1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Analyze 'Val', seeing if it is a simple linear expression.
26 /// If so, decompose it, returning some value X, such that Val is
27 /// X*Scale+Offset.
28 ///
29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
30                                         uint64_t &Offset) {
31   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
32     Offset = CI->getZExtValue();
33     Scale  = 0;
34     return ConstantInt::get(Val->getType(), 0);
35   }
36 
37   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
38     // Cannot look past anything that might overflow.
39     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
40     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
41       Scale = 1;
42       Offset = 0;
43       return Val;
44     }
45 
46     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
47       if (I->getOpcode() == Instruction::Shl) {
48         // This is a value scaled by '1 << the shift amt'.
49         Scale = UINT64_C(1) << RHS->getZExtValue();
50         Offset = 0;
51         return I->getOperand(0);
52       }
53 
54       if (I->getOpcode() == Instruction::Mul) {
55         // This value is scaled by 'RHS'.
56         Scale = RHS->getZExtValue();
57         Offset = 0;
58         return I->getOperand(0);
59       }
60 
61       if (I->getOpcode() == Instruction::Add) {
62         // We have X+C.  Check to see if we really have (X*C2)+C1,
63         // where C1 is divisible by C2.
64         unsigned SubScale;
65         Value *SubVal =
66           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
67         Offset += RHS->getZExtValue();
68         Scale = SubScale;
69         return SubVal;
70       }
71     }
72   }
73 
74   // Otherwise, we can't look past this.
75   Scale = 1;
76   Offset = 0;
77   return Val;
78 }
79 
80 /// If we find a cast of an allocation instruction, try to eliminate the cast by
81 /// moving the type information into the alloc.
82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
83                                                    AllocaInst &AI) {
84   PointerType *PTy = cast<PointerType>(CI.getType());
85 
86   BuilderTy AllocaBuilder(*Builder);
87   AllocaBuilder.SetInsertPoint(&AI);
88 
89   // Get the type really allocated and the type casted to.
90   Type *AllocElTy = AI.getAllocatedType();
91   Type *CastElTy = PTy->getElementType();
92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
93 
94   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
95   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
96   if (CastElTyAlign < AllocElTyAlign) return nullptr;
97 
98   // If the allocation has multiple uses, only promote it if we are strictly
99   // increasing the alignment of the resultant allocation.  If we keep it the
100   // same, we open the door to infinite loops of various kinds.
101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
102 
103   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
104   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
105   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
106 
107   // If the allocation has multiple uses, only promote it if we're not
108   // shrinking the amount of memory being allocated.
109   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
110   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
111   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
112 
113   // See if we can satisfy the modulus by pulling a scale out of the array
114   // size argument.
115   unsigned ArraySizeScale;
116   uint64_t ArrayOffset;
117   Value *NumElements = // See if the array size is a decomposable linear expr.
118     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
119 
120   // If we can now satisfy the modulus, by using a non-1 scale, we really can
121   // do the xform.
122   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
123       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
124 
125   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
126   Value *Amt = nullptr;
127   if (Scale == 1) {
128     Amt = NumElements;
129   } else {
130     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
131     // Insert before the alloca, not before the cast.
132     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
133   }
134 
135   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
136     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
137                                   Offset, true);
138     Amt = AllocaBuilder.CreateAdd(Amt, Off);
139   }
140 
141   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
142   New->setAlignment(AI.getAlignment());
143   New->takeName(&AI);
144   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
145 
146   // If the allocation has multiple real uses, insert a cast and change all
147   // things that used it to use the new cast.  This will also hack on CI, but it
148   // will die soon.
149   if (!AI.hasOneUse()) {
150     // New is the allocation instruction, pointer typed. AI is the original
151     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
152     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
153     replaceInstUsesWith(AI, NewCast);
154   }
155   return replaceInstUsesWith(CI, New);
156 }
157 
158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
159 /// true for, actually insert the code to evaluate the expression.
160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161                                              bool isSigned) {
162   if (Constant *C = dyn_cast<Constant>(V)) {
163     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164     // If we got a constantexpr back, try to simplify it with DL info.
165     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
166       C = ConstantFoldConstantExpression(CE, DL, TLI);
167     return C;
168   }
169 
170   // Otherwise, it must be an instruction.
171   Instruction *I = cast<Instruction>(V);
172   Instruction *Res = nullptr;
173   unsigned Opc = I->getOpcode();
174   switch (Opc) {
175   case Instruction::Add:
176   case Instruction::Sub:
177   case Instruction::Mul:
178   case Instruction::And:
179   case Instruction::Or:
180   case Instruction::Xor:
181   case Instruction::AShr:
182   case Instruction::LShr:
183   case Instruction::Shl:
184   case Instruction::UDiv:
185   case Instruction::URem: {
186     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189     break;
190   }
191   case Instruction::Trunc:
192   case Instruction::ZExt:
193   case Instruction::SExt:
194     // If the source type of the cast is the type we're trying for then we can
195     // just return the source.  There's no need to insert it because it is not
196     // new.
197     if (I->getOperand(0)->getType() == Ty)
198       return I->getOperand(0);
199 
200     // Otherwise, must be the same type of cast, so just reinsert a new one.
201     // This also handles the case of zext(trunc(x)) -> zext(x).
202     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203                                       Opc == Instruction::SExt);
204     break;
205   case Instruction::Select: {
206     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208     Res = SelectInst::Create(I->getOperand(0), True, False);
209     break;
210   }
211   case Instruction::PHI: {
212     PHINode *OPN = cast<PHINode>(I);
213     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215       Value *V =
216           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
217       NPN->addIncoming(V, OPN->getIncomingBlock(i));
218     }
219     Res = NPN;
220     break;
221   }
222   default:
223     // TODO: Can handle more cases here.
224     llvm_unreachable("Unreachable!");
225   }
226 
227   Res->takeName(I);
228   return InsertNewInstWith(Res, *I);
229 }
230 
231 
232 /// This function is a wrapper around CastInst::isEliminableCastPair. It
233 /// simply extracts arguments and returns what that function returns.
234 static Instruction::CastOps
235 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
236                      unsigned opcode,    ///< Opcode for the second cast
237                      Type *DstTy,        ///< Target type for the second cast
238                      const DataLayout &DL) {
239   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
240   Type *MidTy = CI->getType();                  // B from above
241 
242   // Get the opcodes of the two Cast instructions
243   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
244   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
245   Type *SrcIntPtrTy =
246       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
247   Type *MidIntPtrTy =
248       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
249   Type *DstIntPtrTy =
250       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
251   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
252                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
253                                                 DstIntPtrTy);
254 
255   // We don't want to form an inttoptr or ptrtoint that converts to an integer
256   // type that differs from the pointer size.
257   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
258       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
259     Res = 0;
260 
261   return Instruction::CastOps(Res);
262 }
263 
264 /// Return true if the cast from "V to Ty" actually results in any code being
265 /// generated and is interesting to optimize out.
266 /// If the cast can be eliminated by some other simple transformation, we prefer
267 /// to do the simplification first.
268 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
269                                       Type *Ty) {
270   // Noop casts and casts of constants should be eliminated trivially.
271   if (V->getType() == Ty || isa<Constant>(V)) return false;
272 
273   // If this is another cast that can be eliminated, we prefer to have it
274   // eliminated.
275   if (const CastInst *CI = dyn_cast<CastInst>(V))
276     if (isEliminableCastPair(CI, opc, Ty, DL))
277       return false;
278 
279   // If this is a vector sext from a compare, then we don't want to break the
280   // idiom where each element of the extended vector is either zero or all ones.
281   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
282     return false;
283 
284   return true;
285 }
286 
287 
288 /// @brief Implement the transforms common to all CastInst visitors.
289 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
290   Value *Src = CI.getOperand(0);
291 
292   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
293   // eliminate it now.
