1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 40 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 41 Scale = 1; 42 Offset = 0; 43 return Val; 44 } 45 46 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 47 if (I->getOpcode() == Instruction::Shl) { 48 // This is a value scaled by '1 << the shift amt'. 49 Scale = UINT64_C(1) << RHS->getZExtValue(); 50 Offset = 0; 51 return I->getOperand(0); 52 } 53 54 if (I->getOpcode() == Instruction::Mul) { 55 // This value is scaled by 'RHS'. 56 Scale = RHS->getZExtValue(); 57 Offset = 0; 58 return I->getOperand(0); 59 } 60 61 if (I->getOpcode() == Instruction::Add) { 62 // We have X+C. Check to see if we really have (X*C2)+C1, 63 // where C1 is divisible by C2. 64 unsigned SubScale; 65 Value *SubVal = 66 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 67 Offset += RHS->getZExtValue(); 68 Scale = SubScale; 69 return SubVal; 70 } 71 } 72 } 73 74 // Otherwise, we can't look past this. 75 Scale = 1; 76 Offset = 0; 77 return Val; 78 } 79 80 /// If we find a cast of an allocation instruction, try to eliminate the cast by 81 /// moving the type information into the alloc. 82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 83 AllocaInst &AI) { 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(&AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 93 94 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return nullptr; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 102 103 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = nullptr; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 145 146 // If the allocation has multiple real uses, insert a cast and change all 147 // things that used it to use the new cast. This will also hack on CI, but it 148 // will die soon. 149 if (!AI.hasOneUse()) { 150 // New is the allocation instruction, pointer typed. AI is the original 151 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 152 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 153 replaceInstUsesWith(AI, NewCast); 154 } 155 return replaceInstUsesWith(CI, New); 156 } 157 158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 159 /// true for, actually insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with DL info. 165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 166 C = ConstantFoldConstantExpression(CE, DL, TLI); 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = nullptr; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V = 216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 217 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 218 } 219 Res = NPN; 220 break; 221 } 222 default: 223 // TODO: Can handle more cases here. 224 llvm_unreachable("Unreachable!"); 225 } 226 227 Res->takeName(I); 228 return InsertNewInstWith(Res, *I); 229 } 230 231 232 /// This function is a wrapper around CastInst::isEliminableCastPair. It 233 /// simply extracts arguments and returns what that function returns. 234 static Instruction::CastOps 235 isEliminableCastPair(const CastInst *CI, ///< First cast instruction 236 unsigned opcode, ///< Opcode for the second cast 237 Type *DstTy, ///< Target type for the second cast 238 const DataLayout &DL) { 239 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 240 Type *MidTy = CI->getType(); // B from above 241 242 // Get the opcodes of the two Cast instructions 243 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 244 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 245 Type *SrcIntPtrTy = 246 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 247 Type *MidIntPtrTy = 248 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 249 Type *DstIntPtrTy = 250 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 251 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 252 DstTy, SrcIntPtrTy, MidIntPtrTy, 253 DstIntPtrTy); 254 255 // We don't want to form an inttoptr or ptrtoint that converts to an integer 256 // type that differs from the pointer size. 257 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 258 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 259 Res = 0; 260 261 return Instruction::CastOps(Res); 262 } 263 264 /// Return true if the cast from "V to Ty" actually results in any code being 265 /// generated and is interesting to optimize out. 266 /// If the cast can be eliminated by some other simple transformation, we prefer 267 /// to do the simplification first. 268 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 269 Type *Ty) { 270 // Noop casts and casts of constants should be eliminated trivially. 271 if (V->getType() == Ty || isa<Constant>(V)) return false; 272 273 // If this is another cast that can be eliminated, we prefer to have it 274 // eliminated. 275 if (const CastInst *CI = dyn_cast<CastInst>(V)) 276 if (isEliminableCastPair(CI, opc, Ty, DL)) 277 return false; 278 279 // If this is a vector sext from a compare, then we don't want to break the 280 // idiom where each element of the extended vector is either zero or all ones. 281 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 282 return false; 283 284 return true; 285 } 286 287 288 /// @brief Implement the transforms common to all CastInst visitors. 289 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 290 Value *Src = CI.getOperand(0); 291 292 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 293 // eliminate it now. 294 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 295 if (Instruction::CastOps opc = 296 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { 297 // The first cast (CSrc) is eliminable so we need to fix up or replace 298 // the second cast (CI). CSrc will then have a good chance of being dead. 299 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 300 } 301 } 302 303 // If we are casting a select then fold the cast into the select 304 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 305 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 306 return NV; 307 308 // If we are casting a PHI then fold the cast into the PHI 309 if (isa<PHINode>(Src)) { 310 // We don't do this if this would create a PHI node with an illegal type if 311 // it is currently legal. 312 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 313 ShouldChangeType(CI.getType(), Src->getType())) 314 if (Instruction *NV = FoldOpIntoPhi(CI)) 315 return NV; 316 } 317 318 return nullptr; 319 } 320 321 /// Return true if we can evaluate the specified expression tree as type Ty 322 /// instead of its larger type, and arrive with the same value. 323 /// This is used by code that tries to eliminate truncates. 324 /// 325 /// Ty will always be a type smaller than V. We should return true if trunc(V) 326 /// can be computed by computing V in the smaller type. If V is an instruction, 327 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 328 /// makes sense if x and y can be efficiently truncated. 329 /// 330 /// This function works on both vectors and scalars. 331 /// 332 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 333 Instruction *CxtI) { 334 // We can always evaluate constants in another type. 335 if (isa<Constant>(V)) 336 return true; 337 338 Instruction *I = dyn_cast<Instruction>(V); 339 if (!I) return false; 340 341 Type *OrigTy = V->getType(); 342 343 // If this is an extension from the dest type, we can eliminate it, even if it 344 // has multiple uses. 345 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 346 I->getOperand(0)->getType() == Ty) 347 return true; 348 349 // We can't extend or shrink something that has multiple uses: doing so would 350 // require duplicating the instruction in general, which isn't profitable. 351 if (!I->hasOneUse()) return false; 352 353 unsigned Opc = I->getOpcode(); 354 switch (Opc) { 355 case Instruction::Add: 356 case Instruction::Sub: 357 case Instruction::Mul: 358 case Instruction::And: 359 case Instruction::Or: 360 case Instruction::Xor: 361 // These operators can all arbitrarily be extended or truncated. 362 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 363 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 364 365 case Instruction::UDiv: 366 case Instruction::URem: { 367 // UDiv and URem can be truncated if all the truncated bits are zero. 368 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 369 uint32_t BitWidth = Ty->getScalarSizeInBits(); 370 if (BitWidth < OrigBitWidth) { 371 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 372 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 373 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 374 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 375 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 376 } 377 } 378 break; 379 } 380 case Instruction::Shl: 381 // If we are truncating the result of this SHL, and if it's a shift of a 382 // constant amount, we can always perform a SHL in a smaller type. 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 384 uint32_t BitWidth = Ty->getScalarSizeInBits(); 385 if (CI->getLimitedValue(BitWidth) < BitWidth) 386 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 387 } 388 break; 389 case Instruction::LShr: 390 // If this is a truncate of a logical shr, we can truncate it to a smaller 391 // lshr iff we know that the bits we would otherwise be shifting in are 392 // already zeros. 