1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Ty = CI.getType(); 270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 271 // Point debug users of the dying cast to the new one. 272 if (CSrc->hasOneUse()) 273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 274 return Res; 275 } 276 } 277 278 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 279 // We are casting a select. Try to fold the cast into the select, but only 280 // if the select does not have a compare instruction with matching operand 281 // types. Creating a select with operands that are different sizes than its 282 // condition may inhibit other folds and lead to worse codegen. 283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType()) 285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 287 return NV; 288 } 289 } 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 break; 375 } 376 case Instruction::Shl: { 377 // If we are truncating the result of this SHL, and if it's a shift of a 378 // constant amount, we can always perform a SHL in a smaller type. 379 const APInt *Amt; 380 if (match(I->getOperand(1), m_APInt(Amt))) { 381 uint32_t BitWidth = Ty->getScalarSizeInBits(); 382 if (Amt->getLimitedValue(BitWidth) < BitWidth) 383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 384 } 385 break; 386 } 387 case Instruction::LShr: { 388 // If this is a truncate of a logical shr, we can truncate it to a smaller 389 // lshr iff we know that the bits we would otherwise be shifting in are 390 // already zeros. 391 const APInt *Amt; 392 if (match(I->getOperand(1), m_APInt(Amt))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (Amt->getLimitedValue(BitWidth) < BitWidth && 396 IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 } 403 case Instruction::AShr: { 404 // If this is a truncate of an arithmetic shr, we can truncate it to a 405 // smaller ashr iff we know that all the bits from the sign bit of the 406 // original type and the sign bit of the truncate type are similar. 407 // TODO: It is enough to check that the bits we would be shifting in are 408 // similar to sign bit of the truncate type. 409 const APInt *Amt; 410 if (match(I->getOperand(1), m_APInt(Amt))) { 411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 412 uint32_t BitWidth = Ty->getScalarSizeInBits(); 413 if (Amt->getLimitedValue(BitWidth) < BitWidth && 414 OrigBitWidth - BitWidth < 415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 417 } 418 break; 419 } 420 case Instruction::Trunc: 421 // trunc(trunc(x)) -> trunc(x) 422 return true; 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 427 return true; 428 case Instruction::Select: { 429 SelectInst *SI = cast<SelectInst>(I); 430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 432 } 433 case Instruction::PHI: { 434 // We can change a phi if we can change all operands. Note that we never 435 // get into trouble with cyclic PHIs here because we only consider 436 // instructions with a single use. 437 PHINode *PN = cast<PHINode>(I); 438 for (Value *IncValue : PN->incoming_values()) 439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 440 return false; 441 return true; 442 } 443 default: 444 // TODO: Can handle more cases here. 445 break; 446 } 447 448 return false; 449 } 450 451 /// Given a vector that is bitcast to an integer, optionally logically 452 /// right-shifted, and truncated, convert it to an extractelement. 453 /// Example (big endian): 454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 455 /// ---> 456 /// extractelement <4 x i32> %X, 1 457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 458 Value *TruncOp = Trunc.getOperand(0); 459 Type *DestType = Trunc.getType(); 460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 461 return nullptr; 462 463 Value *VecInput = nullptr; 464 ConstantInt *ShiftVal = nullptr; 465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 466 m_LShr(m_BitCast(m_Value(VecInput)), 467 m_ConstantInt(ShiftVal)))) || 468 !isa<VectorType>(VecInput->getType())) 469 return nullptr; 470 471 VectorType *VecType = cast<VectorType>(VecInput->getType()); 472 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 473 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 475 476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 477 return nullptr; 478 479 // If the element type of the vector doesn't match the result type, 480 // bitcast it to a vector type that we can extract from. 481 unsigned NumVecElts = VecWidth / DestWidth; 482 if (VecType->getElementType() != DestType) { 483 VecType = VectorType::get(DestType, NumVecElts); 484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 485 } 486 487 unsigned Elt = ShiftAmount / DestWidth; 488 if (IC.getDataLayout().isBigEndian()) 489 Elt = NumVecElts - 1 - Elt; 490 491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 492 } 493 494 /// Rotate left/right may occur in a wider type than necessary because of type 495 /// promotion rules. Try to narrow all of the component instructions. 496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 497 assert((isa<VectorType>(Trunc.getSrcTy()) || 498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 499 "Don't narrow to an illegal scalar type"); 500 501 // Bail out on strange types. It is possible to handle some of these patterns 502 // even with non-power-of-2 sizes, but it is not a likely scenario. 503 Type *DestTy = Trunc.getType(); 504 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 505 if (!isPowerOf2_32(NarrowWidth)) 506 return nullptr; 507 508 // First, find an or'd pair of opposite shifts with the same shifted operand: 509 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 510 Value *Or0, *Or1; 511 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 512 return nullptr; 513 514 Value *ShVal, *ShAmt0, *ShAmt1; 515 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 516 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 517 return nullptr; 518 519 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 520 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 521 if (ShiftOpcode0 == ShiftOpcode1) 522 return nullptr; 523 524 // Match the shift amount operands for a rotate pattern. This always matches 525 // a subtraction on the R operand. 526 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 527 // The shift amounts may add up to the narrow bit width: 528 // (shl ShVal, L) | (lshr ShVal, Width - L) 529 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 530 return L; 531 532 // The shift amount may be masked with negation: 533 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 534 Value *X; 535 unsigned Mask = Width - 1; 536 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 537 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 538 return X; 539 540 // Same as above, but the shift amount may be extended after masking: 541 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 542 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 543 return X; 544 545 return nullptr; 546 }; 547 548 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 549 bool SubIsOnLHS = false; 550 if (!ShAmt) { 551 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 552 SubIsOnLHS = true; 553 } 554 if (!ShAmt) 555 return nullptr; 556 557 // The shifted value must have high zeros in the wide type. Typically, this 558 // will be a zext, but it could also be the result of an 'and' or 'shift'. 559 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 560 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 561 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 562 return nullptr; 563 564 // We have an unnecessarily wide rotate! 565 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 566 // Narrow it down to eliminate the zext/trunc: 567 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 568 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 569 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 570 571 // Mask both shift amounts to ensure there's no UB from oversized shifts. 572 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 573 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 574 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 575 576 // Truncate the original value and use narrow ops. 577 Value *X = Builder.CreateTrunc(ShVal, DestTy); 578 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 579 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 580 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 581 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 582 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 583 } 584 585 /// Try to narrow the width of math or bitwise logic instructions by pulling a 586 /// truncate ahead of binary operators. 587 /// TODO: Transforms for truncated shifts should be moved into here. 588 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 589 Type *SrcTy = Trunc.getSrcTy(); 590 Type *DestTy = Trunc.getType(); 591 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 592 return nullptr; 593 594 BinaryOperator *BinOp; 595 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 596 return nullptr; 597 598 Value *BinOp0 = BinOp->getOperand(0); 599 Value *BinOp1 = BinOp->getOperand(1); 600 switch (BinOp->getOpcode()) { 601 case Instruction::And: 602 case Instruction::Or: 603 case Instruction::Xor: 604 case Instruction::Add: 605 case Instruction::Sub: 606 case Instruction::Mul: { 607 Constant *C; 608 if (match(BinOp0, m_Constant(C))) { 609 // trunc (binop C, X) --> binop (trunc C', X) 610 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 611 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 612 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 613 } 614 if (match(BinOp1, m_Constant(C))) { 615 // trunc (binop X, C) --> binop (trunc X, C') 616 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 617 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 618 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 619 } 620 Value *X; 621 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 622 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 623 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 624 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 625 } 626 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 627 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 628 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 629 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 630 } 631 break; 632 } 633 634 default: break; 635 } 636 637 if (Instruction *NarrowOr = narrowRotate(Trunc)) 638 return NarrowOr; 639 640 return nullptr; 641 } 642 643 /// Try to narrow the width of a splat shuffle. This could be generalized to any 644 /// shuffle with a constant operand, but we limit the transform to avoid 645 /// creating a shuffle type that targets may not be able to lower effectively. 