1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/PassSupport.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Errc.h"
92 #include "llvm/Support/Error.h"
93 #include "llvm/Support/FileSystem.h"
94 #include "llvm/Support/GlobPattern.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Transforms/IPO.h"
97 #include "llvm/Transforms/IPO/FunctionAttrs.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
104 
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
107 
108 #define DEBUG_TYPE "wholeprogramdevirt"
109 
110 static cl::opt<PassSummaryAction> ClSummaryAction(
111     "wholeprogramdevirt-summary-action",
112     cl::desc("What to do with the summary when running this pass"),
113     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
114                clEnumValN(PassSummaryAction::Import, "import",
115                           "Import typeid resolutions from summary and globals"),
116                clEnumValN(PassSummaryAction::Export, "export",
117                           "Export typeid resolutions to summary and globals")),
118     cl::Hidden);
119 
120 static cl::opt<std::string> ClReadSummary(
121     "wholeprogramdevirt-read-summary",
122     cl::desc(
123         "Read summary from given bitcode or YAML file before running pass"),
124     cl::Hidden);
125 
126 static cl::opt<std::string> ClWriteSummary(
127     "wholeprogramdevirt-write-summary",
128     cl::desc("Write summary to given bitcode or YAML file after running pass. "
129              "Output file format is deduced from extension: *.bc means writing "
130              "bitcode, otherwise YAML"),
131     cl::Hidden);
132 
133 static cl::opt<unsigned>
134     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
135                 cl::init(10), cl::ZeroOrMore,
136                 cl::desc("Maximum number of call targets per "
137                          "call site to enable branch funnels"));
138 
139 static cl::opt<bool>
140     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
141                        cl::init(false), cl::ZeroOrMore,
142                        cl::desc("Print index-based devirtualization messages"));
143 
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
148 cl::opt<bool>
149     WholeProgramVisibility("whole-program-visibility", cl::init(false),
150                            cl::Hidden, cl::ZeroOrMore,
151                            cl::desc("Enable whole program visibility"));
152 
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 cl::opt<bool> DisableWholeProgramVisibility(
156     "disable-whole-program-visibility", cl::init(false), cl::Hidden,
157     cl::ZeroOrMore,
158     cl::desc("Disable whole program visibility (overrides enabling options)"));
159 
160 /// Provide way to prevent certain function from being devirtualized
161 cl::list<std::string>
162     SkipFunctionNames("wholeprogramdevirt-skip",
163                       cl::desc("Prevent function(s) from being devirtualized"),
164                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
165 
166 namespace {
167 struct PatternList {
168   std::vector<GlobPattern> Patterns;
169   template <class T> void init(const T &StringList) {
170     for (const auto &S : StringList)
171       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
172         Patterns.push_back(std::move(*Pat));
173   }
174   bool match(StringRef S) {
175     for (const GlobPattern &P : Patterns)
176       if (P.match(S))
177         return true;
178     return false;
179   }
180 };
181 } // namespace
182 
183 // Find the minimum offset that we may store a value of size Size bits at. If
184 // IsAfter is set, look for an offset before the object, otherwise look for an
185 // offset after the object.
186 uint64_t
187 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
188                                      bool IsAfter, uint64_t Size) {
189   // Find a minimum offset taking into account only vtable sizes.
190   uint64_t MinByte = 0;
191   for (const VirtualCallTarget &Target : Targets) {
192     if (IsAfter)
193       MinByte = std::max(MinByte, Target.minAfterBytes());
194     else
195       MinByte = std::max(MinByte, Target.minBeforeBytes());
196   }
197 
198   // Build a vector of arrays of bytes covering, for each target, a slice of the
199   // used region (see AccumBitVector::BytesUsed in
200   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
201   // this aligns the used regions to start at MinByte.
202   //
203   // In this example, A, B and C are vtables, # is a byte already allocated for
204   // a virtual function pointer, AAAA... (etc.) are the used regions for the
205   // vtables and Offset(X) is the value computed for the Offset variable below
206   // for X.
207   //
208   //                    Offset(A)
209   //                    |       |
210   //                            |MinByte
211   // A: ################AAAAAAAA|AAAAAAAA
212   // B: ########BBBBBBBBBBBBBBBB|BBBB
213   // C: ########################|CCCCCCCCCCCCCCCC
214   //            |   Offset(B)   |
215   //
216   // This code produces the slices of A, B and C that appear after the divider
217   // at MinByte.
218   std::vector<ArrayRef<uint8_t>> Used;
219   for (const VirtualCallTarget &Target : Targets) {
220     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
221                                        : Target.TM->Bits->Before.BytesUsed;
222     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
223                               : MinByte - Target.minBeforeBytes();
224 
225     // Disregard used regions that are smaller than Offset. These are
226     // effectively all-free regions that do not need to be checked.
227     if (VTUsed.size() > Offset)
228       Used.push_back(VTUsed.slice(Offset));
229   }
230 
231   if (Size == 1) {
232     // Find a free bit in each member of Used.
233     for (unsigned I = 0;; ++I) {
234       uint8_t BitsUsed = 0;
235       for (auto &&B : Used)
236         if (I < B.size())
237           BitsUsed |= B[I];
238       if (BitsUsed != 0xff)
239         return (MinByte + I) * 8 +
240                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
241     }
242   } else {
243     // Find a free (Size/8) byte region in each member of Used.
244     // FIXME: see if alignment helps.
245     for (unsigned I = 0;; ++I) {
246       for (auto &&B : Used) {
247         unsigned Byte = 0;
248         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
249           if (B[I + Byte])
250             goto NextI;
251           ++Byte;
252         }
253       }
254       return (MinByte + I) * 8;
255     NextI:;
256     }
257   }
258 }
259 
260 void wholeprogramdevirt::setBeforeReturnValues(
261     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
262     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
263   if (BitWidth == 1)
264     OffsetByte = -(AllocBefore / 8 + 1);
265   else
266     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
267   OffsetBit = AllocBefore % 8;
268 
269   for (VirtualCallTarget &Target : Targets) {
270     if (BitWidth == 1)
271       Target.setBeforeBit(AllocBefore);
272     else
273       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
274   }
275 }
276 
277 void wholeprogramdevirt::setAfterReturnValues(
278     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
279     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
280   if (BitWidth == 1)
281     OffsetByte = AllocAfter / 8;
282   else
283     OffsetByte = (AllocAfter + 7) / 8;
284   OffsetBit = AllocAfter % 8;
285 
286   for (VirtualCallTarget &Target : Targets) {
287     if (BitWidth == 1)
288       Target.setAfterBit(AllocAfter);
289     else
290       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
291   }
292 }
293 
294 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
295     : Fn(Fn), TM(TM),
296       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
297 
298 namespace {
299 
300 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
301 // tables, and the ByteOffset is the offset in bytes from the address point to
302 // the virtual function pointer.
303 struct VTableSlot {
304   Metadata *TypeID;
305   uint64_t ByteOffset;
306 };
307 
308 } // end anonymous namespace
309 
310 namespace llvm {
311 
312 template <> struct DenseMapInfo<VTableSlot> {
313   static VTableSlot getEmptyKey() {
314     return {DenseMapInfo<Metadata *>::getEmptyKey(),
315             DenseMapInfo<uint64_t>::getEmptyKey()};
316   }
317   static VTableSlot getTombstoneKey() {
318     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
319             DenseMapInfo<uint64_t>::getTombstoneKey()};
320   }
321   static unsigned getHashValue(const VTableSlot &I) {
322     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
323            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
324   }
325   static bool isEqual(const VTableSlot &LHS,
326                       const VTableSlot &RHS) {
327     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
328   }
329 };
330 
331 template <> struct DenseMapInfo<VTableSlotSummary> {
332   static VTableSlotSummary getEmptyKey() {
333     return {DenseMapInfo<StringRef>::getEmptyKey(),
334             DenseMapInfo<uint64_t>::getEmptyKey()};
335   }
336   static VTableSlotSummary getTombstoneKey() {
337     return {DenseMapInfo<StringRef>::getTombstoneKey(),
338             DenseMapInfo<uint64_t>::getTombstoneKey()};
339   }
340   static unsigned getHashValue(const VTableSlotSummary &I) {
341     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
342            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343   }
344   static bool isEqual(const VTableSlotSummary &LHS,
345                       const VTableSlotSummary &RHS) {
346     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347   }
348 };
349 
350 } // end namespace llvm
351 
352 namespace {
353 
354 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
355 // the indirect virtual call.