393 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 394 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 395 uint32_t BitWidth = Ty->getScalarSizeInBits(); 396 if (IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 398 CI->getLimitedValue(BitWidth) < BitWidth) { 399 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 400 } 401 } 402 break; 403 case Instruction::Trunc: 404 // trunc(trunc(x)) -> trunc(x) 405 return true; 406 case Instruction::ZExt: 407 case Instruction::SExt: 408 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 409 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 410 return true; 411 case Instruction::Select: { 412 SelectInst *SI = cast<SelectInst>(I); 413 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 414 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 415 } 416 case Instruction::PHI: { 417 // We can change a phi if we can change all operands. Note that we never 418 // get into trouble with cyclic PHIs here because we only consider 419 // instructions with a single use. 420 PHINode *PN = cast<PHINode>(I); 421 for (Value *IncValue : PN->incoming_values()) 422 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 423 return false; 424 return true; 425 } 426 default: 427 // TODO: Can handle more cases here. 428 break; 429 } 430 431 return false; 432 } 433 434 /// Given a vector that is bitcast to an integer, optionally logically 435 /// right-shifted, and truncated, convert it to an extractelement. 436 /// Example (big endian): 437 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 438 /// ---> 439 /// extractelement <4 x i32> %X, 1 440 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 441 const DataLayout &DL) { 442 Value *TruncOp = Trunc.getOperand(0); 443 Type *DestType = Trunc.getType(); 444 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 445 return nullptr; 446 447 Value *VecInput = nullptr; 448 ConstantInt *ShiftVal = nullptr; 449 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 450 m_LShr(m_BitCast(m_Value(VecInput)), 451 m_ConstantInt(ShiftVal)))) || 452 !isa<VectorType>(VecInput->getType())) 453 return nullptr; 454 455 VectorType *VecType = cast<VectorType>(VecInput->getType()); 456 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 457 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 458 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 459 460 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 461 return nullptr; 462 463 // If the element type of the vector doesn't match the result type, 464 // bitcast it to a vector type that we can extract from. 465 unsigned NumVecElts = VecWidth / DestWidth; 466 if (VecType->getElementType() != DestType) { 467 VecType = VectorType::get(DestType, NumVecElts); 468 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 469 } 470 471 unsigned Elt = ShiftAmount / DestWidth; 472 if (DL.isBigEndian()) 473 Elt = NumVecElts - 1 - Elt; 474 475 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 476 } 477 478 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 479 if (Instruction *Result = commonCastTransforms(CI)) 480 return Result; 481 482 // Test if the trunc is the user of a select which is part of a 483 // minimum or maximum operation. If so, don't do any more simplification. 484 // Even simplifying demanded bits can break the canonical form of a 485 // min/max. 486 Value *LHS, *RHS; 487 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 488 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 489 return nullptr; 490 491 // See if we can simplify any instructions used by the input whose sole 492 // purpose is to compute bits we don't care about. 493 if (SimplifyDemandedInstructionBits(CI)) 494 return &CI; 495 496 Value *Src = CI.getOperand(0); 497 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 498 499 // Attempt to truncate the entire input expression tree to the destination 500 // type. Only do this if the dest type is a simple type, don't convert the 501 // expression tree to something weird like i93 unless the source is also 502 // strange. 503 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 504 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 505 506 // If this cast is a truncate, evaluting in a different type always 507 // eliminates the cast, so it is always a win. 508 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 509 " to avoid cast: " << CI << '\n'); 510 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 511 assert(Res->getType() == DestTy); 512 return replaceInstUsesWith(CI, Res); 513 } 514 515 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 516 if (DestTy->getScalarSizeInBits() == 1) { 517 Constant *One = ConstantInt::get(SrcTy, 1); 518 Src = Builder->CreateAnd(Src, One); 519 Value *Zero = Constant::getNullValue(Src->getType()); 520 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 521 } 522 523 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 524 Value *A = nullptr; ConstantInt *Cst = nullptr; 525 if (Src->hasOneUse() && 526 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 527 // We have three types to worry about here, the type of A, the source of 528 // the truncate (MidSize), and the destination of the truncate. We know that 529 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 530 // between ASize and ResultSize. 531 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 532 533 // If the shift amount is larger than the size of A, then the result is 534 // known to be zero because all the input bits got shifted out. 535 if (Cst->getZExtValue() >= ASize) 536 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 537 538 // Since we're doing an lshr and a zero extend, and know that the shift 539 // amount is smaller than ASize, it is always safe to do the shift in A's 540 // type, then zero extend or truncate to the result. 541 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 542 Shift->takeName(Src); 543 return CastInst::CreateIntegerCast(Shift, DestTy, false); 544 } 545 546 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 547 // conversion. 548 // It works because bits coming from sign extension have the same value as 549 // the sign bit of the original value; performing ashr instead of lshr 550 // generates bits of the same value as the sign bit. 551 if (Src->hasOneUse() && 552 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 553 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 554 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 555 // This optimization can be only performed when zero bits generated by 556 // the original lshr aren't pulled into the value after truncation, so we 557 // can only shift by values smaller than the size of destination type (in 558 // bits). 559 if (Cst->getValue().ult(ASize)) { 560 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 561 Shift->takeName(Src); 562 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 563 } 564 } 565 566 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 567 // type isn't non-native. 568 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 569 ShouldChangeType(SrcTy, DestTy) && 570 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 571 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 572 return BinaryOperator::CreateAnd(NewTrunc, 573 ConstantExpr::getTrunc(Cst, DestTy)); 574 } 575 576 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 577 return I; 578 579 return nullptr; 580 } 581 582 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate 583 /// the icmp. 584 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 585 bool DoXform) { 586 // If we are just checking for a icmp eq of a single bit and zext'ing it 587 // to an integer, then shift the bit to the appropriate place and then 588 // cast to integer to avoid the comparison. 589 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 590 const APInt &Op1CV = Op1C->getValue(); 591 592 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 593 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 594 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 595 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 596 if (!DoXform) return ICI; 597 598 Value *In = ICI->getOperand(0); 599 Value *Sh = ConstantInt::get(In->getType(), 600 In->getType()->getScalarSizeInBits() - 1); 601 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 602 if (In->getType() != CI.getType()) 603 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 604 605 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 606 Constant *One = ConstantInt::get(In->getType(), 1); 607 In = Builder->CreateXor(In, One, In->getName() + ".not"); 608 } 609 610 return replaceInstUsesWith(CI, In); 611 } 612 613 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 614 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 615 // zext (X == 1) to i32 --> X iff X has only the low bit set. 616 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 617 // zext (X != 0) to i32 --> X iff X has only the low bit set. 618 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 619 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 620 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 621 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 622 // This only works for EQ and NE 623 ICI->isEquality()) { 624 // If Op1C some other power of two, convert: 625 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 626 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 627 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 628 629 APInt KnownZeroMask(~KnownZero); 630 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 631 if (!DoXform) return ICI; 632 633 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 634 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 635 // (X&4) == 2 --> false 636 // (X&4) != 2 --> true 637 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 638 isNE); 639 Res = ConstantExpr::getZExt(Res, CI.getType()); 640 return replaceInstUsesWith(CI, Res); 641 } 642 643 uint32_t ShAmt = KnownZeroMask.logBase2(); 644 Value *In = ICI->getOperand(0); 645 if (ShAmt) { 646 // Perform a logical shr by shiftamt. 