1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DIBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include <numeric>
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   IRBuilderBase::InsertPointGuard Guard(Builder);
89   Builder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = Builder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = Builder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlign());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156     eraseInstFromFunction(AI);
157   }
158   return replaceInstUsesWith(CI, New);
159 }
160 
161 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
162 /// true for, actually insert the code to evaluate the expression.
163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
164                                              bool isSigned) {
165   if (Constant *C = dyn_cast<Constant>(V)) {
166     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
167     // If we got a constantexpr back, try to simplify it with DL info.
168     return ConstantFoldConstant(C, DL, &TLI);
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = CI1->getOpcode();
239   Instruction::CastOps secondOp = CI2->getOpcode();
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       auto *Ty = CI.getType();
269       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
270       // Point debug users of the dying cast to the new one.
271       if (CSrc->hasOneUse())
272         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
273       return Res;
274     }
275   }
276 
277   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
278     // We are casting a select. Try to fold the cast into the select if the
279     // select does not have a compare instruction with matching operand types
280     // or the select is likely better done in a narrow type.
281     // Creating a select with operands that are different sizes than its
282     // condition may inhibit other folds and lead to worse codegen.
283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
285         (CI.getOpcode() == Instruction::Trunc &&
286          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
287       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
288         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
289         return NV;
290       }
291     }
292   }
293 
294   // If we are casting a PHI, then fold the cast into the PHI.
295   if (auto *PN = dyn_cast<PHINode>(Src)) {
296     // Don't do this if it would create a PHI node with an illegal type from a
297     // legal type.
298     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
299         shouldChangeType(CI.getSrcTy(), CI.getType()))
300       if (Instruction *NV = foldOpIntoPhi(CI, PN))
301         return NV;
302   }
303 
304   return nullptr;
305 }
306 
307 /// Constants and extensions/truncates from the destination type are always
308 /// free to be evaluated in that type. This is a helper for canEvaluate*.
309 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
310   if (isa<Constant>(V))
311     return true;
312   Value *X;
313   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
314       X->getType() == Ty)
315     return true;
316 
317   return false;
318 }
319 
320 /// Filter out values that we can not evaluate in the destination type for free.
321 /// This is a helper for canEvaluate*.
322 static bool canNotEvaluateInType(Value *V, Type *Ty) {
323   assert(!isa<Constant>(V) && "Constant should already be handled.");
324   if (!isa<Instruction>(V))
325     return true;
326   // We don't extend or shrink something that has multiple uses --  doing so
327   // would require duplicating the instruction which isn't profitable.
328   if (!V->hasOneUse())
329     return true;
330 
331   return false;
332 }
333 
334 /// Return true if we can evaluate the specified expression tree as type Ty
335 /// instead of its larger type, and arrive with the same value.
336 /// This is used by code that tries to eliminate truncates.
337 ///
338 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
339 /// can be computed by computing V in the smaller type.  If V is an instruction,
340 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
341 /// makes sense if x and y can be efficiently truncated.
342 ///
343 /// This function works on both vectors and scalars.
344 ///
345 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
346                                  Instruction *CxtI) {
347   if (canAlwaysEvaluateInType(V, Ty))
348     return true;
349   if (canNotEvaluateInType(V, Ty))
350     return false;
351 
352   auto *I = cast<Instruction>(V);
353   Type *OrigTy = V->getType();
354   switch (I->getOpcode()) {
355   case Instruction::Add:
356   case Instruction::Sub:
357   case Instruction::Mul:
358   case Instruction::And:
359   case Instruction::Or:
360   case Instruction::Xor:
361     // These operators can all arbitrarily be extended or truncated.
362     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
364 
365   case Instruction::UDiv:
366   case Instruction::URem: {
367     // UDiv and URem can be truncated if all the truncated bits are zero.
368     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369     uint32_t BitWidth = Ty->getScalarSizeInBits();
370     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
371     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
372     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
374       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
376     }
377     break;
378   }
379   case Instruction::Shl: {
380     // If we are truncating the result of this SHL, and if it's a shift of a
381     // constant amount, we can always perform a SHL in a smaller type.
382     const APInt *Amt;
383     if (match(I->getOperand(1), m_APInt(Amt))) {
384       uint32_t BitWidth = Ty->getScalarSizeInBits();
385       if (Amt->getLimitedValue(BitWidth) < BitWidth)
386         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
387     }
388     break;
389   }
390   case Instruction::LShr: {
391     // If this is a truncate of a logical shr, we can truncate it to a smaller
392     // lshr iff we know that the bits we would otherwise be shifting in are
393     // already zeros.
394     const APInt *Amt;
395     if (match(I->getOperand(1), m_APInt(Amt))) {
396       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
397       uint32_t BitWidth = Ty->getScalarSizeInBits();
398       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
399           IC.MaskedValueIsZero(I->getOperand(0),
400             APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
401         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
402       }
403     }
404     break;
405   }
406   case Instruction::AShr: {
407     // If this is a truncate of an arithmetic shr, we can truncate it to a
408     // smaller ashr iff we know that all the bits from the sign bit of the
409     // original type and the sign bit of the truncate type are similar.
410     // TODO: It is enough to check that the bits we would be shifting in are
411     //       similar to sign bit of the truncate type.
412     const APInt *Amt;
413     if (match(I->getOperand(1), m_APInt(Amt))) {
414       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415       uint32_t BitWidth = Ty->getScalarSizeInBits();
416       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
417           OrigBitWidth - BitWidth <
418               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
419         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
420     }
421     break;
422   }
423   case Instruction::Trunc:
424     // trunc(trunc(x)) -> trunc(x)
425     return true;
426   case Instruction::ZExt:
427   case Instruction::SExt:
428     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
429     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
430     return true;
431   case Instruction::Select: {
432     SelectInst *SI = cast<SelectInst>(I);
433     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
434            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
435   }
436   case Instruction::PHI: {
437     // We can change a phi if we can change all operands.  Note that we never
438     // get into trouble with cyclic PHIs here because we only consider
439     // instructions with a single use.
440     PHINode *PN = cast<PHINode>(I);
441     for (Value *IncValue : PN->incoming_values())
442       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
443         return false;
444     return true;
445   }
446   default:
447     // TODO: Can handle more cases here.
448     break;
449   }
450 
451   return false;
452 }
453 
454 /// Given a vector that is bitcast to an integer, optionally logically
455 /// right-shifted, and truncated, convert it to an extractelement.
456 /// Example (big endian):
457 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
458 ///   --->
459 ///   extractelement <4 x i32> %X, 1
460 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
461   Value *TruncOp = Trunc.getOperand(0);
462   Type *DestType = Trunc.getType();
463   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
464     return nullptr;
465 
466   Value *VecInput = nullptr;
467   ConstantInt *ShiftVal = nullptr;
468   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
469                                   m_LShr(m_BitCast(m_Value(VecInput)),
470                                          m_ConstantInt(ShiftVal)))) ||
471       !isa<VectorType>(VecInput->getType()))
472     return nullptr;
473 
474   VectorType *VecType = cast<VectorType>(VecInput->getType());
475   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
476   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
477   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
478 
479   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
480     return nullptr;
481 
482   // If the element type of the vector doesn't match the result type,
483   // bitcast it to a vector type that we can extract from.
484   unsigned NumVecElts = VecWidth / DestWidth;
485   if (VecType->getElementType() != DestType) {
486     VecType = FixedVectorType::get(DestType, NumVecElts);
487     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
488   }
489 
490   unsigned Elt = ShiftAmount / DestWidth;
491   if (IC.getDataLayout().isBigEndian())
492     Elt = NumVecElts - 1 - Elt;
493 
494   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
495 }
496 
497 /// Rotate left/right may occur in a wider type than necessary because of type
498 /// promotion rules. Try to narrow the inputs and convert to funnel shift.
499 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
500   assert((isa<VectorType>(Trunc.getSrcTy()) ||
501           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
502          "Don't narrow to an illegal scalar type");
503 
504   // Bail out on strange types. It is possible to handle some of these patterns
505   // even with non-power-of-2 sizes, but it is not a likely scenario.
506   Type *DestTy = Trunc.getType();
507   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
508   if (!isPowerOf2_32(NarrowWidth))
509     return nullptr;
510 
511   // First, find an or'd pair of opposite shifts with the same shifted operand:
512   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
513   Value *Or0, *Or1;
514   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
515     return nullptr;
516 
517   Value *ShVal, *ShAmt0, *ShAmt1;
518   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
519       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
520     return nullptr;
521 
522   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
523   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
524   if (ShiftOpcode0 == ShiftOpcode1)
525     return nullptr;
526 
527   // Match the shift amount operands for a rotate pattern. This always matches
528   // a subtraction on the R operand.
529   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
530     // The shift amounts may add up to the narrow bit width:
531     // (shl ShVal, L) | (lshr ShVal, Width - L)
532     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
533       return L;
534 
535     // The shift amount may be masked with negation:
536     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
537     Value *X;
538     unsigned Mask = Width - 1;
539     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
540         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
541       return X;
542 
543     // Same as above, but the shift amount may be extended after masking:
544     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
545         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
546       return X;
547 
548     return nullptr;
549   };
550 
551   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
552   bool SubIsOnLHS = false;
553   if (!ShAmt) {
554     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
555     SubIsOnLHS = true;
556   }
557   if (!ShAmt)
558     return nullptr;
559 
560   // The shifted value must have high zeros in the wide type. Typically, this
561   // will be a zext, but it could also be the result of an 'and' or 'shift'.
