 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 587 return nullptr; 588 589 BinaryOperator *BinOp; 590 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 591 return nullptr; 592 593 Value *BinOp0 = BinOp->getOperand(0); 594 Value *BinOp1 = BinOp->getOperand(1); 595 switch (BinOp->getOpcode()) { 596 case Instruction::And: 597 case Instruction::Or: 598 case Instruction::Xor: 599 case Instruction::Add: 600 case Instruction::Sub: 601 case Instruction::Mul: { 602 Constant *C; 603 if (match(BinOp0, m_Constant(C))) { 604 // trunc (binop C, X) --> binop (trunc C', X) 605 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 606 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 607 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 608 } 609 if (match(BinOp1, m_Constant(C))) { 610 // trunc (binop X, C) --> binop (trunc X, C') 611 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 612 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 613 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 614 } 615 Value *X; 616 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 617 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 618 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 619 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 620 } 621 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 622 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 623 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 624 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 625 } 626 break; 627 } 628 629 default: break; 630 } 631 632 if (Instruction *NarrowOr = narrowRotate(Trunc)) 633 return NarrowOr; 634 635 return nullptr; 636 } 637 638 /// Try to narrow the width of a splat shuffle. This could be generalized to any 639 /// shuffle with a constant operand, but we limit the transform to avoid 640 /// creating a shuffle type that targets may not be able to lower effectively. 641 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 642 InstCombiner::BuilderTy &Builder) { 643 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 644 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 645 is_splat(Shuf->getShuffleMask()) && 646 Shuf->getType() == Shuf->getOperand(0)->getType()) { 647 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 648 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 649 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 650 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask()); 651 } 652 653 return nullptr; 654 } 655 656 /// Try to narrow the width of an insert element. This could be generalized for 657 /// any vector constant, but we limit the transform to insertion into undef to 658 /// avoid potential backend problems from unsupported insertion widths. This 659 /// could also be extended to handle the case of inserting a scalar constant 660 /// into a vector variable. 661 static Instruction *shrinkInsertElt(CastInst &Trunc, 662 InstCombiner::BuilderTy &Builder) { 663 Instruction::CastOps Opcode = Trunc.getOpcode(); 664 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 665 "Unexpected instruction for shrinking"); 666 667 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 668 if (!InsElt || !InsElt->hasOneUse()) 669 return nullptr; 670 671 Type *DestTy = Trunc.getType(); 672 Type *DestScalarTy = DestTy->getScalarType(); 673 Value *VecOp = InsElt->getOperand(0); 674 Value *ScalarOp = InsElt->getOperand(1); 675 Value *Index = InsElt->getOperand(2); 676 677 if (isa<UndefValue>(VecOp)) { 678 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 679 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 680 UndefValue *NarrowUndef = UndefValue::get(DestTy); 681 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 682 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 683 } 684 685 return nullptr; 686 } 687 688 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 689 if (Instruction *Result = commonCastTransforms(CI)) 690 return Result; 691 692 Value *Src = CI.getOperand(0); 693 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 694 ConstantInt *Cst; 695 696 // Attempt to truncate the entire input expression tree to the destination 697 // type. Only do this if the dest type is a simple type, don't convert the 698 // expression tree to something weird like i93 unless the source is also 699 // strange. 700 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 701 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 702 703 // If this cast is a truncate, evaluting in a different type always 704 // eliminates the cast, so it is always a win. 705 LLVM_DEBUG( 706 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 707 " to avoid cast: " 708 << CI << '\n'); 709 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 710 assert(Res->getType() == DestTy); 711 return replaceInstUsesWith(CI, Res); 712 } 713 714 // Test if the trunc is the user of a select which is part of a 715 // minimum or maximum operation. If so, don't do any more simplification. 716 // Even simplifying demanded bits can break the canonical form of a 717 // min/max. 718 Value *LHS, *RHS; 719 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 720 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 721 return nullptr; 722 723 // See if we can simplify any instructions used by the input whose sole 724 // purpose is to compute bits we don't care about. 725 if (SimplifyDemandedInstructionBits(CI)) 726 return &CI; 727 728 if (DestTy->getScalarSizeInBits() == 1) { 729 Value *Zero = Constant::getNullValue(Src->getType()); 730 if (DestTy->isIntegerTy()) { 731 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 732 // TODO: We canonicalize to more instructions here because we are probably 733 // lacking equivalent analysis for trunc relative to icmp. There may also 734 // be codegen concerns. If those trunc limitations were removed, we could 735 // remove this transform. 736 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 737 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 738 } 739 740 // For vectors, we do not canonicalize all truncs to icmp, so optimize 741 // patterns that would be covered within visitICmpInst. 742 Value *X; 743 const APInt *C; 744 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 745 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 746 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 747 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 748 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 749 } 750 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 751 m_Deferred(X))))) { 752 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 753 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 754 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 755 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 756 } 757 } 758 759 // FIXME: Maybe combine the next two transforms to handle the no cast case 760 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 761 762 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 763 Value *A = nullptr; 764 if (Src->hasOneUse() && 765 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 766 // We have three types to worry about here, the type of A, the source of 767 // the truncate (MidSize), and the destination of the truncate. We know that 768 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 769 // between ASize and ResultSize. 770 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 771 772 // If the shift amount is larger than the size of A, then the result is 773 // known to be zero because all the input bits got shifted out. 774 if (Cst->getZExtValue() >= ASize) 775 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 776 777 // Since we're doing an lshr and a zero extend, and know that the shift 778 // amount is smaller than ASize, it is always safe to do the shift in A's 779 // type, then zero extend or truncate to the result. 780 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 781 Shift->takeName(Src); 782 return CastInst::CreateIntegerCast(Shift, DestTy, false); 783 } 784 785 // FIXME: We should canonicalize to zext/trunc and remove this transform. 786 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 787 // conversion. 788 // It works because bits coming from sign extension have the same value as 789 // the sign bit of the original value; performing ashr instead of lshr 790 // generates bits of the same value as the sign bit. 791 if (Src->hasOneUse() && 792 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 793 Value *SExt = cast<Instruction>(Src)->getOperand(0); 794 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 795 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 796 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 797 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 798 unsigned ShiftAmt = Cst->getZExtValue(); 799 800 // This optimization can be only performed when zero bits generated by 801 // the original lshr aren't pulled into the value after truncation, so we 802 // can only shift by values no larger than the number of extension bits. 803 // FIXME: Instead of bailing when the shift is too large, use and to clear 804 // the extra bits. 805 if (ShiftAmt <= MaxAmt) { 806 if (CISize == ASize) 807 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 808 std::min(ShiftAmt, ASize - 1))); 809 if (SExt->hasOneUse()) { 810 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 811 Shift->takeName(Src); 812 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 813 } 814 } 815 } 816 817 if (Instruction *I = narrowBinOp(CI)) 818 return I; 819 820 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 821 return I; 822 823 if (Instruction *I = shrinkInsertElt(CI, Builder)) 824 return I; 825 826 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 827 shouldChangeType(SrcTy, DestTy)) { 828 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 829 // dest type is native and cst < dest size. 830 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 831 !match(A, m_Shr(m_Value(), m_Constant()))) { 832 // Skip shifts of shift by constants. It undoes a combine in 833 // FoldShiftByConstant and is the extend in reg pattern. 