647 // Insert the shift to put the result in the low bit. 648 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 649 In->getName() + ".lobit"); 650 } 651 652 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 653 Constant *One = ConstantInt::get(In->getType(), 1); 654 In = Builder->CreateXor(In, One); 655 } 656 657 if (CI.getType() == In->getType()) 658 return replaceInstUsesWith(CI, In); 659 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 660 } 661 } 662 } 663 664 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 665 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 666 // may lead to additional simplifications. 667 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 668 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 669 uint32_t BitWidth = ITy->getBitWidth(); 670 Value *LHS = ICI->getOperand(0); 671 Value *RHS = ICI->getOperand(1); 672 673 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 674 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 675 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 676 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 677 678 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 679 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 680 APInt UnknownBit = ~KnownBits; 681 if (UnknownBit.countPopulation() == 1) { 682 if (!DoXform) return ICI; 683 684 Value *Result = Builder->CreateXor(LHS, RHS); 685 686 // Mask off any bits that are set and won't be shifted away. 687 if (KnownOneLHS.uge(UnknownBit)) 688 Result = Builder->CreateAnd(Result, 689 ConstantInt::get(ITy, UnknownBit)); 690 691 // Shift the bit we're testing down to the lsb. 692 Result = Builder->CreateLShr( 693 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 694 695 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 696 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 697 Result->takeName(ICI); 698 return replaceInstUsesWith(CI, Result); 699 } 700 } 701 } 702 } 703 704 return nullptr; 705 } 706 707 /// Determine if the specified value can be computed in the specified wider type 708 /// and produce the same low bits. If not, return false. 709 /// 710 /// If this function returns true, it can also return a non-zero number of bits 711 /// (in BitsToClear) which indicates that the value it computes is correct for 712 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 713 /// out. For example, to promote something like: 714 /// 715 /// %B = trunc i64 %A to i32 716 /// %C = lshr i32 %B, 8 717 /// %E = zext i32 %C to i64 718 /// 719 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 720 /// set to 8 to indicate that the promoted value needs to have bits 24-31 721 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 722 /// clear the top bits anyway, doing this has no extra cost. 723 /// 724 /// This function works on both vectors and scalars. 725 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 726 InstCombiner &IC, Instruction *CxtI) { 727 BitsToClear = 0; 728 if (isa<Constant>(V)) 729 return true; 730 731 Instruction *I = dyn_cast<Instruction>(V); 732 if (!I) return false; 733 734 // If the input is a truncate from the destination type, we can trivially 735 // eliminate it. 736 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 737 return true; 738 739 // We can't extend or shrink something that has multiple uses: doing so would 740 // require duplicating the instruction in general, which isn't profitable. 741 if (!I->hasOneUse()) return false; 742 743 unsigned Opc = I->getOpcode(), Tmp; 744 switch (Opc) { 745 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 746 case Instruction::SExt: // zext(sext(x)) -> sext(x). 747 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 748 return true; 749 case Instruction::And: 750 case Instruction::Or: 751 case Instruction::Xor: 752 case Instruction::Add: 753 case Instruction::Sub: 754 case Instruction::Mul: 755 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 756 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 757 return false; 758 // These can all be promoted if neither operand has 'bits to clear'. 759 if (BitsToClear == 0 && Tmp == 0) 760 return true; 761 762 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 763 // other side, BitsToClear is ok. 764 if (Tmp == 0 && 765 (Opc == Instruction::And || Opc == Instruction::Or || 766 Opc == Instruction::Xor)) { 767 // We use MaskedValueIsZero here for generality, but the case we care 768 // about the most is constant RHS. 769 unsigned VSize = V->getType()->getScalarSizeInBits(); 770 if (IC.MaskedValueIsZero(I->getOperand(1), 771 APInt::getHighBitsSet(VSize, BitsToClear), 772 0, CxtI)) 773 return true; 774 } 775 776 // Otherwise, we don't know how to analyze this BitsToClear case yet. 777 return false; 778 779 case Instruction::Shl: 780 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 781 // upper bits we can reduce BitsToClear by the shift amount. 782 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 783 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 784 return false; 785 uint64_t ShiftAmt = Amt->getZExtValue(); 786 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 787 return true; 788 } 789 return false; 790 case Instruction::LShr: 791 // We can promote lshr(x, cst) if we can promote x. This requires the 792 // ultimate 'and' to clear out the high zero bits we're clearing out though. 793 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 794 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 795 return false; 796 BitsToClear += Amt->getZExtValue(); 797 if (BitsToClear > V->getType()->getScalarSizeInBits()) 798 BitsToClear = V->getType()->getScalarSizeInBits(); 799 return true; 800 } 801 // Cannot promote variable LSHR. 802 return false; 803 case Instruction::Select: 804 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 805 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 806 // TODO: If important, we could handle the case when the BitsToClear are 807 // known zero in the disagreeing side. 808 Tmp != BitsToClear) 809 return false; 810 return true; 811 812 case Instruction::PHI: { 813 // We can change a phi if we can change all operands. Note that we never 814 // get into trouble with cyclic PHIs here because we only consider 815 // instructions with a single use. 816 PHINode *PN = cast<PHINode>(I); 817 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 818 return false; 819 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 820 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 821 // TODO: If important, we could handle the case when the BitsToClear 822 // are known zero in the disagreeing input. 823 Tmp != BitsToClear) 824 return false; 825 return true; 826 } 827 default: 828 // TODO: Can handle more cases here. 829 return false; 830 } 831 } 832 833 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 834 // If this zero extend is only used by a truncate, let the truncate be 835 // eliminated before we try to optimize this zext. 836 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 837 return nullptr; 838 839 // If one of the common conversion will work, do it. 840 if (Instruction *Result = commonCastTransforms(CI)) 841 return Result; 842 843 // See if we can simplify any instructions used by the input whose sole 844 // purpose is to compute bits we don't care about. 845 if (SimplifyDemandedInstructionBits(CI)) 846 return &CI; 847 848 Value *Src = CI.getOperand(0); 849 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 850 851 // Attempt to extend the entire input expression tree to the destination 852 // type. Only do this if the dest type is a simple type, don't convert the 853 // expression tree to something weird like i93 unless the source is also 854 // strange. 855 unsigned BitsToClear; 856 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 857 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 858 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 859 "Unreasonable BitsToClear"); 860 861 // Okay, we can transform this! Insert the new expression now. 862 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 863 " to avoid zero extend: " << CI << '\n'); 864 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 865 assert(Res->getType() == DestTy); 866 867 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 868 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 869 870 // If the high bits are already filled with zeros, just replace this 871 // cast with the result. 