562   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
563   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
564   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
565     return nullptr;
566 
567   // We have an unnecessarily wide rotate!
568   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
569   // Narrow the inputs and convert to funnel shift intrinsic:
570   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
571   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
572   Value *X = Builder.CreateTrunc(ShVal, DestTy);
573   bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
574                 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
575   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
576   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
577   return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
578 }
579 
580 /// Try to narrow the width of math or bitwise logic instructions by pulling a
581 /// truncate ahead of binary operators.
582 /// TODO: Transforms for truncated shifts should be moved into here.
583 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
584   Type *SrcTy = Trunc.getSrcTy();
585   Type *DestTy = Trunc.getType();
586   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
587     return nullptr;
588 
589   BinaryOperator *BinOp;
590   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
591     return nullptr;
592 
593   Value *BinOp0 = BinOp->getOperand(0);
594   Value *BinOp1 = BinOp->getOperand(1);
595   switch (BinOp->getOpcode()) {
596   case Instruction::And:
597   case Instruction::Or:
598   case Instruction::Xor:
599   case Instruction::Add:
600   case Instruction::Sub:
601   case Instruction::Mul: {
602     Constant *C;
603     if (match(BinOp0, m_Constant(C))) {
604       // trunc (binop C, X) --> binop (trunc C', X)
605       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
606       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
607       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
608     }
609     if (match(BinOp1, m_Constant(C))) {
610       // trunc (binop X, C) --> binop (trunc X, C')
611       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
612       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
613       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
614     }
615     Value *X;
616     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
617       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
618       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
619       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
620     }
621     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
622       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
623       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
624       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
625     }
626     break;
627   }
628 
629   default: break;
630   }
631 
632   if (Instruction *NarrowOr = narrowRotate(Trunc))
633     return NarrowOr;
634 
635   return nullptr;
636 }
637 
638 /// Try to narrow the width of a splat shuffle. This could be generalized to any
639 /// shuffle with a constant operand, but we limit the transform to avoid
640 /// creating a shuffle type that targets may not be able to lower effectively.
641 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
642                                        InstCombiner::BuilderTy &Builder) {
643   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
644   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
645       is_splat(Shuf->getShuffleMask()) &&
646       Shuf->getType() == Shuf->getOperand(0)->getType()) {
647     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
648     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
649     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
650     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
651   }
652 
653   return nullptr;
654 }
655 
656 /// Try to narrow the width of an insert element. This could be generalized for
657 /// any vector constant, but we limit the transform to insertion into undef to
658 /// avoid potential backend problems from unsupported insertion widths. This
659 /// could also be extended to handle the case of inserting a scalar constant
660 /// into a vector variable.
661 static Instruction *shrinkInsertElt(CastInst &Trunc,
662                                     InstCombiner::BuilderTy &Builder) {
663   Instruction::CastOps Opcode = Trunc.getOpcode();
664   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
665          "Unexpected instruction for shrinking");
666 
667   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
668   if (!InsElt || !InsElt->hasOneUse())
669     return nullptr;
670 
671   Type *DestTy = Trunc.getType();
672   Type *DestScalarTy = DestTy->getScalarType();
673   Value *VecOp = InsElt->getOperand(0);
674   Value *ScalarOp = InsElt->getOperand(1);
675   Value *Index = InsElt->getOperand(2);
676 
677   if (isa<UndefValue>(VecOp)) {
678     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
679     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
680     UndefValue *NarrowUndef = UndefValue::get(DestTy);
681     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
682     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
683   }
684 
685   return nullptr;
686 }
687 
688 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
689   if (Instruction *Result = commonCastTransforms(CI))
690     return Result;
691 
692   Value *Src = CI.getOperand(0);
693   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
694   ConstantInt *Cst;
695 
696   // Attempt to truncate the entire input expression tree to the destination
697   // type.   Only do this if the dest type is a simple type, don't convert the
698   // expression tree to something weird like i93 unless the source is also
699   // strange.
700   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
701       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
702 
703     // If this cast is a truncate, evaluting in a different type always
704     // eliminates the cast, so it is always a win.
705     LLVM_DEBUG(
706         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
707                   " to avoid cast: "
708                << CI << '\n');
709     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
710     assert(Res->getType() == DestTy);
711     return replaceInstUsesWith(CI, Res);
712   }
713 
714   // Test if the trunc is the user of a select which is part of a
715   // minimum or maximum operation. If so, don't do any more simplification.
716   // Even simplifying demanded bits can break the canonical form of a
717   // min/max.
718   Value *LHS, *RHS;
719   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
720     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
721       return nullptr;
722 
723   // See if we can simplify any instructions used by the input whose sole
724   // purpose is to compute bits we don't care about.
725   if (SimplifyDemandedInstructionBits(CI))
726     return &CI;
727 
728   if (DestTy->getScalarSizeInBits() == 1) {
729     Value *Zero = Constant::getNullValue(Src->getType());
730     if (DestTy->isIntegerTy()) {
731       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
732       // TODO: We canonicalize to more instructions here because we are probably
733       // lacking equivalent analysis for trunc relative to icmp. There may also
734       // be codegen concerns. If those trunc limitations were removed, we could
735       // remove this transform.
736       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
737       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
738     }
739 
740     // For vectors, we do not canonicalize all truncs to icmp, so optimize
741     // patterns that would be covered within visitICmpInst.
742     Value *X;
743     const APInt *C;
744     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
745       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
746       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
747       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
748       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
749     }
750     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
751                                    m_Deferred(X))))) {
752       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
753       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
754       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
755       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
756     }
757   }
758 
759   // FIXME: Maybe combine the next two transforms to handle the no cast case
760   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
761 
762   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
763   Value *A = nullptr;
764   if (Src->hasOneUse() &&
765       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
766     // We have three types to worry about here, the type of A, the source of
767     // the truncate (MidSize), and the destination of the truncate. We know that
768     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
769     // between ASize and ResultSize.
770     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
771 
772     // If the shift amount is larger than the size of A, then the result is
773     // known to be zero because all the input bits got shifted out.
774     if (Cst->getZExtValue() >= ASize)
775       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
776 
777     // Since we're doing an lshr and a zero extend, and know that the shift
778     // amount is smaller than ASize, it is always safe to do the shift in A's
779     // type, then zero extend or truncate to the result.
780     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
781     Shift->takeName(Src);
782     return CastInst::CreateIntegerCast(Shift, DestTy, false);
783   }
784 
785   // FIXME: We should canonicalize to zext/trunc and remove this transform.
786   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
787   // conversion.
788   // It works because bits coming from sign extension have the same value as
789   // the sign bit of the original value; performing ashr instead of lshr
790   // generates bits of the same value as the sign bit.
791   if (Src->hasOneUse() &&
792       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
793     Value *SExt = cast<Instruction>(Src)->getOperand(0);
794     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
795     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
796     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
797     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
798     unsigned ShiftAmt = Cst->getZExtValue();
799 
800     // This optimization can be only performed when zero bits generated by
801     // the original lshr aren't pulled into the value after truncation, so we
802     // can only shift by values no larger than the number of extension bits.
803     // FIXME: Instead of bailing when the shift is too large, use and to clear
804     // the extra bits.
805     if (ShiftAmt <= MaxAmt) {
806       if (CISize == ASize)
807         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
808                                           std::min(ShiftAmt, ASize - 1)));
809       if (SExt->hasOneUse()) {
810         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
811         Shift->takeName(Src);
812         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
813       }
814     }
815   }
816 
817   if (Instruction *I = narrowBinOp(CI))
818     return I;
819 
820   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
821     return I;
822 
823   if (Instruction *I = shrinkInsertElt(CI, Builder))
824     return I;
825 
826   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
827       shouldChangeType(SrcTy, DestTy)) {
828     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
829     // dest type is native and cst < dest size.
830     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
831         !match(A, m_Shr(m_Value(), m_Constant()))) {
832       // Skip shifts of shift by constants. It undoes a combine in
833       // FoldShiftByConstant and is the extend in reg pattern.
834       const unsigned DestSize = DestTy->getScalarSizeInBits();
835       if (Cst->getValue().ult(DestSize)) {
836         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
837 
838         return BinaryOperator::Create(
839           Instruction::Shl, NewTrunc,
840           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
841       }
842     }
843   }
844 
845   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
846     return I;
847 
848   // Whenever an element is extracted from a vector, and then truncated,
849   // canonicalize by converting it to a bitcast followed by an
850   // extractelement.
851   //
852   // Example (little endian):
853   //   trunc (extractelement <4 x i64> %X, 0) to i32
854   //   --->
855   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
856   Value *VecOp;
857   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
858     auto *VecOpTy = cast<VectorType>(VecOp->getType());
859     unsigned DestScalarSize = DestTy->getScalarSizeInBits();
860     unsigned VecOpScalarSize = VecOpTy->getScalarSizeInBits();
861     unsigned VecNumElts = VecOpTy->getNumElements();
862 
863     // A badly fit destination size would result in an invalid cast.
864     if (VecOpScalarSize % DestScalarSize == 0) {
865       uint64_t TruncRatio = VecOpScalarSize / DestScalarSize;
866       uint64_t BitCastNumElts = VecNumElts * TruncRatio;
867       uint64_t VecOpIdx = Cst->getZExtValue();
868       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
869                                          : VecOpIdx * TruncRatio;
870       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
871              "overflow 32-bits");
872 
873       auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
874       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
875       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
876     }
877   }
878 
879   return nullptr;
880 }
881 
882 Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
883                                              bool DoTransform) {
884   // If we are just checking for a icmp eq of a single bit and zext'ing it
885   // to an integer, then shift the bit to the appropriate place and then
886   // cast to integer to avoid the comparison.