356 struct VirtualCallSite {
357   Value *VTable;
358   CallSite CS;
359 
360   // If non-null, this field points to the associated unsafe use count stored in
361   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
362   // of that field for details.
363   unsigned *NumUnsafeUses;
364 
365   void
366   emitRemark(const StringRef OptName, const StringRef TargetName,
367              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
368     Function *F = CS.getCaller();
369     DebugLoc DLoc = CS->getDebugLoc();
370     BasicBlock *Block = CS.getParent();
371 
372     using namespace ore;
373     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
374                       << NV("Optimization", OptName)
375                       << ": devirtualized a call to "
376                       << NV("FunctionName", TargetName));
377   }
378 
379   void replaceAndErase(
380       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
381       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
382       Value *New) {
383     if (RemarksEnabled)
384       emitRemark(OptName, TargetName, OREGetter);
385     CS->replaceAllUsesWith(New);
386     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
387       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
388       II->getUnwindDest()->removePredecessor(II->getParent());
389     }
390     CS->eraseFromParent();
391     // This use is no longer unsafe.
392     if (NumUnsafeUses)
393       --*NumUnsafeUses;
394   }
395 };
396 
397 // Call site information collected for a specific VTableSlot and possibly a list
398 // of constant integer arguments. The grouping by arguments is handled by the
399 // VTableSlotInfo class.
400 struct CallSiteInfo {
401   /// The set of call sites for this slot. Used during regular LTO and the
402   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
403   /// call sites that appear in the merged module itself); in each of these
404   /// cases we are directly operating on the call sites at the IR level.
405   std::vector<VirtualCallSite> CallSites;
406 
407   /// Whether all call sites represented by this CallSiteInfo, including those
408   /// in summaries, have been devirtualized. This starts off as true because a
409   /// default constructed CallSiteInfo represents no call sites.
410   bool AllCallSitesDevirted = true;
411 
412   // These fields are used during the export phase of ThinLTO and reflect
413   // information collected from function summaries.
414 
415   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
416   /// this slot.
417   bool SummaryHasTypeTestAssumeUsers = false;
418 
419   /// CFI-specific: a vector containing the list of function summaries that use
420   /// the llvm.type.checked.load intrinsic and therefore will require
421   /// resolutions for llvm.type.test in order to implement CFI checks if
422   /// devirtualization was unsuccessful. If devirtualization was successful, the
423   /// pass will clear this vector by calling markDevirt(). If at the end of the
424   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
425   /// to each of the function summaries in the vector.
426   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
427   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
428 
429   bool isExported() const {
430     return SummaryHasTypeTestAssumeUsers ||
431            !SummaryTypeCheckedLoadUsers.empty();
432   }
433 
434   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
435     SummaryTypeCheckedLoadUsers.push_back(FS);
436     AllCallSitesDevirted = false;
437   }
438 
439   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
440     SummaryTypeTestAssumeUsers.push_back(FS);
441     SummaryHasTypeTestAssumeUsers = true;
442     AllCallSitesDevirted = false;
443   }
444 
445   void markDevirt() {
446     AllCallSitesDevirted = true;
447 
448     // As explained in the comment for SummaryTypeCheckedLoadUsers.
449     SummaryTypeCheckedLoadUsers.clear();
450   }
451 };
452 
453 // Call site information collected for a specific VTableSlot.
454 struct VTableSlotInfo {
455   // The set of call sites which do not have all constant integer arguments
456   // (excluding "this").
457   CallSiteInfo CSInfo;
458 
459   // The set of call sites with all constant integer arguments (excluding
460   // "this"), grouped by argument list.
461   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
462 
463   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
464 
465 private:
466   CallSiteInfo &findCallSiteInfo(CallSite CS);
467 };
468 
469 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
470   std::vector<uint64_t> Args;
471   auto *CI = dyn_cast<IntegerType>(CS.getType());
472   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
473     return CSInfo;
474   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
475     auto *CI = dyn_cast<ConstantInt>(Arg);
476     if (!CI || CI->getBitWidth() > 64)
477       return CSInfo;
478     Args.push_back(CI->getZExtValue());
479   }
480   return ConstCSInfo[Args];
481 }
482 
483 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
484                                  unsigned *NumUnsafeUses) {
485   auto &CSI = findCallSiteInfo(CS);
486   CSI.AllCallSitesDevirted = false;
487   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
488 }
489 
490 struct DevirtModule {
491   Module &M;
492   function_ref<AAResults &(Function &)> AARGetter;
493   function_ref<DominatorTree &(Function &)> LookupDomTree;
494 
495   ModuleSummaryIndex *ExportSummary;
496   const ModuleSummaryIndex *ImportSummary;
497 
498   IntegerType *Int8Ty;
499   PointerType *Int8PtrTy;
500   IntegerType *Int32Ty;
501   IntegerType *Int64Ty;
502   IntegerType *IntPtrTy;
503 
504   bool RemarksEnabled;
505   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
506 
507   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
508 
509   // This map keeps track of the number of "unsafe" uses of a loaded function
510   // pointer. The key is the associated llvm.type.test intrinsic call generated
511   // by this pass. An unsafe use is one that calls the loaded function pointer
512   // directly. Every time we eliminate an unsafe use (for example, by
513   // devirtualizing it or by applying virtual constant propagation), we
514   // decrement the value stored in this map. If a value reaches zero, we can
515   // eliminate the type check by RAUWing the associated llvm.type.test call with
516   // true.
517   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
518   PatternList FunctionsToSkip;
519 
520   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
521                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
522                function_ref<DominatorTree &(Function &)> LookupDomTree,
523                ModuleSummaryIndex *ExportSummary,
524                const ModuleSummaryIndex *ImportSummary)
525       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
526         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
527         Int8Ty(Type::getInt8Ty(M.getContext())),
528         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
529         Int32Ty(Type::getInt32Ty(M.getContext())),
530         Int64Ty(Type::getInt64Ty(M.getContext())),
531         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
532         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
533     assert(!(ExportSummary && ImportSummary));
534     FunctionsToSkip.init(SkipFunctionNames);
535   }
536 
537   bool areRemarksEnabled();
538 
539   void scanTypeTestUsers(Function *TypeTestFunc);
540   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
541 
542   void buildTypeIdentifierMap(
543       std::vector<VTableBits> &Bits,
544       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
545   bool
546   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
547                             const std::set<TypeMemberInfo> &TypeMemberInfos,
548                             uint64_t ByteOffset);
549 
550   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
551                              bool &IsExported);
552   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
553                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
554                            VTableSlotInfo &SlotInfo,
555                            WholeProgramDevirtResolution *Res);
556 
557   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
558                               bool &IsExported);
559   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
560                             VTableSlotInfo &SlotInfo,
561                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
562 
563   bool tryEvaluateFunctionsWithArgs(
564       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
565       ArrayRef<uint64_t> Args);
566 
567   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
568                              uint64_t TheRetVal);
569   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
570                            CallSiteInfo &CSInfo,
571                            WholeProgramDevirtResolution::ByArg *Res);
572 
573   // Returns the global symbol name that is used to export information about the
574   // given vtable slot and list of arguments.
575   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
576                             StringRef Name);
577 
578   bool shouldExportConstantsAsAbsoluteSymbols();
579 
580   // This function is called during the export phase to create a symbol
581   // definition containing information about the given vtable slot and list of
582   // arguments.
583   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
584                     Constant *C);
585   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
586                       uint32_t Const, uint32_t &Storage);
587 
588   // This function is called during the import phase to create a reference to
589   // the symbol definition created during the export phase.
590   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
591                          StringRef Name);
592   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
593                            StringRef Name, IntegerType *IntTy,
594                            uint32_t Storage);
595 
596   Constant *getMemberAddr(const TypeMemberInfo *M);
597 
598   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
599                             Constant *UniqueMemberAddr);
600   bool tryUniqueRetValOpt(unsigned BitWidth,
601                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
602                           CallSiteInfo &CSInfo,
603                           WholeProgramDevirtResolution::ByArg *Res,
604                           VTableSlot Slot, ArrayRef<uint64_t> Args);
605 
606   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
607                              Constant *Byte, Constant *Bit);
608   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
609                            VTableSlotInfo &SlotInfo,
610                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
611 
612   void rebuildGlobal(VTableBits &B);
613 
614   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
615   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
616 
617   // If we were able to eliminate all unsafe uses for a type checked load,
618   // eliminate the associated type tests by replacing them with true.
