1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 /// Analyze 'Val', seeing if it is a simple linear expression. 25 /// If so, decompose it, returning some value X, such that Val is 26 /// X*Scale+Offset. 27 /// 28 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 29 uint64_t &Offset) { 30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 31 Offset = CI->getZExtValue(); 32 Scale = 0; 33 return ConstantInt::get(Val->getType(), 0); 34 } 35 36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 37 // Cannot look past anything that might overflow. 38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 40 Scale = 1; 41 Offset = 0; 42 return Val; 43 } 44 45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 46 if (I->getOpcode() == Instruction::Shl) { 47 // This is a value scaled by '1 << the shift amt'. 48 Scale = UINT64_C(1) << RHS->getZExtValue(); 49 Offset = 0; 50 return I->getOperand(0); 51 } 52 53 if (I->getOpcode() == Instruction::Mul) { 54 // This value is scaled by 'RHS'. 55 Scale = RHS->getZExtValue(); 56 Offset = 0; 57 return I->getOperand(0); 58 } 59 60 if (I->getOpcode() == Instruction::Add) { 61 // We have X+C. Check to see if we really have (X*C2)+C1, 62 // where C1 is divisible by C2. 63 unsigned SubScale; 64 Value *SubVal = 65 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 66 Offset += RHS->getZExtValue(); 67 Scale = SubScale; 68 return SubVal; 69 } 70 } 71 } 72 73 // Otherwise, we can't look past this. 74 Scale = 1; 75 Offset = 0; 76 return Val; 77 } 78 79 /// If we find a cast of an allocation instruction, try to eliminate the cast by 80 /// moving the type information into the alloc. 81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 82 AllocaInst &AI) { 83 PointerType *PTy = cast<PointerType>(CI.getType()); 84 85 BuilderTy AllocaBuilder(*Builder); 86 AllocaBuilder.SetInsertPoint(&AI); 87 88 // Get the type really allocated and the type casted to. 89 Type *AllocElTy = AI.getAllocatedType(); 90 Type *CastElTy = PTy->getElementType(); 91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 92 93 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 94 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 95 if (CastElTyAlign < AllocElTyAlign) return nullptr; 96 97 // If the allocation has multiple uses, only promote it if we are strictly 98 // increasing the alignment of the resultant allocation. If we keep it the 99 // same, we open the door to infinite loops of various kinds. 100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 101 102 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 103 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 104 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 105 106 // If the allocation has multiple uses, only promote it if we're not 107 // shrinking the amount of memory being allocated. 108 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 109 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 110 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 111 112 // See if we can satisfy the modulus by pulling a scale out of the array 113 // size argument. 114 unsigned ArraySizeScale; 115 uint64_t ArrayOffset; 116 Value *NumElements = // See if the array size is a decomposable linear expr. 117 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 118 119 // If we can now satisfy the modulus, by using a non-1 scale, we really can 120 // do the xform. 121 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 122 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 123 124 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 125 Value *Amt = nullptr; 126 if (Scale == 1) { 127 Amt = NumElements; 128 } else { 129 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 130 // Insert before the alloca, not before the cast. 131 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 132 } 133 134 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 135 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 136 Offset, true); 137 Amt = AllocaBuilder.CreateAdd(Amt, Off); 138 } 139 140 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 141 New->setAlignment(AI.getAlignment()); 142 New->takeName(&AI); 143 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 144 145 // If the allocation has multiple real uses, insert a cast and change all 146 // things that used it to use the new cast. This will also hack on CI, but it 147 // will die soon. 148 if (!AI.hasOneUse()) { 149 // New is the allocation instruction, pointer typed. AI is the original 150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 152 replaceInstUsesWith(AI, NewCast); 153 } 154 return replaceInstUsesWith(CI, New); 155 } 156 157 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 158 /// true for, actually insert the code to evaluate the expression. 159 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 160 bool isSigned) { 161 if (Constant *C = dyn_cast<Constant>(V)) { 162 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 163 // If we got a constantexpr back, try to simplify it with DL info. 164 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 165 C = FoldedC; 166 return C; 167 } 168 169 // Otherwise, it must be an instruction. 170 Instruction *I = cast<Instruction>(V); 171 Instruction *Res = nullptr; 172 unsigned Opc = I->getOpcode(); 173 switch (Opc) { 174 case Instruction::Add: 175 case Instruction::Sub: 176 case Instruction::Mul: 177 case Instruction::And: 178 case Instruction::Or: 179 case Instruction::Xor: 180 case Instruction::AShr: 181 case Instruction::LShr: 182 case Instruction::Shl: 183 case Instruction::UDiv: 184 case Instruction::URem: { 185 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 186 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 187 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 188 break; 189 } 190 case Instruction::Trunc: 191 case Instruction::ZExt: 192 case Instruction::SExt: 193 // If the source type of the cast is the type we're trying for then we can 194 // just return the source. There's no need to insert it because it is not 195 // new. 196 if (I->getOperand(0)->getType() == Ty) 197 return I->getOperand(0); 198 199 // Otherwise, must be the same type of cast, so just reinsert a new one. 200 // This also handles the case of zext(trunc(x)) -> zext(x). 201 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 202 Opc == Instruction::SExt); 203 break; 204 case Instruction::Select: { 205 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 207 Res = SelectInst::Create(I->getOperand(0), True, False); 208 break; 209 } 210 case Instruction::PHI: { 211 PHINode *OPN = cast<PHINode>(I); 212 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 213 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 214 Value *V = 215 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 216 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 217 } 218 Res = NPN; 219 break; 220 } 221 default: 222 // TODO: Can handle more cases here. 223 llvm_unreachable("Unreachable!"); 224 } 225 226 Res->takeName(I); 227 return InsertNewInstWith(Res, *I); 228 } 229 230 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 231 const CastInst *CI2) { 232 Type *SrcTy = CI1->getSrcTy(); 233 Type *MidTy = CI1->getDestTy(); 234 Type *DstTy = CI2->getDestTy(); 235 236 Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode()); 237 Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode()); 238 Type *SrcIntPtrTy = 239 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 240 Type *MidIntPtrTy = 241 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 242 Type *DstIntPtrTy = 243 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 244 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 245 DstTy, SrcIntPtrTy, MidIntPtrTy, 246 DstIntPtrTy); 247 248 // We don't want to form an inttoptr or ptrtoint that converts to an integer 249 // type that differs from the pointer size. 250 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 251 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 252 Res = 0; 253 254 return Instruction::CastOps(Res); 255 } 256 257 /// @brief Implement the transforms common to all CastInst visitors. 258 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 259 Value *Src = CI.getOperand(0); 260 261 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 262 // eliminate it now. 263 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 264 if (Instruction::CastOps opc = 265 isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select then fold the cast into the select 273 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI then fold the cast into the PHI 278 if (isa<PHINode>(Src)) { 279 // We don't do this if this would create a PHI node with an illegal type if 280 // it is currently legal. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 ShouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = FoldOpIntoPhi(CI)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 353 uint32_t BitWidth = Ty->getScalarSizeInBits(); 354 if (CI->getLimitedValue(BitWidth) < BitWidth) 355 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 356 } 357 break; 358 case Instruction::LShr: 359 // If this is a truncate of a logical shr, we can truncate it to a smaller 360 // lshr iff we know that the bits we would otherwise be shifting in are 361 // already zeros. 362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 363 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 364 uint32_t BitWidth = Ty->getScalarSizeInBits(); 365 if (IC.MaskedValueIsZero(I->getOperand(0), 366 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 367 CI->getLimitedValue(BitWidth) < BitWidth) { 368 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 369 } 370 } 371 break; 372 case Instruction::Trunc: 373 // trunc(trunc(x)) -> trunc(x) 374 return true; 375 case Instruction::ZExt: 376 case Instruction::SExt: 377 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 378 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 379 return true; 380 case Instruction::Select: { 381 SelectInst *SI = cast<SelectInst>(I); 382 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 383 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 384 } 385 case Instruction::PHI: { 386 // We can change a phi if we can change all operands. Note that we never 387 // get into trouble with cyclic PHIs here because we only consider 388 // instructions with a single use. 389 PHINode *PN = cast<PHINode>(I); 390 for (Value *IncValue : PN->incoming_values()) 391 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 392 return false; 393 return true; 394 } 395 default: 396 // TODO: Can handle more cases here. 397 break; 398 } 399 400 return false; 401 } 402 403 /// Given a vector that is bitcast to an integer, optionally logically 404 /// right-shifted, and truncated, convert it to an extractelement. 405 /// Example (big endian): 406 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 407 /// ---> 408 /// extractelement <4 x i32> %X, 1 409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 410 const DataLayout &DL) { 411 Value *TruncOp = Trunc.getOperand(0); 412 Type *DestType = Trunc.getType(); 413 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 414 return nullptr; 415 416 Value *VecInput = nullptr; 417 ConstantInt *ShiftVal = nullptr; 418 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 419 m_LShr(m_BitCast(m_Value(VecInput)), 420 m_ConstantInt(ShiftVal)))) || 421 !isa<VectorType>(VecInput->getType())) 422 return nullptr; 423 424 VectorType *VecType = cast<VectorType>(VecInput->getType()); 425 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 426 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 427 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 428 429 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 430 return nullptr; 431 432 // If the element type of the vector doesn't match the result type, 433 // bitcast it to a vector type that we can extract from. 434 unsigned NumVecElts = VecWidth / DestWidth; 435 if (VecType->getElementType() != DestType) { 436 VecType = VectorType::get(DestType, NumVecElts); 437 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 438 } 439 440 unsigned Elt = ShiftAmount / DestWidth; 441 if (DL.isBigEndian()) 442 Elt = NumVecElts - 1 - Elt; 443 444 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 445 } 446 447 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 448 if (Instruction *Result = commonCastTransforms(CI)) 449 return Result; 450 451 // Test if the trunc is the user of a select which is part of a 452 // minimum or maximum operation. If so, don't do any more simplification. 453 // Even simplifying demanded bits can break the canonical form of a 454 // min/max. 455 Value *LHS, *RHS; 456 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 457 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 458 return nullptr; 459 460 // See if we can simplify any instructions used by the input whose sole 461 // purpose is to compute bits we don't care about. 462 if (SimplifyDemandedInstructionBits(CI)) 463 return &CI; 464 465 Value *Src = CI.getOperand(0); 466 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 467 468 // Attempt to truncate the entire input expression tree to the destination 469 // type. Only do this if the dest type is a simple type, don't convert the 470 // expression tree to something weird like i93 unless the source is also 471 // strange. 472 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 473 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 474 475 // If this cast is a truncate, evaluting in a different type always 476 // eliminates the cast, so it is always a win. 477 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 478 " to avoid cast: " << CI << '\n'); 479 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 480 assert(Res->getType() == DestTy); 481 return replaceInstUsesWith(CI, Res); 482 } 483 484 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 485 if (DestTy->getScalarSizeInBits() == 1) { 486 Constant *One = ConstantInt::get(SrcTy, 1); 487 Src = Builder->CreateAnd(Src, One); 488 Value *Zero = Constant::getNullValue(Src->getType()); 489 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 490 } 491 492 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 493 Value *A = nullptr; ConstantInt *Cst = nullptr; 494 if (Src->hasOneUse() && 495 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 496 // We have three types to worry about here, the type of A, the source of 497 // the truncate (MidSize), and the destination of the truncate. We know that 498 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 499 // between ASize and ResultSize. 500 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 501 502 // If the shift amount is larger than the size of A, then the result is 503 // known to be zero because all the input bits got shifted out. 504 if (Cst->getZExtValue() >= ASize) 505 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 506 507 // Since we're doing an lshr and a zero extend, and know that the shift 508 // amount is smaller than ASize, it is always safe to do the shift in A's 509 // type, then zero extend or truncate to the result. 510 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 511 Shift->takeName(Src); 512 return CastInst::CreateIntegerCast(Shift, DestTy, false); 513 } 514 515 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 516 // conversion. 517 // It works because bits coming from sign extension have the same value as 518 // the sign bit of the original value; performing ashr instead of lshr 519 // generates bits of the same value as the sign bit. 520 if (Src->hasOneUse() && 521 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 522 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 523 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 524 // This optimization can be only performed when zero bits generated by 525 // the original lshr aren't pulled into the value after truncation, so we 526 // can only shift by values smaller than the size of destination type (in 527 // bits). 528 if (Cst->getValue().ult(ASize)) { 529 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 530 Shift->takeName(Src); 531 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 532 } 533 } 534 535 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 536 ShouldChangeType(SrcTy, DestTy)) { 537 538 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the 539 // dest type is native. 540 if (match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 541 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 542 return BinaryOperator::CreateAnd(NewTrunc, 543 ConstantExpr::getTrunc(Cst, DestTy)); 544 } 545 546 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 547 // dest type is native and cst < dest size. 548 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 549 !match(A, m_Shr(m_Value(), m_Constant()))) { 550 // Skip shifts of shift by constants. It undoes a combine in 551 // FoldShiftByConstant and is the extend in reg pattern. 552 const unsigned DestSize = DestTy->getScalarSizeInBits(); 553 if (Cst->getValue().ult(DestSize)) { 554 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 555 556 return BinaryOperator::Create( 557 Instruction::Shl, NewTrunc, 558 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 559 } 560 } 561 } 562 563 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 564 return I; 565 566 return nullptr; 567 } 568 569 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 570 bool DoTransform) { 571 // If we are just checking for a icmp eq of a single bit and zext'ing it 572 // to an integer, then shift the bit to the appropriate place and then 573 // cast to integer to avoid the comparison. 