1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DIBuilder.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include <numeric> 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 43 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 44 Scale = 1; 45 Offset = 0; 46 return Val; 47 } 48 49 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 50 if (I->getOpcode() == Instruction::Shl) { 51 // This is a value scaled by '1 << the shift amt'. 52 Scale = UINT64_C(1) << RHS->getZExtValue(); 53 Offset = 0; 54 return I->getOperand(0); 55 } 56 57 if (I->getOpcode() == Instruction::Mul) { 58 // This value is scaled by 'RHS'. 59 Scale = RHS->getZExtValue(); 60 Offset = 0; 61 return I->getOperand(0); 62 } 63 64 if (I->getOpcode() == Instruction::Add) { 65 // We have X+C. Check to see if we really have (X*C2)+C1, 66 // where C1 is divisible by C2. 67 unsigned SubScale; 68 Value *SubVal = 69 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 70 Offset += RHS->getZExtValue(); 71 Scale = SubScale; 72 return SubVal; 73 } 74 } 75 } 76 77 // Otherwise, we can't look past this. 78 Scale = 1; 79 Offset = 0; 80 return Val; 81 } 82 83 /// If we find a cast of an allocation instruction, try to eliminate the cast by 84 /// moving the type information into the alloc. 85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 86 AllocaInst &AI) { 87 PointerType *PTy = cast<PointerType>(CI.getType()); 88 89 IRBuilderBase::InsertPointGuard Guard(Builder); 90 Builder.SetInsertPoint(&AI); 91 92 // Get the type really allocated and the type casted to. 93 Type *AllocElTy = AI.getAllocatedType(); 94 Type *CastElTy = PTy->getElementType(); 95 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 96 97 // This optimisation does not work for cases where the cast type 98 // is scalable and the allocated type is not. This because we need to 99 // know how many times the casted type fits into the allocated type. 100 // For the opposite case where the allocated type is scalable and the 101 // cast type is not this leads to poor code quality due to the 102 // introduction of 'vscale' into the calculations. It seems better to 103 // bail out for this case too until we've done a proper cost-benefit 104 // analysis. 105 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 106 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 107 if (AllocIsScalable != CastIsScalable) return nullptr; 108 109 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 110 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 111 if (CastElTyAlign < AllocElTyAlign) return nullptr; 112 113 // If the allocation has multiple uses, only promote it if we are strictly 114 // increasing the alignment of the resultant allocation. If we keep it the 115 // same, we open the door to infinite loops of various kinds. 116 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 117 118 // The alloc and cast types should be either both fixed or both scalable. 119 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 120 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 121 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 122 123 // If the allocation has multiple uses, only promote it if we're not 124 // shrinking the amount of memory being allocated. 125 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 126 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 127 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 128 129 // See if we can satisfy the modulus by pulling a scale out of the array 130 // size argument. 131 unsigned ArraySizeScale; 132 uint64_t ArrayOffset; 133 Value *NumElements = // See if the array size is a decomposable linear expr. 134 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 135 136 // If we can now satisfy the modulus, by using a non-1 scale, we really can 137 // do the xform. 138 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 139 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 140 141 // We don't currently support arrays of scalable types. 142 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 143 144 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 145 Value *Amt = nullptr; 146 if (Scale == 1) { 147 Amt = NumElements; 148 } else { 149 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 150 // Insert before the alloca, not before the cast. 151 Amt = Builder.CreateMul(Amt, NumElements); 152 } 153 154 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 155 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 156 Offset, true); 157 Amt = Builder.CreateAdd(Amt, Off); 158 } 159 160 AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt); 161 New->setAlignment(AI.getAlign()); 162 New->takeName(&AI); 163 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 164 165 // If the allocation has multiple real uses, insert a cast and change all 166 // things that used it to use the new cast. This will also hack on CI, but it 167 // will die soon. 168 if (!AI.hasOneUse()) { 169 // New is the allocation instruction, pointer typed. AI is the original 170 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 171 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 172 replaceInstUsesWith(AI, NewCast); 173 eraseInstFromFunction(AI); 174 } 175 return replaceInstUsesWith(CI, New); 176 } 177 178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 179 /// true for, actually insert the code to evaluate the expression. 180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 181 bool isSigned) { 182 if (Constant *C = dyn_cast<Constant>(V)) { 183 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 184 // If we got a constantexpr back, try to simplify it with DL info. 185 return ConstantFoldConstant(C, DL, &TLI); 186 } 187 188 // Otherwise, it must be an instruction. 189 Instruction *I = cast<Instruction>(V); 190 Instruction *Res = nullptr; 191 unsigned Opc = I->getOpcode(); 192 switch (Opc) { 193 case Instruction::Add: 194 case Instruction::Sub: 195 case Instruction::Mul: 196 case Instruction::And: 197 case Instruction::Or: 198 case Instruction::Xor: 199 case Instruction::AShr: 200 case Instruction::LShr: 201 case Instruction::Shl: 202 case Instruction::UDiv: 203 case Instruction::URem: { 204 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 205 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 207 break; 208 } 209 case Instruction::Trunc: 210 case Instruction::ZExt: 211 case Instruction::SExt: 212 // If the source type of the cast is the type we're trying for then we can 213 // just return the source. There's no need to insert it because it is not 214 // new. 215 if (I->getOperand(0)->getType() == Ty) 216 return I->getOperand(0); 217 218 // Otherwise, must be the same type of cast, so just reinsert a new one. 219 // This also handles the case of zext(trunc(x)) -> zext(x). 220 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 221 Opc == Instruction::SExt); 222 break; 223 case Instruction::Select: { 224 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 225 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 226 Res = SelectInst::Create(I->getOperand(0), True, False); 227 break; 228 } 229 case Instruction::PHI: { 230 PHINode *OPN = cast<PHINode>(I); 231 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 232 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 233 Value *V = 234 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 235 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 236 } 237 Res = NPN; 238 break; 239 } 240 default: 241 // TODO: Can handle more cases here. 242 llvm_unreachable("Unreachable!"); 243 } 244 245 Res->takeName(I); 246 return InsertNewInstWith(Res, *I); 247 } 248 249 Instruction::CastOps 250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 251 const CastInst *CI2) { 252 Type *SrcTy = CI1->getSrcTy(); 253 Type *MidTy = CI1->getDestTy(); 254 Type *DstTy = CI2->getDestTy(); 255 256 Instruction::CastOps firstOp = CI1->getOpcode(); 257 Instruction::CastOps secondOp = CI2->getOpcode(); 258 Type *SrcIntPtrTy = 259 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 260 Type *MidIntPtrTy = 261 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 262 Type *DstIntPtrTy = 263 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 264 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 265 DstTy, SrcIntPtrTy, MidIntPtrTy, 266 DstIntPtrTy); 267 268 // We don't want to form an inttoptr or ptrtoint that converts to an integer 269 // type that differs from the pointer size. 270 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 271 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 272 Res = 0; 273 274 return Instruction::CastOps(Res); 275 } 276 277 /// Implement the transforms common to all CastInst visitors. 278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 279 Value *Src = CI.getOperand(0); 280 Type *Ty = CI.getType(); 281 282 // Try to eliminate a cast of a cast. 283 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 284 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 285 // The first cast (CSrc) is eliminable so we need to fix up or replace 286 // the second cast (CI). CSrc will then have a good chance of being dead. 287 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 288 // Point debug users of the dying cast to the new one. 289 if (CSrc->hasOneUse()) 290 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 291 return Res; 292 } 293 } 294 295 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 296 // We are casting a select. Try to fold the cast into the select if the 297 // select does not have a compare instruction with matching operand types 298 // or the select is likely better done in a narrow type. 299 // Creating a select with operands that are different sizes than its 300 // condition may inhibit other folds and lead to worse codegen. 301 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 302 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 303 (CI.getOpcode() == Instruction::Trunc && 304 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 305 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 306 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 307 return NV; 308 } 309 } 310 } 311 312 // If we are casting a PHI, then fold the cast into the PHI. 313 if (auto *PN = dyn_cast<PHINode>(Src)) { 314 // Don't do this if it would create a PHI node with an illegal type from a 315 // legal type. 316 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 317 shouldChangeType(CI.getSrcTy(), CI.getType())) 318 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 319 return NV; 320 } 321 322 // Canonicalize a unary shuffle after the cast if neither operation changes 323 // the size or element size of the input vector. 324 // TODO: We could allow size-changing ops if that doesn't harm codegen. 325 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 326 Value *X; 327 ArrayRef<int> Mask; 328 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 329 // TODO: Allow scalable vectors? 330 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 331 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 332 if (SrcTy && DestTy && 333 SrcTy->getNumElements() == DestTy->getNumElements() && 334 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 335 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 336 return new ShuffleVectorInst(CastX, UndefValue::get(DestTy), Mask); 337 } 338 } 339 340 return nullptr; 341 } 342 343 /// Constants and extensions/truncates from the destination type are always 344 /// free to be evaluated in that type. This is a helper for canEvaluate*. 345 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 346 if (isa<Constant>(V)) 347 return true; 348 Value *X; 349 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 350 X->getType() == Ty) 351 return true; 352 353 return false; 354 } 355 356 /// Filter out values that we can not evaluate in the destination type for free. 357 /// This is a helper for canEvaluate*. 358 static bool canNotEvaluateInType(Value *V, Type *Ty) { 359 assert(!isa<Constant>(V) && "Constant should already be handled."); 360 if (!isa<Instruction>(V)) 361 return true; 362 // We don't extend or shrink something that has multiple uses -- doing so 363 // would require duplicating the instruction which isn't profitable. 364 if (!V->hasOneUse()) 365 return true; 366 367 return false; 368 } 369 370 /// Return true if we can evaluate the specified expression tree as type Ty 371 /// instead of its larger type, and arrive with the same value. 372 /// This is used by code that tries to eliminate truncates. 373 /// 374 /// Ty will always be a type smaller than V. We should return true if trunc(V) 375 /// can be computed by computing V in the smaller type. If V is an instruction, 376 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 377 /// makes sense if x and y can be efficiently truncated. 378 /// 379 /// This function works on both vectors and scalars. 380 /// 381 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 382 Instruction *CxtI) { 383 if (canAlwaysEvaluateInType(V, Ty)) 384 return true; 385 if (canNotEvaluateInType(V, Ty)) 386 return false; 387 388 auto *I = cast<Instruction>(V); 389 Type *OrigTy = V->getType(); 390 switch (I->getOpcode()) { 391 case Instruction::Add: 392 case Instruction::Sub: 393 case Instruction::Mul: 394 case Instruction::And: 395 case Instruction::Or: 396 case Instruction::Xor: 397 // These operators can all arbitrarily be extended or truncated. 