619   void removeRedundantTypeTests();
620 
621   bool run();
622 
623   // Lower the module using the action and summary passed as command line
624   // arguments. For testing purposes only.
625   static bool
626   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
627                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
628                 function_ref<DominatorTree &(Function &)> LookupDomTree);
629 };
630 
631 struct DevirtIndex {
632   ModuleSummaryIndex &ExportSummary;
633   // The set in which to record GUIDs exported from their module by
634   // devirtualization, used by client to ensure they are not internalized.
635   std::set<GlobalValue::GUID> &ExportedGUIDs;
636   // A map in which to record the information necessary to locate the WPD
637   // resolution for local targets in case they are exported by cross module
638   // importing.
639   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
640 
641   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
642 
643   PatternList FunctionsToSkip;
644 
645   DevirtIndex(
646       ModuleSummaryIndex &ExportSummary,
647       std::set<GlobalValue::GUID> &ExportedGUIDs,
648       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
649       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
650         LocalWPDTargetsMap(LocalWPDTargetsMap) {
651     FunctionsToSkip.init(SkipFunctionNames);
652   }
653 
654   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
655                                  const TypeIdCompatibleVtableInfo TIdInfo,
656                                  uint64_t ByteOffset);
657 
658   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
659                            VTableSlotSummary &SlotSummary,
660                            VTableSlotInfo &SlotInfo,
661                            WholeProgramDevirtResolution *Res,
662                            std::set<ValueInfo> &DevirtTargets);
663 
664   void run();
665 };
666 
667 struct WholeProgramDevirt : public ModulePass {
668   static char ID;
669 
670   bool UseCommandLine = false;
671 
672   ModuleSummaryIndex *ExportSummary = nullptr;
673   const ModuleSummaryIndex *ImportSummary = nullptr;
674 
675   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
676     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
677   }
678 
679   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
680                      const ModuleSummaryIndex *ImportSummary)
681       : ModulePass(ID), ExportSummary(ExportSummary),
682         ImportSummary(ImportSummary) {
683     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
684   }
685 
686   bool runOnModule(Module &M) override {
687     if (skipModule(M))
688       return false;
689 
690     // In the new pass manager, we can request the optimization
691     // remark emitter pass on a per-function-basis, which the
692     // OREGetter will do for us.
693     // In the old pass manager, this is harder, so we just build
694     // an optimization remark emitter on the fly, when we need it.
695     std::unique_ptr<OptimizationRemarkEmitter> ORE;
696     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
697       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
698       return *ORE;
699     };
700 
701     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
702       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
703     };
704 
705     if (UseCommandLine)
706       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
707                                          LookupDomTree);
708 
709     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
710                         ExportSummary, ImportSummary)
711         .run();
712   }
713 
714   void getAnalysisUsage(AnalysisUsage &AU) const override {
715     AU.addRequired<AssumptionCacheTracker>();
716     AU.addRequired<TargetLibraryInfoWrapperPass>();
717     AU.addRequired<DominatorTreeWrapperPass>();
718   }
719 };
720 
721 } // end anonymous namespace
722 
723 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
724                       "Whole program devirtualization", false, false)
725 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
726 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
727 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
728 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
729                     "Whole program devirtualization", false, false)
730 char WholeProgramDevirt::ID = 0;
731 
732 ModulePass *
733 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
734                                    const ModuleSummaryIndex *ImportSummary) {
735   return new WholeProgramDevirt(ExportSummary, ImportSummary);
736 }
737 
738 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
739                                               ModuleAnalysisManager &AM) {
740   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
741   auto AARGetter = [&](Function &F) -> AAResults & {
742     return FAM.getResult<AAManager>(F);
743   };
744   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
745     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
746   };
747   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
748     return FAM.getResult<DominatorTreeAnalysis>(F);
749   };
750   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
751                     ImportSummary)
752            .run())
753     return PreservedAnalyses::all();
754   return PreservedAnalyses::none();
755 }
756 
757 // Enable whole program visibility if enabled by client (e.g. linker) or
758 // internal option, and not force disabled.
759 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
760   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
761          !DisableWholeProgramVisibility;
762 }
763 
764 namespace llvm {
765 
766 /// If whole program visibility asserted, then upgrade all public vcall
767 /// visibility metadata on vtable definitions to linkage unit visibility in
768 /// Module IR (for regular or hybrid LTO).
769 void updateVCallVisibilityInModule(Module &M,
770                                    bool WholeProgramVisibilityEnabledInLTO) {
771   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
772     return;
773   for (GlobalVariable &GV : M.globals())
774     // Add linkage unit visibility to any variable with type metadata, which are
775     // the vtable definitions. We won't have an existing vcall_visibility
776     // metadata on vtable definitions with public visibility.
777     if (GV.hasMetadata(LLVMContext::MD_type) &&
778         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
779       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
780 }
781 
782 /// If whole program visibility asserted, then upgrade all public vcall
783 /// visibility metadata on vtable definition summaries to linkage unit
784 /// visibility in Module summary index (for ThinLTO).
785 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
786                                   bool WholeProgramVisibilityEnabledInLTO) {
787   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
788     return;
789   for (auto &P : Index) {
790     for (auto &S : P.second.SummaryList) {
791       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
792       if (!GVar || GVar->vTableFuncs().empty() ||
793           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
794         continue;
795       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
796     }
797   }
798 }
799 
800 void runWholeProgramDevirtOnIndex(
801     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
802     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
803   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
804 }
805 
806 void updateIndexWPDForExports(
807     ModuleSummaryIndex &Summary,
808     function_ref<bool(StringRef, ValueInfo)> isExported,
809     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
810   for (auto &T : LocalWPDTargetsMap) {
811     auto &VI = T.first;
812     // This was enforced earlier during trySingleImplDevirt.
813     assert(VI.getSummaryList().size() == 1 &&
814            "Devirt of local target has more than one copy");
815     auto &S = VI.getSummaryList()[0];
816     if (!isExported(S->modulePath(), VI))
817       continue;
818 
819     // It's been exported by a cross module import.
820     for (auto &SlotSummary : T.second) {
821       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
822       assert(TIdSum);
823       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
824       assert(WPDRes != TIdSum->WPDRes.end());
825       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
826           WPDRes->second.SingleImplName,
827           Summary.getModuleHash(S->modulePath()));
828     }
829   }
830 }
831 
832 } // end namespace llvm
833 
834 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
835   // Check that summary index contains regular LTO module when performing
836   // export to prevent occasional use of index from pure ThinLTO compilation
837   // (-fno-split-lto-module). This kind of summary index is passed to
838   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
839   const auto &ModPaths = Summary->modulePaths();
840   if (ClSummaryAction != PassSummaryAction::Import &&
841       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
842           ModPaths.end())
843     return createStringError(
844         errc::invalid_argument,
845         "combined summary should contain Regular LTO module");
846   return ErrorSuccess();
847 }
848 
849 bool DevirtModule::runForTesting(
850     Module &M, function_ref<AAResults &(Function &)> AARGetter,
851     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
852     function_ref<DominatorTree &(Function &)> LookupDomTree) {
853   std::unique_ptr<ModuleSummaryIndex> Summary =
854       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
855 
856   // Handle the command-line summary arguments. This code is for testing
857   // purposes only, so we handle errors directly.
858   if (!ClReadSummary.empty()) {
859     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
860                           ": ");
861     auto ReadSummaryFile =
862         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
863     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
864             getModuleSummaryIndex(*ReadSummaryFile)) {
865       Summary = std::move(*SummaryOrErr);
866       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
867     } else {
868       // Try YAML if we've failed with bitcode.
