1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 40 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 41 Scale = 1; 42 Offset = 0; 43 return Val; 44 } 45 46 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 47 if (I->getOpcode() == Instruction::Shl) { 48 // This is a value scaled by '1 << the shift amt'. 49 Scale = UINT64_C(1) << RHS->getZExtValue(); 50 Offset = 0; 51 return I->getOperand(0); 52 } 53 54 if (I->getOpcode() == Instruction::Mul) { 55 // This value is scaled by 'RHS'. 56 Scale = RHS->getZExtValue(); 57 Offset = 0; 58 return I->getOperand(0); 59 } 60 61 if (I->getOpcode() == Instruction::Add) { 62 // We have X+C. Check to see if we really have (X*C2)+C1, 63 // where C1 is divisible by C2. 64 unsigned SubScale; 65 Value *SubVal = 66 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 67 Offset += RHS->getZExtValue(); 68 Scale = SubScale; 69 return SubVal; 70 } 71 } 72 } 73 74 // Otherwise, we can't look past this. 75 Scale = 1; 76 Offset = 0; 77 return Val; 78 } 79 80 /// If we find a cast of an allocation instruction, try to eliminate the cast by 81 /// moving the type information into the alloc. 82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 83 AllocaInst &AI) { 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(&AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 93 94 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return nullptr; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 102 103 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = nullptr; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 145 146 // If the allocation has multiple real uses, insert a cast and change all 147 // things that used it to use the new cast. This will also hack on CI, but it 148 // will die soon. 149 if (!AI.hasOneUse()) { 150 // New is the allocation instruction, pointer typed. AI is the original 151 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 152 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 153 replaceInstUsesWith(AI, NewCast); 154 } 155 return replaceInstUsesWith(CI, New); 156 } 157 158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 159 /// true for, actually insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with DL info. 165 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 166 C = FoldedC; 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = nullptr; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V = 216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 217 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 218 } 219 Res = NPN; 220 break; 221 } 222 default: 223 // TODO: Can handle more cases here. 224 llvm_unreachable("Unreachable!"); 225 } 226 227 Res->takeName(I); 228 return InsertNewInstWith(Res, *I); 229 } 230 231 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 232 const CastInst *CI2) { 233 Type *SrcTy = CI1->getSrcTy(); 234 Type *MidTy = CI1->getDestTy(); 235 Type *DstTy = CI2->getDestTy(); 236 237 Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode()); 238 Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode()); 239 Type *SrcIntPtrTy = 240 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 241 Type *MidIntPtrTy = 242 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 243 Type *DstIntPtrTy = 244 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 245 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 246 DstTy, SrcIntPtrTy, MidIntPtrTy, 247 DstIntPtrTy); 248 249 // We don't want to form an inttoptr or ptrtoint that converts to an integer 250 // type that differs from the pointer size. 251 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 252 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 253 Res = 0; 254 255 return Instruction::CastOps(Res); 256 } 257 258 /// @brief Implement the transforms common to all CastInst visitors. 259 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 260 Value *Src = CI.getOperand(0); 261 262 // Try to eliminate a cast of a cast. 263 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 264 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 265 // The first cast (CSrc) is eliminable so we need to fix up or replace 266 // the second cast (CI). CSrc will then have a good chance of being dead. 267 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 268 } 269 } 270 271 // If we are casting a select, then fold the cast into the select. 272 if (auto *SI = dyn_cast<SelectInst>(Src)) 273 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 274 return NV; 275 276 // If we are casting a PHI, then fold the cast into the PHI. 277 if (isa<PHINode>(Src)) { 278 // Don't do this if it would create a PHI node with an illegal type from a 279 // legal type. 280 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 281 ShouldChangeType(CI.getType(), Src->getType())) 282 if (Instruction *NV = FoldOpIntoPhi(CI)) 283 return NV; 284 } 285 286 return nullptr; 287 } 288 289 /// Return true if we can evaluate the specified expression tree as type Ty 290 /// instead of its larger type, and arrive with the same value. 291 /// This is used by code that tries to eliminate truncates. 292 /// 293 /// Ty will always be a type smaller than V. We should return true if trunc(V) 294 /// can be computed by computing V in the smaller type. If V is an instruction, 295 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 296 /// makes sense if x and y can be efficiently truncated. 297 /// 298 /// This function works on both vectors and scalars. 299 /// 300 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 301 Instruction *CxtI) { 302 // We can always evaluate constants in another type. 303 if (isa<Constant>(V)) 304 return true; 305 306 Instruction *I = dyn_cast<Instruction>(V); 307 if (!I) return false; 308 309 Type *OrigTy = V->getType(); 310 311 // If this is an extension from the dest type, we can eliminate it, even if it 312 // has multiple uses. 313 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 314 I->getOperand(0)->getType() == Ty) 315 return true; 316 317 // We can't extend or shrink something that has multiple uses: doing so would 318 // require duplicating the instruction in general, which isn't profitable. 319 if (!I->hasOneUse()) return false; 320 321 unsigned Opc = I->getOpcode(); 322 switch (Opc) { 323 case Instruction::Add: 324 case Instruction::Sub: 325 case Instruction::Mul: 326 case Instruction::And: 327 case Instruction::Or: 328 case Instruction::Xor: 329 // These operators can all arbitrarily be extended or truncated. 330 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 331 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 332 333 case Instruction::UDiv: 334 case Instruction::URem: { 335 // UDiv and URem can be truncated if all the truncated bits are zero. 336 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 337 uint32_t BitWidth = Ty->getScalarSizeInBits(); 338 if (BitWidth < OrigBitWidth) { 339 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 340 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 341 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 342 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 343 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 344 } 345 } 346 break; 347 } 348 case Instruction::Shl: 349 // If we are truncating the result of this SHL, and if it's a shift of a 350 // constant amount, we can always perform a SHL in a smaller type. 351 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 352 uint32_t BitWidth = Ty->getScalarSizeInBits(); 353 if (CI->getLimitedValue(BitWidth) < BitWidth) 354 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 355 } 356 break; 357 case Instruction::LShr: 358 // If this is a truncate of a logical shr, we can truncate it to a smaller 359 // lshr iff we know that the bits we would otherwise be shifting in are 360 // already zeros. 361 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 362 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 363 uint32_t BitWidth = Ty->getScalarSizeInBits(); 364 if (IC.MaskedValueIsZero(I->getOperand(0), 365 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 366 CI->getLimitedValue(BitWidth) < BitWidth) { 367 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 368 } 369 } 370 break; 371 case Instruction::Trunc: 372 // trunc(trunc(x)) -> trunc(x) 373 return true; 374 case Instruction::ZExt: 375 case Instruction::SExt: 376 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 377 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 378 return true; 379 case Instruction::Select: { 380 SelectInst *SI = cast<SelectInst>(I); 381 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 382 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 383 } 384 case Instruction::PHI: { 385 // We can change a phi if we can change all operands. Note that we never 386 // get into trouble with cyclic PHIs here because we only consider 387 // instructions with a single use. 388 PHINode *PN = cast<PHINode>(I); 389 for (Value *IncValue : PN->incoming_values()) 390 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 391 return false; 392 return true; 393 } 394 default: 395 // TODO: Can handle more cases here. 396 break; 397 } 398 399 return false; 400 } 401 402 /// Given a vector that is bitcast to an integer, optionally logically 403 /// right-shifted, and truncated, convert it to an extractelement. 