887   const APInt *Op1CV;
888   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
889 
890     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
891     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
892     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
893         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
894       if (!DoTransform) return Cmp;
895 
896       Value *In = Cmp->getOperand(0);
897       Value *Sh = ConstantInt::get(In->getType(),
898                                    In->getType()->getScalarSizeInBits() - 1);
899       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
900       if (In->getType() != Zext.getType())
901         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
902 
903       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
904         Constant *One = ConstantInt::get(In->getType(), 1);
905         In = Builder.CreateXor(In, One, In->getName() + ".not");
906       }
907 
908       return replaceInstUsesWith(Zext, In);
909     }
910 
911     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
912     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
913     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
914     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
915     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
916     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
917     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
918     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
919     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
920         // This only works for EQ and NE
921         Cmp->isEquality()) {
922       // If Op1C some other power of two, convert:
923       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
924 
925       APInt KnownZeroMask(~Known.Zero);
926       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
927         if (!DoTransform) return Cmp;
928 
929         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
930         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
931           // (X&4) == 2 --> false
932           // (X&4) != 2 --> true
933           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
934           return replaceInstUsesWith(Zext, Res);
935         }
936 
937         uint32_t ShAmt = KnownZeroMask.logBase2();
938         Value *In = Cmp->getOperand(0);
939         if (ShAmt) {
940           // Perform a logical shr by shiftamt.
941           // Insert the shift to put the result in the low bit.
942           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
943                                   In->getName() + ".lobit");
944         }
945 
946         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
947           Constant *One = ConstantInt::get(In->getType(), 1);
948           In = Builder.CreateXor(In, One);
949         }
950 
951         if (Zext.getType() == In->getType())
952           return replaceInstUsesWith(Zext, In);
953 
954         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
955         return replaceInstUsesWith(Zext, IntCast);
956       }
957     }
958   }
959 
960   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
961   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
962   // may lead to additional simplifications.
963   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
964     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
965       Value *LHS = Cmp->getOperand(0);
966       Value *RHS = Cmp->getOperand(1);
967 
968       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
969       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
970 
971       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
972         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
973         APInt UnknownBit = ~KnownBits;
974         if (UnknownBit.countPopulation() == 1) {
975           if (!DoTransform) return Cmp;
976 
977           Value *Result = Builder.CreateXor(LHS, RHS);
978 
979           // Mask off any bits that are set and won't be shifted away.
980           if (KnownLHS.One.uge(UnknownBit))
981             Result = Builder.CreateAnd(Result,
982                                         ConstantInt::get(ITy, UnknownBit));
983 
984           // Shift the bit we're testing down to the lsb.
985           Result = Builder.CreateLShr(
986                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
987 
988           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
989             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
990           Result->takeName(Cmp);
991           return replaceInstUsesWith(Zext, Result);
992         }
993       }
994     }
995   }
996 
997   return nullptr;
998 }
999 
1000 /// Determine if the specified value can be computed in the specified wider type
1001 /// and produce the same low bits. If not, return false.
1002 ///
1003 /// If this function returns true, it can also return a non-zero number of bits
1004 /// (in BitsToClear) which indicates that the value it computes is correct for
1005 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1006 /// out.  For example, to promote something like:
1007 ///
1008 ///   %B = trunc i64 %A to i32
1009 ///   %C = lshr i32 %B, 8
1010 ///   %E = zext i32 %C to i64
1011 ///
1012 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1013 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1014 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1015 /// clear the top bits anyway, doing this has no extra cost.
1016 ///
1017 /// This function works on both vectors and scalars.
1018 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1019                              InstCombiner &IC, Instruction *CxtI) {
1020   BitsToClear = 0;
1021   if (canAlwaysEvaluateInType(V, Ty))
1022     return true;
1023   if (canNotEvaluateInType(V, Ty))
1024     return false;
1025 
1026   auto *I = cast<Instruction>(V);
1027   unsigned Tmp;
1028   switch (I->getOpcode()) {
1029   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1030   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1031   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1032     return true;
1033   case Instruction::And:
1034   case Instruction::Or:
1035   case Instruction::Xor:
1036   case Instruction::Add:
1037   case Instruction::Sub:
1038   case Instruction::Mul:
1039     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1040         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1041       return false;
1042     // These can all be promoted if neither operand has 'bits to clear'.
1043     if (BitsToClear == 0 && Tmp == 0)
1044       return true;
1045 
1046     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1047     // other side, BitsToClear is ok.
1048     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1049       // We use MaskedValueIsZero here for generality, but the case we care
1050       // about the most is constant RHS.
1051       unsigned VSize = V->getType()->getScalarSizeInBits();
1052       if (IC.MaskedValueIsZero(I->getOperand(1),
1053                                APInt::getHighBitsSet(VSize, BitsToClear),
1054                                0, CxtI)) {
1055         // If this is an And instruction and all of the BitsToClear are
1056         // known to be zero we can reset BitsToClear.
1057         if (I->getOpcode() == Instruction::And)
1058           BitsToClear = 0;
1059         return true;
1060       }
1061     }
1062 
1063     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1064     return false;
1065 
1066   case Instruction::Shl: {
1067     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1068     // upper bits we can reduce BitsToClear by the shift amount.
1069     const APInt *Amt;
1070     if (match(I->getOperand(1), m_APInt(Amt))) {
1071       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1072         return false;
1073       uint64_t ShiftAmt = Amt->getZExtValue();
1074       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1075       return true;
1076     }
1077     return false;
1078   }
1079   case Instruction::LShr: {
1080     // We can promote lshr(x, cst) if we can promote x.  This requires the
1081     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1082     const APInt *Amt;
1083     if (match(I->getOperand(1), m_APInt(Amt))) {
1084       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1085         return false;
1086       BitsToClear += Amt->getZExtValue();
1087       if (BitsToClear > V->getType()->getScalarSizeInBits())
1088         BitsToClear = V->getType()->getScalarSizeInBits();
1089       return true;
1090     }
1091     // Cannot promote variable LSHR.
1092     return false;
1093   }
1094   case Instruction::Select:
1095     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1096         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1097         // TODO: If important, we could handle the case when the BitsToClear are
1098         // known zero in the disagreeing side.
1099         Tmp != BitsToClear)
1100       return false;
1101     return true;
1102 
1103   case Instruction::PHI: {
1104     // We can change a phi if we can change all operands.  Note that we never
1105     // get into trouble with cyclic PHIs here because we only consider
1106     // instructions with a single use.
1107     PHINode *PN = cast<PHINode>(I);
1108     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1109       return false;
1110     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1111       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1112           // TODO: If important, we could handle the case when the BitsToClear
1113           // are known zero in the disagreeing input.
1114           Tmp != BitsToClear)
1115         return false;
1116     return true;
1117   }
1118   default:
1119     // TODO: Can handle more cases here.
1120     return false;
1121   }
1122 }
1123 
1124 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1125   // If this zero extend is only used by a truncate, let the truncate be
1126   // eliminated before we try to optimize this zext.
1127   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1128     return nullptr;
1129 
1130   // If one of the common conversion will work, do it.
1131   if (Instruction *Result = commonCastTransforms(CI))
1132     return Result;
1133 
1134   Value *Src = CI.getOperand(0);
1135   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1136 
1137   // Try to extend the entire expression tree to the wide destination type.
1138   unsigned BitsToClear;
1139   if (shouldChangeType(SrcTy, DestTy) &&
1140       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1141     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1142            "Can't clear more bits than in SrcTy");
1143 
1144     // Okay, we can transform this!  Insert the new expression now.
1145     LLVM_DEBUG(
1146         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1147                   " to avoid zero extend: "
1148                << CI << '\n');
1149     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1150     assert(Res->getType() == DestTy);
1151 
1152     // Preserve debug values referring to Src if the zext is its last use.
1153     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1154       if (SrcOp->hasOneUse())
1155         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1156 
1157     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1158     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1159 
1160     // If the high bits are already filled with zeros, just replace this
1161     // cast with the result.
1162     if (MaskedValueIsZero(Res,
1163                           APInt::getHighBitsSet(DestBitSize,
1164                                                 DestBitSize-SrcBitsKept),
1165                              0, &CI))
1166       return replaceInstUsesWith(CI, Res);
1167 
1168     // We need to emit an AND to clear the high bits.
1169     Constant *C = ConstantInt::get(Res->getType(),
1170                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1171     return BinaryOperator::CreateAnd(Res, C);
1172   }
1173 
1174   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1175   // types and if the sizes are just right we can convert this into a logical
1176   // 'and' which will be much cheaper than the pair of casts.
1177   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1178     // TODO: Subsume this into EvaluateInDifferentType.
1179 
1180     // Get the sizes of the types involved.  We know that the intermediate type
1181     // will be smaller than A or C, but don't know the relation between A and C.
1182     Value *A = CSrc->getOperand(0);
1183     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1184     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1185     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1186     // If we're actually extending zero bits, then if
1187     // SrcSize <  DstSize: zext(a & mask)
1188     // SrcSize == DstSize: a & mask
1189     // SrcSize  > DstSize: trunc(a) & mask
1190     if (SrcSize < DstSize) {
1191       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1192       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1193       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1194       return new ZExtInst(And, CI.getType());
1195     }
1196 
1197     if (SrcSize == DstSize) {
1198       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1199       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1200                                                            AndValue));
1201     }
1202     if (SrcSize > DstSize) {
1203       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1204       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1205       return BinaryOperator::CreateAnd(Trunc,
1206                                        ConstantInt::get(Trunc->getType(),
1207                                                         AndValue));
1208     }
1209   }
1210 
1211   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1212     return transformZExtICmp(Cmp, CI);
1213 
1214   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1215   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1216     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1217     // of the (zext icmp) can be eliminated. If so, immediately perform the
1218     // according elimination.