869       consumeError(SummaryOrErr.takeError());
870       yaml::Input In(ReadSummaryFile->getBuffer());
871       In >> *Summary;
872       ExitOnErr(errorCodeToError(In.error()));
873     }
874   }
875 
876   bool Changed =
877       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
878                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
879                                                                 : nullptr,
880                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
881                                                                 : nullptr)
882           .run();
883 
884   if (!ClWriteSummary.empty()) {
885     ExitOnError ExitOnErr(
886         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
887     std::error_code EC;
888     if (StringRef(ClWriteSummary).endswith(".bc")) {
889       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
890       ExitOnErr(errorCodeToError(EC));
891       WriteIndexToFile(*Summary, OS);
892     } else {
893       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
894       ExitOnErr(errorCodeToError(EC));
895       yaml::Output Out(OS);
896       Out << *Summary;
897     }
898   }
899 
900   return Changed;
901 }
902 
903 void DevirtModule::buildTypeIdentifierMap(
904     std::vector<VTableBits> &Bits,
905     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
906   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
907   Bits.reserve(M.getGlobalList().size());
908   SmallVector<MDNode *, 2> Types;
909   for (GlobalVariable &GV : M.globals()) {
910     Types.clear();
911     GV.getMetadata(LLVMContext::MD_type, Types);
912     if (GV.isDeclaration() || Types.empty())
913       continue;
914 
915     VTableBits *&BitsPtr = GVToBits[&GV];
916     if (!BitsPtr) {
917       Bits.emplace_back();
918       Bits.back().GV = &GV;
919       Bits.back().ObjectSize =
920           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
921       BitsPtr = &Bits.back();
922     }
923 
924     for (MDNode *Type : Types) {
925       auto TypeID = Type->getOperand(1).get();
926 
927       uint64_t Offset =
928           cast<ConstantInt>(
929               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
930               ->getZExtValue();
931 
932       TypeIdMap[TypeID].insert({BitsPtr, Offset});
933     }
934   }
935 }
936 
937 bool DevirtModule::tryFindVirtualCallTargets(
938     std::vector<VirtualCallTarget> &TargetsForSlot,
939     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
940   for (const TypeMemberInfo &TM : TypeMemberInfos) {
941     if (!TM.Bits->GV->isConstant())
942       return false;
943 
944     // We cannot perform whole program devirtualization analysis on a vtable
945     // with public LTO visibility.
946     if (TM.Bits->GV->getVCallVisibility() ==
947         GlobalObject::VCallVisibilityPublic)
948       return false;
949 
950     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
951                                        TM.Offset + ByteOffset, M);
952     if (!Ptr)
953       return false;
954 
955     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
956     if (!Fn)
957       return false;
958 
959     if (FunctionsToSkip.match(Fn->getName()))
960       return false;
961 
962     // We can disregard __cxa_pure_virtual as a possible call target, as
963     // calls to pure virtuals are UB.
964     if (Fn->getName() == "__cxa_pure_virtual")
965       continue;
966 
967     TargetsForSlot.push_back({Fn, &TM});
968   }
969 
970   // Give up if we couldn't find any targets.
971   return !TargetsForSlot.empty();
972 }
973 
974 bool DevirtIndex::tryFindVirtualCallTargets(
975     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
976     uint64_t ByteOffset) {
977   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
978     // Find the first non-available_externally linkage vtable initializer.
979     // We can have multiple available_externally, linkonce_odr and weak_odr
980     // vtable initializers, however we want to skip available_externally as they
981     // do not have type metadata attached, and therefore the summary will not
982     // contain any vtable functions. We can also have multiple external
983     // vtable initializers in the case of comdats, which we cannot check here.
984     // The linker should give an error in this case.
985     //
986     // Also, handle the case of same-named local Vtables with the same path
987     // and therefore the same GUID. This can happen if there isn't enough
988     // distinguishing path when compiling the source file. In that case we
989     // conservatively return false early.
990     const GlobalVarSummary *VS = nullptr;
991     bool LocalFound = false;
992     for (auto &S : P.VTableVI.getSummaryList()) {
993       if (GlobalValue::isLocalLinkage(S->linkage())) {
994         if (LocalFound)
995           return false;
996         LocalFound = true;
997       }
998       if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
999         VS = cast<GlobalVarSummary>(S->getBaseObject());
1000         // We cannot perform whole program devirtualization analysis on a vtable
1001         // with public LTO visibility.
1002         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1003           return false;
1004       }
1005     }
1006     if (!VS->isLive())
1007       continue;
1008     for (auto VTP : VS->vTableFuncs()) {
1009       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1010         continue;
1011 
1012       TargetsForSlot.push_back(VTP.FuncVI);
1013     }
1014   }
1015 
1016   // Give up if we couldn't find any targets.
1017   return !TargetsForSlot.empty();
1018 }
1019 
1020 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1021                                          Constant *TheFn, bool &IsExported) {
1022   auto Apply = [&](CallSiteInfo &CSInfo) {
1023     for (auto &&VCallSite : CSInfo.CallSites) {
1024       if (RemarksEnabled)
1025         VCallSite.emitRemark("single-impl",
1026                              TheFn->stripPointerCasts()->getName(), OREGetter);
1027       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
1028           TheFn, VCallSite.CS.getCalledValue()->getType()));
1029       // This use is no longer unsafe.
1030       if (VCallSite.NumUnsafeUses)
1031         --*VCallSite.NumUnsafeUses;
1032     }
1033     if (CSInfo.isExported())
1034       IsExported = true;
1035     CSInfo.markDevirt();
1036   };
1037   Apply(SlotInfo.CSInfo);
1038   for (auto &P : SlotInfo.ConstCSInfo)
1039     Apply(P.second);
1040 }
1041 
1042 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1043   // We can't add calls if we haven't seen a definition
1044   if (Callee.getSummaryList().empty())
1045     return false;
1046 
1047   // Insert calls into the summary index so that the devirtualized targets
1048   // are eligible for import.
1049   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1050   // to better ensure we have the opportunity to inline them.
1051   bool IsExported = false;
1052   auto &S = Callee.getSummaryList()[0];
1053   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1054   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1055     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1056       FS->addCall({Callee, CI});
1057       IsExported |= S->modulePath() != FS->modulePath();
1058     }
1059     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1060       FS->addCall({Callee, CI});
1061       IsExported |= S->modulePath() != FS->modulePath();
1062     }
1063   };
1064   AddCalls(SlotInfo.CSInfo);
1065   for (auto &P : SlotInfo.ConstCSInfo)
1066     AddCalls(P.second);
1067   return IsExported;
1068 }
1069 
1070 bool DevirtModule::trySingleImplDevirt(
1071     ModuleSummaryIndex *ExportSummary,
1072     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1073     WholeProgramDevirtResolution *Res) {
1074   // See if the program contains a single implementation of this virtual
1075   // function.
1076   Function *TheFn = TargetsForSlot[0].Fn;
1077   for (auto &&Target : TargetsForSlot)
1078     if (TheFn != Target.Fn)
1079       return false;
1080 
1081   // If so, update each call site to call that implementation directly.
1082   if (RemarksEnabled)
1083     TargetsForSlot[0].WasDevirt = true;
1084 
1085   bool IsExported = false;
1086   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1087   if (!IsExported)
1088     return false;
1089 
1090   // If the only implementation has local linkage, we must promote to external
1091   // to make it visible to thin LTO objects. We can only get here during the
1092   // ThinLTO export phase.
1093   if (TheFn->hasLocalLinkage()) {
1094     std::string NewName = (TheFn->getName() + "$merged").str();
1095 
1096     // Since we are renaming the function, any comdats with the same name must
1097     // also be renamed. This is required when targeting COFF, as the comdat name
1098     // must match one of the names of the symbols in the comdat.
1099     if (Comdat *C = TheFn->getComdat()) {
1100       if (C->getName() == TheFn->getName()) {
1101         Comdat *NewC = M.getOrInsertComdat(NewName);
1102         NewC->setSelectionKind(C->getSelectionKind());
1103         for (GlobalObject &GO : M.global_objects())
1104           if (GO.getComdat() == C)
1105             GO.setComdat(NewC);
1106       }
1107     }
1108 
1109     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1110     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1111     TheFn->setName(NewName);
1112   }
1113   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1114     // Any needed promotion of 'TheFn' has already been done during
1115     // LTO unit split, so we can ignore return value of AddCalls.
1116     AddCalls(SlotInfo, TheFnVI);
1117 
1118   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1119   Res->SingleImplName = std::string(TheFn->getName());
1120 
1121   return true;
1122 }
1123 
1124 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1125                                       VTableSlotSummary &SlotSummary,
1126                                       VTableSlotInfo &SlotInfo,
1127                                       WholeProgramDevirtResolution *Res,
1128                                       std::set<ValueInfo> &DevirtTargets) {
1129   // See if the program contains a single implementation of this virtual
1130   // function.