404 /// Example (big endian): 405 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 406 /// ---> 407 /// extractelement <4 x i32> %X, 1 408 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 409 const DataLayout &DL) { 410 Value *TruncOp = Trunc.getOperand(0); 411 Type *DestType = Trunc.getType(); 412 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 413 return nullptr; 414 415 Value *VecInput = nullptr; 416 ConstantInt *ShiftVal = nullptr; 417 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 418 m_LShr(m_BitCast(m_Value(VecInput)), 419 m_ConstantInt(ShiftVal)))) || 420 !isa<VectorType>(VecInput->getType())) 421 return nullptr; 422 423 VectorType *VecType = cast<VectorType>(VecInput->getType()); 424 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 425 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 426 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 427 428 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 429 return nullptr; 430 431 // If the element type of the vector doesn't match the result type, 432 // bitcast it to a vector type that we can extract from. 433 unsigned NumVecElts = VecWidth / DestWidth; 434 if (VecType->getElementType() != DestType) { 435 VecType = VectorType::get(DestType, NumVecElts); 436 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 437 } 438 439 unsigned Elt = ShiftAmount / DestWidth; 440 if (DL.isBigEndian()) 441 Elt = NumVecElts - 1 - Elt; 442 443 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 444 } 445 446 /// Try to narrow the width of bitwise logic instructions with constants. 447 Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) { 448 Type *SrcTy = Trunc.getSrcTy(); 449 Type *DestTy = Trunc.getType(); 450 if (isa<IntegerType>(SrcTy) && !ShouldChangeType(SrcTy, DestTy)) 451 return nullptr; 452 453 BinaryOperator *LogicOp; 454 Constant *C; 455 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(LogicOp))) || 456 !LogicOp->isBitwiseLogicOp() || 457 !match(LogicOp->getOperand(1), m_Constant(C))) 458 return nullptr; 459 460 // trunc (logic X, C) --> logic (trunc X, C') 461 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 462 Value *NarrowOp0 = Builder->CreateTrunc(LogicOp->getOperand(0), DestTy); 463 return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC); 464 } 465 466 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 467 if (Instruction *Result = commonCastTransforms(CI)) 468 return Result; 469 470 // Test if the trunc is the user of a select which is part of a 471 // minimum or maximum operation. If so, don't do any more simplification. 472 // Even simplifying demanded bits can break the canonical form of a 473 // min/max. 474 Value *LHS, *RHS; 475 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 476 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 477 return nullptr; 478 479 // See if we can simplify any instructions used by the input whose sole 480 // purpose is to compute bits we don't care about. 481 if (SimplifyDemandedInstructionBits(CI)) 482 return &CI; 483 484 Value *Src = CI.getOperand(0); 485 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 486 487 // Attempt to truncate the entire input expression tree to the destination 488 // type. Only do this if the dest type is a simple type, don't convert the 489 // expression tree to something weird like i93 unless the source is also 490 // strange. 491 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 492 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 493 494 // If this cast is a truncate, evaluting in a different type always 495 // eliminates the cast, so it is always a win. 496 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 497 " to avoid cast: " << CI << '\n'); 498 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 499 assert(Res->getType() == DestTy); 500 return replaceInstUsesWith(CI, Res); 501 } 502 503 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 504 if (DestTy->getScalarSizeInBits() == 1) { 505 Constant *One = ConstantInt::get(SrcTy, 1); 506 Src = Builder->CreateAnd(Src, One); 507 Value *Zero = Constant::getNullValue(Src->getType()); 508 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 509 } 510 511 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 512 Value *A = nullptr; ConstantInt *Cst = nullptr; 513 if (Src->hasOneUse() && 514 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 515 // We have three types to worry about here, the type of A, the source of 516 // the truncate (MidSize), and the destination of the truncate. We know that 517 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 518 // between ASize and ResultSize. 519 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 520 521 // If the shift amount is larger than the size of A, then the result is 522 // known to be zero because all the input bits got shifted out. 523 if (Cst->getZExtValue() >= ASize) 524 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 525 526 // Since we're doing an lshr and a zero extend, and know that the shift 527 // amount is smaller than ASize, it is always safe to do the shift in A's 528 // type, then zero extend or truncate to the result. 529 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 530 Shift->takeName(Src); 531 return CastInst::CreateIntegerCast(Shift, DestTy, false); 532 } 533 534 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 535 // conversion. 536 // It works because bits coming from sign extension have the same value as 537 // the sign bit of the original value; performing ashr instead of lshr 538 // generates bits of the same value as the sign bit. 539 if (Src->hasOneUse() && 540 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 541 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 542 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 543 // This optimization can be only performed when zero bits generated by 544 // the original lshr aren't pulled into the value after truncation, so we 545 // can only shift by values smaller than the size of destination type (in 546 // bits). 547 if (Cst->getValue().ult(ASize)) { 548 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 549 Shift->takeName(Src); 550 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 551 } 552 } 553 554 if (Instruction *I = shrinkBitwiseLogic(CI)) 555 return I; 556 557 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 558 ShouldChangeType(SrcTy, DestTy)) { 559 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 560 // dest type is native and cst < dest size. 561 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 562 !match(A, m_Shr(m_Value(), m_Constant()))) { 563 // Skip shifts of shift by constants. It undoes a combine in 564 // FoldShiftByConstant and is the extend in reg pattern. 565 const unsigned DestSize = DestTy->getScalarSizeInBits(); 566 if (Cst->getValue().ult(DestSize)) { 567 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 568 569 return BinaryOperator::Create( 570 Instruction::Shl, NewTrunc, 571 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 572 } 573 } 574 } 575 576 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 577 return I; 578 579 return nullptr; 580 } 581 582 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 583 bool DoTransform) { 584 // If we are just checking for a icmp eq of a single bit and zext'ing it 585 // to an integer, then shift the bit to the appropriate place and then 586 // cast to integer to avoid the comparison. 587 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 588 const APInt &Op1CV = Op1C->getValue(); 589 590 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 591 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 592 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 593 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 594 if (!DoTransform) return ICI; 595 596 Value *In = ICI->getOperand(0); 597 Value *Sh = ConstantInt::get(In->getType(), 598 In->getType()->getScalarSizeInBits() - 1); 599 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 600 if (In->getType() != CI.getType()) 601 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 602 603 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 604 Constant *One = ConstantInt::get(In->getType(), 1); 605 In = Builder->CreateXor(In, One, In->getName() + ".not"); 606 } 607 608 return replaceInstUsesWith(CI, In); 609 } 610 611 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 612 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 613 // zext (X == 1) to i32 --> X iff X has only the low bit set. 614 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 615 // zext (X != 0) to i32 --> X iff X has only the low bit set. 616 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 617 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 618 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 619 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 620 // This only works for EQ and NE 621 ICI->isEquality()) { 622 // If Op1C some other power of two, convert: 623 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 624 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 625 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 626 627 APInt KnownZeroMask(~KnownZero); 628 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 629 if (!DoTransform) return ICI; 630 631 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 632 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 633 // (X&4) == 2 --> false 634 // (X&4) != 2 --> true 635 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 636 isNE); 637 Res = ConstantExpr::getZExt(Res, CI.getType()); 638 return replaceInstUsesWith(CI, Res); 639 } 640 641 uint32_t ShAmt = KnownZeroMask.logBase2(); 642 Value *In = ICI->getOperand(0); 643 if (ShAmt) { 644 // Perform a logical shr by shiftamt. 645 // Insert the shift to put the result in the low bit. 646 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 647 In->getName() + ".lobit"); 648 } 649 650 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 651 Constant *One = ConstantInt::get(In->getType(), 1); 652 In = Builder->CreateXor(In, One); 653 } 654 655 if (CI.getType() == In->getType()) 656 return replaceInstUsesWith(CI, In); 657 658 Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false); 659 return replaceInstUsesWith(CI, IntCast); 660 } 661 } 662 } 663 664 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 665 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 666 // may lead to additional simplifications. 