1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   BuilderTy AllocaBuilder(Builder);
89   AllocaBuilder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlignment());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156   }
157   return replaceInstUsesWith(CI, New);
158 }
159 
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163                                              bool isSigned) {
164   if (Constant *C = dyn_cast<Constant>(V)) {
165     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166     // If we got a constantexpr back, try to simplify it with DL info.
167     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168       C = FoldedC;
169     return C;
170   }
171 
172   // Otherwise, it must be an instruction.
173   Instruction *I = cast<Instruction>(V);
174   Instruction *Res = nullptr;
175   unsigned Opc = I->getOpcode();
176   switch (Opc) {
177   case Instruction::Add:
178   case Instruction::Sub:
179   case Instruction::Mul:
180   case Instruction::And:
181   case Instruction::Or:
182   case Instruction::Xor:
183   case Instruction::AShr:
184   case Instruction::LShr:
185   case Instruction::Shl:
186   case Instruction::UDiv:
187   case Instruction::URem: {
188     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191     break;
192   }
193   case Instruction::Trunc:
194   case Instruction::ZExt:
195   case Instruction::SExt:
196     // If the source type of the cast is the type we're trying for then we can
197     // just return the source.  There's no need to insert it because it is not
198     // new.
199     if (I->getOperand(0)->getType() == Ty)
200       return I->getOperand(0);
201 
202     // Otherwise, must be the same type of cast, so just reinsert a new one.
203     // This also handles the case of zext(trunc(x)) -> zext(x).
204     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205                                       Opc == Instruction::SExt);
206     break;
207   case Instruction::Select: {
208     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210     Res = SelectInst::Create(I->getOperand(0), True, False);
211     break;
212   }
213   case Instruction::PHI: {
214     PHINode *OPN = cast<PHINode>(I);
215     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217       Value *V =
218           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219       NPN->addIncoming(V, OPN->getIncomingBlock(i));
220     }
221     Res = NPN;
222     break;
223   }
224   default:
225     // TODO: Can handle more cases here.
226     llvm_unreachable("Unreachable!");
227   }
228 
229   Res->takeName(I);
230   return InsertNewInstWith(Res, *I);
231 }
232 
233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234                                                         const CastInst *CI2) {
235   Type *SrcTy = CI1->getSrcTy();
236   Type *MidTy = CI1->getDestTy();
237   Type *DstTy = CI2->getDestTy();
238 
239   Instruction::CastOps firstOp = CI1->getOpcode();
240   Instruction::CastOps secondOp = CI2->getOpcode();
241   Type *SrcIntPtrTy =
242       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243   Type *MidIntPtrTy =
244       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245   Type *DstIntPtrTy =
246       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
249                                                 DstIntPtrTy);
250 
251   // We don't want to form an inttoptr or ptrtoint that converts to an integer
252   // type that differs from the pointer size.
253   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255     Res = 0;
256 
257   return Instruction::CastOps(Res);
258 }
259 
260 /// Implement the transforms common to all CastInst visitors.
261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262   Value *Src = CI.getOperand(0);
263 
264   // Try to eliminate a cast of a cast.
265   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
266     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267       // The first cast (CSrc) is eliminable so we need to fix up or replace
268       // the second cast (CI). CSrc will then have a good chance of being dead.
269       auto *Ty = CI.getType();
270       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271       // Point debug users of the dying cast to the new one.
272       if (CSrc->hasOneUse())
273         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274       return Res;
275     }
276   }
277 
278   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279     // We are casting a select. Try to fold the cast into the select, but only
280     // if the select does not have a compare instruction with matching operand
281     // types. Creating a select with operands that are different sizes than its
282     // condition may inhibit other folds and lead to worse codegen.
283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287         return NV;
288       }
289   }
290 
291   // If we are casting a PHI, then fold the cast into the PHI.
292   if (auto *PN = dyn_cast<PHINode>(Src)) {
293     // Don't do this if it would create a PHI node with an illegal type from a
294     // legal type.
295     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296         shouldChangeType(CI.getType(), Src->getType()))
297       if (Instruction *NV = foldOpIntoPhi(CI, PN))
298         return NV;
299   }
300 
301   return nullptr;
302 }
303 
304 /// Constants and extensions/truncates from the destination type are always
305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307   if (isa<Constant>(V))
308     return true;
309   Value *X;
310   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311       X->getType() == Ty)
312     return true;
313 
314   return false;
315 }
316 
317 /// Filter out values that we can not evaluate in the destination type for free.
318 /// This is a helper for canEvaluate*.
319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
320   assert(!isa<Constant>(V) && "Constant should already be handled.");
321   if (!isa<Instruction>(V))
322     return true;
323   // We don't extend or shrink something that has multiple uses --  doing so
324   // would require duplicating the instruction which isn't profitable.
325   if (!V->hasOneUse())
326     return true;
327 
328   return false;
329 }
330 
331 /// Return true if we can evaluate the specified expression tree as type Ty
332 /// instead of its larger type, and arrive with the same value.
333 /// This is used by code that tries to eliminate truncates.
334 ///
335 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
336 /// can be computed by computing V in the smaller type.  If V is an instruction,
337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338 /// makes sense if x and y can be efficiently truncated.
339 ///
340 /// This function works on both vectors and scalars.
341 ///
342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343                                  Instruction *CxtI) {
344   if (canAlwaysEvaluateInType(V, Ty))
345     return true;
346   if (canNotEvaluateInType(V, Ty))
347     return false;
348 
349   auto *I = cast<Instruction>(V);
350   Type *OrigTy = V->getType();
351   switch (I->getOpcode()) {
352   case Instruction::Add:
353   case Instruction::Sub:
354   case Instruction::Mul:
355   case Instruction::And:
356   case Instruction::Or:
357   case Instruction::Xor:
358     // These operators can all arbitrarily be extended or truncated.
359     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361 
362   case Instruction::UDiv:
363   case Instruction::URem: {
364     // UDiv and URem can be truncated if all the truncated bits are zero.
365     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366     uint32_t BitWidth = Ty->getScalarSizeInBits();
367     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373     }
374     break;
375   }
376   case Instruction::Shl: {
377     // If we are truncating the result of this SHL, and if it's a shift of a
378     // constant amount, we can always perform a SHL in a smaller type.
379     const APInt *Amt;
380     if (match(I->getOperand(1), m_APInt(Amt))) {
381       uint32_t BitWidth = Ty->getScalarSizeInBits();
382       if (Amt->getLimitedValue(BitWidth) < BitWidth)
383         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384     }
385     break;
386   }
387   case Instruction::LShr: {
388     // If this is a truncate of a logical shr, we can truncate it to a smaller
389     // lshr iff we know that the bits we would otherwise be shifting in are
390     // already zeros.
391     const APInt *Amt;
392     if (match(I->getOperand(1), m_APInt(Amt))) {
393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394       uint32_t BitWidth = Ty->getScalarSizeInBits();
395       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396           IC.MaskedValueIsZero(I->getOperand(0),
397             APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399       }
400     }
401     break;
402   }
403   case Instruction::AShr: {
404     // If this is a truncate of an arithmetic shr, we can truncate it to a
405     // smaller ashr iff we know that all the bits from the sign bit of the
406     // original type and the sign bit of the truncate type are similar.
407     // TODO: It is enough to check that the bits we would be shifting in are
408     //       similar to sign bit of the truncate type.
409     const APInt *Amt;
410     if (match(I->getOperand(1), m_APInt(Amt))) {
411       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412       uint32_t BitWidth = Ty->getScalarSizeInBits();
413       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414           OrigBitWidth - BitWidth <
415               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417     }
418     break;
419   }
420   case Instruction::Trunc:
421     // trunc(trunc(x)) -> trunc(x)
422     return true;
423   case Instruction::ZExt:
424   case Instruction::SExt:
425     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427     return true;
428   case Instruction::Select: {
429     SelectInst *SI = cast<SelectInst>(I);
430     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432   }
433   case Instruction::PHI: {
434     // We can change a phi if we can change all operands.  Note that we never
435     // get into trouble with cyclic PHIs here because we only consider
436     // instructions with a single use.
437     PHINode *PN = cast<PHINode>(I);
438     for (Value *IncValue : PN->incoming_values())
439       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440         return false;
441     return true;
442   }
443   default:
444     // TODO: Can handle more cases here.
445     break;
446   }
447 
448   return false;
449 }
450 
451 /// Given a vector that is bitcast to an integer, optionally logically
452 /// right-shifted, and truncated, convert it to an extractelement.