1131   auto TheFn = TargetsForSlot[0];
1132   for (auto &&Target : TargetsForSlot)
1133     if (TheFn != Target)
1134       return false;
1135 
1136   // Don't devirtualize if we don't have target definition.
1137   auto Size = TheFn.getSummaryList().size();
1138   if (!Size)
1139     return false;
1140 
1141   // Don't devirtualize function if we're told to skip it
1142   // in -wholeprogramdevirt-skip.
1143   if (FunctionsToSkip.match(TheFn.name()))
1144     return false;
1145 
1146   // If the summary list contains multiple summaries where at least one is
1147   // a local, give up, as we won't know which (possibly promoted) name to use.
1148   for (auto &S : TheFn.getSummaryList())
1149     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1150       return false;
1151 
1152   // Collect functions devirtualized at least for one call site for stats.
1153   if (PrintSummaryDevirt)
1154     DevirtTargets.insert(TheFn);
1155 
1156   auto &S = TheFn.getSummaryList()[0];
1157   bool IsExported = AddCalls(SlotInfo, TheFn);
1158   if (IsExported)
1159     ExportedGUIDs.insert(TheFn.getGUID());
1160 
1161   // Record in summary for use in devirtualization during the ThinLTO import
1162   // step.
1163   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1164   if (GlobalValue::isLocalLinkage(S->linkage())) {
1165     if (IsExported)
1166       // If target is a local function and we are exporting it by
1167       // devirtualizing a call in another module, we need to record the
1168       // promoted name.
1169       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1170           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1171     else {
1172       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1173       Res->SingleImplName = std::string(TheFn.name());
1174     }
1175   } else
1176     Res->SingleImplName = std::string(TheFn.name());
1177 
1178   // Name will be empty if this thin link driven off of serialized combined
1179   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1180   // legacy LTO API anyway.
1181   assert(!Res->SingleImplName.empty());
1182 
1183   return true;
1184 }
1185 
1186 void DevirtModule::tryICallBranchFunnel(
1187     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1188     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1189   Triple T(M.getTargetTriple());
1190   if (T.getArch() != Triple::x86_64)
1191     return;
1192 
1193   if (TargetsForSlot.size() > ClThreshold)
1194     return;
1195 
1196   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1197   if (!HasNonDevirt)
1198     for (auto &P : SlotInfo.ConstCSInfo)
1199       if (!P.second.AllCallSitesDevirted) {
1200         HasNonDevirt = true;
1201         break;
1202       }
1203 
1204   if (!HasNonDevirt)
1205     return;
1206 
1207   FunctionType *FT =
1208       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1209   Function *JT;
1210   if (isa<MDString>(Slot.TypeID)) {
1211     JT = Function::Create(FT, Function::ExternalLinkage,
1212                           M.getDataLayout().getProgramAddressSpace(),
1213                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1214     JT->setVisibility(GlobalValue::HiddenVisibility);
1215   } else {
1216     JT = Function::Create(FT, Function::InternalLinkage,
1217                           M.getDataLayout().getProgramAddressSpace(),
1218                           "branch_funnel", &M);
1219   }
1220   JT->addAttribute(1, Attribute::Nest);
1221 
1222   std::vector<Value *> JTArgs;
1223   JTArgs.push_back(JT->arg_begin());
1224   for (auto &T : TargetsForSlot) {
1225     JTArgs.push_back(getMemberAddr(T.TM));
1226     JTArgs.push_back(T.Fn);
1227   }
1228 
1229   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1230   Function *Intr =
1231       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1232 
1233   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1234   CI->setTailCallKind(CallInst::TCK_MustTail);
1235   ReturnInst::Create(M.getContext(), nullptr, BB);
1236 
1237   bool IsExported = false;
1238   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1239   if (IsExported)
1240     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1241 }
1242 
1243 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1244                                           Constant *JT, bool &IsExported) {
1245   auto Apply = [&](CallSiteInfo &CSInfo) {
1246     if (CSInfo.isExported())
1247       IsExported = true;
1248     if (CSInfo.AllCallSitesDevirted)
1249       return;
1250     for (auto &&VCallSite : CSInfo.CallSites) {
1251       CallSite CS = VCallSite.CS;
1252 
1253       // Jump tables are only profitable if the retpoline mitigation is enabled.
1254       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1255       if (FSAttr.hasAttribute(Attribute::None) ||
1256           !FSAttr.getValueAsString().contains("+retpoline"))
1257         continue;
1258 
1259       if (RemarksEnabled)
1260         VCallSite.emitRemark("branch-funnel",
1261                              JT->stripPointerCasts()->getName(), OREGetter);
1262 
1263       // Pass the address of the vtable in the nest register, which is r10 on
1264       // x86_64.
1265       std::vector<Type *> NewArgs;
1266       NewArgs.push_back(Int8PtrTy);
1267       for (Type *T : CS.getFunctionType()->params())
1268         NewArgs.push_back(T);
1269       FunctionType *NewFT =
1270           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1271                             CS.getFunctionType()->isVarArg());
1272       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1273 
1274       IRBuilder<> IRB(CS.getInstruction());
1275       std::vector<Value *> Args;
1276       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1277       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1278         Args.push_back(CS.getArgOperand(I));
1279 
1280       CallSite NewCS;
1281       if (CS.isCall())
1282         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1283       else
1284         NewCS = IRB.CreateInvoke(
1285             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1286             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1287             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1288       NewCS.setCallingConv(CS.getCallingConv());
1289 
1290       AttributeList Attrs = CS.getAttributes();
1291       std::vector<AttributeSet> NewArgAttrs;
1292       NewArgAttrs.push_back(AttributeSet::get(
1293           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1294                               M.getContext(), Attribute::Nest)}));
1295       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1296         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1297       NewCS.setAttributes(
1298           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1299                              Attrs.getRetAttributes(), NewArgAttrs));
1300 
1301       CS->replaceAllUsesWith(NewCS.getInstruction());
1302       CS->eraseFromParent();
1303 
1304       // This use is no longer unsafe.
1305       if (VCallSite.NumUnsafeUses)
1306         --*VCallSite.NumUnsafeUses;
1307     }
1308     // Don't mark as devirtualized because there may be callers compiled without
1309     // retpoline mitigation, which would mean that they are lowered to
1310     // llvm.type.test and therefore require an llvm.type.test resolution for the
1311     // type identifier.
1312   };
1313   Apply(SlotInfo.CSInfo);
1314   for (auto &P : SlotInfo.ConstCSInfo)
1315     Apply(P.second);
1316 }
1317 
1318 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1319     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1320     ArrayRef<uint64_t> Args) {
1321   // Evaluate each function and store the result in each target's RetVal
1322   // field.
1323   for (VirtualCallTarget &Target : TargetsForSlot) {
1324     if (Target.Fn->arg_size() != Args.size() + 1)
1325       return false;
1326 
1327     Evaluator Eval(M.getDataLayout(), nullptr);
1328     SmallVector<Constant *, 2> EvalArgs;
1329     EvalArgs.push_back(
1330         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1331     for (unsigned I = 0; I != Args.size(); ++I) {
1332       auto *ArgTy = dyn_cast<IntegerType>(
1333           Target.Fn->getFunctionType()->getParamType(I + 1));
1334       if (!ArgTy)
1335         return false;
1336       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1337     }
1338 
1339     Constant *RetVal;
1340     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1341         !isa<ConstantInt>(RetVal))
1342       return false;
1343     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1344   }
1345   return true;
1346 }
1347 
1348 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1349                                          uint64_t TheRetVal) {
1350   for (auto Call : CSInfo.CallSites)
1351     Call.replaceAndErase(
1352         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1353         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1354   CSInfo.markDevirt();
1355 }
1356 
1357 bool DevirtModule::tryUniformRetValOpt(
1358     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1359     WholeProgramDevirtResolution::ByArg *Res) {
1360   // Uniform return value optimization. If all functions return the same
1361   // constant, replace all calls with that constant.