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 399 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 400 401 case Instruction::UDiv: 402 case Instruction::URem: { 403 // UDiv and URem can be truncated if all the truncated bits are zero. 404 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 405 uint32_t BitWidth = Ty->getScalarSizeInBits(); 406 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 407 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 408 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 409 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 410 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 411 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 412 } 413 break; 414 } 415 case Instruction::Shl: { 416 // If we are truncating the result of this SHL, and if it's a shift of an 417 // inrange amount, we can always perform a SHL in a smaller type. 418 uint32_t BitWidth = Ty->getScalarSizeInBits(); 419 KnownBits AmtKnownBits = 420 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 421 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 422 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 423 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 424 break; 425 } 426 case Instruction::LShr: { 427 // If this is a truncate of a logical shr, we can truncate it to a smaller 428 // lshr iff we know that the bits we would otherwise be shifting in are 429 // already zeros. 430 // TODO: It is enough to check that the bits we would be shifting in are 431 // zero - use AmtKnownBits.getMaxValue(). 432 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 433 uint32_t BitWidth = Ty->getScalarSizeInBits(); 434 KnownBits AmtKnownBits = 435 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 436 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 437 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 438 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 439 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 440 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 441 } 442 break; 443 } 444 case Instruction::AShr: { 445 // If this is a truncate of an arithmetic shr, we can truncate it to a 446 // smaller ashr iff we know that all the bits from the sign bit of the 447 // original type and the sign bit of the truncate type are similar. 448 // TODO: It is enough to check that the bits we would be shifting in are 449 // similar to sign bit of the truncate type. 450 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 451 uint32_t BitWidth = Ty->getScalarSizeInBits(); 452 KnownBits AmtKnownBits = 453 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 454 unsigned ShiftedBits = OrigBitWidth - BitWidth; 455 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 456 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 457 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 458 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 459 break; 460 } 461 case Instruction::Trunc: 462 // trunc(trunc(x)) -> trunc(x) 463 return true; 464 case Instruction::ZExt: 465 case Instruction::SExt: 466 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 467 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 468 return true; 469 case Instruction::Select: { 470 SelectInst *SI = cast<SelectInst>(I); 471 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 472 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 473 } 474 case Instruction::PHI: { 475 // We can change a phi if we can change all operands. Note that we never 476 // get into trouble with cyclic PHIs here because we only consider 477 // instructions with a single use. 478 PHINode *PN = cast<PHINode>(I); 479 for (Value *IncValue : PN->incoming_values()) 480 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 481 return false; 482 return true; 483 } 484 default: 485 // TODO: Can handle more cases here. 486 break; 487 } 488 489 return false; 490 } 491 492 /// Given a vector that is bitcast to an integer, optionally logically 493 /// right-shifted, and truncated, convert it to an extractelement. 494 /// Example (big endian): 495 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 496 /// ---> 497 /// extractelement <4 x i32> %X, 1 498 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 499 InstCombinerImpl &IC) { 500 Value *TruncOp = Trunc.getOperand(0); 501 Type *DestType = Trunc.getType(); 502 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 503 return nullptr; 504 505 Value *VecInput = nullptr; 506 ConstantInt *ShiftVal = nullptr; 507 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 508 m_LShr(m_BitCast(m_Value(VecInput)), 509 m_ConstantInt(ShiftVal)))) || 510 !isa<VectorType>(VecInput->getType())) 511 return nullptr; 512 513 VectorType *VecType = cast<VectorType>(VecInput->getType()); 514 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 515 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 516 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 517 518 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 519 return nullptr; 520 521 // If the element type of the vector doesn't match the result type, 522 // bitcast it to a vector type that we can extract from. 523 unsigned NumVecElts = VecWidth / DestWidth; 524 if (VecType->getElementType() != DestType) { 525 VecType = FixedVectorType::get(DestType, NumVecElts); 526 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 527 } 528 529 unsigned Elt = ShiftAmount / DestWidth; 530 if (IC.getDataLayout().isBigEndian()) 531 Elt = NumVecElts - 1 - Elt; 532 533 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 534 } 535 536 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 537 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 538 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 539 assert((isa<VectorType>(Trunc.getSrcTy()) || 540 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 541 "Don't narrow to an illegal scalar type"); 542 543 // Bail out on strange types. It is possible to handle some of these patterns 544 // even with non-power-of-2 sizes, but it is not a likely scenario. 545 Type *DestTy = Trunc.getType(); 546 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 547 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 548 if (!isPowerOf2_32(NarrowWidth)) 549 return nullptr; 550 551 // First, find an or'd pair of opposite shifts: 552 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 553 BinaryOperator *Or0, *Or1; 554 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 555 return nullptr; 556 557 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 558 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 559 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 560 Or0->getOpcode() == Or1->getOpcode()) 561 return nullptr; 562 563 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 564 if (Or0->getOpcode() == BinaryOperator::LShr) { 565 std::swap(Or0, Or1); 566 std::swap(ShVal0, ShVal1); 567 std::swap(ShAmt0, ShAmt1); 568 } 569 assert(Or0->getOpcode() == BinaryOperator::Shl && 570 Or1->getOpcode() == BinaryOperator::LShr && 571 "Illegal or(shift,shift) pair"); 572 573 // Match the shift amount operands for a funnel/rotate pattern. This always 574 // matches a subtraction on the R operand. 575 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 576 // The shift amounts may add up to the narrow bit width: 577 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 578 // If this is a funnel shift (different operands are shifted), then the 579 // shift amount can not over-shift (create poison) in the narrow type. 580 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 581 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 582 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 583 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 584 return L; 585 586 // The following patterns currently only work for rotation patterns. 587 // TODO: Add more general funnel-shift compatible patterns. 588 if (ShVal0 != ShVal1) 589 return nullptr; 590 591 // The shift amount may be masked with negation: 592 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 593 Value *X; 594 unsigned Mask = Width - 1; 595 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 596 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 597 return X; 598 599 // Same as above, but the shift amount may be extended after masking: 600 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 601 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 602 return X; 603 604 return nullptr; 605 }; 606 607 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 608 bool IsFshl = true; // Sub on LSHR. 609 if (!ShAmt) { 610 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 611 IsFshl = false; // Sub on SHL. 612 } 613 if (!ShAmt) 614 return nullptr; 615 616 // The right-shifted value must have high zeros in the wide type (for example 617 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 618 // truncated, so those do not matter. 619 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 620 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 621 return nullptr; 622 623 // We have an unnecessarily wide rotate! 624 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 625 // Narrow the inputs and convert to funnel shift intrinsic: 626 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 627 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 628 Value *X, *Y; 629 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 630 if (ShVal0 != ShVal1) 631 Y = Builder.CreateTrunc(ShVal1, DestTy); 632 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 633 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 634 return CallInst::Create(F, {X, Y, NarrowShAmt}); 635 } 636 637 /// Try to narrow the width of math or bitwise logic instructions by pulling a 638 /// truncate ahead of binary operators. 639 /// TODO: Transforms for truncated shifts should be moved into here. 640 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 641 Type *SrcTy = Trunc.getSrcTy(); 642 Type *DestTy = Trunc.getType(); 643 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 644 return nullptr; 645 646 BinaryOperator *BinOp; 647 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 648 return nullptr; 649 650 Value *BinOp0 = BinOp->getOperand(0); 651 Value *BinOp1 = BinOp->getOperand(1); 652 switch (BinOp->getOpcode()) { 653 case Instruction::And: 654 case Instruction::Or: 655 case Instruction::Xor: 656 case Instruction::Add: 657 case Instruction::Sub: 658 case Instruction::Mul: { 659 Constant *C; 660 if (match(BinOp0, m_Constant(C))) { 661 // trunc (binop C, X) --> binop (trunc C', X) 662 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 663 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 664 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 665 } 666 if (match(BinOp1, m_Constant(C))) { 667 // trunc (binop X, C) --> binop (trunc X, C') 668 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 669 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 670 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 671 } 672 Value *X; 673 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 674 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 675 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 676 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 677 } 678 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 679 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 680 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 681 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 682 } 683 break; 684 } 685 686 default: break; 687 } 688 689 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 690 return NarrowOr; 691 692 return nullptr; 693 } 694 695 /// Try to narrow the width of a splat shuffle. This could be generalized to any 696 /// shuffle with a constant operand, but we limit the transform to avoid 697 /// creating a shuffle type that targets may not be able to lower effectively. 698 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 699 InstCombiner::BuilderTy &Builder) { 700 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 701 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 702 is_splat(Shuf->getShuffleMask()) && 703 Shuf->getType() == Shuf->getOperand(0)->getType()) { 704 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 705 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 706 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 707 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask()); 708 } 709 710 return nullptr; 711 } 712 713 /// Try to narrow the width of an insert element. This could be generalized for 714 /// any vector constant, but we limit the transform to insertion into undef to 715 /// avoid potential backend problems from unsupported insertion widths. This 716 /// could also be extended to handle the case of inserting a scalar constant 717 /// into a vector variable. 