834 const unsigned DestSize = DestTy->getScalarSizeInBits(); 835 if (Cst->getValue().ult(DestSize)) { 836 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 837 838 return BinaryOperator::Create( 839 Instruction::Shl, NewTrunc, 840 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 841 } 842 } 843 } 844 845 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 846 return I; 847 848 // Whenever an element is extracted from a vector, and then truncated, 849 // canonicalize by converting it to a bitcast followed by an 850 // extractelement. 851 // 852 // Example (little endian): 853 // trunc (extractelement <4 x i64> %X, 0) to i32 854 // ---> 855 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 856 Value *VecOp; 857 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 858 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 859 unsigned DestScalarSize = DestTy->getScalarSizeInBits(); 860 unsigned VecOpScalarSize = VecOpTy->getScalarSizeInBits(); 861 unsigned VecNumElts = VecOpTy->getNumElements(); 862 863 // A badly fit destination size would result in an invalid cast. 864 if (VecOpScalarSize % DestScalarSize == 0) { 865 uint64_t TruncRatio = VecOpScalarSize / DestScalarSize; 866 uint64_t BitCastNumElts = VecNumElts * TruncRatio; 867 uint64_t VecOpIdx = Cst->getZExtValue(); 868 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 869 : VecOpIdx * TruncRatio; 870 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 871 "overflow 32-bits"); 872 873 auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts); 874 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 875 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 876 } 877 } 878 879 return nullptr; 880 } 881 882 Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 883 bool DoTransform) { 884 // If we are just checking for a icmp eq of a single bit and zext'ing it 885 // to an integer, then shift the bit to the appropriate place and then 886 // cast to integer to avoid the comparison. 887 const APInt *Op1CV; 888 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 889 890 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 891 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 892 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 893 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 894 if (!DoTransform) return Cmp; 895 896 Value *In = Cmp->getOperand(0); 897 Value *Sh = ConstantInt::get(In->getType(), 898 In->getType()->getScalarSizeInBits() - 1); 899 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 900 if (In->getType() != Zext.getType()) 901 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 902 903 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 904 Constant *One = ConstantInt::get(In->getType(), 1); 905 In = Builder.CreateXor(In, One, In->getName() + ".not"); 906 } 907 908 return replaceInstUsesWith(Zext, In); 909 } 910 911 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 912 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 913 // zext (X == 1) to i32 --> X iff X has only the low bit set. 914 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 915 // zext (X != 0) to i32 --> X iff X has only the low bit set. 916 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 917 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 918 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 919 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 920 // This only works for EQ and NE 921 Cmp->isEquality()) { 922 // If Op1C some other power of two, convert: 923 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 924 925 APInt KnownZeroMask(~Known.Zero); 926 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 927 if (!DoTransform) return Cmp; 928 929 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 930 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 931 // (X&4) == 2 --> false 932 // (X&4) != 2 --> true 933 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 934 return replaceInstUsesWith(Zext, Res); 935 } 936 937 uint32_t ShAmt = KnownZeroMask.logBase2(); 938 Value *In = Cmp->getOperand(0); 939 if (ShAmt) { 940 // Perform a logical shr by shiftamt. 941 // Insert the shift to put the result in the low bit. 942 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 943 In->getName() + ".lobit"); 944 } 945 946 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 947 Constant *One = ConstantInt::get(In->getType(), 1); 948 In = Builder.CreateXor(In, One); 949 } 950 951 if (Zext.getType() == In->getType()) 952 return replaceInstUsesWith(Zext, In); 953 954 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 955 return replaceInstUsesWith(Zext, IntCast); 956 } 957 } 958 } 959 960 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 961 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 962 // may lead to additional simplifications. 963 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 964 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 965 Value *LHS = Cmp->getOperand(0); 966 Value *RHS = Cmp->getOperand(1); 967 968 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 969 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 970 971 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 972 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 973 APInt UnknownBit = ~KnownBits; 974 if (UnknownBit.countPopulation() == 1) { 975 if (!DoTransform) return Cmp; 976 977 Value *Result = Builder.CreateXor(LHS, RHS); 978 979 // Mask off any bits that are set and won't be shifted away. 980 if (KnownLHS.One.uge(UnknownBit)) 981 Result = Builder.CreateAnd(Result, 982 ConstantInt::get(ITy, UnknownBit)); 983 984 // Shift the bit we're testing down to the lsb. 985 Result = Builder.CreateLShr( 986 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 987 988 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 989 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 990 Result->takeName(Cmp); 991 return replaceInstUsesWith(Zext, Result); 992 } 993 } 994 } 995 } 996 997 return nullptr; 998 } 999 1000 /// Determine if the specified value can be computed in the specified wider type 1001 /// and produce the same low bits. If not, return false. 1002 /// 1003 /// If this function returns true, it can also return a non-zero number of bits 1004 /// (in BitsToClear) which indicates that the value it computes is correct for 1005 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1006 /// out. For example, to promote something like: 1007 /// 1008 /// %B = trunc i64 %A to i32 1009 /// %C = lshr i32 %B, 8 1010 /// %E = zext i32 %C to i64 1011 /// 1012 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1013 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1014 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1015 /// clear the top bits anyway, doing this has no extra cost. 1016 /// 1017 /// This function works on both vectors and scalars. 1018 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1019 InstCombiner &IC, Instruction *CxtI) { 1020 BitsToClear = 0; 1021 if (canAlwaysEvaluateInType(V, Ty)) 1022 return true; 1023 if (canNotEvaluateInType(V, Ty)) 1024 return false; 1025 1026 auto *I = cast<Instruction>(V); 1027 unsigned Tmp; 1028 switch (I->getOpcode()) { 1029 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1030 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1031 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1032 return true; 1033 case Instruction::And: 1034 case Instruction::Or: 1035 case Instruction::Xor: 1036 case Instruction::Add: 1037 case Instruction::Sub: 1038 case Instruction::Mul: 1039 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1040 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1041 return false; 1042 // These can all be promoted if neither operand has 'bits to clear'. 1043 if (BitsToClear == 0 && Tmp == 0) 1044 return true; 1045 1046 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1047 // other side, BitsToClear is ok. 1048 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1049 // We use MaskedValueIsZero here for generality, but the case we care 1050 // about the most is constant RHS. 1051 unsigned VSize = V->getType()->getScalarSizeInBits(); 1052 if (IC.MaskedValueIsZero(I->getOperand(1), 1053 APInt::getHighBitsSet(VSize, BitsToClear), 1054 0, CxtI)) { 1055 // If this is an And instruction and all of the BitsToClear are 1056 // known to be zero we can reset BitsToClear. 1057 if (I->getOpcode() == Instruction::And) 1058 BitsToClear = 0; 1059 return true; 1060 } 1061 } 1062 1063 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1064 return false; 1065 1066 case Instruction::Shl: { 1067 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1068 // upper bits we can reduce BitsToClear by the shift amount. 1069 const APInt *Amt; 1070 if (match(I->getOperand(1), m_APInt(Amt))) { 1071 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1072 return false; 1073 uint64_t ShiftAmt = Amt->getZExtValue(); 1074 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1075 return true; 1076 } 1077 return false; 1078 } 1079 case Instruction::LShr: { 1080 // We can promote lshr(x, cst) if we can promote x. This requires the 1081 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1082 const APInt *Amt; 1083 if (match(I->getOperand(1), m_APInt(Amt))) { 1084 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1085 return false; 1086 BitsToClear += Amt->getZExtValue(); 1087 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1088 BitsToClear = V->getType()->getScalarSizeInBits(); 1089 return true; 1090 } 1091 // Cannot promote variable LSHR. 1092 return false; 1093 } 1094 case Instruction::Select: 1095 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1096 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1097 // TODO: If important, we could handle the case when the BitsToClear are 1098 // known zero in the disagreeing side. 1099 Tmp != BitsToClear) 1100 return false; 1101 return true; 1102 1103 case Instruction::PHI: { 1104 // We can change a phi if we can change all operands. Note that we never 1105 // get into trouble with cyclic PHIs here because we only consider 1106 // instructions with a single use. 1107 PHINode *PN = cast<PHINode>(I); 1108 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1109 return false; 1110 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1111 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1112 // TODO: If important, we could handle the case when the BitsToClear 1113 // are known zero in the disagreeing input. 