872 if (MaskedValueIsZero(Res, 873 APInt::getHighBitsSet(DestBitSize, 874 DestBitSize-SrcBitsKept), 875 0, &CI)) 876 return replaceInstUsesWith(CI, Res); 877 878 // We need to emit an AND to clear the high bits. 879 Constant *C = ConstantInt::get(Res->getType(), 880 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 881 return BinaryOperator::CreateAnd(Res, C); 882 } 883 884 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 885 // types and if the sizes are just right we can convert this into a logical 886 // 'and' which will be much cheaper than the pair of casts. 887 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 888 // TODO: Subsume this into EvaluateInDifferentType. 889 890 // Get the sizes of the types involved. We know that the intermediate type 891 // will be smaller than A or C, but don't know the relation between A and C. 892 Value *A = CSrc->getOperand(0); 893 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 894 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 895 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 896 // If we're actually extending zero bits, then if 897 // SrcSize < DstSize: zext(a & mask) 898 // SrcSize == DstSize: a & mask 899 // SrcSize > DstSize: trunc(a) & mask 900 if (SrcSize < DstSize) { 901 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 902 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 903 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 904 return new ZExtInst(And, CI.getType()); 905 } 906 907 if (SrcSize == DstSize) { 908 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 909 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 910 AndValue)); 911 } 912 if (SrcSize > DstSize) { 913 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 914 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 915 return BinaryOperator::CreateAnd(Trunc, 916 ConstantInt::get(Trunc->getType(), 917 AndValue)); 918 } 919 } 920 921 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 922 return transformZExtICmp(ICI, CI); 923 924 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 925 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 926 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 927 // of the (zext icmp) will be transformed. 928 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 929 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 930 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 931 (transformZExtICmp(LHS, CI, false) || 932 transformZExtICmp(RHS, CI, false))) { 933 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 934 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 935 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 936 } 937 } 938 939 // zext(trunc(X) & C) -> (X & zext(C)). 940 Constant *C; 941 Value *X; 942 if (SrcI && 943 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 944 X->getType() == CI.getType()) 945 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 946 947 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 948 Value *And; 949 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 950 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 951 X->getType() == CI.getType()) { 952 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 953 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 954 } 955 956 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 957 if (SrcI && SrcI->hasOneUse() && 958 SrcI->getType()->getScalarType()->isIntegerTy(1) && 959 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { 960 Value *New = Builder->CreateZExt(X, CI.getType()); 961 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 962 } 963 964 return nullptr; 965 } 966 967 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 968 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 969 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 970 ICmpInst::Predicate Pred = ICI->getPredicate(); 971 972 // Don't bother if Op1 isn't of vector or integer type. 973 if (!Op1->getType()->isIntOrIntVectorTy()) 974 return nullptr; 975 976 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 977 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 978 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 979 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 980 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 981 982 Value *Sh = ConstantInt::get(Op0->getType(), 983 Op0->getType()->getScalarSizeInBits()-1); 984 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 985 if (In->getType() != CI.getType()) 986 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 987 988 if (Pred == ICmpInst::ICMP_SGT) 989 In = Builder->CreateNot(In, In->getName()+".not"); 990 return replaceInstUsesWith(CI, In); 991 } 992 } 993 994 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 995 // If we know that only one bit of the LHS of the icmp can be set and we 996 // have an equality comparison with zero or a power of 2, we can transform 997 // the icmp and sext into bitwise/integer operations. 998 if (ICI->hasOneUse() && 999 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1000 unsigned BitWidth = Op1C->getType()->getBitWidth(); 1001 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1002 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 1003 1004 APInt KnownZeroMask(~KnownZero); 1005 if (KnownZeroMask.isPowerOf2()) { 1006 Value *In = ICI->getOperand(0); 1007 1008 // If the icmp tests for a known zero bit we can constant fold it. 1009 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1010 Value *V = Pred == ICmpInst::ICMP_NE ? 1011 ConstantInt::getAllOnesValue(CI.getType()) : 1012 ConstantInt::getNullValue(CI.getType()); 1013 return replaceInstUsesWith(CI, V); 1014 } 1015 1016 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1017 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1018 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1019 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1020 // Perform a right shift to place the desired bit in the LSB. 1021 if (ShiftAmt) 1022 In = Builder->CreateLShr(In, 1023 ConstantInt::get(In->getType(), ShiftAmt)); 1024 1025 // At this point "In" is either 1 or 0. Subtract 1 to turn 1026 // {1, 0} -> {0, -1}. 1027 In = Builder->CreateAdd(In, 1028 ConstantInt::getAllOnesValue(In->getType()), 1029 "sext"); 1030 } else { 1031 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1032 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1033 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1034 // Perform a left shift to place the desired bit in the MSB. 1035 if (ShiftAmt) 1036 In = Builder->CreateShl(In, 1037 ConstantInt::get(In->getType(), ShiftAmt)); 1038 1039 // Distribute the bit over the whole bit width. 1040 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1041 BitWidth - 1), "sext"); 1042 } 1043 1044 if (CI.getType() == In->getType()) 1045 return replaceInstUsesWith(CI, In); 1046 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1047 } 1048 } 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 /// Return true if we can take the specified value and return it as type Ty 1055 /// without inserting any new casts and without changing the value of the common 1056 /// low bits. This is used by code that tries to promote integer operations to 1057 /// a wider types will allow us to eliminate the extension. 1058 /// 1059 /// This function works on both vectors and scalars. 1060 /// 1061 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1062 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1063 "Can't sign extend type to a smaller type"); 1064 // If this is a constant, it can be trivially promoted. 1065 if (isa<Constant>(V)) 1066 return true; 1067 1068 Instruction *I = dyn_cast<Instruction>(V); 1069 if (!I) return false; 1070 1071 // If this is a truncate from the dest type, we can trivially eliminate it. 1072 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1073 return true; 1074 1075 // We can't extend or shrink something that has multiple uses: doing so would 1076 // require duplicating the instruction in general, which isn't profitable. 1077 if (!I->hasOneUse()) return false; 1078 1079 switch (I->getOpcode()) { 1080 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1081 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1082 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1083 return true; 1084 case Instruction::And: 1085 case Instruction::Or: 1086 case Instruction::Xor: 1087 case Instruction::Add: 1088 case Instruction::Sub: 1089 case Instruction::Mul: 1090 // These operators can all arbitrarily be extended if their inputs can. 1091 return canEvaluateSExtd(I->getOperand(0), Ty) && 1092 canEvaluateSExtd(I->getOperand(1), Ty); 1093 1094 //case Instruction::Shl: TODO 1095 //case Instruction::LShr: TODO 1096 1097 case Instruction::Select: 1098 return canEvaluateSExtd(I->getOperand(1), Ty) && 1099 canEvaluateSExtd(I->getOperand(2), Ty); 1100 1101 case Instruction::PHI: { 1102 // We can change a phi if we can change all operands. Note that we never 1103 // get into trouble with cyclic PHIs here because we only consider 1104 // instructions with a single use. 1105 PHINode *PN = cast<PHINode>(I); 1106 for (Value *IncValue : PN->incoming_values()) 1107 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1108 return true; 1109 } 1110 default: 1111 // TODO: Can handle more cases here. 1112 break; 1113 } 1114 1115 return false; 1116 } 1117 1118 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1119 // If this sign extend is only used by a truncate, let the truncate be 1120 // eliminated before we try to optimize this sext. 1121 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1122 return nullptr; 1123 1124 if (Instruction *I = commonCastTransforms(CI)) 1125 return I; 1126 1127 // See if we can simplify any instructions used by the input whose sole 1128 // purpose is to compute bits we don't care about. 