718 static Instruction *shrinkInsertElt(CastInst &Trunc, 719 InstCombiner::BuilderTy &Builder) { 720 Instruction::CastOps Opcode = Trunc.getOpcode(); 721 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 722 "Unexpected instruction for shrinking"); 723 724 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 725 if (!InsElt || !InsElt->hasOneUse()) 726 return nullptr; 727 728 Type *DestTy = Trunc.getType(); 729 Type *DestScalarTy = DestTy->getScalarType(); 730 Value *VecOp = InsElt->getOperand(0); 731 Value *ScalarOp = InsElt->getOperand(1); 732 Value *Index = InsElt->getOperand(2); 733 734 if (match(VecOp, m_Undef())) { 735 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 736 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 737 UndefValue *NarrowUndef = UndefValue::get(DestTy); 738 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 739 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 740 } 741 742 return nullptr; 743 } 744 745 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 746 if (Instruction *Result = commonCastTransforms(Trunc)) 747 return Result; 748 749 Value *Src = Trunc.getOperand(0); 750 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 751 unsigned DestWidth = DestTy->getScalarSizeInBits(); 752 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 753 754 // Attempt to truncate the entire input expression tree to the destination 755 // type. Only do this if the dest type is a simple type, don't convert the 756 // expression tree to something weird like i93 unless the source is also 757 // strange. 758 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 759 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 760 761 // If this cast is a truncate, evaluting in a different type always 762 // eliminates the cast, so it is always a win. 763 LLVM_DEBUG( 764 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 765 " to avoid cast: " 766 << Trunc << '\n'); 767 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 768 assert(Res->getType() == DestTy); 769 return replaceInstUsesWith(Trunc, Res); 770 } 771 772 // For integer types, check if we can shorten the entire input expression to 773 // DestWidth * 2, which won't allow removing the truncate, but reducing the 774 // width may enable further optimizations, e.g. allowing for larger 775 // vectorization factors. 776 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 777 if (DestWidth * 2 < SrcWidth) { 778 auto *NewDestTy = DestITy->getExtendedType(); 779 if (shouldChangeType(SrcTy, NewDestTy) && 780 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 781 LLVM_DEBUG( 782 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 783 " to reduce the width of operand of" 784 << Trunc << '\n'); 785 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 786 return new TruncInst(Res, DestTy); 787 } 788 } 789 } 790 791 // Test if the trunc is the user of a select which is part of a 792 // minimum or maximum operation. If so, don't do any more simplification. 793 // Even simplifying demanded bits can break the canonical form of a 794 // min/max. 795 Value *LHS, *RHS; 796 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 797 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 798 return nullptr; 799 800 // See if we can simplify any instructions used by the input whose sole 801 // purpose is to compute bits we don't care about. 802 if (SimplifyDemandedInstructionBits(Trunc)) 803 return &Trunc; 804 805 if (DestWidth == 1) { 806 Value *Zero = Constant::getNullValue(SrcTy); 807 if (DestTy->isIntegerTy()) { 808 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 809 // TODO: We canonicalize to more instructions here because we are probably 810 // lacking equivalent analysis for trunc relative to icmp. There may also 811 // be codegen concerns. If those trunc limitations were removed, we could 812 // remove this transform. 813 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 814 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 815 } 816 817 // For vectors, we do not canonicalize all truncs to icmp, so optimize 818 // patterns that would be covered within visitICmpInst. 819 Value *X; 820 Constant *C; 821 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 822 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 823 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 824 Constant *MaskC = ConstantExpr::getShl(One, C); 825 Value *And = Builder.CreateAnd(X, MaskC); 826 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 827 } 828 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 829 m_Deferred(X))))) { 830 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 831 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 832 Constant *MaskC = ConstantExpr::getShl(One, C); 833 MaskC = ConstantExpr::getOr(MaskC, One); 834 Value *And = Builder.CreateAnd(X, MaskC); 835 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 836 } 837 } 838 839 Value *A; 840 Constant *C; 841 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 842 unsigned AWidth = A->getType()->getScalarSizeInBits(); 843 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 844 auto *OldSh = cast<Instruction>(Src); 845 bool IsExact = OldSh->isExact(); 846 847 // If the shift is small enough, all zero bits created by the shift are 848 // removed by the trunc. 849 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 850 APInt(SrcWidth, MaxShiftAmt)))) { 851 // trunc (lshr (sext A), C) --> ashr A, C 852 if (A->getType() == DestTy) { 853 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 854 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 855 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 856 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 857 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 858 : BinaryOperator::CreateAShr(A, ShAmt); 859 } 860 // The types are mismatched, so create a cast after shifting: 861 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 862 if (Src->hasOneUse()) { 863 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 864 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 865 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 866 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 867 return CastInst::CreateIntegerCast(Shift, DestTy, true); 868 } 869 } 870 // TODO: Mask high bits with 'and'. 871 } 872 873 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 874 if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) { 875 unsigned MaxShiftAmt = SrcWidth - DestWidth; 876 877 // If the shift is small enough, all zero/sign bits created by the shift are 878 // removed by the trunc. 879 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 880 APInt(SrcWidth, MaxShiftAmt)))) { 881 auto *OldShift = cast<Instruction>(Src); 882 bool IsExact = OldShift->isExact(); 883 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 884 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 885 Value *Shift = 886 OldShift->getOpcode() == Instruction::AShr 887 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 888 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 889 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 890 } 891 } 892 893 if (Instruction *I = narrowBinOp(Trunc)) 894 return I; 895 896 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 897 return I; 898 899 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 900 return I; 901 902 if (Src->hasOneUse() && 903 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 904 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 905 // dest type is native and cst < dest size. 906 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 907 !match(A, m_Shr(m_Value(), m_Constant()))) { 908 // Skip shifts of shift by constants. It undoes a combine in 909 // FoldShiftByConstant and is the extend in reg pattern. 910 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 911 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 912 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 913 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 914 ConstantExpr::getTrunc(C, DestTy)); 915 } 916 } 917 } 918 919 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 920 return I; 921 922 // Whenever an element is extracted from a vector, and then truncated, 923 // canonicalize by converting it to a bitcast followed by an 924 // extractelement. 925 // 926 // Example (little endian): 927 // trunc (extractelement <4 x i64> %X, 0) to i32 928 // ---> 929 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 930 Value *VecOp; 931 ConstantInt *Cst; 932 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 933 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 934 auto VecElts = VecOpTy->getElementCount(); 935 936 // A badly fit destination size would result in an invalid cast. 937 if (SrcWidth % DestWidth == 0) { 938 uint64_t TruncRatio = SrcWidth / DestWidth; 939 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 940 uint64_t VecOpIdx = Cst->getZExtValue(); 941 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 942 : VecOpIdx * TruncRatio; 943 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 944 "overflow 32-bits"); 945 946 auto *BitCastTo = 947 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 948 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 949 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 950 } 951 } 952 953 return nullptr; 954 } 955 956 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 957 bool DoTransform) { 958 // If we are just checking for a icmp eq of a single bit and zext'ing it 959 // to an integer, then shift the bit to the appropriate place and then 960 // cast to integer to avoid the comparison. 961 const APInt *Op1CV; 962 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 963 964 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 965 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 966 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 967 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 968 if (!DoTransform) return Cmp; 969 970 Value *In = Cmp->getOperand(0); 971 Value *Sh = ConstantInt::get(In->getType(), 972 In->getType()->getScalarSizeInBits() - 1); 973 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 974 if (In->getType() != Zext.getType()) 975 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 976 977 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 978 Constant *One = ConstantInt::get(In->getType(), 1); 979 In = Builder.CreateXor(In, One, In->getName() + ".not"); 980 } 981 982 return replaceInstUsesWith(Zext, In); 983 } 984 985 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 986 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 987 // zext (X == 1) to i32 --> X iff X has only the low bit set. 988 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 989 // zext (X != 0) to i32 --> X iff X has only the low bit set. 990 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 991 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 992 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 993 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 994 // This only works for EQ and NE 995 Cmp->isEquality()) { 996 // If Op1C some other power of two, convert: 997 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 998 999 APInt KnownZeroMask(~Known.Zero); 1000 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1001 if (!DoTransform) return Cmp; 1002 1003 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1004 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 1005 // (X&4) == 2 --> false 1006 // (X&4) != 2 --> true 1007 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 1008 return replaceInstUsesWith(Zext, Res); 1009 } 1010 1011 uint32_t ShAmt = KnownZeroMask.logBase2(); 1012 Value *In = Cmp->getOperand(0); 1013 if (ShAmt) { 1014 // Perform a logical shr by shiftamt. 1015 // Insert the shift to put the result in the low bit. 1016 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1017 In->getName() + ".lobit"); 1018 } 1019 1020 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 1021 Constant *One = ConstantInt::get(In->getType(), 1); 1022 In = Builder.CreateXor(In, One); 1023 } 1024 1025 if (Zext.getType() == In->getType()) 1026 return replaceInstUsesWith(Zext, In); 1027 1028 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1029 return replaceInstUsesWith(Zext, IntCast); 1030 } 1031 } 1032 } 1033 1034 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1035 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 1036 // may lead to additional simplifications. 1037 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1038 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1039 Value *LHS = Cmp->getOperand(0); 1040 Value *RHS = Cmp->getOperand(1); 1041 1042 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1043 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1044 1045 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 1046 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1047 APInt UnknownBit = ~KnownBits; 1048 if (UnknownBit.countPopulation() == 1) { 1049 if (!DoTransform) return Cmp; 1050 1051 Value *Result = Builder.CreateXor(LHS, RHS); 1052 1053 // Mask off any bits that are set and won't be shifted away. 1054 if (KnownLHS.One.uge(UnknownBit)) 1055 Result = Builder.CreateAnd(Result, 1056 ConstantInt::get(ITy, UnknownBit)); 1057 1058 // Shift the bit we're testing down to the lsb. 1059 Result = Builder.CreateLShr( 1060 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1061 1062 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1063 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1064 Result->takeName(Cmp); 1065 return replaceInstUsesWith(Zext, Result); 1066 } 1067 } 1068 } 1069 } 1070 1071 return nullptr; 1072 } 1073 1074 /// Determine if the specified value can be computed in the specified wider type 1075 /// and produce the same low bits. If not, return false. 