1219     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1220     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1221     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1222         (transformZExtICmp(LHS, CI, false) ||
1223          transformZExtICmp(RHS, CI, false))) {
1224       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1225       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1226       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1227       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1228       if (auto *OrInst = dyn_cast<Instruction>(Or))
1229         Builder.SetInsertPoint(OrInst);
1230 
1231       // Perform the elimination.
1232       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1233         transformZExtICmp(LHS, *LZExt);
1234       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1235         transformZExtICmp(RHS, *RZExt);
1236 
1237       return replaceInstUsesWith(CI, Or);
1238     }
1239   }
1240 
1241   // zext(trunc(X) & C) -> (X & zext(C)).
1242   Constant *C;
1243   Value *X;
1244   if (SrcI &&
1245       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1246       X->getType() == CI.getType())
1247     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1248 
1249   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1250   Value *And;
1251   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1252       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1253       X->getType() == CI.getType()) {
1254     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1255     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1256   }
1257 
1258   return nullptr;
1259 }
1260 
1261 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1262 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1263   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1264   ICmpInst::Predicate Pred = ICI->getPredicate();
1265 
1266   // Don't bother if Op1 isn't of vector or integer type.
1267   if (!Op1->getType()->isIntOrIntVectorTy())
1268     return nullptr;
1269 
1270   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1271       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1272     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1273     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1274     Value *Sh = ConstantInt::get(Op0->getType(),
1275                                  Op0->getType()->getScalarSizeInBits() - 1);
1276     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1277     if (In->getType() != CI.getType())
1278       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1279 
1280     if (Pred == ICmpInst::ICMP_SGT)
1281       In = Builder.CreateNot(In, In->getName() + ".not");
1282     return replaceInstUsesWith(CI, In);
1283   }
1284 
1285   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1286     // If we know that only one bit of the LHS of the icmp can be set and we
1287     // have an equality comparison with zero or a power of 2, we can transform
1288     // the icmp and sext into bitwise/integer operations.
1289     if (ICI->hasOneUse() &&
1290         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1291       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1292 
1293       APInt KnownZeroMask(~Known.Zero);
1294       if (KnownZeroMask.isPowerOf2()) {
1295         Value *In = ICI->getOperand(0);
1296 
1297         // If the icmp tests for a known zero bit we can constant fold it.
1298         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1299           Value *V = Pred == ICmpInst::ICMP_NE ?
1300                        ConstantInt::getAllOnesValue(CI.getType()) :
1301                        ConstantInt::getNullValue(CI.getType());
1302           return replaceInstUsesWith(CI, V);
1303         }
1304 
1305         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1306           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1307           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1308           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1309           // Perform a right shift to place the desired bit in the LSB.
1310           if (ShiftAmt)
1311             In = Builder.CreateLShr(In,
1312                                     ConstantInt::get(In->getType(), ShiftAmt));
1313 
1314           // At this point "In" is either 1 or 0. Subtract 1 to turn
1315           // {1, 0} -> {0, -1}.
1316           In = Builder.CreateAdd(In,
1317                                  ConstantInt::getAllOnesValue(In->getType()),
1318                                  "sext");
1319         } else {
1320           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1321           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1322           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1323           // Perform a left shift to place the desired bit in the MSB.
1324           if (ShiftAmt)
1325             In = Builder.CreateShl(In,
1326                                    ConstantInt::get(In->getType(), ShiftAmt));
1327 
1328           // Distribute the bit over the whole bit width.
1329           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1330                                   KnownZeroMask.getBitWidth() - 1), "sext");
1331         }
1332 
1333         if (CI.getType() == In->getType())
1334           return replaceInstUsesWith(CI, In);
1335         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1336       }
1337     }
1338   }
1339 
1340   return nullptr;
1341 }
1342 
1343 /// Return true if we can take the specified value and return it as type Ty
1344 /// without inserting any new casts and without changing the value of the common
1345 /// low bits.  This is used by code that tries to promote integer operations to
1346 /// a wider types will allow us to eliminate the extension.
1347 ///
1348 /// This function works on both vectors and scalars.
1349 ///
1350 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1351   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1352          "Can't sign extend type to a smaller type");
1353   if (canAlwaysEvaluateInType(V, Ty))
1354     return true;
1355   if (canNotEvaluateInType(V, Ty))
1356     return false;
1357 
1358   auto *I = cast<Instruction>(V);
1359   switch (I->getOpcode()) {
1360   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1361   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1362   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1363     return true;
1364   case Instruction::And:
1365   case Instruction::Or:
1366   case Instruction::Xor:
1367   case Instruction::Add:
1368   case Instruction::Sub:
1369   case Instruction::Mul:
1370     // These operators can all arbitrarily be extended if their inputs can.
1371     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1372            canEvaluateSExtd(I->getOperand(1), Ty);
1373 
1374   //case Instruction::Shl:   TODO
1375   //case Instruction::LShr:  TODO
1376 
1377   case Instruction::Select:
1378     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1379            canEvaluateSExtd(I->getOperand(2), Ty);
1380 
1381   case Instruction::PHI: {
1382     // We can change a phi if we can change all operands.  Note that we never
1383     // get into trouble with cyclic PHIs here because we only consider
1384     // instructions with a single use.
1385     PHINode *PN = cast<PHINode>(I);
1386     for (Value *IncValue : PN->incoming_values())
1387       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1388     return true;
1389   }
1390   default:
1391     // TODO: Can handle more cases here.
1392     break;
1393   }
1394 
1395   return false;
1396 }
1397 
1398 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1399   // If this sign extend is only used by a truncate, let the truncate be
1400   // eliminated before we try to optimize this sext.
1401   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1402     return nullptr;
1403 
1404   if (Instruction *I = commonCastTransforms(CI))
1405     return I;
1406 
1407   Value *Src = CI.getOperand(0);
1408   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1409 
1410   // If we know that the value being extended is positive, we can use a zext
1411   // instead.
1412   KnownBits Known = computeKnownBits(Src, 0, &CI);
1413   if (Known.isNonNegative())
1414     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1415 
1416   // Try to extend the entire expression tree to the wide destination type.
1417   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1418     // Okay, we can transform this!  Insert the new expression now.
1419     LLVM_DEBUG(
1420         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1421                   " to avoid sign extend: "
1422                << CI << '\n');
1423     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1424     assert(Res->getType() == DestTy);
1425 
1426     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1427     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1428 
1429     // If the high bits are already filled with sign bit, just replace this
1430     // cast with the result.
1431     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1432       return replaceInstUsesWith(CI, Res);
1433 
1434     // We need to emit a shl + ashr to do the sign extend.
1435     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1436     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1437                                       ShAmt);
1438   }
1439 
1440   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1441   // into shifts.
1442   Value *X;
1443   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1444     // sext(trunc(X)) --> ashr(shl(X, C), C)
1445     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1446     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1447     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1448     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1449   }
1450 
1451   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1452     return transformSExtICmp(ICI, CI);
1453 
1454   // If the input is a shl/ashr pair of a same constant, then this is a sign
1455   // extension from a smaller value.  If we could trust arbitrary bitwidth
1456   // integers, we could turn this into a truncate to the smaller bit and then
1457   // use a sext for the whole extension.  Since we don't, look deeper and check
1458   // for a truncate.  If the source and dest are the same type, eliminate the
1459   // trunc and extend and just do shifts.  For example, turn:
1460   //   %a = trunc i32 %i to i8
1461   //   %b = shl i8 %a, 6
1462   //   %c = ashr i8 %b, 6
1463   //   %d = sext i8 %c to i32
1464   // into:
1465   //   %a = shl i32 %i, 30
1466   //   %d = ashr i32 %a, 30
1467   Value *A = nullptr;
1468   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1469   ConstantInt *BA = nullptr, *CA = nullptr;
1470   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1471                         m_ConstantInt(CA))) &&
1472       BA == CA && A->getType() == CI.getType()) {
1473     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1474     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1475     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1476     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1477     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1478     return BinaryOperator::CreateAShr(A, ShAmtV);
1479   }
1480 
1481   return nullptr;
1482 }
1483 
1484 
1485 /// Return a Constant* for the specified floating-point constant if it fits
1486 /// in the specified FP type without changing its value.
1487 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1488   bool losesInfo;
1489   APFloat F = CFP->getValueAPF();
1490   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1491   return !losesInfo;
1492 }
1493 
1494 static Type *shrinkFPConstant(ConstantFP *CFP) {
1495   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1496     return nullptr;  // No constant folding of this.
1497   // See if the value can be truncated to half and then reextended.
1498   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1499     return Type::getHalfTy(CFP->getContext());
1500   // See if the value can be truncated to float and then reextended.
1501   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1502     return Type::getFloatTy(CFP->getContext());
1503   if (CFP->getType()->isDoubleTy())
1504     return nullptr;  // Won't shrink.
1505   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1506     return Type::getDoubleTy(CFP->getContext());
1507   // Don't try to shrink to various long double types.
1508   return nullptr;
1509 }
1510 
1511 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1512 // type we can safely truncate all elements to.