1129 if (SimplifyDemandedInstructionBits(CI)) 1130 return &CI; 1131 1132 Value *Src = CI.getOperand(0); 1133 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1134 1135 // If we know that the value being extended is positive, we can use a zext 1136 // instead. 1137 bool KnownZero, KnownOne; 1138 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1139 if (KnownZero) { 1140 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1141 return replaceInstUsesWith(CI, ZExt); 1142 } 1143 1144 // Attempt to extend the entire input expression tree to the destination 1145 // type. Only do this if the dest type is a simple type, don't convert the 1146 // expression tree to something weird like i93 unless the source is also 1147 // strange. 1148 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1149 canEvaluateSExtd(Src, DestTy)) { 1150 // Okay, we can transform this! Insert the new expression now. 1151 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1152 " to avoid sign extend: " << CI << '\n'); 1153 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1154 assert(Res->getType() == DestTy); 1155 1156 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1157 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1158 1159 // If the high bits are already filled with sign bit, just replace this 1160 // cast with the result. 1161 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1162 return replaceInstUsesWith(CI, Res); 1163 1164 // We need to emit a shl + ashr to do the sign extend. 1165 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1166 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1167 ShAmt); 1168 } 1169 1170 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1171 // into shifts. 1172 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1173 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1174 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1175 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1176 1177 // We need to emit a shl + ashr to do the sign extend. 1178 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1179 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1180 return BinaryOperator::CreateAShr(Res, ShAmt); 1181 } 1182 1183 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1184 return transformSExtICmp(ICI, CI); 1185 1186 // If the input is a shl/ashr pair of a same constant, then this is a sign 1187 // extension from a smaller value. If we could trust arbitrary bitwidth 1188 // integers, we could turn this into a truncate to the smaller bit and then 1189 // use a sext for the whole extension. Since we don't, look deeper and check 1190 // for a truncate. If the source and dest are the same type, eliminate the 1191 // trunc and extend and just do shifts. For example, turn: 1192 // %a = trunc i32 %i to i8 1193 // %b = shl i8 %a, 6 1194 // %c = ashr i8 %b, 6 1195 // %d = sext i8 %c to i32 1196 // into: 1197 // %a = shl i32 %i, 30 1198 // %d = ashr i32 %a, 30 1199 Value *A = nullptr; 1200 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1201 ConstantInt *BA = nullptr, *CA = nullptr; 1202 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1203 m_ConstantInt(CA))) && 1204 BA == CA && A->getType() == CI.getType()) { 1205 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1206 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1207 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1208 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1209 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1210 return BinaryOperator::CreateAShr(A, ShAmtV); 1211 } 1212 1213 return nullptr; 1214 } 1215 1216 1217 /// Return a Constant* for the specified floating-point constant if it fits 1218 /// in the specified FP type without changing its value. 1219 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1220 bool losesInfo; 1221 APFloat F = CFP->getValueAPF(); 1222 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1223 if (!losesInfo) 1224 return ConstantFP::get(CFP->getContext(), F); 1225 return nullptr; 1226 } 1227 1228 /// If this is a floating-point extension instruction, look 1229 /// through it until we get the source value. 1230 static Value *lookThroughFPExtensions(Value *V) { 1231 if (Instruction *I = dyn_cast<Instruction>(V)) 1232 if (I->getOpcode() == Instruction::FPExt) 1233 return lookThroughFPExtensions(I->getOperand(0)); 1234 1235 // If this value is a constant, return the constant in the smallest FP type 1236 // that can accurately represent it. This allows us to turn 1237 // (float)((double)X+2.0) into x+2.0f. 1238 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1239 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1240 return V; // No constant folding of this. 1241 // See if the value can be truncated to half and then reextended. 1242 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) 1243 return V; 1244 // See if the value can be truncated to float and then reextended. 1245 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) 1246 return V; 1247 if (CFP->getType()->isDoubleTy()) 1248 return V; // Won't shrink. 1249 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) 1250 return V; 1251 // Don't try to shrink to various long double types. 1252 } 1253 1254 return V; 1255 } 1256 1257 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1258 if (Instruction *I = commonCastTransforms(CI)) 1259 return I; 1260 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1261 // simplify this expression to avoid one or more of the trunc/extend 1262 // operations if we can do so without changing the numerical results. 1263 // 1264 // The exact manner in which the widths of the operands interact to limit 1265 // what we can and cannot do safely varies from operation to operation, and 1266 // is explained below in the various case statements. 1267 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1268 if (OpI && OpI->hasOneUse()) { 1269 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1270 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1271 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1272 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1273 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1274 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1275 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1276 switch (OpI->getOpcode()) { 1277 default: break; 1278 case Instruction::FAdd: 1279 case Instruction::FSub: 1280 // For addition and subtraction, the infinitely precise result can 1281 // essentially be arbitrarily wide; proving that double rounding 1282 // will not occur because the result of OpI is exact (as we will for 1283 // FMul, for example) is hopeless. However, we *can* nonetheless 1284 // frequently know that double rounding cannot occur (or that it is 1285 // innocuous) by taking advantage of the specific structure of 1286 // infinitely-precise results that admit double rounding. 1287 // 1288 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1289 // to represent both sources, we can guarantee that the double 1290 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1291 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1292 // for proof of this fact). 1293 // 1294 // Note: Figueroa does not consider the case where DstFormat != 1295 // SrcFormat. It's possible (likely even!) that this analysis 1296 // could be tightened for those cases, but they are rare (the main 1297 // case of interest here is (float)((double)float + float)). 1298 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1299 if (LHSOrig->getType() != CI.getType()) 1300 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1301 if (RHSOrig->getType() != CI.getType()) 1302 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1303 Instruction *RI = 1304 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1305 RI->copyFastMathFlags(OpI); 1306 return RI; 1307 } 1308 break; 1309 case Instruction::FMul: 1310 // For multiplication, the infinitely precise result has at most 1311 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1312 // that such a value can be exactly represented, then no double 1313 // rounding can possibly occur; we can safely perform the operation 1314 // in the destination format if it can represent both sources. 