1076 /// 1077 /// If this function returns true, it can also return a non-zero number of bits 1078 /// (in BitsToClear) which indicates that the value it computes is correct for 1079 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1080 /// out. For example, to promote something like: 1081 /// 1082 /// %B = trunc i64 %A to i32 1083 /// %C = lshr i32 %B, 8 1084 /// %E = zext i32 %C to i64 1085 /// 1086 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1087 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1088 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1089 /// clear the top bits anyway, doing this has no extra cost. 1090 /// 1091 /// This function works on both vectors and scalars. 1092 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1093 InstCombinerImpl &IC, Instruction *CxtI) { 1094 BitsToClear = 0; 1095 if (canAlwaysEvaluateInType(V, Ty)) 1096 return true; 1097 if (canNotEvaluateInType(V, Ty)) 1098 return false; 1099 1100 auto *I = cast<Instruction>(V); 1101 unsigned Tmp; 1102 switch (I->getOpcode()) { 1103 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1104 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1105 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1106 return true; 1107 case Instruction::And: 1108 case Instruction::Or: 1109 case Instruction::Xor: 1110 case Instruction::Add: 1111 case Instruction::Sub: 1112 case Instruction::Mul: 1113 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1114 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1115 return false; 1116 // These can all be promoted if neither operand has 'bits to clear'. 1117 if (BitsToClear == 0 && Tmp == 0) 1118 return true; 1119 1120 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1121 // other side, BitsToClear is ok. 1122 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1123 // We use MaskedValueIsZero here for generality, but the case we care 1124 // about the most is constant RHS. 1125 unsigned VSize = V->getType()->getScalarSizeInBits(); 1126 if (IC.MaskedValueIsZero(I->getOperand(1), 1127 APInt::getHighBitsSet(VSize, BitsToClear), 1128 0, CxtI)) { 1129 // If this is an And instruction and all of the BitsToClear are 1130 // known to be zero we can reset BitsToClear. 1131 if (I->getOpcode() == Instruction::And) 1132 BitsToClear = 0; 1133 return true; 1134 } 1135 } 1136 1137 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1138 return false; 1139 1140 case Instruction::Shl: { 1141 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1142 // upper bits we can reduce BitsToClear by the shift amount. 1143 const APInt *Amt; 1144 if (match(I->getOperand(1), m_APInt(Amt))) { 1145 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1146 return false; 1147 uint64_t ShiftAmt = Amt->getZExtValue(); 1148 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1149 return true; 1150 } 1151 return false; 1152 } 1153 case Instruction::LShr: { 1154 // We can promote lshr(x, cst) if we can promote x. This requires the 1155 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1156 const APInt *Amt; 1157 if (match(I->getOperand(1), m_APInt(Amt))) { 1158 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1159 return false; 1160 BitsToClear += Amt->getZExtValue(); 1161 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1162 BitsToClear = V->getType()->getScalarSizeInBits(); 1163 return true; 1164 } 1165 // Cannot promote variable LSHR. 1166 return false; 1167 } 1168 case Instruction::Select: 1169 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1170 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1171 // TODO: If important, we could handle the case when the BitsToClear are 1172 // known zero in the disagreeing side. 1173 Tmp != BitsToClear) 1174 return false; 1175 return true; 1176 1177 case Instruction::PHI: { 1178 // We can change a phi if we can change all operands. Note that we never 1179 // get into trouble with cyclic PHIs here because we only consider 1180 // instructions with a single use. 1181 PHINode *PN = cast<PHINode>(I); 1182 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1183 return false; 1184 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1185 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1186 // TODO: If important, we could handle the case when the BitsToClear 1187 // are known zero in the disagreeing input. 1188 Tmp != BitsToClear) 1189 return false; 1190 return true; 1191 } 1192 default: 1193 // TODO: Can handle more cases here. 1194 return false; 1195 } 1196 } 1197 1198 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1199 // If this zero extend is only used by a truncate, let the truncate be 1200 // eliminated before we try to optimize this zext. 1201 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1202 return nullptr; 1203 1204 // If one of the common conversion will work, do it. 1205 if (Instruction *Result = commonCastTransforms(CI)) 1206 return Result; 1207 1208 Value *Src = CI.getOperand(0); 1209 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1210 1211 // Try to extend the entire expression tree to the wide destination type. 1212 unsigned BitsToClear; 1213 if (shouldChangeType(SrcTy, DestTy) && 1214 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1215 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1216 "Can't clear more bits than in SrcTy"); 1217 1218 // Okay, we can transform this! Insert the new expression now. 1219 LLVM_DEBUG( 1220 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1221 " to avoid zero extend: " 1222 << CI << '\n'); 1223 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1224 assert(Res->getType() == DestTy); 1225 1226 // Preserve debug values referring to Src if the zext is its last use. 1227 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1228 if (SrcOp->hasOneUse()) 1229 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1230 1231 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1232 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1233 1234 // If the high bits are already filled with zeros, just replace this 1235 // cast with the result. 1236 if (MaskedValueIsZero(Res, 1237 APInt::getHighBitsSet(DestBitSize, 1238 DestBitSize-SrcBitsKept), 1239 0, &CI)) 1240 return replaceInstUsesWith(CI, Res); 1241 1242 // We need to emit an AND to clear the high bits. 1243 Constant *C = ConstantInt::get(Res->getType(), 1244 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1245 return BinaryOperator::CreateAnd(Res, C); 1246 } 1247 1248 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1249 // types and if the sizes are just right we can convert this into a logical 1250 // 'and' which will be much cheaper than the pair of casts. 1251 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1252 // TODO: Subsume this into EvaluateInDifferentType. 1253 1254 // Get the sizes of the types involved. We know that the intermediate type 1255 // will be smaller than A or C, but don't know the relation between A and C. 1256 Value *A = CSrc->getOperand(0); 1257 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1258 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1259 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1260 // If we're actually extending zero bits, then if 1261 // SrcSize < DstSize: zext(a & mask) 1262 // SrcSize == DstSize: a & mask 1263 // SrcSize > DstSize: trunc(a) & mask 1264 if (SrcSize < DstSize) { 1265 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1266 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1267 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1268 return new ZExtInst(And, CI.getType()); 1269 } 1270 1271 if (SrcSize == DstSize) { 1272 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1273 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1274 AndValue)); 1275 } 1276 if (SrcSize > DstSize) { 1277 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1278 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1279 return BinaryOperator::CreateAnd(Trunc, 1280 ConstantInt::get(Trunc->getType(), 1281 AndValue)); 1282 } 1283 } 1284 1285 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1286 return transformZExtICmp(Cmp, CI); 1287 1288 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1289 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1290 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1291 // of the (zext icmp) can be eliminated. If so, immediately perform the 1292 // according elimination. 1293 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1294 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1295 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1296 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() && 1297 (transformZExtICmp(LHS, CI, false) || 1298 transformZExtICmp(RHS, CI, false))) { 1299 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1300 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1301 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1302 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); 1303 if (auto *OrInst = dyn_cast<Instruction>(Or)) 1304 Builder.SetInsertPoint(OrInst); 1305 1306 // Perform the elimination. 1307 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1308 transformZExtICmp(LHS, *LZExt); 1309 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1310 transformZExtICmp(RHS, *RZExt); 1311 1312 return replaceInstUsesWith(CI, Or); 1313 } 1314 } 1315 1316 // zext(trunc(X) & C) -> (X & zext(C)). 1317 Constant *C; 1318 Value *X; 1319 if (SrcI && 1320 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1321 X->getType() == CI.getType()) 1322 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1323 1324 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1325 Value *And; 1326 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1327 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1328 X->getType() == CI.getType()) { 1329 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1330 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1331 } 1332 1333 return nullptr; 1334 } 1335 1336 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1337 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1338 Instruction &CI) { 1339 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1340 ICmpInst::Predicate Pred = ICI->getPredicate(); 1341 1342 // Don't bother if Op1 isn't of vector or integer type. 1343 if (!Op1->getType()->isIntOrIntVectorTy()) 1344 return nullptr; 1345 1346 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1347 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1348 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1349 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1350 Value *Sh = ConstantInt::get(Op0->getType(), 1351 Op0->getType()->getScalarSizeInBits() - 1); 1352 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1353 if (In->getType() != CI.getType()) 1354 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1355 1356 if (Pred == ICmpInst::ICMP_SGT) 1357 In = Builder.CreateNot(In, In->getName() + ".not"); 1358 return replaceInstUsesWith(CI, In); 1359 } 1360 1361 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1362 // If we know that only one bit of the LHS of the icmp can be set and we 1363 // have an equality comparison with zero or a power of 2, we can transform 1364 // the icmp and sext into bitwise/integer operations. 1365 if (ICI->hasOneUse() && 1366 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1367 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1368 1369 APInt KnownZeroMask(~Known.Zero); 1370 if (KnownZeroMask.isPowerOf2()) { 1371 Value *In = ICI->getOperand(0); 1372 1373 // If the icmp tests for a known zero bit we can constant fold it. 1374 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1375 Value *V = Pred == ICmpInst::ICMP_NE ? 1376 ConstantInt::getAllOnesValue(CI.getType()) : 1377 ConstantInt::getNullValue(CI.getType()); 1378 return replaceInstUsesWith(CI, V); 1379 } 1380 1381 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1382 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1383 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1384 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1385 // Perform a right shift to place the desired bit in the LSB. 1386 if (ShiftAmt) 1387 In = Builder.CreateLShr(In, 1388 ConstantInt::get(In->getType(), ShiftAmt)); 1389 1390 // At this point "In" is either 1 or 0. Subtract 1 to turn 1391 // {1, 0} -> {0, -1}. 1392 In = Builder.CreateAdd(In, 1393 ConstantInt::getAllOnesValue(In->getType()), 1394 "sext"); 1395 } else { 1396 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1397 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1398 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1399 // Perform a left shift to place the desired bit in the MSB. 1400 if (ShiftAmt) 1401 In = Builder.CreateShl(In, 1402 ConstantInt::get(In->getType(), ShiftAmt)); 1403 1404 // Distribute the bit over the whole bit width. 1405 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1406 KnownZeroMask.getBitWidth() - 1), "sext"); 1407 } 1408 1409 if (CI.getType() == In->getType()) 1410 return replaceInstUsesWith(CI, In); 1411 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1412 } 1413 } 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 /// Return true if we can take the specified value and return it as type Ty 1420 /// without inserting any new casts and without changing the value of the common 1421 /// low bits. This is used by code that tries to promote integer operations to 1422 /// a wider types will allow us to eliminate the extension. 