1362   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1363   for (const VirtualCallTarget &Target : TargetsForSlot)
1364     if (Target.RetVal != TheRetVal)
1365       return false;
1366 
1367   if (CSInfo.isExported()) {
1368     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1369     Res->Info = TheRetVal;
1370   }
1371 
1372   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1373   if (RemarksEnabled)
1374     for (auto &&Target : TargetsForSlot)
1375       Target.WasDevirt = true;
1376   return true;
1377 }
1378 
1379 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1380                                         ArrayRef<uint64_t> Args,
1381                                         StringRef Name) {
1382   std::string FullName = "__typeid_";
1383   raw_string_ostream OS(FullName);
1384   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1385   for (uint64_t Arg : Args)
1386     OS << '_' << Arg;
1387   OS << '_' << Name;
1388   return OS.str();
1389 }
1390 
1391 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1392   Triple T(M.getTargetTriple());
1393   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1394 }
1395 
1396 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1397                                 StringRef Name, Constant *C) {
1398   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1399                                         getGlobalName(Slot, Args, Name), C, &M);
1400   GA->setVisibility(GlobalValue::HiddenVisibility);
1401 }
1402 
1403 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1404                                   StringRef Name, uint32_t Const,
1405                                   uint32_t &Storage) {
1406   if (shouldExportConstantsAsAbsoluteSymbols()) {
1407     exportGlobal(
1408         Slot, Args, Name,
1409         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1410     return;
1411   }
1412 
1413   Storage = Const;
1414 }
1415 
1416 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1417                                      StringRef Name) {
1418   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1419   auto *GV = dyn_cast<GlobalVariable>(C);
1420   if (GV)
1421     GV->setVisibility(GlobalValue::HiddenVisibility);
1422   return C;
1423 }
1424 
1425 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1426                                        StringRef Name, IntegerType *IntTy,
1427                                        uint32_t Storage) {
1428   if (!shouldExportConstantsAsAbsoluteSymbols())
1429     return ConstantInt::get(IntTy, Storage);
1430 
1431   Constant *C = importGlobal(Slot, Args, Name);
1432   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1433   C = ConstantExpr::getPtrToInt(C, IntTy);
1434 
1435   // We only need to set metadata if the global is newly created, in which
1436   // case it would not have hidden visibility.
1437   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1438     return C;
1439 
1440   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1441     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1442     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1443     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1444                     MDNode::get(M.getContext(), {MinC, MaxC}));
1445   };
1446   unsigned AbsWidth = IntTy->getBitWidth();
1447   if (AbsWidth == IntPtrTy->getBitWidth())
1448     SetAbsRange(~0ull, ~0ull); // Full set.
1449   else
1450     SetAbsRange(0, 1ull << AbsWidth);
1451   return C;
1452 }
1453 
1454 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1455                                         bool IsOne,
1456                                         Constant *UniqueMemberAddr) {
1457   for (auto &&Call : CSInfo.CallSites) {
1458     IRBuilder<> B(Call.CS.getInstruction());
1459     Value *Cmp =
1460         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1461                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1462     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1463     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1464                          Cmp);
1465   }
1466   CSInfo.markDevirt();
1467 }
1468 
1469 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1470   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1471   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1472                                         ConstantInt::get(Int64Ty, M->Offset));
1473 }
1474 
1475 bool DevirtModule::tryUniqueRetValOpt(
1476     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1477     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1478     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1479   // IsOne controls whether we look for a 0 or a 1.
1480   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1481     const TypeMemberInfo *UniqueMember = nullptr;
1482     for (const VirtualCallTarget &Target : TargetsForSlot) {
1483       if (Target.RetVal == (IsOne ? 1 : 0)) {
1484         if (UniqueMember)
1485           return false;
1486         UniqueMember = Target.TM;
1487       }
1488     }
1489 
1490     // We should have found a unique member or bailed out by now. We already
1491     // checked for a uniform return value in tryUniformRetValOpt.
1492     assert(UniqueMember);
1493 
1494     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1495     if (CSInfo.isExported()) {
1496       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1497       Res->Info = IsOne;
1498 
1499       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1500     }
1501 
1502     // Replace each call with the comparison.
1503     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1504                          UniqueMemberAddr);
1505 
1506     // Update devirtualization statistics for targets.
1507     if (RemarksEnabled)
1508       for (auto &&Target : TargetsForSlot)
1509         Target.WasDevirt = true;
1510 
1511     return true;
1512   };
1513 
1514   if (BitWidth == 1) {
1515     if (tryUniqueRetValOptFor(true))
1516       return true;
1517     if (tryUniqueRetValOptFor(false))
1518       return true;
1519   }
1520   return false;
1521 }
1522 
1523 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1524                                          Constant *Byte, Constant *Bit) {
1525   for (auto Call : CSInfo.CallSites) {
1526     auto *RetType = cast<IntegerType>(Call.CS.getType());
1527     IRBuilder<> B(Call.CS.getInstruction());
1528     Value *Addr =
1529         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1530     if (RetType->getBitWidth() == 1) {
1531       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1532       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1533       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1534       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1535                            OREGetter, IsBitSet);
1536     } else {
1537       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1538       Value *Val = B.CreateLoad(RetType, ValAddr);
1539       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1540                            OREGetter, Val);
1541     }
1542   }
1543   CSInfo.markDevirt();
1544 }
1545 
1546 bool DevirtModule::tryVirtualConstProp(
1547     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1548     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1549   // This only works if the function returns an integer.
1550   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1551   if (!RetType)
1552     return false;
1553   unsigned BitWidth = RetType->getBitWidth();
1554   if (BitWidth > 64)
1555     return false;
1556 
1557   // Make sure that each function is defined, does not access memory, takes at
1558   // least one argument, does not use its first argument (which we assume is
1559   // 'this'), and has the same return type.
1560   //
1561   // Note that we test whether this copy of the function is readnone, rather
1562   // than testing function attributes, which must hold for any copy of the
1563   // function, even a less optimized version substituted at link time. This is
1564   // sound because the virtual constant propagation optimizations effectively
1565   // inline all implementations of the virtual function into each call site,
1566   // rather than using function attributes to perform local optimization.
1567   for (VirtualCallTarget &Target : TargetsForSlot) {
1568     if (Target.Fn->isDeclaration() ||
1569         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1570             MAK_ReadNone ||
1571         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1572         Target.Fn->getReturnType() != RetType)
1573       return false;
1574   }
1575 
1576   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1577     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1578       continue;
1579 
1580     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1581     if (Res)
1582       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1583 
1584     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1585       continue;
1586 
1587     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1588                            ResByArg, Slot, CSByConstantArg.first))
1589       continue;
1590 
1591     // Find an allocation offset in bits in all vtables associated with the
1592     // type.
1593     uint64_t AllocBefore =
1594         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1595     uint64_t AllocAfter =
1596         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1597 
1598     // Calculate the total amount of padding needed to store a value at both
1599     // ends of the object.
1600     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1601     for (auto &&Target : TargetsForSlot) {
1602       TotalPaddingBefore += std::max<int64_t>(
1603           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1604       TotalPaddingAfter += std::max<int64_t>(
1605           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1606     }
1607 
1608     // If the amount of padding is too large, give up.
1609     // FIXME: do something smarter here.
1610     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1611       continue;
1612 
1613     // Calculate the offset to the value as a (possibly negative) byte offset
1614     // and (if applicable) a bit offset, and store the values in the targets.
1615     int64_t OffsetByte;
1616     uint64_t OffsetBit;
1617     if (TotalPaddingBefore <= TotalPaddingAfter)
1618       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1619                             OffsetBit);
1620     else
1621       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1622                            OffsetBit);
1623 
1624     if (RemarksEnabled)
1625       for (auto &&Target : TargetsForSlot)
1626         Target.WasDevirt = true;
1627 
1628 
1629     if (CSByConstantArg.second.isExported()) {
1630       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1631       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1632                      ResByArg->Byte);
1633       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1634                      ResByArg->Bit);
1635     }
1636 
1637     // Rewrite each call to a load from OffsetByte/OffsetBit.
1638     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1639     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1640     applyVirtualConstProp(CSByConstantArg.second,
1641                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1642   }
1643   return true;
1644 }
1645 
1646 void DevirtModule::rebuildGlobal(VTableBits &B) {
1647   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1648     return;
1649 
1650   // Align the before byte array to the global's minimum alignment so that we
1651   // don't break any alignment requirements on the global.