1114 Tmp != BitsToClear) 1115 return false; 1116 return true; 1117 } 1118 default: 1119 // TODO: Can handle more cases here. 1120 return false; 1121 } 1122 } 1123 1124 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1125 // If this zero extend is only used by a truncate, let the truncate be 1126 // eliminated before we try to optimize this zext. 1127 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1128 return nullptr; 1129 1130 // If one of the common conversion will work, do it. 1131 if (Instruction *Result = commonCastTransforms(CI)) 1132 return Result; 1133 1134 Value *Src = CI.getOperand(0); 1135 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1136 1137 // Try to extend the entire expression tree to the wide destination type. 1138 unsigned BitsToClear; 1139 if (shouldChangeType(SrcTy, DestTy) && 1140 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1141 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1142 "Can't clear more bits than in SrcTy"); 1143 1144 // Okay, we can transform this! Insert the new expression now. 1145 LLVM_DEBUG( 1146 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1147 " to avoid zero extend: " 1148 << CI << '\n'); 1149 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1150 assert(Res->getType() == DestTy); 1151 1152 // Preserve debug values referring to Src if the zext is its last use. 1153 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1154 if (SrcOp->hasOneUse()) 1155 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1156 1157 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1158 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1159 1160 // If the high bits are already filled with zeros, just replace this 1161 // cast with the result. 1162 if (MaskedValueIsZero(Res, 1163 APInt::getHighBitsSet(DestBitSize, 1164 DestBitSize-SrcBitsKept), 1165 0, &CI)) 1166 return replaceInstUsesWith(CI, Res); 1167 1168 // We need to emit an AND to clear the high bits. 1169 Constant *C = ConstantInt::get(Res->getType(), 1170 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1171 return BinaryOperator::CreateAnd(Res, C); 1172 } 1173 1174 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1175 // types and if the sizes are just right we can convert this into a logical 1176 // 'and' which will be much cheaper than the pair of casts. 1177 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1178 // TODO: Subsume this into EvaluateInDifferentType. 1179 1180 // Get the sizes of the types involved. We know that the intermediate type 1181 // will be smaller than A or C, but don't know the relation between A and C. 1182 Value *A = CSrc->getOperand(0); 1183 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1184 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1185 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1186 // If we're actually extending zero bits, then if 1187 // SrcSize < DstSize: zext(a & mask) 1188 // SrcSize == DstSize: a & mask 1189 // SrcSize > DstSize: trunc(a) & mask 1190 if (SrcSize < DstSize) { 1191 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1192 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1193 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1194 return new ZExtInst(And, CI.getType()); 1195 } 1196 1197 if (SrcSize == DstSize) { 1198 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1199 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1200 AndValue)); 1201 } 1202 if (SrcSize > DstSize) { 1203 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1204 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1205 return BinaryOperator::CreateAnd(Trunc, 1206 ConstantInt::get(Trunc->getType(), 1207 AndValue)); 1208 } 1209 } 1210 1211 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1212 return transformZExtICmp(Cmp, CI); 1213 1214 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1215 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1216 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1217 // of the (zext icmp) can be eliminated. If so, immediately perform the 1218 // according elimination. 1219 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1220 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1221 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1222 (transformZExtICmp(LHS, CI, false) || 1223 transformZExtICmp(RHS, CI, false))) { 1224 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1225 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1226 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1227 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); 1228 if (auto *OrInst = dyn_cast<Instruction>(Or)) 1229 Builder.SetInsertPoint(OrInst); 1230 1231 // Perform the elimination. 1232 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1233 transformZExtICmp(LHS, *LZExt); 1234 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1235 transformZExtICmp(RHS, *RZExt); 1236 1237 return replaceInstUsesWith(CI, Or); 1238 } 1239 } 1240 1241 // zext(trunc(X) & C) -> (X & zext(C)). 1242 Constant *C; 1243 Value *X; 1244 if (SrcI && 1245 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1246 X->getType() == CI.getType()) 1247 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1248 1249 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1250 Value *And; 1251 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1252 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1253 X->getType() == CI.getType()) { 1254 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1255 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1256 } 1257 1258 return nullptr; 1259 } 1260 1261 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1262 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1263 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1264 ICmpInst::Predicate Pred = ICI->getPredicate(); 1265 1266 // Don't bother if Op1 isn't of vector or integer type. 1267 if (!Op1->getType()->isIntOrIntVectorTy()) 1268 return nullptr; 1269 1270 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1271 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1272 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1273 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1274 Value *Sh = ConstantInt::get(Op0->getType(), 1275 Op0->getType()->getScalarSizeInBits() - 1); 1276 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1277 if (In->getType() != CI.getType()) 1278 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1279 1280 if (Pred == ICmpInst::ICMP_SGT) 1281 In = Builder.CreateNot(In, In->getName() + ".not"); 1282 return replaceInstUsesWith(CI, In); 1283 } 1284 1285 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1286 // If we know that only one bit of the LHS of the icmp can be set and we 1287 // have an equality comparison with zero or a power of 2, we can transform 1288 // the icmp and sext into bitwise/integer operations. 1289 if (ICI->hasOneUse() && 1290 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1291 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1292 1293 APInt KnownZeroMask(~Known.Zero); 1294 if (KnownZeroMask.isPowerOf2()) { 1295 Value *In = ICI->getOperand(0); 1296 1297 // If the icmp tests for a known zero bit we can constant fold it. 1298 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1299 Value *V = Pred == ICmpInst::ICMP_NE ? 1300 ConstantInt::getAllOnesValue(CI.getType()) : 1301 ConstantInt::getNullValue(CI.getType()); 1302 return replaceInstUsesWith(CI, V); 1303 } 1304 1305 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1306 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1307 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1308 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1309 // Perform a right shift to place the desired bit in the LSB. 1310 if (ShiftAmt) 1311 In = Builder.CreateLShr(In, 1312 ConstantInt::get(In->getType(), ShiftAmt)); 1313 1314 // At this point "In" is either 1 or 0. Subtract 1 to turn 1315 // {1, 0} -> {0, -1}. 1316 In = Builder.CreateAdd(In, 1317 ConstantInt::getAllOnesValue(In->getType()), 1318 "sext"); 1319 } else { 1320 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1321 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1322 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1323 // Perform a left shift to place the desired bit in the MSB. 1324 if (ShiftAmt) 1325 In = Builder.CreateShl(In, 1326 ConstantInt::get(In->getType(), ShiftAmt)); 1327 1328 // Distribute the bit over the whole bit width. 1329 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1330 KnownZeroMask.getBitWidth() - 1), "sext"); 1331 } 1332 1333 if (CI.getType() == In->getType()) 1334 return replaceInstUsesWith(CI, In); 1335 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1336 } 1337 } 1338 } 1339 1340 return nullptr; 1341 } 1342 1343 /// Return true if we can take the specified value and return it as type Ty 1344 /// without inserting any new casts and without changing the value of the common 1345 /// low bits. This is used by code that tries to promote integer operations to 1346 /// a wider types will allow us to eliminate the extension. 1347 /// 1348 /// This function works on both vectors and scalars. 