1315 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1316 if (LHSOrig->getType() != CI.getType()) 1317 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1318 if (RHSOrig->getType() != CI.getType()) 1319 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1320 Instruction *RI = 1321 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1322 RI->copyFastMathFlags(OpI); 1323 return RI; 1324 } 1325 break; 1326 case Instruction::FDiv: 1327 // For division, we use again use the bound from Figueroa's 1328 // dissertation. I am entirely certain that this bound can be 1329 // tightened in the unbalanced operand case by an analysis based on 1330 // the diophantine rational approximation bound, but the well-known 1331 // condition used here is a good conservative first pass. 1332 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1333 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1334 if (LHSOrig->getType() != CI.getType()) 1335 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1336 if (RHSOrig->getType() != CI.getType()) 1337 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1338 Instruction *RI = 1339 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1340 RI->copyFastMathFlags(OpI); 1341 return RI; 1342 } 1343 break; 1344 case Instruction::FRem: 1345 // Remainder is straightforward. Remainder is always exact, so the 1346 // type of OpI doesn't enter into things at all. We simply evaluate 1347 // in whichever source type is larger, then convert to the 1348 // destination type. 1349 if (SrcWidth == OpWidth) 1350 break; 1351 if (LHSWidth < SrcWidth) 1352 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1353 else if (RHSWidth <= SrcWidth) 1354 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1355 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1356 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1357 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1358 RI->copyFastMathFlags(OpI); 1359 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1360 } 1361 } 1362 1363 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1364 if (BinaryOperator::isFNeg(OpI)) { 1365 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1366 CI.getType()); 1367 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1368 RI->copyFastMathFlags(OpI); 1369 return RI; 1370 } 1371 } 1372 1373 // (fptrunc (select cond, R1, Cst)) --> 1374 // (select cond, (fptrunc R1), (fptrunc Cst)) 1375 // 1376 // - but only if this isn't part of a min/max operation, else we'll 1377 // ruin min/max canonical form which is to have the select and 1378 // compare's operands be of the same type with no casts to look through. 1379 Value *LHS, *RHS; 1380 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1381 if (SI && 1382 (isa<ConstantFP>(SI->getOperand(1)) || 1383 isa<ConstantFP>(SI->getOperand(2))) && 1384 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1385 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1386 CI.getType()); 1387 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1388 CI.getType()); 1389 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1390 } 1391 1392 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1393 if (II) { 1394 switch (II->getIntrinsicID()) { 1395 default: break; 1396 case Intrinsic::fabs: { 1397 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1398 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1399 CI.getType()); 1400 Type *IntrinsicType[] = { CI.getType() }; 1401 Function *Overload = Intrinsic::getDeclaration( 1402 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1403 1404 Value *Args[] = { InnerTrunc }; 1405 return CallInst::Create(Overload, Args, II->getName()); 1406 } 1407 } 1408 } 1409 1410 return nullptr; 1411 } 1412 1413 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1414 return commonCastTransforms(CI); 1415 } 1416 1417 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1418 // This is safe if the intermediate type has enough bits in its mantissa to 1419 // accurately represent all values of X. For example, this won't work with 1420 // i64 -> float -> i64. 1421 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1422 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1423 return nullptr; 1424 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1425 1426 Value *SrcI = OpI->getOperand(0); 1427 Type *FITy = FI.getType(); 1428 Type *OpITy = OpI->getType(); 1429 Type *SrcTy = SrcI->getType(); 1430 bool IsInputSigned = isa<SIToFPInst>(OpI); 1431 bool IsOutputSigned = isa<FPToSIInst>(FI); 1432 1433 // We can safely assume the conversion won't overflow the output range, 1434 // because (for example) (uint8_t)18293.f is undefined behavior. 1435 1436 // Since we can assume the conversion won't overflow, our decision as to 1437 // whether the input will fit in the float should depend on the minimum 1438 // of the input range and output range. 1439 1440 // This means this is also safe for a signed input and unsigned output, since 1441 // a negative input would lead to undefined behavior. 1442 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1443 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1444 int ActualSize = std::min(InputSize, OutputSize); 1445 1446 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1447 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1448 if (IsInputSigned && IsOutputSigned) 1449 return new SExtInst(SrcI, FITy); 1450 return new ZExtInst(SrcI, FITy); 1451 } 1452 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1453 return new TruncInst(SrcI, FITy); 1454 if (SrcTy == FITy) 1455 return replaceInstUsesWith(FI, SrcI); 1456 return new BitCastInst(SrcI, FITy); 1457 } 1458 return nullptr; 1459 } 1460 1461 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1462 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1463 if (!OpI) 1464 return commonCastTransforms(FI); 1465 1466 if (Instruction *I = FoldItoFPtoI(FI)) 1467 return I; 1468 1469 return commonCastTransforms(FI); 1470 } 1471 1472 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1473 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1474 if (!OpI) 1475 return commonCastTransforms(FI); 1476 1477 if (Instruction *I = FoldItoFPtoI(FI)) 1478 return I; 1479 1480 return commonCastTransforms(FI); 1481 } 1482 1483 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1484 return commonCastTransforms(CI); 1485 } 1486 1487 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1488 return commonCastTransforms(CI); 1489 } 1490 1491 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1492 // If the source integer type is not the intptr_t type for this target, do a 1493 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1494 // cast to be exposed to other transforms. 1495 unsigned AS = CI.getAddressSpace(); 1496 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1497 DL.getPointerSizeInBits(AS)) { 1498 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1499 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1500 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1501 1502 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1503 return new IntToPtrInst(P, CI.getType()); 1504 } 1505 1506 if (Instruction *I = commonCastTransforms(CI)) 1507 return I; 1508 1509 return nullptr; 1510 } 1511 1512 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1513 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1514 Value *Src = CI.getOperand(0); 1515 1516 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1517 // If casting the result of a getelementptr instruction with no offset, turn 1518 // this into a cast of the original pointer! 1519 if (GEP->hasAllZeroIndices() && 1520 // If CI is an addrspacecast and GEP changes the poiner type, merging 1521 // GEP into CI would undo canonicalizing addrspacecast with different 1522 // pointer types, causing infinite loops. 1523 (!isa<AddrSpaceCastInst>(CI) || 1524 GEP->getType() == GEP->getPointerOperand()->getType())) { 1525 // Changing the cast operand is usually not a good idea but it is safe 1526 // here because the pointer operand is being replaced with another 1527 // pointer operand so the opcode doesn't need to change. 1528 Worklist.Add(GEP); 1529 CI.setOperand(0, GEP->getOperand(0)); 1530 return &CI; 1531 } 1532 } 1533 1534 return commonCastTransforms(CI); 1535 } 1536 1537 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1538 // If the destination integer type is not the intptr_t type for this target, 1539 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1540 // to be exposed to other transforms. 1541 1542 Type *Ty = CI.getType(); 1543 unsigned AS = CI.getPointerAddressSpace(); 1544 1545 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1546 return commonPointerCastTransforms(CI); 1547 1548 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1549 if (Ty->isVectorTy()) // Handle vectors of pointers. 1550 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1551 1552 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1553 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1554 } 1555 1556 /// This input value (which is known to have vector type) is being zero extended 1557 /// or truncated to the specified vector type. 1558 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1559 /// 1560 /// The source and destination vector types may have different element types. 