453 /// Example (big endian):
454 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455 ///   --->
456 ///   extractelement <4 x i32> %X, 1
457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458   Value *TruncOp = Trunc.getOperand(0);
459   Type *DestType = Trunc.getType();
460   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461     return nullptr;
462 
463   Value *VecInput = nullptr;
464   ConstantInt *ShiftVal = nullptr;
465   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466                                   m_LShr(m_BitCast(m_Value(VecInput)),
467                                          m_ConstantInt(ShiftVal)))) ||
468       !isa<VectorType>(VecInput->getType()))
469     return nullptr;
470 
471   VectorType *VecType = cast<VectorType>(VecInput->getType());
472   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475 
476   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477     return nullptr;
478 
479   // If the element type of the vector doesn't match the result type,
480   // bitcast it to a vector type that we can extract from.
481   unsigned NumVecElts = VecWidth / DestWidth;
482   if (VecType->getElementType() != DestType) {
483     VecType = VectorType::get(DestType, NumVecElts);
484     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485   }
486 
487   unsigned Elt = ShiftAmount / DestWidth;
488   if (IC.getDataLayout().isBigEndian())
489     Elt = NumVecElts - 1 - Elt;
490 
491   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492 }
493 
494 /// Rotate left/right may occur in a wider type than necessary because of type
495 /// promotion rules. Try to narrow all of the component instructions.
496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497   assert((isa<VectorType>(Trunc.getSrcTy()) ||
498           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499          "Don't narrow to an illegal scalar type");
500 
501   // Bail out on strange types. It is possible to handle some of these patterns
502   // even with non-power-of-2 sizes, but it is not a likely scenario.
503   Type *DestTy = Trunc.getType();
504   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
505   if (!isPowerOf2_32(NarrowWidth))
506     return nullptr;
507 
508   // First, find an or'd pair of opposite shifts with the same shifted operand:
509   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
510   Value *Or0, *Or1;
511   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
512     return nullptr;
513 
514   Value *ShVal, *ShAmt0, *ShAmt1;
515   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
516       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
517     return nullptr;
518 
519   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
520   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
521   if (ShiftOpcode0 == ShiftOpcode1)
522     return nullptr;
523 
524   // Match the shift amount operands for a rotate pattern. This always matches
525   // a subtraction on the R operand.
526   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
527     // The shift amounts may add up to the narrow bit width:
528     // (shl ShVal, L) | (lshr ShVal, Width - L)
529     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
530       return L;
531 
532     // The shift amount may be masked with negation:
533     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
534     Value *X;
535     unsigned Mask = Width - 1;
536     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
537         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
538       return X;
539 
540     // Same as above, but the shift amount may be extended after masking:
541     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
542         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
543       return X;
544 
545     return nullptr;
546   };
547 
548   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
549   bool SubIsOnLHS = false;
550   if (!ShAmt) {
551     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
552     SubIsOnLHS = true;
553   }
554   if (!ShAmt)
555     return nullptr;
556 
557   // The shifted value must have high zeros in the wide type. Typically, this
558   // will be a zext, but it could also be the result of an 'and' or 'shift'.
559   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
560   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
561   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
562     return nullptr;
563 
564   // We have an unnecessarily wide rotate!
565   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
566   // Narrow it down to eliminate the zext/trunc:
567   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
568   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
569   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
570 
571   // Mask both shift amounts to ensure there's no UB from oversized shifts.
572   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
573   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
574   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
575 
576   // Truncate the original value and use narrow ops.
577   Value *X = Builder.CreateTrunc(ShVal, DestTy);
578   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
579   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
580   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
581   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
582   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
583 }
584 
585 /// Try to narrow the width of math or bitwise logic instructions by pulling a
586 /// truncate ahead of binary operators.
587 /// TODO: Transforms for truncated shifts should be moved into here.
588 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
589   Type *SrcTy = Trunc.getSrcTy();
590   Type *DestTy = Trunc.getType();
591   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
592     return nullptr;
593 
594   BinaryOperator *BinOp;
595   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
596     return nullptr;
597 
598   Value *BinOp0 = BinOp->getOperand(0);
599   Value *BinOp1 = BinOp->getOperand(1);
600   switch (BinOp->getOpcode()) {
601   case Instruction::And:
602   case Instruction::Or:
603   case Instruction::Xor:
604   case Instruction::Add:
605   case Instruction::Sub:
606   case Instruction::Mul: {
607     Constant *C;
608     if (match(BinOp0, m_Constant(C))) {
609       // trunc (binop C, X) --> binop (trunc C', X)
610       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
611       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
612       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
613     }
614     if (match(BinOp1, m_Constant(C))) {
615       // trunc (binop X, C) --> binop (trunc X, C')
616       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
617       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
618       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
619     }
620     Value *X;
621     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
622       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
623       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
624       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
625     }
626     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
627       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
628       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
629       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
630     }
631     break;
632   }
633 
634   default: break;
635   }
636 
637   if (Instruction *NarrowOr = narrowRotate(Trunc))
638     return NarrowOr;
639 
640   return nullptr;
641 }
642 
643 /// Try to narrow the width of a splat shuffle. This could be generalized to any
644 /// shuffle with a constant operand, but we limit the transform to avoid
645 /// creating a shuffle type that targets may not be able to lower effectively.
646 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
647                                        InstCombiner::BuilderTy &Builder) {
648   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
649   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
650       Shuf->getMask()->getSplatValue() &&
651       Shuf->getType() == Shuf->getOperand(0)->getType()) {
652     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
653     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
654     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
655     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
656   }
657 
658   return nullptr;
659 }
660 
661 /// Try to narrow the width of an insert element. This could be generalized for
662 /// any vector constant, but we limit the transform to insertion into undef to
663 /// avoid potential backend problems from unsupported insertion widths. This
664 /// could also be extended to handle the case of inserting a scalar constant
665 /// into a vector variable.
666 static Instruction *shrinkInsertElt(CastInst &Trunc,
667                                     InstCombiner::BuilderTy &Builder) {
668   Instruction::CastOps Opcode = Trunc.getOpcode();
669   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
670          "Unexpected instruction for shrinking");
671 
672   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
673   if (!InsElt || !InsElt->hasOneUse())
674     return nullptr;
675 
676   Type *DestTy = Trunc.getType();
677   Type *DestScalarTy = DestTy->getScalarType();
678   Value *VecOp = InsElt->getOperand(0);
679   Value *ScalarOp = InsElt->getOperand(1);
680   Value *Index = InsElt->getOperand(2);
681 
682   if (isa<UndefValue>(VecOp)) {
683     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
684     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
685     UndefValue *NarrowUndef = UndefValue::get(DestTy);
686     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
687     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
688   }
689 
690   return nullptr;
691 }
692 
693 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
694   if (Instruction *Result = commonCastTransforms(CI))
695     return Result;
696 
697   Value *Src = CI.getOperand(0);
698   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
699 
700   // Attempt to truncate the entire input expression tree to the destination
701   // type.   Only do this if the dest type is a simple type, don't convert the
702   // expression tree to something weird like i93 unless the source is also
703   // strange.
704   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
705       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
706 
707     // If this cast is a truncate, evaluting in a different type always
708     // eliminates the cast, so it is always a win.
709     LLVM_DEBUG(
710         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
711                   " to avoid cast: "
712                << CI << '\n');
713     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
714     assert(Res->getType() == DestTy);
715     return replaceInstUsesWith(CI, Res);
716   }
717 
718   // Test if the trunc is the user of a select which is part of a
719   // minimum or maximum operation. If so, don't do any more simplification.
720   // Even simplifying demanded bits can break the canonical form of a
721   // min/max.
722   Value *LHS, *RHS;
723   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
724     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
725       return nullptr;
726 
727   // See if we can simplify any instructions used by the input whose sole
728   // purpose is to compute bits we don't care about.
729   if (SimplifyDemandedInstructionBits(CI))
730     return &CI;
731 
732   if (DestTy->getScalarSizeInBits() == 1) {
733     Value *Zero = Constant::getNullValue(Src->getType());
734     if (DestTy->isIntegerTy()) {
735       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
736       // TODO: We canonicalize to more instructions here because we are probably
737       // lacking equivalent analysis for trunc relative to icmp. There may also
738       // be codegen concerns. If those trunc limitations were removed, we could
739       // remove this transform.
740       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
741       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
742     }
743 
744     // For vectors, we do not canonicalize all truncs to icmp, so optimize
745     // patterns that would be covered within visitICmpInst.