667 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 668 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 669 uint32_t BitWidth = ITy->getBitWidth(); 670 Value *LHS = ICI->getOperand(0); 671 Value *RHS = ICI->getOperand(1); 672 673 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 674 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 675 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 676 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 677 678 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 679 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 680 APInt UnknownBit = ~KnownBits; 681 if (UnknownBit.countPopulation() == 1) { 682 if (!DoTransform) return ICI; 683 684 Value *Result = Builder->CreateXor(LHS, RHS); 685 686 // Mask off any bits that are set and won't be shifted away. 687 if (KnownOneLHS.uge(UnknownBit)) 688 Result = Builder->CreateAnd(Result, 689 ConstantInt::get(ITy, UnknownBit)); 690 691 // Shift the bit we're testing down to the lsb. 692 Result = Builder->CreateLShr( 693 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 694 695 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 696 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 697 Result->takeName(ICI); 698 return replaceInstUsesWith(CI, Result); 699 } 700 } 701 } 702 } 703 704 return nullptr; 705 } 706 707 /// Determine if the specified value can be computed in the specified wider type 708 /// and produce the same low bits. If not, return false. 709 /// 710 /// If this function returns true, it can also return a non-zero number of bits 711 /// (in BitsToClear) which indicates that the value it computes is correct for 712 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 713 /// out. For example, to promote something like: 714 /// 715 /// %B = trunc i64 %A to i32 716 /// %C = lshr i32 %B, 8 717 /// %E = zext i32 %C to i64 718 /// 719 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 720 /// set to 8 to indicate that the promoted value needs to have bits 24-31 721 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 722 /// clear the top bits anyway, doing this has no extra cost. 723 /// 724 /// This function works on both vectors and scalars. 725 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 726 InstCombiner &IC, Instruction *CxtI) { 727 BitsToClear = 0; 728 if (isa<Constant>(V)) 729 return true; 730 731 Instruction *I = dyn_cast<Instruction>(V); 732 if (!I) return false; 733 734 // If the input is a truncate from the destination type, we can trivially 735 // eliminate it. 736 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 737 return true; 738 739 // We can't extend or shrink something that has multiple uses: doing so would 740 // require duplicating the instruction in general, which isn't profitable. 741 if (!I->hasOneUse()) return false; 742 743 unsigned Opc = I->getOpcode(), Tmp; 744 switch (Opc) { 745 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 746 case Instruction::SExt: // zext(sext(x)) -> sext(x). 747 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 748 return true; 749 case Instruction::And: 750 case Instruction::Or: 751 case Instruction::Xor: 752 case Instruction::Add: 753 case Instruction::Sub: 754 case Instruction::Mul: 755 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 756 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 757 return false; 758 // These can all be promoted if neither operand has 'bits to clear'. 759 if (BitsToClear == 0 && Tmp == 0) 760 return true; 761 762 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 763 // other side, BitsToClear is ok. 764 if (Tmp == 0 && I->isBitwiseLogicOp()) { 765 // We use MaskedValueIsZero here for generality, but the case we care 766 // about the most is constant RHS. 767 unsigned VSize = V->getType()->getScalarSizeInBits(); 768 if (IC.MaskedValueIsZero(I->getOperand(1), 769 APInt::getHighBitsSet(VSize, BitsToClear), 770 0, CxtI)) 771 return true; 772 } 773 774 // Otherwise, we don't know how to analyze this BitsToClear case yet. 775 return false; 776 777 case Instruction::Shl: 778 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 779 // upper bits we can reduce BitsToClear by the shift amount. 780 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 781 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 782 return false; 783 uint64_t ShiftAmt = Amt->getZExtValue(); 784 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 785 return true; 786 } 787 return false; 788 case Instruction::LShr: 789 // We can promote lshr(x, cst) if we can promote x. This requires the 790 // ultimate 'and' to clear out the high zero bits we're clearing out though. 791 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 792 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 793 return false; 794 BitsToClear += Amt->getZExtValue(); 795 if (BitsToClear > V->getType()->getScalarSizeInBits()) 796 BitsToClear = V->getType()->getScalarSizeInBits(); 797 return true; 798 } 799 // Cannot promote variable LSHR. 800 return false; 801 case Instruction::Select: 802 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 803 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 804 // TODO: If important, we could handle the case when the BitsToClear are 805 // known zero in the disagreeing side. 806 Tmp != BitsToClear) 807 return false; 808 return true; 809 810 case Instruction::PHI: { 811 // We can change a phi if we can change all operands. Note that we never 812 // get into trouble with cyclic PHIs here because we only consider 813 // instructions with a single use. 814 PHINode *PN = cast<PHINode>(I); 815 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 816 return false; 817 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 818 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 819 // TODO: If important, we could handle the case when the BitsToClear 820 // are known zero in the disagreeing input. 821 Tmp != BitsToClear) 822 return false; 823 return true; 824 } 825 default: 826 // TODO: Can handle more cases here. 827 return false; 828 } 829 } 830 831 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 832 // If this zero extend is only used by a truncate, let the truncate be 833 // eliminated before we try to optimize this zext. 834 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 835 return nullptr; 836 837 // If one of the common conversion will work, do it. 838 if (Instruction *Result = commonCastTransforms(CI)) 839 return Result; 840 841 // See if we can simplify any instructions used by the input whose sole 842 // purpose is to compute bits we don't care about. 843 if (SimplifyDemandedInstructionBits(CI)) 844 return &CI; 845 846 Value *Src = CI.getOperand(0); 847 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 848 849 // Attempt to extend the entire input expression tree to the destination 850 // type. Only do this if the dest type is a simple type, don't convert the 851 // expression tree to something weird like i93 unless the source is also 852 // strange. 853 unsigned BitsToClear; 854 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 855 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 856 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 857 "Unreasonable BitsToClear"); 858 859 // Okay, we can transform this! Insert the new expression now. 860 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 861 " to avoid zero extend: " << CI << '\n'); 862 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 863 assert(Res->getType() == DestTy); 864 865 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 866 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 867 868 // If the high bits are already filled with zeros, just replace this 869 // cast with the result. 870 if (MaskedValueIsZero(Res, 871 APInt::getHighBitsSet(DestBitSize, 872 DestBitSize-SrcBitsKept), 873 0, &CI)) 874 return replaceInstUsesWith(CI, Res); 875 876 // We need to emit an AND to clear the high bits. 877 Constant *C = ConstantInt::get(Res->getType(), 878 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 879 return BinaryOperator::CreateAnd(Res, C); 880 } 881 882 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 883 // types and if the sizes are just right we can convert this into a logical 884 // 'and' which will be much cheaper than the pair of casts. 885 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 886 // TODO: Subsume this into EvaluateInDifferentType. 887 888 // Get the sizes of the types involved. We know that the intermediate type 889 // will be smaller than A or C, but don't know the relation between A and C. 890 Value *A = CSrc->getOperand(0); 891 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 892 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 893 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 894 // If we're actually extending zero bits, then if 895 // SrcSize < DstSize: zext(a & mask) 896 // SrcSize == DstSize: a & mask 897 // SrcSize > DstSize: trunc(a) & mask 898 if (SrcSize < DstSize) { 899 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 900 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 901 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 902 return new ZExtInst(And, CI.getType()); 903 } 904 905 if (SrcSize == DstSize) { 906 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 907 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 908 AndValue)); 909 } 910 if (SrcSize > DstSize) { 911 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 912 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 913 return BinaryOperator::CreateAnd(Trunc, 914 ConstantInt::get(Trunc->getType(), 915 AndValue)); 916 } 917 } 918 919 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 920 return transformZExtICmp(ICI, CI); 921 922 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 923 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 924 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 925 // of the (zext icmp) can be eliminated. If so, immediately perform the 926 // according elimination. 