1561 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1562 InstCombiner &IC) { 1563 // We can only do this optimization if the output is a multiple of the input 1564 // element size, or the input is a multiple of the output element size. 1565 // Convert the input type to have the same element type as the output. 1566 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1567 1568 if (SrcTy->getElementType() != DestTy->getElementType()) { 1569 // The input types don't need to be identical, but for now they must be the 1570 // same size. There is no specific reason we couldn't handle things like 1571 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1572 // there yet. 1573 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1574 DestTy->getElementType()->getPrimitiveSizeInBits()) 1575 return nullptr; 1576 1577 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1578 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1579 } 1580 1581 // Now that the element types match, get the shuffle mask and RHS of the 1582 // shuffle to use, which depends on whether we're increasing or decreasing the 1583 // size of the input. 1584 SmallVector<uint32_t, 16> ShuffleMask; 1585 Value *V2; 1586 1587 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1588 // If we're shrinking the number of elements, just shuffle in the low 1589 // elements from the input and use undef as the second shuffle input. 1590 V2 = UndefValue::get(SrcTy); 1591 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1592 ShuffleMask.push_back(i); 1593 1594 } else { 1595 // If we're increasing the number of elements, shuffle in all of the 1596 // elements from InVal and fill the rest of the result elements with zeros 1597 // from a constant zero. 1598 V2 = Constant::getNullValue(SrcTy); 1599 unsigned SrcElts = SrcTy->getNumElements(); 1600 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1601 ShuffleMask.push_back(i); 1602 1603 // The excess elements reference the first element of the zero input. 1604 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1605 ShuffleMask.push_back(SrcElts); 1606 } 1607 1608 return new ShuffleVectorInst(InVal, V2, 1609 ConstantDataVector::get(V2->getContext(), 1610 ShuffleMask)); 1611 } 1612 1613 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1614 return Value % Ty->getPrimitiveSizeInBits() == 0; 1615 } 1616 1617 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1618 return Value / Ty->getPrimitiveSizeInBits(); 1619 } 1620 1621 /// V is a value which is inserted into a vector of VecEltTy. 1622 /// Look through the value to see if we can decompose it into 1623 /// insertions into the vector. See the example in the comment for 1624 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1625 /// The type of V is always a non-zero multiple of VecEltTy's size. 1626 /// Shift is the number of bits between the lsb of V and the lsb of 1627 /// the vector. 1628 /// 1629 /// This returns false if the pattern can't be matched or true if it can, 1630 /// filling in Elements with the elements found here. 1631 static bool collectInsertionElements(Value *V, unsigned Shift, 1632 SmallVectorImpl<Value *> &Elements, 1633 Type *VecEltTy, bool isBigEndian) { 1634 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1635 "Shift should be a multiple of the element type size"); 1636 1637 // Undef values never contribute useful bits to the result. 1638 if (isa<UndefValue>(V)) return true; 1639 1640 // If we got down to a value of the right type, we win, try inserting into the 1641 // right element. 1642 if (V->getType() == VecEltTy) { 1643 // Inserting null doesn't actually insert any elements. 1644 if (Constant *C = dyn_cast<Constant>(V)) 1645 if (C->isNullValue()) 1646 return true; 1647 1648 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1649 if (isBigEndian) 1650 ElementIndex = Elements.size() - ElementIndex - 1; 1651 1652 // Fail if multiple elements are inserted into this slot. 1653 if (Elements[ElementIndex]) 1654 return false; 1655 1656 Elements[ElementIndex] = V; 1657 return true; 1658 } 1659 1660 if (Constant *C = dyn_cast<Constant>(V)) { 1661 // Figure out the # elements this provides, and bitcast it or slice it up 1662 // as required. 1663 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1664 VecEltTy); 1665 // If the constant is the size of a vector element, we just need to bitcast 1666 // it to the right type so it gets properly inserted. 1667 if (NumElts == 1) 1668 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1669 Shift, Elements, VecEltTy, isBigEndian); 1670 1671 // Okay, this is a constant that covers multiple elements. Slice it up into 1672 // pieces and insert each element-sized piece into the vector. 1673 if (!isa<IntegerType>(C->getType())) 1674 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1675 C->getType()->getPrimitiveSizeInBits())); 1676 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1677 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1678 1679 for (unsigned i = 0; i != NumElts; ++i) { 1680 unsigned ShiftI = Shift+i*ElementSize; 1681 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1682 ShiftI)); 1683 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1684 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1685 isBigEndian)) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 if (!V->hasOneUse()) return false; 1692 1693 Instruction *I = dyn_cast<Instruction>(V); 1694 if (!I) return false; 1695 switch (I->getOpcode()) { 1696 default: return false; // Unhandled case. 1697 case Instruction::BitCast: 1698 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1699 isBigEndian); 1700 case Instruction::ZExt: 1701 if (!isMultipleOfTypeSize( 1702 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1703 VecEltTy)) 1704 return false; 1705 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1706 isBigEndian); 1707 case Instruction::Or: 1708 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1709 isBigEndian) && 1710 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1711 isBigEndian); 1712 case Instruction::Shl: { 1713 // Must be shifting by a constant that is a multiple of the element size. 1714 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1715 if (!CI) return false; 1716 Shift += CI->getZExtValue(); 1717 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1718 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1719 isBigEndian); 1720 } 1721 1722 } 1723 } 1724 1725 1726 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1727 /// assemble the elements of the vector manually. 1728 /// Try to rip the code out and replace it with insertelements. This is to 1729 /// optimize code like this: 1730 /// 1731 /// %tmp37 = bitcast float %inc to i32 1732 /// %tmp38 = zext i32 %tmp37 to i64 1733 /// %tmp31 = bitcast float %inc5 to i32 1734 /// %tmp32 = zext i32 %tmp31 to i64 1735 /// %tmp33 = shl i64 %tmp32, 32 1736 /// %ins35 = or i64 %tmp33, %tmp38 1737 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1738 /// 1739 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1740 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1741 InstCombiner &IC) { 1742 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1743 Value *IntInput = CI.getOperand(0); 1744 1745 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1746 if (!collectInsertionElements(IntInput, 0, Elements, 1747 DestVecTy->getElementType(), 1748 IC.getDataLayout().isBigEndian())) 1749 return nullptr; 1750 1751 // If we succeeded, we know that all of the element are specified by Elements 1752 // or are zero if Elements has a null entry. Recast this as a set of 1753 // insertions. 1754 Value *Result = Constant::getNullValue(CI.getType()); 1755 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1756 if (!Elements[i]) continue; // Unset element. 1757 1758 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1759 IC.Builder->getInt32(i)); 1760 } 1761 1762 return Result; 1763 } 1764 1765 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1766 /// vector followed by extract element. The backend tends to handle bitcasts of 1767 /// vectors better than bitcasts of scalars because vector registers are 1768 /// usually not type-specific like scalar integer or scalar floating-point. 1769 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1770 InstCombiner &IC, 1771 const DataLayout &DL) { 1772 // TODO: Create and use a pattern matcher for ExtractElementInst. 1773 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1774 if (!ExtElt || !ExtElt->hasOneUse()) 1775 return nullptr; 1776 1777 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1778 // type to extract from. 1779 Type *DestType = BitCast.getType(); 1780 if (!VectorType::isValidElementType(DestType)) 1781 return nullptr; 1782 1783 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1784 auto *NewVecType = VectorType::get(DestType, NumElts); 1785 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1786 NewVecType, "bc"); 1787 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1788 } 1789 1790 /// This function handles following case 1791 /// 1792 /// A -> B cast 1793 /// PHI 1794 /// B -> A cast 1795 /// 1796 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1797 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1798 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1799 Value *Src = CI.getOperand(0); 1800 Type *SrcTy = Src->getType(); // Type B 1801 Type *DestTy = CI.getType(); // Type A 1802 1803 SmallVector<PHINode *, 4> PhiWorklist; 1804 SmallSetVector<PHINode *, 4> OldPhiNodes; 1805 1806 // Find all of the A->B casts and PHI nodes. 