1423 /// 1424 /// This function works on both vectors and scalars. 1425 /// 1426 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1427 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1428 "Can't sign extend type to a smaller type"); 1429 if (canAlwaysEvaluateInType(V, Ty)) 1430 return true; 1431 if (canNotEvaluateInType(V, Ty)) 1432 return false; 1433 1434 auto *I = cast<Instruction>(V); 1435 switch (I->getOpcode()) { 1436 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1437 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1438 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1439 return true; 1440 case Instruction::And: 1441 case Instruction::Or: 1442 case Instruction::Xor: 1443 case Instruction::Add: 1444 case Instruction::Sub: 1445 case Instruction::Mul: 1446 // These operators can all arbitrarily be extended if their inputs can. 1447 return canEvaluateSExtd(I->getOperand(0), Ty) && 1448 canEvaluateSExtd(I->getOperand(1), Ty); 1449 1450 //case Instruction::Shl: TODO 1451 //case Instruction::LShr: TODO 1452 1453 case Instruction::Select: 1454 return canEvaluateSExtd(I->getOperand(1), Ty) && 1455 canEvaluateSExtd(I->getOperand(2), Ty); 1456 1457 case Instruction::PHI: { 1458 // We can change a phi if we can change all operands. Note that we never 1459 // get into trouble with cyclic PHIs here because we only consider 1460 // instructions with a single use. 1461 PHINode *PN = cast<PHINode>(I); 1462 for (Value *IncValue : PN->incoming_values()) 1463 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1464 return true; 1465 } 1466 default: 1467 // TODO: Can handle more cases here. 1468 break; 1469 } 1470 1471 return false; 1472 } 1473 1474 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1475 // If this sign extend is only used by a truncate, let the truncate be 1476 // eliminated before we try to optimize this sext. 1477 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1478 return nullptr; 1479 1480 if (Instruction *I = commonCastTransforms(CI)) 1481 return I; 1482 1483 Value *Src = CI.getOperand(0); 1484 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1485 1486 // If we know that the value being extended is positive, we can use a zext 1487 // instead. 1488 KnownBits Known = computeKnownBits(Src, 0, &CI); 1489 if (Known.isNonNegative()) 1490 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1491 1492 // Try to extend the entire expression tree to the wide destination type. 1493 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1494 // Okay, we can transform this! Insert the new expression now. 1495 LLVM_DEBUG( 1496 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1497 " to avoid sign extend: " 1498 << CI << '\n'); 1499 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1500 assert(Res->getType() == DestTy); 1501 1502 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1503 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1504 1505 // If the high bits are already filled with sign bit, just replace this 1506 // cast with the result. 1507 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1508 return replaceInstUsesWith(CI, Res); 1509 1510 // We need to emit a shl + ashr to do the sign extend. 1511 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1512 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1513 ShAmt); 1514 } 1515 1516 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1517 // into shifts. 1518 Value *X; 1519 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1520 // sext(trunc(X)) --> ashr(shl(X, C), C) 1521 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1522 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1523 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1524 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1525 } 1526 1527 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1528 return transformSExtICmp(ICI, CI); 1529 1530 // If the input is a shl/ashr pair of a same constant, then this is a sign 1531 // extension from a smaller value. If we could trust arbitrary bitwidth 1532 // integers, we could turn this into a truncate to the smaller bit and then 1533 // use a sext for the whole extension. Since we don't, look deeper and check 1534 // for a truncate. If the source and dest are the same type, eliminate the 1535 // trunc and extend and just do shifts. For example, turn: 1536 // %a = trunc i32 %i to i8 1537 // %b = shl i8 %a, C 1538 // %c = ashr i8 %b, C 1539 // %d = sext i8 %c to i32 1540 // into: 1541 // %a = shl i32 %i, 32-(8-C) 1542 // %d = ashr i32 %a, 32-(8-C) 1543 Value *A = nullptr; 1544 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1545 Constant *BA = nullptr, *CA = nullptr; 1546 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1547 m_Constant(CA))) && 1548 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1549 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1550 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1551 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1552 Constant *NewShAmt = ConstantExpr::getSub( 1553 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1554 NumLowbitsLeft); 1555 NewShAmt = 1556 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1557 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1558 return BinaryOperator::CreateAShr(A, NewShAmt); 1559 } 1560 1561 return nullptr; 1562 } 1563 1564 /// Return a Constant* for the specified floating-point constant if it fits 1565 /// in the specified FP type without changing its value. 1566 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1567 bool losesInfo; 1568 APFloat F = CFP->getValueAPF(); 1569 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1570 return !losesInfo; 1571 } 1572 1573 static Type *shrinkFPConstant(ConstantFP *CFP) { 1574 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1575 return nullptr; // No constant folding of this. 1576 // See if the value can be truncated to half and then reextended. 1577 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1578 return Type::getHalfTy(CFP->getContext()); 1579 // See if the value can be truncated to float and then reextended. 1580 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1581 return Type::getFloatTy(CFP->getContext()); 1582 if (CFP->getType()->isDoubleTy()) 1583 return nullptr; // Won't shrink. 1584 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1585 return Type::getDoubleTy(CFP->getContext()); 1586 // Don't try to shrink to various long double types. 1587 return nullptr; 1588 } 1589 1590 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1591 // type we can safely truncate all elements to. 1592 // TODO: Make these support undef elements. 1593 static Type *shrinkFPConstantVector(Value *V) { 1594 auto *CV = dyn_cast<Constant>(V); 1595 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1596 if (!CV || !CVVTy) 1597 return nullptr; 1598 1599 Type *MinType = nullptr; 1600 1601 unsigned NumElts = CVVTy->getNumElements(); 1602 1603 // For fixed-width vectors we find the minimal type by looking 1604 // through the constant values of the vector. 1605 for (unsigned i = 0; i != NumElts; ++i) { 1606 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1607 if (!CFP) 1608 return nullptr; 1609 1610 Type *T = shrinkFPConstant(CFP); 1611 if (!T) 1612 return nullptr; 1613 1614 // If we haven't found a type yet or this type has a larger mantissa than 1615 // our previous type, this is our new minimal type. 1616 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1617 MinType = T; 1618 } 1619 1620 // Make a vector type from the minimal type. 1621 return FixedVectorType::get(MinType, NumElts); 1622 } 1623 1624 /// Find the minimum FP type we can safely truncate to. 1625 static Type *getMinimumFPType(Value *V) { 1626 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1627 return FPExt->getOperand(0)->getType(); 1628 1629 // If this value is a constant, return the constant in the smallest FP type 1630 // that can accurately represent it. This allows us to turn 1631 // (float)((double)X+2.0) into x+2.0f. 1632 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1633 if (Type *T = shrinkFPConstant(CFP)) 1634 return T; 1635 1636 // We can only correctly find a minimum type for a scalable vector when it is 1637 // a splat. For splats of constant values the fpext is wrapped up as a 1638 // ConstantExpr. 1639 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1640 if (FPCExt->getOpcode() == Instruction::FPExt) 1641 return FPCExt->getOperand(0)->getType(); 1642 1643 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1644 // vectors 1645 if (Type *T = shrinkFPConstantVector(V)) 1646 return T; 1647 1648 return V->getType(); 1649 } 1650 1651 /// Return true if the cast from integer to FP can be proven to be exact for all 1652 /// possible inputs (the conversion does not lose any precision). 1653 static bool isKnownExactCastIntToFP(CastInst &I) { 1654 CastInst::CastOps Opcode = I.getOpcode(); 1655 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1656 "Unexpected cast"); 1657 Value *Src = I.getOperand(0); 1658 Type *SrcTy = Src->getType(); 1659 Type *FPTy = I.getType(); 1660 bool IsSigned = Opcode == Instruction::SIToFP; 1661 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1662 1663 // Easy case - if the source integer type has less bits than the FP mantissa, 1664 // then the cast must be exact. 1665 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1666 if (SrcSize <= DestNumSigBits) 1667 return true; 1668 1669 // Cast from FP to integer and back to FP is independent of the intermediate 1670 // integer width because of poison on overflow. 1671 Value *F; 1672 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1673 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1674 // potential rounding of negative FP input values. 1675 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1676 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1677 SrcNumSigBits++; 1678 1679 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1680 // significant bits than the destination (and make sure neither type is 1681 // weird -- ppc_fp128). 1682 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1683 SrcNumSigBits <= DestNumSigBits) 1684 return true; 1685 } 1686 1687 // TODO: 1688 // Try harder to find if the source integer type has less significant bits. 1689 // For example, compute number of sign bits or compute low bit mask. 1690 return false; 1691 } 1692 1693 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1694 if (Instruction *I = commonCastTransforms(FPT)) 1695 return I; 1696 1697 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1698 // simplify this expression to avoid one or more of the trunc/extend 1699 // operations if we can do so without changing the numerical results. 1700 // 1701 // The exact manner in which the widths of the operands interact to limit 1702 // what we can and cannot do safely varies from operation to operation, and 1703 // is explained below in the various case statements. 1704 Type *Ty = FPT.getType(); 1705 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1706 if (BO && BO->hasOneUse()) { 1707 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1708 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1709 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1710 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1711 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1712 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1713 unsigned DstWidth = Ty->getFPMantissaWidth(); 1714 switch (BO->getOpcode()) { 1715 default: break; 1716 case Instruction::FAdd: 1717 case Instruction::FSub: 1718 // For addition and subtraction, the infinitely precise result can 1719 // essentially be arbitrarily wide; proving that double rounding 1720 // will not occur because the result of OpI is exact (as we will for 1721 // FMul, for example) is hopeless. However, we *can* nonetheless 1722 // frequently know that double rounding cannot occur (or that it is 1723 // innocuous) by taking advantage of the specific structure of 1724 // infinitely-precise results that admit double rounding. 1725 // 1726 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1727 // to represent both sources, we can guarantee that the double 1728 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1729 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1730 // for proof of this fact). 1731 // 1732 // Note: Figueroa does not consider the case where DstFormat != 1733 // SrcFormat. It's possible (likely even!) that this analysis 1734 // could be tightened for those cases, but they are rare (the main 1735 // case of interest here is (float)((double)float + float)). 1736 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1737 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1738 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1739 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1740 RI->copyFastMathFlags(BO); 1741 return RI; 1742 } 1743 break; 1744 case Instruction::FMul: 1745 // For multiplication, the infinitely precise result has at most 1746 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1747 // that such a value can be exactly represented, then no double 1748 // rounding can possibly occur; we can safely perform the operation 1749 // in the destination format if it can represent both sources. 