746     Value *X;
747     const APInt *C;
748     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
749       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
750       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
751       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
752       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
753     }
754     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
755                                    m_Deferred(X))))) {
756       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
757       APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
758       Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
759       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
760     }
761   }
762 
763   // FIXME: Maybe combine the next two transforms to handle the no cast case
764   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
765 
766   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
767   Value *A = nullptr; ConstantInt *Cst = nullptr;
768   if (Src->hasOneUse() &&
769       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
770     // We have three types to worry about here, the type of A, the source of
771     // the truncate (MidSize), and the destination of the truncate. We know that
772     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
773     // between ASize and ResultSize.
774     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
775 
776     // If the shift amount is larger than the size of A, then the result is
777     // known to be zero because all the input bits got shifted out.
778     if (Cst->getZExtValue() >= ASize)
779       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
780 
781     // Since we're doing an lshr and a zero extend, and know that the shift
782     // amount is smaller than ASize, it is always safe to do the shift in A's
783     // type, then zero extend or truncate to the result.
784     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
785     Shift->takeName(Src);
786     return CastInst::CreateIntegerCast(Shift, DestTy, false);
787   }
788 
789   // FIXME: We should canonicalize to zext/trunc and remove this transform.
790   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
791   // conversion.
792   // It works because bits coming from sign extension have the same value as
793   // the sign bit of the original value; performing ashr instead of lshr
794   // generates bits of the same value as the sign bit.
795   if (Src->hasOneUse() &&
796       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
797     Value *SExt = cast<Instruction>(Src)->getOperand(0);
798     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
799     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
800     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
801     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
802     unsigned ShiftAmt = Cst->getZExtValue();
803 
804     // This optimization can be only performed when zero bits generated by
805     // the original lshr aren't pulled into the value after truncation, so we
806     // can only shift by values no larger than the number of extension bits.
807     // FIXME: Instead of bailing when the shift is too large, use and to clear
808     // the extra bits.
809     if (ShiftAmt <= MaxAmt) {
810       if (CISize == ASize)
811         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
812                                           std::min(ShiftAmt, ASize - 1)));
813       if (SExt->hasOneUse()) {
814         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
815         Shift->takeName(Src);
816         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
817       }
818     }
819   }
820 
821   if (Instruction *I = narrowBinOp(CI))
822     return I;
823 
824   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
825     return I;
826 
827   if (Instruction *I = shrinkInsertElt(CI, Builder))
828     return I;
829 
830   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
831       shouldChangeType(SrcTy, DestTy)) {
832     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
833     // dest type is native and cst < dest size.
834     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
835         !match(A, m_Shr(m_Value(), m_Constant()))) {
836       // Skip shifts of shift by constants. It undoes a combine in
837       // FoldShiftByConstant and is the extend in reg pattern.
838       const unsigned DestSize = DestTy->getScalarSizeInBits();
839       if (Cst->getValue().ult(DestSize)) {
840         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
841 
842         return BinaryOperator::Create(
843           Instruction::Shl, NewTrunc,
844           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
845       }
846     }
847   }
848 
849   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
850     return I;
851 
852   return nullptr;
853 }
854 
855 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
856                                              bool DoTransform) {
857   // If we are just checking for a icmp eq of a single bit and zext'ing it
858   // to an integer, then shift the bit to the appropriate place and then
859   // cast to integer to avoid the comparison.
860   const APInt *Op1CV;
861   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
862 
863     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
864     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
865     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
866         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
867       if (!DoTransform) return ICI;
868 
869       Value *In = ICI->getOperand(0);
870       Value *Sh = ConstantInt::get(In->getType(),
871                                    In->getType()->getScalarSizeInBits() - 1);
872       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
873       if (In->getType() != CI.getType())
874         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
875 
876       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
877         Constant *One = ConstantInt::get(In->getType(), 1);
878         In = Builder.CreateXor(In, One, In->getName() + ".not");
879       }
880 
881       return replaceInstUsesWith(CI, In);
882     }
883 
884     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
885     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
886     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
887     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
888     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
889     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
890     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
891     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
892     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
893         // This only works for EQ and NE
894         ICI->isEquality()) {
895       // If Op1C some other power of two, convert:
896       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
897 
898       APInt KnownZeroMask(~Known.Zero);
899       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
900         if (!DoTransform) return ICI;
901 
902         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
903         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
904           // (X&4) == 2 --> false
905           // (X&4) != 2 --> true
906           Constant *Res = ConstantInt::get(CI.getType(), isNE);
907           return replaceInstUsesWith(CI, Res);
908         }
909 
910         uint32_t ShAmt = KnownZeroMask.logBase2();
911         Value *In = ICI->getOperand(0);
912         if (ShAmt) {
913           // Perform a logical shr by shiftamt.
914           // Insert the shift to put the result in the low bit.
915           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
916                                   In->getName() + ".lobit");
917         }
918 
919         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
920           Constant *One = ConstantInt::get(In->getType(), 1);
921           In = Builder.CreateXor(In, One);
922         }
923 
924         if (CI.getType() == In->getType())
925           return replaceInstUsesWith(CI, In);
926 
927         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
928         return replaceInstUsesWith(CI, IntCast);
929       }
930     }
931   }
932 
933   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
934   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
935   // may lead to additional simplifications.
936   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
937     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
938       Value *LHS = ICI->getOperand(0);
939       Value *RHS = ICI->getOperand(1);
940 
941       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
942       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
943 
944       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
945         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
946         APInt UnknownBit = ~KnownBits;
947         if (UnknownBit.countPopulation() == 1) {
948           if (!DoTransform) return ICI;
949 
950           Value *Result = Builder.CreateXor(LHS, RHS);
951 
952           // Mask off any bits that are set and won't be shifted away.
953           if (KnownLHS.One.uge(UnknownBit))
954             Result = Builder.CreateAnd(Result,
955                                         ConstantInt::get(ITy, UnknownBit));
956 
957           // Shift the bit we're testing down to the lsb.
958           Result = Builder.CreateLShr(
959                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
960 
961           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
962             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
963           Result->takeName(ICI);
964           return replaceInstUsesWith(CI, Result);
965         }
966       }
967     }
968   }
969 
970   return nullptr;
971 }
972 
973 /// Determine if the specified value can be computed in the specified wider type
974 /// and produce the same low bits. If not, return false.
975 ///
976 /// If this function returns true, it can also return a non-zero number of bits
977 /// (in BitsToClear) which indicates that the value it computes is correct for
978 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
979 /// out.  For example, to promote something like:
980 ///
981 ///   %B = trunc i64 %A to i32
982 ///   %C = lshr i32 %B, 8
983 ///   %E = zext i32 %C to i64
984 ///
985 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
986 /// set to 8 to indicate that the promoted value needs to have bits 24-31
987 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
988 /// clear the top bits anyway, doing this has no extra cost.
989 ///
990 /// This function works on both vectors and scalars.
991 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
992                              InstCombiner &IC, Instruction *CxtI) {
993   BitsToClear = 0;
994   if (canAlwaysEvaluateInType(V, Ty))
995     return true;
996   if (canNotEvaluateInType(V, Ty))
997     return false;
998 
999   auto *I = cast<Instruction>(V);
1000   unsigned Tmp;
1001   switch (I->getOpcode()) {
1002   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1003   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1004   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1005     return true;
1006   case Instruction::And:
1007   case Instruction::Or:
1008   case Instruction::Xor:
1009   case Instruction::Add:
1010   case Instruction::Sub:
1011   case Instruction::Mul:
1012     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1013         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1014       return false;
1015     // These can all be promoted if neither operand has 'bits to clear'.
1016     if (BitsToClear == 0 && Tmp == 0)
1017       return true;
1018 
1019     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1020     // other side, BitsToClear is ok.
1021     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1022       // We use MaskedValueIsZero here for generality, but the case we care
1023       // about the most is constant RHS.
1024       unsigned VSize = V->getType()->getScalarSizeInBits();
1025       if (IC.MaskedValueIsZero(I->getOperand(1),
1026                                APInt::getHighBitsSet(VSize, BitsToClear),
1027                                0, CxtI)) {
1028         // If this is an And instruction and all of the BitsToClear are
1029         // known to be zero we can reset BitsToClear.
1030         if (I->getOpcode() == Instruction::And)
1031           BitsToClear = 0;
1032         return true;
1033       }
1034     }
1035 
1036     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1037     return false;
1038 
1039   case Instruction::Shl: {
1040     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1041     // upper bits we can reduce BitsToClear by the shift amount.