1349 /// 1350 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1351 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1352 "Can't sign extend type to a smaller type"); 1353 if (canAlwaysEvaluateInType(V, Ty)) 1354 return true; 1355 if (canNotEvaluateInType(V, Ty)) 1356 return false; 1357 1358 auto *I = cast<Instruction>(V); 1359 switch (I->getOpcode()) { 1360 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1361 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1362 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1363 return true; 1364 case Instruction::And: 1365 case Instruction::Or: 1366 case Instruction::Xor: 1367 case Instruction::Add: 1368 case Instruction::Sub: 1369 case Instruction::Mul: 1370 // These operators can all arbitrarily be extended if their inputs can. 1371 return canEvaluateSExtd(I->getOperand(0), Ty) && 1372 canEvaluateSExtd(I->getOperand(1), Ty); 1373 1374 //case Instruction::Shl: TODO 1375 //case Instruction::LShr: TODO 1376 1377 case Instruction::Select: 1378 return canEvaluateSExtd(I->getOperand(1), Ty) && 1379 canEvaluateSExtd(I->getOperand(2), Ty); 1380 1381 case Instruction::PHI: { 1382 // We can change a phi if we can change all operands. Note that we never 1383 // get into trouble with cyclic PHIs here because we only consider 1384 // instructions with a single use. 1385 PHINode *PN = cast<PHINode>(I); 1386 for (Value *IncValue : PN->incoming_values()) 1387 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1388 return true; 1389 } 1390 default: 1391 // TODO: Can handle more cases here. 1392 break; 1393 } 1394 1395 return false; 1396 } 1397 1398 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1399 // If this sign extend is only used by a truncate, let the truncate be 1400 // eliminated before we try to optimize this sext. 1401 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1402 return nullptr; 1403 1404 if (Instruction *I = commonCastTransforms(CI)) 1405 return I; 1406 1407 Value *Src = CI.getOperand(0); 1408 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1409 1410 // If we know that the value being extended is positive, we can use a zext 1411 // instead. 1412 KnownBits Known = computeKnownBits(Src, 0, &CI); 1413 if (Known.isNonNegative()) 1414 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1415 1416 // Try to extend the entire expression tree to the wide destination type. 1417 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1418 // Okay, we can transform this! Insert the new expression now. 1419 LLVM_DEBUG( 1420 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1421 " to avoid sign extend: " 1422 << CI << '\n'); 1423 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1424 assert(Res->getType() == DestTy); 1425 1426 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1427 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1428 1429 // If the high bits are already filled with sign bit, just replace this 1430 // cast with the result. 1431 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1432 return replaceInstUsesWith(CI, Res); 1433 1434 // We need to emit a shl + ashr to do the sign extend. 1435 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1436 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1437 ShAmt); 1438 } 1439 1440 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1441 // into shifts. 1442 Value *X; 1443 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1444 // sext(trunc(X)) --> ashr(shl(X, C), C) 1445 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1446 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1447 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1448 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1449 } 1450 1451 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1452 return transformSExtICmp(ICI, CI); 1453 1454 // If the input is a shl/ashr pair of a same constant, then this is a sign 1455 // extension from a smaller value. If we could trust arbitrary bitwidth 1456 // integers, we could turn this into a truncate to the smaller bit and then 1457 // use a sext for the whole extension. Since we don't, look deeper and check 1458 // for a truncate. If the source and dest are the same type, eliminate the 1459 // trunc and extend and just do shifts. For example, turn: 1460 // %a = trunc i32 %i to i8 1461 // %b = shl i8 %a, 6 1462 // %c = ashr i8 %b, 6 1463 // %d = sext i8 %c to i32 1464 // into: 1465 // %a = shl i32 %i, 30 1466 // %d = ashr i32 %a, 30 1467 Value *A = nullptr; 1468 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1469 ConstantInt *BA = nullptr, *CA = nullptr; 1470 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1471 m_ConstantInt(CA))) && 1472 BA == CA && A->getType() == CI.getType()) { 1473 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1474 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1475 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1476 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1477 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1478 return BinaryOperator::CreateAShr(A, ShAmtV); 1479 } 1480 1481 return nullptr; 1482 } 1483 1484 1485 /// Return a Constant* for the specified floating-point constant if it fits 1486 /// in the specified FP type without changing its value. 1487 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1488 bool losesInfo; 1489 APFloat F = CFP->getValueAPF(); 1490 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1491 return !losesInfo; 1492 } 1493 1494 static Type *shrinkFPConstant(ConstantFP *CFP) { 1495 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1496 return nullptr; // No constant folding of this. 1497 // See if the value can be truncated to half and then reextended. 1498 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1499 return Type::getHalfTy(CFP->getContext()); 1500 // See if the value can be truncated to float and then reextended. 1501 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1502 return Type::getFloatTy(CFP->getContext()); 1503 if (CFP->getType()->isDoubleTy()) 1504 return nullptr; // Won't shrink. 1505 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1506 return Type::getDoubleTy(CFP->getContext()); 1507 // Don't try to shrink to various long double types. 1508 return nullptr; 1509 } 1510 1511 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1512 // type we can safely truncate all elements to. 1513 // TODO: Make these support undef elements. 1514 static Type *shrinkFPConstantVector(Value *V) { 1515 auto *CV = dyn_cast<Constant>(V); 1516 auto *CVVTy = dyn_cast<VectorType>(V->getType()); 1517 if (!CV || !CVVTy) 1518 return nullptr; 1519 1520 Type *MinType = nullptr; 1521 1522 unsigned NumElts = CVVTy->getNumElements(); 1523 for (unsigned i = 0; i != NumElts; ++i) { 1524 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1525 if (!CFP) 1526 return nullptr; 1527 1528 Type *T = shrinkFPConstant(CFP); 1529 if (!T) 1530 return nullptr; 1531 1532 // If we haven't found a type yet or this type has a larger mantissa than 1533 // our previous type, this is our new minimal type. 1534 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1535 MinType = T; 1536 } 1537 1538 // Make a vector type from the minimal type. 1539 return FixedVectorType::get(MinType, NumElts); 1540 } 1541 1542 /// Find the minimum FP type we can safely truncate to. 1543 static Type *getMinimumFPType(Value *V) { 1544 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1545 return FPExt->getOperand(0)->getType(); 1546 1547 // If this value is a constant, return the constant in the smallest FP type 1548 // that can accurately represent it. This allows us to turn 1549 // (float)((double)X+2.0) into x+2.0f. 1550 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1551 if (Type *T = shrinkFPConstant(CFP)) 1552 return T; 1553 1554 // Try to shrink a vector of FP constants. 1555 if (Type *T = shrinkFPConstantVector(V)) 1556 return T; 1557 1558 return V->getType(); 1559 } 1560 1561 /// Return true if the cast from integer to FP can be proven to be exact for all 1562 /// possible inputs (the conversion does not lose any precision). 1563 static bool isKnownExactCastIntToFP(CastInst &I) { 1564 CastInst::CastOps Opcode = I.getOpcode(); 1565 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1566 "Unexpected cast"); 1567 Value *Src = I.getOperand(0); 1568 Type *SrcTy = Src->getType(); 1569 Type *FPTy = I.getType(); 1570 bool IsSigned = Opcode == Instruction::SIToFP; 1571 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1572 1573 // Easy case - if the source integer type has less bits than the FP mantissa, 1574 // then the cast must be exact. 1575 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1576 if (SrcSize <= DestNumSigBits) 1577 return true; 1578 1579 // Cast from FP to integer and back to FP is independent of the intermediate 1580 // integer width because of poison on overflow. 1581 Value *F; 1582 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1583 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1584 // potential rounding of negative FP input values. 1585 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1586 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1587 SrcNumSigBits++; 1588 1589 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1590 // significant bits than the destination (and make sure neither type is 1591 // weird -- ppc_fp128). 1592 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1593 SrcNumSigBits <= DestNumSigBits) 1594 return true; 1595 } 1596 1597 // TODO: 1598 // Try harder to find if the source integer type has less significant bits. 1599 // For example, compute number of sign bits or compute low bit mask. 1600 return false; 1601 } 1602 1603 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1604 if (Instruction *I = commonCastTransforms(FPT)) 1605 return I; 1606 1607 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1608 // simplify this expression to avoid one or more of the trunc/extend 1609 // operations if we can do so without changing the numerical results. 1610 // 1611 // The exact manner in which the widths of the operands interact to limit 1612 // what we can and cannot do safely varies from operation to operation, and 1613 // is explained below in the various case statements. 1614 Type *Ty = FPT.getType(); 1615 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1616 if (BO && BO->hasOneUse()) { 1617 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1618 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1619 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1620 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1621 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1622 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1623 unsigned DstWidth = Ty->getFPMantissaWidth(); 1624 switch (BO->getOpcode()) { 1625 default: break; 1626 case Instruction::FAdd: 1627 case Instruction::FSub: 1628 // For addition and subtraction, the infinitely precise result can 1629 // essentially be arbitrarily wide; proving that double rounding 1630 // will not occur because the result of OpI is exact (as we will for 1631 // FMul, for example) is hopeless. However, we *can* nonetheless 1632 // frequently know that double rounding cannot occur (or that it is 1633 // innocuous) by taking advantage of the specific structure of 1634 // infinitely-precise results that admit double rounding. 