1652   MaybeAlign Alignment(B.GV->getAlignment());
1653   if (!Alignment)
1654     Alignment =
1655         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1656   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1657 
1658   // Before was stored in reverse order; flip it now.
1659   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1660     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1661 
1662   // Build an anonymous global containing the before bytes, followed by the
1663   // original initializer, followed by the after bytes.
1664   auto NewInit = ConstantStruct::getAnon(
1665       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1666        B.GV->getInitializer(),
1667        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1668   auto NewGV =
1669       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1670                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1671   NewGV->setSection(B.GV->getSection());
1672   NewGV->setComdat(B.GV->getComdat());
1673   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1674 
1675   // Copy the original vtable's metadata to the anonymous global, adjusting
1676   // offsets as required.
1677   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1678 
1679   // Build an alias named after the original global, pointing at the second
1680   // element (the original initializer).
1681   auto Alias = GlobalAlias::create(
1682       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1683       ConstantExpr::getGetElementPtr(
1684           NewInit->getType(), NewGV,
1685           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1686                                ConstantInt::get(Int32Ty, 1)}),
1687       &M);
1688   Alias->setVisibility(B.GV->getVisibility());
1689   Alias->takeName(B.GV);
1690 
1691   B.GV->replaceAllUsesWith(Alias);
1692   B.GV->eraseFromParent();
1693 }
1694 
1695 bool DevirtModule::areRemarksEnabled() {
1696   const auto &FL = M.getFunctionList();
1697   for (const Function &Fn : FL) {
1698     const auto &BBL = Fn.getBasicBlockList();
1699     if (BBL.empty())
1700       continue;
1701     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1702     return DI.isEnabled();
1703   }
1704   return false;
1705 }
1706 
1707 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1708   // Find all virtual calls via a virtual table pointer %p under an assumption
1709   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1710   // points to a member of the type identifier %md. Group calls by (type ID,
1711   // offset) pair (effectively the identity of the virtual function) and store
1712   // to CallSlots.
1713   DenseSet<CallSite> SeenCallSites;
1714   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1715        I != E;) {
1716     auto CI = dyn_cast<CallInst>(I->getUser());
1717     ++I;
1718     if (!CI)
1719       continue;
1720 
1721     // Search for virtual calls based on %p and add them to DevirtCalls.
1722     SmallVector<DevirtCallSite, 1> DevirtCalls;
1723     SmallVector<CallInst *, 1> Assumes;
1724     auto &DT = LookupDomTree(*CI->getFunction());
1725     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1726 
1727     // If we found any, add them to CallSlots.
1728     if (!Assumes.empty()) {
1729       Metadata *TypeId =
1730           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1731       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1732       for (DevirtCallSite Call : DevirtCalls) {
1733         // Only add this CallSite if we haven't seen it before. The vtable
1734         // pointer may have been CSE'd with pointers from other call sites,
1735         // and we don't want to process call sites multiple times. We can't
1736         // just skip the vtable Ptr if it has been seen before, however, since
1737         // it may be shared by type tests that dominate different calls.
1738         if (SeenCallSites.insert(Call.CS).second)
1739           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1740       }
1741     }
1742 
1743     // We no longer need the assumes or the type test.
1744     for (auto Assume : Assumes)
1745       Assume->eraseFromParent();
1746     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1747     // may use the vtable argument later.
1748     if (CI->use_empty())
1749       CI->eraseFromParent();
1750   }
1751 }
1752 
1753 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1754   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1755 
1756   for (auto I = TypeCheckedLoadFunc->use_begin(),
1757             E = TypeCheckedLoadFunc->use_end();
1758        I != E;) {
1759     auto CI = dyn_cast<CallInst>(I->getUser());
1760     ++I;
1761     if (!CI)
1762       continue;
1763 
1764     Value *Ptr = CI->getArgOperand(0);
1765     Value *Offset = CI->getArgOperand(1);
1766     Value *TypeIdValue = CI->getArgOperand(2);
1767     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1768 
1769     SmallVector<DevirtCallSite, 1> DevirtCalls;
1770     SmallVector<Instruction *, 1> LoadedPtrs;
1771     SmallVector<Instruction *, 1> Preds;
1772     bool HasNonCallUses = false;
1773     auto &DT = LookupDomTree(*CI->getFunction());
1774     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1775                                                HasNonCallUses, CI, DT);
1776 
1777     // Start by generating "pessimistic" code that explicitly loads the function
1778     // pointer from the vtable and performs the type check. If possible, we will
1779     // eliminate the load and the type check later.
1780 
1781     // If possible, only generate the load at the point where it is used.
1782     // This helps avoid unnecessary spills.
1783     IRBuilder<> LoadB(
1784         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1785     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1786     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1787     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1788 
1789     for (Instruction *LoadedPtr : LoadedPtrs) {
1790       LoadedPtr->replaceAllUsesWith(LoadedValue);
1791       LoadedPtr->eraseFromParent();
1792     }
1793 
1794     // Likewise for the type test.
1795     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1796     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1797 
1798     for (Instruction *Pred : Preds) {
1799       Pred->replaceAllUsesWith(TypeTestCall);
1800       Pred->eraseFromParent();
1801     }
1802 
1803     // We have already erased any extractvalue instructions that refer to the
1804     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1805     // (although this is unlikely). In that case, explicitly build a pair and
1806     // RAUW it.
1807     if (!CI->use_empty()) {
1808       Value *Pair = UndefValue::get(CI->getType());
1809       IRBuilder<> B(CI);
1810       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1811       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1812       CI->replaceAllUsesWith(Pair);
1813     }
1814 
1815     // The number of unsafe uses is initially the number of uses.
1816     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1817     NumUnsafeUses = DevirtCalls.size();
1818 
1819     // If the function pointer has a non-call user, we cannot eliminate the type
1820     // check, as one of those users may eventually call the pointer. Increment
1821     // the unsafe use count to make sure it cannot reach zero.
1822     if (HasNonCallUses)
1823       ++NumUnsafeUses;
1824     for (DevirtCallSite Call : DevirtCalls) {
1825       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1826                                                    &NumUnsafeUses);
1827     }
1828 
1829     CI->eraseFromParent();
1830   }
1831 }
1832 
1833 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1834   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1835   if (!TypeId)
1836     return;
1837   const TypeIdSummary *TidSummary =
1838       ImportSummary->getTypeIdSummary(TypeId->getString());
1839   if (!TidSummary)
1840     return;
1841   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1842   if (ResI == TidSummary->WPDRes.end())
1843     return;
1844   const WholeProgramDevirtResolution &Res = ResI->second;
1845 
1846   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1847     assert(!Res.SingleImplName.empty());
1848     // The type of the function in the declaration is irrelevant because every
1849     // call site will cast it to the correct type.
1850     Constant *SingleImpl =
1851         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1852                                              Type::getVoidTy(M.getContext()))
1853                            .getCallee());
1854 
1855     // This is the import phase so we should not be exporting anything.
1856     bool IsExported = false;
1857     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1858     assert(!IsExported);
1859   }
1860 
1861   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1862     auto I = Res.ResByArg.find(CSByConstantArg.first);
1863     if (I == Res.ResByArg.end())
1864       continue;
1865     auto &ResByArg = I->second;
1866     // FIXME: We should figure out what to do about the "function name" argument
1867     // to the apply* functions, as the function names are unavailable during the
1868     // importing phase. For now we just pass the empty string. This does not
1869     // impact correctness because the function names are just used for remarks.
1870     switch (ResByArg.TheKind) {
1871     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1872       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1873       break;
1874     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1875       Constant *UniqueMemberAddr =
1876           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1877       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1878                            UniqueMemberAddr);
1879       break;
1880     }
1881     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1882       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1883                                       Int32Ty, ResByArg.Byte);
1884       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1885                                      ResByArg.Bit);
1886       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1887       break;
1888     }
1889     default:
1890       break;
1891     }
1892   }
1893 
1894   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1895     // The type of the function is irrelevant, because it's bitcast at calls
1896     // anyhow.