574 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 575 const APInt &Op1CV = Op1C->getValue(); 576 577 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 578 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 579 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 580 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 581 if (!DoTransform) return ICI; 582 583 Value *In = ICI->getOperand(0); 584 Value *Sh = ConstantInt::get(In->getType(), 585 In->getType()->getScalarSizeInBits() - 1); 586 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 587 if (In->getType() != CI.getType()) 588 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 589 590 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 591 Constant *One = ConstantInt::get(In->getType(), 1); 592 In = Builder->CreateXor(In, One, In->getName() + ".not"); 593 } 594 595 return replaceInstUsesWith(CI, In); 596 } 597 598 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 599 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 600 // zext (X == 1) to i32 --> X iff X has only the low bit set. 601 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 602 // zext (X != 0) to i32 --> X iff X has only the low bit set. 603 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 604 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 605 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 606 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 607 // This only works for EQ and NE 608 ICI->isEquality()) { 609 // If Op1C some other power of two, convert: 610 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 611 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 612 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 613 614 APInt KnownZeroMask(~KnownZero); 615 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 616 if (!DoTransform) return ICI; 617 618 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 619 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 620 // (X&4) == 2 --> false 621 // (X&4) != 2 --> true 622 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 623 isNE); 624 Res = ConstantExpr::getZExt(Res, CI.getType()); 625 return replaceInstUsesWith(CI, Res); 626 } 627 628 uint32_t ShAmt = KnownZeroMask.logBase2(); 629 Value *In = ICI->getOperand(0); 630 if (ShAmt) { 631 // Perform a logical shr by shiftamt. 632 // Insert the shift to put the result in the low bit. 633 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 634 In->getName() + ".lobit"); 635 } 636 637 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 638 Constant *One = ConstantInt::get(In->getType(), 1); 639 In = Builder->CreateXor(In, One); 640 } 641 642 if (CI.getType() == In->getType()) 643 return replaceInstUsesWith(CI, In); 644 645 Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false); 646 return replaceInstUsesWith(CI, IntCast); 647 } 648 } 649 } 650 651 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 652 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 653 // may lead to additional simplifications. 654 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 655 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 656 uint32_t BitWidth = ITy->getBitWidth(); 657 Value *LHS = ICI->getOperand(0); 658 Value *RHS = ICI->getOperand(1); 659 660 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 661 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 662 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 663 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 664 665 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 666 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 667 APInt UnknownBit = ~KnownBits; 668 if (UnknownBit.countPopulation() == 1) { 669 if (!DoTransform) return ICI; 670 671 Value *Result = Builder->CreateXor(LHS, RHS); 672 673 // Mask off any bits that are set and won't be shifted away. 674 if (KnownOneLHS.uge(UnknownBit)) 675 Result = Builder->CreateAnd(Result, 676 ConstantInt::get(ITy, UnknownBit)); 677 678 // Shift the bit we're testing down to the lsb. 679 Result = Builder->CreateLShr( 680 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 681 682 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 683 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 684 Result->takeName(ICI); 685 return replaceInstUsesWith(CI, Result); 686 } 687 } 688 } 689 } 690 691 return nullptr; 692 } 693 694 /// Determine if the specified value can be computed in the specified wider type 695 /// and produce the same low bits. If not, return false. 696 /// 697 /// If this function returns true, it can also return a non-zero number of bits 698 /// (in BitsToClear) which indicates that the value it computes is correct for 699 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 700 /// out. For example, to promote something like: 701 /// 702 /// %B = trunc i64 %A to i32 703 /// %C = lshr i32 %B, 8 704 /// %E = zext i32 %C to i64 705 /// 706 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 707 /// set to 8 to indicate that the promoted value needs to have bits 24-31 708 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 709 /// clear the top bits anyway, doing this has no extra cost. 710 /// 711 /// This function works on both vectors and scalars. 712 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 713 InstCombiner &IC, Instruction *CxtI) { 714 BitsToClear = 0; 715 if (isa<Constant>(V)) 716 return true; 717 718 Instruction *I = dyn_cast<Instruction>(V); 719 if (!I) return false; 720 721 // If the input is a truncate from the destination type, we can trivially 722 // eliminate it. 723 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 724 return true; 725 726 // We can't extend or shrink something that has multiple uses: doing so would 727 // require duplicating the instruction in general, which isn't profitable. 728 if (!I->hasOneUse()) return false; 729 730 unsigned Opc = I->getOpcode(), Tmp; 731 switch (Opc) { 732 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 733 case Instruction::SExt: // zext(sext(x)) -> sext(x). 734 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 735 return true; 736 case Instruction::And: 737 case Instruction::Or: 738 case Instruction::Xor: 739 case Instruction::Add: 740 case Instruction::Sub: 741 case Instruction::Mul: 742 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 743 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 744 return false; 745 // These can all be promoted if neither operand has 'bits to clear'. 746 if (BitsToClear == 0 && Tmp == 0) 747 return true; 748 749 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 750 // other side, BitsToClear is ok. 751 if (Tmp == 0 && 752 (Opc == Instruction::And || Opc == Instruction::Or || 753 Opc == Instruction::Xor)) { 754 // We use MaskedValueIsZero here for generality, but the case we care 755 // about the most is constant RHS. 756 unsigned VSize = V->getType()->getScalarSizeInBits(); 757 if (IC.MaskedValueIsZero(I->getOperand(1), 758 APInt::getHighBitsSet(VSize, BitsToClear), 759 0, CxtI)) 760 return true; 761 } 762 763 // Otherwise, we don't know how to analyze this BitsToClear case yet. 764 return false; 765 766 case Instruction::Shl: 767 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 768 // upper bits we can reduce BitsToClear by the shift amount. 769 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 770 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 771 return false; 772 uint64_t ShiftAmt = Amt->getZExtValue(); 773 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 774 return true; 775 } 776 return false; 777 case Instruction::LShr: 778 // We can promote lshr(x, cst) if we can promote x. This requires the 779 // ultimate 'and' to clear out the high zero bits we're clearing out though. 780 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 781 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 782 return false; 783 BitsToClear += Amt->getZExtValue(); 784 if (BitsToClear > V->getType()->getScalarSizeInBits()) 785 BitsToClear = V->getType()->getScalarSizeInBits(); 786 return true; 787 } 788 // Cannot promote variable LSHR. 789 return false; 790 case Instruction::Select: 791 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 792 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 793 // TODO: If important, we could handle the case when the BitsToClear are 794 // known zero in the disagreeing side. 795 Tmp != BitsToClear) 796 return false; 797 return true; 798 799 case Instruction::PHI: { 800 // We can change a phi if we can change all operands. Note that we never 801 // get into trouble with cyclic PHIs here because we only consider 802 // instructions with a single use. 803 PHINode *PN = cast<PHINode>(I); 804 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 805 return false; 806 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 807 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 808 // TODO: If important, we could handle the case when the BitsToClear 809 // are known zero in the disagreeing input. 