1042     const APInt *Amt;
1043     if (match(I->getOperand(1), m_APInt(Amt))) {
1044       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1045         return false;
1046       uint64_t ShiftAmt = Amt->getZExtValue();
1047       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1048       return true;
1049     }
1050     return false;
1051   }
1052   case Instruction::LShr: {
1053     // We can promote lshr(x, cst) if we can promote x.  This requires the
1054     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1055     const APInt *Amt;
1056     if (match(I->getOperand(1), m_APInt(Amt))) {
1057       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1058         return false;
1059       BitsToClear += Amt->getZExtValue();
1060       if (BitsToClear > V->getType()->getScalarSizeInBits())
1061         BitsToClear = V->getType()->getScalarSizeInBits();
1062       return true;
1063     }
1064     // Cannot promote variable LSHR.
1065     return false;
1066   }
1067   case Instruction::Select:
1068     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1069         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1070         // TODO: If important, we could handle the case when the BitsToClear are
1071         // known zero in the disagreeing side.
1072         Tmp != BitsToClear)
1073       return false;
1074     return true;
1075 
1076   case Instruction::PHI: {
1077     // We can change a phi if we can change all operands.  Note that we never
1078     // get into trouble with cyclic PHIs here because we only consider
1079     // instructions with a single use.
1080     PHINode *PN = cast<PHINode>(I);
1081     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1082       return false;
1083     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1084       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1085           // TODO: If important, we could handle the case when the BitsToClear
1086           // are known zero in the disagreeing input.
1087           Tmp != BitsToClear)
1088         return false;
1089     return true;
1090   }
1091   default:
1092     // TODO: Can handle more cases here.
1093     return false;
1094   }
1095 }
1096 
1097 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1098   // If this zero extend is only used by a truncate, let the truncate be
1099   // eliminated before we try to optimize this zext.
1100   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1101     return nullptr;
1102 
1103   // If one of the common conversion will work, do it.
1104   if (Instruction *Result = commonCastTransforms(CI))
1105     return Result;
1106 
1107   Value *Src = CI.getOperand(0);
1108   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1109 
1110   // Try to extend the entire expression tree to the wide destination type.
1111   unsigned BitsToClear;
1112   if (shouldChangeType(SrcTy, DestTy) &&
1113       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1114     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1115            "Can't clear more bits than in SrcTy");
1116 
1117     // Okay, we can transform this!  Insert the new expression now.
1118     LLVM_DEBUG(
1119         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1120                   " to avoid zero extend: "
1121                << CI << '\n');
1122     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1123     assert(Res->getType() == DestTy);
1124 
1125     // Preserve debug values referring to Src if the zext is its last use.
1126     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1127       if (SrcOp->hasOneUse())
1128         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1129 
1130     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1131     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1132 
1133     // If the high bits are already filled with zeros, just replace this
1134     // cast with the result.
1135     if (MaskedValueIsZero(Res,
1136                           APInt::getHighBitsSet(DestBitSize,
1137                                                 DestBitSize-SrcBitsKept),
1138                              0, &CI))
1139       return replaceInstUsesWith(CI, Res);
1140 
1141     // We need to emit an AND to clear the high bits.
1142     Constant *C = ConstantInt::get(Res->getType(),
1143                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1144     return BinaryOperator::CreateAnd(Res, C);
1145   }
1146 
1147   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1148   // types and if the sizes are just right we can convert this into a logical
1149   // 'and' which will be much cheaper than the pair of casts.
1150   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1151     // TODO: Subsume this into EvaluateInDifferentType.
1152 
1153     // Get the sizes of the types involved.  We know that the intermediate type
1154     // will be smaller than A or C, but don't know the relation between A and C.
1155     Value *A = CSrc->getOperand(0);
1156     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1157     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1158     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1159     // If we're actually extending zero bits, then if
1160     // SrcSize <  DstSize: zext(a & mask)
1161     // SrcSize == DstSize: a & mask
1162     // SrcSize  > DstSize: trunc(a) & mask
1163     if (SrcSize < DstSize) {
1164       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1165       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1166       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1167       return new ZExtInst(And, CI.getType());
1168     }
1169 
1170     if (SrcSize == DstSize) {
1171       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1172       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1173                                                            AndValue));
1174     }
1175     if (SrcSize > DstSize) {
1176       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1177       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1178       return BinaryOperator::CreateAnd(Trunc,
1179                                        ConstantInt::get(Trunc->getType(),
1180                                                         AndValue));
1181     }
1182   }
1183 
1184   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1185     return transformZExtICmp(ICI, CI);
1186 
1187   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1188   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1189     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1190     // of the (zext icmp) can be eliminated. If so, immediately perform the
1191     // according elimination.
1192     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1193     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1194     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1195         (transformZExtICmp(LHS, CI, false) ||
1196          transformZExtICmp(RHS, CI, false))) {
1197       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1198       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1199       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1200       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1201 
1202       // Perform the elimination.
1203       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1204         transformZExtICmp(LHS, *LZExt);
1205       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1206         transformZExtICmp(RHS, *RZExt);
1207 
1208       return Or;
1209     }
1210   }
1211 
1212   // zext(trunc(X) & C) -> (X & zext(C)).
1213   Constant *C;
1214   Value *X;
1215   if (SrcI &&
1216       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1217       X->getType() == CI.getType())
1218     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1219 
1220   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1221   Value *And;
1222   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1223       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1224       X->getType() == CI.getType()) {
1225     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1226     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1227   }
1228 
1229   return nullptr;
1230 }
1231 
1232 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1233 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1234   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1235   ICmpInst::Predicate Pred = ICI->getPredicate();
1236 
1237   // Don't bother if Op1 isn't of vector or integer type.
1238   if (!Op1->getType()->isIntOrIntVectorTy())
1239     return nullptr;
1240 
1241   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1242       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1243     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1244     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1245     Value *Sh = ConstantInt::get(Op0->getType(),
1246                                  Op0->getType()->getScalarSizeInBits() - 1);
1247     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1248     if (In->getType() != CI.getType())
1249       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1250 
1251     if (Pred == ICmpInst::ICMP_SGT)
1252       In = Builder.CreateNot(In, In->getName() + ".not");
1253     return replaceInstUsesWith(CI, In);
1254   }
1255 
1256   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1257     // If we know that only one bit of the LHS of the icmp can be set and we
1258     // have an equality comparison with zero or a power of 2, we can transform
1259     // the icmp and sext into bitwise/integer operations.
1260     if (ICI->hasOneUse() &&
1261         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1262       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1263 
1264       APInt KnownZeroMask(~Known.Zero);
1265       if (KnownZeroMask.isPowerOf2()) {
1266         Value *In = ICI->getOperand(0);
1267 
1268         // If the icmp tests for a known zero bit we can constant fold it.
1269         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1270           Value *V = Pred == ICmpInst::ICMP_NE ?
1271                        ConstantInt::getAllOnesValue(CI.getType()) :
1272                        ConstantInt::getNullValue(CI.getType());
1273           return replaceInstUsesWith(CI, V);
1274         }
1275 
1276         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1277           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1278           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1279           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1280           // Perform a right shift to place the desired bit in the LSB.
1281           if (ShiftAmt)
1282             In = Builder.CreateLShr(In,
1283                                     ConstantInt::get(In->getType(), ShiftAmt));
1284 
1285           // At this point "In" is either 1 or 0. Subtract 1 to turn
1286           // {1, 0} -> {0, -1}.
1287           In = Builder.CreateAdd(In,
1288                                  ConstantInt::getAllOnesValue(In->getType()),
1289                                  "sext");
1290         } else {
1291           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1292           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1293           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1294           // Perform a left shift to place the desired bit in the MSB.
1295           if (ShiftAmt)
1296             In = Builder.CreateShl(In,
1297                                    ConstantInt::get(In->getType(), ShiftAmt));
1298 
1299           // Distribute the bit over the whole bit width.
1300           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1301                                   KnownZeroMask.getBitWidth() - 1), "sext");
1302         }
1303 
1304         if (CI.getType() == In->getType())
1305           return replaceInstUsesWith(CI, In);
1306         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1307       }
1308     }
1309   }
1310 
1311   return nullptr;
1312 }
1313 
1314 /// Return true if we can take the specified value and return it as type Ty
1315 /// without inserting any new casts and without changing the value of the common
1316 /// low bits.  This is used by code that tries to promote integer operations to
1317 /// a wider types will allow us to eliminate the extension.
1318 ///
1319 /// This function works on both vectors and scalars.
1320 ///
1321 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1322   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1323          "Can't sign extend type to a smaller type");
1324   if (canAlwaysEvaluateInType(V, Ty))
1325     return true;
1326   if (canNotEvaluateInType(V, Ty))
1327     return false;
1328 
1329   auto *I = cast<Instruction>(V);
1330   switch (I->getOpcode()) {
1331   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1332   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1333   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1334     return true;
1335   case Instruction::And:
1336   case Instruction::Or:
1337   case Instruction::Xor:
1338   case Instruction::Add:
1339   case Instruction::Sub:
1340   case Instruction::Mul:
1341     // These operators can all arbitrarily be extended if their inputs can.