646 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 647 InstCombiner::BuilderTy &Builder) { 648 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 649 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 650 Shuf->getMask()->getSplatValue() && 651 Shuf->getType() == Shuf->getOperand(0)->getType()) { 652 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 653 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 654 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 655 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 656 } 657 658 return nullptr; 659 } 660 661 /// Try to narrow the width of an insert element. This could be generalized for 662 /// any vector constant, but we limit the transform to insertion into undef to 663 /// avoid potential backend problems from unsupported insertion widths. This 664 /// could also be extended to handle the case of inserting a scalar constant 665 /// into a vector variable. 666 static Instruction *shrinkInsertElt(CastInst &Trunc, 667 InstCombiner::BuilderTy &Builder) { 668 Instruction::CastOps Opcode = Trunc.getOpcode(); 669 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 670 "Unexpected instruction for shrinking"); 671 672 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 673 if (!InsElt || !InsElt->hasOneUse()) 674 return nullptr; 675 676 Type *DestTy = Trunc.getType(); 677 Type *DestScalarTy = DestTy->getScalarType(); 678 Value *VecOp = InsElt->getOperand(0); 679 Value *ScalarOp = InsElt->getOperand(1); 680 Value *Index = InsElt->getOperand(2); 681 682 if (isa<UndefValue>(VecOp)) { 683 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 684 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 685 UndefValue *NarrowUndef = UndefValue::get(DestTy); 686 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 687 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 688 } 689 690 return nullptr; 691 } 692 693 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 694 if (Instruction *Result = commonCastTransforms(CI)) 695 return Result; 696 697 Value *Src = CI.getOperand(0); 698 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 699 700 // Attempt to truncate the entire input expression tree to the destination 701 // type. Only do this if the dest type is a simple type, don't convert the 702 // expression tree to something weird like i93 unless the source is also 703 // strange. 704 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 705 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 706 707 // If this cast is a truncate, evaluting in a different type always 708 // eliminates the cast, so it is always a win. 709 LLVM_DEBUG( 710 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 711 " to avoid cast: " 712 << CI << '\n'); 713 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 714 assert(Res->getType() == DestTy); 715 return replaceInstUsesWith(CI, Res); 716 } 717 718 // Test if the trunc is the user of a select which is part of a 719 // minimum or maximum operation. If so, don't do any more simplification. 720 // Even simplifying demanded bits can break the canonical form of a 721 // min/max. 722 Value *LHS, *RHS; 723 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 724 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 725 return nullptr; 726 727 // See if we can simplify any instructions used by the input whose sole 728 // purpose is to compute bits we don't care about. 729 if (SimplifyDemandedInstructionBits(CI)) 730 return &CI; 731 732 if (DestTy->getScalarSizeInBits() == 1) { 733 Value *Zero = Constant::getNullValue(Src->getType()); 734 if (DestTy->isIntegerTy()) { 735 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 736 // TODO: We canonicalize to more instructions here because we are probably 737 // lacking equivalent analysis for trunc relative to icmp. There may also 738 // be codegen concerns. If those trunc limitations were removed, we could 739 // remove this transform. 740 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 741 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 742 } 743 744 // For vectors, we do not canonicalize all truncs to icmp, so optimize 745 // patterns that would be covered within visitICmpInst. 746 Value *X; 747 const APInt *C; 748 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 749 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 750 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 751 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 752 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 753 } 754 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 755 m_Deferred(X))))) { 756 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 757 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 758 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 759 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 760 } 761 } 762 763 // FIXME: Maybe combine the next two transforms to handle the no cast case 764 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 765 766 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 767 Value *A = nullptr; ConstantInt *Cst = nullptr; 768 if (Src->hasOneUse() && 769 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 770 // We have three types to worry about here, the type of A, the source of 771 // the truncate (MidSize), and the destination of the truncate. We know that 772 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 773 // between ASize and ResultSize. 774 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 775 776 // If the shift amount is larger than the size of A, then the result is 777 // known to be zero because all the input bits got shifted out. 778 if (Cst->getZExtValue() >= ASize) 779 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 780 781 // Since we're doing an lshr and a zero extend, and know that the shift 782 // amount is smaller than ASize, it is always safe to do the shift in A's 783 // type, then zero extend or truncate to the result. 784 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 785 Shift->takeName(Src); 786 return CastInst::CreateIntegerCast(Shift, DestTy, false); 787 } 788 789 // FIXME: We should canonicalize to zext/trunc and remove this transform. 790 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 791 // conversion. 792 // It works because bits coming from sign extension have the same value as 793 // the sign bit of the original value; performing ashr instead of lshr 794 // generates bits of the same value as the sign bit. 795 if (Src->hasOneUse() && 796 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 797 Value *SExt = cast<Instruction>(Src)->getOperand(0); 798 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 799 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 800 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 801 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 802 unsigned ShiftAmt = Cst->getZExtValue(); 803 804 // This optimization can be only performed when zero bits generated by 805 // the original lshr aren't pulled into the value after truncation, so we 806 // can only shift by values no larger than the number of extension bits. 807 // FIXME: Instead of bailing when the shift is too large, use and to clear 808 // the extra bits. 809 if (ShiftAmt <= MaxAmt) { 810 if (CISize == ASize) 811 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 812 std::min(ShiftAmt, ASize - 1))); 813 if (SExt->hasOneUse()) { 814 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 815 Shift->takeName(Src); 816 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 817 } 818 } 819 } 820 821 if (Instruction *I = narrowBinOp(CI)) 822 return I; 823 824 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 825 return I; 826 827 if (Instruction *I = shrinkInsertElt(CI, Builder)) 828 return I; 829 830 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 831 shouldChangeType(SrcTy, DestTy)) { 832 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 833 // dest type is native and cst < dest size. 834 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 835 !match(A, m_Shr(m_Value(), m_Constant()))) { 836 // Skip shifts of shift by constants. It undoes a combine in 837 // FoldShiftByConstant and is the extend in reg pattern. 838 const unsigned DestSize = DestTy->getScalarSizeInBits(); 839 if (Cst->getValue().ult(DestSize)) { 840 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 841 842 return BinaryOperator::Create( 843 Instruction::Shl, NewTrunc, 844 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 845 } 846 } 847 } 848 849 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 850 return I; 851 852 return nullptr; 853 } 854 855 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 856 bool DoTransform) { 857 // If we are just checking for a icmp eq of a single bit and zext'ing it 858 // to an integer, then shift the bit to the appropriate place and then 859 // cast to integer to avoid the comparison. 