294   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
295     if (Instruction::CastOps opc =
296             isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
297       // The first cast (CSrc) is eliminable so we need to fix up or replace
298       // the second cast (CI). CSrc will then have a good chance of being dead.
299       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
300     }
301   }
302 
303   // If we are casting a select then fold the cast into the select
304   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
305     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
306       return NV;
307 
308   // If we are casting a PHI then fold the cast into the PHI
309   if (isa<PHINode>(Src)) {
310     // We don't do this if this would create a PHI node with an illegal type if
311     // it is currently legal.
312     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
313         ShouldChangeType(CI.getType(), Src->getType()))
314       if (Instruction *NV = FoldOpIntoPhi(CI))
315         return NV;
316   }
317 
318   return nullptr;
319 }
320 
321 /// Return true if we can evaluate the specified expression tree as type Ty
322 /// instead of its larger type, and arrive with the same value.
323 /// This is used by code that tries to eliminate truncates.
324 ///
325 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
326 /// can be computed by computing V in the smaller type.  If V is an instruction,
327 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
328 /// makes sense if x and y can be efficiently truncated.
329 ///
330 /// This function works on both vectors and scalars.
331 ///
332 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
333                                  Instruction *CxtI) {
334   // We can always evaluate constants in another type.
335   if (isa<Constant>(V))
336     return true;
337 
338   Instruction *I = dyn_cast<Instruction>(V);
339   if (!I) return false;
340 
341   Type *OrigTy = V->getType();
342 
343   // If this is an extension from the dest type, we can eliminate it, even if it
344   // has multiple uses.
345   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
346       I->getOperand(0)->getType() == Ty)
347     return true;
348 
349   // We can't extend or shrink something that has multiple uses: doing so would
350   // require duplicating the instruction in general, which isn't profitable.
351   if (!I->hasOneUse()) return false;
352 
353   unsigned Opc = I->getOpcode();
354   switch (Opc) {
355   case Instruction::Add:
356   case Instruction::Sub:
357   case Instruction::Mul:
358   case Instruction::And:
359   case Instruction::Or:
360   case Instruction::Xor:
361     // These operators can all arbitrarily be extended or truncated.
362     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
364 
365   case Instruction::UDiv:
366   case Instruction::URem: {
367     // UDiv and URem can be truncated if all the truncated bits are zero.
368     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369     uint32_t BitWidth = Ty->getScalarSizeInBits();
370     if (BitWidth < OrigBitWidth) {
371       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
372       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
374         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
376       }
377     }
378     break;
379   }
380   case Instruction::Shl:
381     // If we are truncating the result of this SHL, and if it's a shift of a
382     // constant amount, we can always perform a SHL in a smaller type.
383     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
384       uint32_t BitWidth = Ty->getScalarSizeInBits();
385       if (CI->getLimitedValue(BitWidth) < BitWidth)
386         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
387     }
388     break;
389   case Instruction::LShr:
390     // If this is a truncate of a logical shr, we can truncate it to a smaller
391     // lshr iff we know that the bits we would otherwise be shifting in are
392     // already zeros.
393     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
394       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
395       uint32_t BitWidth = Ty->getScalarSizeInBits();
396       if (IC.MaskedValueIsZero(I->getOperand(0),
397             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
398           CI->getLimitedValue(BitWidth) < BitWidth) {
399         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
400       }
401     }
402     break;
403   case Instruction::Trunc:
404     // trunc(trunc(x)) -> trunc(x)
405     return true;
406   case Instruction::ZExt:
407   case Instruction::SExt:
408     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
409     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
410     return true;
411   case Instruction::Select: {
412     SelectInst *SI = cast<SelectInst>(I);
413     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
414            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
415   }
416   case Instruction::PHI: {
417     // We can change a phi if we can change all operands.  Note that we never
418     // get into trouble with cyclic PHIs here because we only consider
419     // instructions with a single use.
420     PHINode *PN = cast<PHINode>(I);
421     for (Value *IncValue : PN->incoming_values())
422       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
423         return false;
424     return true;
425   }
426   default:
427     // TODO: Can handle more cases here.
428     break;
429   }
430 
431   return false;
432 }
433 
434 /// Given a vector that is bitcast to an integer, optionally logically
435 /// right-shifted, and truncated, convert it to an extractelement.
436 /// Example (big endian):
437 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
438 ///   --->
439 ///   extractelement <4 x i32> %X, 1
440 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
441                                          const DataLayout &DL) {
442   Value *TruncOp = Trunc.getOperand(0);
443   Type *DestType = Trunc.getType();
444   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
445     return nullptr;
446 
447   Value *VecInput = nullptr;
448   ConstantInt *ShiftVal = nullptr;
449   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
450                                   m_LShr(m_BitCast(m_Value(VecInput)),
451                                          m_ConstantInt(ShiftVal)))) ||
452       !isa<VectorType>(VecInput->getType()))
453     return nullptr;
454 
455   VectorType *VecType = cast<VectorType>(VecInput->getType());
456   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
457   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
458   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
459 
460   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
461     return nullptr;
462 
463   // If the element type of the vector doesn't match the result type,
464   // bitcast it to a vector type that we can extract from.
465   unsigned NumVecElts = VecWidth / DestWidth;
466   if (VecType->getElementType() != DestType) {
467     VecType = VectorType::get(DestType, NumVecElts);
468     VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
469   }
470 
471   unsigned Elt = ShiftAmount / DestWidth;
472   if (DL.isBigEndian())
473     Elt = NumVecElts - 1 - Elt;
474 
475   return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
476 }
477 
478 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
479   if (Instruction *Result = commonCastTransforms(CI))
480     return Result;
481 
482   // Test if the trunc is the user of a select which is part of a
483   // minimum or maximum operation. If so, don't do any more simplification.
484   // Even simplifying demanded bits can break the canonical form of a
485   // min/max.
486   Value *LHS, *RHS;
487   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
488     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
489       return nullptr;
490 
491   // See if we can simplify any instructions used by the input whose sole
492   // purpose is to compute bits we don't care about.
493   if (SimplifyDemandedInstructionBits(CI))
494     return &CI;
495 
496   Value *Src = CI.getOperand(0);
497   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
498 
499   // Attempt to truncate the entire input expression tree to the destination
500   // type.   Only do this if the dest type is a simple type, don't convert the
501   // expression tree to something weird like i93 unless the source is also
502   // strange.
503   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
504       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
505 
506     // If this cast is a truncate, evaluting in a different type always
507     // eliminates the cast, so it is always a win.
508     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
509           " to avoid cast: " << CI << '\n');
510     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
511     assert(Res->getType() == DestTy);
512     return replaceInstUsesWith(CI, Res);
513   }
514 
515   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
516   if (DestTy->getScalarSizeInBits() == 1) {
517     Constant *One = ConstantInt::get(SrcTy, 1);
518     Src = Builder->CreateAnd(Src, One);
519     Value *Zero = Constant::getNullValue(Src->getType());
520     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
521   }
522 
523   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
524   Value *A = nullptr; ConstantInt *Cst = nullptr;
525   if (Src->hasOneUse() &&
526       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
527     // We have three types to worry about here, the type of A, the source of
528     // the truncate (MidSize), and the destination of the truncate. We know that
529     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
530     // between ASize and ResultSize.
531     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
532 
533     // If the shift amount is larger than the size of A, then the result is
534     // known to be zero because all the input bits got shifted out.
535     if (Cst->getZExtValue() >= ASize)
536       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
537 
538     // Since we're doing an lshr and a zero extend, and know that the shift
539     // amount is smaller than ASize, it is always safe to do the shift in A's
540     // type, then zero extend or truncate to the result.
541     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
542     Shift->takeName(Src);
543     return CastInst::CreateIntegerCast(Shift, DestTy, false);
544   }
545 
546   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
547   // conversion.