1342     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1343            canEvaluateSExtd(I->getOperand(1), Ty);
1344 
1345   //case Instruction::Shl:   TODO
1346   //case Instruction::LShr:  TODO
1347 
1348   case Instruction::Select:
1349     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1350            canEvaluateSExtd(I->getOperand(2), Ty);
1351 
1352   case Instruction::PHI: {
1353     // We can change a phi if we can change all operands.  Note that we never
1354     // get into trouble with cyclic PHIs here because we only consider
1355     // instructions with a single use.
1356     PHINode *PN = cast<PHINode>(I);
1357     for (Value *IncValue : PN->incoming_values())
1358       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1359     return true;
1360   }
1361   default:
1362     // TODO: Can handle more cases here.
1363     break;
1364   }
1365 
1366   return false;
1367 }
1368 
1369 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1370   // If this sign extend is only used by a truncate, let the truncate be
1371   // eliminated before we try to optimize this sext.
1372   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1373     return nullptr;
1374 
1375   if (Instruction *I = commonCastTransforms(CI))
1376     return I;
1377 
1378   Value *Src = CI.getOperand(0);
1379   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1380 
1381   // If we know that the value being extended is positive, we can use a zext
1382   // instead.
1383   KnownBits Known = computeKnownBits(Src, 0, &CI);
1384   if (Known.isNonNegative()) {
1385     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1386     return replaceInstUsesWith(CI, ZExt);
1387   }
1388 
1389   // Try to extend the entire expression tree to the wide destination type.
1390   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1391     // Okay, we can transform this!  Insert the new expression now.
1392     LLVM_DEBUG(
1393         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1394                   " to avoid sign extend: "
1395                << CI << '\n');
1396     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1397     assert(Res->getType() == DestTy);
1398 
1399     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1400     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1401 
1402     // If the high bits are already filled with sign bit, just replace this
1403     // cast with the result.
1404     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1405       return replaceInstUsesWith(CI, Res);
1406 
1407     // We need to emit a shl + ashr to do the sign extend.
1408     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1409     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1410                                       ShAmt);
1411   }
1412 
1413   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1414   // into shifts.
1415   Value *X;
1416   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1417     // sext(trunc(X)) --> ashr(shl(X, C), C)
1418     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1419     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1420     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1421     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1422   }
1423 
1424   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1425     return transformSExtICmp(ICI, CI);
1426 
1427   // If the input is a shl/ashr pair of a same constant, then this is a sign
1428   // extension from a smaller value.  If we could trust arbitrary bitwidth
1429   // integers, we could turn this into a truncate to the smaller bit and then
1430   // use a sext for the whole extension.  Since we don't, look deeper and check
1431   // for a truncate.  If the source and dest are the same type, eliminate the
1432   // trunc and extend and just do shifts.  For example, turn:
1433   //   %a = trunc i32 %i to i8
1434   //   %b = shl i8 %a, 6
1435   //   %c = ashr i8 %b, 6
1436   //   %d = sext i8 %c to i32
1437   // into:
1438   //   %a = shl i32 %i, 30
1439   //   %d = ashr i32 %a, 30
1440   Value *A = nullptr;
1441   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1442   ConstantInt *BA = nullptr, *CA = nullptr;
1443   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1444                         m_ConstantInt(CA))) &&
1445       BA == CA && A->getType() == CI.getType()) {
1446     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1447     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1448     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1449     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1450     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1451     return BinaryOperator::CreateAShr(A, ShAmtV);
1452   }
1453 
1454   return nullptr;
1455 }
1456 
1457 
1458 /// Return a Constant* for the specified floating-point constant if it fits
1459 /// in the specified FP type without changing its value.
1460 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1461   bool losesInfo;
1462   APFloat F = CFP->getValueAPF();
1463   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1464   return !losesInfo;
1465 }
1466 
1467 static Type *shrinkFPConstant(ConstantFP *CFP) {
1468   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1469     return nullptr;  // No constant folding of this.
1470   // See if the value can be truncated to half and then reextended.
1471   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1472     return Type::getHalfTy(CFP->getContext());
1473   // See if the value can be truncated to float and then reextended.
1474   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1475     return Type::getFloatTy(CFP->getContext());
1476   if (CFP->getType()->isDoubleTy())
1477     return nullptr;  // Won't shrink.
1478   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1479     return Type::getDoubleTy(CFP->getContext());
1480   // Don't try to shrink to various long double types.
1481   return nullptr;
1482 }
1483 
1484 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1485 // type we can safely truncate all elements to.
1486 // TODO: Make these support undef elements.
1487 static Type *shrinkFPConstantVector(Value *V) {
1488   auto *CV = dyn_cast<Constant>(V);
1489   if (!CV || !CV->getType()->isVectorTy())
1490     return nullptr;
1491 
1492   Type *MinType = nullptr;
1493 
1494   unsigned NumElts = CV->getType()->getVectorNumElements();
1495   for (unsigned i = 0; i != NumElts; ++i) {
1496     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1497     if (!CFP)
1498       return nullptr;
1499 
1500     Type *T = shrinkFPConstant(CFP);
1501     if (!T)
1502       return nullptr;
1503 
1504     // If we haven't found a type yet or this type has a larger mantissa than
1505     // our previous type, this is our new minimal type.
1506     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1507       MinType = T;
1508   }
1509 
1510   // Make a vector type from the minimal type.
1511   return VectorType::get(MinType, NumElts);
1512 }
1513 
1514 /// Find the minimum FP type we can safely truncate to.
1515 static Type *getMinimumFPType(Value *V) {
1516   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1517     return FPExt->getOperand(0)->getType();
1518 
1519   // If this value is a constant, return the constant in the smallest FP type
1520   // that can accurately represent it.  This allows us to turn
1521   // (float)((double)X+2.0) into x+2.0f.
1522   if (auto *CFP = dyn_cast<ConstantFP>(V))
1523     if (Type *T = shrinkFPConstant(CFP))
1524       return T;
1525 
1526   // Try to shrink a vector of FP constants.
1527   if (Type *T = shrinkFPConstantVector(V))
1528     return T;
1529 
1530   return V->getType();
1531 }
1532 
1533 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1534   if (Instruction *I = commonCastTransforms(FPT))
1535     return I;
1536 
1537   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1538   // simplify this expression to avoid one or more of the trunc/extend
1539   // operations if we can do so without changing the numerical results.
1540   //
1541   // The exact manner in which the widths of the operands interact to limit
1542   // what we can and cannot do safely varies from operation to operation, and
1543   // is explained below in the various case statements.
1544   Type *Ty = FPT.getType();
1545   BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1546   if (OpI && OpI->hasOneUse()) {
1547     Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1548     Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1549     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1550     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1551     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1552     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1553     unsigned DstWidth = Ty->getFPMantissaWidth();
1554     switch (OpI->getOpcode()) {
1555       default: break;
1556       case Instruction::FAdd:
1557       case Instruction::FSub:
1558         // For addition and subtraction, the infinitely precise result can
1559         // essentially be arbitrarily wide; proving that double rounding
1560         // will not occur because the result of OpI is exact (as we will for
1561         // FMul, for example) is hopeless.  However, we *can* nonetheless
1562         // frequently know that double rounding cannot occur (or that it is
1563         // innocuous) by taking advantage of the specific structure of
1564         // infinitely-precise results that admit double rounding.
1565         //
1566         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1567         // to represent both sources, we can guarantee that the double
1568         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1569         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1570         // for proof of this fact).
1571         //
1572         // Note: Figueroa does not consider the case where DstFormat !=
1573         // SrcFormat.  It's possible (likely even!) that this analysis
1574         // could be tightened for those cases, but they are rare (the main
1575         // case of interest here is (float)((double)float + float)).
1576         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1577           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1578           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1579           Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1580           RI->copyFastMathFlags(OpI);
1581           return RI;
1582         }
1583         break;
1584       case Instruction::FMul:
1585         // For multiplication, the infinitely precise result has at most
1586         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1587         // that such a value can be exactly represented, then no double
1588         // rounding can possibly occur; we can safely perform the operation
1589         // in the destination format if it can represent both sources.
1590         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1591           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1592           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1593           return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1594         }
1595         break;
1596       case Instruction::FDiv:
1597         // For division, we use again use the bound from Figueroa's
1598         // dissertation.  I am entirely certain that this bound can be
1599         // tightened in the unbalanced operand case by an analysis based on
1600         // the diophantine rational approximation bound, but the well-known
1601         // condition used here is a good conservative first pass.