860 const APInt *Op1CV; 861 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 862 863 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 864 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 865 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 866 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 867 if (!DoTransform) return ICI; 868 869 Value *In = ICI->getOperand(0); 870 Value *Sh = ConstantInt::get(In->getType(), 871 In->getType()->getScalarSizeInBits() - 1); 872 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 873 if (In->getType() != CI.getType()) 874 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 875 876 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 877 Constant *One = ConstantInt::get(In->getType(), 1); 878 In = Builder.CreateXor(In, One, In->getName() + ".not"); 879 } 880 881 return replaceInstUsesWith(CI, In); 882 } 883 884 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 885 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 886 // zext (X == 1) to i32 --> X iff X has only the low bit set. 887 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 888 // zext (X != 0) to i32 --> X iff X has only the low bit set. 889 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 890 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 891 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 892 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 893 // This only works for EQ and NE 894 ICI->isEquality()) { 895 // If Op1C some other power of two, convert: 896 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 897 898 APInt KnownZeroMask(~Known.Zero); 899 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 900 if (!DoTransform) return ICI; 901 902 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 903 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 904 // (X&4) == 2 --> false 905 // (X&4) != 2 --> true 906 Constant *Res = ConstantInt::get(CI.getType(), isNE); 907 return replaceInstUsesWith(CI, Res); 908 } 909 910 uint32_t ShAmt = KnownZeroMask.logBase2(); 911 Value *In = ICI->getOperand(0); 912 if (ShAmt) { 913 // Perform a logical shr by shiftamt. 914 // Insert the shift to put the result in the low bit. 915 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 916 In->getName() + ".lobit"); 917 } 918 919 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 920 Constant *One = ConstantInt::get(In->getType(), 1); 921 In = Builder.CreateXor(In, One); 922 } 923 924 if (CI.getType() == In->getType()) 925 return replaceInstUsesWith(CI, In); 926 927 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 928 return replaceInstUsesWith(CI, IntCast); 929 } 930 } 931 } 932 933 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 934 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 935 // may lead to additional simplifications. 936 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 937 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 938 Value *LHS = ICI->getOperand(0); 939 Value *RHS = ICI->getOperand(1); 940 941 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 942 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 943 944 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 945 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 946 APInt UnknownBit = ~KnownBits; 947 if (UnknownBit.countPopulation() == 1) { 948 if (!DoTransform) return ICI; 949 950 Value *Result = Builder.CreateXor(LHS, RHS); 951 952 // Mask off any bits that are set and won't be shifted away. 953 if (KnownLHS.One.uge(UnknownBit)) 954 Result = Builder.CreateAnd(Result, 955 ConstantInt::get(ITy, UnknownBit)); 956 957 // Shift the bit we're testing down to the lsb. 958 Result = Builder.CreateLShr( 959 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 960 961 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 962 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 963 Result->takeName(ICI); 964 return replaceInstUsesWith(CI, Result); 965 } 966 } 967 } 968 } 969 970 return nullptr; 971 } 972 973 /// Determine if the specified value can be computed in the specified wider type 974 /// and produce the same low bits. If not, return false. 975 /// 976 /// If this function returns true, it can also return a non-zero number of bits 977 /// (in BitsToClear) which indicates that the value it computes is correct for 978 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 979 /// out. For example, to promote something like: 980 /// 981 /// %B = trunc i64 %A to i32 982 /// %C = lshr i32 %B, 8 983 /// %E = zext i32 %C to i64 984 /// 985 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 986 /// set to 8 to indicate that the promoted value needs to have bits 24-31 987 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 988 /// clear the top bits anyway, doing this has no extra cost. 989 /// 990 /// This function works on both vectors and scalars. 991 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 992 InstCombiner &IC, Instruction *CxtI) { 993 BitsToClear = 0; 994 if (canAlwaysEvaluateInType(V, Ty)) 995 return true; 996 if (canNotEvaluateInType(V, Ty)) 997 return false; 998 999 auto *I = cast<Instruction>(V); 1000 unsigned Tmp; 1001 switch (I->getOpcode()) { 1002 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1003 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1004 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1005 return true; 1006 case Instruction::And: 1007 case Instruction::Or: 1008 case Instruction::Xor: 1009 case Instruction::Add: 1010 case Instruction::Sub: 1011 case Instruction::Mul: 1012 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1013 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1014 return false; 1015 // These can all be promoted if neither operand has 'bits to clear'. 1016 if (BitsToClear == 0 && Tmp == 0) 1017 return true; 1018 1019 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1020 // other side, BitsToClear is ok. 1021 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1022 // We use MaskedValueIsZero here for generality, but the case we care 1023 // about the most is constant RHS. 1024 unsigned VSize = V->getType()->getScalarSizeInBits(); 1025 if (IC.MaskedValueIsZero(I->getOperand(1), 1026 APInt::getHighBitsSet(VSize, BitsToClear), 1027 0, CxtI)) { 1028 // If this is an And instruction and all of the BitsToClear are 1029 // known to be zero we can reset BitsToClear. 1030 if (I->getOpcode() == Instruction::And) 1031 BitsToClear = 0; 1032 return true; 1033 } 1034 } 1035 1036 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1037 return false; 1038 1039 case Instruction::Shl: { 1040 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1041 // upper bits we can reduce BitsToClear by the shift amount. 1042 const APInt *Amt; 1043 if (match(I->getOperand(1), m_APInt(Amt))) { 1044 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1045 return false; 1046 uint64_t ShiftAmt = Amt->getZExtValue(); 1047 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1048 return true; 1049 } 1050 return false; 1051 } 1052 case Instruction::LShr: { 1053 // We can promote lshr(x, cst) if we can promote x. This requires the 1054 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1055 const APInt *Amt; 1056 if (match(I->getOperand(1), m_APInt(Amt))) { 1057 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1058 return false; 1059 BitsToClear += Amt->getZExtValue(); 1060 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1061 BitsToClear = V->getType()->getScalarSizeInBits(); 1062 return true; 1063 } 1064 // Cannot promote variable LSHR. 1065 return false; 1066 } 1067 case Instruction::Select: 1068 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1069 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1070 // TODO: If important, we could handle the case when the BitsToClear are 1071 // known zero in the disagreeing side. 1072 Tmp != BitsToClear) 1073 return false; 1074 return true; 1075 1076 case Instruction::PHI: { 1077 // We can change a phi if we can change all operands. Note that we never 1078 // get into trouble with cyclic PHIs here because we only consider 1079 // instructions with a single use. 1080 PHINode *PN = cast<PHINode>(I); 1081 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1082 return false; 1083 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1084 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1085 // TODO: If important, we could handle the case when the BitsToClear 1086 // are known zero in the disagreeing input. 1087 Tmp != BitsToClear) 1088 return false; 1089 return true; 1090 } 1091 default: 1092 // TODO: Can handle more cases here. 1093 return false; 1094 } 1095 } 1096 1097 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1098 // If this zero extend is only used by a truncate, let the truncate be 1099 // eliminated before we try to optimize this zext. 1100 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1101 return nullptr; 1102 1103 // If one of the common conversion will work, do it. 1104 if (Instruction *Result = commonCastTransforms(CI)) 1105 return Result; 1106 1107 Value *Src = CI.getOperand(0); 1108 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1109 1110 // Try to extend the entire expression tree to the wide destination type. 1111 unsigned BitsToClear; 1112 if (shouldChangeType(SrcTy, DestTy) && 1113 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1114 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1115 "Can't clear more bits than in SrcTy"); 1116 1117 // Okay, we can transform this! Insert the new expression now. 1118 LLVM_DEBUG( 1119 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1120 " to avoid zero extend: " 1121 << CI << '\n'); 1122 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1123 assert(Res->getType() == DestTy); 1124 1125 // Preserve debug values referring to Src if the zext is its last use. 1126 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1127 if (SrcOp->hasOneUse()) 1128 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1129 1130 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1131 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1132 1133 // If the high bits are already filled with zeros, just replace this 1134 // cast with the result. 