548   // It works because bits coming from sign extension have the same value as
549   // the sign bit of the original value; performing ashr instead of lshr
550   // generates bits of the same value as the sign bit.
551   if (Src->hasOneUse() &&
552       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
553       cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
554     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
555     // This optimization can be only performed when zero bits generated by
556     // the original lshr aren't pulled into the value after truncation, so we
557     // can only shift by values smaller than the size of destination type (in
558     // bits).
559     if (Cst->getValue().ult(ASize)) {
560       Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
561       Shift->takeName(Src);
562       return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
563     }
564   }
565 
566   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
567   // type isn't non-native.
568   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
569       ShouldChangeType(SrcTy, DestTy) &&
570       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
571     Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
572     return BinaryOperator::CreateAnd(NewTrunc,
573                                      ConstantExpr::getTrunc(Cst, DestTy));
574   }
575 
576   if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
577     return I;
578 
579   return nullptr;
580 }
581 
582 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate
583 /// the icmp.
584 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
585                                              bool DoXform) {
586   // If we are just checking for a icmp eq of a single bit and zext'ing it
587   // to an integer, then shift the bit to the appropriate place and then
588   // cast to integer to avoid the comparison.
589   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
590     const APInt &Op1CV = Op1C->getValue();
591 
592     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
593     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
594     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
595         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
596       if (!DoXform) return ICI;
597 
598       Value *In = ICI->getOperand(0);
599       Value *Sh = ConstantInt::get(In->getType(),
600                                    In->getType()->getScalarSizeInBits() - 1);
601       In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
602       if (In->getType() != CI.getType())
603         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
604 
605       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
606         Constant *One = ConstantInt::get(In->getType(), 1);
607         In = Builder->CreateXor(In, One, In->getName() + ".not");
608       }
609 
610       return replaceInstUsesWith(CI, In);
611     }
612 
613     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
614     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
615     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
616     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
617     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
618     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
619     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
620     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
621     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
622         // This only works for EQ and NE
623         ICI->isEquality()) {
624       // If Op1C some other power of two, convert:
625       uint32_t BitWidth = Op1C->getType()->getBitWidth();
626       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
627       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
628 
629       APInt KnownZeroMask(~KnownZero);
630       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
631         if (!DoXform) return ICI;
632 
633         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
634         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
635           // (X&4) == 2 --> false
636           // (X&4) != 2 --> true
637           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
638                                            isNE);
639           Res = ConstantExpr::getZExt(Res, CI.getType());
640           return replaceInstUsesWith(CI, Res);
641         }
642 
643         uint32_t ShAmt = KnownZeroMask.logBase2();
644         Value *In = ICI->getOperand(0);
645         if (ShAmt) {
646           // Perform a logical shr by shiftamt.
647           // Insert the shift to put the result in the low bit.
648           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
649                                    In->getName() + ".lobit");
650         }
651 
652         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
653           Constant *One = ConstantInt::get(In->getType(), 1);
654           In = Builder->CreateXor(In, One);
655         }
656 
657         if (CI.getType() == In->getType())
658           return replaceInstUsesWith(CI, In);
659         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
660       }
661     }
662   }
663 
664   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
665   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
666   // may lead to additional simplifications.
667   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
668     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
669       uint32_t BitWidth = ITy->getBitWidth();
670       Value *LHS = ICI->getOperand(0);
671       Value *RHS = ICI->getOperand(1);
672 
673       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
674       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
675       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
676       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
677 
678       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
679         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
680         APInt UnknownBit = ~KnownBits;
681         if (UnknownBit.countPopulation() == 1) {
682           if (!DoXform) return ICI;
683 
684           Value *Result = Builder->CreateXor(LHS, RHS);
685 
686           // Mask off any bits that are set and won't be shifted away.
687           if (KnownOneLHS.uge(UnknownBit))
688             Result = Builder->CreateAnd(Result,
689                                         ConstantInt::get(ITy, UnknownBit));
690 
691           // Shift the bit we're testing down to the lsb.
692           Result = Builder->CreateLShr(
693                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
694 
695           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
696             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
697           Result->takeName(ICI);
698           return replaceInstUsesWith(CI, Result);
699         }
700       }
701     }
702   }
703 
704   return nullptr;
705 }
706 
707 /// Determine if the specified value can be computed in the specified wider type
708 /// and produce the same low bits. If not, return false.
709 ///
710 /// If this function returns true, it can also return a non-zero number of bits
711 /// (in BitsToClear) which indicates that the value it computes is correct for
712 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
713 /// out.  For example, to promote something like:
714 ///
715 ///   %B = trunc i64 %A to i32
716 ///   %C = lshr i32 %B, 8
717 ///   %E = zext i32 %C to i64
718 ///
719 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
720 /// set to 8 to indicate that the promoted value needs to have bits 24-31
721 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
722 /// clear the top bits anyway, doing this has no extra cost.
723 ///
724 /// This function works on both vectors and scalars.
725 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
726                              InstCombiner &IC, Instruction *CxtI) {
727   BitsToClear = 0;
728   if (isa<Constant>(V))
729     return true;
730 
731   Instruction *I = dyn_cast<Instruction>(V);
732   if (!I) return false;
733 
734   // If the input is a truncate from the destination type, we can trivially
735   // eliminate it.
736   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
737     return true;
738 
739   // We can't extend or shrink something that has multiple uses: doing so would
740   // require duplicating the instruction in general, which isn't profitable.
741   if (!I->hasOneUse()) return false;
742 
743   unsigned Opc = I->getOpcode(), Tmp;
744   switch (Opc) {
745   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
746   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
747   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
748     return true;
749   case Instruction::And:
750   case Instruction::Or:
751   case Instruction::Xor:
752   case Instruction::Add:
753   case Instruction::Sub:
754   case Instruction::Mul:
755     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
756         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
757       return false;
758     // These can all be promoted if neither operand has 'bits to clear'.
759     if (BitsToClear == 0 && Tmp == 0)
760       return true;
761 
762     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
763     // other side, BitsToClear is ok.
764     if (Tmp == 0 &&
765         (Opc == Instruction::And || Opc == Instruction::Or ||
766          Opc == Instruction::Xor)) {
767       // We use MaskedValueIsZero here for generality, but the case we care
768       // about the most is constant RHS.
769       unsigned VSize = V->getType()->getScalarSizeInBits();
770       if (IC.MaskedValueIsZero(I->getOperand(1),
771                                APInt::getHighBitsSet(VSize, BitsToClear),
772                                0, CxtI))
773         return true;
774     }
775 
776     // Otherwise, we don't know how to analyze this BitsToClear case yet.
777     return false;
778 
779   case Instruction::Shl:
780     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
781     // upper bits we can reduce BitsToClear by the shift amount.
782     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
783       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
784         return false;
785       uint64_t ShiftAmt = Amt->getZExtValue();
786       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
787       return true;
788     }
789     return false;
790   case Instruction::LShr:
791     // We can promote lshr(x, cst) if we can promote x.  This requires the
792     // ultimate 'and' to clear out the high zero bits we're clearing out though.
793     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
794       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
795         return false;
796       BitsToClear += Amt->getZExtValue();
797       if (BitsToClear > V->getType()->getScalarSizeInBits())
798         BitsToClear = V->getType()->getScalarSizeInBits();
799       return true;
800     }
801     // Cannot promote variable LSHR.
802     return false;
803   case Instruction::Select:
804     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
805         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
806         // TODO: If important, we could handle the case when the BitsToClear are
807         // known zero in the disagreeing side.
808         Tmp != BitsToClear)
809       return false;
810     return true;
811 
812   case Instruction::PHI: {
813     // We can change a phi if we can change all operands.  Note that we never
814     // get into trouble with cyclic PHIs here because we only consider
815     // instructions with a single use.