810 Tmp != BitsToClear) 811 return false; 812 return true; 813 } 814 default: 815 // TODO: Can handle more cases here. 816 return false; 817 } 818 } 819 820 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 821 // If this zero extend is only used by a truncate, let the truncate be 822 // eliminated before we try to optimize this zext. 823 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 824 return nullptr; 825 826 // If one of the common conversion will work, do it. 827 if (Instruction *Result = commonCastTransforms(CI)) 828 return Result; 829 830 // See if we can simplify any instructions used by the input whose sole 831 // purpose is to compute bits we don't care about. 832 if (SimplifyDemandedInstructionBits(CI)) 833 return &CI; 834 835 Value *Src = CI.getOperand(0); 836 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 837 838 // Attempt to extend the entire input expression tree to the destination 839 // type. Only do this if the dest type is a simple type, don't convert the 840 // expression tree to something weird like i93 unless the source is also 841 // strange. 842 unsigned BitsToClear; 843 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 844 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 845 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 846 "Unreasonable BitsToClear"); 847 848 // Okay, we can transform this! Insert the new expression now. 849 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 850 " to avoid zero extend: " << CI << '\n'); 851 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 852 assert(Res->getType() == DestTy); 853 854 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 855 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 856 857 // If the high bits are already filled with zeros, just replace this 858 // cast with the result. 859 if (MaskedValueIsZero(Res, 860 APInt::getHighBitsSet(DestBitSize, 861 DestBitSize-SrcBitsKept), 862 0, &CI)) 863 return replaceInstUsesWith(CI, Res); 864 865 // We need to emit an AND to clear the high bits. 866 Constant *C = ConstantInt::get(Res->getType(), 867 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 868 return BinaryOperator::CreateAnd(Res, C); 869 } 870 871 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 872 // types and if the sizes are just right we can convert this into a logical 873 // 'and' which will be much cheaper than the pair of casts. 874 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 875 // TODO: Subsume this into EvaluateInDifferentType. 876 877 // Get the sizes of the types involved. We know that the intermediate type 878 // will be smaller than A or C, but don't know the relation between A and C. 879 Value *A = CSrc->getOperand(0); 880 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 881 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 882 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 883 // If we're actually extending zero bits, then if 884 // SrcSize < DstSize: zext(a & mask) 885 // SrcSize == DstSize: a & mask 886 // SrcSize > DstSize: trunc(a) & mask 887 if (SrcSize < DstSize) { 888 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 889 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 890 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 891 return new ZExtInst(And, CI.getType()); 892 } 893 894 if (SrcSize == DstSize) { 895 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 896 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 897 AndValue)); 898 } 899 if (SrcSize > DstSize) { 900 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 901 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 902 return BinaryOperator::CreateAnd(Trunc, 903 ConstantInt::get(Trunc->getType(), 904 AndValue)); 905 } 906 } 907 908 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 909 return transformZExtICmp(ICI, CI); 910 911 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 912 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 913 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 914 // of the (zext icmp) can be eliminated. If so, immediately perform the 915 // according elimination. 916 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 917 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 918 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 919 (transformZExtICmp(LHS, CI, false) || 920 transformZExtICmp(RHS, CI, false))) { 921 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 922 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 923 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 924 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 925 926 // Perform the elimination. 927 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 928 transformZExtICmp(LHS, *LZExt); 929 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 930 transformZExtICmp(RHS, *RZExt); 931 932 return Or; 933 } 934 } 935 936 // zext(trunc(X) & C) -> (X & zext(C)). 937 Constant *C; 938 Value *X; 939 if (SrcI && 940 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 941 X->getType() == CI.getType()) 942 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 943 944 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 945 Value *And; 946 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 947 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 948 X->getType() == CI.getType()) { 949 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 950 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 951 } 952 953 return nullptr; 954 } 955 956 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 957 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 958 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 959 ICmpInst::Predicate Pred = ICI->getPredicate(); 960 961 // Don't bother if Op1 isn't of vector or integer type. 962 if (!Op1->getType()->isIntOrIntVectorTy()) 963 return nullptr; 964 965 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 966 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 967 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 968 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 969 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 970 971 Value *Sh = ConstantInt::get(Op0->getType(), 972 Op0->getType()->getScalarSizeInBits()-1); 973 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 974 if (In->getType() != CI.getType()) 975 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 976 977 if (Pred == ICmpInst::ICMP_SGT) 978 In = Builder->CreateNot(In, In->getName()+".not"); 979 return replaceInstUsesWith(CI, In); 980 } 981 } 982 983 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 984 // If we know that only one bit of the LHS of the icmp can be set and we 985 // have an equality comparison with zero or a power of 2, we can transform 986 // the icmp and sext into bitwise/integer operations. 987 if (ICI->hasOneUse() && 988 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 989 unsigned BitWidth = Op1C->getType()->getBitWidth(); 990 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 991 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 992 993 APInt KnownZeroMask(~KnownZero); 994 if (KnownZeroMask.isPowerOf2()) { 995 Value *In = ICI->getOperand(0); 996 997 // If the icmp tests for a known zero bit we can constant fold it. 998 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 999 Value *V = Pred == ICmpInst::ICMP_NE ? 1000 ConstantInt::getAllOnesValue(CI.getType()) : 1001 ConstantInt::getNullValue(CI.getType()); 1002 return replaceInstUsesWith(CI, V); 1003 } 1004 1005 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1006 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1007 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1008 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1009 // Perform a right shift to place the desired bit in the LSB. 1010 if (ShiftAmt) 1011 In = Builder->CreateLShr(In, 1012 ConstantInt::get(In->getType(), ShiftAmt)); 1013 1014 // At this point "In" is either 1 or 0. Subtract 1 to turn 1015 // {1, 0} -> {0, -1}. 1016 In = Builder->CreateAdd(In, 1017 ConstantInt::getAllOnesValue(In->getType()), 1018 "sext"); 1019 } else { 1020 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1021 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1022 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1023 // Perform a left shift to place the desired bit in the MSB. 1024 if (ShiftAmt) 1025 In = Builder->CreateShl(In, 1026 ConstantInt::get(In->getType(), ShiftAmt)); 1027 1028 // Distribute the bit over the whole bit width. 1029 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1030 BitWidth - 1), "sext"); 1031 } 1032 1033 if (CI.getType() == In->getType()) 1034 return replaceInstUsesWith(CI, In); 1035 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1036 } 1037 } 1038 } 1039 1040 return nullptr; 1041 } 1042 1043 /// Return true if we can take the specified value and return it as type Ty 1044 /// without inserting any new casts and without changing the value of the common 1045 /// low bits. This is used by code that tries to promote integer operations to 1046 /// a wider types will allow us to eliminate the extension. 