1602         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1603         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1604           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1605           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1606           return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1607         }
1608         break;
1609       case Instruction::FRem: {
1610         // Remainder is straightforward.  Remainder is always exact, so the
1611         // type of OpI doesn't enter into things at all.  We simply evaluate
1612         // in whichever source type is larger, then convert to the
1613         // destination type.
1614         if (SrcWidth == OpWidth)
1615           break;
1616         Value *LHS, *RHS;
1617         if (LHSWidth == SrcWidth) {
1618            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1619            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1620         } else {
1621            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1622            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1623         }
1624 
1625         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1626         return CastInst::CreateFPCast(ExactResult, Ty);
1627       }
1628     }
1629 
1630     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1631     Value *X;
1632     if (match(OpI, m_FNeg(m_Value(X)))) {
1633       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1634       return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1635     }
1636   }
1637 
1638   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1639     switch (II->getIntrinsicID()) {
1640     default: break;
1641     case Intrinsic::ceil:
1642     case Intrinsic::fabs:
1643     case Intrinsic::floor:
1644     case Intrinsic::nearbyint:
1645     case Intrinsic::rint:
1646     case Intrinsic::round:
1647     case Intrinsic::trunc: {
1648       Value *Src = II->getArgOperand(0);
1649       if (!Src->hasOneUse())
1650         break;
1651 
1652       // Except for fabs, this transformation requires the input of the unary FP
1653       // operation to be itself an fpext from the type to which we're
1654       // truncating.
1655       if (II->getIntrinsicID() != Intrinsic::fabs) {
1656         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1657         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1658           break;
1659       }
1660 
1661       // Do unary FP operation on smaller type.
1662       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1663       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1664       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1665                                                      II->getIntrinsicID(), Ty);
1666       SmallVector<OperandBundleDef, 1> OpBundles;
1667       II->getOperandBundlesAsDefs(OpBundles);
1668       CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1669                                          II->getName());
1670       NewCI->copyFastMathFlags(II);
1671       return NewCI;
1672     }
1673     }
1674   }
1675 
1676   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1677     return I;
1678 
1679   return nullptr;
1680 }
1681 
1682 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1683   return commonCastTransforms(CI);
1684 }
1685 
1686 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1687 // This is safe if the intermediate type has enough bits in its mantissa to
1688 // accurately represent all values of X.  For example, this won't work with
1689 // i64 -> float -> i64.
1690 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1691   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1692     return nullptr;
1693   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1694 
1695   Value *SrcI = OpI->getOperand(0);
1696   Type *FITy = FI.getType();
1697   Type *OpITy = OpI->getType();
1698   Type *SrcTy = SrcI->getType();
1699   bool IsInputSigned = isa<SIToFPInst>(OpI);
1700   bool IsOutputSigned = isa<FPToSIInst>(FI);
1701 
1702   // We can safely assume the conversion won't overflow the output range,
1703   // because (for example) (uint8_t)18293.f is undefined behavior.
1704 
1705   // Since we can assume the conversion won't overflow, our decision as to
1706   // whether the input will fit in the float should depend on the minimum
1707   // of the input range and output range.
1708 
1709   // This means this is also safe for a signed input and unsigned output, since
1710   // a negative input would lead to undefined behavior.
1711   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1712   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1713   int ActualSize = std::min(InputSize, OutputSize);
1714 
1715   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1716     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1717       if (IsInputSigned && IsOutputSigned)
1718         return new SExtInst(SrcI, FITy);
1719       return new ZExtInst(SrcI, FITy);
1720     }
1721     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1722       return new TruncInst(SrcI, FITy);
1723     if (SrcTy == FITy)
1724       return replaceInstUsesWith(FI, SrcI);
1725     return new BitCastInst(SrcI, FITy);
1726   }
1727   return nullptr;
1728 }
1729 
1730 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1731   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1732   if (!OpI)
1733     return commonCastTransforms(FI);
1734 
1735   if (Instruction *I = FoldItoFPtoI(FI))
1736     return I;
1737 
1738   return commonCastTransforms(FI);
1739 }
1740 
1741 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1742   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1743   if (!OpI)
1744     return commonCastTransforms(FI);
1745 
1746   if (Instruction *I = FoldItoFPtoI(FI))
1747     return I;
1748 
1749   return commonCastTransforms(FI);
1750 }
1751 
1752 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1753   return commonCastTransforms(CI);
1754 }
1755 
1756 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1757   return commonCastTransforms(CI);
1758 }
1759 
1760 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1761   // If the source integer type is not the intptr_t type for this target, do a
1762   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1763   // cast to be exposed to other transforms.
1764   unsigned AS = CI.getAddressSpace();
1765   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1766       DL.getPointerSizeInBits(AS)) {
1767     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1768     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1769       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1770 
1771     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1772     return new IntToPtrInst(P, CI.getType());
1773   }
1774 
1775   if (Instruction *I = commonCastTransforms(CI))
1776     return I;
1777 
1778   return nullptr;
1779 }
1780 
1781 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1782 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1783   Value *Src = CI.getOperand(0);
1784 
1785   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1786     // If casting the result of a getelementptr instruction with no offset, turn
1787     // this into a cast of the original pointer!
1788     if (GEP->hasAllZeroIndices() &&
1789         // If CI is an addrspacecast and GEP changes the poiner type, merging
1790         // GEP into CI would undo canonicalizing addrspacecast with different
1791         // pointer types, causing infinite loops.
1792         (!isa<AddrSpaceCastInst>(CI) ||
1793          GEP->getType() == GEP->getPointerOperandType())) {
1794       // Changing the cast operand is usually not a good idea but it is safe
1795       // here because the pointer operand is being replaced with another
1796       // pointer operand so the opcode doesn't need to change.
1797       Worklist.Add(GEP);
1798       CI.setOperand(0, GEP->getOperand(0));
1799       return &CI;
1800     }
1801   }
1802 
1803   return commonCastTransforms(CI);
1804 }
1805 
1806 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1807   // If the destination integer type is not the intptr_t type for this target,
1808   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1809   // to be exposed to other transforms.
1810 
1811   Type *Ty = CI.getType();
1812   unsigned AS = CI.getPointerAddressSpace();
1813 
1814   if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1815     return commonPointerCastTransforms(CI);
1816 
1817   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1818   if (Ty->isVectorTy()) // Handle vectors of pointers.
1819     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1820 
1821   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1822   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1823 }
1824 
1825 /// This input value (which is known to have vector type) is being zero extended
1826 /// or truncated to the specified vector type.
1827 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1828 ///
1829 /// The source and destination vector types may have different element types.
1830 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1831                                          InstCombiner &IC) {
1832   // We can only do this optimization if the output is a multiple of the input
1833   // element size, or the input is a multiple of the output element size.
1834   // Convert the input type to have the same element type as the output.
1835   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1836 
1837   if (SrcTy->getElementType() != DestTy->getElementType()) {
1838     // The input types don't need to be identical, but for now they must be the
1839     // same size.  There is no specific reason we couldn't handle things like
1840     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1841     // there yet.
1842     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1843         DestTy->getElementType()->getPrimitiveSizeInBits())
1844       return nullptr;
1845 
1846     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1847     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1848   }
1849 
1850   // Now that the element types match, get the shuffle mask and RHS of the
1851   // shuffle to use, which depends on whether we're increasing or decreasing the
1852   // size of the input.
1853   SmallVector<uint32_t, 16> ShuffleMask;
1854   Value *V2;
1855 
1856   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1857     // If we're shrinking the number of elements, just shuffle in the low
1858     // elements from the input and use undef as the second shuffle input.
1859     V2 = UndefValue::get(SrcTy);
1860     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1861       ShuffleMask.push_back(i);
1862 
1863   } else {
1864     // If we're increasing the number of elements, shuffle in all of the
1865     // elements from InVal and fill the rest of the result elements with zeros
1866     // from a constant zero.
1867     V2 = Constant::getNullValue(SrcTy);
1868     unsigned SrcElts = SrcTy->getNumElements();
1869     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1870       ShuffleMask.push_back(i);
1871 
1872     // The excess elements reference the first element of the zero input.
1873     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1874       ShuffleMask.push_back(SrcElts);
1875   }
1876 
1877   return new ShuffleVectorInst(InVal, V2,
1878                                ConstantDataVector::get(V2->getContext(),
1879                                                        ShuffleMask));
1880 }
1881 
1882 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1883   return Value % Ty->getPrimitiveSizeInBits() == 0;
1884 }
1885 
1886 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1887   return Value / Ty->getPrimitiveSizeInBits();
1888 }
1889 
1890 /// V is a value which is inserted into a vector of VecEltTy.