816     PHINode *PN = cast<PHINode>(I);
817     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
818       return false;
819     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
820       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
821           // TODO: If important, we could handle the case when the BitsToClear
822           // are known zero in the disagreeing input.
823           Tmp != BitsToClear)
824         return false;
825     return true;
826   }
827   default:
828     // TODO: Can handle more cases here.
829     return false;
830   }
831 }
832 
833 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
834   // If this zero extend is only used by a truncate, let the truncate be
835   // eliminated before we try to optimize this zext.
836   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
837     return nullptr;
838 
839   // If one of the common conversion will work, do it.
840   if (Instruction *Result = commonCastTransforms(CI))
841     return Result;
842 
843   // See if we can simplify any instructions used by the input whose sole
844   // purpose is to compute bits we don't care about.
845   if (SimplifyDemandedInstructionBits(CI))
846     return &CI;
847 
848   Value *Src = CI.getOperand(0);
849   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
850 
851   // Attempt to extend the entire input expression tree to the destination
852   // type.   Only do this if the dest type is a simple type, don't convert the
853   // expression tree to something weird like i93 unless the source is also
854   // strange.
855   unsigned BitsToClear;
856   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
857       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
858     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
859            "Unreasonable BitsToClear");
860 
861     // Okay, we can transform this!  Insert the new expression now.
862     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
863           " to avoid zero extend: " << CI << '\n');
864     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
865     assert(Res->getType() == DestTy);
866 
867     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
868     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
869 
870     // If the high bits are already filled with zeros, just replace this
871     // cast with the result.
872     if (MaskedValueIsZero(Res,
873                           APInt::getHighBitsSet(DestBitSize,
874                                                 DestBitSize-SrcBitsKept),
875                              0, &CI))
876       return replaceInstUsesWith(CI, Res);
877 
878     // We need to emit an AND to clear the high bits.
879     Constant *C = ConstantInt::get(Res->getType(),
880                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
881     return BinaryOperator::CreateAnd(Res, C);
882   }
883 
884   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
885   // types and if the sizes are just right we can convert this into a logical
886   // 'and' which will be much cheaper than the pair of casts.
887   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
888     // TODO: Subsume this into EvaluateInDifferentType.
889 
890     // Get the sizes of the types involved.  We know that the intermediate type
891     // will be smaller than A or C, but don't know the relation between A and C.
892     Value *A = CSrc->getOperand(0);
893     unsigned SrcSize = A->getType()->getScalarSizeInBits();
894     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
895     unsigned DstSize = CI.getType()->getScalarSizeInBits();
896     // If we're actually extending zero bits, then if
897     // SrcSize <  DstSize: zext(a & mask)
898     // SrcSize == DstSize: a & mask
899     // SrcSize  > DstSize: trunc(a) & mask
900     if (SrcSize < DstSize) {
901       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
902       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
903       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
904       return new ZExtInst(And, CI.getType());
905     }
906 
907     if (SrcSize == DstSize) {
908       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
909       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
910                                                            AndValue));
911     }
912     if (SrcSize > DstSize) {
913       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
914       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
915       return BinaryOperator::CreateAnd(Trunc,
916                                        ConstantInt::get(Trunc->getType(),
917                                                         AndValue));
918     }
919   }
920 
921   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
922     return transformZExtICmp(ICI, CI);
923 
924   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
925   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
926     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
927     // of the (zext icmp) will be transformed.
928     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
929     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
930     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
931         (transformZExtICmp(LHS, CI, false) ||
932          transformZExtICmp(RHS, CI, false))) {
933       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
934       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
935       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
936     }
937   }
938 
939   // zext(trunc(X) & C) -> (X & zext(C)).
940   Constant *C;
941   Value *X;
942   if (SrcI &&
943       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
944       X->getType() == CI.getType())
945     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
946 
947   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
948   Value *And;
949   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
950       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
951       X->getType() == CI.getType()) {
952     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
953     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
954   }
955 
956   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
957   if (SrcI && SrcI->hasOneUse() &&
958       SrcI->getType()->getScalarType()->isIntegerTy(1) &&
959       match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
960     Value *New = Builder->CreateZExt(X, CI.getType());
961     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
962   }
963 
964   return nullptr;
965 }
966 
967 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
968 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
969   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
970   ICmpInst::Predicate Pred = ICI->getPredicate();
971 
972   // Don't bother if Op1 isn't of vector or integer type.
973   if (!Op1->getType()->isIntOrIntVectorTy())
974     return nullptr;
975 
976   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
977     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
978     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
979     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
980         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
981 
982       Value *Sh = ConstantInt::get(Op0->getType(),
983                                    Op0->getType()->getScalarSizeInBits()-1);
984       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
985       if (In->getType() != CI.getType())
986         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
987 
988       if (Pred == ICmpInst::ICMP_SGT)
989         In = Builder->CreateNot(In, In->getName()+".not");
990       return replaceInstUsesWith(CI, In);
991     }
992   }
993 
994   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
995     // If we know that only one bit of the LHS of the icmp can be set and we
996     // have an equality comparison with zero or a power of 2, we can transform
997     // the icmp and sext into bitwise/integer operations.
998     if (ICI->hasOneUse() &&
999         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1000       unsigned BitWidth = Op1C->getType()->getBitWidth();
1001       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1002       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
1003 
1004       APInt KnownZeroMask(~KnownZero);
1005       if (KnownZeroMask.isPowerOf2()) {
1006         Value *In = ICI->getOperand(0);
1007 
1008         // If the icmp tests for a known zero bit we can constant fold it.
1009         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1010           Value *V = Pred == ICmpInst::ICMP_NE ?
1011                        ConstantInt::getAllOnesValue(CI.getType()) :
1012                        ConstantInt::getNullValue(CI.getType());
1013           return replaceInstUsesWith(CI, V);
1014         }
1015 
1016         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1017           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1018           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1019           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1020           // Perform a right shift to place the desired bit in the LSB.
1021           if (ShiftAmt)
1022             In = Builder->CreateLShr(In,
1023                                      ConstantInt::get(In->getType(), ShiftAmt));
1024 
1025           // At this point "In" is either 1 or 0. Subtract 1 to turn
1026           // {1, 0} -> {0, -1}.
1027           In = Builder->CreateAdd(In,
1028                                   ConstantInt::getAllOnesValue(In->getType()),
1029                                   "sext");
1030         } else {
1031           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1032           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1033           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1034           // Perform a left shift to place the desired bit in the MSB.
1035           if (ShiftAmt)
1036             In = Builder->CreateShl(In,
1037                                     ConstantInt::get(In->getType(), ShiftAmt));
1038 
1039           // Distribute the bit over the whole bit width.
1040           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1041                                                         BitWidth - 1), "sext");
1042         }
1043 
1044         if (CI.getType() == In->getType())
1045           return replaceInstUsesWith(CI, In);
1046         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1047       }
1048     }
1049   }
1050 
1051   return nullptr;
1052 }
1053 
1054 /// Return true if we can take the specified value and return it as type Ty
1055 /// without inserting any new casts and without changing the value of the common
1056 /// low bits.  This is used by code that tries to promote integer operations to
1057 /// a wider types will allow us to eliminate the extension.
1058 ///
1059 /// This function works on both vectors and scalars.
1060 ///
1061 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1062   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1063          "Can't sign extend type to a smaller type");
1064   // If this is a constant, it can be trivially promoted.
1065   if (isa<Constant>(V))
1066     return true;
1067 
1068   Instruction *I = dyn_cast<Instruction>(V);
1069   if (!I) return false;
1070 
1071   // If this is a truncate from the dest type, we can trivially eliminate it.
1072   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1073     return true;
1074 
1075   // We can't extend or shrink something that has multiple uses: doing so would
1076   // require duplicating the instruction in general, which isn't profitable.