1750 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1751 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1752 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1753 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1754 } 1755 break; 1756 case Instruction::FDiv: 1757 // For division, we use again use the bound from Figueroa's 1758 // dissertation. I am entirely certain that this bound can be 1759 // tightened in the unbalanced operand case by an analysis based on 1760 // the diophantine rational approximation bound, but the well-known 1761 // condition used here is a good conservative first pass. 1762 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1763 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1764 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1765 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1766 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1767 } 1768 break; 1769 case Instruction::FRem: { 1770 // Remainder is straightforward. Remainder is always exact, so the 1771 // type of OpI doesn't enter into things at all. We simply evaluate 1772 // in whichever source type is larger, then convert to the 1773 // destination type. 1774 if (SrcWidth == OpWidth) 1775 break; 1776 Value *LHS, *RHS; 1777 if (LHSWidth == SrcWidth) { 1778 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1779 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1780 } else { 1781 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1782 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1783 } 1784 1785 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1786 return CastInst::CreateFPCast(ExactResult, Ty); 1787 } 1788 } 1789 } 1790 1791 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1792 Value *X; 1793 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1794 if (Op && Op->hasOneUse()) { 1795 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1796 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1797 if (isa<FPMathOperator>(Op)) 1798 Builder.setFastMathFlags(Op->getFastMathFlags()); 1799 1800 if (match(Op, m_FNeg(m_Value(X)))) { 1801 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1802 1803 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1804 } 1805 1806 // If we are truncating a select that has an extended operand, we can 1807 // narrow the other operand and do the select as a narrow op. 1808 Value *Cond, *X, *Y; 1809 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1810 X->getType() == Ty) { 1811 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1812 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1813 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1814 return replaceInstUsesWith(FPT, Sel); 1815 } 1816 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1817 X->getType() == Ty) { 1818 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1819 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1820 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1821 return replaceInstUsesWith(FPT, Sel); 1822 } 1823 } 1824 1825 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1826 switch (II->getIntrinsicID()) { 1827 default: break; 1828 case Intrinsic::ceil: 1829 case Intrinsic::fabs: 1830 case Intrinsic::floor: 1831 case Intrinsic::nearbyint: 1832 case Intrinsic::rint: 1833 case Intrinsic::round: 1834 case Intrinsic::roundeven: 1835 case Intrinsic::trunc: { 1836 Value *Src = II->getArgOperand(0); 1837 if (!Src->hasOneUse()) 1838 break; 1839 1840 // Except for fabs, this transformation requires the input of the unary FP 1841 // operation to be itself an fpext from the type to which we're 1842 // truncating. 1843 if (II->getIntrinsicID() != Intrinsic::fabs) { 1844 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1845 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1846 break; 1847 } 1848 1849 // Do unary FP operation on smaller type. 1850 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1851 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1852 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1853 II->getIntrinsicID(), Ty); 1854 SmallVector<OperandBundleDef, 1> OpBundles; 1855 II->getOperandBundlesAsDefs(OpBundles); 1856 CallInst *NewCI = 1857 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1858 NewCI->copyFastMathFlags(II); 1859 return NewCI; 1860 } 1861 } 1862 } 1863 1864 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1865 return I; 1866 1867 Value *Src = FPT.getOperand(0); 1868 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1869 auto *FPCast = cast<CastInst>(Src); 1870 if (isKnownExactCastIntToFP(*FPCast)) 1871 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1872 } 1873 1874 return nullptr; 1875 } 1876 1877 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1878 // If the source operand is a cast from integer to FP and known exact, then 1879 // cast the integer operand directly to the destination type. 1880 Type *Ty = FPExt.getType(); 1881 Value *Src = FPExt.getOperand(0); 1882 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1883 auto *FPCast = cast<CastInst>(Src); 1884 if (isKnownExactCastIntToFP(*FPCast)) 1885 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1886 } 1887 1888 return commonCastTransforms(FPExt); 1889 } 1890 1891 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1892 /// This is safe if the intermediate type has enough bits in its mantissa to 1893 /// accurately represent all values of X. For example, this won't work with 1894 /// i64 -> float -> i64. 1895 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1896 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1897 return nullptr; 1898 1899 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1900 Value *X = OpI->getOperand(0); 1901 Type *XType = X->getType(); 1902 Type *DestType = FI.getType(); 1903 bool IsOutputSigned = isa<FPToSIInst>(FI); 1904 1905 // Since we can assume the conversion won't overflow, our decision as to 1906 // whether the input will fit in the float should depend on the minimum 1907 // of the input range and output range. 1908 1909 // This means this is also safe for a signed input and unsigned output, since 1910 // a negative input would lead to undefined behavior. 1911 if (!isKnownExactCastIntToFP(*OpI)) { 1912 // The first cast may not round exactly based on the source integer width 1913 // and FP width, but the overflow UB rules can still allow this to fold. 1914 // If the destination type is narrow, that means the intermediate FP value 1915 // must be large enough to hold the source value exactly. 1916 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1917 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; 1918 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1919 return nullptr; 1920 } 1921 1922 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1923 bool IsInputSigned = isa<SIToFPInst>(OpI); 1924 if (IsInputSigned && IsOutputSigned) 1925 return new SExtInst(X, DestType); 1926 return new ZExtInst(X, DestType); 1927 } 1928 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1929 return new TruncInst(X, DestType); 1930 1931 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1932 return replaceInstUsesWith(FI, X); 1933 } 1934 1935 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1936 if (Instruction *I = foldItoFPtoI(FI)) 1937 return I; 1938 1939 return commonCastTransforms(FI); 1940 } 1941 1942 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 1943 if (Instruction *I = foldItoFPtoI(FI)) 1944 return I; 1945 1946 return commonCastTransforms(FI); 1947 } 1948 1949 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 1950 return commonCastTransforms(CI); 1951 } 1952 1953 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 1954 return commonCastTransforms(CI); 1955 } 1956 1957 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 1958 // If the source integer type is not the intptr_t type for this target, do a 1959 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1960 // cast to be exposed to other transforms. 1961 unsigned AS = CI.getAddressSpace(); 1962 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1963 DL.getPointerSizeInBits(AS)) { 1964 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 1965 DL.getIntPtrType(CI.getContext(), AS)); 1966 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1967 return new IntToPtrInst(P, CI.getType()); 1968 } 1969 1970 if (Instruction *I = commonCastTransforms(CI)) 1971 return I; 1972 1973 return nullptr; 1974 } 1975 1976 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1977 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 1978 Value *Src = CI.getOperand(0); 1979 1980 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1981 // If casting the result of a getelementptr instruction with no offset, turn 1982 // this into a cast of the original pointer! 1983 if (GEP->hasAllZeroIndices() && 1984 // If CI is an addrspacecast and GEP changes the poiner type, merging 1985 // GEP into CI would undo canonicalizing addrspacecast with different 1986 // pointer types, causing infinite loops. 1987 (!isa<AddrSpaceCastInst>(CI) || 1988 GEP->getType() == GEP->getPointerOperandType())) { 1989 // Changing the cast operand is usually not a good idea but it is safe 1990 // here because the pointer operand is being replaced with another 1991 // pointer operand so the opcode doesn't need to change. 1992 return replaceOperand(CI, 0, GEP->getOperand(0)); 1993 } 1994 } 1995 1996 return commonCastTransforms(CI); 1997 } 1998 1999 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2000 // If the destination integer type is not the intptr_t type for this target, 2001 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2002 // to be exposed to other transforms. 2003 Value *SrcOp = CI.getPointerOperand(); 2004 Type *SrcTy = SrcOp->getType(); 2005 Type *Ty = CI.getType(); 2006 unsigned AS = CI.getPointerAddressSpace(); 2007 unsigned TySize = Ty->getScalarSizeInBits(); 2008 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2009 if (TySize != PtrSize) { 2010 Type *IntPtrTy = 2011 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2012 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2013 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2014 } 2015 2016 Value *Vec, *Scalar, *Index; 2017 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2018 m_Value(Scalar), m_Value(Index)))) && 2019 Vec->getType() == Ty) { 2020 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2021 // Convert the scalar to int followed by insert to eliminate one cast: 2022 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2023 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2024 return InsertElementInst::Create(Vec, NewCast, Index); 2025 } 2026 2027 return commonPointerCastTransforms(CI); 2028 } 2029 2030 /// This input value (which is known to have vector type) is being zero extended 2031 /// or truncated to the specified vector type. Since the zext/trunc is done 2032 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2033 /// endianness will impact which end of the vector that is extended or 2034 /// truncated. 2035 /// 2036 /// A vector is always stored with index 0 at the lowest address, which 2037 /// corresponds to the most significant bits for a big endian stored integer and 2038 /// the least significant bits for little endian. A trunc/zext of an integer 2039 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2040 /// the front of the vector for big endian targets, and the back of the vector 2041 /// for little endian targets. 2042 /// 2043 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2044 /// 2045 /// The source and destination vector types may have different element types. 2046 static Instruction * 2047 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2048 InstCombinerImpl &IC) { 2049 // We can only do this optimization if the output is a multiple of the input 2050 // element size, or the input is a multiple of the output element size. 2051 // Convert the input type to have the same element type as the output. 2052 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2053 2054 if (SrcTy->getElementType() != DestTy->getElementType()) { 2055 // The input types don't need to be identical, but for now they must be the 2056 // same size. There is no specific reason we couldn't handle things like 2057 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2058 // there yet. 2059 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2060 DestTy->getElementType()->getPrimitiveSizeInBits()) 2061 return nullptr; 2062 2063 SrcTy = 2064 FixedVectorType::get(DestTy->getElementType(), 2065 cast<FixedVectorType>(SrcTy)->getNumElements()); 2066 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2067 } 2068 2069 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2070 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2071 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2072 2073 assert(SrcElts != DestElts && "Element counts should be different."); 2074 2075 // Now that the element types match, get the shuffle mask and RHS of the 2076 // shuffle to use, which depends on whether we're increasing or decreasing the 2077 // size of the input. 2078 SmallVector<int, 16> ShuffleMaskStorage; 2079 ArrayRef<int> ShuffleMask; 2080 Value *V2; 2081 2082 // Produce an identify shuffle mask for the src vector. 2083 ShuffleMaskStorage.resize(SrcElts); 2084 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 2085 2086 if (SrcElts > DestElts) { 2087 // If we're shrinking the number of elements (rewriting an integer 2088 // truncate), just shuffle in the elements corresponding to the least 2089 // significant bits from the input and use undef as the second shuffle 2090 // input. 