927 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 928 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 929 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 930 (transformZExtICmp(LHS, CI, false) || 931 transformZExtICmp(RHS, CI, false))) { 932 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 933 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 934 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 935 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 936 937 // Perform the elimination. 938 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 939 transformZExtICmp(LHS, *LZExt); 940 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 941 transformZExtICmp(RHS, *RZExt); 942 943 return Or; 944 } 945 } 946 947 // zext(trunc(X) & C) -> (X & zext(C)). 948 Constant *C; 949 Value *X; 950 if (SrcI && 951 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 952 X->getType() == CI.getType()) 953 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 954 955 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 956 Value *And; 957 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 958 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 959 X->getType() == CI.getType()) { 960 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 961 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 962 } 963 964 return nullptr; 965 } 966 967 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 968 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 969 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 970 ICmpInst::Predicate Pred = ICI->getPredicate(); 971 972 // Don't bother if Op1 isn't of vector or integer type. 973 if (!Op1->getType()->isIntOrIntVectorTy()) 974 return nullptr; 975 976 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 977 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 978 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 979 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 980 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 981 982 Value *Sh = ConstantInt::get(Op0->getType(), 983 Op0->getType()->getScalarSizeInBits()-1); 984 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 985 if (In->getType() != CI.getType()) 986 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 987 988 if (Pred == ICmpInst::ICMP_SGT) 989 In = Builder->CreateNot(In, In->getName()+".not"); 990 return replaceInstUsesWith(CI, In); 991 } 992 } 993 994 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 995 // If we know that only one bit of the LHS of the icmp can be set and we 996 // have an equality comparison with zero or a power of 2, we can transform 997 // the icmp and sext into bitwise/integer operations. 998 if (ICI->hasOneUse() && 999 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1000 unsigned BitWidth = Op1C->getType()->getBitWidth(); 1001 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1002 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 1003 1004 APInt KnownZeroMask(~KnownZero); 1005 if (KnownZeroMask.isPowerOf2()) { 1006 Value *In = ICI->getOperand(0); 1007 1008 // If the icmp tests for a known zero bit we can constant fold it. 1009 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1010 Value *V = Pred == ICmpInst::ICMP_NE ? 1011 ConstantInt::getAllOnesValue(CI.getType()) : 1012 ConstantInt::getNullValue(CI.getType()); 1013 return replaceInstUsesWith(CI, V); 1014 } 1015 1016 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1017 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1018 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1019 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1020 // Perform a right shift to place the desired bit in the LSB. 1021 if (ShiftAmt) 1022 In = Builder->CreateLShr(In, 1023 ConstantInt::get(In->getType(), ShiftAmt)); 1024 1025 // At this point "In" is either 1 or 0. Subtract 1 to turn 1026 // {1, 0} -> {0, -1}. 1027 In = Builder->CreateAdd(In, 1028 ConstantInt::getAllOnesValue(In->getType()), 1029 "sext"); 1030 } else { 1031 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1032 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1033 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1034 // Perform a left shift to place the desired bit in the MSB. 1035 if (ShiftAmt) 1036 In = Builder->CreateShl(In, 1037 ConstantInt::get(In->getType(), ShiftAmt)); 1038 1039 // Distribute the bit over the whole bit width. 1040 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1041 BitWidth - 1), "sext"); 1042 } 1043 1044 if (CI.getType() == In->getType()) 1045 return replaceInstUsesWith(CI, In); 1046 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1047 } 1048 } 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 /// Return true if we can take the specified value and return it as type Ty 1055 /// without inserting any new casts and without changing the value of the common 1056 /// low bits. This is used by code that tries to promote integer operations to 1057 /// a wider types will allow us to eliminate the extension. 1058 /// 1059 /// This function works on both vectors and scalars. 1060 /// 1061 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1062 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1063 "Can't sign extend type to a smaller type"); 1064 // If this is a constant, it can be trivially promoted. 1065 if (isa<Constant>(V)) 1066 return true; 1067 1068 Instruction *I = dyn_cast<Instruction>(V); 1069 if (!I) return false; 1070 1071 // If this is a truncate from the dest type, we can trivially eliminate it. 1072 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1073 return true; 1074 1075 // We can't extend or shrink something that has multiple uses: doing so would 1076 // require duplicating the instruction in general, which isn't profitable. 1077 if (!I->hasOneUse()) return false; 1078 1079 switch (I->getOpcode()) { 1080 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1081 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1082 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1083 return true; 1084 case Instruction::And: 1085 case Instruction::Or: 1086 case Instruction::Xor: 1087 case Instruction::Add: 1088 case Instruction::Sub: 1089 case Instruction::Mul: 1090 // These operators can all arbitrarily be extended if their inputs can. 1091 return canEvaluateSExtd(I->getOperand(0), Ty) && 1092 canEvaluateSExtd(I->getOperand(1), Ty); 1093 1094 //case Instruction::Shl: TODO 1095 //case Instruction::LShr: TODO 1096 1097 case Instruction::Select: 1098 return canEvaluateSExtd(I->getOperand(1), Ty) && 1099 canEvaluateSExtd(I->getOperand(2), Ty); 1100 1101 case Instruction::PHI: { 1102 // We can change a phi if we can change all operands. Note that we never 1103 // get into trouble with cyclic PHIs here because we only consider 1104 // instructions with a single use. 1105 PHINode *PN = cast<PHINode>(I); 1106 for (Value *IncValue : PN->incoming_values()) 1107 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1108 return true; 1109 } 1110 default: 1111 // TODO: Can handle more cases here. 1112 break; 1113 } 1114 1115 return false; 1116 } 1117 1118 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1119 // If this sign extend is only used by a truncate, let the truncate be 1120 // eliminated before we try to optimize this sext. 1121 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1122 return nullptr; 1123 1124 if (Instruction *I = commonCastTransforms(CI)) 1125 return I; 1126 1127 // See if we can simplify any instructions used by the input whose sole 1128 // purpose is to compute bits we don't care about. 1129 if (SimplifyDemandedInstructionBits(CI)) 1130 return &CI; 1131 1132 Value *Src = CI.getOperand(0); 1133 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1134 1135 // If we know that the value being extended is positive, we can use a zext 1136 // instead. 1137 bool KnownZero, KnownOne; 1138 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1139 if (KnownZero) { 1140 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1141 return replaceInstUsesWith(CI, ZExt); 1142 } 1143 1144 // Attempt to extend the entire input expression tree to the destination 1145 // type. Only do this if the dest type is a simple type, don't convert the 1146 // expression tree to something weird like i93 unless the source is also 1147 // strange. 1148 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1149 canEvaluateSExtd(Src, DestTy)) { 1150 // Okay, we can transform this! Insert the new expression now. 1151 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1152 " to avoid sign extend: " << CI << '\n'); 1153 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1154 assert(Res->getType() == DestTy); 1155 1156 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1157 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1158 1159 // If the high bits are already filled with sign bit, just replace this 1160 // cast with the result. 1161 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1162 return replaceInstUsesWith(CI, Res); 1163 1164 // We need to emit a shl + ashr to do the sign extend. 1165 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1166 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1167 ShAmt); 1168 } 1169 1170 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1171 // into shifts. 