1077   if (!I->hasOneUse()) return false;
1078 
1079   switch (I->getOpcode()) {
1080   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1081   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1082   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1083     return true;
1084   case Instruction::And:
1085   case Instruction::Or:
1086   case Instruction::Xor:
1087   case Instruction::Add:
1088   case Instruction::Sub:
1089   case Instruction::Mul:
1090     // These operators can all arbitrarily be extended if their inputs can.
1091     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1092            canEvaluateSExtd(I->getOperand(1), Ty);
1093 
1094   //case Instruction::Shl:   TODO
1095   //case Instruction::LShr:  TODO
1096 
1097   case Instruction::Select:
1098     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1099            canEvaluateSExtd(I->getOperand(2), Ty);
1100 
1101   case Instruction::PHI: {
1102     // We can change a phi if we can change all operands.  Note that we never
1103     // get into trouble with cyclic PHIs here because we only consider
1104     // instructions with a single use.
1105     PHINode *PN = cast<PHINode>(I);
1106     for (Value *IncValue : PN->incoming_values())
1107       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1108     return true;
1109   }
1110   default:
1111     // TODO: Can handle more cases here.
1112     break;
1113   }
1114 
1115   return false;
1116 }
1117 
1118 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1119   // If this sign extend is only used by a truncate, let the truncate be
1120   // eliminated before we try to optimize this sext.
1121   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1122     return nullptr;
1123 
1124   if (Instruction *I = commonCastTransforms(CI))
1125     return I;
1126 
1127   // See if we can simplify any instructions used by the input whose sole
1128   // purpose is to compute bits we don't care about.
1129   if (SimplifyDemandedInstructionBits(CI))
1130     return &CI;
1131 
1132   Value *Src = CI.getOperand(0);
1133   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1134 
1135   // If we know that the value being extended is positive, we can use a zext
1136   // instead.
1137   bool KnownZero, KnownOne;
1138   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1139   if (KnownZero) {
1140     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1141     return replaceInstUsesWith(CI, ZExt);
1142   }
1143 
1144   // Attempt to extend the entire input expression tree to the destination
1145   // type.   Only do this if the dest type is a simple type, don't convert the
1146   // expression tree to something weird like i93 unless the source is also
1147   // strange.
1148   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1149       canEvaluateSExtd(Src, DestTy)) {
1150     // Okay, we can transform this!  Insert the new expression now.
1151     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1152           " to avoid sign extend: " << CI << '\n');
1153     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1154     assert(Res->getType() == DestTy);
1155 
1156     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1157     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1158 
1159     // If the high bits are already filled with sign bit, just replace this
1160     // cast with the result.
1161     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1162       return replaceInstUsesWith(CI, Res);
1163 
1164     // We need to emit a shl + ashr to do the sign extend.
1165     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1166     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1167                                       ShAmt);
1168   }
1169 
1170   // If this input is a trunc from our destination, then turn sext(trunc(x))
1171   // into shifts.
1172   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1173     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1174       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1175       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1176 
1177       // We need to emit a shl + ashr to do the sign extend.
1178       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1179       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1180       return BinaryOperator::CreateAShr(Res, ShAmt);
1181     }
1182 
1183   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1184     return transformSExtICmp(ICI, CI);
1185 
1186   // If the input is a shl/ashr pair of a same constant, then this is a sign
1187   // extension from a smaller value.  If we could trust arbitrary bitwidth
1188   // integers, we could turn this into a truncate to the smaller bit and then
1189   // use a sext for the whole extension.  Since we don't, look deeper and check
1190   // for a truncate.  If the source and dest are the same type, eliminate the
1191   // trunc and extend and just do shifts.  For example, turn:
1192   //   %a = trunc i32 %i to i8
1193   //   %b = shl i8 %a, 6
1194   //   %c = ashr i8 %b, 6
1195   //   %d = sext i8 %c to i32
1196   // into:
1197   //   %a = shl i32 %i, 30
1198   //   %d = ashr i32 %a, 30
1199   Value *A = nullptr;
1200   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1201   ConstantInt *BA = nullptr, *CA = nullptr;
1202   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1203                         m_ConstantInt(CA))) &&
1204       BA == CA && A->getType() == CI.getType()) {
1205     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1206     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1207     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1208     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1209     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1210     return BinaryOperator::CreateAShr(A, ShAmtV);
1211   }
1212 
1213   return nullptr;
1214 }
1215 
1216 
1217 /// Return a Constant* for the specified floating-point constant if it fits
1218 /// in the specified FP type without changing its value.
1219 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1220   bool losesInfo;
1221   APFloat F = CFP->getValueAPF();
1222   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1223   if (!losesInfo)
1224     return ConstantFP::get(CFP->getContext(), F);
1225   return nullptr;
1226 }
1227 
1228 /// If this is a floating-point extension instruction, look
1229 /// through it until we get the source value.
1230 static Value *lookThroughFPExtensions(Value *V) {
1231   if (Instruction *I = dyn_cast<Instruction>(V))
1232     if (I->getOpcode() == Instruction::FPExt)
1233       return lookThroughFPExtensions(I->getOperand(0));
1234 
1235   // If this value is a constant, return the constant in the smallest FP type
1236   // that can accurately represent it.  This allows us to turn
1237   // (float)((double)X+2.0) into x+2.0f.
1238   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1239     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1240       return V;  // No constant folding of this.
1241     // See if the value can be truncated to half and then reextended.
1242     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
1243       return V;
1244     // See if the value can be truncated to float and then reextended.
1245     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
1246       return V;
1247     if (CFP->getType()->isDoubleTy())
1248       return V;  // Won't shrink.
1249     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
1250       return V;
1251     // Don't try to shrink to various long double types.
1252   }
1253 
1254   return V;
1255 }
1256 
1257 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1258   if (Instruction *I = commonCastTransforms(CI))
1259     return I;
1260   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1261   // simplify this expression to avoid one or more of the trunc/extend
1262   // operations if we can do so without changing the numerical results.
1263   //
1264   // The exact manner in which the widths of the operands interact to limit
1265   // what we can and cannot do safely varies from operation to operation, and
1266   // is explained below in the various case statements.
1267   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1268   if (OpI && OpI->hasOneUse()) {
1269     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1270     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1271     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1272     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1273     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1274     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1275     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1276     switch (OpI->getOpcode()) {
1277       default: break;
1278       case Instruction::FAdd:
1279       case Instruction::FSub:
1280         // For addition and subtraction, the infinitely precise result can
1281         // essentially be arbitrarily wide; proving that double rounding
1282         // will not occur because the result of OpI is exact (as we will for
1283         // FMul, for example) is hopeless.  However, we *can* nonetheless
1284         // frequently know that double rounding cannot occur (or that it is
1285         // innocuous) by taking advantage of the specific structure of
1286         // infinitely-precise results that admit double rounding.
1287         //
1288         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1289         // to represent both sources, we can guarantee that the double
1290         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1291         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1292         // for proof of this fact).
1293         //
1294         // Note: Figueroa does not consider the case where DstFormat !=
1295         // SrcFormat.  It's possible (likely even!) that this analysis
1296         // could be tightened for those cases, but they are rare (the main
1297         // case of interest here is (float)((double)float + float)).
1298         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1299           if (LHSOrig->getType() != CI.getType())
1300             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1301           if (RHSOrig->getType() != CI.getType())
1302             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1303           Instruction *RI =
1304             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1305           RI->copyFastMathFlags(OpI);
1306           return RI;
1307         }
1308         break;
1309       case Instruction::FMul:
1310         // For multiplication, the infinitely precise result has at most
1311         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1312         // that such a value can be exactly represented, then no double
1313         // rounding can possibly occur; we can safely perform the operation
1314         // in the destination format if it can represent both sources.
