1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/Pass.h"
84 #include "llvm/PassRegistry.h"
85 #include "llvm/PassSupport.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/Error.h"
88 #include "llvm/Support/FileSystem.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Transforms/IPO.h"
91 #include "llvm/Transforms/IPO/FunctionAttrs.h"
92 #include "llvm/Transforms/Utils/Evaluator.h"
93 #include <algorithm>
94 #include <cstddef>
95 #include <map>
96 #include <set>
97 #include <string>
98 
99 using namespace llvm;
100 using namespace wholeprogramdevirt;
101 
102 #define DEBUG_TYPE "wholeprogramdevirt"
103 
104 static cl::opt<PassSummaryAction> ClSummaryAction(
105     "wholeprogramdevirt-summary-action",
106     cl::desc("What to do with the summary when running this pass"),
107     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
108                clEnumValN(PassSummaryAction::Import, "import",
109                           "Import typeid resolutions from summary and globals"),
110                clEnumValN(PassSummaryAction::Export, "export",
111                           "Export typeid resolutions to summary and globals")),
112     cl::Hidden);
113 
114 static cl::opt<std::string> ClReadSummary(
115     "wholeprogramdevirt-read-summary",
116     cl::desc("Read summary from given YAML file before running pass"),
117     cl::Hidden);
118 
119 static cl::opt<std::string> ClWriteSummary(
120     "wholeprogramdevirt-write-summary",
121     cl::desc("Write summary to given YAML file after running pass"),
122     cl::Hidden);
123 
124 static cl::opt<unsigned>
125     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
126                 cl::init(10), cl::ZeroOrMore,
127                 cl::desc("Maximum number of call targets per "
128                          "call site to enable branch funnels"));
129 
130 static cl::opt<bool>
131     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
132                        cl::init(false), cl::ZeroOrMore,
133                        cl::desc("Print index-based devirtualization messages"));
134 
135 // Find the minimum offset that we may store a value of size Size bits at. If
136 // IsAfter is set, look for an offset before the object, otherwise look for an
137 // offset after the object.
138 uint64_t
139 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
140                                      bool IsAfter, uint64_t Size) {
141   // Find a minimum offset taking into account only vtable sizes.
142   uint64_t MinByte = 0;
143   for (const VirtualCallTarget &Target : Targets) {
144     if (IsAfter)
145       MinByte = std::max(MinByte, Target.minAfterBytes());
146     else
147       MinByte = std::max(MinByte, Target.minBeforeBytes());
148   }
149 
150   // Build a vector of arrays of bytes covering, for each target, a slice of the
151   // used region (see AccumBitVector::BytesUsed in
152   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
153   // this aligns the used regions to start at MinByte.
154   //
155   // In this example, A, B and C are vtables, # is a byte already allocated for
156   // a virtual function pointer, AAAA... (etc.) are the used regions for the
157   // vtables and Offset(X) is the value computed for the Offset variable below
158   // for X.
159   //
160   //                    Offset(A)
161   //                    |       |
162   //                            |MinByte
163   // A: ################AAAAAAAA|AAAAAAAA
164   // B: ########BBBBBBBBBBBBBBBB|BBBB
165   // C: ########################|CCCCCCCCCCCCCCCC
166   //            |   Offset(B)   |
167   //
168   // This code produces the slices of A, B and C that appear after the divider
169   // at MinByte.
170   std::vector<ArrayRef<uint8_t>> Used;
171   for (const VirtualCallTarget &Target : Targets) {
172     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
173                                        : Target.TM->Bits->Before.BytesUsed;
174     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
175                               : MinByte - Target.minBeforeBytes();
176 
177     // Disregard used regions that are smaller than Offset. These are
178     // effectively all-free regions that do not need to be checked.
179     if (VTUsed.size() > Offset)
180       Used.push_back(VTUsed.slice(Offset));
181   }
182 
183   if (Size == 1) {
184     // Find a free bit in each member of Used.
185     for (unsigned I = 0;; ++I) {
186       uint8_t BitsUsed = 0;
187       for (auto &&B : Used)
188         if (I < B.size())
189           BitsUsed |= B[I];
190       if (BitsUsed != 0xff)
191         return (MinByte + I) * 8 +
192                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
193     }
194   } else {
195     // Find a free (Size/8) byte region in each member of Used.
196     // FIXME: see if alignment helps.