1172 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1173 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1174 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1175 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1176 1177 // We need to emit a shl + ashr to do the sign extend. 1178 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1179 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1180 return BinaryOperator::CreateAShr(Res, ShAmt); 1181 } 1182 1183 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1184 return transformSExtICmp(ICI, CI); 1185 1186 // If the input is a shl/ashr pair of a same constant, then this is a sign 1187 // extension from a smaller value. If we could trust arbitrary bitwidth 1188 // integers, we could turn this into a truncate to the smaller bit and then 1189 // use a sext for the whole extension. Since we don't, look deeper and check 1190 // for a truncate. If the source and dest are the same type, eliminate the 1191 // trunc and extend and just do shifts. For example, turn: 1192 // %a = trunc i32 %i to i8 1193 // %b = shl i8 %a, 6 1194 // %c = ashr i8 %b, 6 1195 // %d = sext i8 %c to i32 1196 // into: 1197 // %a = shl i32 %i, 30 1198 // %d = ashr i32 %a, 30 1199 Value *A = nullptr; 1200 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1201 ConstantInt *BA = nullptr, *CA = nullptr; 1202 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1203 m_ConstantInt(CA))) && 1204 BA == CA && A->getType() == CI.getType()) { 1205 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1206 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1207 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1208 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1209 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1210 return BinaryOperator::CreateAShr(A, ShAmtV); 1211 } 1212 1213 return nullptr; 1214 } 1215 1216 1217 /// Return a Constant* for the specified floating-point constant if it fits 1218 /// in the specified FP type without changing its value. 1219 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1220 bool losesInfo; 1221 APFloat F = CFP->getValueAPF(); 1222 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1223 if (!losesInfo) 1224 return ConstantFP::get(CFP->getContext(), F); 1225 return nullptr; 1226 } 1227 1228 /// If this is a floating-point extension instruction, look 1229 /// through it until we get the source value. 1230 static Value *lookThroughFPExtensions(Value *V) { 1231 if (Instruction *I = dyn_cast<Instruction>(V)) 1232 if (I->getOpcode() == Instruction::FPExt) 1233 return lookThroughFPExtensions(I->getOperand(0)); 1234 1235 // If this value is a constant, return the constant in the smallest FP type 1236 // that can accurately represent it. This allows us to turn 1237 // (float)((double)X+2.0) into x+2.0f. 1238 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1239 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1240 return V; // No constant folding of this. 1241 // See if the value can be truncated to half and then reextended. 1242 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1243 return V; 1244 // See if the value can be truncated to float and then reextended. 1245 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1246 return V; 1247 if (CFP->getType()->isDoubleTy()) 1248 return V; // Won't shrink. 1249 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1250 return V; 1251 // Don't try to shrink to various long double types. 1252 } 1253 1254 return V; 1255 } 1256 1257 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1258 if (Instruction *I = commonCastTransforms(CI)) 1259 return I; 1260 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1261 // simplify this expression to avoid one or more of the trunc/extend 1262 // operations if we can do so without changing the numerical results. 1263 // 1264 // The exact manner in which the widths of the operands interact to limit 1265 // what we can and cannot do safely varies from operation to operation, and 1266 // is explained below in the various case statements. 1267 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1268 if (OpI && OpI->hasOneUse()) { 1269 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1270 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1271 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1272 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1273 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1274 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1275 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1276 switch (OpI->getOpcode()) { 1277 default: break; 1278 case Instruction::FAdd: 1279 case Instruction::FSub: 1280 // For addition and subtraction, the infinitely precise result can 1281 // essentially be arbitrarily wide; proving that double rounding 1282 // will not occur because the result of OpI is exact (as we will for 1283 // FMul, for example) is hopeless. However, we *can* nonetheless 1284 // frequently know that double rounding cannot occur (or that it is 1285 // innocuous) by taking advantage of the specific structure of 1286 // infinitely-precise results that admit double rounding. 1287 // 1288 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1289 // to represent both sources, we can guarantee that the double 1290 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1291 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1292 // for proof of this fact). 1293 // 1294 // Note: Figueroa does not consider the case where DstFormat != 1295 // SrcFormat. It's possible (likely even!) that this analysis 1296 // could be tightened for those cases, but they are rare (the main 1297 // case of interest here is (float)((double)float + float)). 1298 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1299 if (LHSOrig->getType() != CI.getType()) 1300 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1301 if (RHSOrig->getType() != CI.getType()) 1302 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1303 Instruction *RI = 1304 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1305 RI->copyFastMathFlags(OpI); 1306 return RI; 1307 } 1308 break; 1309 case Instruction::FMul: 1310 // For multiplication, the infinitely precise result has at most 1311 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1312 // that such a value can be exactly represented, then no double 1313 // rounding can possibly occur; we can safely perform the operation 1314 // in the destination format if it can represent both sources. 1315 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1316 if (LHSOrig->getType() != CI.getType()) 1317 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1318 if (RHSOrig->getType() != CI.getType()) 1319 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1320 Instruction *RI = 1321 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1322 RI->copyFastMathFlags(OpI); 1323 return RI; 1324 } 1325 break; 1326 case Instruction::FDiv: 1327 // For division, we use again use the bound from Figueroa's 1328 // dissertation. I am entirely certain that this bound can be 1329 // tightened in the unbalanced operand case by an analysis based on 1330 // the diophantine rational approximation bound, but the well-known 1331 // condition used here is a good conservative first pass. 1332 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1333 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1334 if (LHSOrig->getType() != CI.getType()) 1335 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1336 if (RHSOrig->getType() != CI.getType()) 1337 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1338 Instruction *RI = 1339 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1340 RI->copyFastMathFlags(OpI); 1341 return RI; 1342 } 1343 break; 1344 case Instruction::FRem: 1345 // Remainder is straightforward. Remainder is always exact, so the 1346 // type of OpI doesn't enter into things at all. We simply evaluate 1347 // in whichever source type is larger, then convert to the 1348 // destination type. 1349 if (SrcWidth == OpWidth) 1350 break; 1351 if (LHSWidth < SrcWidth) 1352 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1353 else if (RHSWidth <= SrcWidth) 1354 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1355 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1356 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1357 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1358 RI->copyFastMathFlags(OpI); 1359 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1360 } 1361 } 1362 1363 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1364 if (BinaryOperator::isFNeg(OpI)) { 1365 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1366 CI.getType()); 1367 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1368 RI->copyFastMathFlags(OpI); 1369 return RI; 1370 } 1371 } 1372 1373 // (fptrunc (select cond, R1, Cst)) --> 1374 // (select cond, (fptrunc R1), (fptrunc Cst)) 1375 // 1376 // - but only if this isn't part of a min/max operation, else we'll 1377 // ruin min/max canonical form which is to have the select and 1378 // compare's operands be of the same type with no casts to look through. 