1635 // 1636 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1637 // to represent both sources, we can guarantee that the double 1638 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1639 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1640 // for proof of this fact). 1641 // 1642 // Note: Figueroa does not consider the case where DstFormat != 1643 // SrcFormat. It's possible (likely even!) that this analysis 1644 // could be tightened for those cases, but they are rare (the main 1645 // case of interest here is (float)((double)float + float)). 1646 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1647 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1648 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1649 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1650 RI->copyFastMathFlags(BO); 1651 return RI; 1652 } 1653 break; 1654 case Instruction::FMul: 1655 // For multiplication, the infinitely precise result has at most 1656 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1657 // that such a value can be exactly represented, then no double 1658 // rounding can possibly occur; we can safely perform the operation 1659 // in the destination format if it can represent both sources. 1660 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1661 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1662 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1663 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1664 } 1665 break; 1666 case Instruction::FDiv: 1667 // For division, we use again use the bound from Figueroa's 1668 // dissertation. I am entirely certain that this bound can be 1669 // tightened in the unbalanced operand case by an analysis based on 1670 // the diophantine rational approximation bound, but the well-known 1671 // condition used here is a good conservative first pass. 1672 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1673 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1674 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1675 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1676 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1677 } 1678 break; 1679 case Instruction::FRem: { 1680 // Remainder is straightforward. Remainder is always exact, so the 1681 // type of OpI doesn't enter into things at all. We simply evaluate 1682 // in whichever source type is larger, then convert to the 1683 // destination type. 1684 if (SrcWidth == OpWidth) 1685 break; 1686 Value *LHS, *RHS; 1687 if (LHSWidth == SrcWidth) { 1688 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1689 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1690 } else { 1691 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1692 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1693 } 1694 1695 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1696 return CastInst::CreateFPCast(ExactResult, Ty); 1697 } 1698 } 1699 } 1700 1701 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1702 Value *X; 1703 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1704 if (Op && Op->hasOneUse()) { 1705 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1706 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1707 if (isa<FPMathOperator>(Op)) 1708 Builder.setFastMathFlags(Op->getFastMathFlags()); 1709 1710 if (match(Op, m_FNeg(m_Value(X)))) { 1711 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1712 1713 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1714 } 1715 1716 // If we are truncating a select that has an extended operand, we can 1717 // narrow the other operand and do the select as a narrow op. 1718 Value *Cond, *X, *Y; 1719 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1720 X->getType() == Ty) { 1721 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1722 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1723 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1724 return replaceInstUsesWith(FPT, Sel); 1725 } 1726 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1727 X->getType() == Ty) { 1728 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1729 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1730 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1731 return replaceInstUsesWith(FPT, Sel); 1732 } 1733 } 1734 1735 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1736 switch (II->getIntrinsicID()) { 1737 default: break; 1738 case Intrinsic::ceil: 1739 case Intrinsic::fabs: 1740 case Intrinsic::floor: 1741 case Intrinsic::nearbyint: 1742 case Intrinsic::rint: 1743 case Intrinsic::round: 1744 case Intrinsic::roundeven: 1745 case Intrinsic::trunc: { 1746 Value *Src = II->getArgOperand(0); 1747 if (!Src->hasOneUse()) 1748 break; 1749 1750 // Except for fabs, this transformation requires the input of the unary FP 1751 // operation to be itself an fpext from the type to which we're 1752 // truncating. 1753 if (II->getIntrinsicID() != Intrinsic::fabs) { 1754 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1755 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1756 break; 1757 } 1758 1759 // Do unary FP operation on smaller type. 1760 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1761 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1762 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1763 II->getIntrinsicID(), Ty); 1764 SmallVector<OperandBundleDef, 1> OpBundles; 1765 II->getOperandBundlesAsDefs(OpBundles); 1766 CallInst *NewCI = 1767 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1768 NewCI->copyFastMathFlags(II); 1769 return NewCI; 1770 } 1771 } 1772 } 1773 1774 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1775 return I; 1776 1777 Value *Src = FPT.getOperand(0); 1778 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1779 auto *FPCast = cast<CastInst>(Src); 1780 if (isKnownExactCastIntToFP(*FPCast)) 1781 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1782 } 1783 1784 return nullptr; 1785 } 1786 1787 Instruction *InstCombiner::visitFPExt(CastInst &FPExt) { 1788 // If the source operand is a cast from integer to FP and known exact, then 1789 // cast the integer operand directly to the destination type. 1790 Type *Ty = FPExt.getType(); 1791 Value *Src = FPExt.getOperand(0); 1792 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1793 auto *FPCast = cast<CastInst>(Src); 1794 if (isKnownExactCastIntToFP(*FPCast)) 1795 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1796 } 1797 1798 return commonCastTransforms(FPExt); 1799 } 1800 1801 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1802 /// This is safe if the intermediate type has enough bits in its mantissa to 1803 /// accurately represent all values of X. For example, this won't work with 1804 /// i64 -> float -> i64. 1805 Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) { 1806 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1807 return nullptr; 1808 1809 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1810 Value *X = OpI->getOperand(0); 1811 Type *XType = X->getType(); 1812 Type *DestType = FI.getType(); 1813 bool IsOutputSigned = isa<FPToSIInst>(FI); 1814 1815 // Since we can assume the conversion won't overflow, our decision as to 1816 // whether the input will fit in the float should depend on the minimum 1817 // of the input range and output range. 1818 1819 // This means this is also safe for a signed input and unsigned output, since 1820 // a negative input would lead to undefined behavior. 1821 if (!isKnownExactCastIntToFP(*OpI)) { 1822 // The first cast may not round exactly based on the source integer width 1823 // and FP width, but the overflow UB rules can still allow this to fold. 1824 // If the destination type is narrow, that means the intermediate FP value 1825 // must be large enough to hold the source value exactly. 1826 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1827 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; 1828 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1829 return nullptr; 1830 } 1831 1832 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1833 bool IsInputSigned = isa<SIToFPInst>(OpI); 1834 if (IsInputSigned && IsOutputSigned) 1835 return new SExtInst(X, DestType); 1836 return new ZExtInst(X, DestType); 1837 } 1838 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1839 return new TruncInst(X, DestType); 1840 1841 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1842 return replaceInstUsesWith(FI, X); 1843 } 1844 1845 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1846 if (Instruction *I = foldItoFPtoI(FI)) 1847 return I; 1848 1849 return commonCastTransforms(FI); 1850 } 1851 1852 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1853 if (Instruction *I = foldItoFPtoI(FI)) 1854 return I; 1855 1856 return commonCastTransforms(FI); 1857 } 1858 1859 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1860 return commonCastTransforms(CI); 1861 } 1862 1863 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1864 return commonCastTransforms(CI); 1865 } 1866 1867 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1868 // If the source integer type is not the intptr_t type for this target, do a 1869 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1870 // cast to be exposed to other transforms. 1871 unsigned AS = CI.getAddressSpace(); 1872 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1873 DL.getPointerSizeInBits(AS)) { 1874 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1875 // Handle vectors of pointers. 1876 if (auto *CIVTy = dyn_cast<VectorType>(CI.getType())) 1877 Ty = VectorType::get(Ty, CIVTy->getElementCount()); 1878 1879 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1880 return new IntToPtrInst(P, CI.getType()); 1881 } 1882 1883 if (Instruction *I = commonCastTransforms(CI)) 1884 return I; 1885 1886 return nullptr; 1887 } 1888 1889 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1890 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1891 Value *Src = CI.getOperand(0); 1892 1893 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1894 // If casting the result of a getelementptr instruction with no offset, turn 1895 // this into a cast of the original pointer! 1896 if (GEP->hasAllZeroIndices() && 1897 // If CI is an addrspacecast and GEP changes the poiner type, merging 1898 // GEP into CI would undo canonicalizing addrspacecast with different 1899 // pointer types, causing infinite loops. 