197     for (unsigned I = 0;; ++I) {
198       for (auto &&B : Used) {
199         unsigned Byte = 0;
200         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
201           if (B[I + Byte])
202             goto NextI;
203           ++Byte;
204         }
205       }
206       return (MinByte + I) * 8;
207     NextI:;
208     }
209   }
210 }
211 
212 void wholeprogramdevirt::setBeforeReturnValues(
213     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
214     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
215   if (BitWidth == 1)
216     OffsetByte = -(AllocBefore / 8 + 1);
217   else
218     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
219   OffsetBit = AllocBefore % 8;
220 
221   for (VirtualCallTarget &Target : Targets) {
222     if (BitWidth == 1)
223       Target.setBeforeBit(AllocBefore);
224     else
225       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
226   }
227 }
228 
229 void wholeprogramdevirt::setAfterReturnValues(
230     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
231     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
232   if (BitWidth == 1)
233     OffsetByte = AllocAfter / 8;
234   else
235     OffsetByte = (AllocAfter + 7) / 8;
236   OffsetBit = AllocAfter % 8;
237 
238   for (VirtualCallTarget &Target : Targets) {
239     if (BitWidth == 1)
240       Target.setAfterBit(AllocAfter);
241     else
242       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
243   }
244 }
245 
246 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
247     : Fn(Fn), TM(TM),
248       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
249 
250 namespace {
251 
252 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
253 // tables, and the ByteOffset is the offset in bytes from the address point to
254 // the virtual function pointer.
255 struct VTableSlot {
256   Metadata *TypeID;
257   uint64_t ByteOffset;
258 };
259 
260 } // end anonymous namespace
261 
262 namespace llvm {
263 
264 template <> struct DenseMapInfo<VTableSlot> {
265   static VTableSlot getEmptyKey() {
266     return {DenseMapInfo<Metadata *>::getEmptyKey(),
267             DenseMapInfo<uint64_t>::getEmptyKey()};
268   }
269   static VTableSlot getTombstoneKey() {
270     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
271             DenseMapInfo<uint64_t>::getTombstoneKey()};
272   }
273   static unsigned getHashValue(const VTableSlot &I) {
274     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
275            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
276   }
277   static bool isEqual(const VTableSlot &LHS,
278                       const VTableSlot &RHS) {
279     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
280   }
281 };
282 
283 template <> struct DenseMapInfo<VTableSlotSummary> {
284   static VTableSlotSummary getEmptyKey() {
285     return {DenseMapInfo<StringRef>::getEmptyKey(),
286             DenseMapInfo<uint64_t>::getEmptyKey()};
287   }
288   static VTableSlotSummary getTombstoneKey() {
289     return {DenseMapInfo<StringRef>::getTombstoneKey(),
290             DenseMapInfo<uint64_t>::getTombstoneKey()};
291   }
292   static unsigned getHashValue(const VTableSlotSummary &I) {
293     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
294            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
295   }
296   static bool isEqual(const VTableSlotSummary &LHS,
297                       const VTableSlotSummary &RHS) {
298     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
299   }
300 };
301 
302 } // end namespace llvm
303 
304 namespace {
305 
306 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
307 // the indirect virtual call.
308 struct VirtualCallSite {
309   Value *VTable;
310   CallSite CS;
311 
312   // If non-null, this field points to the associated unsafe use count stored in
313   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
314   // of that field for details.
315   unsigned *NumUnsafeUses;
316 
317   void
318   emitRemark(const StringRef OptName, const StringRef TargetName,
319              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
320     Function *F = CS.getCaller();
321     DebugLoc DLoc = CS->getDebugLoc();
322     BasicBlock *Block = CS.getParent();
323 
324     using namespace ore;
325     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
326                       << NV("Optimization", OptName)
327                       << ": devirtualized a call to "
328                       << NV("FunctionName", TargetName));
329   }
330 
331   void replaceAndErase(
332       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
333       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
334       Value *New) {
335     if (RemarksEnabled)
336       emitRemark(OptName, TargetName, OREGetter);
337     CS->replaceAllUsesWith(New);
338     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
339       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
340       II->getUnwindDest()->removePredecessor(II->getParent());
341     }
342     CS->eraseFromParent();
343     // This use is no longer unsafe.
344     if (NumUnsafeUses)
345       --*NumUnsafeUses;
346   }
347 };
348 
349 // Call site information collected for a specific VTableSlot and possibly a list
350 // of constant integer arguments. The grouping by arguments is handled by the
351 // VTableSlotInfo class.
352 struct CallSiteInfo {
353   /// The set of call sites for this slot. Used during regular LTO and the
354   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
355   /// call sites that appear in the merged module itself); in each of these
356   /// cases we are directly operating on the call sites at the IR level.
357   std::vector<VirtualCallSite> CallSites;
358 
359   /// Whether all call sites represented by this CallSiteInfo, including those
360   /// in summaries, have been devirtualized. This starts off as true because a
361   /// default constructed CallSiteInfo represents no call sites.