1379 Value *LHS, *RHS; 1380 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1381 if (SI && 1382 (isa<ConstantFP>(SI->getOperand(1)) || 1383 isa<ConstantFP>(SI->getOperand(2))) && 1384 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1385 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1386 CI.getType()); 1387 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1388 CI.getType()); 1389 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1390 } 1391 1392 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1393 if (II) { 1394 switch (II->getIntrinsicID()) { 1395 default: break; 1396 case Intrinsic::fabs: 1397 case Intrinsic::ceil: 1398 case Intrinsic::floor: 1399 case Intrinsic::rint: 1400 case Intrinsic::round: 1401 case Intrinsic::nearbyint: 1402 case Intrinsic::trunc: { 1403 // Do unary FP operation on smaller type. 1404 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1405 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1406 CI.getType()); 1407 Type *IntrinsicType[] = { CI.getType() }; 1408 Function *Overload = Intrinsic::getDeclaration( 1409 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1410 1411 SmallVector<OperandBundleDef, 1> OpBundles; 1412 II->getOperandBundlesAsDefs(OpBundles); 1413 1414 Value *Args[] = { InnerTrunc }; 1415 CallInst *NewCI = CallInst::Create(Overload, Args, 1416 OpBundles, II->getName()); 1417 NewCI->copyFastMathFlags(II); 1418 return NewCI; 1419 } 1420 } 1421 } 1422 1423 return nullptr; 1424 } 1425 1426 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1427 return commonCastTransforms(CI); 1428 } 1429 1430 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1431 // This is safe if the intermediate type has enough bits in its mantissa to 1432 // accurately represent all values of X. For example, this won't work with 1433 // i64 -> float -> i64. 1434 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1435 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1436 return nullptr; 1437 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1438 1439 Value *SrcI = OpI->getOperand(0); 1440 Type *FITy = FI.getType(); 1441 Type *OpITy = OpI->getType(); 1442 Type *SrcTy = SrcI->getType(); 1443 bool IsInputSigned = isa<SIToFPInst>(OpI); 1444 bool IsOutputSigned = isa<FPToSIInst>(FI); 1445 1446 // We can safely assume the conversion won't overflow the output range, 1447 // because (for example) (uint8_t)18293.f is undefined behavior. 1448 1449 // Since we can assume the conversion won't overflow, our decision as to 1450 // whether the input will fit in the float should depend on the minimum 1451 // of the input range and output range. 1452 1453 // This means this is also safe for a signed input and unsigned output, since 1454 // a negative input would lead to undefined behavior. 1455 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1456 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1457 int ActualSize = std::min(InputSize, OutputSize); 1458 1459 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1460 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1461 if (IsInputSigned && IsOutputSigned) 1462 return new SExtInst(SrcI, FITy); 1463 return new ZExtInst(SrcI, FITy); 1464 } 1465 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1466 return new TruncInst(SrcI, FITy); 1467 if (SrcTy == FITy) 1468 return replaceInstUsesWith(FI, SrcI); 1469 return new BitCastInst(SrcI, FITy); 1470 } 1471 return nullptr; 1472 } 1473 1474 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1475 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1476 if (!OpI) 1477 return commonCastTransforms(FI); 1478 1479 if (Instruction *I = FoldItoFPtoI(FI)) 1480 return I; 1481 1482 return commonCastTransforms(FI); 1483 } 1484 1485 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1486 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1487 if (!OpI) 1488 return commonCastTransforms(FI); 1489 1490 if (Instruction *I = FoldItoFPtoI(FI)) 1491 return I; 1492 1493 return commonCastTransforms(FI); 1494 } 1495 1496 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1497 return commonCastTransforms(CI); 1498 } 1499 1500 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1501 return commonCastTransforms(CI); 1502 } 1503 1504 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1505 // If the source integer type is not the intptr_t type for this target, do a 1506 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1507 // cast to be exposed to other transforms. 1508 unsigned AS = CI.getAddressSpace(); 1509 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1510 DL.getPointerSizeInBits(AS)) { 1511 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1512 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1513 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1514 1515 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1516 return new IntToPtrInst(P, CI.getType()); 1517 } 1518 1519 if (Instruction *I = commonCastTransforms(CI)) 1520 return I; 1521 1522 return nullptr; 1523 } 1524 1525 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1526 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1527 Value *Src = CI.getOperand(0); 1528 1529 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1530 // If casting the result of a getelementptr instruction with no offset, turn 1531 // this into a cast of the original pointer! 1532 if (GEP->hasAllZeroIndices() && 1533 // If CI is an addrspacecast and GEP changes the poiner type, merging 1534 // GEP into CI would undo canonicalizing addrspacecast with different 1535 // pointer types, causing infinite loops. 1536 (!isa<AddrSpaceCastInst>(CI) || 1537 GEP->getType() == GEP->getPointerOperand()->getType())) { 1538 // Changing the cast operand is usually not a good idea but it is safe 1539 // here because the pointer operand is being replaced with another 1540 // pointer operand so the opcode doesn't need to change. 1541 Worklist.Add(GEP); 1542 CI.setOperand(0, GEP->getOperand(0)); 1543 return &CI; 1544 } 1545 } 1546 1547 return commonCastTransforms(CI); 1548 } 1549 1550 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1551 // If the destination integer type is not the intptr_t type for this target, 1552 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1553 // to be exposed to other transforms. 1554 1555 Type *Ty = CI.getType(); 1556 unsigned AS = CI.getPointerAddressSpace(); 1557 1558 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1559 return commonPointerCastTransforms(CI); 1560 1561 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1562 if (Ty->isVectorTy()) // Handle vectors of pointers. 1563 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1564 1565 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1566 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1567 } 1568 1569 /// This input value (which is known to have vector type) is being zero extended 1570 /// or truncated to the specified vector type. 1571 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1572 /// 1573 /// The source and destination vector types may have different element types. 1574 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1575 InstCombiner &IC) { 1576 // We can only do this optimization if the output is a multiple of the input 1577 // element size, or the input is a multiple of the output element size. 1578 // Convert the input type to have the same element type as the output. 1579 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1580 1581 if (SrcTy->getElementType() != DestTy->getElementType()) { 1582 // The input types don't need to be identical, but for now they must be the 1583 // same size. There is no specific reason we couldn't handle things like 1584 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1585 // there yet. 1586 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1587 DestTy->getElementType()->getPrimitiveSizeInBits()) 1588 return nullptr; 1589 1590 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1591 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1592 } 1593 1594 // Now that the element types match, get the shuffle mask and RHS of the 1595 // shuffle to use, which depends on whether we're increasing or decreasing the 1596 // size of the input. 1597 SmallVector<uint32_t, 16> ShuffleMask; 1598 Value *V2; 1599 1600 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1601 // If we're shrinking the number of elements, just shuffle in the low 1602 // elements from the input and use undef as the second shuffle input. 1603 V2 = UndefValue::get(SrcTy); 1604 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1605 ShuffleMask.push_back(i); 1606 1607 } else { 1608 // If we're increasing the number of elements, shuffle in all of the 1609 // elements from InVal and fill the rest of the result elements with zeros 1610 // from a constant zero. 1611 V2 = Constant::getNullValue(SrcTy); 1612 unsigned SrcElts = SrcTy->getNumElements(); 1613 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1614 ShuffleMask.push_back(i); 1615 1616 // The excess elements reference the first element of the zero input. 1617 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1618 ShuffleMask.push_back(SrcElts); 1619 } 1620 1621 return new ShuffleVectorInst(InVal, V2, 1622 ConstantDataVector::get(V2->getContext(), 1623 ShuffleMask)); 1624 } 1625 1626 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1627 return Value % Ty->getPrimitiveSizeInBits() == 0; 1628 } 1629 1630 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1631 return Value / Ty->getPrimitiveSizeInBits(); 1632 } 1633 1634 /// V is a value which is inserted into a vector of VecEltTy. 1635 /// Look through the value to see if we can decompose it into 1636 /// insertions into the vector. See the example in the comment for 1637 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1638 /// The type of V is always a non-zero multiple of VecEltTy's size. 1639 /// Shift is the number of bits between the lsb of V and the lsb of 1640 /// the vector. 1641 /// 1642 /// This returns false if the pattern can't be matched or true if it can, 1643 /// filling in Elements with the elements found here. 1644 static bool collectInsertionElements(Value *V, unsigned Shift, 1645 SmallVectorImpl<Value *> &Elements, 1646 Type *VecEltTy, bool isBigEndian) { 1647 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1648 "Shift should be a multiple of the element type size"); 1649 1650 // Undef values never contribute useful bits to the result. 