1513 // TODO: Make these support undef elements.
1514 static Type *shrinkFPConstantVector(Value *V) {
1515   auto *CV = dyn_cast<Constant>(V);
1516   auto *CVVTy = dyn_cast<VectorType>(V->getType());
1517   if (!CV || !CVVTy)
1518     return nullptr;
1519 
1520   Type *MinType = nullptr;
1521 
1522   unsigned NumElts = CVVTy->getNumElements();
1523   for (unsigned i = 0; i != NumElts; ++i) {
1524     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1525     if (!CFP)
1526       return nullptr;
1527 
1528     Type *T = shrinkFPConstant(CFP);
1529     if (!T)
1530       return nullptr;
1531 
1532     // If we haven't found a type yet or this type has a larger mantissa than
1533     // our previous type, this is our new minimal type.
1534     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1535       MinType = T;
1536   }
1537 
1538   // Make a vector type from the minimal type.
1539   return FixedVectorType::get(MinType, NumElts);
1540 }
1541 
1542 /// Find the minimum FP type we can safely truncate to.
1543 static Type *getMinimumFPType(Value *V) {
1544   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1545     return FPExt->getOperand(0)->getType();
1546 
1547   // If this value is a constant, return the constant in the smallest FP type
1548   // that can accurately represent it.  This allows us to turn
1549   // (float)((double)X+2.0) into x+2.0f.
1550   if (auto *CFP = dyn_cast<ConstantFP>(V))
1551     if (Type *T = shrinkFPConstant(CFP))
1552       return T;
1553 
1554   // Try to shrink a vector of FP constants.
1555   if (Type *T = shrinkFPConstantVector(V))
1556     return T;
1557 
1558   return V->getType();
1559 }
1560 
1561 /// Return true if the cast from integer to FP can be proven to be exact for all
1562 /// possible inputs (the conversion does not lose any precision).
1563 static bool isKnownExactCastIntToFP(CastInst &I) {
1564   CastInst::CastOps Opcode = I.getOpcode();
1565   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1566          "Unexpected cast");
1567   Value *Src = I.getOperand(0);
1568   Type *SrcTy = Src->getType();
1569   Type *FPTy = I.getType();
1570   bool IsSigned = Opcode == Instruction::SIToFP;
1571   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1572 
1573   // Easy case - if the source integer type has less bits than the FP mantissa,
1574   // then the cast must be exact.
1575   int DestNumSigBits = FPTy->getFPMantissaWidth();
1576   if (SrcSize <= DestNumSigBits)
1577     return true;
1578 
1579   // Cast from FP to integer and back to FP is independent of the intermediate
1580   // integer width because of poison on overflow.
1581   Value *F;
1582   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1583     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1584     // potential rounding of negative FP input values.
1585     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1586     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1587       SrcNumSigBits++;
1588 
1589     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1590     // significant bits than the destination (and make sure neither type is
1591     // weird -- ppc_fp128).
1592     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1593         SrcNumSigBits <= DestNumSigBits)
1594       return true;
1595   }
1596 
1597   // TODO:
1598   // Try harder to find if the source integer type has less significant bits.
1599   // For example, compute number of sign bits or compute low bit mask.
1600   return false;
1601 }
1602 
1603 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1604   if (Instruction *I = commonCastTransforms(FPT))
1605     return I;
1606 
1607   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1608   // simplify this expression to avoid one or more of the trunc/extend
1609   // operations if we can do so without changing the numerical results.
1610   //
1611   // The exact manner in which the widths of the operands interact to limit
1612   // what we can and cannot do safely varies from operation to operation, and
1613   // is explained below in the various case statements.
1614   Type *Ty = FPT.getType();
1615   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1616   if (BO && BO->hasOneUse()) {
1617     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1618     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1619     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1620     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1621     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1622     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1623     unsigned DstWidth = Ty->getFPMantissaWidth();
1624     switch (BO->getOpcode()) {
1625       default: break;
1626       case Instruction::FAdd:
1627       case Instruction::FSub:
1628         // For addition and subtraction, the infinitely precise result can
1629         // essentially be arbitrarily wide; proving that double rounding
1630         // will not occur because the result of OpI is exact (as we will for
1631         // FMul, for example) is hopeless.  However, we *can* nonetheless
1632         // frequently know that double rounding cannot occur (or that it is
1633         // innocuous) by taking advantage of the specific structure of
1634         // infinitely-precise results that admit double rounding.
1635         //
1636         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1637         // to represent both sources, we can guarantee that the double
1638         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1639         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1640         // for proof of this fact).
1641         //
1642         // Note: Figueroa does not consider the case where DstFormat !=
1643         // SrcFormat.  It's possible (likely even!) that this analysis
1644         // could be tightened for those cases, but they are rare (the main
1645         // case of interest here is (float)((double)float + float)).
1646         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1647           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1648           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1649           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1650           RI->copyFastMathFlags(BO);
1651           return RI;
1652         }
1653         break;
1654       case Instruction::FMul:
1655         // For multiplication, the infinitely precise result has at most
1656         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1657         // that such a value can be exactly represented, then no double
1658         // rounding can possibly occur; we can safely perform the operation
1659         // in the destination format if it can represent both sources.
1660         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1661           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1662           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1663           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1664         }
1665         break;
1666       case Instruction::FDiv:
1667         // For division, we use again use the bound from Figueroa's
1668         // dissertation.  I am entirely certain that this bound can be
1669         // tightened in the unbalanced operand case by an analysis based on
1670         // the diophantine rational approximation bound, but the well-known
1671         // condition used here is a good conservative first pass.
1672         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1673         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1674           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1675           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1676           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1677         }
1678         break;
1679       case Instruction::FRem: {
1680         // Remainder is straightforward.  Remainder is always exact, so the
1681         // type of OpI doesn't enter into things at all.  We simply evaluate
1682         // in whichever source type is larger, then convert to the
1683         // destination type.
1684         if (SrcWidth == OpWidth)
1685           break;
1686         Value *LHS, *RHS;
1687         if (LHSWidth == SrcWidth) {
1688            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1689            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1690         } else {
1691            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1692            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1693         }
1694 
1695         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1696         return CastInst::CreateFPCast(ExactResult, Ty);
1697       }
1698     }
1699   }
1700 
1701   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1702   Value *X;
1703   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1704   if (Op && Op->hasOneUse()) {
1705     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1706     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1707     if (isa<FPMathOperator>(Op))
1708       Builder.setFastMathFlags(Op->getFastMathFlags());
1709 
1710     if (match(Op, m_FNeg(m_Value(X)))) {
1711       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1712 
1713       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1714     }
1715 
1716     // If we are truncating a select that has an extended operand, we can
1717     // narrow the other operand and do the select as a narrow op.
1718     Value *Cond, *X, *Y;
1719     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1720         X->getType() == Ty) {
1721       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1722       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1723       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1724       return replaceInstUsesWith(FPT, Sel);
1725     }
1726     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1727         X->getType() == Ty) {
1728       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1729       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1730       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1731       return replaceInstUsesWith(FPT, Sel);
1732     }
1733   }
1734 
1735   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1736     switch (II->getIntrinsicID()) {
1737     default: break;
1738     case Intrinsic::ceil:
1739     case Intrinsic::fabs:
1740     case Intrinsic::floor:
1741     case Intrinsic::nearbyint:
1742     case Intrinsic::rint:
1743     case Intrinsic::round:
1744     case Intrinsic::roundeven:
1745     case Intrinsic::trunc: {
1746       Value *Src = II->getArgOperand(0);
1747       if (!Src->hasOneUse())
1748         break;
1749 
1750       // Except for fabs, this transformation requires the input of the unary FP
1751       // operation to be itself an fpext from the type to which we're
1752       // truncating.
1753       if (II->getIntrinsicID() != Intrinsic::fabs) {
1754         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1755         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1756           break;
1757       }
1758 
1759       // Do unary FP operation on smaller type.
1760       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1761       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1762       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1763                                                      II->getIntrinsicID(), Ty);
1764       SmallVector<OperandBundleDef, 1> OpBundles;
1765       II->getOperandBundlesAsDefs(OpBundles);
1766       CallInst *NewCI =
1767           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1768       NewCI->copyFastMathFlags(II);
1769       return NewCI;
1770     }
1771     }
1772   }
1773 
1774   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1775     return I;
1776 
1777   Value *Src = FPT.getOperand(0);
1778   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1779     auto *FPCast = cast<CastInst>(Src);
1780     if (isKnownExactCastIntToFP(*FPCast))
1781       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1782   }
1783 
1784   return nullptr;
1785 }
1786 
1787 Instruction *InstCombiner::visitFPExt(CastInst &FPExt) {
1788   // If the source operand is a cast from integer to FP and known exact, then
1789   // cast the integer operand directly to the destination type.
1790   Type *Ty = FPExt.getType();
1791   Value *Src = FPExt.getOperand(0);
1792   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1793     auto *FPCast = cast<CastInst>(Src);
1794     if (isKnownExactCastIntToFP(*FPCast))
1795       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1796   }
1797 
1798   return commonCastTransforms(FPExt);
1799 }
1800 
1801 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1802 /// This is safe if the intermediate type has enough bits in its mantissa to
1803 /// accurately represent all values of X.  For example, this won't work with
1804 /// i64 -> float -> i64.