362   bool AllCallSitesDevirted = true;
363 
364   // These fields are used during the export phase of ThinLTO and reflect
365   // information collected from function summaries.
366 
367   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
368   /// this slot.
369   bool SummaryHasTypeTestAssumeUsers = false;
370 
371   /// CFI-specific: a vector containing the list of function summaries that use
372   /// the llvm.type.checked.load intrinsic and therefore will require
373   /// resolutions for llvm.type.test in order to implement CFI checks if
374   /// devirtualization was unsuccessful. If devirtualization was successful, the
375   /// pass will clear this vector by calling markDevirt(). If at the end of the
376   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
377   /// to each of the function summaries in the vector.
378   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
379   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
380 
381   bool isExported() const {
382     return SummaryHasTypeTestAssumeUsers ||
383            !SummaryTypeCheckedLoadUsers.empty();
384   }
385 
386   void markSummaryHasTypeTestAssumeUsers() {
387     SummaryHasTypeTestAssumeUsers = true;
388     AllCallSitesDevirted = false;
389   }
390 
391   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
392     SummaryTypeCheckedLoadUsers.push_back(FS);
393     AllCallSitesDevirted = false;
394   }
395 
396   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
397     SummaryTypeTestAssumeUsers.push_back(FS);
398     markSummaryHasTypeTestAssumeUsers();
399   }
400 
401   void markDevirt() {
402     AllCallSitesDevirted = true;
403 
404     // As explained in the comment for SummaryTypeCheckedLoadUsers.
405     SummaryTypeCheckedLoadUsers.clear();
406   }
407 };
408 
409 // Call site information collected for a specific VTableSlot.
410 struct VTableSlotInfo {
411   // The set of call sites which do not have all constant integer arguments
412   // (excluding "this").
413   CallSiteInfo CSInfo;
414 
415   // The set of call sites with all constant integer arguments (excluding
416   // "this"), grouped by argument list.
417   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
418 
419   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
420 
421 private:
422   CallSiteInfo &findCallSiteInfo(CallSite CS);
423 };
424 
425 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
426   std::vector<uint64_t> Args;
427   auto *CI = dyn_cast<IntegerType>(CS.getType());
428   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
429     return CSInfo;
430   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
431     auto *CI = dyn_cast<ConstantInt>(Arg);
432     if (!CI || CI->getBitWidth() > 64)
433       return CSInfo;
434     Args.push_back(CI->getZExtValue());
435   }
436   return ConstCSInfo[Args];
437 }
438 
439 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
440                                  unsigned *NumUnsafeUses) {
441   auto &CSI = findCallSiteInfo(CS);
442   CSI.AllCallSitesDevirted = false;
443   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
444 }
445 
446 struct DevirtModule {
447   Module &M;
448   function_ref<AAResults &(Function &)> AARGetter;
449   function_ref<DominatorTree &(Function &)> LookupDomTree;
450 
451   ModuleSummaryIndex *ExportSummary;
452   const ModuleSummaryIndex *ImportSummary;
453 
454   IntegerType *Int8Ty;
455   PointerType *Int8PtrTy;
456   IntegerType *Int32Ty;
457   IntegerType *Int64Ty;
458   IntegerType *IntPtrTy;
459 
460   bool RemarksEnabled;
461   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
462 
463   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
464 
465   // This map keeps track of the number of "unsafe" uses of a loaded function
466   // pointer. The key is the associated llvm.type.test intrinsic call generated
467   // by this pass. An unsafe use is one that calls the loaded function pointer
468   // directly. Every time we eliminate an unsafe use (for example, by
469   // devirtualizing it or by applying virtual constant propagation), we
470   // decrement the value stored in this map. If a value reaches zero, we can
471   // eliminate the type check by RAUWing the associated llvm.type.test call with
472   // true.
473   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
474 
475   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
476                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
477                function_ref<DominatorTree &(Function &)> LookupDomTree,
478                ModuleSummaryIndex *ExportSummary,
479                const ModuleSummaryIndex *ImportSummary)
480       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
481         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
482         Int8Ty(Type::getInt8Ty(M.getContext())),
483         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
484         Int32Ty(Type::getInt32Ty(M.getContext())),
485         Int64Ty(Type::getInt64Ty(M.getContext())),
486         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
487         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
488     assert(!(ExportSummary && ImportSummary));
489   }
490 
491   bool areRemarksEnabled();
492 
493   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
494   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
495 
496   void buildTypeIdentifierMap(
497       std::vector<VTableBits> &Bits,
498       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
499   Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
500   bool
501   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
502                             const std::set<TypeMemberInfo> &TypeMemberInfos,
503                             uint64_t ByteOffset);
504 
505   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
506                              bool &IsExported);
507   bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
508                            VTableSlotInfo &SlotInfo,
509                            WholeProgramDevirtResolution *Res);
510 
511   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
512                               bool &IsExported);
513   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
514                             VTableSlotInfo &SlotInfo,
515                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
516 
517   bool tryEvaluateFunctionsWithArgs(
518       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
519       ArrayRef<uint64_t> Args);
520 
521   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
522                              uint64_t TheRetVal);
523   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
524                            CallSiteInfo &CSInfo,
525                            WholeProgramDevirtResolution::ByArg *Res);
526 
527   // Returns the global symbol name that is used to export information about the
528   // given vtable slot and list of arguments.