1651 if (isa<UndefValue>(V)) return true; 1652 1653 // If we got down to a value of the right type, we win, try inserting into the 1654 // right element. 1655 if (V->getType() == VecEltTy) { 1656 // Inserting null doesn't actually insert any elements. 1657 if (Constant *C = dyn_cast<Constant>(V)) 1658 if (C->isNullValue()) 1659 return true; 1660 1661 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1662 if (isBigEndian) 1663 ElementIndex = Elements.size() - ElementIndex - 1; 1664 1665 // Fail if multiple elements are inserted into this slot. 1666 if (Elements[ElementIndex]) 1667 return false; 1668 1669 Elements[ElementIndex] = V; 1670 return true; 1671 } 1672 1673 if (Constant *C = dyn_cast<Constant>(V)) { 1674 // Figure out the # elements this provides, and bitcast it or slice it up 1675 // as required. 1676 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1677 VecEltTy); 1678 // If the constant is the size of a vector element, we just need to bitcast 1679 // it to the right type so it gets properly inserted. 1680 if (NumElts == 1) 1681 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1682 Shift, Elements, VecEltTy, isBigEndian); 1683 1684 // Okay, this is a constant that covers multiple elements. Slice it up into 1685 // pieces and insert each element-sized piece into the vector. 1686 if (!isa<IntegerType>(C->getType())) 1687 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1688 C->getType()->getPrimitiveSizeInBits())); 1689 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1690 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1691 1692 for (unsigned i = 0; i != NumElts; ++i) { 1693 unsigned ShiftI = Shift+i*ElementSize; 1694 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1695 ShiftI)); 1696 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1697 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1698 isBigEndian)) 1699 return false; 1700 } 1701 return true; 1702 } 1703 1704 if (!V->hasOneUse()) return false; 1705 1706 Instruction *I = dyn_cast<Instruction>(V); 1707 if (!I) return false; 1708 switch (I->getOpcode()) { 1709 default: return false; // Unhandled case. 1710 case Instruction::BitCast: 1711 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1712 isBigEndian); 1713 case Instruction::ZExt: 1714 if (!isMultipleOfTypeSize( 1715 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1716 VecEltTy)) 1717 return false; 1718 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1719 isBigEndian); 1720 case Instruction::Or: 1721 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1722 isBigEndian) && 1723 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1724 isBigEndian); 1725 case Instruction::Shl: { 1726 // Must be shifting by a constant that is a multiple of the element size. 1727 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1728 if (!CI) return false; 1729 Shift += CI->getZExtValue(); 1730 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1731 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1732 isBigEndian); 1733 } 1734 1735 } 1736 } 1737 1738 1739 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1740 /// assemble the elements of the vector manually. 1741 /// Try to rip the code out and replace it with insertelements. This is to 1742 /// optimize code like this: 1743 /// 1744 /// %tmp37 = bitcast float %inc to i32 1745 /// %tmp38 = zext i32 %tmp37 to i64 1746 /// %tmp31 = bitcast float %inc5 to i32 1747 /// %tmp32 = zext i32 %tmp31 to i64 1748 /// %tmp33 = shl i64 %tmp32, 32 1749 /// %ins35 = or i64 %tmp33, %tmp38 1750 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1751 /// 1752 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1753 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1754 InstCombiner &IC) { 1755 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1756 Value *IntInput = CI.getOperand(0); 1757 1758 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1759 if (!collectInsertionElements(IntInput, 0, Elements, 1760 DestVecTy->getElementType(), 1761 IC.getDataLayout().isBigEndian())) 1762 return nullptr; 1763 1764 // If we succeeded, we know that all of the element are specified by Elements 1765 // or are zero if Elements has a null entry. Recast this as a set of 1766 // insertions. 1767 Value *Result = Constant::getNullValue(CI.getType()); 1768 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1769 if (!Elements[i]) continue; // Unset element. 1770 1771 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1772 IC.Builder->getInt32(i)); 1773 } 1774 1775 return Result; 1776 } 1777 1778 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1779 /// vector followed by extract element. The backend tends to handle bitcasts of 1780 /// vectors better than bitcasts of scalars because vector registers are 1781 /// usually not type-specific like scalar integer or scalar floating-point. 1782 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1783 InstCombiner &IC, 1784 const DataLayout &DL) { 1785 // TODO: Create and use a pattern matcher for ExtractElementInst. 1786 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1787 if (!ExtElt || !ExtElt->hasOneUse()) 1788 return nullptr; 1789 1790 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1791 // type to extract from. 1792 Type *DestType = BitCast.getType(); 1793 if (!VectorType::isValidElementType(DestType)) 1794 return nullptr; 1795 1796 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1797 auto *NewVecType = VectorType::get(DestType, NumElts); 1798 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1799 NewVecType, "bc"); 1800 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1801 } 1802 1803 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1804 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1805 InstCombiner::BuilderTy &Builder) { 1806 Type *DestTy = BitCast.getType(); 1807 BinaryOperator *BO; 1808 if (!DestTy->getScalarType()->isIntegerTy() || 1809 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1810 !BO->isBitwiseLogicOp()) 1811 return nullptr; 1812 1813 // FIXME: This transform is restricted to vector types to avoid backend 1814 // problems caused by creating potentially illegal operations. If a fix-up is 1815 // added to handle that situation, we can remove this check. 1816 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1817 return nullptr; 1818 1819 Value *X; 1820 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1821 X->getType() == DestTy && !isa<Constant>(X)) { 1822 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1823 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1824 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 1825 } 1826 1827 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1828 X->getType() == DestTy && !isa<Constant>(X)) { 1829 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1830 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1831 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 1832 } 1833 1834 return nullptr; 1835 } 1836 1837 /// Change the type of a select if we can eliminate a bitcast. 1838 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 1839 InstCombiner::BuilderTy &Builder) { 1840 Value *Cond, *TVal, *FVal; 1841 if (!match(BitCast.getOperand(0), 1842 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 1843 return nullptr; 1844 1845 // A vector select must maintain the same number of elements in its operands. 1846 Type *CondTy = Cond->getType(); 1847 Type *DestTy = BitCast.getType(); 1848 if (CondTy->isVectorTy()) { 1849 if (!DestTy->isVectorTy()) 1850 return nullptr; 1851 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 1852 return nullptr; 1853 } 1854 1855 // FIXME: This transform is restricted from changing the select between 1856 // scalars and vectors to avoid backend problems caused by creating 1857 // potentially illegal operations. If a fix-up is added to handle that 1858 // situation, we can remove this check. 1859 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 1860 return nullptr; 1861 1862 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 1863 Value *X; 1864 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1865 !isa<Constant>(X)) { 1866 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 1867 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 1868 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 1869 } 1870 1871 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1872 !isa<Constant>(X)) { 1873 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 1874 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 1875 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 1876 } 1877 1878 return nullptr; 1879 } 1880 1881 /// Check if all users of CI are StoreInsts. 1882 static bool hasStoreUsersOnly(CastInst &CI) { 1883 for (User *U : CI.users()) { 1884 if (!isa<StoreInst>(U)) 1885 return false; 1886 } 1887 return true; 1888 } 1889 1890 /// This function handles following case 1891 /// 1892 /// A -> B cast 1893 /// PHI 1894 /// B -> A cast 1895 /// 1896 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1897 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1898 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1899 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 1900 if (hasStoreUsersOnly(CI)) 1901 return nullptr; 1902 1903 Value *Src = CI.getOperand(0); 1904 Type *SrcTy = Src->getType(); // Type B 1905 Type *DestTy = CI.getType(); // Type A 1906 1907 SmallVector<PHINode *, 4> PhiWorklist; 1908 SmallSetVector<PHINode *, 4> OldPhiNodes; 1909 1910 // Find all of the A->B casts and PHI nodes. 