1047 /// 1048 /// This function works on both vectors and scalars. 1049 /// 1050 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1051 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1052 "Can't sign extend type to a smaller type"); 1053 // If this is a constant, it can be trivially promoted. 1054 if (isa<Constant>(V)) 1055 return true; 1056 1057 Instruction *I = dyn_cast<Instruction>(V); 1058 if (!I) return false; 1059 1060 // If this is a truncate from the dest type, we can trivially eliminate it. 1061 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1062 return true; 1063 1064 // We can't extend or shrink something that has multiple uses: doing so would 1065 // require duplicating the instruction in general, which isn't profitable. 1066 if (!I->hasOneUse()) return false; 1067 1068 switch (I->getOpcode()) { 1069 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1070 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1071 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1072 return true; 1073 case Instruction::And: 1074 case Instruction::Or: 1075 case Instruction::Xor: 1076 case Instruction::Add: 1077 case Instruction::Sub: 1078 case Instruction::Mul: 1079 // These operators can all arbitrarily be extended if their inputs can. 1080 return canEvaluateSExtd(I->getOperand(0), Ty) && 1081 canEvaluateSExtd(I->getOperand(1), Ty); 1082 1083 //case Instruction::Shl: TODO 1084 //case Instruction::LShr: TODO 1085 1086 case Instruction::Select: 1087 return canEvaluateSExtd(I->getOperand(1), Ty) && 1088 canEvaluateSExtd(I->getOperand(2), Ty); 1089 1090 case Instruction::PHI: { 1091 // We can change a phi if we can change all operands. Note that we never 1092 // get into trouble with cyclic PHIs here because we only consider 1093 // instructions with a single use. 1094 PHINode *PN = cast<PHINode>(I); 1095 for (Value *IncValue : PN->incoming_values()) 1096 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1097 return true; 1098 } 1099 default: 1100 // TODO: Can handle more cases here. 1101 break; 1102 } 1103 1104 return false; 1105 } 1106 1107 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1108 // If this sign extend is only used by a truncate, let the truncate be 1109 // eliminated before we try to optimize this sext. 1110 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1111 return nullptr; 1112 1113 if (Instruction *I = commonCastTransforms(CI)) 1114 return I; 1115 1116 // See if we can simplify any instructions used by the input whose sole 1117 // purpose is to compute bits we don't care about. 1118 if (SimplifyDemandedInstructionBits(CI)) 1119 return &CI; 1120 1121 Value *Src = CI.getOperand(0); 1122 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1123 1124 // If we know that the value being extended is positive, we can use a zext 1125 // instead. 1126 bool KnownZero, KnownOne; 1127 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1128 if (KnownZero) { 1129 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1130 return replaceInstUsesWith(CI, ZExt); 1131 } 1132 1133 // Attempt to extend the entire input expression tree to the destination 1134 // type. Only do this if the dest type is a simple type, don't convert the 1135 // expression tree to something weird like i93 unless the source is also 1136 // strange. 1137 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1138 canEvaluateSExtd(Src, DestTy)) { 1139 // Okay, we can transform this! Insert the new expression now. 1140 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1141 " to avoid sign extend: " << CI << '\n'); 1142 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1143 assert(Res->getType() == DestTy); 1144 1145 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1146 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1147 1148 // If the high bits are already filled with sign bit, just replace this 1149 // cast with the result. 1150 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1151 return replaceInstUsesWith(CI, Res); 1152 1153 // We need to emit a shl + ashr to do the sign extend. 1154 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1155 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1156 ShAmt); 1157 } 1158 1159 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1160 // into shifts. 1161 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1162 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1163 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1164 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1165 1166 // We need to emit a shl + ashr to do the sign extend. 1167 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1168 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1169 return BinaryOperator::CreateAShr(Res, ShAmt); 1170 } 1171 1172 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1173 return transformSExtICmp(ICI, CI); 1174 1175 // If the input is a shl/ashr pair of a same constant, then this is a sign 1176 // extension from a smaller value. If we could trust arbitrary bitwidth 1177 // integers, we could turn this into a truncate to the smaller bit and then 1178 // use a sext for the whole extension. Since we don't, look deeper and check 1179 // for a truncate. If the source and dest are the same type, eliminate the 1180 // trunc and extend and just do shifts. For example, turn: 1181 // %a = trunc i32 %i to i8 1182 // %b = shl i8 %a, 6 1183 // %c = ashr i8 %b, 6 1184 // %d = sext i8 %c to i32 1185 // into: 1186 // %a = shl i32 %i, 30 1187 // %d = ashr i32 %a, 30 1188 Value *A = nullptr; 1189 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1190 ConstantInt *BA = nullptr, *CA = nullptr; 1191 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1192 m_ConstantInt(CA))) && 1193 BA == CA && A->getType() == CI.getType()) { 1194 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1195 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1196 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1197 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1198 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1199 return BinaryOperator::CreateAShr(A, ShAmtV); 1200 } 1201 1202 return nullptr; 1203 } 1204 1205 1206 /// Return a Constant* for the specified floating-point constant if it fits 1207 /// in the specified FP type without changing its value. 1208 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1209 bool losesInfo; 1210 APFloat F = CFP->getValueAPF(); 1211 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1212 if (!losesInfo) 1213 return ConstantFP::get(CFP->getContext(), F); 1214 return nullptr; 1215 } 1216 1217 /// If this is a floating-point extension instruction, look 1218 /// through it until we get the source value. 1219 static Value *lookThroughFPExtensions(Value *V) { 1220 if (Instruction *I = dyn_cast<Instruction>(V)) 1221 if (I->getOpcode() == Instruction::FPExt) 1222 return lookThroughFPExtensions(I->getOperand(0)); 1223 1224 // If this value is a constant, return the constant in the smallest FP type 1225 // that can accurately represent it. This allows us to turn 1226 // (float)((double)X+2.0) into x+2.0f. 1227 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1228 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1229 return V; // No constant folding of this. 1230 // See if the value can be truncated to half and then reextended. 1231 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) 1232 return V; 1233 // See if the value can be truncated to float and then reextended. 1234 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) 1235 return V; 1236 if (CFP->getType()->isDoubleTy()) 1237 return V; // Won't shrink. 1238 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) 1239 return V; 1240 // Don't try to shrink to various long double types. 1241 } 1242 1243 return V; 1244 } 1245 1246 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1247 if (Instruction *I = commonCastTransforms(CI)) 1248 return I; 1249 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1250 // simplify this expression to avoid one or more of the trunc/extend 1251 // operations if we can do so without changing the numerical results. 1252 // 1253 // The exact manner in which the widths of the operands interact to limit 1254 // what we can and cannot do safely varies from operation to operation, and 1255 // is explained below in the various case statements. 