1805 Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) {
1806   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1807     return nullptr;
1808 
1809   auto *OpI = cast<CastInst>(FI.getOperand(0));
1810   Value *X = OpI->getOperand(0);
1811   Type *XType = X->getType();
1812   Type *DestType = FI.getType();
1813   bool IsOutputSigned = isa<FPToSIInst>(FI);
1814 
1815   // Since we can assume the conversion won't overflow, our decision as to
1816   // whether the input will fit in the float should depend on the minimum
1817   // of the input range and output range.
1818 
1819   // This means this is also safe for a signed input and unsigned output, since
1820   // a negative input would lead to undefined behavior.
1821   if (!isKnownExactCastIntToFP(*OpI)) {
1822     // The first cast may not round exactly based on the source integer width
1823     // and FP width, but the overflow UB rules can still allow this to fold.
1824     // If the destination type is narrow, that means the intermediate FP value
1825     // must be large enough to hold the source value exactly.
1826     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1827     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1828     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1829       return nullptr;
1830   }
1831 
1832   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1833     bool IsInputSigned = isa<SIToFPInst>(OpI);
1834     if (IsInputSigned && IsOutputSigned)
1835       return new SExtInst(X, DestType);
1836     return new ZExtInst(X, DestType);
1837   }
1838   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1839     return new TruncInst(X, DestType);
1840 
1841   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1842   return replaceInstUsesWith(FI, X);
1843 }
1844 
1845 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1846   if (Instruction *I = foldItoFPtoI(FI))
1847     return I;
1848 
1849   return commonCastTransforms(FI);
1850 }
1851 
1852 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1853   if (Instruction *I = foldItoFPtoI(FI))
1854     return I;
1855 
1856   return commonCastTransforms(FI);
1857 }
1858 
1859 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1860   return commonCastTransforms(CI);
1861 }
1862 
1863 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1864   return commonCastTransforms(CI);
1865 }
1866 
1867 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1868   // If the source integer type is not the intptr_t type for this target, do a
1869   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1870   // cast to be exposed to other transforms.
1871   unsigned AS = CI.getAddressSpace();
1872   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1873       DL.getPointerSizeInBits(AS)) {
1874     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1875     // Handle vectors of pointers.
1876     if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
1877       Ty = VectorType::get(Ty, CIVTy->getElementCount());
1878 
1879     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1880     return new IntToPtrInst(P, CI.getType());
1881   }
1882 
1883   if (Instruction *I = commonCastTransforms(CI))
1884     return I;
1885 
1886   return nullptr;
1887 }
1888 
1889 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1890 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1891   Value *Src = CI.getOperand(0);
1892 
1893   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1894     // If casting the result of a getelementptr instruction with no offset, turn
1895     // this into a cast of the original pointer!
1896     if (GEP->hasAllZeroIndices() &&
1897         // If CI is an addrspacecast and GEP changes the poiner type, merging
1898         // GEP into CI would undo canonicalizing addrspacecast with different
1899         // pointer types, causing infinite loops.
1900         (!isa<AddrSpaceCastInst>(CI) ||
1901          GEP->getType() == GEP->getPointerOperandType())) {
1902       // Changing the cast operand is usually not a good idea but it is safe
1903       // here because the pointer operand is being replaced with another
1904       // pointer operand so the opcode doesn't need to change.
1905       return replaceOperand(CI, 0, GEP->getOperand(0));
1906     }
1907   }
1908 
1909   return commonCastTransforms(CI);
1910 }
1911 
1912 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1913   // If the destination integer type is not the intptr_t type for this target,
1914   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1915   // to be exposed to other transforms.
1916 
1917   Type *Ty = CI.getType();
1918   unsigned AS = CI.getPointerAddressSpace();
1919 
1920   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1921     return commonPointerCastTransforms(CI);
1922 
1923   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1924   if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1925     // Handle vectors of pointers.
1926     // FIXME: what should happen for scalable vectors?
1927     PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements());
1928   }
1929 
1930   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1931   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1932 }
1933 
1934 /// This input value (which is known to have vector type) is being zero extended
1935 /// or truncated to the specified vector type. Since the zext/trunc is done
1936 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
1937 /// endianness will impact which end of the vector that is extended or
1938 /// truncated.
1939 ///
1940 /// A vector is always stored with index 0 at the lowest address, which
1941 /// corresponds to the most significant bits for a big endian stored integer and
1942 /// the least significant bits for little endian. A trunc/zext of an integer
1943 /// impacts the big end of the integer. Thus, we need to add/remove elements at
1944 /// the front of the vector for big endian targets, and the back of the vector
1945 /// for little endian targets.
1946 ///
1947 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1948 ///
1949 /// The source and destination vector types may have different element types.
1950 static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal,
1951                                                             VectorType *DestTy,
1952                                                             InstCombiner &IC) {
1953   // We can only do this optimization if the output is a multiple of the input
1954   // element size, or the input is a multiple of the output element size.
1955   // Convert the input type to have the same element type as the output.
1956   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1957 
1958   if (SrcTy->getElementType() != DestTy->getElementType()) {
1959     // The input types don't need to be identical, but for now they must be the
1960     // same size.  There is no specific reason we couldn't handle things like
1961     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1962     // there yet.
1963     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1964         DestTy->getElementType()->getPrimitiveSizeInBits())
1965       return nullptr;
1966 
1967     SrcTy =
1968         FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1969     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1970   }
1971 
1972   bool IsBigEndian = IC.getDataLayout().isBigEndian();
1973   unsigned SrcElts = SrcTy->getNumElements();
1974   unsigned DestElts = DestTy->getNumElements();
1975 
1976   assert(SrcElts != DestElts && "Element counts should be different.");
1977 
1978   // Now that the element types match, get the shuffle mask and RHS of the
1979   // shuffle to use, which depends on whether we're increasing or decreasing the
1980   // size of the input.
1981   SmallVector<int, 16> ShuffleMaskStorage;
1982   ArrayRef<int> ShuffleMask;
1983   Value *V2;
1984 
1985   // Produce an identify shuffle mask for the src vector.
1986   ShuffleMaskStorage.resize(SrcElts);
1987   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
1988 
1989   if (SrcElts > DestElts) {
1990     // If we're shrinking the number of elements (rewriting an integer
1991     // truncate), just shuffle in the elements corresponding to the least
1992     // significant bits from the input and use undef as the second shuffle
1993     // input.
1994     V2 = UndefValue::get(SrcTy);
1995     // Make sure the shuffle mask selects the "least significant bits" by
1996     // keeping elements from back of the src vector for big endian, and from the
1997     // front for little endian.
1998     ShuffleMask = ShuffleMaskStorage;
1999     if (IsBigEndian)
2000       ShuffleMask = ShuffleMask.take_back(DestElts);
2001     else
2002       ShuffleMask = ShuffleMask.take_front(DestElts);
2003   } else {
2004     // If we're increasing the number of elements (rewriting an integer zext),
2005     // shuffle in all of the elements from InVal. Fill the rest of the result
2006     // elements with zeros from a constant zero.
2007     V2 = Constant::getNullValue(SrcTy);
2008     // Use first elt from V2 when indicating zero in the shuffle mask.
2009     uint32_t NullElt = SrcElts;
2010     // Extend with null values in the "most significant bits" by adding elements
2011     // in front of the src vector for big endian, and at the back for little
2012     // endian.
2013     unsigned DeltaElts = DestElts - SrcElts;
2014     if (IsBigEndian)
2015       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2016     else
2017       ShuffleMaskStorage.append(DeltaElts, NullElt);
2018     ShuffleMask = ShuffleMaskStorage;
2019   }
2020 
2021   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2022 }
2023 
2024 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2025   return Value % Ty->getPrimitiveSizeInBits() == 0;
2026 }
2027 
2028 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2029   return Value / Ty->getPrimitiveSizeInBits();
2030 }
2031 
2032 /// V is a value which is inserted into a vector of VecEltTy.
2033 /// Look through the value to see if we can decompose it into
2034 /// insertions into the vector.  See the example in the comment for
2035 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2036 /// The type of V is always a non-zero multiple of VecEltTy's size.
2037 /// Shift is the number of bits between the lsb of V and the lsb of
2038 /// the vector.
2039 ///
2040 /// This returns false if the pattern can't be matched or true if it can,
2041 /// filling in Elements with the elements found here.
2042 static bool collectInsertionElements(Value *V, unsigned Shift,
2043                                      SmallVectorImpl<Value *> &Elements,
2044                                      Type *VecEltTy, bool isBigEndian) {
2045   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2046          "Shift should be a multiple of the element type size");
2047 
2048   // Undef values never contribute useful bits to the result.
2049   if (isa<UndefValue>(V)) return true;
2050 
2051   // If we got down to a value of the right type, we win, try inserting into the
2052   // right element.
2053   if (V->getType() == VecEltTy) {
2054     // Inserting null doesn't actually insert any elements.
2055     if (Constant *C = dyn_cast<Constant>(V))
2056       if (C->isNullValue())
2057         return true;
2058 
2059     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2060     if (isBigEndian)
2061       ElementIndex = Elements.size() - ElementIndex - 1;
2062 
2063     // Fail if multiple elements are inserted into this slot.
2064     if (Elements[ElementIndex])
2065       return false;
2066 
2067     Elements[ElementIndex] = V;
2068     return true;
2069   }
2070 
2071   if (Constant *C = dyn_cast<Constant>(V)) {
2072     // Figure out the # elements this provides, and bitcast it or slice it up
2073     // as required.
2074     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2075                                         VecEltTy);
2076     // If the constant is the size of a vector element, we just need to bitcast
2077     // it to the right type so it gets properly inserted.