1315         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1316           if (LHSOrig->getType() != CI.getType())
1317             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1318           if (RHSOrig->getType() != CI.getType())
1319             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1320           Instruction *RI =
1321             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1322           RI->copyFastMathFlags(OpI);
1323           return RI;
1324         }
1325         break;
1326       case Instruction::FDiv:
1327         // For division, we use again use the bound from Figueroa's
1328         // dissertation.  I am entirely certain that this bound can be
1329         // tightened in the unbalanced operand case by an analysis based on
1330         // the diophantine rational approximation bound, but the well-known
1331         // condition used here is a good conservative first pass.
1332         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1333         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1334           if (LHSOrig->getType() != CI.getType())
1335             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1336           if (RHSOrig->getType() != CI.getType())
1337             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1338           Instruction *RI =
1339             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1340           RI->copyFastMathFlags(OpI);
1341           return RI;
1342         }
1343         break;
1344       case Instruction::FRem:
1345         // Remainder is straightforward.  Remainder is always exact, so the
1346         // type of OpI doesn't enter into things at all.  We simply evaluate
1347         // in whichever source type is larger, then convert to the
1348         // destination type.
1349         if (SrcWidth == OpWidth)
1350           break;
1351         if (LHSWidth < SrcWidth)
1352           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1353         else if (RHSWidth <= SrcWidth)
1354           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1355         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1356           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1357           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1358             RI->copyFastMathFlags(OpI);
1359           return CastInst::CreateFPCast(ExactResult, CI.getType());
1360         }
1361     }
1362 
1363     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1364     if (BinaryOperator::isFNeg(OpI)) {
1365       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1366                                                  CI.getType());
1367       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1368       RI->copyFastMathFlags(OpI);
1369       return RI;
1370     }
1371   }
1372 
1373   // (fptrunc (select cond, R1, Cst)) -->
1374   // (select cond, (fptrunc R1), (fptrunc Cst))
1375   //
1376   //  - but only if this isn't part of a min/max operation, else we'll
1377   // ruin min/max canonical form which is to have the select and
1378   // compare's operands be of the same type with no casts to look through.
1379   Value *LHS, *RHS;
1380   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1381   if (SI &&
1382       (isa<ConstantFP>(SI->getOperand(1)) ||
1383        isa<ConstantFP>(SI->getOperand(2))) &&
1384       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1385     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1386                                              CI.getType());
1387     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1388                                              CI.getType());
1389     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1390   }
1391 
1392   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1393   if (II) {
1394     switch (II->getIntrinsicID()) {
1395       default: break;
1396       case Intrinsic::fabs: {
1397         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1398         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1399                                                    CI.getType());
1400         Type *IntrinsicType[] = { CI.getType() };
1401         Function *Overload = Intrinsic::getDeclaration(
1402             CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1403 
1404         Value *Args[] = { InnerTrunc };
1405         return CallInst::Create(Overload, Args, II->getName());
1406       }
1407     }
1408   }
1409 
1410   return nullptr;
1411 }
1412 
1413 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1414   return commonCastTransforms(CI);
1415 }
1416 
1417 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1418 // This is safe if the intermediate type has enough bits in its mantissa to
1419 // accurately represent all values of X.  For example, this won't work with
1420 // i64 -> float -> i64.
1421 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1422   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1423     return nullptr;
1424   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1425 
1426   Value *SrcI = OpI->getOperand(0);
1427   Type *FITy = FI.getType();
1428   Type *OpITy = OpI->getType();
1429   Type *SrcTy = SrcI->getType();
1430   bool IsInputSigned = isa<SIToFPInst>(OpI);
1431   bool IsOutputSigned = isa<FPToSIInst>(FI);
1432 
1433   // We can safely assume the conversion won't overflow the output range,
1434   // because (for example) (uint8_t)18293.f is undefined behavior.
1435 
1436   // Since we can assume the conversion won't overflow, our decision as to
1437   // whether the input will fit in the float should depend on the minimum
1438   // of the input range and output range.
1439 
1440   // This means this is also safe for a signed input and unsigned output, since
1441   // a negative input would lead to undefined behavior.
1442   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1443   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1444   int ActualSize = std::min(InputSize, OutputSize);
1445 
1446   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1447     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1448       if (IsInputSigned && IsOutputSigned)
1449         return new SExtInst(SrcI, FITy);
1450       return new ZExtInst(SrcI, FITy);
1451     }
1452     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1453       return new TruncInst(SrcI, FITy);
1454     if (SrcTy == FITy)
1455       return replaceInstUsesWith(FI, SrcI);
1456     return new BitCastInst(SrcI, FITy);
1457   }
1458   return nullptr;
1459 }
1460 
1461 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1462   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1463   if (!OpI)
1464     return commonCastTransforms(FI);
1465 
1466   if (Instruction *I = FoldItoFPtoI(FI))
1467     return I;
1468 
1469   return commonCastTransforms(FI);
1470 }
1471 
1472 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1473   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1474   if (!OpI)
1475     return commonCastTransforms(FI);
1476 
1477   if (Instruction *I = FoldItoFPtoI(FI))
1478     return I;
1479 
1480   return commonCastTransforms(FI);
1481 }
1482 
1483 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1484   return commonCastTransforms(CI);
1485 }
1486 
1487 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1488   return commonCastTransforms(CI);
1489 }
1490 
1491 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1492   // If the source integer type is not the intptr_t type for this target, do a
1493   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1494   // cast to be exposed to other transforms.
1495   unsigned AS = CI.getAddressSpace();
1496   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1497       DL.getPointerSizeInBits(AS)) {
1498     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1499     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1500       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1501 
1502     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1503     return new IntToPtrInst(P, CI.getType());
1504   }
1505 
1506   if (Instruction *I = commonCastTransforms(CI))
1507     return I;
1508 
1509   return nullptr;
1510 }
1511 
1512 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1513 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1514   Value *Src = CI.getOperand(0);
1515 
1516   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1517     // If casting the result of a getelementptr instruction with no offset, turn
1518     // this into a cast of the original pointer!
1519     if (GEP->hasAllZeroIndices() &&
1520         // If CI is an addrspacecast and GEP changes the poiner type, merging
1521         // GEP into CI would undo canonicalizing addrspacecast with different
1522         // pointer types, causing infinite loops.
1523         (!isa<AddrSpaceCastInst>(CI) ||
1524           GEP->getType() == GEP->getPointerOperand()->getType())) {
1525       // Changing the cast operand is usually not a good idea but it is safe
1526       // here because the pointer operand is being replaced with another
1527       // pointer operand so the opcode doesn't need to change.
1528       Worklist.Add(GEP);
1529       CI.setOperand(0, GEP->getOperand(0));
1530       return &CI;
1531     }
1532   }
1533 
1534   return commonCastTransforms(CI);
1535 }
1536 
1537 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1538   // If the destination integer type is not the intptr_t type for this target,
1539   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1540   // to be exposed to other transforms.
1541 
1542   Type *Ty = CI.getType();
1543   unsigned AS = CI.getPointerAddressSpace();
1544 
1545   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1546     return commonPointerCastTransforms(CI);
1547 
1548   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1549   if (Ty->isVectorTy()) // Handle vectors of pointers.
1550     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1551 
1552   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1553   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1554 }
1555 
1556 /// This input value (which is known to have vector type) is being zero extended
1557 /// or truncated to the specified vector type.
1558 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1559 ///
1560 /// The source and destination vector types may have different element types.
1561 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1562                                          InstCombiner &IC) {
1563   // We can only do this optimization if the output is a multiple of the input
1564   // element size, or the input is a multiple of the output element size.
1565   // Convert the input type to have the same element type as the output.
1566   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1567 
1568   if (SrcTy->getElementType() != DestTy->getElementType()) {
1569     // The input types don't need to be identical, but for now they must be the
1570     // same size.  There is no specific reason we couldn't handle things like
1571     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1572     // there yet.