1135 if (MaskedValueIsZero(Res, 1136 APInt::getHighBitsSet(DestBitSize, 1137 DestBitSize-SrcBitsKept), 1138 0, &CI)) 1139 return replaceInstUsesWith(CI, Res); 1140 1141 // We need to emit an AND to clear the high bits. 1142 Constant *C = ConstantInt::get(Res->getType(), 1143 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1144 return BinaryOperator::CreateAnd(Res, C); 1145 } 1146 1147 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1148 // types and if the sizes are just right we can convert this into a logical 1149 // 'and' which will be much cheaper than the pair of casts. 1150 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1151 // TODO: Subsume this into EvaluateInDifferentType. 1152 1153 // Get the sizes of the types involved. We know that the intermediate type 1154 // will be smaller than A or C, but don't know the relation between A and C. 1155 Value *A = CSrc->getOperand(0); 1156 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1157 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1158 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1159 // If we're actually extending zero bits, then if 1160 // SrcSize < DstSize: zext(a & mask) 1161 // SrcSize == DstSize: a & mask 1162 // SrcSize > DstSize: trunc(a) & mask 1163 if (SrcSize < DstSize) { 1164 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1165 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1166 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1167 return new ZExtInst(And, CI.getType()); 1168 } 1169 1170 if (SrcSize == DstSize) { 1171 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1172 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1173 AndValue)); 1174 } 1175 if (SrcSize > DstSize) { 1176 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1177 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1178 return BinaryOperator::CreateAnd(Trunc, 1179 ConstantInt::get(Trunc->getType(), 1180 AndValue)); 1181 } 1182 } 1183 1184 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1185 return transformZExtICmp(ICI, CI); 1186 1187 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1188 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1189 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1190 // of the (zext icmp) can be eliminated. If so, immediately perform the 1191 // according elimination. 1192 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1193 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1194 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1195 (transformZExtICmp(LHS, CI, false) || 1196 transformZExtICmp(RHS, CI, false))) { 1197 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1198 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1199 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1200 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1201 1202 // Perform the elimination. 1203 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1204 transformZExtICmp(LHS, *LZExt); 1205 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1206 transformZExtICmp(RHS, *RZExt); 1207 1208 return Or; 1209 } 1210 } 1211 1212 // zext(trunc(X) & C) -> (X & zext(C)). 1213 Constant *C; 1214 Value *X; 1215 if (SrcI && 1216 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1217 X->getType() == CI.getType()) 1218 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1219 1220 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1221 Value *And; 1222 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1223 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1224 X->getType() == CI.getType()) { 1225 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1226 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1227 } 1228 1229 return nullptr; 1230 } 1231 1232 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1233 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1234 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1235 ICmpInst::Predicate Pred = ICI->getPredicate(); 1236 1237 // Don't bother if Op1 isn't of vector or integer type. 1238 if (!Op1->getType()->isIntOrIntVectorTy()) 1239 return nullptr; 1240 1241 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1242 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1243 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1244 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1245 Value *Sh = ConstantInt::get(Op0->getType(), 1246 Op0->getType()->getScalarSizeInBits() - 1); 1247 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1248 if (In->getType() != CI.getType()) 1249 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1250 1251 if (Pred == ICmpInst::ICMP_SGT) 1252 In = Builder.CreateNot(In, In->getName() + ".not"); 1253 return replaceInstUsesWith(CI, In); 1254 } 1255 1256 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1257 // If we know that only one bit of the LHS of the icmp can be set and we 1258 // have an equality comparison with zero or a power of 2, we can transform 1259 // the icmp and sext into bitwise/integer operations. 1260 if (ICI->hasOneUse() && 1261 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1262 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1263 1264 APInt KnownZeroMask(~Known.Zero); 1265 if (KnownZeroMask.isPowerOf2()) { 1266 Value *In = ICI->getOperand(0); 1267 1268 // If the icmp tests for a known zero bit we can constant fold it. 1269 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1270 Value *V = Pred == ICmpInst::ICMP_NE ? 1271 ConstantInt::getAllOnesValue(CI.getType()) : 1272 ConstantInt::getNullValue(CI.getType()); 1273 return replaceInstUsesWith(CI, V); 1274 } 1275 1276 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1277 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1278 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1279 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1280 // Perform a right shift to place the desired bit in the LSB. 1281 if (ShiftAmt) 1282 In = Builder.CreateLShr(In, 1283 ConstantInt::get(In->getType(), ShiftAmt)); 1284 1285 // At this point "In" is either 1 or 0. Subtract 1 to turn 1286 // {1, 0} -> {0, -1}. 1287 In = Builder.CreateAdd(In, 1288 ConstantInt::getAllOnesValue(In->getType()), 1289 "sext"); 1290 } else { 1291 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1292 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1293 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1294 // Perform a left shift to place the desired bit in the MSB. 1295 if (ShiftAmt) 1296 In = Builder.CreateShl(In, 1297 ConstantInt::get(In->getType(), ShiftAmt)); 1298 1299 // Distribute the bit over the whole bit width. 1300 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1301 KnownZeroMask.getBitWidth() - 1), "sext"); 1302 } 1303 1304 if (CI.getType() == In->getType()) 1305 return replaceInstUsesWith(CI, In); 1306 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1307 } 1308 } 1309 } 1310 1311 return nullptr; 1312 } 1313 1314 /// Return true if we can take the specified value and return it as type Ty 1315 /// without inserting any new casts and without changing the value of the common 1316 /// low bits. This is used by code that tries to promote integer operations to 1317 /// a wider types will allow us to eliminate the extension. 1318 /// 1319 /// This function works on both vectors and scalars. 1320 /// 1321 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1322 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1323 "Can't sign extend type to a smaller type"); 1324 if (canAlwaysEvaluateInType(V, Ty)) 1325 return true; 1326 if (canNotEvaluateInType(V, Ty)) 1327 return false; 1328 1329 auto *I = cast<Instruction>(V); 1330 switch (I->getOpcode()) { 1331 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1332 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1333 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1334 return true; 1335 case Instruction::And: 1336 case Instruction::Or: 1337 case Instruction::Xor: 1338 case Instruction::Add: 1339 case Instruction::Sub: 1340 case Instruction::Mul: 1341 // These operators can all arbitrarily be extended if their inputs can. 1342 return canEvaluateSExtd(I->getOperand(0), Ty) && 1343 canEvaluateSExtd(I->getOperand(1), Ty); 1344 1345 //case Instruction::Shl: TODO 1346 //case Instruction::LShr: TODO 1347 1348 case Instruction::Select: 1349 return canEvaluateSExtd(I->getOperand(1), Ty) && 1350 canEvaluateSExtd(I->getOperand(2), Ty); 1351 1352 case Instruction::PHI: { 1353 // We can change a phi if we can change all operands. Note that we never 1354 // get into trouble with cyclic PHIs here because we only consider 1355 // instructions with a single use. 1356 PHINode *PN = cast<PHINode>(I); 1357 for (Value *IncValue : PN->incoming_values()) 1358 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1359 return true; 1360 } 1361 default: 1362 // TODO: Can handle more cases here. 1363 break; 1364 } 1365 1366 return false; 1367 } 1368 1369 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1370 // If this sign extend is only used by a truncate, let the truncate be 1371 // eliminated before we try to optimize this sext. 1372 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1373 return nullptr; 1374 1375 if (Instruction *I = commonCastTransforms(CI)) 1376 return I; 1377 1378 Value *Src = CI.getOperand(0); 1379 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1380 1381 // If we know that the value being extended is positive, we can use a zext 1382 // instead. 1383 KnownBits Known = computeKnownBits(Src, 0, &CI); 1384 if (Known.isNonNegative()) { 1385 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1386 return replaceInstUsesWith(CI, ZExt); 1387 } 1388 1389 // Try to extend the entire expression tree to the wide destination type. 1390 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1391 // Okay, we can transform this! Insert the new expression now. 1392 LLVM_DEBUG( 1393 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1394 " to avoid sign extend: " 1395 << CI << '\n'); 1396 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1397 assert(Res->getType() == DestTy); 1398 1399 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1400 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1401 1402 // If the high bits are already filled with sign bit, just replace this 1403 // cast with the result. 