1256 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1257 if (OpI && OpI->hasOneUse()) { 1258 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1259 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1260 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1261 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1262 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1263 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1264 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1265 switch (OpI->getOpcode()) { 1266 default: break; 1267 case Instruction::FAdd: 1268 case Instruction::FSub: 1269 // For addition and subtraction, the infinitely precise result can 1270 // essentially be arbitrarily wide; proving that double rounding 1271 // will not occur because the result of OpI is exact (as we will for 1272 // FMul, for example) is hopeless. However, we *can* nonetheless 1273 // frequently know that double rounding cannot occur (or that it is 1274 // innocuous) by taking advantage of the specific structure of 1275 // infinitely-precise results that admit double rounding. 1276 // 1277 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1278 // to represent both sources, we can guarantee that the double 1279 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1280 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1281 // for proof of this fact). 1282 // 1283 // Note: Figueroa does not consider the case where DstFormat != 1284 // SrcFormat. It's possible (likely even!) that this analysis 1285 // could be tightened for those cases, but they are rare (the main 1286 // case of interest here is (float)((double)float + float)). 1287 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1288 if (LHSOrig->getType() != CI.getType()) 1289 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1290 if (RHSOrig->getType() != CI.getType()) 1291 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1292 Instruction *RI = 1293 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1294 RI->copyFastMathFlags(OpI); 1295 return RI; 1296 } 1297 break; 1298 case Instruction::FMul: 1299 // For multiplication, the infinitely precise result has at most 1300 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1301 // that such a value can be exactly represented, then no double 1302 // rounding can possibly occur; we can safely perform the operation 1303 // in the destination format if it can represent both sources. 1304 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1305 if (LHSOrig->getType() != CI.getType()) 1306 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1307 if (RHSOrig->getType() != CI.getType()) 1308 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1309 Instruction *RI = 1310 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1311 RI->copyFastMathFlags(OpI); 1312 return RI; 1313 } 1314 break; 1315 case Instruction::FDiv: 1316 // For division, we use again use the bound from Figueroa's 1317 // dissertation. I am entirely certain that this bound can be 1318 // tightened in the unbalanced operand case by an analysis based on 1319 // the diophantine rational approximation bound, but the well-known 1320 // condition used here is a good conservative first pass. 1321 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1322 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1323 if (LHSOrig->getType() != CI.getType()) 1324 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1325 if (RHSOrig->getType() != CI.getType()) 1326 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1327 Instruction *RI = 1328 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1329 RI->copyFastMathFlags(OpI); 1330 return RI; 1331 } 1332 break; 1333 case Instruction::FRem: 1334 // Remainder is straightforward. Remainder is always exact, so the 1335 // type of OpI doesn't enter into things at all. We simply evaluate 1336 // in whichever source type is larger, then convert to the 1337 // destination type. 1338 if (SrcWidth == OpWidth) 1339 break; 1340 if (LHSWidth < SrcWidth) 1341 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1342 else if (RHSWidth <= SrcWidth) 1343 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1344 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1345 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1346 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1347 RI->copyFastMathFlags(OpI); 1348 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1349 } 1350 } 1351 1352 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1353 if (BinaryOperator::isFNeg(OpI)) { 1354 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1355 CI.getType()); 1356 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1357 RI->copyFastMathFlags(OpI); 1358 return RI; 1359 } 1360 } 1361 1362 // (fptrunc (select cond, R1, Cst)) --> 1363 // (select cond, (fptrunc R1), (fptrunc Cst)) 1364 // 1365 // - but only if this isn't part of a min/max operation, else we'll 1366 // ruin min/max canonical form which is to have the select and 1367 // compare's operands be of the same type with no casts to look through. 1368 Value *LHS, *RHS; 1369 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1370 if (SI && 1371 (isa<ConstantFP>(SI->getOperand(1)) || 1372 isa<ConstantFP>(SI->getOperand(2))) && 1373 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1374 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1375 CI.getType()); 1376 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1377 CI.getType()); 1378 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1379 } 1380 1381 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1382 if (II) { 1383 switch (II->getIntrinsicID()) { 1384 default: break; 1385 case Intrinsic::fabs: { 1386 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1387 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1388 CI.getType()); 1389 Type *IntrinsicType[] = { CI.getType() }; 1390 Function *Overload = Intrinsic::getDeclaration( 1391 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1392 1393 SmallVector<OperandBundleDef, 1> OpBundles; 1394 II->getOperandBundlesAsDefs(OpBundles); 1395 1396 Value *Args[] = { InnerTrunc }; 1397 return CallInst::Create(Overload, Args, OpBundles, II->getName()); 1398 } 1399 } 1400 } 1401 1402 return nullptr; 1403 } 1404 1405 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1406 return commonCastTransforms(CI); 1407 } 1408 1409 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1410 // This is safe if the intermediate type has enough bits in its mantissa to 1411 // accurately represent all values of X. For example, this won't work with 1412 // i64 -> float -> i64. 1413 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1414 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1415 return nullptr; 1416 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1417 1418 Value *SrcI = OpI->getOperand(0); 1419 Type *FITy = FI.getType(); 1420 Type *OpITy = OpI->getType(); 1421 Type *SrcTy = SrcI->getType(); 1422 bool IsInputSigned = isa<SIToFPInst>(OpI); 1423 bool IsOutputSigned = isa<FPToSIInst>(FI); 1424 1425 // We can safely assume the conversion won't overflow the output range, 1426 // because (for example) (uint8_t)18293.f is undefined behavior. 1427 1428 // Since we can assume the conversion won't overflow, our decision as to 1429 // whether the input will fit in the float should depend on the minimum 1430 // of the input range and output range. 1431 1432 // This means this is also safe for a signed input and unsigned output, since 1433 // a negative input would lead to undefined behavior. 1434 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1435 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1436 int ActualSize = std::min(InputSize, OutputSize); 1437 1438 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1439 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1440 if (IsInputSigned && IsOutputSigned) 1441 return new SExtInst(SrcI, FITy); 1442 return new ZExtInst(SrcI, FITy); 1443 } 1444 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1445 return new TruncInst(SrcI, FITy); 1446 if (SrcTy == FITy) 1447 return replaceInstUsesWith(FI, SrcI); 1448 return new BitCastInst(SrcI, FITy); 1449 } 1450 return nullptr; 1451 } 1452 1453 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1454 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1455 if (!OpI) 1456 return commonCastTransforms(FI); 1457 1458 if (Instruction *I = FoldItoFPtoI(FI)) 1459 return I; 1460 1461 return commonCastTransforms(FI); 1462 } 1463 1464 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1465 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1466 if (!OpI) 1467 return commonCastTransforms(FI); 1468 1469 if (Instruction *I = FoldItoFPtoI(FI)) 1470 return I; 1471 1472 return commonCastTransforms(FI); 1473 } 1474 1475 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1476 return commonCastTransforms(CI); 1477 } 1478 1479 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1480 return commonCastTransforms(CI); 1481 } 1482 1483 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1484 // If the source integer type is not the intptr_t type for this target, do a 1485 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1486 // cast to be exposed to other transforms. 