1573     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1574         DestTy->getElementType()->getPrimitiveSizeInBits())
1575       return nullptr;
1576 
1577     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1578     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1579   }
1580 
1581   // Now that the element types match, get the shuffle mask and RHS of the
1582   // shuffle to use, which depends on whether we're increasing or decreasing the
1583   // size of the input.
1584   SmallVector<uint32_t, 16> ShuffleMask;
1585   Value *V2;
1586 
1587   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1588     // If we're shrinking the number of elements, just shuffle in the low
1589     // elements from the input and use undef as the second shuffle input.
1590     V2 = UndefValue::get(SrcTy);
1591     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1592       ShuffleMask.push_back(i);
1593 
1594   } else {
1595     // If we're increasing the number of elements, shuffle in all of the
1596     // elements from InVal and fill the rest of the result elements with zeros
1597     // from a constant zero.
1598     V2 = Constant::getNullValue(SrcTy);
1599     unsigned SrcElts = SrcTy->getNumElements();
1600     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1601       ShuffleMask.push_back(i);
1602 
1603     // The excess elements reference the first element of the zero input.
1604     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1605       ShuffleMask.push_back(SrcElts);
1606   }
1607 
1608   return new ShuffleVectorInst(InVal, V2,
1609                                ConstantDataVector::get(V2->getContext(),
1610                                                        ShuffleMask));
1611 }
1612 
1613 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1614   return Value % Ty->getPrimitiveSizeInBits() == 0;
1615 }
1616 
1617 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1618   return Value / Ty->getPrimitiveSizeInBits();
1619 }
1620 
1621 /// V is a value which is inserted into a vector of VecEltTy.
1622 /// Look through the value to see if we can decompose it into
1623 /// insertions into the vector.  See the example in the comment for
1624 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1625 /// The type of V is always a non-zero multiple of VecEltTy's size.
1626 /// Shift is the number of bits between the lsb of V and the lsb of
1627 /// the vector.
1628 ///
1629 /// This returns false if the pattern can't be matched or true if it can,
1630 /// filling in Elements with the elements found here.
1631 static bool collectInsertionElements(Value *V, unsigned Shift,
1632                                      SmallVectorImpl<Value *> &Elements,
1633                                      Type *VecEltTy, bool isBigEndian) {
1634   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1635          "Shift should be a multiple of the element type size");
1636 
1637   // Undef values never contribute useful bits to the result.
1638   if (isa<UndefValue>(V)) return true;
1639 
1640   // If we got down to a value of the right type, we win, try inserting into the
1641   // right element.
1642   if (V->getType() == VecEltTy) {
1643     // Inserting null doesn't actually insert any elements.
1644     if (Constant *C = dyn_cast<Constant>(V))
1645       if (C->isNullValue())
1646         return true;
1647 
1648     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1649     if (isBigEndian)
1650       ElementIndex = Elements.size() - ElementIndex - 1;
1651 
1652     // Fail if multiple elements are inserted into this slot.
1653     if (Elements[ElementIndex])
1654       return false;
1655 
1656     Elements[ElementIndex] = V;
1657     return true;
1658   }
1659 
1660   if (Constant *C = dyn_cast<Constant>(V)) {
1661     // Figure out the # elements this provides, and bitcast it or slice it up
1662     // as required.
1663     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1664                                         VecEltTy);
1665     // If the constant is the size of a vector element, we just need to bitcast
1666     // it to the right type so it gets properly inserted.
1667     if (NumElts == 1)
1668       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1669                                       Shift, Elements, VecEltTy, isBigEndian);
1670 
1671     // Okay, this is a constant that covers multiple elements.  Slice it up into
1672     // pieces and insert each element-sized piece into the vector.
1673     if (!isa<IntegerType>(C->getType()))
1674       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1675                                        C->getType()->getPrimitiveSizeInBits()));
1676     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1677     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1678 
1679     for (unsigned i = 0; i != NumElts; ++i) {
1680       unsigned ShiftI = Shift+i*ElementSize;
1681       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1682                                                                   ShiftI));
1683       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1684       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1685                                     isBigEndian))
1686         return false;
1687     }
1688     return true;
1689   }
1690 
1691   if (!V->hasOneUse()) return false;
1692 
1693   Instruction *I = dyn_cast<Instruction>(V);
1694   if (!I) return false;
1695   switch (I->getOpcode()) {
1696   default: return false; // Unhandled case.
1697   case Instruction::BitCast:
1698     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1699                                     isBigEndian);
1700   case Instruction::ZExt:
1701     if (!isMultipleOfTypeSize(
1702                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1703                               VecEltTy))
1704       return false;
1705     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1706                                     isBigEndian);
1707   case Instruction::Or:
1708     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1709                                     isBigEndian) &&
1710            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1711                                     isBigEndian);
1712   case Instruction::Shl: {
1713     // Must be shifting by a constant that is a multiple of the element size.
1714     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1715     if (!CI) return false;
1716     Shift += CI->getZExtValue();
1717     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1718     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1719                                     isBigEndian);
1720   }
1721 
1722   }
1723 }
1724 
1725 
1726 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1727 /// assemble the elements of the vector manually.
1728 /// Try to rip the code out and replace it with insertelements.  This is to
1729 /// optimize code like this:
1730 ///
1731 ///    %tmp37 = bitcast float %inc to i32
1732 ///    %tmp38 = zext i32 %tmp37 to i64
1733 ///    %tmp31 = bitcast float %inc5 to i32
1734 ///    %tmp32 = zext i32 %tmp31 to i64
1735 ///    %tmp33 = shl i64 %tmp32, 32
1736 ///    %ins35 = or i64 %tmp33, %tmp38
1737 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1738 ///
1739 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1740 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1741                                                 InstCombiner &IC) {
1742   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1743   Value *IntInput = CI.getOperand(0);
1744 
1745   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1746   if (!collectInsertionElements(IntInput, 0, Elements,
1747                                 DestVecTy->getElementType(),
1748                                 IC.getDataLayout().isBigEndian()))
1749     return nullptr;
1750 
1751   // If we succeeded, we know that all of the element are specified by Elements
1752   // or are zero if Elements has a null entry.  Recast this as a set of
1753   // insertions.
1754   Value *Result = Constant::getNullValue(CI.getType());
1755   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1756     if (!Elements[i]) continue;  // Unset element.
1757 
1758     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1759                                              IC.Builder->getInt32(i));
1760   }
1761 
1762   return Result;
1763 }
1764 
1765 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1766 /// vector followed by extract element. The backend tends to handle bitcasts of
1767 /// vectors better than bitcasts of scalars because vector registers are
1768 /// usually not type-specific like scalar integer or scalar floating-point.
1769 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1770                                               InstCombiner &IC,
1771                                               const DataLayout &DL) {
1772   // TODO: Create and use a pattern matcher for ExtractElementInst.
1773   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1774   if (!ExtElt || !ExtElt->hasOneUse())
1775     return nullptr;
1776 
1777   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1778   // type to extract from.
1779   Type *DestType = BitCast.getType();
1780   if (!VectorType::isValidElementType(DestType))
1781     return nullptr;
1782 
1783   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1784   auto *NewVecType = VectorType::get(DestType, NumElts);
1785   auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1786                                           NewVecType, "bc");
1787   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1788 }
1789 
1790 /// This function handles following case
1791 ///
1792 ///     A  ->  B    cast
1793 ///     PHI
1794 ///     B  ->  A    cast
1795 ///
1796 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
1797 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1798 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1799   Value *Src = CI.getOperand(0);
1800   Type *SrcTy = Src->getType();         // Type B
1801   Type *DestTy = CI.getType();          // Type A
1802 
1803   SmallVector<PHINode *, 4> PhiWorklist;
1804   SmallSetVector<PHINode *, 4> OldPhiNodes;
1805 
1806   // Find all of the A->B casts and PHI nodes.