1891 /// Look through the value to see if we can decompose it into
1892 /// insertions into the vector.  See the example in the comment for
1893 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1894 /// The type of V is always a non-zero multiple of VecEltTy's size.
1895 /// Shift is the number of bits between the lsb of V and the lsb of
1896 /// the vector.
1897 ///
1898 /// This returns false if the pattern can't be matched or true if it can,
1899 /// filling in Elements with the elements found here.
1900 static bool collectInsertionElements(Value *V, unsigned Shift,
1901                                      SmallVectorImpl<Value *> &Elements,
1902                                      Type *VecEltTy, bool isBigEndian) {
1903   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1904          "Shift should be a multiple of the element type size");
1905 
1906   // Undef values never contribute useful bits to the result.
1907   if (isa<UndefValue>(V)) return true;
1908 
1909   // If we got down to a value of the right type, we win, try inserting into the
1910   // right element.
1911   if (V->getType() == VecEltTy) {
1912     // Inserting null doesn't actually insert any elements.
1913     if (Constant *C = dyn_cast<Constant>(V))
1914       if (C->isNullValue())
1915         return true;
1916 
1917     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1918     if (isBigEndian)
1919       ElementIndex = Elements.size() - ElementIndex - 1;
1920 
1921     // Fail if multiple elements are inserted into this slot.
1922     if (Elements[ElementIndex])
1923       return false;
1924 
1925     Elements[ElementIndex] = V;
1926     return true;
1927   }
1928 
1929   if (Constant *C = dyn_cast<Constant>(V)) {
1930     // Figure out the # elements this provides, and bitcast it or slice it up
1931     // as required.
1932     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1933                                         VecEltTy);
1934     // If the constant is the size of a vector element, we just need to bitcast
1935     // it to the right type so it gets properly inserted.
1936     if (NumElts == 1)
1937       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1938                                       Shift, Elements, VecEltTy, isBigEndian);
1939 
1940     // Okay, this is a constant that covers multiple elements.  Slice it up into
1941     // pieces and insert each element-sized piece into the vector.
1942     if (!isa<IntegerType>(C->getType()))
1943       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1944                                        C->getType()->getPrimitiveSizeInBits()));
1945     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1946     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1947 
1948     for (unsigned i = 0; i != NumElts; ++i) {
1949       unsigned ShiftI = Shift+i*ElementSize;
1950       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1951                                                                   ShiftI));
1952       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1953       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1954                                     isBigEndian))
1955         return false;
1956     }
1957     return true;
1958   }
1959 
1960   if (!V->hasOneUse()) return false;
1961 
1962   Instruction *I = dyn_cast<Instruction>(V);
1963   if (!I) return false;
1964   switch (I->getOpcode()) {
1965   default: return false; // Unhandled case.
1966   case Instruction::BitCast:
1967     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1968                                     isBigEndian);
1969   case Instruction::ZExt:
1970     if (!isMultipleOfTypeSize(
1971                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1972                               VecEltTy))
1973       return false;
1974     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1975                                     isBigEndian);
1976   case Instruction::Or:
1977     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1978                                     isBigEndian) &&
1979            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1980                                     isBigEndian);
1981   case Instruction::Shl: {
1982     // Must be shifting by a constant that is a multiple of the element size.
1983     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1984     if (!CI) return false;
1985     Shift += CI->getZExtValue();
1986     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1987     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1988                                     isBigEndian);
1989   }
1990 
1991   }
1992 }
1993 
1994 
1995 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1996 /// assemble the elements of the vector manually.
1997 /// Try to rip the code out and replace it with insertelements.  This is to
1998 /// optimize code like this:
1999 ///
2000 ///    %tmp37 = bitcast float %inc to i32
2001 ///    %tmp38 = zext i32 %tmp37 to i64
2002 ///    %tmp31 = bitcast float %inc5 to i32
2003 ///    %tmp32 = zext i32 %tmp31 to i64
2004 ///    %tmp33 = shl i64 %tmp32, 32
2005 ///    %ins35 = or i64 %tmp33, %tmp38
2006 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2007 ///
2008 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2009 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2010                                                 InstCombiner &IC) {
2011   VectorType *DestVecTy = cast<VectorType>(CI.getType());
2012   Value *IntInput = CI.getOperand(0);
2013 
2014   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2015   if (!collectInsertionElements(IntInput, 0, Elements,
2016                                 DestVecTy->getElementType(),
2017                                 IC.getDataLayout().isBigEndian()))
2018     return nullptr;
2019 
2020   // If we succeeded, we know that all of the element are specified by Elements
2021   // or are zero if Elements has a null entry.  Recast this as a set of
2022   // insertions.
2023   Value *Result = Constant::getNullValue(CI.getType());
2024   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2025     if (!Elements[i]) continue;  // Unset element.
2026 
2027     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2028                                             IC.Builder.getInt32(i));
2029   }
2030 
2031   return Result;
2032 }
2033 
2034 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2035 /// vector followed by extract element. The backend tends to handle bitcasts of
2036 /// vectors better than bitcasts of scalars because vector registers are
2037 /// usually not type-specific like scalar integer or scalar floating-point.
2038 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2039                                               InstCombiner &IC) {
2040   // TODO: Create and use a pattern matcher for ExtractElementInst.
2041   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2042   if (!ExtElt || !ExtElt->hasOneUse())
2043     return nullptr;
2044 
2045   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2046   // type to extract from.
2047   Type *DestType = BitCast.getType();
2048   if (!VectorType::isValidElementType(DestType))
2049     return nullptr;
2050 
2051   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2052   auto *NewVecType = VectorType::get(DestType, NumElts);
2053   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2054                                          NewVecType, "bc");
2055   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2056 }
2057 
2058 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2059 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2060                                             InstCombiner::BuilderTy &Builder) {
2061   Type *DestTy = BitCast.getType();
2062   BinaryOperator *BO;
2063   if (!DestTy->isIntOrIntVectorTy() ||
2064       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2065       !BO->isBitwiseLogicOp())
2066     return nullptr;
2067 
2068   // FIXME: This transform is restricted to vector types to avoid backend
2069   // problems caused by creating potentially illegal operations. If a fix-up is
2070   // added to handle that situation, we can remove this check.
2071   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2072     return nullptr;
2073 
2074   Value *X;
2075   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2076       X->getType() == DestTy && !isa<Constant>(X)) {
2077     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2078     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2079     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2080   }
2081 
2082   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2083       X->getType() == DestTy && !isa<Constant>(X)) {
2084     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2085     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2086     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2087   }
2088 
2089   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2090   // constant. This eases recognition of special constants for later ops.
2091   // Example:
2092   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2093   Constant *C;
2094   if (match(BO->getOperand(1), m_Constant(C))) {
2095     // bitcast (logic X, C) --> logic (bitcast X, C')
2096     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2097     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2098     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2099   }
2100 
2101   return nullptr;
2102 }
2103 
2104 /// Change the type of a select if we can eliminate a bitcast.
2105 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2106                                       InstCombiner::BuilderTy &Builder) {
2107   Value *Cond, *TVal, *FVal;
2108   if (!match(BitCast.getOperand(0),
2109              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2110     return nullptr;
2111 
2112   // A vector select must maintain the same number of elements in its operands.
2113   Type *CondTy = Cond->getType();
2114   Type *DestTy = BitCast.getType();
2115   if (CondTy->isVectorTy()) {
2116     if (!DestTy->isVectorTy())
2117       return nullptr;
2118     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2119       return nullptr;
2120   }
2121 
2122   // FIXME: This transform is restricted from changing the select between
2123   // scalars and vectors to avoid backend problems caused by creating
2124   // potentially illegal operations. If a fix-up is added to handle that
2125   // situation, we can remove this check.
2126   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2127     return nullptr;
2128 
2129   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2130   Value *X;
2131   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2132       !isa<Constant>(X)) {
2133     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2134     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2135     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2136   }
2137 
2138   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2139       !isa<Constant>(X)) {
2140     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2141     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2142     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2143   }
2144 
2145   return nullptr;
2146 }
2147 
2148 /// Check if all users of CI are StoreInsts.
2149 static bool hasStoreUsersOnly(CastInst &CI) {
2150   for (User *U : CI.users()) {
2151     if (!isa<StoreInst>(U))
2152       return false;
2153   }
2154   return true;
2155 }
2156 
2157 /// This function handles following case
2158 ///
2159 ///     A  ->  B    cast
2160 ///     PHI
2161 ///     B  ->  A    cast
2162 ///
2163 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2164 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2165 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2166   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2167   if (hasStoreUsersOnly(CI))
2168     return nullptr;
2169 
2170   Value *Src = CI.getOperand(0);
2171   Type *SrcTy = Src->getType();         // Type B
2172   Type *DestTy = CI.getType();          // Type A
2173 
2174   SmallVector<PHINode *, 4> PhiWorklist;
2175   SmallSetVector<PHINode *, 4> OldPhiNodes;
2176 
2177   // Find all of the A->B casts and PHI nodes.