1911 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 1912 // OldPhiNodes is used to track all known PHI nodes, before adding a new 1913 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 1914 PhiWorklist.push_back(PN); 1915 OldPhiNodes.insert(PN); 1916 while (!PhiWorklist.empty()) { 1917 auto *OldPN = PhiWorklist.pop_back_val(); 1918 for (Value *IncValue : OldPN->incoming_values()) { 1919 if (isa<Constant>(IncValue)) 1920 continue; 1921 1922 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 1923 // If there is a sequence of one or more load instructions, each loaded 1924 // value is used as address of later load instruction, bitcast is 1925 // necessary to change the value type, don't optimize it. For 1926 // simplicity we give up if the load address comes from another load. 1927 Value *Addr = LI->getOperand(0); 1928 if (Addr == &CI || isa<LoadInst>(Addr)) 1929 return nullptr; 1930 if (LI->hasOneUse() && LI->isSimple()) 1931 continue; 1932 // If a LoadInst has more than one use, changing the type of loaded 1933 // value may create another bitcast. 1934 return nullptr; 1935 } 1936 1937 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 1938 if (OldPhiNodes.insert(PNode)) 1939 PhiWorklist.push_back(PNode); 1940 continue; 1941 } 1942 1943 auto *BCI = dyn_cast<BitCastInst>(IncValue); 1944 // We can't handle other instructions. 1945 if (!BCI) 1946 return nullptr; 1947 1948 // Verify it's a A->B cast. 1949 Type *TyA = BCI->getOperand(0)->getType(); 1950 Type *TyB = BCI->getType(); 1951 if (TyA != DestTy || TyB != SrcTy) 1952 return nullptr; 1953 } 1954 } 1955 1956 // For each old PHI node, create a corresponding new PHI node with a type A. 1957 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 1958 for (auto *OldPN : OldPhiNodes) { 1959 Builder->SetInsertPoint(OldPN); 1960 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands()); 1961 NewPNodes[OldPN] = NewPN; 1962 } 1963 1964 // Fill in the operands of new PHI nodes. 1965 for (auto *OldPN : OldPhiNodes) { 1966 PHINode *NewPN = NewPNodes[OldPN]; 1967 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 1968 Value *V = OldPN->getOperand(j); 1969 Value *NewV = nullptr; 1970 if (auto *C = dyn_cast<Constant>(V)) { 1971 NewV = ConstantExpr::getBitCast(C, DestTy); 1972 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 1973 Builder->SetInsertPoint(LI->getNextNode()); 1974 NewV = Builder->CreateBitCast(LI, DestTy); 1975 Worklist.Add(LI); 1976 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 1977 NewV = BCI->getOperand(0); 1978 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 1979 NewV = NewPNodes[PrevPN]; 1980 } 1981 assert(NewV); 1982 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 1983 } 1984 } 1985 1986 // If there is a store with type B, change it to type A. 1987 for (User *U : PN->users()) { 1988 auto *SI = dyn_cast<StoreInst>(U); 1989 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 1990 Builder->SetInsertPoint(SI); 1991 auto *NewBC = 1992 cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy)); 1993 SI->setOperand(0, NewBC); 1994 Worklist.Add(SI); 1995 assert(hasStoreUsersOnly(*NewBC)); 1996 } 1997 } 1998 1999 return replaceInstUsesWith(CI, NewPNodes[PN]); 2000 } 2001 2002 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2003 // If the operands are integer typed then apply the integer transforms, 2004 // otherwise just apply the common ones. 2005 Value *Src = CI.getOperand(0); 2006 Type *SrcTy = Src->getType(); 2007 Type *DestTy = CI.getType(); 2008 2009 // Get rid of casts from one type to the same type. These are useless and can 2010 // be replaced by the operand. 2011 if (DestTy == Src->getType()) 2012 return replaceInstUsesWith(CI, Src); 2013 2014 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2015 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2016 Type *DstElTy = DstPTy->getElementType(); 2017 Type *SrcElTy = SrcPTy->getElementType(); 2018 2019 // If we are casting a alloca to a pointer to a type of the same 2020 // size, rewrite the allocation instruction to allocate the "right" type. 2021 // There is no need to modify malloc calls because it is their bitcast that 2022 // needs to be cleaned up. 2023 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2024 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2025 return V; 2026 2027 // When the type pointed to is not sized the cast cannot be 2028 // turned into a gep. 2029 Type *PointeeType = 2030 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2031 if (!PointeeType->isSized()) 2032 return nullptr; 2033 2034 // If the source and destination are pointers, and this cast is equivalent 2035 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2036 // This can enhance SROA and other transforms that want type-safe pointers. 2037 unsigned NumZeros = 0; 2038 while (SrcElTy != DstElTy && 2039 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2040 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2041 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2042 ++NumZeros; 2043 } 2044 2045 // If we found a path from the src to dest, create the getelementptr now. 2046 if (SrcElTy == DstElTy) { 2047 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 2048 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2049 } 2050 } 2051 2052 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2053 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2054 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 2055 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2056 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2057 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2058 } 2059 2060 if (isa<IntegerType>(SrcTy)) { 2061 // If this is a cast from an integer to vector, check to see if the input 2062 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2063 // the casts with a shuffle and (potentially) a bitcast. 2064 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2065 CastInst *SrcCast = cast<CastInst>(Src); 2066 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2067 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2068 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2069 cast<VectorType>(DestTy), *this)) 2070 return I; 2071 } 2072 2073 // If the input is an 'or' instruction, we may be doing shifts and ors to 2074 // assemble the elements of the vector manually. Try to rip the code out 2075 // and replace it with insertelements. 2076 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2077 return replaceInstUsesWith(CI, V); 2078 } 2079 } 2080 2081 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2082 if (SrcVTy->getNumElements() == 1) { 2083 // If our destination is not a vector, then make this a straight 2084 // scalar-scalar cast. 2085 if (!DestTy->isVectorTy()) { 2086 Value *Elem = 2087 Builder->CreateExtractElement(Src, 2088 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2089 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2090 } 2091 2092 // Otherwise, see if our source is an insert. If so, then use the scalar 2093 // component directly. 2094 if (InsertElementInst *IEI = 2095 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2096 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2097 DestTy); 2098 } 2099 } 2100 2101 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2102 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2103 // a bitcast to a vector with the same # elts. 2104 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2105 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2106 SVI->getType()->getNumElements() == 2107 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2108 BitCastInst *Tmp; 2109 // If either of the operands is a cast from CI.getType(), then 2110 // evaluating the shuffle in the casted destination's type will allow 2111 // us to eliminate at least one cast. 2112 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2113 Tmp->getOperand(0)->getType() == DestTy) || 2114 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2115 Tmp->getOperand(0)->getType() == DestTy)) { 2116 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 2117 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 2118 // Return a new shuffle vector. Use the same element ID's, as we 2119 // know the vector types match #elts. 2120 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2121 } 2122 } 2123 } 2124 2125 // Handle the A->B->A cast, and there is an intervening PHI node. 2126 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2127 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2128 return I; 2129 2130 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 2131 return I; 2132 2133 if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder)) 2134 return I; 2135 2136 if (Instruction *I = foldBitCastSelect(CI, *Builder)) 2137 return I; 2138 2139 if (SrcTy->isPointerTy()) 2140 return commonPointerCastTransforms(CI); 2141 return commonCastTransforms(CI); 2142 } 2143 2144 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2145 // If the destination pointer element type is not the same as the source's 2146 // first do a bitcast to the destination type, and then the addrspacecast. 2147 // This allows the cast to be exposed to other transforms. 2148 Value *Src = CI.getOperand(0); 2149 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2150 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2151 2152 Type *DestElemTy = DestTy->getElementType(); 2153 if (SrcTy->getElementType() != DestElemTy) { 2154 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2155 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2156 // Handle vectors of pointers. 2157 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2158 } 2159 2160 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 2161 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2162 } 2163 2164 return commonPointerCastTransforms(CI); 2165 } 2166