529   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
530                             StringRef Name);
531 
532   bool shouldExportConstantsAsAbsoluteSymbols();
533 
534   // This function is called during the export phase to create a symbol
535   // definition containing information about the given vtable slot and list of
536   // arguments.
537   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
538                     Constant *C);
539   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
540                       uint32_t Const, uint32_t &Storage);
541 
542   // This function is called during the import phase to create a reference to
543   // the symbol definition created during the export phase.
544   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
545                          StringRef Name);
546   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
547                            StringRef Name, IntegerType *IntTy,
548                            uint32_t Storage);
549 
550   Constant *getMemberAddr(const TypeMemberInfo *M);
551 
552   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
553                             Constant *UniqueMemberAddr);
554   bool tryUniqueRetValOpt(unsigned BitWidth,
555                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
556                           CallSiteInfo &CSInfo,
557                           WholeProgramDevirtResolution::ByArg *Res,
558                           VTableSlot Slot, ArrayRef<uint64_t> Args);
559 
560   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
561                              Constant *Byte, Constant *Bit);
562   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
563                            VTableSlotInfo &SlotInfo,
564                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
565 
566   void rebuildGlobal(VTableBits &B);
567 
568   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
569   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
570 
571   // If we were able to eliminate all unsafe uses for a type checked load,
572   // eliminate the associated type tests by replacing them with true.
573   void removeRedundantTypeTests();
574 
575   bool run();
576 
577   // Lower the module using the action and summary passed as command line
578   // arguments. For testing purposes only.
579   static bool
580   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
581                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
582                 function_ref<DominatorTree &(Function &)> LookupDomTree);
583 };
584 
585 struct DevirtIndex {
586   ModuleSummaryIndex &ExportSummary;
587   // The set in which to record GUIDs exported from their module by
588   // devirtualization, used by client to ensure they are not internalized.
589   std::set<GlobalValue::GUID> &ExportedGUIDs;
590   // A map in which to record the information necessary to locate the WPD
591   // resolution for local targets in case they are exported by cross module
592   // importing.
593   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
594 
595   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
596 
597   DevirtIndex(
598       ModuleSummaryIndex &ExportSummary,
599       std::set<GlobalValue::GUID> &ExportedGUIDs,
600       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
601       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
602         LocalWPDTargetsMap(LocalWPDTargetsMap) {}
603 
604   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
605                                  const TypeIdCompatibleVtableInfo TIdInfo,
606                                  uint64_t ByteOffset);
607 
608   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
609                            VTableSlotSummary &SlotSummary,
610                            VTableSlotInfo &SlotInfo,
611                            WholeProgramDevirtResolution *Res,
612                            std::set<ValueInfo> &DevirtTargets);
613 
614   void run();
615 };
616 
617 struct WholeProgramDevirt : public ModulePass {
618   static char ID;
619 
620   bool UseCommandLine = false;
621 
622   ModuleSummaryIndex *ExportSummary;
623   const ModuleSummaryIndex *ImportSummary;
624 
625   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
626     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
627   }
628 
629   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
630                      const ModuleSummaryIndex *ImportSummary)
631       : ModulePass(ID), ExportSummary(ExportSummary),
632         ImportSummary(ImportSummary) {
633     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
634   }
635 
636   bool runOnModule(Module &M) override {
637     if (skipModule(M))
638       return false;
639 
640     // In the new pass manager, we can request the optimization
641     // remark emitter pass on a per-function-basis, which the
642     // OREGetter will do for us.
643     // In the old pass manager, this is harder, so we just build
644     // an optimization remark emitter on the fly, when we need it.