2091 V2 = UndefValue::get(SrcTy); 2092 // Make sure the shuffle mask selects the "least significant bits" by 2093 // keeping elements from back of the src vector for big endian, and from the 2094 // front for little endian. 2095 ShuffleMask = ShuffleMaskStorage; 2096 if (IsBigEndian) 2097 ShuffleMask = ShuffleMask.take_back(DestElts); 2098 else 2099 ShuffleMask = ShuffleMask.take_front(DestElts); 2100 } else { 2101 // If we're increasing the number of elements (rewriting an integer zext), 2102 // shuffle in all of the elements from InVal. Fill the rest of the result 2103 // elements with zeros from a constant zero. 2104 V2 = Constant::getNullValue(SrcTy); 2105 // Use first elt from V2 when indicating zero in the shuffle mask. 2106 uint32_t NullElt = SrcElts; 2107 // Extend with null values in the "most significant bits" by adding elements 2108 // in front of the src vector for big endian, and at the back for little 2109 // endian. 2110 unsigned DeltaElts = DestElts - SrcElts; 2111 if (IsBigEndian) 2112 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2113 else 2114 ShuffleMaskStorage.append(DeltaElts, NullElt); 2115 ShuffleMask = ShuffleMaskStorage; 2116 } 2117 2118 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2119 } 2120 2121 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2122 return Value % Ty->getPrimitiveSizeInBits() == 0; 2123 } 2124 2125 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2126 return Value / Ty->getPrimitiveSizeInBits(); 2127 } 2128 2129 /// V is a value which is inserted into a vector of VecEltTy. 2130 /// Look through the value to see if we can decompose it into 2131 /// insertions into the vector. See the example in the comment for 2132 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2133 /// The type of V is always a non-zero multiple of VecEltTy's size. 2134 /// Shift is the number of bits between the lsb of V and the lsb of 2135 /// the vector. 2136 /// 2137 /// This returns false if the pattern can't be matched or true if it can, 2138 /// filling in Elements with the elements found here. 2139 static bool collectInsertionElements(Value *V, unsigned Shift, 2140 SmallVectorImpl<Value *> &Elements, 2141 Type *VecEltTy, bool isBigEndian) { 2142 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2143 "Shift should be a multiple of the element type size"); 2144 2145 // Undef values never contribute useful bits to the result. 2146 if (isa<UndefValue>(V)) return true; 2147 2148 // If we got down to a value of the right type, we win, try inserting into the 2149 // right element. 2150 if (V->getType() == VecEltTy) { 2151 // Inserting null doesn't actually insert any elements. 2152 if (Constant *C = dyn_cast<Constant>(V)) 2153 if (C->isNullValue()) 2154 return true; 2155 2156 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2157 if (isBigEndian) 2158 ElementIndex = Elements.size() - ElementIndex - 1; 2159 2160 // Fail if multiple elements are inserted into this slot. 2161 if (Elements[ElementIndex]) 2162 return false; 2163 2164 Elements[ElementIndex] = V; 2165 return true; 2166 } 2167 2168 if (Constant *C = dyn_cast<Constant>(V)) { 2169 // Figure out the # elements this provides, and bitcast it or slice it up 2170 // as required. 2171 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2172 VecEltTy); 2173 // If the constant is the size of a vector element, we just need to bitcast 2174 // it to the right type so it gets properly inserted. 2175 if (NumElts == 1) 2176 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2177 Shift, Elements, VecEltTy, isBigEndian); 2178 2179 // Okay, this is a constant that covers multiple elements. Slice it up into 2180 // pieces and insert each element-sized piece into the vector. 2181 if (!isa<IntegerType>(C->getType())) 2182 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2183 C->getType()->getPrimitiveSizeInBits())); 2184 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2185 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2186 2187 for (unsigned i = 0; i != NumElts; ++i) { 2188 unsigned ShiftI = Shift+i*ElementSize; 2189 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2190 ShiftI)); 2191 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2192 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2193 isBigEndian)) 2194 return false; 2195 } 2196 return true; 2197 } 2198 2199 if (!V->hasOneUse()) return false; 2200 2201 Instruction *I = dyn_cast<Instruction>(V); 2202 if (!I) return false; 2203 switch (I->getOpcode()) { 2204 default: return false; // Unhandled case. 2205 case Instruction::BitCast: 2206 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2207 isBigEndian); 2208 case Instruction::ZExt: 2209 if (!isMultipleOfTypeSize( 2210 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2211 VecEltTy)) 2212 return false; 2213 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2214 isBigEndian); 2215 case Instruction::Or: 2216 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2217 isBigEndian) && 2218 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2219 isBigEndian); 2220 case Instruction::Shl: { 2221 // Must be shifting by a constant that is a multiple of the element size. 2222 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2223 if (!CI) return false; 2224 Shift += CI->getZExtValue(); 2225 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2226 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2227 isBigEndian); 2228 } 2229 2230 } 2231 } 2232 2233 2234 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2235 /// assemble the elements of the vector manually. 2236 /// Try to rip the code out and replace it with insertelements. This is to 2237 /// optimize code like this: 2238 /// 2239 /// %tmp37 = bitcast float %inc to i32 2240 /// %tmp38 = zext i32 %tmp37 to i64 2241 /// %tmp31 = bitcast float %inc5 to i32 2242 /// %tmp32 = zext i32 %tmp31 to i64 2243 /// %tmp33 = shl i64 %tmp32, 32 2244 /// %ins35 = or i64 %tmp33, %tmp38 2245 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2246 /// 2247 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2248 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2249 InstCombinerImpl &IC) { 2250 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2251 Value *IntInput = CI.getOperand(0); 2252 2253 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2254 if (!collectInsertionElements(IntInput, 0, Elements, 2255 DestVecTy->getElementType(), 2256 IC.getDataLayout().isBigEndian())) 2257 return nullptr; 2258 2259 // If we succeeded, we know that all of the element are specified by Elements 2260 // or are zero if Elements has a null entry. Recast this as a set of 2261 // insertions. 2262 Value *Result = Constant::getNullValue(CI.getType()); 2263 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2264 if (!Elements[i]) continue; // Unset element. 2265 2266 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2267 IC.Builder.getInt32(i)); 2268 } 2269 2270 return Result; 2271 } 2272 2273 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2274 /// vector followed by extract element. The backend tends to handle bitcasts of 2275 /// vectors better than bitcasts of scalars because vector registers are 2276 /// usually not type-specific like scalar integer or scalar floating-point. 2277 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2278 InstCombinerImpl &IC) { 2279 // TODO: Create and use a pattern matcher for ExtractElementInst. 2280 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2281 if (!ExtElt || !ExtElt->hasOneUse()) 2282 return nullptr; 2283 2284 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2285 // type to extract from. 2286 Type *DestType = BitCast.getType(); 2287 if (!VectorType::isValidElementType(DestType)) 2288 return nullptr; 2289 2290 auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType()); 2291 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2292 NewVecType, "bc"); 2293 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2294 } 2295 2296 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2297 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2298 InstCombiner::BuilderTy &Builder) { 2299 Type *DestTy = BitCast.getType(); 2300 BinaryOperator *BO; 2301 if (!DestTy->isIntOrIntVectorTy() || 2302 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2303 !BO->isBitwiseLogicOp()) 2304 return nullptr; 2305 2306 // FIXME: This transform is restricted to vector types to avoid backend 2307 // problems caused by creating potentially illegal operations. If a fix-up is 2308 // added to handle that situation, we can remove this check. 2309 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2310 return nullptr; 2311 2312 Value *X; 2313 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2314 X->getType() == DestTy && !isa<Constant>(X)) { 2315 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2316 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2317 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2318 } 2319 2320 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2321 X->getType() == DestTy && !isa<Constant>(X)) { 2322 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2323 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2324 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2325 } 2326 2327 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2328 // constant. This eases recognition of special constants for later ops. 2329 // Example: 2330 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2331 Constant *C; 2332 if (match(BO->getOperand(1), m_Constant(C))) { 2333 // bitcast (logic X, C) --> logic (bitcast X, C') 2334 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2335 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2336 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2337 } 2338 2339 return nullptr; 2340 } 2341 2342 /// Change the type of a select if we can eliminate a bitcast. 2343 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2344 InstCombiner::BuilderTy &Builder) { 2345 Value *Cond, *TVal, *FVal; 2346 if (!match(BitCast.getOperand(0), 2347 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2348 return nullptr; 2349 2350 // A vector select must maintain the same number of elements in its operands. 2351 Type *CondTy = Cond->getType(); 2352 Type *DestTy = BitCast.getType(); 2353 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2354 if (!DestTy->isVectorTy() || 2355 CondVTy->getElementCount() != 2356 cast<VectorType>(DestTy)->getElementCount()) 2357 return nullptr; 2358 2359 // FIXME: This transform is restricted from changing the select between 2360 // scalars and vectors to avoid backend problems caused by creating 2361 // potentially illegal operations. If a fix-up is added to handle that 2362 // situation, we can remove this check. 2363 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2364 return nullptr; 2365 2366 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2367 Value *X; 2368 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2369 !isa<Constant>(X)) { 2370 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2371 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2372 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2373 } 2374 2375 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2376 !isa<Constant>(X)) { 2377 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2378 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2379 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2380 } 2381 2382 return nullptr; 2383 } 2384 2385 /// Check if all users of CI are StoreInsts. 2386 static bool hasStoreUsersOnly(CastInst &CI) { 2387 for (User *U : CI.users()) { 2388 if (!isa<StoreInst>(U)) 2389 return false; 2390 } 2391 return true; 2392 } 2393 2394 /// This function handles following case 2395 /// 2396 /// A -> B cast 2397 /// PHI 2398 /// B -> A cast 2399 /// 2400 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2401 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2402 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2403 PHINode *PN) { 2404 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2405 if (hasStoreUsersOnly(CI)) 2406 return nullptr; 2407 2408 Value *Src = CI.getOperand(0); 2409 Type *SrcTy = Src->getType(); // Type B 2410 Type *DestTy = CI.getType(); // Type A 2411 2412 SmallVector<PHINode *, 4> PhiWorklist; 2413 SmallSetVector<PHINode *, 4> OldPhiNodes; 2414 2415 // Find all of the A->B casts and PHI nodes. 2416 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2417 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2418 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2419 PhiWorklist.push_back(PN); 2420 OldPhiNodes.insert(PN); 2421 while (!PhiWorklist.empty()) { 2422 auto *OldPN = PhiWorklist.pop_back_val(); 2423 for (Value *IncValue : OldPN->incoming_values()) { 2424 if (isa<Constant>(IncValue)) 2425 continue; 2426 2427 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2428 // If there is a sequence of one or more load instructions, each loaded 2429 // value is used as address of later load instruction, bitcast is 2430 // necessary to change the value type, don't optimize it. For 2431 // simplicity we give up if the load address comes from another load. 2432 Value *Addr = LI->getOperand(0); 2433 if (Addr == &CI || isa<LoadInst>(Addr)) 2434 return nullptr; 2435 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2436 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2437 // TODO: Remove this check when bitcast between vector and x86_amx 2438 // is replaced with a specific intrinsic. 