1487 unsigned AS = CI.getAddressSpace(); 1488 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1489 DL.getPointerSizeInBits(AS)) { 1490 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1491 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1492 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1493 1494 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1495 return new IntToPtrInst(P, CI.getType()); 1496 } 1497 1498 if (Instruction *I = commonCastTransforms(CI)) 1499 return I; 1500 1501 return nullptr; 1502 } 1503 1504 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1505 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1506 Value *Src = CI.getOperand(0); 1507 1508 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1509 // If casting the result of a getelementptr instruction with no offset, turn 1510 // this into a cast of the original pointer! 1511 if (GEP->hasAllZeroIndices() && 1512 // If CI is an addrspacecast and GEP changes the poiner type, merging 1513 // GEP into CI would undo canonicalizing addrspacecast with different 1514 // pointer types, causing infinite loops. 1515 (!isa<AddrSpaceCastInst>(CI) || 1516 GEP->getType() == GEP->getPointerOperand()->getType())) { 1517 // Changing the cast operand is usually not a good idea but it is safe 1518 // here because the pointer operand is being replaced with another 1519 // pointer operand so the opcode doesn't need to change. 1520 Worklist.Add(GEP); 1521 CI.setOperand(0, GEP->getOperand(0)); 1522 return &CI; 1523 } 1524 } 1525 1526 return commonCastTransforms(CI); 1527 } 1528 1529 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1530 // If the destination integer type is not the intptr_t type for this target, 1531 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1532 // to be exposed to other transforms. 1533 1534 Type *Ty = CI.getType(); 1535 unsigned AS = CI.getPointerAddressSpace(); 1536 1537 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1538 return commonPointerCastTransforms(CI); 1539 1540 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1541 if (Ty->isVectorTy()) // Handle vectors of pointers. 1542 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1543 1544 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1545 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1546 } 1547 1548 /// This input value (which is known to have vector type) is being zero extended 1549 /// or truncated to the specified vector type. 1550 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1551 /// 1552 /// The source and destination vector types may have different element types. 1553 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1554 InstCombiner &IC) { 1555 // We can only do this optimization if the output is a multiple of the input 1556 // element size, or the input is a multiple of the output element size. 1557 // Convert the input type to have the same element type as the output. 1558 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1559 1560 if (SrcTy->getElementType() != DestTy->getElementType()) { 1561 // The input types don't need to be identical, but for now they must be the 1562 // same size. There is no specific reason we couldn't handle things like 1563 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1564 // there yet. 1565 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1566 DestTy->getElementType()->getPrimitiveSizeInBits()) 1567 return nullptr; 1568 1569 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1570 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1571 } 1572 1573 // Now that the element types match, get the shuffle mask and RHS of the 1574 // shuffle to use, which depends on whether we're increasing or decreasing the 1575 // size of the input. 1576 SmallVector<uint32_t, 16> ShuffleMask; 1577 Value *V2; 1578 1579 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1580 // If we're shrinking the number of elements, just shuffle in the low 1581 // elements from the input and use undef as the second shuffle input. 1582 V2 = UndefValue::get(SrcTy); 1583 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1584 ShuffleMask.push_back(i); 1585 1586 } else { 1587 // If we're increasing the number of elements, shuffle in all of the 1588 // elements from InVal and fill the rest of the result elements with zeros 1589 // from a constant zero. 1590 V2 = Constant::getNullValue(SrcTy); 1591 unsigned SrcElts = SrcTy->getNumElements(); 1592 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1593 ShuffleMask.push_back(i); 1594 1595 // The excess elements reference the first element of the zero input. 1596 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1597 ShuffleMask.push_back(SrcElts); 1598 } 1599 1600 return new ShuffleVectorInst(InVal, V2, 1601 ConstantDataVector::get(V2->getContext(), 1602 ShuffleMask)); 1603 } 1604 1605 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1606 return Value % Ty->getPrimitiveSizeInBits() == 0; 1607 } 1608 1609 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1610 return Value / Ty->getPrimitiveSizeInBits(); 1611 } 1612 1613 /// V is a value which is inserted into a vector of VecEltTy. 1614 /// Look through the value to see if we can decompose it into 1615 /// insertions into the vector. See the example in the comment for 1616 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1617 /// The type of V is always a non-zero multiple of VecEltTy's size. 1618 /// Shift is the number of bits between the lsb of V and the lsb of 1619 /// the vector. 1620 /// 1621 /// This returns false if the pattern can't be matched or true if it can, 1622 /// filling in Elements with the elements found here. 1623 static bool collectInsertionElements(Value *V, unsigned Shift, 1624 SmallVectorImpl<Value *> &Elements, 1625 Type *VecEltTy, bool isBigEndian) { 1626 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1627 "Shift should be a multiple of the element type size"); 1628 1629 // Undef values never contribute useful bits to the result. 1630 if (isa<UndefValue>(V)) return true; 1631 1632 // If we got down to a value of the right type, we win, try inserting into the 1633 // right element. 1634 if (V->getType() == VecEltTy) { 1635 // Inserting null doesn't actually insert any elements. 1636 if (Constant *C = dyn_cast<Constant>(V)) 1637 if (C->isNullValue()) 1638 return true; 1639 1640 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1641 if (isBigEndian) 1642 ElementIndex = Elements.size() - ElementIndex - 1; 1643 1644 // Fail if multiple elements are inserted into this slot. 1645 if (Elements[ElementIndex]) 1646 return false; 1647 1648 Elements[ElementIndex] = V; 1649 return true; 1650 } 1651 1652 if (Constant *C = dyn_cast<Constant>(V)) { 1653 // Figure out the # elements this provides, and bitcast it or slice it up 1654 // as required. 1655 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1656 VecEltTy); 1657 // If the constant is the size of a vector element, we just need to bitcast 1658 // it to the right type so it gets properly inserted. 1659 if (NumElts == 1) 1660 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1661 Shift, Elements, VecEltTy, isBigEndian); 1662 1663 // Okay, this is a constant that covers multiple elements. Slice it up into 1664 // pieces and insert each element-sized piece into the vector. 1665 if (!isa<IntegerType>(C->getType())) 1666 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1667 C->getType()->getPrimitiveSizeInBits())); 1668 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1669 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1670 1671 for (unsigned i = 0; i != NumElts; ++i) { 1672 unsigned ShiftI = Shift+i*ElementSize; 1673 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1674 ShiftI)); 1675 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1676 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1677 isBigEndian)) 1678 return false; 1679 } 1680 return true; 1681 } 1682 1683 if (!V->hasOneUse()) return false; 1684 1685 Instruction *I = dyn_cast<Instruction>(V); 1686 if (!I) return false; 1687 switch (I->getOpcode()) { 1688 default: return false; // Unhandled case. 1689 case Instruction::BitCast: 1690 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1691 isBigEndian); 1692 case Instruction::ZExt: 1693 if (!isMultipleOfTypeSize( 1694 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1695 VecEltTy)) 1696 return false; 1697 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1698 isBigEndian); 1699 case Instruction::Or: 1700 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1701 isBigEndian) && 1702 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1703 isBigEndian); 1704 case Instruction::Shl: { 1705 // Must be shifting by a constant that is a multiple of the element size. 1706 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1707 if (!CI) return false; 1708 Shift += CI->getZExtValue(); 1709 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1710 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1711 isBigEndian); 1712 } 1713 1714 } 1715 } 1716 1717 1718 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1719 /// assemble the elements of the vector manually. 