645     std::unique_ptr<OptimizationRemarkEmitter> ORE;
646     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
647       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
648       return *ORE;
649     };
650 
651     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
652       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
653     };
654 
655     if (UseCommandLine)
656       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
657                                          LookupDomTree);
658 
659     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
660                         ExportSummary, ImportSummary)
661         .run();
662   }
663 
664   void getAnalysisUsage(AnalysisUsage &AU) const override {
665     AU.addRequired<AssumptionCacheTracker>();
666     AU.addRequired<TargetLibraryInfoWrapperPass>();
667     AU.addRequired<DominatorTreeWrapperPass>();
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
674                       "Whole program devirtualization", false, false)
675 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
676 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
678 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
679                     "Whole program devirtualization", false, false)
680 char WholeProgramDevirt::ID = 0;
681 
682 ModulePass *
683 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
684                                    const ModuleSummaryIndex *ImportSummary) {
685   return new WholeProgramDevirt(ExportSummary, ImportSummary);
686 }
687 
688 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
689                                               ModuleAnalysisManager &AM) {
690   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
691   auto AARGetter = [&](Function &F) -> AAResults & {
692     return FAM.getResult<AAManager>(F);
693   };
694   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
695     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
696   };
697   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
698     return FAM.getResult<DominatorTreeAnalysis>(F);
699   };
700   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
701                     ImportSummary)
702            .run())
703     return PreservedAnalyses::all();
704   return PreservedAnalyses::none();
705 }
706 
707 namespace llvm {
708 void runWholeProgramDevirtOnIndex(
709     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
710     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
711   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
712 }
713 
714 void updateIndexWPDForExports(
715     ModuleSummaryIndex &Summary,
716     function_ref<bool(StringRef, GlobalValue::GUID)> isExported,
717     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
718   for (auto &T : LocalWPDTargetsMap) {
719     auto &VI = T.first;
720     // This was enforced earlier during trySingleImplDevirt.
721     assert(VI.getSummaryList().size() == 1 &&
722            "Devirt of local target has more than one copy");
723     auto &S = VI.getSummaryList()[0];
724     if (!isExported(S->modulePath(), VI.getGUID()))
725       continue;
726 
727     // It's been exported by a cross module import.
728     for (auto &SlotSummary : T.second) {
729       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
730       assert(TIdSum);
731       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
732       assert(WPDRes != TIdSum->WPDRes.end());
733       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
734           WPDRes->second.SingleImplName,
735           Summary.getModuleHash(S->modulePath()));
736     }
737   }
738 }
739 
740 } // end namespace llvm
741 
742 bool DevirtModule::runForTesting(
743     Module &M, function_ref<AAResults &(Function &)> AARGetter,
744     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
745     function_ref<DominatorTree &(Function &)> LookupDomTree) {
746   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
747 
748   // Handle the command-line summary arguments. This code is for testing
749   // purposes only, so we handle errors directly.
750   if (!ClReadSummary.empty()) {
751     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
752                           ": ");
753     auto ReadSummaryFile =
754         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
755 
756     yaml::Input In(ReadSummaryFile->getBuffer());
757     In >> Summary;
758     ExitOnErr(errorCodeToError(In.error()));
759   }
760 
761   bool Changed =
762       DevirtModule(
763           M, AARGetter, OREGetter, LookupDomTree,
764           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
765           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
766           .run();
767 
768   if (!ClWriteSummary.empty()) {
769     ExitOnError ExitOnErr(
770         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
771     std::error_code EC;
772     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
773     ExitOnErr(errorCodeToError(EC));
774 
775     yaml::Output Out(OS);
776     Out << Summary;
777   }
778 
779   return Changed;
780 }
781 
782 void DevirtModule::buildTypeIdentifierMap(
783     std::vector<VTableBits> &Bits,
784     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
785   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
786   Bits.reserve(M.getGlobalList().size());
787   SmallVector<MDNode *, 2> Types;
788   for (GlobalVariable &GV : M.globals()) {
789     Types.clear();
790     GV.getMetadata(LLVMContext::MD_type, Types);
791     if (GV.isDeclaration() || Types.empty())
792       continue;
793 
794     VTableBits *&BitsPtr = GVToBits[&GV];
795     if (!BitsPtr) {
796       Bits.emplace_back();
797       Bits.back().GV = &GV;
798       Bits.back().ObjectSize =
799           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
800       BitsPtr = &Bits.back();
801     }
802 
803     for (MDNode *Type : Types) {
804       auto TypeID = Type->getOperand(1).get();
805 
806       uint64_t Offset =
807           cast<ConstantInt>(
808               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
809               ->getZExtValue();
810 
811       TypeIdMap[TypeID].insert({BitsPtr, Offset});
812     }
813   }
814 }
815 
816 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
817   if (I->getType()->isPointerTy()) {
818     if (Offset == 0)
819       return I;
820     return nullptr;
821   }
822 
823   const DataLayout &DL = M.getDataLayout();
824 
825   if (auto *C = dyn_cast<ConstantStruct>(I)) {
826     const StructLayout *SL = DL.getStructLayout(C->getType());
827     if (Offset >= SL->getSizeInBytes())
828       return nullptr;
829 
830     unsigned Op = SL->getElementContainingOffset(Offset);
831     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
832                               Offset - SL->getElementOffset(Op));
833   }
834   if (auto *C = dyn_cast<ConstantArray>(I)) {
835     ArrayType *VTableTy = C->getType();
836     uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
837 
838     unsigned Op = Offset / ElemSize;
839     if (Op >= C->getNumOperands())
840       return nullptr;
841 
842     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
843                               Offset % ElemSize);
844   }
845   return nullptr;
846 }
847 
848 bool DevirtModule::tryFindVirtualCallTargets(
849     std::vector<VirtualCallTarget> &TargetsForSlot,
850     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
851   for (const TypeMemberInfo &TM : TypeMemberInfos) {
852     if (!TM.Bits->GV->isConstant())
853       return false;
854 
855     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
856                                        TM.Offset + ByteOffset);
857     if (!Ptr)
858       return false;
859 
860     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
861     if (!Fn)
862       return false;
863 
864     // We can disregard __cxa_pure_virtual as a possible call target, as
865     // calls to pure virtuals are UB.