2439 if (DestTy->isX86_AMXTy()) 2440 return nullptr; 2441 if (LI->hasOneUse() && LI->isSimple()) 2442 continue; 2443 // If a LoadInst has more than one use, changing the type of loaded 2444 // value may create another bitcast. 2445 return nullptr; 2446 } 2447 2448 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2449 if (OldPhiNodes.insert(PNode)) 2450 PhiWorklist.push_back(PNode); 2451 continue; 2452 } 2453 2454 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2455 // We can't handle other instructions. 2456 if (!BCI) 2457 return nullptr; 2458 2459 // Verify it's a A->B cast. 2460 Type *TyA = BCI->getOperand(0)->getType(); 2461 Type *TyB = BCI->getType(); 2462 if (TyA != DestTy || TyB != SrcTy) 2463 return nullptr; 2464 } 2465 } 2466 2467 // Check that each user of each old PHI node is something that we can 2468 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2469 for (auto *OldPN : OldPhiNodes) { 2470 for (User *V : OldPN->users()) { 2471 if (auto *SI = dyn_cast<StoreInst>(V)) { 2472 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2473 return nullptr; 2474 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2475 // Verify it's a B->A cast. 2476 Type *TyB = BCI->getOperand(0)->getType(); 2477 Type *TyA = BCI->getType(); 2478 if (TyA != DestTy || TyB != SrcTy) 2479 return nullptr; 2480 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2481 // As long as the user is another old PHI node, then even if we don't 2482 // rewrite it, the PHI web we're considering won't have any users 2483 // outside itself, so it'll be dead. 2484 if (OldPhiNodes.count(PHI) == 0) 2485 return nullptr; 2486 } else { 2487 return nullptr; 2488 } 2489 } 2490 } 2491 2492 // For each old PHI node, create a corresponding new PHI node with a type A. 2493 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2494 for (auto *OldPN : OldPhiNodes) { 2495 Builder.SetInsertPoint(OldPN); 2496 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2497 NewPNodes[OldPN] = NewPN; 2498 } 2499 2500 // Fill in the operands of new PHI nodes. 2501 for (auto *OldPN : OldPhiNodes) { 2502 PHINode *NewPN = NewPNodes[OldPN]; 2503 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2504 Value *V = OldPN->getOperand(j); 2505 Value *NewV = nullptr; 2506 if (auto *C = dyn_cast<Constant>(V)) { 2507 NewV = ConstantExpr::getBitCast(C, DestTy); 2508 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2509 // Explicitly perform load combine to make sure no opposing transform 2510 // can remove the bitcast in the meantime and trigger an infinite loop. 2511 Builder.SetInsertPoint(LI); 2512 NewV = combineLoadToNewType(*LI, DestTy); 2513 // Remove the old load and its use in the old phi, which itself becomes 2514 // dead once the whole transform finishes. 2515 replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 2516 eraseInstFromFunction(*LI); 2517 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2518 NewV = BCI->getOperand(0); 2519 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2520 NewV = NewPNodes[PrevPN]; 2521 } 2522 assert(NewV); 2523 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2524 } 2525 } 2526 2527 // Traverse all accumulated PHI nodes and process its users, 2528 // which are Stores and BitcCasts. Without this processing 2529 // NewPHI nodes could be replicated and could lead to extra 2530 // moves generated after DeSSA. 2531 // If there is a store with type B, change it to type A. 2532 2533 2534 // Replace users of BitCast B->A with NewPHI. These will help 2535 // later to get rid off a closure formed by OldPHI nodes. 2536 Instruction *RetVal = nullptr; 2537 for (auto *OldPN : OldPhiNodes) { 2538 PHINode *NewPN = NewPNodes[OldPN]; 2539 for (User *V : make_early_inc_range(OldPN->users())) { 2540 if (auto *SI = dyn_cast<StoreInst>(V)) { 2541 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2542 Builder.SetInsertPoint(SI); 2543 auto *NewBC = 2544 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2545 SI->setOperand(0, NewBC); 2546 Worklist.push(SI); 2547 assert(hasStoreUsersOnly(*NewBC)); 2548 } 2549 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2550 Type *TyB = BCI->getOperand(0)->getType(); 2551 Type *TyA = BCI->getType(); 2552 assert(TyA == DestTy && TyB == SrcTy); 2553 (void) TyA; 2554 (void) TyB; 2555 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2556 if (BCI == &CI) 2557 RetVal = I; 2558 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2559 assert(OldPhiNodes.contains(PHI)); 2560 (void) PHI; 2561 } else { 2562 llvm_unreachable("all uses should be handled"); 2563 } 2564 } 2565 } 2566 2567 return RetVal; 2568 } 2569 2570 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2571 // If the operands are integer typed then apply the integer transforms, 2572 // otherwise just apply the common ones. 2573 Value *Src = CI.getOperand(0); 2574 Type *SrcTy = Src->getType(); 2575 Type *DestTy = CI.getType(); 2576 2577 // Get rid of casts from one type to the same type. These are useless and can 2578 // be replaced by the operand. 2579 if (DestTy == Src->getType()) 2580 return replaceInstUsesWith(CI, Src); 2581 2582 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2583 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2584 PointerType *DstPTy = cast<PointerType>(DestTy); 2585 Type *DstElTy = DstPTy->getElementType(); 2586 Type *SrcElTy = SrcPTy->getElementType(); 2587 2588 // Casting pointers between the same type, but with different address spaces 2589 // is an addrspace cast rather than a bitcast. 2590 if ((DstElTy == SrcElTy) && 2591 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2592 return new AddrSpaceCastInst(Src, DestTy); 2593 2594 // If we are casting a alloca to a pointer to a type of the same 2595 // size, rewrite the allocation instruction to allocate the "right" type. 2596 // There is no need to modify malloc calls because it is their bitcast that 2597 // needs to be cleaned up. 2598 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2599 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2600 return V; 2601 2602 // When the type pointed to is not sized the cast cannot be 2603 // turned into a gep. 2604 Type *PointeeType = 2605 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2606 if (!PointeeType->isSized()) 2607 return nullptr; 2608 2609 // If the source and destination are pointers, and this cast is equivalent 2610 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2611 // This can enhance SROA and other transforms that want type-safe pointers. 2612 unsigned NumZeros = 0; 2613 while (SrcElTy && SrcElTy != DstElTy) { 2614 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2615 ++NumZeros; 2616 } 2617 2618 // If we found a path from the src to dest, create the getelementptr now. 2619 if (SrcElTy == DstElTy) { 2620 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2621 GetElementPtrInst *GEP = 2622 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); 2623 2624 // If the source pointer is dereferenceable, then assume it points to an 2625 // allocated object and apply "inbounds" to the GEP. 2626 bool CanBeNull, CanBeFreed; 2627 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2628 // In a non-default address space (not 0), a null pointer can not be 2629 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2630 // The reason is that 'null' is not treated differently in these address 2631 // spaces, and we consequently ignore the 'gep inbounds' special case 2632 // for 'null' which allows 'inbounds' on 'null' if the indices are 2633 // zeros. 2634 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2635 GEP->setIsInBounds(); 2636 } 2637 return GEP; 2638 } 2639 } 2640 2641 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2642 // Beware: messing with this target-specific oddity may cause trouble. 2643 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2644 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2645 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2646 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2647 } 2648 2649 if (isa<IntegerType>(SrcTy)) { 2650 // If this is a cast from an integer to vector, check to see if the input 2651 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2652 // the casts with a shuffle and (potentially) a bitcast. 2653 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2654 CastInst *SrcCast = cast<CastInst>(Src); 2655 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2656 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2657 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2658 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2659 return I; 2660 } 2661 2662 // If the input is an 'or' instruction, we may be doing shifts and ors to 2663 // assemble the elements of the vector manually. Try to rip the code out 2664 // and replace it with insertelements. 2665 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2666 return replaceInstUsesWith(CI, V); 2667 } 2668 } 2669 2670 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2671 if (SrcVTy->getNumElements() == 1) { 2672 // If our destination is not a vector, then make this a straight 2673 // scalar-scalar cast. 2674 if (!DestTy->isVectorTy()) { 2675 Value *Elem = 2676 Builder.CreateExtractElement(Src, 2677 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2678 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2679 } 2680 2681 // Otherwise, see if our source is an insert. If so, then use the scalar 2682 // component directly: 2683 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2684 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2685 return new BitCastInst(InsElt->getOperand(1), DestTy); 2686 } 2687 } 2688 2689 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2690 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2691 // a bitcast to a vector with the same # elts. 2692 Value *ShufOp0 = Shuf->getOperand(0); 2693 Value *ShufOp1 = Shuf->getOperand(1); 2694 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2695 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2696 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2697 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2698 ShufElts == SrcVecElts) { 2699 BitCastInst *Tmp; 2700 // If either of the operands is a cast from CI.getType(), then 2701 // evaluating the shuffle in the casted destination's type will allow 2702 // us to eliminate at least one cast. 2703 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2704 Tmp->getOperand(0)->getType() == DestTy) || 2705 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2706 Tmp->getOperand(0)->getType() == DestTy)) { 2707 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2708 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2709 // Return a new shuffle vector. Use the same element ID's, as we 2710 // know the vector types match #elts. 2711 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2712 } 2713 } 2714 2715 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2716 // a byte-swap: 2717 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2718 // TODO: We should match the related pattern for bitreverse. 2719 if (DestTy->isIntegerTy() && 2720 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2721 SrcTy->getScalarSizeInBits() == 8 && 2722 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2723 Shuf->isReverse()) { 2724 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2725 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2726 Function *Bswap = 2727 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2728 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2729 return CallInst::Create(Bswap, { ScalarX }); 2730 } 2731 } 2732 2733 // Handle the A->B->A cast, and there is an intervening PHI node. 2734 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2735 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2736 return I; 2737 2738 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2739 return I; 2740 2741 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2742 return I; 2743 2744 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2745 return I; 2746 2747 if (SrcTy->isPointerTy()) 2748 return commonPointerCastTransforms(CI); 2749 return commonCastTransforms(CI); 2750 } 2751 2752 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2753 // If the destination pointer element type is not the same as the source's 2754 // first do a bitcast to the destination type, and then the addrspacecast. 2755 // This allows the cast to be exposed to other transforms. 2756 Value *Src = CI.getOperand(0); 2757 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2758 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2759 2760 Type *DestElemTy = DestTy->getElementType(); 2761 if (SrcTy->getElementType() != DestElemTy) { 2762 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2763 // Handle vectors of pointers. 2764 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2765 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2766 2767 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2768 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2769 } 2770 2771 return commonPointerCastTransforms(CI); 2772 } 2773