1720 /// Try to rip the code out and replace it with insertelements. This is to 1721 /// optimize code like this: 1722 /// 1723 /// %tmp37 = bitcast float %inc to i32 1724 /// %tmp38 = zext i32 %tmp37 to i64 1725 /// %tmp31 = bitcast float %inc5 to i32 1726 /// %tmp32 = zext i32 %tmp31 to i64 1727 /// %tmp33 = shl i64 %tmp32, 32 1728 /// %ins35 = or i64 %tmp33, %tmp38 1729 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1730 /// 1731 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1732 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1733 InstCombiner &IC) { 1734 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1735 Value *IntInput = CI.getOperand(0); 1736 1737 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1738 if (!collectInsertionElements(IntInput, 0, Elements, 1739 DestVecTy->getElementType(), 1740 IC.getDataLayout().isBigEndian())) 1741 return nullptr; 1742 1743 // If we succeeded, we know that all of the element are specified by Elements 1744 // or are zero if Elements has a null entry. Recast this as a set of 1745 // insertions. 1746 Value *Result = Constant::getNullValue(CI.getType()); 1747 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1748 if (!Elements[i]) continue; // Unset element. 1749 1750 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1751 IC.Builder->getInt32(i)); 1752 } 1753 1754 return Result; 1755 } 1756 1757 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1758 /// vector followed by extract element. The backend tends to handle bitcasts of 1759 /// vectors better than bitcasts of scalars because vector registers are 1760 /// usually not type-specific like scalar integer or scalar floating-point. 1761 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1762 InstCombiner &IC, 1763 const DataLayout &DL) { 1764 // TODO: Create and use a pattern matcher for ExtractElementInst. 1765 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1766 if (!ExtElt || !ExtElt->hasOneUse()) 1767 return nullptr; 1768 1769 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1770 // type to extract from. 1771 Type *DestType = BitCast.getType(); 1772 if (!VectorType::isValidElementType(DestType)) 1773 return nullptr; 1774 1775 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1776 auto *NewVecType = VectorType::get(DestType, NumElts); 1777 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1778 NewVecType, "bc"); 1779 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1780 } 1781 1782 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1783 // If the operands are integer typed then apply the integer transforms, 1784 // otherwise just apply the common ones. 1785 Value *Src = CI.getOperand(0); 1786 Type *SrcTy = Src->getType(); 1787 Type *DestTy = CI.getType(); 1788 1789 // Get rid of casts from one type to the same type. These are useless and can 1790 // be replaced by the operand. 1791 if (DestTy == Src->getType()) 1792 return replaceInstUsesWith(CI, Src); 1793 1794 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1795 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1796 Type *DstElTy = DstPTy->getElementType(); 1797 Type *SrcElTy = SrcPTy->getElementType(); 1798 1799 // If we are casting a alloca to a pointer to a type of the same 1800 // size, rewrite the allocation instruction to allocate the "right" type. 1801 // There is no need to modify malloc calls because it is their bitcast that 1802 // needs to be cleaned up. 1803 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1804 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1805 return V; 1806 1807 // When the type pointed to is not sized the cast cannot be 1808 // turned into a gep. 1809 Type *PointeeType = 1810 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 1811 if (!PointeeType->isSized()) 1812 return nullptr; 1813 1814 // If the source and destination are pointers, and this cast is equivalent 1815 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1816 // This can enhance SROA and other transforms that want type-safe pointers. 1817 unsigned NumZeros = 0; 1818 while (SrcElTy != DstElTy && 1819 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1820 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1821 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1822 ++NumZeros; 1823 } 1824 1825 // If we found a path from the src to dest, create the getelementptr now. 1826 if (SrcElTy == DstElTy) { 1827 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1828 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1829 } 1830 } 1831 1832 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1833 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1834 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1835 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1836 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1837 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1838 } 1839 1840 if (isa<IntegerType>(SrcTy)) { 1841 // If this is a cast from an integer to vector, check to see if the input 1842 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1843 // the casts with a shuffle and (potentially) a bitcast. 1844 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1845 CastInst *SrcCast = cast<CastInst>(Src); 1846 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1847 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1848 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 1849 cast<VectorType>(DestTy), *this)) 1850 return I; 1851 } 1852 1853 // If the input is an 'or' instruction, we may be doing shifts and ors to 1854 // assemble the elements of the vector manually. Try to rip the code out 1855 // and replace it with insertelements. 1856 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 1857 return replaceInstUsesWith(CI, V); 1858 } 1859 } 1860 1861 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1862 if (SrcVTy->getNumElements() == 1) { 1863 // If our destination is not a vector, then make this a straight 1864 // scalar-scalar cast. 1865 if (!DestTy->isVectorTy()) { 1866 Value *Elem = 1867 Builder->CreateExtractElement(Src, 1868 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1869 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1870 } 1871 1872 // Otherwise, see if our source is an insert. If so, then use the scalar 1873 // component directly. 1874 if (InsertElementInst *IEI = 1875 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1876 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1877 DestTy); 1878 } 1879 } 1880 1881 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1882 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1883 // a bitcast to a vector with the same # elts. 1884 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1885 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 1886 SVI->getType()->getNumElements() == 1887 SVI->getOperand(0)->getType()->getVectorNumElements()) { 1888 BitCastInst *Tmp; 1889 // If either of the operands is a cast from CI.getType(), then 1890 // evaluating the shuffle in the casted destination's type will allow 1891 // us to eliminate at least one cast. 1892 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1893 Tmp->getOperand(0)->getType() == DestTy) || 1894 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1895 Tmp->getOperand(0)->getType() == DestTy)) { 1896 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1897 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1898 // Return a new shuffle vector. Use the same element ID's, as we 1899 // know the vector types match #elts. 1900 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1901 } 1902 } 1903 } 1904 1905 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 1906 return I; 1907 1908 if (SrcTy->isPointerTy()) 1909 return commonPointerCastTransforms(CI); 1910 return commonCastTransforms(CI); 1911 } 1912 1913 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 1914 // If the destination pointer element type is not the same as the source's 1915 // first do a bitcast to the destination type, and then the addrspacecast. 1916 // This allows the cast to be exposed to other transforms. 1917 Value *Src = CI.getOperand(0); 1918 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 1919 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 1920 1921 Type *DestElemTy = DestTy->getElementType(); 1922 if (SrcTy->getElementType() != DestElemTy) { 1923 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 1924 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 1925 // Handle vectors of pointers. 1926 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1927 } 1928 1929 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 1930 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 1931 } 1932 1933 return commonPointerCastTransforms(CI); 1934 } 1935