1807   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
1808   // OldPhiNodes is used to track all known PHI nodes, before adding a new
1809   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
1810   PhiWorklist.push_back(PN);
1811   OldPhiNodes.insert(PN);
1812   while (!PhiWorklist.empty()) {
1813     auto *OldPN = PhiWorklist.pop_back_val();
1814     for (Value *IncValue : OldPN->incoming_values()) {
1815       if (isa<Constant>(IncValue))
1816         continue;
1817 
1818       auto *LI = dyn_cast<LoadInst>(IncValue);
1819       if (LI) {
1820         if (LI->hasOneUse() && LI->isSimple())
1821           continue;
1822         // If a LoadInst has more than one use, changing the type of loaded
1823         // value may create another bitcast.
1824         return nullptr;
1825       }
1826 
1827       auto *PNode = dyn_cast<PHINode>(IncValue);
1828       if (PNode) {
1829         if (OldPhiNodes.insert(PNode))
1830           PhiWorklist.push_back(PNode);
1831         continue;
1832       }
1833 
1834       auto *BCI = dyn_cast<BitCastInst>(IncValue);
1835       // We can't handle other instructions.
1836       if (!BCI)
1837         return nullptr;
1838 
1839       // Verify it's a A->B cast.
1840       Type *TyA = BCI->getOperand(0)->getType();
1841       Type *TyB = BCI->getType();
1842       if (TyA != DestTy || TyB != SrcTy)
1843         return nullptr;
1844     }
1845   }
1846 
1847   // For each old PHI node, create a corresponding new PHI node with a type A.
1848   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
1849   for (auto *OldPN : OldPhiNodes) {
1850     Builder->SetInsertPoint(OldPN);
1851     PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
1852     NewPNodes[OldPN] = NewPN;
1853   }
1854 
1855   // Fill in the operands of new PHI nodes.
1856   for (auto *OldPN : OldPhiNodes) {
1857     PHINode *NewPN = NewPNodes[OldPN];
1858     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
1859       Value *V = OldPN->getOperand(j);
1860       Value *NewV = nullptr;
1861       if (auto *C = dyn_cast<Constant>(V)) {
1862         NewV = Builder->CreateBitCast(C, DestTy);
1863       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
1864         Builder->SetInsertPoint(OldPN->getIncomingBlock(j)->getTerminator());
1865         NewV = Builder->CreateBitCast(LI, DestTy);
1866         Worklist.Add(LI);
1867       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
1868         NewV = BCI->getOperand(0);
1869       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
1870         NewV = NewPNodes[PrevPN];
1871       }
1872       assert(NewV);
1873       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
1874     }
1875   }
1876 
1877   // If there is a store with type B, change it to type A.
1878   for (User *U : PN->users()) {
1879     auto *SI = dyn_cast<StoreInst>(U);
1880     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
1881       Builder->SetInsertPoint(SI);
1882       SI->setOperand(0, Builder->CreateBitCast(NewPNodes[PN], SrcTy));
1883       Worklist.Add(SI);
1884     }
1885   }
1886 
1887   return replaceInstUsesWith(CI, NewPNodes[PN]);
1888 }
1889 
1890 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1891   // If the operands are integer typed then apply the integer transforms,
1892   // otherwise just apply the common ones.
1893   Value *Src = CI.getOperand(0);
1894   Type *SrcTy = Src->getType();
1895   Type *DestTy = CI.getType();
1896 
1897   // Get rid of casts from one type to the same type. These are useless and can
1898   // be replaced by the operand.
1899   if (DestTy == Src->getType())
1900     return replaceInstUsesWith(CI, Src);
1901 
1902   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1903     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1904     Type *DstElTy = DstPTy->getElementType();
1905     Type *SrcElTy = SrcPTy->getElementType();
1906 
1907     // If we are casting a alloca to a pointer to a type of the same
1908     // size, rewrite the allocation instruction to allocate the "right" type.
1909     // There is no need to modify malloc calls because it is their bitcast that
1910     // needs to be cleaned up.
1911     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1912       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1913         return V;
1914 
1915     // If the source and destination are pointers, and this cast is equivalent
1916     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1917     // This can enhance SROA and other transforms that want type-safe pointers.
1918     unsigned NumZeros = 0;
1919     while (SrcElTy != DstElTy &&
1920            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1921            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1922       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
1923       ++NumZeros;
1924     }
1925 
1926     // If we found a path from the src to dest, create the getelementptr now.
1927     if (SrcElTy == DstElTy) {
1928       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
1929       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1930     }
1931   }
1932 
1933   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1934     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1935       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1936       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1937                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1938       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1939     }
1940 
1941     if (isa<IntegerType>(SrcTy)) {
1942       // If this is a cast from an integer to vector, check to see if the input
1943       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1944       // the casts with a shuffle and (potentially) a bitcast.
1945       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1946         CastInst *SrcCast = cast<CastInst>(Src);
1947         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1948           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1949             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
1950                                                cast<VectorType>(DestTy), *this))
1951               return I;
1952       }
1953 
1954       // If the input is an 'or' instruction, we may be doing shifts and ors to
1955       // assemble the elements of the vector manually.  Try to rip the code out
1956       // and replace it with insertelements.
1957       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
1958         return replaceInstUsesWith(CI, V);
1959     }
1960   }
1961 
1962   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1963     if (SrcVTy->getNumElements() == 1) {
1964       // If our destination is not a vector, then make this a straight
1965       // scalar-scalar cast.
1966       if (!DestTy->isVectorTy()) {
1967         Value *Elem =
1968           Builder->CreateExtractElement(Src,
1969                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1970         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1971       }
1972 
1973       // Otherwise, see if our source is an insert. If so, then use the scalar
1974       // component directly.
1975       if (InsertElementInst *IEI =
1976             dyn_cast<InsertElementInst>(CI.getOperand(0)))
1977         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1978                                 DestTy);
1979     }
1980   }
1981 
1982   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1983     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1984     // a bitcast to a vector with the same # elts.
1985     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1986         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1987         SVI->getType()->getNumElements() ==
1988         SVI->getOperand(0)->getType()->getVectorNumElements()) {
1989       BitCastInst *Tmp;
1990       // If either of the operands is a cast from CI.getType(), then
1991       // evaluating the shuffle in the casted destination's type will allow
1992       // us to eliminate at least one cast.
1993       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1994            Tmp->getOperand(0)->getType() == DestTy) ||
1995           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1996            Tmp->getOperand(0)->getType() == DestTy)) {
1997         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1998         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1999         // Return a new shuffle vector.  Use the same element ID's, as we
2000         // know the vector types match #elts.
2001         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2002       }
2003     }
2004   }
2005 
2006   // Handle the A->B->A cast, and there is an intervening PHI node.
2007   if (PHINode *PN = dyn_cast<PHINode>(Src))
2008     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2009       return I;
2010 
2011   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
2012     return I;
2013 
2014   if (SrcTy->isPointerTy())
2015     return commonPointerCastTransforms(CI);
2016   return commonCastTransforms(CI);
2017 }
2018 
2019 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2020   // If the destination pointer element type is not the same as the source's
2021   // first do a bitcast to the destination type, and then the addrspacecast.
2022   // This allows the cast to be exposed to other transforms.
2023   Value *Src = CI.getOperand(0);
2024   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2025   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2026 
2027   Type *DestElemTy = DestTy->getElementType();
2028   if (SrcTy->getElementType() != DestElemTy) {
2029     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2030     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2031       // Handle vectors of pointers.
2032       MidTy = VectorType::get(MidTy, VT->getNumElements());
2033     }
2034 
2035     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
2036     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2037   }
2038 
2039   return commonPointerCastTransforms(CI);
2040 }
2041