1404 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1405 return replaceInstUsesWith(CI, Res); 1406 1407 // We need to emit a shl + ashr to do the sign extend. 1408 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1409 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1410 ShAmt); 1411 } 1412 1413 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1414 // into shifts. 1415 Value *X; 1416 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1417 // sext(trunc(X)) --> ashr(shl(X, C), C) 1418 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1419 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1420 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1421 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1422 } 1423 1424 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1425 return transformSExtICmp(ICI, CI); 1426 1427 // If the input is a shl/ashr pair of a same constant, then this is a sign 1428 // extension from a smaller value. If we could trust arbitrary bitwidth 1429 // integers, we could turn this into a truncate to the smaller bit and then 1430 // use a sext for the whole extension. Since we don't, look deeper and check 1431 // for a truncate. If the source and dest are the same type, eliminate the 1432 // trunc and extend and just do shifts. For example, turn: 1433 // %a = trunc i32 %i to i8 1434 // %b = shl i8 %a, 6 1435 // %c = ashr i8 %b, 6 1436 // %d = sext i8 %c to i32 1437 // into: 1438 // %a = shl i32 %i, 30 1439 // %d = ashr i32 %a, 30 1440 Value *A = nullptr; 1441 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1442 ConstantInt *BA = nullptr, *CA = nullptr; 1443 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1444 m_ConstantInt(CA))) && 1445 BA == CA && A->getType() == CI.getType()) { 1446 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1447 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1448 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1449 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1450 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1451 return BinaryOperator::CreateAShr(A, ShAmtV); 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 1458 /// Return a Constant* for the specified floating-point constant if it fits 1459 /// in the specified FP type without changing its value. 1460 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1461 bool losesInfo; 1462 APFloat F = CFP->getValueAPF(); 1463 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1464 return !losesInfo; 1465 } 1466 1467 static Type *shrinkFPConstant(ConstantFP *CFP) { 1468 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1469 return nullptr; // No constant folding of this. 1470 // See if the value can be truncated to half and then reextended. 1471 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1472 return Type::getHalfTy(CFP->getContext()); 1473 // See if the value can be truncated to float and then reextended. 1474 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1475 return Type::getFloatTy(CFP->getContext()); 1476 if (CFP->getType()->isDoubleTy()) 1477 return nullptr; // Won't shrink. 1478 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1479 return Type::getDoubleTy(CFP->getContext()); 1480 // Don't try to shrink to various long double types. 1481 return nullptr; 1482 } 1483 1484 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1485 // type we can safely truncate all elements to. 1486 // TODO: Make these support undef elements. 1487 static Type *shrinkFPConstantVector(Value *V) { 1488 auto *CV = dyn_cast<Constant>(V); 1489 if (!CV || !CV->getType()->isVectorTy()) 1490 return nullptr; 1491 1492 Type *MinType = nullptr; 1493 1494 unsigned NumElts = CV->getType()->getVectorNumElements(); 1495 for (unsigned i = 0; i != NumElts; ++i) { 1496 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1497 if (!CFP) 1498 return nullptr; 1499 1500 Type *T = shrinkFPConstant(CFP); 1501 if (!T) 1502 return nullptr; 1503 1504 // If we haven't found a type yet or this type has a larger mantissa than 1505 // our previous type, this is our new minimal type. 1506 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1507 MinType = T; 1508 } 1509 1510 // Make a vector type from the minimal type. 1511 return VectorType::get(MinType, NumElts); 1512 } 1513 1514 /// Find the minimum FP type we can safely truncate to. 1515 static Type *getMinimumFPType(Value *V) { 1516 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1517 return FPExt->getOperand(0)->getType(); 1518 1519 // If this value is a constant, return the constant in the smallest FP type 1520 // that can accurately represent it. This allows us to turn 1521 // (float)((double)X+2.0) into x+2.0f. 1522 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1523 if (Type *T = shrinkFPConstant(CFP)) 1524 return T; 1525 1526 // Try to shrink a vector of FP constants. 1527 if (Type *T = shrinkFPConstantVector(V)) 1528 return T; 1529 1530 return V->getType(); 1531 } 1532 1533 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1534 if (Instruction *I = commonCastTransforms(FPT)) 1535 return I; 1536 1537 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1538 // simplify this expression to avoid one or more of the trunc/extend 1539 // operations if we can do so without changing the numerical results. 1540 // 1541 // The exact manner in which the widths of the operands interact to limit 1542 // what we can and cannot do safely varies from operation to operation, and 1543 // is explained below in the various case statements. 1544 Type *Ty = FPT.getType(); 1545 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1546 if (OpI && OpI->hasOneUse()) { 1547 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); 1548 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); 1549 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1550 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1551 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1552 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1553 unsigned DstWidth = Ty->getFPMantissaWidth(); 1554 switch (OpI->getOpcode()) { 1555 default: break; 1556 case Instruction::FAdd: 1557 case Instruction::FSub: 1558 // For addition and subtraction, the infinitely precise result can 1559 // essentially be arbitrarily wide; proving that double rounding 1560 // will not occur because the result of OpI is exact (as we will for 1561 // FMul, for example) is hopeless. However, we *can* nonetheless 1562 // frequently know that double rounding cannot occur (or that it is 1563 // innocuous) by taking advantage of the specific structure of 1564 // infinitely-precise results that admit double rounding. 1565 // 1566 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1567 // to represent both sources, we can guarantee that the double 1568 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1569 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1570 // for proof of this fact). 1571 // 1572 // Note: Figueroa does not consider the case where DstFormat != 1573 // SrcFormat. It's possible (likely even!) that this analysis 1574 // could be tightened for those cases, but they are rare (the main 1575 // case of interest here is (float)((double)float + float)). 1576 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1577 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1578 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1579 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); 1580 RI->copyFastMathFlags(OpI); 1581 return RI; 1582 } 1583 break; 1584 case Instruction::FMul: 1585 // For multiplication, the infinitely precise result has at most 1586 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1587 // that such a value can be exactly represented, then no double 1588 // rounding can possibly occur; we can safely perform the operation 1589 // in the destination format if it can represent both sources. 1590 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1591 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1592 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1593 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); 1594 } 1595 break; 1596 case Instruction::FDiv: 1597 // For division, we use again use the bound from Figueroa's 1598 // dissertation. I am entirely certain that this bound can be 1599 // tightened in the unbalanced operand case by an analysis based on 1600 // the diophantine rational approximation bound, but the well-known 1601 // condition used here is a good conservative first pass. 1602 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1603 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1604 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1605 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1606 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); 1607 } 1608 break; 1609 case Instruction::FRem: { 1610 // Remainder is straightforward. Remainder is always exact, so the 1611 // type of OpI doesn't enter into things at all. We simply evaluate 1612 // in whichever source type is larger, then convert to the 1613 // destination type. 1614 if (SrcWidth == OpWidth) 1615 break; 1616 Value *LHS, *RHS; 1617 if (LHSWidth == SrcWidth) { 1618 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); 1619 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); 1620 } else { 1621 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); 1622 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); 1623 } 1624 1625 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); 1626 return CastInst::CreateFPCast(ExactResult, Ty); 1627 } 1628 } 1629 1630 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1631 Value *X; 1632 if (match(OpI, m_FNeg(m_Value(X)))) { 1633 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1634 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI); 1635 } 1636 } 1637 1638 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1639 switch (II->getIntrinsicID()) { 1640 default: break; 1641 case Intrinsic::ceil: 1642 case Intrinsic::fabs: 1643 case Intrinsic::floor: 1644 case Intrinsic::nearbyint: 1645 case Intrinsic::rint: 1646 case Intrinsic::round: 1647 case Intrinsic::trunc: { 1648 Value *Src = II->getArgOperand(0); 1649 if (!Src->hasOneUse()) 1650 break; 1651 1652 // Except for fabs, this transformation requires the input of the unary FP 1653 // operation to be itself an fpext from the type to which we're 1654 // truncating. 