866     if (Fn->getName() == "__cxa_pure_virtual")
867       continue;
868 
869     TargetsForSlot.push_back({Fn, &TM});
870   }
871 
872   // Give up if we couldn't find any targets.
873   return !TargetsForSlot.empty();
874 }
875 
876 bool DevirtIndex::tryFindVirtualCallTargets(
877     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
878     uint64_t ByteOffset) {
879   for (const TypeIdOffsetVtableInfo P : TIdInfo) {
880     // VTable initializer should have only one summary, or all copies must be
881     // linkonce/weak ODR.
882     assert(P.VTableVI.getSummaryList().size() == 1 ||
883            llvm::all_of(
884                P.VTableVI.getSummaryList(),
885                [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
886                  return GlobalValue::isLinkOnceODRLinkage(Summary->linkage()) ||
887                         GlobalValue::isWeakODRLinkage(Summary->linkage());
888                }));
889     const auto *VS = cast<GlobalVarSummary>(P.VTableVI.getSummaryList()[0].get());
890     if (!P.VTableVI.getSummaryList()[0]->isLive())
891       continue;
892     for (auto VTP : VS->vTableFuncs()) {
893       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
894         continue;
895 
896       TargetsForSlot.push_back(VTP.FuncVI);
897     }
898   }
899 
900   // Give up if we couldn't find any targets.
901   return !TargetsForSlot.empty();
902 }
903 
904 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
905                                          Constant *TheFn, bool &IsExported) {
906   auto Apply = [&](CallSiteInfo &CSInfo) {
907     for (auto &&VCallSite : CSInfo.CallSites) {
908       if (RemarksEnabled)
909         VCallSite.emitRemark("single-impl",
910                              TheFn->stripPointerCasts()->getName(), OREGetter);
911       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
912           TheFn, VCallSite.CS.getCalledValue()->getType()));
913       // This use is no longer unsafe.
914       if (VCallSite.NumUnsafeUses)
915         --*VCallSite.NumUnsafeUses;
916     }
917     if (CSInfo.isExported())
918       IsExported = true;
919     CSInfo.markDevirt();
920   };
921   Apply(SlotInfo.CSInfo);
922   for (auto &P : SlotInfo.ConstCSInfo)
923     Apply(P.second);
924 }
925 
926 bool DevirtModule::trySingleImplDevirt(
927     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
928     VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
929   // See if the program contains a single implementation of this virtual
930   // function.
931   Function *TheFn = TargetsForSlot[0].Fn;
932   for (auto &&Target : TargetsForSlot)
933     if (TheFn != Target.Fn)
934       return false;
935 
936   // If so, update each call site to call that implementation directly.
937   if (RemarksEnabled)
938     TargetsForSlot[0].WasDevirt = true;
939 
940   bool IsExported = false;
941   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
942   if (!IsExported)
943     return false;
944 
945   // If the only implementation has local linkage, we must promote to external
946   // to make it visible to thin LTO objects. We can only get here during the
947   // ThinLTO export phase.
948   if (TheFn->hasLocalLinkage()) {
949     std::string NewName = (TheFn->getName() + "$merged").str();
950 
951     // Since we are renaming the function, any comdats with the same name must
952     // also be renamed. This is required when targeting COFF, as the comdat name
953     // must match one of the names of the symbols in the comdat.