1900 (!isa<AddrSpaceCastInst>(CI) || 1901 GEP->getType() == GEP->getPointerOperandType())) { 1902 // Changing the cast operand is usually not a good idea but it is safe 1903 // here because the pointer operand is being replaced with another 1904 // pointer operand so the opcode doesn't need to change. 1905 return replaceOperand(CI, 0, GEP->getOperand(0)); 1906 } 1907 } 1908 1909 return commonCastTransforms(CI); 1910 } 1911 1912 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1913 // If the destination integer type is not the intptr_t type for this target, 1914 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1915 // to be exposed to other transforms. 1916 1917 Type *Ty = CI.getType(); 1918 unsigned AS = CI.getPointerAddressSpace(); 1919 1920 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1921 return commonPointerCastTransforms(CI); 1922 1923 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1924 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1925 // Handle vectors of pointers. 1926 // FIXME: what should happen for scalable vectors? 1927 PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements()); 1928 } 1929 1930 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1931 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1932 } 1933 1934 /// This input value (which is known to have vector type) is being zero extended 1935 /// or truncated to the specified vector type. Since the zext/trunc is done 1936 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 1937 /// endianness will impact which end of the vector that is extended or 1938 /// truncated. 1939 /// 1940 /// A vector is always stored with index 0 at the lowest address, which 1941 /// corresponds to the most significant bits for a big endian stored integer and 1942 /// the least significant bits for little endian. A trunc/zext of an integer 1943 /// impacts the big end of the integer. Thus, we need to add/remove elements at 1944 /// the front of the vector for big endian targets, and the back of the vector 1945 /// for little endian targets. 1946 /// 1947 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1948 /// 1949 /// The source and destination vector types may have different element types. 1950 static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal, 1951 VectorType *DestTy, 1952 InstCombiner &IC) { 1953 // We can only do this optimization if the output is a multiple of the input 1954 // element size, or the input is a multiple of the output element size. 1955 // Convert the input type to have the same element type as the output. 1956 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1957 1958 if (SrcTy->getElementType() != DestTy->getElementType()) { 1959 // The input types don't need to be identical, but for now they must be the 1960 // same size. There is no specific reason we couldn't handle things like 1961 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1962 // there yet. 1963 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1964 DestTy->getElementType()->getPrimitiveSizeInBits()) 1965 return nullptr; 1966 1967 SrcTy = 1968 FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1969 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1970 } 1971 1972 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 1973 unsigned SrcElts = SrcTy->getNumElements(); 1974 unsigned DestElts = DestTy->getNumElements(); 1975 1976 assert(SrcElts != DestElts && "Element counts should be different."); 1977 1978 // Now that the element types match, get the shuffle mask and RHS of the 1979 // shuffle to use, which depends on whether we're increasing or decreasing the 1980 // size of the input. 1981 SmallVector<int, 16> ShuffleMaskStorage; 1982 ArrayRef<int> ShuffleMask; 1983 Value *V2; 1984 1985 // Produce an identify shuffle mask for the src vector. 1986 ShuffleMaskStorage.resize(SrcElts); 1987 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 1988 1989 if (SrcElts > DestElts) { 1990 // If we're shrinking the number of elements (rewriting an integer 1991 // truncate), just shuffle in the elements corresponding to the least 1992 // significant bits from the input and use undef as the second shuffle 1993 // input. 1994 V2 = UndefValue::get(SrcTy); 1995 // Make sure the shuffle mask selects the "least significant bits" by 1996 // keeping elements from back of the src vector for big endian, and from the 1997 // front for little endian. 1998 ShuffleMask = ShuffleMaskStorage; 1999 if (IsBigEndian) 2000 ShuffleMask = ShuffleMask.take_back(DestElts); 2001 else 2002 ShuffleMask = ShuffleMask.take_front(DestElts); 2003 } else { 2004 // If we're increasing the number of elements (rewriting an integer zext), 2005 // shuffle in all of the elements from InVal. Fill the rest of the result 2006 // elements with zeros from a constant zero. 2007 V2 = Constant::getNullValue(SrcTy); 2008 // Use first elt from V2 when indicating zero in the shuffle mask. 2009 uint32_t NullElt = SrcElts; 2010 // Extend with null values in the "most significant bits" by adding elements 2011 // in front of the src vector for big endian, and at the back for little 2012 // endian. 2013 unsigned DeltaElts = DestElts - SrcElts; 2014 if (IsBigEndian) 2015 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2016 else 2017 ShuffleMaskStorage.append(DeltaElts, NullElt); 2018 ShuffleMask = ShuffleMaskStorage; 2019 } 2020 2021 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2022 } 2023 2024 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2025 return Value % Ty->getPrimitiveSizeInBits() == 0; 2026 } 2027 2028 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2029 return Value / Ty->getPrimitiveSizeInBits(); 2030 } 2031 2032 /// V is a value which is inserted into a vector of VecEltTy. 2033 /// Look through the value to see if we can decompose it into 2034 /// insertions into the vector. See the example in the comment for 2035 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2036 /// The type of V is always a non-zero multiple of VecEltTy's size. 2037 /// Shift is the number of bits between the lsb of V and the lsb of 2038 /// the vector. 2039 /// 2040 /// This returns false if the pattern can't be matched or true if it can, 2041 /// filling in Elements with the elements found here. 2042 static bool collectInsertionElements(Value *V, unsigned Shift, 2043 SmallVectorImpl<Value *> &Elements, 2044 Type *VecEltTy, bool isBigEndian) { 2045 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2046 "Shift should be a multiple of the element type size"); 2047 2048 // Undef values never contribute useful bits to the result. 2049 if (isa<UndefValue>(V)) return true; 2050 2051 // If we got down to a value of the right type, we win, try inserting into the 2052 // right element. 2053 if (V->getType() == VecEltTy) { 2054 // Inserting null doesn't actually insert any elements. 2055 if (Constant *C = dyn_cast<Constant>(V)) 2056 if (C->isNullValue()) 2057 return true; 2058 2059 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2060 if (isBigEndian) 2061 ElementIndex = Elements.size() - ElementIndex - 1; 2062 2063 // Fail if multiple elements are inserted into this slot. 2064 if (Elements[ElementIndex]) 2065 return false; 2066 2067 Elements[ElementIndex] = V; 2068 return true; 2069 } 2070 2071 if (Constant *C = dyn_cast<Constant>(V)) { 2072 // Figure out the # elements this provides, and bitcast it or slice it up 2073 // as required. 2074 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2075 VecEltTy); 2076 // If the constant is the size of a vector element, we just need to bitcast 2077 // it to the right type so it gets properly inserted. 2078 if (NumElts == 1) 2079 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2080 Shift, Elements, VecEltTy, isBigEndian); 2081 2082 // Okay, this is a constant that covers multiple elements. Slice it up into 2083 // pieces and insert each element-sized piece into the vector. 2084 if (!isa<IntegerType>(C->getType())) 2085 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2086 C->getType()->getPrimitiveSizeInBits())); 2087 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2088 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2089 2090 for (unsigned i = 0; i != NumElts; ++i) { 2091 unsigned ShiftI = Shift+i*ElementSize; 2092 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2093 ShiftI)); 2094 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2095 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2096 isBigEndian)) 2097 return false; 2098 } 2099 return true; 2100 } 2101 2102 if (!V->hasOneUse()) return false; 2103 2104 Instruction *I = dyn_cast<Instruction>(V); 2105 if (!I) return false; 2106 switch (I->getOpcode()) { 2107 default: return false; // Unhandled case. 2108 case Instruction::BitCast: 2109 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2110 isBigEndian); 2111 case Instruction::ZExt: 2112 if (!isMultipleOfTypeSize( 2113 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2114 VecEltTy)) 2115 return false; 2116 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2117 isBigEndian); 2118 case Instruction::Or: 2119 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2120 isBigEndian) && 2121 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2122 isBigEndian); 2123 case Instruction::Shl: { 2124 // Must be shifting by a constant that is a multiple of the element size. 2125 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2126 if (!CI) return false; 2127 Shift += CI->getZExtValue(); 2128 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2129 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2130 isBigEndian); 2131 } 2132 2133 } 2134 } 2135 2136 2137 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2138 /// assemble the elements of the vector manually. 