1655 if (II->getIntrinsicID() != Intrinsic::fabs) { 1656 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1657 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1658 break; 1659 } 1660 1661 // Do unary FP operation on smaller type. 1662 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1663 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1664 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1665 II->getIntrinsicID(), Ty); 1666 SmallVector<OperandBundleDef, 1> OpBundles; 1667 II->getOperandBundlesAsDefs(OpBundles); 1668 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles, 1669 II->getName()); 1670 NewCI->copyFastMathFlags(II); 1671 return NewCI; 1672 } 1673 } 1674 } 1675 1676 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1677 return I; 1678 1679 return nullptr; 1680 } 1681 1682 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1683 return commonCastTransforms(CI); 1684 } 1685 1686 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1687 // This is safe if the intermediate type has enough bits in its mantissa to 1688 // accurately represent all values of X. For example, this won't work with 1689 // i64 -> float -> i64. 1690 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1691 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1692 return nullptr; 1693 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1694 1695 Value *SrcI = OpI->getOperand(0); 1696 Type *FITy = FI.getType(); 1697 Type *OpITy = OpI->getType(); 1698 Type *SrcTy = SrcI->getType(); 1699 bool IsInputSigned = isa<SIToFPInst>(OpI); 1700 bool IsOutputSigned = isa<FPToSIInst>(FI); 1701 1702 // We can safely assume the conversion won't overflow the output range, 1703 // because (for example) (uint8_t)18293.f is undefined behavior. 1704 1705 // Since we can assume the conversion won't overflow, our decision as to 1706 // whether the input will fit in the float should depend on the minimum 1707 // of the input range and output range. 1708 1709 // This means this is also safe for a signed input and unsigned output, since 1710 // a negative input would lead to undefined behavior. 1711 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1712 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1713 int ActualSize = std::min(InputSize, OutputSize); 1714 1715 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1716 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1717 if (IsInputSigned && IsOutputSigned) 1718 return new SExtInst(SrcI, FITy); 1719 return new ZExtInst(SrcI, FITy); 1720 } 1721 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1722 return new TruncInst(SrcI, FITy); 1723 if (SrcTy == FITy) 1724 return replaceInstUsesWith(FI, SrcI); 1725 return new BitCastInst(SrcI, FITy); 1726 } 1727 return nullptr; 1728 } 1729 1730 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1731 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1732 if (!OpI) 1733 return commonCastTransforms(FI); 1734 1735 if (Instruction *I = FoldItoFPtoI(FI)) 1736 return I; 1737 1738 return commonCastTransforms(FI); 1739 } 1740 1741 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1742 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1743 if (!OpI) 1744 return commonCastTransforms(FI); 1745 1746 if (Instruction *I = FoldItoFPtoI(FI)) 1747 return I; 1748 1749 return commonCastTransforms(FI); 1750 } 1751 1752 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1753 return commonCastTransforms(CI); 1754 } 1755 1756 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1757 return commonCastTransforms(CI); 1758 } 1759 1760 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1761 // If the source integer type is not the intptr_t type for this target, do a 1762 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1763 // cast to be exposed to other transforms. 1764 unsigned AS = CI.getAddressSpace(); 1765 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1766 DL.getPointerSizeInBits(AS)) { 1767 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1768 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1769 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1770 1771 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1772 return new IntToPtrInst(P, CI.getType()); 1773 } 1774 1775 if (Instruction *I = commonCastTransforms(CI)) 1776 return I; 1777 1778 return nullptr; 1779 } 1780 1781 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1782 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1783 Value *Src = CI.getOperand(0); 1784 1785 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1786 // If casting the result of a getelementptr instruction with no offset, turn 1787 // this into a cast of the original pointer! 1788 if (GEP->hasAllZeroIndices() && 1789 // If CI is an addrspacecast and GEP changes the poiner type, merging 1790 // GEP into CI would undo canonicalizing addrspacecast with different 1791 // pointer types, causing infinite loops. 1792 (!isa<AddrSpaceCastInst>(CI) || 1793 GEP->getType() == GEP->getPointerOperandType())) { 1794 // Changing the cast operand is usually not a good idea but it is safe 1795 // here because the pointer operand is being replaced with another 1796 // pointer operand so the opcode doesn't need to change. 1797 Worklist.Add(GEP); 1798 CI.setOperand(0, GEP->getOperand(0)); 1799 return &CI; 1800 } 1801 } 1802 1803 return commonCastTransforms(CI); 1804 } 1805 1806 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1807 // If the destination integer type is not the intptr_t type for this target, 1808 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1809 // to be exposed to other transforms. 1810 1811 Type *Ty = CI.getType(); 1812 unsigned AS = CI.getPointerAddressSpace(); 1813 1814 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) 1815 return commonPointerCastTransforms(CI); 1816 1817 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1818 if (Ty->isVectorTy()) // Handle vectors of pointers. 1819 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1820 1821 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1822 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1823 } 1824 1825 /// This input value (which is known to have vector type) is being zero extended 1826 /// or truncated to the specified vector type. 1827 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1828 /// 1829 /// The source and destination vector types may have different element types. 1830 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1831 InstCombiner &IC) { 1832 // We can only do this optimization if the output is a multiple of the input 1833 // element size, or the input is a multiple of the output element size. 1834 // Convert the input type to have the same element type as the output. 1835 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1836 1837 if (SrcTy->getElementType() != DestTy->getElementType()) { 1838 // The input types don't need to be identical, but for now they must be the 1839 // same size. There is no specific reason we couldn't handle things like 1840 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1841 // there yet. 1842 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1843 DestTy->getElementType()->getPrimitiveSizeInBits()) 1844 return nullptr; 1845 1846 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1847 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1848 } 1849 1850 // Now that the element types match, get the shuffle mask and RHS of the 1851 // shuffle to use, which depends on whether we're increasing or decreasing the 1852 // size of the input. 1853 SmallVector<uint32_t, 16> ShuffleMask; 1854 Value *V2; 1855 1856 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1857 // If we're shrinking the number of elements, just shuffle in the low 1858 // elements from the input and use undef as the second shuffle input. 1859 V2 = UndefValue::get(SrcTy); 1860 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1861 ShuffleMask.push_back(i); 1862 1863 } else { 1864 // If we're increasing the number of elements, shuffle in all of the 1865 // elements from InVal and fill the rest of the result elements with zeros 1866 // from a constant zero. 1867 V2 = Constant::getNullValue(SrcTy); 1868 unsigned SrcElts = SrcTy->getNumElements(); 1869 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1870 ShuffleMask.push_back(i); 1871 1872 // The excess elements reference the first element of the zero input. 1873 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1874 ShuffleMask.push_back(SrcElts); 1875 } 1876 1877 return new ShuffleVectorInst(InVal, V2, 1878 ConstantDataVector::get(V2->getContext(), 1879 ShuffleMask)); 1880 } 1881 1882 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1883 return Value % Ty->getPrimitiveSizeInBits() == 0; 1884 } 1885 1886 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1887 return Value / Ty->getPrimitiveSizeInBits(); 1888 } 1889 1890 /// V is a value which is inserted into a vector of VecEltTy. 1891 /// Look through the value to see if we can decompose it into 1892 /// insertions into the vector. See the example in the comment for 1893 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1894 /// The type of V is always a non-zero multiple of VecEltTy's size. 1895 /// Shift is the number of bits between the lsb of V and the lsb of 1896 /// the vector. 1897 /// 1898 /// This returns false if the pattern can't be matched or true if it can, 1899 /// filling in Elements with the elements found here. 1900 static bool collectInsertionElements(Value *V, unsigned Shift, 1901 SmallVectorImpl<Value *> &Elements, 1902 Type *VecEltTy, bool isBigEndian) { 1903 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1904 "Shift should be a multiple of the element type size"); 1905 1906 // Undef values never contribute useful bits to the result. 