954     if (Comdat *C = TheFn->getComdat()) {
955       if (C->getName() == TheFn->getName()) {
956         Comdat *NewC = M.getOrInsertComdat(NewName);
957         NewC->setSelectionKind(C->getSelectionKind());
958         for (GlobalObject &GO : M.global_objects())
959           if (GO.getComdat() == C)
960             GO.setComdat(NewC);
961       }
962     }
963 
964     TheFn->setLinkage(GlobalValue::ExternalLinkage);
965     TheFn->setVisibility(GlobalValue::HiddenVisibility);
966     TheFn->setName(NewName);
967   }
968 
969   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
970   Res->SingleImplName = TheFn->getName();
971 
972   return true;
973 }
974 
975 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
976                                       VTableSlotSummary &SlotSummary,
977                                       VTableSlotInfo &SlotInfo,
978                                       WholeProgramDevirtResolution *Res,
979                                       std::set<ValueInfo> &DevirtTargets) {
980   // See if the program contains a single implementation of this virtual
981   // function.
982   auto TheFn = TargetsForSlot[0];
983   for (auto &&Target : TargetsForSlot)
984     if (TheFn != Target)
985       return false;
986 
987   // Don't devirtualize if we don't have target definition.
988   auto Size = TheFn.getSummaryList().size();
989   if (!Size)
990     return false;
991 
992   // If the summary list contains multiple summaries where at least one is
993   // a local, give up, as we won't know which (possibly promoted) name to use.
994   for (auto &S : TheFn.getSummaryList())
995     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
996       return false;
997 
998   // Collect functions devirtualized at least for one call site for stats.
999   if (PrintSummaryDevirt)
1000     DevirtTargets.insert(TheFn);
1001 
1002   auto &S = TheFn.getSummaryList()[0];
1003   bool IsExported = false;
1004 
1005   // Insert calls into the summary index so that the devirtualized targets
1006   // are eligible for import.
1007   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1008   // to better ensure we have the opportunity to inline them.
1009   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1010   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1011     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1012       FS->addCall({TheFn, CI});
1013       IsExported |= S->modulePath() != FS->modulePath();
1014     }
1015     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1016       FS->addCall({TheFn, CI});
1017       IsExported |= S->modulePath() != FS->modulePath();
1018     }
1019   };
1020   AddCalls(SlotInfo.CSInfo);
1021   for (auto &P : SlotInfo.ConstCSInfo)
1022     AddCalls(P.second);
1023 
1024   if (IsExported)
1025     ExportedGUIDs.insert(TheFn.getGUID());
1026 
1027   // Record in summary for use in devirtualization during the ThinLTO import
1028   // step.
1029   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1030   if (GlobalValue::isLocalLinkage(S->linkage())) {
1031     if (IsExported)
1032       // If target is a local function and we are exporting it by
1033       // devirtualizing a call in another module, we need to record the
1034       // promoted name.
1035       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1036           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1037     else {
1038       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1039       Res->SingleImplName = TheFn.name();
1040     }
1041   } else
1042     Res->SingleImplName = TheFn.name();
1043 
1044   // Name will be empty if this thin link driven off of serialized combined
1045   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1046   // legacy LTO API anyway.
1047   assert(!Res->SingleImplName.empty());
1048 
1049   return true;
1050 }
1051 
1052 void DevirtModule::tryICallBranchFunnel(
1053     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1054     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1055   Triple T(M.getTargetTriple());
1056   if (T.getArch() != Triple::x86_64)
1057     return;
1058 
1059   if (TargetsForSlot.size() > ClThreshold)
1060     return;
1061 
1062   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1063   if (!HasNonDevirt)
1064     for (auto &P : SlotInfo.ConstCSInfo)
1065       if (!P.second.AllCallSitesDevirted) {
1066         HasNonDevirt = true;
1067         break;
1068       }
1069 
1070   if (!HasNonDevirt)
1071     return;
1072 
1073   FunctionType *FT =
1074       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1075   Function *JT;
1076   if (isa<MDString>(Slot.TypeID)) {
1077     JT = Function::Create(FT, Function::ExternalLinkage,
1078                           M.getDataLayout().getProgramAddressSpace(),
1079                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1080     JT->setVisibility(GlobalValue::HiddenVisibility);
1081   } else {
1082     JT = Function::Create(FT, Function::InternalLinkage,
1083                           M.getDataLayout().getProgramAddressSpace(),
1084                           "branch_funnel", &M);
1085   }
1086   JT->addAttribute(1, Attribute::Nest);
1087 
1088   std::vector<Value *> JTArgs;
1089   JTArgs.push_back(JT->arg_begin());
1090   for (auto &T : TargetsForSlot) {
1091     JTArgs.push_back(getMemberAddr(T.TM));
1092     JTArgs.push_back(T.Fn);
1093   }
1094 
1095   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1096   Function *Intr =
1097       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1098 
1099   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1100   CI->setTailCallKind(CallInst::TCK_MustTail);
1101   ReturnInst::Create(M.getContext(), nullptr, BB);
1102 
1103   bool IsExported = false;
1104   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1105   if (IsExported)
1106     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1107 }
1108 
1109 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1110                                           Constant *JT, bool &IsExported) {
1111   auto Apply = [&](CallSiteInfo &CSInfo) {
1112     if (CSInfo.isExported())
1113       IsExported = true;
1114     if (CSInfo.AllCallSitesDevirted)
1115       return;
1116     for (auto &&VCallSite : CSInfo.CallSites) {
1117       CallSite CS = VCallSite.CS;
1118 
1119       // Jump tables are only profitable if the retpoline mitigation is enabled.