1897     Constant *JT = cast<Constant>(
1898         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1899                               Type::getVoidTy(M.getContext()))
1900             .getCallee());
1901     bool IsExported = false;
1902     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1903     assert(!IsExported);
1904   }
1905 }
1906 
1907 void DevirtModule::removeRedundantTypeTests() {
1908   auto True = ConstantInt::getTrue(M.getContext());
1909   for (auto &&U : NumUnsafeUsesForTypeTest) {
1910     if (U.second == 0) {
1911       U.first->replaceAllUsesWith(True);
1912       U.first->eraseFromParent();
1913     }
1914   }
1915 }
1916 
1917 bool DevirtModule::run() {
1918   // If only some of the modules were split, we cannot correctly perform
1919   // this transformation. We already checked for the presense of type tests
1920   // with partially split modules during the thin link, and would have emitted
1921   // an error if any were found, so here we can simply return.
1922   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1923       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1924     return false;
1925 
1926   Function *TypeTestFunc =
1927       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1928   Function *TypeCheckedLoadFunc =
1929       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1930   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1931 
1932   // Normally if there are no users of the devirtualization intrinsics in the
1933   // module, this pass has nothing to do. But if we are exporting, we also need
1934   // to handle any users that appear only in the function summaries.
1935   if (!ExportSummary &&
1936       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1937        AssumeFunc->use_empty()) &&
1938       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1939     return false;
1940 
1941   if (TypeTestFunc && AssumeFunc)
1942     scanTypeTestUsers(TypeTestFunc);
1943 
1944   if (TypeCheckedLoadFunc)
1945     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1946 
1947   if (ImportSummary) {
1948     for (auto &S : CallSlots)
1949       importResolution(S.first, S.second);
1950 
1951     removeRedundantTypeTests();
1952 
1953     // We have lowered or deleted the type instrinsics, so we will no
1954     // longer have enough information to reason about the liveness of virtual
1955     // function pointers in GlobalDCE.
1956     for (GlobalVariable &GV : M.globals())
1957       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1958 
1959     // The rest of the code is only necessary when exporting or during regular
1960     // LTO, so we are done.
1961     return true;
1962   }
1963 
1964   // Rebuild type metadata into a map for easy lookup.
1965   std::vector<VTableBits> Bits;
1966   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1967   buildTypeIdentifierMap(Bits, TypeIdMap);
1968   if (TypeIdMap.empty())
1969     return true;
1970 
1971   // Collect information from summary about which calls to try to devirtualize.
1972   if (ExportSummary) {
1973     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1974     for (auto &P : TypeIdMap) {
1975       if (auto *TypeId = dyn_cast<MDString>(P.first))
1976         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1977             TypeId);
1978     }
1979 
1980     for (auto &P : *ExportSummary) {
1981       for (auto &S : P.second.SummaryList) {
1982         auto *FS = dyn_cast<FunctionSummary>(S.get());
1983         if (!FS)
1984           continue;
1985         // FIXME: Only add live functions.
1986         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1987           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1988             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1989           }
1990         }
1991         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1992           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1993             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1994           }
1995         }
1996         for (const FunctionSummary::ConstVCall &VC :
1997              FS->type_test_assume_const_vcalls()) {
1998           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1999             CallSlots[{MD, VC.VFunc.Offset}]
2000                 .ConstCSInfo[VC.Args]
2001                 .addSummaryTypeTestAssumeUser(FS);
2002           }
2003         }
2004         for (const FunctionSummary::ConstVCall &VC :
2005              FS->type_checked_load_const_vcalls()) {
2006           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2007             CallSlots[{MD, VC.VFunc.Offset}]
2008                 .ConstCSInfo[VC.Args]
2009                 .addSummaryTypeCheckedLoadUser(FS);
2010           }
2011         }
2012       }
2013     }
2014   }
2015 
2016   // For each (type, offset) pair:
2017   bool DidVirtualConstProp = false;
2018   std::map<std::string, Function*> DevirtTargets;
2019   for (auto &S : CallSlots) {
2020     // Search each of the members of the type identifier for the virtual
2021     // function implementation at offset S.first.ByteOffset, and add to
2022     // TargetsForSlot.
2023     std::vector<VirtualCallTarget> TargetsForSlot;
2024     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
2025                                   S.first.ByteOffset)) {
2026       WholeProgramDevirtResolution *Res = nullptr;
2027       if (ExportSummary && isa<MDString>(S.first.TypeID))
2028         Res = &ExportSummary
2029                    ->getOrInsertTypeIdSummary(
2030                        cast<MDString>(S.first.TypeID)->getString())
2031                    .WPDRes[S.first.ByteOffset];
2032 
2033       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2034         DidVirtualConstProp |=
2035             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2036 
2037         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2038       }
2039 
2040       // Collect functions devirtualized at least for one call site for stats.
2041       if (RemarksEnabled)
2042         for (const auto &T : TargetsForSlot)
2043           if (T.WasDevirt)
2044             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2045     }
2046 
2047     // CFI-specific: if we are exporting and any llvm.type.checked.load
2048     // intrinsics were *not* devirtualized, we need to add the resulting
2049     // llvm.type.test intrinsics to the function summaries so that the
2050     // LowerTypeTests pass will export them.
2051     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2052       auto GUID =
2053           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2054       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2055         FS->addTypeTest(GUID);
2056       for (auto &CCS : S.second.ConstCSInfo)
2057         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2058           FS->addTypeTest(GUID);
2059     }
2060   }
2061 
2062   if (RemarksEnabled) {
2063     // Generate remarks for each devirtualized function.
2064     for (const auto &DT : DevirtTargets) {
2065       Function *F = DT.second;
2066 
2067       using namespace ore;
2068       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2069                         << "devirtualized "
2070                         << NV("FunctionName", DT.first));
2071     }
2072   }
2073 
2074   removeRedundantTypeTests();
2075 
2076   // Rebuild each global we touched as part of virtual constant propagation to
2077   // include the before and after bytes.
2078   if (DidVirtualConstProp)
2079     for (VTableBits &B : Bits)
2080       rebuildGlobal(B);
2081 
2082   // We have lowered or deleted the type instrinsics, so we will no
2083   // longer have enough information to reason about the liveness of virtual
2084   // function pointers in GlobalDCE.
2085   for (GlobalVariable &GV : M.globals())
2086     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2087 
2088   return true;
2089 }
2090 
2091 void DevirtIndex::run() {
2092   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2093     return;
2094 
2095   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2096   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2097     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2098   }
2099 
2100   // Collect information from summary about which calls to try to devirtualize.
2101   for (auto &P : ExportSummary) {
2102     for (auto &S : P.second.SummaryList) {
2103       auto *FS = dyn_cast<FunctionSummary>(S.get());
2104       if (!FS)
2105         continue;
2106       // FIXME: Only add live functions.
2107       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2108         for (StringRef Name : NameByGUID[VF.GUID]) {
2109           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2110         }
2111       }
2112       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2113         for (StringRef Name : NameByGUID[VF.GUID]) {
2114           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2115         }
2116       }
2117       for (const FunctionSummary::ConstVCall &VC :
2118            FS->type_test_assume_const_vcalls()) {
2119         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2120           CallSlots[{Name, VC.VFunc.Offset}]
2121               .ConstCSInfo[VC.Args]
2122               .addSummaryTypeTestAssumeUser(FS);
2123         }
2124       }
2125       for (const FunctionSummary::ConstVCall &VC :
2126            FS->type_checked_load_const_vcalls()) {
2127         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2128           CallSlots[{Name, VC.VFunc.Offset}]
2129               .ConstCSInfo[VC.Args]
2130               .addSummaryTypeCheckedLoadUser(FS);
2131         }
2132       }
2133     }
2134   }
2135 
2136   std::set<ValueInfo> DevirtTargets;
2137   // For each (type, offset) pair:
2138   for (auto &S : CallSlots) {
2139     // Search each of the members of the type identifier for the virtual
2140     // function implementation at offset S.first.ByteOffset, and add to
2141     // TargetsForSlot.
2142     std::vector<ValueInfo> TargetsForSlot;
2143     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2144     assert(TidSummary);
2145     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2146                                   S.first.ByteOffset)) {
2147       WholeProgramDevirtResolution *Res =
2148           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2149                .WPDRes[S.first.ByteOffset];
2150 
2151       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2152                                DevirtTargets))
2153         continue;
2154     }
2155   }
2156 
2157   // Optionally have the thin link print message for each devirtualized
2158   // function.
2159   if (PrintSummaryDevirt)
2160     for (const auto &DT : DevirtTargets)
2161       errs() << "Devirtualized call to " << DT << "\n";
2162 
2163   return;
2164 }
2165