1907 if (isa<UndefValue>(V)) return true; 1908 1909 // If we got down to a value of the right type, we win, try inserting into the 1910 // right element. 1911 if (V->getType() == VecEltTy) { 1912 // Inserting null doesn't actually insert any elements. 1913 if (Constant *C = dyn_cast<Constant>(V)) 1914 if (C->isNullValue()) 1915 return true; 1916 1917 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1918 if (isBigEndian) 1919 ElementIndex = Elements.size() - ElementIndex - 1; 1920 1921 // Fail if multiple elements are inserted into this slot. 1922 if (Elements[ElementIndex]) 1923 return false; 1924 1925 Elements[ElementIndex] = V; 1926 return true; 1927 } 1928 1929 if (Constant *C = dyn_cast<Constant>(V)) { 1930 // Figure out the # elements this provides, and bitcast it or slice it up 1931 // as required. 1932 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1933 VecEltTy); 1934 // If the constant is the size of a vector element, we just need to bitcast 1935 // it to the right type so it gets properly inserted. 1936 if (NumElts == 1) 1937 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1938 Shift, Elements, VecEltTy, isBigEndian); 1939 1940 // Okay, this is a constant that covers multiple elements. Slice it up into 1941 // pieces and insert each element-sized piece into the vector. 1942 if (!isa<IntegerType>(C->getType())) 1943 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1944 C->getType()->getPrimitiveSizeInBits())); 1945 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1946 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1947 1948 for (unsigned i = 0; i != NumElts; ++i) { 1949 unsigned ShiftI = Shift+i*ElementSize; 1950 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1951 ShiftI)); 1952 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1953 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1954 isBigEndian)) 1955 return false; 1956 } 1957 return true; 1958 } 1959 1960 if (!V->hasOneUse()) return false; 1961 1962 Instruction *I = dyn_cast<Instruction>(V); 1963 if (!I) return false; 1964 switch (I->getOpcode()) { 1965 default: return false; // Unhandled case. 1966 case Instruction::BitCast: 1967 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1968 isBigEndian); 1969 case Instruction::ZExt: 1970 if (!isMultipleOfTypeSize( 1971 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1972 VecEltTy)) 1973 return false; 1974 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1975 isBigEndian); 1976 case Instruction::Or: 1977 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1978 isBigEndian) && 1979 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1980 isBigEndian); 1981 case Instruction::Shl: { 1982 // Must be shifting by a constant that is a multiple of the element size. 1983 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1984 if (!CI) return false; 1985 Shift += CI->getZExtValue(); 1986 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1987 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1988 isBigEndian); 1989 } 1990 1991 } 1992 } 1993 1994 1995 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1996 /// assemble the elements of the vector manually. 1997 /// Try to rip the code out and replace it with insertelements. This is to 1998 /// optimize code like this: 1999 /// 2000 /// %tmp37 = bitcast float %inc to i32 2001 /// %tmp38 = zext i32 %tmp37 to i64 2002 /// %tmp31 = bitcast float %inc5 to i32 2003 /// %tmp32 = zext i32 %tmp31 to i64 2004 /// %tmp33 = shl i64 %tmp32, 32 2005 /// %ins35 = or i64 %tmp33, %tmp38 2006 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2007 /// 2008 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2009 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2010 InstCombiner &IC) { 2011 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2012 Value *IntInput = CI.getOperand(0); 2013 2014 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2015 if (!collectInsertionElements(IntInput, 0, Elements, 2016 DestVecTy->getElementType(), 2017 IC.getDataLayout().isBigEndian())) 2018 return nullptr; 2019 2020 // If we succeeded, we know that all of the element are specified by Elements 2021 // or are zero if Elements has a null entry. Recast this as a set of 2022 // insertions. 2023 Value *Result = Constant::getNullValue(CI.getType()); 2024 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2025 if (!Elements[i]) continue; // Unset element. 2026 2027 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2028 IC.Builder.getInt32(i)); 2029 } 2030 2031 return Result; 2032 } 2033 2034 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2035 /// vector followed by extract element. The backend tends to handle bitcasts of 2036 /// vectors better than bitcasts of scalars because vector registers are 2037 /// usually not type-specific like scalar integer or scalar floating-point. 2038 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2039 InstCombiner &IC) { 2040 // TODO: Create and use a pattern matcher for ExtractElementInst. 2041 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2042 if (!ExtElt || !ExtElt->hasOneUse()) 2043 return nullptr; 2044 2045 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2046 // type to extract from. 2047 Type *DestType = BitCast.getType(); 2048 if (!VectorType::isValidElementType(DestType)) 2049 return nullptr; 2050 2051 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2052 auto *NewVecType = VectorType::get(DestType, NumElts); 2053 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2054 NewVecType, "bc"); 2055 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2056 } 2057 2058 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2059 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2060 InstCombiner::BuilderTy &Builder) { 2061 Type *DestTy = BitCast.getType(); 2062 BinaryOperator *BO; 2063 if (!DestTy->isIntOrIntVectorTy() || 2064 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2065 !BO->isBitwiseLogicOp()) 2066 return nullptr; 2067 2068 // FIXME: This transform is restricted to vector types to avoid backend 2069 // problems caused by creating potentially illegal operations. If a fix-up is 2070 // added to handle that situation, we can remove this check. 2071 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2072 return nullptr; 2073 2074 Value *X; 2075 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2076 X->getType() == DestTy && !isa<Constant>(X)) { 2077 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2078 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2079 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2080 } 2081 2082 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2083 X->getType() == DestTy && !isa<Constant>(X)) { 2084 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2085 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2086 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2087 } 2088 2089 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2090 // constant. This eases recognition of special constants for later ops. 2091 // Example: 2092 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2093 Constant *C; 2094 if (match(BO->getOperand(1), m_Constant(C))) { 2095 // bitcast (logic X, C) --> logic (bitcast X, C') 2096 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2097 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2098 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2099 } 2100 2101 return nullptr; 2102 } 2103 2104 /// Change the type of a select if we can eliminate a bitcast. 2105 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2106 InstCombiner::BuilderTy &Builder) { 2107 Value *Cond, *TVal, *FVal; 2108 if (!match(BitCast.getOperand(0), 2109 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2110 return nullptr; 2111 2112 // A vector select must maintain the same number of elements in its operands. 2113 Type *CondTy = Cond->getType(); 2114 Type *DestTy = BitCast.getType(); 2115 if (CondTy->isVectorTy()) { 2116 if (!DestTy->isVectorTy()) 2117 return nullptr; 2118 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2119 return nullptr; 2120 } 2121 2122 // FIXME: This transform is restricted from changing the select between 2123 // scalars and vectors to avoid backend problems caused by creating 2124 // potentially illegal operations. If a fix-up is added to handle that 2125 // situation, we can remove this check. 2126 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2127 return nullptr; 2128 2129 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2130 Value *X; 2131 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2132 !isa<Constant>(X)) { 2133 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2134 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2135 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2136 } 2137 2138 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2139 !isa<Constant>(X)) { 2140 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2141 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2142 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2143 } 2144 2145 return nullptr; 2146 } 2147 2148 /// Check if all users of CI are StoreInsts. 2149 static bool hasStoreUsersOnly(CastInst &CI) { 2150 for (User *U : CI.users()) { 2151 if (!isa<StoreInst>(U)) 2152 return false; 2153 } 2154 return true; 2155 } 2156 2157 /// This function handles following case 2158 /// 2159 /// A -> B cast 2160 /// PHI 2161 /// B -> A cast 2162 /// 2163 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2164 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2165 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2166 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2167 if (hasStoreUsersOnly(CI)) 2168 return nullptr; 2169 2170 Value *Src = CI.getOperand(0); 2171 Type *SrcTy = Src->getType(); // Type B 2172 Type *DestTy = CI.getType(); // Type A 2173 2174 SmallVector<PHINode *, 4> PhiWorklist; 2175 SmallSetVector<PHINode *, 4> OldPhiNodes; 2176 2177 // Find all of the A->B casts and PHI nodes. 