2078     if (NumElts == 1)
2079       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2080                                       Shift, Elements, VecEltTy, isBigEndian);
2081 
2082     // Okay, this is a constant that covers multiple elements.  Slice it up into
2083     // pieces and insert each element-sized piece into the vector.
2084     if (!isa<IntegerType>(C->getType()))
2085       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2086                                        C->getType()->getPrimitiveSizeInBits()));
2087     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2088     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2089 
2090     for (unsigned i = 0; i != NumElts; ++i) {
2091       unsigned ShiftI = Shift+i*ElementSize;
2092       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2093                                                                   ShiftI));
2094       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2095       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2096                                     isBigEndian))
2097         return false;
2098     }
2099     return true;
2100   }
2101 
2102   if (!V->hasOneUse()) return false;
2103 
2104   Instruction *I = dyn_cast<Instruction>(V);
2105   if (!I) return false;
2106   switch (I->getOpcode()) {
2107   default: return false; // Unhandled case.
2108   case Instruction::BitCast:
2109     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2110                                     isBigEndian);
2111   case Instruction::ZExt:
2112     if (!isMultipleOfTypeSize(
2113                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2114                               VecEltTy))
2115       return false;
2116     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2117                                     isBigEndian);
2118   case Instruction::Or:
2119     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2120                                     isBigEndian) &&
2121            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2122                                     isBigEndian);
2123   case Instruction::Shl: {
2124     // Must be shifting by a constant that is a multiple of the element size.
2125     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2126     if (!CI) return false;
2127     Shift += CI->getZExtValue();
2128     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2129     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2130                                     isBigEndian);
2131   }
2132 
2133   }
2134 }
2135 
2136 
2137 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2138 /// assemble the elements of the vector manually.
2139 /// Try to rip the code out and replace it with insertelements.  This is to
2140 /// optimize code like this:
2141 ///
2142 ///    %tmp37 = bitcast float %inc to i32
2143 ///    %tmp38 = zext i32 %tmp37 to i64
2144 ///    %tmp31 = bitcast float %inc5 to i32
2145 ///    %tmp32 = zext i32 %tmp31 to i64
2146 ///    %tmp33 = shl i64 %tmp32, 32
2147 ///    %ins35 = or i64 %tmp33, %tmp38
2148 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2149 ///
2150 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2151 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2152                                                 InstCombiner &IC) {
2153   VectorType *DestVecTy = cast<VectorType>(CI.getType());
2154   Value *IntInput = CI.getOperand(0);
2155 
2156   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2157   if (!collectInsertionElements(IntInput, 0, Elements,
2158                                 DestVecTy->getElementType(),
2159                                 IC.getDataLayout().isBigEndian()))
2160     return nullptr;
2161 
2162   // If we succeeded, we know that all of the element are specified by Elements
2163   // or are zero if Elements has a null entry.  Recast this as a set of
2164   // insertions.
2165   Value *Result = Constant::getNullValue(CI.getType());
2166   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2167     if (!Elements[i]) continue;  // Unset element.
2168 
2169     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2170                                             IC.Builder.getInt32(i));
2171   }
2172 
2173   return Result;
2174 }
2175 
2176 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2177 /// vector followed by extract element. The backend tends to handle bitcasts of
2178 /// vectors better than bitcasts of scalars because vector registers are
2179 /// usually not type-specific like scalar integer or scalar floating-point.
2180 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2181                                               InstCombiner &IC) {
2182   // TODO: Create and use a pattern matcher for ExtractElementInst.
2183   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2184   if (!ExtElt || !ExtElt->hasOneUse())
2185     return nullptr;
2186 
2187   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2188   // type to extract from.
2189   Type *DestType = BitCast.getType();
2190   if (!VectorType::isValidElementType(DestType))
2191     return nullptr;
2192 
2193   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2194   auto *NewVecType = FixedVectorType::get(DestType, NumElts);
2195   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2196                                          NewVecType, "bc");
2197   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2198 }
2199 
2200 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2201 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2202                                             InstCombiner::BuilderTy &Builder) {
2203   Type *DestTy = BitCast.getType();
2204   BinaryOperator *BO;
2205   if (!DestTy->isIntOrIntVectorTy() ||
2206       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2207       !BO->isBitwiseLogicOp())
2208     return nullptr;
2209 
2210   // FIXME: This transform is restricted to vector types to avoid backend
2211   // problems caused by creating potentially illegal operations. If a fix-up is
2212   // added to handle that situation, we can remove this check.
2213   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2214     return nullptr;
2215 
2216   Value *X;
2217   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2218       X->getType() == DestTy && !isa<Constant>(X)) {
2219     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2220     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2221     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2222   }
2223 
2224   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2225       X->getType() == DestTy && !isa<Constant>(X)) {
2226     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2227     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2228     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2229   }
2230 
2231   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2232   // constant. This eases recognition of special constants for later ops.
2233   // Example:
2234   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2235   Constant *C;
2236   if (match(BO->getOperand(1), m_Constant(C))) {
2237     // bitcast (logic X, C) --> logic (bitcast X, C')
2238     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2239     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2240     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2241   }
2242 
2243   return nullptr;
2244 }
2245 
2246 /// Change the type of a select if we can eliminate a bitcast.
2247 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2248                                       InstCombiner::BuilderTy &Builder) {
2249   Value *Cond, *TVal, *FVal;
2250   if (!match(BitCast.getOperand(0),
2251              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2252     return nullptr;
2253 
2254   // A vector select must maintain the same number of elements in its operands.
2255   Type *CondTy = Cond->getType();
2256   Type *DestTy = BitCast.getType();
2257   if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
2258     if (!DestTy->isVectorTy())
2259       return nullptr;
2260     if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements())
2261       return nullptr;
2262   }
2263 
2264   // FIXME: This transform is restricted from changing the select between
2265   // scalars and vectors to avoid backend problems caused by creating
2266   // potentially illegal operations. If a fix-up is added to handle that
2267   // situation, we can remove this check.
2268   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2269     return nullptr;
2270 
2271   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2272   Value *X;
2273   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2274       !isa<Constant>(X)) {
2275     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2276     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2277     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2278   }
2279 
2280   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2281       !isa<Constant>(X)) {
2282     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2283     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2284     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2285   }
2286 
2287   return nullptr;
2288 }
2289 
2290 /// Check if all users of CI are StoreInsts.
2291 static bool hasStoreUsersOnly(CastInst &CI) {
2292   for (User *U : CI.users()) {
2293     if (!isa<StoreInst>(U))
2294       return false;
2295   }
2296   return true;
2297 }
2298 
2299 /// This function handles following case
2300 ///
2301 ///     A  ->  B    cast
2302 ///     PHI
2303 ///     B  ->  A    cast
2304 ///
2305 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2306 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2307 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2308   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2309   if (hasStoreUsersOnly(CI))
2310     return nullptr;
2311 
2312   Value *Src = CI.getOperand(0);
2313   Type *SrcTy = Src->getType();         // Type B
2314   Type *DestTy = CI.getType();          // Type A
2315 
2316   SmallVector<PHINode *, 4> PhiWorklist;
2317   SmallSetVector<PHINode *, 4> OldPhiNodes;
2318 
2319   // Find all of the A->B casts and PHI nodes.
2320   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2321   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2322   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2323   PhiWorklist.push_back(PN);
2324   OldPhiNodes.insert(PN);
2325   while (!PhiWorklist.empty()) {
2326     auto *OldPN = PhiWorklist.pop_back_val();
2327     for (Value *IncValue : OldPN->incoming_values()) {
2328       if (isa<Constant>(IncValue))
2329         continue;
2330 
2331       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2332         // If there is a sequence of one or more load instructions, each loaded
2333         // value is used as address of later load instruction, bitcast is
2334         // necessary to change the value type, don't optimize it. For
2335         // simplicity we give up if the load address comes from another load.
2336         Value *Addr = LI->getOperand(0);
2337         if (Addr == &CI || isa<LoadInst>(Addr))
2338           return nullptr;
2339         if (LI->hasOneUse() && LI->isSimple())
2340           continue;
2341         // If a LoadInst has more than one use, changing the type of loaded
2342         // value may create another bitcast.
2343         return nullptr;
2344       }
2345 
2346       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2347         if (OldPhiNodes.insert(PNode))
2348           PhiWorklist.push_back(PNode);
2349         continue;
2350       }
2351 
2352       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2353       // We can't handle other instructions.
2354       if (!BCI)
2355         return nullptr;
2356 
2357       // Verify it's a A->B cast.
2358       Type *TyA = BCI->getOperand(0)->getType();
2359       Type *TyB = BCI->getType();
2360       if (TyA != DestTy || TyB != SrcTy)
2361         return nullptr;
2362     }
2363   }
2364 
2365   // Check that each user of each old PHI node is something that we can
2366   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2367   for (auto *OldPN : OldPhiNodes) {
2368     for (User *V : OldPN->users()) {
2369       if (auto *SI = dyn_cast<StoreInst>(V)) {
2370         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2371           return nullptr;
2372       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2373         // Verify it's a B->A cast.
2374         Type *TyB = BCI->getOperand(0)->getType();
2375         Type *TyA = BCI->getType();
2376         if (TyA != DestTy || TyB != SrcTy)
2377           return nullptr;
2378       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2379         // As long as the user is another old PHI node, then even if we don't
2380         // rewrite it, the PHI web we're considering won't have any users
2381         // outside itself, so it'll be dead.
2382         if (OldPhiNodes.count(PHI) == 0)
2383           return nullptr;
2384       } else {
2385         return nullptr;
2386       }
2387     }
2388   }
2389 
2390   // For each old PHI node, create a corresponding new PHI node with a type A.