2139 /// Try to rip the code out and replace it with insertelements. This is to 2140 /// optimize code like this: 2141 /// 2142 /// %tmp37 = bitcast float %inc to i32 2143 /// %tmp38 = zext i32 %tmp37 to i64 2144 /// %tmp31 = bitcast float %inc5 to i32 2145 /// %tmp32 = zext i32 %tmp31 to i64 2146 /// %tmp33 = shl i64 %tmp32, 32 2147 /// %ins35 = or i64 %tmp33, %tmp38 2148 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2149 /// 2150 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2151 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2152 InstCombiner &IC) { 2153 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2154 Value *IntInput = CI.getOperand(0); 2155 2156 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2157 if (!collectInsertionElements(IntInput, 0, Elements, 2158 DestVecTy->getElementType(), 2159 IC.getDataLayout().isBigEndian())) 2160 return nullptr; 2161 2162 // If we succeeded, we know that all of the element are specified by Elements 2163 // or are zero if Elements has a null entry. Recast this as a set of 2164 // insertions. 2165 Value *Result = Constant::getNullValue(CI.getType()); 2166 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2167 if (!Elements[i]) continue; // Unset element. 2168 2169 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2170 IC.Builder.getInt32(i)); 2171 } 2172 2173 return Result; 2174 } 2175 2176 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2177 /// vector followed by extract element. The backend tends to handle bitcasts of 2178 /// vectors better than bitcasts of scalars because vector registers are 2179 /// usually not type-specific like scalar integer or scalar floating-point. 2180 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2181 InstCombiner &IC) { 2182 // TODO: Create and use a pattern matcher for ExtractElementInst. 2183 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2184 if (!ExtElt || !ExtElt->hasOneUse()) 2185 return nullptr; 2186 2187 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2188 // type to extract from. 2189 Type *DestType = BitCast.getType(); 2190 if (!VectorType::isValidElementType(DestType)) 2191 return nullptr; 2192 2193 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2194 auto *NewVecType = FixedVectorType::get(DestType, NumElts); 2195 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2196 NewVecType, "bc"); 2197 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2198 } 2199 2200 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2201 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2202 InstCombiner::BuilderTy &Builder) { 2203 Type *DestTy = BitCast.getType(); 2204 BinaryOperator *BO; 2205 if (!DestTy->isIntOrIntVectorTy() || 2206 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2207 !BO->isBitwiseLogicOp()) 2208 return nullptr; 2209 2210 // FIXME: This transform is restricted to vector types to avoid backend 2211 // problems caused by creating potentially illegal operations. If a fix-up is 2212 // added to handle that situation, we can remove this check. 2213 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2214 return nullptr; 2215 2216 Value *X; 2217 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2218 X->getType() == DestTy && !isa<Constant>(X)) { 2219 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2220 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2221 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2222 } 2223 2224 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2225 X->getType() == DestTy && !isa<Constant>(X)) { 2226 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2227 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2228 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2229 } 2230 2231 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2232 // constant. This eases recognition of special constants for later ops. 2233 // Example: 2234 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2235 Constant *C; 2236 if (match(BO->getOperand(1), m_Constant(C))) { 2237 // bitcast (logic X, C) --> logic (bitcast X, C') 2238 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2239 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2240 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2241 } 2242 2243 return nullptr; 2244 } 2245 2246 /// Change the type of a select if we can eliminate a bitcast. 2247 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2248 InstCombiner::BuilderTy &Builder) { 2249 Value *Cond, *TVal, *FVal; 2250 if (!match(BitCast.getOperand(0), 2251 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2252 return nullptr; 2253 2254 // A vector select must maintain the same number of elements in its operands. 2255 Type *CondTy = Cond->getType(); 2256 Type *DestTy = BitCast.getType(); 2257 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 2258 if (!DestTy->isVectorTy()) 2259 return nullptr; 2260 if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements()) 2261 return nullptr; 2262 } 2263 2264 // FIXME: This transform is restricted from changing the select between 2265 // scalars and vectors to avoid backend problems caused by creating 2266 // potentially illegal operations. If a fix-up is added to handle that 2267 // situation, we can remove this check. 2268 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2269 return nullptr; 2270 2271 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2272 Value *X; 2273 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2274 !isa<Constant>(X)) { 2275 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2276 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2277 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2278 } 2279 2280 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2281 !isa<Constant>(X)) { 2282 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2283 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2284 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2285 } 2286 2287 return nullptr; 2288 } 2289 2290 /// Check if all users of CI are StoreInsts. 2291 static bool hasStoreUsersOnly(CastInst &CI) { 2292 for (User *U : CI.users()) { 2293 if (!isa<StoreInst>(U)) 2294 return false; 2295 } 2296 return true; 2297 } 2298 2299 /// This function handles following case 2300 /// 2301 /// A -> B cast 2302 /// PHI 2303 /// B -> A cast 2304 /// 2305 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2306 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2307 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2308 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2309 if (hasStoreUsersOnly(CI)) 2310 return nullptr; 2311 2312 Value *Src = CI.getOperand(0); 2313 Type *SrcTy = Src->getType(); // Type B 2314 Type *DestTy = CI.getType(); // Type A 2315 2316 SmallVector<PHINode *, 4> PhiWorklist; 2317 SmallSetVector<PHINode *, 4> OldPhiNodes; 2318 2319 // Find all of the A->B casts and PHI nodes. 2320 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2321 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2322 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2323 PhiWorklist.push_back(PN); 2324 OldPhiNodes.insert(PN); 2325 while (!PhiWorklist.empty()) { 2326 auto *OldPN = PhiWorklist.pop_back_val(); 2327 for (Value *IncValue : OldPN->incoming_values()) { 2328 if (isa<Constant>(IncValue)) 2329 continue; 2330 2331 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2332 // If there is a sequence of one or more load instructions, each loaded 2333 // value is used as address of later load instruction, bitcast is 2334 // necessary to change the value type, don't optimize it. For 2335 // simplicity we give up if the load address comes from another load. 2336 Value *Addr = LI->getOperand(0); 2337 if (Addr == &CI || isa<LoadInst>(Addr)) 2338 return nullptr; 2339 if (LI->hasOneUse() && LI->isSimple()) 2340 continue; 2341 // If a LoadInst has more than one use, changing the type of loaded 2342 // value may create another bitcast. 2343 return nullptr; 2344 } 2345 2346 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2347 if (OldPhiNodes.insert(PNode)) 2348 PhiWorklist.push_back(PNode); 2349 continue; 2350 } 2351 2352 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2353 // We can't handle other instructions. 2354 if (!BCI) 2355 return nullptr; 2356 2357 // Verify it's a A->B cast. 2358 Type *TyA = BCI->getOperand(0)->getType(); 2359 Type *TyB = BCI->getType(); 2360 if (TyA != DestTy || TyB != SrcTy) 2361 return nullptr; 2362 } 2363 } 2364 2365 // Check that each user of each old PHI node is something that we can 2366 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2367 for (auto *OldPN : OldPhiNodes) { 2368 for (User *V : OldPN->users()) { 2369 if (auto *SI = dyn_cast<StoreInst>(V)) { 2370 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2371 return nullptr; 2372 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2373 // Verify it's a B->A cast. 2374 Type *TyB = BCI->getOperand(0)->getType(); 2375 Type *TyA = BCI->getType(); 2376 if (TyA != DestTy || TyB != SrcTy) 2377 return nullptr; 2378 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2379 // As long as the user is another old PHI node, then even if we don't 2380 // rewrite it, the PHI web we're considering won't have any users 2381 // outside itself, so it'll be dead. 2382 if (OldPhiNodes.count(PHI) == 0) 2383 return nullptr; 2384 } else { 2385 return nullptr; 2386 } 2387 } 2388 } 2389 2390 // For each old PHI node, create a corresponding new PHI node with a type A. 2391 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2392 for (auto *OldPN : OldPhiNodes) { 2393 Builder.SetInsertPoint(OldPN); 2394 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2395 NewPNodes[OldPN] = NewPN; 2396 } 2397 2398 // Fill in the operands of new PHI nodes. 2399 for (auto *OldPN : OldPhiNodes) { 2400 PHINode *NewPN = NewPNodes[OldPN]; 2401 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2402 Value *V = OldPN->getOperand(j); 2403 Value *NewV = nullptr; 2404 if (auto *C = dyn_cast<Constant>(V)) { 2405 NewV = ConstantExpr::getBitCast(C, DestTy); 2406 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2407 // Explicitly perform load combine to make sure no opposing transform 2408 // can remove the bitcast in the meantime and trigger an infinite loop. 2409 Builder.SetInsertPoint(LI); 2410 NewV = combineLoadToNewType(*LI, DestTy); 2411 // Remove the old load and its use in the old phi, which itself becomes 2412 // dead once the whole transform finishes. 