1807 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 1808 // OldPhiNodes is used to track all known PHI nodes, before adding a new 1809 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 1810 PhiWorklist.push_back(PN); 1811 OldPhiNodes.insert(PN); 1812 while (!PhiWorklist.empty()) { 1813 auto *OldPN = PhiWorklist.pop_back_val(); 1814 for (Value *IncValue : OldPN->incoming_values()) { 1815 if (isa<Constant>(IncValue)) 1816 continue; 1817 1818 auto *LI = dyn_cast<LoadInst>(IncValue); 1819 if (LI) { 1820 if (LI->hasOneUse() && LI->isSimple()) 1821 continue; 1822 // If a LoadInst has more than one use, changing the type of loaded 1823 // value may create another bitcast. 1824 return nullptr; 1825 } 1826 1827 auto *PNode = dyn_cast<PHINode>(IncValue); 1828 if (PNode) { 1829 if (OldPhiNodes.insert(PNode)) 1830 PhiWorklist.push_back(PNode); 1831 continue; 1832 } 1833 1834 auto *BCI = dyn_cast<BitCastInst>(IncValue); 1835 // We can't handle other instructions. 1836 if (!BCI) 1837 return nullptr; 1838 1839 // Verify it's a A->B cast. 1840 Type *TyA = BCI->getOperand(0)->getType(); 1841 Type *TyB = BCI->getType(); 1842 if (TyA != DestTy || TyB != SrcTy) 1843 return nullptr; 1844 } 1845 } 1846 1847 // For each old PHI node, create a corresponding new PHI node with a type A. 1848 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 1849 for (auto *OldPN : OldPhiNodes) { 1850 Builder->SetInsertPoint(OldPN); 1851 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands()); 1852 NewPNodes[OldPN] = NewPN; 1853 } 1854 1855 // Fill in the operands of new PHI nodes. 1856 for (auto *OldPN : OldPhiNodes) { 1857 PHINode *NewPN = NewPNodes[OldPN]; 1858 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 1859 Value *V = OldPN->getOperand(j); 1860 Value *NewV = nullptr; 1861 if (auto *C = dyn_cast<Constant>(V)) { 1862 NewV = Builder->CreateBitCast(C, DestTy); 1863 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 1864 Builder->SetInsertPoint(OldPN->getIncomingBlock(j)->getTerminator()); 1865 NewV = Builder->CreateBitCast(LI, DestTy); 1866 Worklist.Add(LI); 1867 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 1868 NewV = BCI->getOperand(0); 1869 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 1870 NewV = NewPNodes[PrevPN]; 1871 } 1872 assert(NewV); 1873 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 1874 } 1875 } 1876 1877 // If there is a store with type B, change it to type A. 1878 for (User *U : PN->users()) { 1879 auto *SI = dyn_cast<StoreInst>(U); 1880 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 1881 Builder->SetInsertPoint(SI); 1882 SI->setOperand(0, Builder->CreateBitCast(NewPNodes[PN], SrcTy)); 1883 Worklist.Add(SI); 1884 } 1885 } 1886 1887 return replaceInstUsesWith(CI, NewPNodes[PN]); 1888 } 1889 1890 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1891 // If the operands are integer typed then apply the integer transforms, 1892 // otherwise just apply the common ones. 1893 Value *Src = CI.getOperand(0); 1894 Type *SrcTy = Src->getType(); 1895 Type *DestTy = CI.getType(); 1896 1897 // Get rid of casts from one type to the same type. These are useless and can 1898 // be replaced by the operand. 1899 if (DestTy == Src->getType()) 1900 return replaceInstUsesWith(CI, Src); 1901 1902 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1903 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1904 Type *DstElTy = DstPTy->getElementType(); 1905 Type *SrcElTy = SrcPTy->getElementType(); 1906 1907 // If we are casting a alloca to a pointer to a type of the same 1908 // size, rewrite the allocation instruction to allocate the "right" type. 1909 // There is no need to modify malloc calls because it is their bitcast that 1910 // needs to be cleaned up. 1911 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1912 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1913 return V; 1914 1915 // If the source and destination are pointers, and this cast is equivalent 1916 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1917 // This can enhance SROA and other transforms that want type-safe pointers. 1918 unsigned NumZeros = 0; 1919 while (SrcElTy != DstElTy && 1920 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1921 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1922 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1923 ++NumZeros; 1924 } 1925 1926 // If we found a path from the src to dest, create the getelementptr now. 1927 if (SrcElTy == DstElTy) { 1928 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1929 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1930 } 1931 } 1932 1933 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1934 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1935 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1936 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1937 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1938 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1939 } 1940 1941 if (isa<IntegerType>(SrcTy)) { 1942 // If this is a cast from an integer to vector, check to see if the input 1943 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1944 // the casts with a shuffle and (potentially) a bitcast. 1945 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1946 CastInst *SrcCast = cast<CastInst>(Src); 1947 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1948 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1949 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 1950 cast<VectorType>(DestTy), *this)) 1951 return I; 1952 } 1953 1954 // If the input is an 'or' instruction, we may be doing shifts and ors to 1955 // assemble the elements of the vector manually. Try to rip the code out 1956 // and replace it with insertelements. 1957 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 1958 return replaceInstUsesWith(CI, V); 1959 } 1960 } 1961 1962 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1963 if (SrcVTy->getNumElements() == 1) { 1964 // If our destination is not a vector, then make this a straight 1965 // scalar-scalar cast. 1966 if (!DestTy->isVectorTy()) { 1967 Value *Elem = 1968 Builder->CreateExtractElement(Src, 1969 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1970 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1971 } 1972 1973 // Otherwise, see if our source is an insert. If so, then use the scalar 1974 // component directly. 1975 if (InsertElementInst *IEI = 1976 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1977 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1978 DestTy); 1979 } 1980 } 1981 1982 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1983 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1984 // a bitcast to a vector with the same # elts. 1985 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1986 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 1987 SVI->getType()->getNumElements() == 1988 SVI->getOperand(0)->getType()->getVectorNumElements()) { 1989 BitCastInst *Tmp; 1990 // If either of the operands is a cast from CI.getType(), then 1991 // evaluating the shuffle in the casted destination's type will allow 1992 // us to eliminate at least one cast. 1993 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1994 Tmp->getOperand(0)->getType() == DestTy) || 1995 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1996 Tmp->getOperand(0)->getType() == DestTy)) { 1997 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1998 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1999 // Return a new shuffle vector. Use the same element ID's, as we 2000 // know the vector types match #elts. 2001 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2002 } 2003 } 2004 } 2005 2006 // Handle the A->B->A cast, and there is an intervening PHI node. 2007 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2008 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2009 return I; 2010 2011 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 2012 return I; 2013 2014 if (SrcTy->isPointerTy()) 2015 return commonPointerCastTransforms(CI); 2016 return commonCastTransforms(CI); 2017 } 2018 2019 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2020 // If the destination pointer element type is not the same as the source's 2021 // first do a bitcast to the destination type, and then the addrspacecast. 2022 // This allows the cast to be exposed to other transforms. 2023 Value *Src = CI.getOperand(0); 2024 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2025 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2026 2027 Type *DestElemTy = DestTy->getElementType(); 2028 if (SrcTy->getElementType() != DestElemTy) { 2029 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2030 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2031 // Handle vectors of pointers. 2032 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2033 } 2034 2035 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 2036 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2037 } 2038 2039 return commonPointerCastTransforms(CI); 2040 } 2041