2178   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2179   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2180   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2181   PhiWorklist.push_back(PN);
2182   OldPhiNodes.insert(PN);
2183   while (!PhiWorklist.empty()) {
2184     auto *OldPN = PhiWorklist.pop_back_val();
2185     for (Value *IncValue : OldPN->incoming_values()) {
2186       if (isa<Constant>(IncValue))
2187         continue;
2188 
2189       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2190         // If there is a sequence of one or more load instructions, each loaded
2191         // value is used as address of later load instruction, bitcast is
2192         // necessary to change the value type, don't optimize it. For
2193         // simplicity we give up if the load address comes from another load.
2194         Value *Addr = LI->getOperand(0);
2195         if (Addr == &CI || isa<LoadInst>(Addr))
2196           return nullptr;
2197         if (LI->hasOneUse() && LI->isSimple())
2198           continue;
2199         // If a LoadInst has more than one use, changing the type of loaded
2200         // value may create another bitcast.
2201         return nullptr;
2202       }
2203 
2204       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2205         if (OldPhiNodes.insert(PNode))
2206           PhiWorklist.push_back(PNode);
2207         continue;
2208       }
2209 
2210       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2211       // We can't handle other instructions.
2212       if (!BCI)
2213         return nullptr;
2214 
2215       // Verify it's a A->B cast.
2216       Type *TyA = BCI->getOperand(0)->getType();
2217       Type *TyB = BCI->getType();
2218       if (TyA != DestTy || TyB != SrcTy)
2219         return nullptr;
2220     }
2221   }
2222 
2223   // For each old PHI node, create a corresponding new PHI node with a type A.
2224   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2225   for (auto *OldPN : OldPhiNodes) {
2226     Builder.SetInsertPoint(OldPN);
2227     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2228     NewPNodes[OldPN] = NewPN;
2229   }
2230 
2231   // Fill in the operands of new PHI nodes.
2232   for (auto *OldPN : OldPhiNodes) {
2233     PHINode *NewPN = NewPNodes[OldPN];
2234     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2235       Value *V = OldPN->getOperand(j);
2236       Value *NewV = nullptr;
2237       if (auto *C = dyn_cast<Constant>(V)) {
2238         NewV = ConstantExpr::getBitCast(C, DestTy);
2239       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2240         Builder.SetInsertPoint(LI->getNextNode());
2241         NewV = Builder.CreateBitCast(LI, DestTy);
2242         Worklist.Add(LI);
2243       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2244         NewV = BCI->getOperand(0);
2245       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2246         NewV = NewPNodes[PrevPN];
2247       }
2248       assert(NewV);
2249       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2250     }
2251   }
2252 
2253   // If there is a store with type B, change it to type A.
2254   for (User *U : PN->users()) {
2255     auto *SI = dyn_cast<StoreInst>(U);
2256     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2257       Builder.SetInsertPoint(SI);
2258       auto *NewBC =
2259           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2260       SI->setOperand(0, NewBC);
2261       Worklist.Add(SI);
2262       assert(hasStoreUsersOnly(*NewBC));
2263     }
2264   }
2265 
2266   return replaceInstUsesWith(CI, NewPNodes[PN]);
2267 }
2268 
2269 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2270   // If the operands are integer typed then apply the integer transforms,
2271   // otherwise just apply the common ones.
2272   Value *Src = CI.getOperand(0);
2273   Type *SrcTy = Src->getType();
2274   Type *DestTy = CI.getType();
2275 
2276   // Get rid of casts from one type to the same type. These are useless and can
2277   // be replaced by the operand.
2278   if (DestTy == Src->getType())
2279     return replaceInstUsesWith(CI, Src);
2280 
2281   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2282     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2283     Type *DstElTy = DstPTy->getElementType();
2284     Type *SrcElTy = SrcPTy->getElementType();
2285 
2286     // Casting pointers between the same type, but with different address spaces
2287     // is an addrspace cast rather than a bitcast.
2288     if ((DstElTy == SrcElTy) &&
2289         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2290       return new AddrSpaceCastInst(Src, DestTy);
2291 
2292     // If we are casting a alloca to a pointer to a type of the same
2293     // size, rewrite the allocation instruction to allocate the "right" type.
2294     // There is no need to modify malloc calls because it is their bitcast that
2295     // needs to be cleaned up.
2296     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2297       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2298         return V;
2299 
2300     // When the type pointed to is not sized the cast cannot be
2301     // turned into a gep.
2302     Type *PointeeType =
2303         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2304     if (!PointeeType->isSized())
2305       return nullptr;
2306 
2307     // If the source and destination are pointers, and this cast is equivalent
2308     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2309     // This can enhance SROA and other transforms that want type-safe pointers.
2310     unsigned NumZeros = 0;
2311     while (SrcElTy != DstElTy &&
2312            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2313            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2314       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2315       ++NumZeros;
2316     }
2317 
2318     // If we found a path from the src to dest, create the getelementptr now.
2319     if (SrcElTy == DstElTy) {
2320       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2321       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2322     }
2323   }
2324 
2325   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2326     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2327       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2328       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2329                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2330       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2331     }
2332 
2333     if (isa<IntegerType>(SrcTy)) {
2334       // If this is a cast from an integer to vector, check to see if the input
2335       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2336       // the casts with a shuffle and (potentially) a bitcast.
2337       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2338         CastInst *SrcCast = cast<CastInst>(Src);
2339         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2340           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2341             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2342                                                cast<VectorType>(DestTy), *this))
2343               return I;
2344       }
2345 
2346       // If the input is an 'or' instruction, we may be doing shifts and ors to
2347       // assemble the elements of the vector manually.  Try to rip the code out
2348       // and replace it with insertelements.
2349       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2350         return replaceInstUsesWith(CI, V);
2351     }
2352   }
2353 
2354   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2355     if (SrcVTy->getNumElements() == 1) {
2356       // If our destination is not a vector, then make this a straight
2357       // scalar-scalar cast.
2358       if (!DestTy->isVectorTy()) {
2359         Value *Elem =
2360           Builder.CreateExtractElement(Src,
2361                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2362         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2363       }
2364 
2365       // Otherwise, see if our source is an insert. If so, then use the scalar
2366       // component directly.
2367       if (InsertElementInst *IEI =
2368             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2369         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2370                                 DestTy);
2371     }
2372   }
2373 
2374   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2375     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2376     // a bitcast to a vector with the same # elts.
2377     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2378         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2379         SVI->getType()->getNumElements() ==
2380         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2381       BitCastInst *Tmp;
2382       // If either of the operands is a cast from CI.getType(), then
2383       // evaluating the shuffle in the casted destination's type will allow
2384       // us to eliminate at least one cast.
2385       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2386            Tmp->getOperand(0)->getType() == DestTy) ||
2387           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2388            Tmp->getOperand(0)->getType() == DestTy)) {
2389         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2390         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2391         // Return a new shuffle vector.  Use the same element ID's, as we
2392         // know the vector types match #elts.
2393         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2394       }
2395     }
2396   }
2397 
2398   // Handle the A->B->A cast, and there is an intervening PHI node.
2399   if (PHINode *PN = dyn_cast<PHINode>(Src))
2400     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2401       return I;
2402 
2403   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2404     return I;
2405 
2406   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2407     return I;
2408 
2409   if (Instruction *I = foldBitCastSelect(CI, Builder))
2410     return I;
2411 
2412   if (SrcTy->isPointerTy())
2413     return commonPointerCastTransforms(CI);
2414   return commonCastTransforms(CI);
2415 }
2416 
2417 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2418   // If the destination pointer element type is not the same as the source's
2419   // first do a bitcast to the destination type, and then the addrspacecast.
2420   // This allows the cast to be exposed to other transforms.
2421   Value *Src = CI.getOperand(0);
2422   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2423   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2424 
2425   Type *DestElemTy = DestTy->getElementType();
2426   if (SrcTy->getElementType() != DestElemTy) {
2427     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2428     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2429       // Handle vectors of pointers.
2430       MidTy = VectorType::get(MidTy, VT->getNumElements());
2431     }
2432 
2433     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2434     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2435   }
2436 
2437   return commonPointerCastTransforms(CI);
2438 }
2439