2413 replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 2414 eraseInstFromFunction(*LI); 2415 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2416 NewV = BCI->getOperand(0); 2417 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2418 NewV = NewPNodes[PrevPN]; 2419 } 2420 assert(NewV); 2421 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2422 } 2423 } 2424 2425 // Traverse all accumulated PHI nodes and process its users, 2426 // which are Stores and BitcCasts. Without this processing 2427 // NewPHI nodes could be replicated and could lead to extra 2428 // moves generated after DeSSA. 2429 // If there is a store with type B, change it to type A. 2430 2431 2432 // Replace users of BitCast B->A with NewPHI. These will help 2433 // later to get rid off a closure formed by OldPHI nodes. 2434 Instruction *RetVal = nullptr; 2435 for (auto *OldPN : OldPhiNodes) { 2436 PHINode *NewPN = NewPNodes[OldPN]; 2437 for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) { 2438 User *V = *It; 2439 // We may remove this user, advance to avoid iterator invalidation. 2440 ++It; 2441 if (auto *SI = dyn_cast<StoreInst>(V)) { 2442 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2443 Builder.SetInsertPoint(SI); 2444 auto *NewBC = 2445 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2446 SI->setOperand(0, NewBC); 2447 Worklist.push(SI); 2448 assert(hasStoreUsersOnly(*NewBC)); 2449 } 2450 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2451 Type *TyB = BCI->getOperand(0)->getType(); 2452 Type *TyA = BCI->getType(); 2453 assert(TyA == DestTy && TyB == SrcTy); 2454 (void) TyA; 2455 (void) TyB; 2456 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2457 if (BCI == &CI) 2458 RetVal = I; 2459 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2460 assert(OldPhiNodes.count(PHI) > 0); 2461 (void) PHI; 2462 } else { 2463 llvm_unreachable("all uses should be handled"); 2464 } 2465 } 2466 } 2467 2468 return RetVal; 2469 } 2470 2471 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2472 // If the operands are integer typed then apply the integer transforms, 2473 // otherwise just apply the common ones. 2474 Value *Src = CI.getOperand(0); 2475 Type *SrcTy = Src->getType(); 2476 Type *DestTy = CI.getType(); 2477 2478 // Get rid of casts from one type to the same type. These are useless and can 2479 // be replaced by the operand. 2480 if (DestTy == Src->getType()) 2481 return replaceInstUsesWith(CI, Src); 2482 2483 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2484 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2485 Type *DstElTy = DstPTy->getElementType(); 2486 Type *SrcElTy = SrcPTy->getElementType(); 2487 2488 // Casting pointers between the same type, but with different address spaces 2489 // is an addrspace cast rather than a bitcast. 2490 if ((DstElTy == SrcElTy) && 2491 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2492 return new AddrSpaceCastInst(Src, DestTy); 2493 2494 // If we are casting a alloca to a pointer to a type of the same 2495 // size, rewrite the allocation instruction to allocate the "right" type. 2496 // There is no need to modify malloc calls because it is their bitcast that 2497 // needs to be cleaned up. 2498 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2499 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2500 return V; 2501 2502 // When the type pointed to is not sized the cast cannot be 2503 // turned into a gep. 2504 Type *PointeeType = 2505 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2506 if (!PointeeType->isSized()) 2507 return nullptr; 2508 2509 // If the source and destination are pointers, and this cast is equivalent 2510 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2511 // This can enhance SROA and other transforms that want type-safe pointers. 2512 unsigned NumZeros = 0; 2513 while (SrcElTy && SrcElTy != DstElTy) { 2514 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2515 ++NumZeros; 2516 } 2517 2518 // If we found a path from the src to dest, create the getelementptr now. 2519 if (SrcElTy == DstElTy) { 2520 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2521 GetElementPtrInst *GEP = 2522 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); 2523 2524 // If the source pointer is dereferenceable, then assume it points to an 2525 // allocated object and apply "inbounds" to the GEP. 2526 bool CanBeNull; 2527 if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) { 2528 // In a non-default address space (not 0), a null pointer can not be 2529 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2530 // The reason is that 'null' is not treated differently in these address 2531 // spaces, and we consequently ignore the 'gep inbounds' special case 2532 // for 'null' which allows 'inbounds' on 'null' if the indices are 2533 // zeros. 2534 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2535 GEP->setIsInBounds(); 2536 } 2537 return GEP; 2538 } 2539 } 2540 2541 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2542 // Beware: messing with this target-specific oddity may cause trouble. 2543 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2544 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2545 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2546 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2547 } 2548 2549 if (isa<IntegerType>(SrcTy)) { 2550 // If this is a cast from an integer to vector, check to see if the input 2551 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2552 // the casts with a shuffle and (potentially) a bitcast. 2553 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2554 CastInst *SrcCast = cast<CastInst>(Src); 2555 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2556 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2557 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2558 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2559 return I; 2560 } 2561 2562 // If the input is an 'or' instruction, we may be doing shifts and ors to 2563 // assemble the elements of the vector manually. Try to rip the code out 2564 // and replace it with insertelements. 2565 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2566 return replaceInstUsesWith(CI, V); 2567 } 2568 } 2569 2570 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2571 if (SrcVTy->getNumElements() == 1) { 2572 // If our destination is not a vector, then make this a straight 2573 // scalar-scalar cast. 2574 if (!DestTy->isVectorTy()) { 2575 Value *Elem = 2576 Builder.CreateExtractElement(Src, 2577 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2578 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2579 } 2580 2581 // Otherwise, see if our source is an insert. If so, then use the scalar 2582 // component directly: 2583 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2584 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2585 return new BitCastInst(InsElt->getOperand(1), DestTy); 2586 } 2587 } 2588 2589 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2590 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2591 // a bitcast to a vector with the same # elts. 2592 Value *ShufOp0 = Shuf->getOperand(0); 2593 Value *ShufOp1 = Shuf->getOperand(1); 2594 unsigned NumShufElts = Shuf->getType()->getNumElements(); 2595 unsigned NumSrcVecElts = 2596 cast<VectorType>(ShufOp0->getType())->getNumElements(); 2597 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2598 cast<VectorType>(DestTy)->getNumElements() == NumShufElts && 2599 NumShufElts == NumSrcVecElts) { 2600 BitCastInst *Tmp; 2601 // If either of the operands is a cast from CI.getType(), then 2602 // evaluating the shuffle in the casted destination's type will allow 2603 // us to eliminate at least one cast. 2604 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2605 Tmp->getOperand(0)->getType() == DestTy) || 2606 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2607 Tmp->getOperand(0)->getType() == DestTy)) { 2608 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2609 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2610 // Return a new shuffle vector. Use the same element ID's, as we 2611 // know the vector types match #elts. 2612 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2613 } 2614 } 2615 2616 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2617 // a byte-swap: 2618 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2619 // TODO: We should match the related pattern for bitreverse. 2620 if (DestTy->isIntegerTy() && 2621 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2622 SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 && 2623 Shuf->hasOneUse() && Shuf->isReverse()) { 2624 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2625 assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op"); 2626 Function *Bswap = 2627 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2628 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2629 return IntrinsicInst::Create(Bswap, { ScalarX }); 2630 } 2631 } 2632 2633 // Handle the A->B->A cast, and there is an intervening PHI node. 2634 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2635 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2636 return I; 2637 2638 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2639 return I; 2640 2641 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2642 return I; 2643 2644 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2645 return I; 2646 2647 if (SrcTy->isPointerTy()) 2648 return commonPointerCastTransforms(CI); 2649 return commonCastTransforms(CI); 2650 } 2651 2652 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2653 // If the destination pointer element type is not the same as the source's 2654 // first do a bitcast to the destination type, and then the addrspacecast. 2655 // This allows the cast to be exposed to other transforms. 2656 Value *Src = CI.getOperand(0); 2657 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2658 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2659 2660 Type *DestElemTy = DestTy->getElementType(); 2661 if (SrcTy->getElementType() != DestElemTy) { 2662 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2663 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2664 // Handle vectors of pointers. 2665 // FIXME: what should happen for scalable vectors? 2666 MidTy = FixedVectorType::get(MidTy, VT->getNumElements()); 2667 } 2668 2669 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2670 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2671 } 2672 2673 return commonPointerCastTransforms(CI); 2674 } 2675