2391   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2392   for (auto *OldPN : OldPhiNodes) {
2393     Builder.SetInsertPoint(OldPN);
2394     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2395     NewPNodes[OldPN] = NewPN;
2396   }
2397 
2398   // Fill in the operands of new PHI nodes.
2399   for (auto *OldPN : OldPhiNodes) {
2400     PHINode *NewPN = NewPNodes[OldPN];
2401     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2402       Value *V = OldPN->getOperand(j);
2403       Value *NewV = nullptr;
2404       if (auto *C = dyn_cast<Constant>(V)) {
2405         NewV = ConstantExpr::getBitCast(C, DestTy);
2406       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2407         // Explicitly perform load combine to make sure no opposing transform
2408         // can remove the bitcast in the meantime and trigger an infinite loop.
2409         Builder.SetInsertPoint(LI);
2410         NewV = combineLoadToNewType(*LI, DestTy);
2411         // Remove the old load and its use in the old phi, which itself becomes
2412         // dead once the whole transform finishes.
2413         replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2414         eraseInstFromFunction(*LI);
2415       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2416         NewV = BCI->getOperand(0);
2417       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2418         NewV = NewPNodes[PrevPN];
2419       }
2420       assert(NewV);
2421       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2422     }
2423   }
2424 
2425   // Traverse all accumulated PHI nodes and process its users,
2426   // which are Stores and BitcCasts. Without this processing
2427   // NewPHI nodes could be replicated and could lead to extra
2428   // moves generated after DeSSA.
2429   // If there is a store with type B, change it to type A.
2430 
2431 
2432   // Replace users of BitCast B->A with NewPHI. These will help
2433   // later to get rid off a closure formed by OldPHI nodes.
2434   Instruction *RetVal = nullptr;
2435   for (auto *OldPN : OldPhiNodes) {
2436     PHINode *NewPN = NewPNodes[OldPN];
2437     for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
2438       User *V = *It;
2439       // We may remove this user, advance to avoid iterator invalidation.
2440       ++It;
2441       if (auto *SI = dyn_cast<StoreInst>(V)) {
2442         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2443         Builder.SetInsertPoint(SI);
2444         auto *NewBC =
2445           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2446         SI->setOperand(0, NewBC);
2447         Worklist.push(SI);
2448         assert(hasStoreUsersOnly(*NewBC));
2449       }
2450       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2451         Type *TyB = BCI->getOperand(0)->getType();
2452         Type *TyA = BCI->getType();
2453         assert(TyA == DestTy && TyB == SrcTy);
2454         (void) TyA;
2455         (void) TyB;
2456         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2457         if (BCI == &CI)
2458           RetVal = I;
2459       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2460         assert(OldPhiNodes.count(PHI) > 0);
2461         (void) PHI;
2462       } else {
2463         llvm_unreachable("all uses should be handled");
2464       }
2465     }
2466   }
2467 
2468   return RetVal;
2469 }
2470 
2471 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2472   // If the operands are integer typed then apply the integer transforms,
2473   // otherwise just apply the common ones.
2474   Value *Src = CI.getOperand(0);
2475   Type *SrcTy = Src->getType();
2476   Type *DestTy = CI.getType();
2477 
2478   // Get rid of casts from one type to the same type. These are useless and can
2479   // be replaced by the operand.
2480   if (DestTy == Src->getType())
2481     return replaceInstUsesWith(CI, Src);
2482 
2483   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2484     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2485     Type *DstElTy = DstPTy->getElementType();
2486     Type *SrcElTy = SrcPTy->getElementType();
2487 
2488     // Casting pointers between the same type, but with different address spaces
2489     // is an addrspace cast rather than a bitcast.
2490     if ((DstElTy == SrcElTy) &&
2491         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2492       return new AddrSpaceCastInst(Src, DestTy);
2493 
2494     // If we are casting a alloca to a pointer to a type of the same
2495     // size, rewrite the allocation instruction to allocate the "right" type.
2496     // There is no need to modify malloc calls because it is their bitcast that
2497     // needs to be cleaned up.
2498     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2499       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2500         return V;
2501 
2502     // When the type pointed to is not sized the cast cannot be
2503     // turned into a gep.
2504     Type *PointeeType =
2505         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2506     if (!PointeeType->isSized())
2507       return nullptr;
2508 
2509     // If the source and destination are pointers, and this cast is equivalent
2510     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2511     // This can enhance SROA and other transforms that want type-safe pointers.
2512     unsigned NumZeros = 0;
2513     while (SrcElTy && SrcElTy != DstElTy) {
2514       SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2515       ++NumZeros;
2516     }
2517 
2518     // If we found a path from the src to dest, create the getelementptr now.
2519     if (SrcElTy == DstElTy) {
2520       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2521       GetElementPtrInst *GEP =
2522           GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2523 
2524       // If the source pointer is dereferenceable, then assume it points to an
2525       // allocated object and apply "inbounds" to the GEP.
2526       bool CanBeNull;
2527       if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
2528         // In a non-default address space (not 0), a null pointer can not be
2529         // assumed inbounds, so ignore that case (dereferenceable_or_null).
2530         // The reason is that 'null' is not treated differently in these address
2531         // spaces, and we consequently ignore the 'gep inbounds' special case
2532         // for 'null' which allows 'inbounds' on 'null' if the indices are
2533         // zeros.
2534         if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2535           GEP->setIsInBounds();
2536       }
2537       return GEP;
2538     }
2539   }
2540 
2541   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2542     // Beware: messing with this target-specific oddity may cause trouble.
2543     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2544       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2545       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2546                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2547     }
2548 
2549     if (isa<IntegerType>(SrcTy)) {
2550       // If this is a cast from an integer to vector, check to see if the input
2551       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2552       // the casts with a shuffle and (potentially) a bitcast.
2553       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2554         CastInst *SrcCast = cast<CastInst>(Src);
2555         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2556           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2557             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2558                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2559               return I;
2560       }
2561 
2562       // If the input is an 'or' instruction, we may be doing shifts and ors to
2563       // assemble the elements of the vector manually.  Try to rip the code out
2564       // and replace it with insertelements.
2565       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2566         return replaceInstUsesWith(CI, V);
2567     }
2568   }
2569 
2570   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2571     if (SrcVTy->getNumElements() == 1) {
2572       // If our destination is not a vector, then make this a straight
2573       // scalar-scalar cast.
2574       if (!DestTy->isVectorTy()) {
2575         Value *Elem =
2576           Builder.CreateExtractElement(Src,
2577                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2578         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2579       }
2580 
2581       // Otherwise, see if our source is an insert. If so, then use the scalar
2582       // component directly:
2583       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2584       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2585         return new BitCastInst(InsElt->getOperand(1), DestTy);
2586     }
2587   }
2588 
2589   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2590     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2591     // a bitcast to a vector with the same # elts.
2592     Value *ShufOp0 = Shuf->getOperand(0);
2593     Value *ShufOp1 = Shuf->getOperand(1);
2594     unsigned NumShufElts = Shuf->getType()->getNumElements();
2595     unsigned NumSrcVecElts =
2596         cast<VectorType>(ShufOp0->getType())->getNumElements();
2597     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2598         cast<VectorType>(DestTy)->getNumElements() == NumShufElts &&
2599         NumShufElts == NumSrcVecElts) {
2600       BitCastInst *Tmp;
2601       // If either of the operands is a cast from CI.getType(), then
2602       // evaluating the shuffle in the casted destination's type will allow
2603       // us to eliminate at least one cast.
2604       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2605            Tmp->getOperand(0)->getType() == DestTy) ||
2606           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2607            Tmp->getOperand(0)->getType() == DestTy)) {
2608         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2609         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2610         // Return a new shuffle vector.  Use the same element ID's, as we
2611         // know the vector types match #elts.
2612         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2613       }
2614     }
2615 
2616     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2617     // a byte-swap:
2618     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2619     // TODO: We should match the related pattern for bitreverse.
2620     if (DestTy->isIntegerTy() &&
2621         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2622         SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2623         Shuf->hasOneUse() && Shuf->isReverse()) {
2624       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2625       assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2626       Function *Bswap =
2627           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2628       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2629       return IntrinsicInst::Create(Bswap, { ScalarX });
2630     }
2631   }
2632 
2633   // Handle the A->B->A cast, and there is an intervening PHI node.
2634   if (PHINode *PN = dyn_cast<PHINode>(Src))
2635     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2636       return I;
2637 
2638   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2639     return I;
2640 
2641   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2642     return I;
2643 
2644   if (Instruction *I = foldBitCastSelect(CI, Builder))
2645     return I;
2646 
2647   if (SrcTy->isPointerTy())
2648     return commonPointerCastTransforms(CI);
2649   return commonCastTransforms(CI);
2650 }
2651 
2652 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2653   // If the destination pointer element type is not the same as the source's
2654   // first do a bitcast to the destination type, and then the addrspacecast.
2655   // This allows the cast to be exposed to other transforms.
2656   Value *Src = CI.getOperand(0);
2657   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2658   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2659 
2660   Type *DestElemTy = DestTy->getElementType();
2661   if (SrcTy->getElementType() != DestElemTy) {
2662     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2663     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2664       // Handle vectors of pointers.
2665       // FIXME: what should happen for scalable vectors?
2666       MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
2667     }
2668 
2669     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2670     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2671   }
2672 
2673   return commonPointerCastTransforms(CI);
2674 }
2675