2178 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2179 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2180 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2181 PhiWorklist.push_back(PN); 2182 OldPhiNodes.insert(PN); 2183 while (!PhiWorklist.empty()) { 2184 auto *OldPN = PhiWorklist.pop_back_val(); 2185 for (Value *IncValue : OldPN->incoming_values()) { 2186 if (isa<Constant>(IncValue)) 2187 continue; 2188 2189 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2190 // If there is a sequence of one or more load instructions, each loaded 2191 // value is used as address of later load instruction, bitcast is 2192 // necessary to change the value type, don't optimize it. For 2193 // simplicity we give up if the load address comes from another load. 2194 Value *Addr = LI->getOperand(0); 2195 if (Addr == &CI || isa<LoadInst>(Addr)) 2196 return nullptr; 2197 if (LI->hasOneUse() && LI->isSimple()) 2198 continue; 2199 // If a LoadInst has more than one use, changing the type of loaded 2200 // value may create another bitcast. 2201 return nullptr; 2202 } 2203 2204 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2205 if (OldPhiNodes.insert(PNode)) 2206 PhiWorklist.push_back(PNode); 2207 continue; 2208 } 2209 2210 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2211 // We can't handle other instructions. 2212 if (!BCI) 2213 return nullptr; 2214 2215 // Verify it's a A->B cast. 2216 Type *TyA = BCI->getOperand(0)->getType(); 2217 Type *TyB = BCI->getType(); 2218 if (TyA != DestTy || TyB != SrcTy) 2219 return nullptr; 2220 } 2221 } 2222 2223 // For each old PHI node, create a corresponding new PHI node with a type A. 2224 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2225 for (auto *OldPN : OldPhiNodes) { 2226 Builder.SetInsertPoint(OldPN); 2227 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2228 NewPNodes[OldPN] = NewPN; 2229 } 2230 2231 // Fill in the operands of new PHI nodes. 2232 for (auto *OldPN : OldPhiNodes) { 2233 PHINode *NewPN = NewPNodes[OldPN]; 2234 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2235 Value *V = OldPN->getOperand(j); 2236 Value *NewV = nullptr; 2237 if (auto *C = dyn_cast<Constant>(V)) { 2238 NewV = ConstantExpr::getBitCast(C, DestTy); 2239 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2240 Builder.SetInsertPoint(LI->getNextNode()); 2241 NewV = Builder.CreateBitCast(LI, DestTy); 2242 Worklist.Add(LI); 2243 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2244 NewV = BCI->getOperand(0); 2245 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2246 NewV = NewPNodes[PrevPN]; 2247 } 2248 assert(NewV); 2249 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2250 } 2251 } 2252 2253 // If there is a store with type B, change it to type A. 2254 for (User *U : PN->users()) { 2255 auto *SI = dyn_cast<StoreInst>(U); 2256 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2257 Builder.SetInsertPoint(SI); 2258 auto *NewBC = 2259 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2260 SI->setOperand(0, NewBC); 2261 Worklist.Add(SI); 2262 assert(hasStoreUsersOnly(*NewBC)); 2263 } 2264 } 2265 2266 return replaceInstUsesWith(CI, NewPNodes[PN]); 2267 } 2268 2269 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2270 // If the operands are integer typed then apply the integer transforms, 2271 // otherwise just apply the common ones. 2272 Value *Src = CI.getOperand(0); 2273 Type *SrcTy = Src->getType(); 2274 Type *DestTy = CI.getType(); 2275 2276 // Get rid of casts from one type to the same type. These are useless and can 2277 // be replaced by the operand. 2278 if (DestTy == Src->getType()) 2279 return replaceInstUsesWith(CI, Src); 2280 2281 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2282 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2283 Type *DstElTy = DstPTy->getElementType(); 2284 Type *SrcElTy = SrcPTy->getElementType(); 2285 2286 // Casting pointers between the same type, but with different address spaces 2287 // is an addrspace cast rather than a bitcast. 2288 if ((DstElTy == SrcElTy) && 2289 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2290 return new AddrSpaceCastInst(Src, DestTy); 2291 2292 // If we are casting a alloca to a pointer to a type of the same 2293 // size, rewrite the allocation instruction to allocate the "right" type. 2294 // There is no need to modify malloc calls because it is their bitcast that 2295 // needs to be cleaned up. 2296 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2297 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2298 return V; 2299 2300 // When the type pointed to is not sized the cast cannot be 2301 // turned into a gep. 2302 Type *PointeeType = 2303 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2304 if (!PointeeType->isSized()) 2305 return nullptr; 2306 2307 // If the source and destination are pointers, and this cast is equivalent 2308 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2309 // This can enhance SROA and other transforms that want type-safe pointers. 2310 unsigned NumZeros = 0; 2311 while (SrcElTy != DstElTy && 2312 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2313 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2314 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2315 ++NumZeros; 2316 } 2317 2318 // If we found a path from the src to dest, create the getelementptr now. 2319 if (SrcElTy == DstElTy) { 2320 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2321 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2322 } 2323 } 2324 2325 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2326 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2327 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2328 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2329 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2330 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2331 } 2332 2333 if (isa<IntegerType>(SrcTy)) { 2334 // If this is a cast from an integer to vector, check to see if the input 2335 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2336 // the casts with a shuffle and (potentially) a bitcast. 2337 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2338 CastInst *SrcCast = cast<CastInst>(Src); 2339 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2340 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2341 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2342 cast<VectorType>(DestTy), *this)) 2343 return I; 2344 } 2345 2346 // If the input is an 'or' instruction, we may be doing shifts and ors to 2347 // assemble the elements of the vector manually. Try to rip the code out 2348 // and replace it with insertelements. 2349 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2350 return replaceInstUsesWith(CI, V); 2351 } 2352 } 2353 2354 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2355 if (SrcVTy->getNumElements() == 1) { 2356 // If our destination is not a vector, then make this a straight 2357 // scalar-scalar cast. 2358 if (!DestTy->isVectorTy()) { 2359 Value *Elem = 2360 Builder.CreateExtractElement(Src, 2361 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2362 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2363 } 2364 2365 // Otherwise, see if our source is an insert. If so, then use the scalar 2366 // component directly. 2367 if (InsertElementInst *IEI = 2368 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2369 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2370 DestTy); 2371 } 2372 } 2373 2374 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2375 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2376 // a bitcast to a vector with the same # elts. 2377 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2378 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2379 SVI->getType()->getNumElements() == 2380 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2381 BitCastInst *Tmp; 2382 // If either of the operands is a cast from CI.getType(), then 2383 // evaluating the shuffle in the casted destination's type will allow 2384 // us to eliminate at least one cast. 2385 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2386 Tmp->getOperand(0)->getType() == DestTy) || 2387 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2388 Tmp->getOperand(0)->getType() == DestTy)) { 2389 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2390 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2391 // Return a new shuffle vector. Use the same element ID's, as we 2392 // know the vector types match #elts. 2393 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2394 } 2395 } 2396 } 2397 2398 // Handle the A->B->A cast, and there is an intervening PHI node. 2399 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2400 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2401 return I; 2402 2403 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2404 return I; 2405 2406 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2407 return I; 2408 2409 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2410 return I; 2411 2412 if (SrcTy->isPointerTy()) 2413 return commonPointerCastTransforms(CI); 2414 return commonCastTransforms(CI); 2415 } 2416 2417 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2418 // If the destination pointer element type is not the same as the source's 2419 // first do a bitcast to the destination type, and then the addrspacecast. 2420 // This allows the cast to be exposed to other transforms. 2421 Value *Src = CI.getOperand(0); 2422 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2423 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2424 2425 Type *DestElemTy = DestTy->getElementType(); 2426 if (SrcTy->getElementType() != DestElemTy) { 2427 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2428 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2429 // Handle vectors of pointers. 2430 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2431 } 2432 2433 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2434 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2435 } 2436 2437 return commonPointerCastTransforms(CI); 2438 } 2439