1120       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1121       if (FSAttr.hasAttribute(Attribute::None) ||
1122           !FSAttr.getValueAsString().contains("+retpoline"))
1123         continue;
1124 
1125       if (RemarksEnabled)
1126         VCallSite.emitRemark("branch-funnel",
1127                              JT->stripPointerCasts()->getName(), OREGetter);
1128 
1129       // Pass the address of the vtable in the nest register, which is r10 on
1130       // x86_64.
1131       std::vector<Type *> NewArgs;
1132       NewArgs.push_back(Int8PtrTy);
1133       for (Type *T : CS.getFunctionType()->params())
1134         NewArgs.push_back(T);
1135       FunctionType *NewFT =
1136           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1137                             CS.getFunctionType()->isVarArg());
1138       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1139 
1140       IRBuilder<> IRB(CS.getInstruction());
1141       std::vector<Value *> Args;
1142       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1143       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1144         Args.push_back(CS.getArgOperand(I));
1145 
1146       CallSite NewCS;
1147       if (CS.isCall())
1148         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1149       else
1150         NewCS = IRB.CreateInvoke(
1151             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1152             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1153             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1154       NewCS.setCallingConv(CS.getCallingConv());
1155 
1156       AttributeList Attrs = CS.getAttributes();
1157       std::vector<AttributeSet> NewArgAttrs;
1158       NewArgAttrs.push_back(AttributeSet::get(
1159           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1160                               M.getContext(), Attribute::Nest)}));
1161       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1162         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1163       NewCS.setAttributes(
1164           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1165                              Attrs.getRetAttributes(), NewArgAttrs));
1166 
1167       CS->replaceAllUsesWith(NewCS.getInstruction());
1168       CS->eraseFromParent();
1169 
1170       // This use is no longer unsafe.
1171       if (VCallSite.NumUnsafeUses)
1172         --*VCallSite.NumUnsafeUses;
1173     }
1174     // Don't mark as devirtualized because there may be callers compiled without
1175     // retpoline mitigation, which would mean that they are lowered to
1176     // llvm.type.test and therefore require an llvm.type.test resolution for the
1177     // type identifier.
1178   };
1179   Apply(SlotInfo.CSInfo);
1180   for (auto &P : SlotInfo.ConstCSInfo)
1181     Apply(P.second);
1182 }
1183 
1184 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1185     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1186     ArrayRef<uint64_t> Args) {
1187   // Evaluate each function and store the result in each target's RetVal
1188   // field.
1189   for (VirtualCallTarget &Target : TargetsForSlot) {
1190     if (Target.Fn->arg_size() != Args.size() + 1)
1191       return false;
1192 
1193     Evaluator Eval(M.getDataLayout(), nullptr);
1194     SmallVector<Constant *, 2> EvalArgs;
1195     EvalArgs.push_back(
1196         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1197     for (unsigned I = 0; I != Args.size(); ++I) {
1198       auto *ArgTy = dyn_cast<IntegerType>(
1199           Target.Fn->getFunctionType()->getParamType(I + 1));
1200       if (!ArgTy)
1201         return false;
1202       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1203     }
1204 
1205     Constant *RetVal;
1206     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1207         !isa<ConstantInt>(RetVal))
1208       return false;
1209     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1210   }
1211   return true;
1212 }
1213 
1214 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1215                                          uint64_t TheRetVal) {
1216   for (auto Call : CSInfo.CallSites)
1217     Call.replaceAndErase(
1218         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1219         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1220   CSInfo.markDevirt();
1221 }
1222 
1223 bool DevirtModule::tryUniformRetValOpt(
1224     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1225     WholeProgramDevirtResolution::ByArg *Res) {
1226   // Uniform return value optimization. If all functions return the same
1227   // constant, replace all calls with that constant.
1228   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1229   for (const VirtualCallTarget &Target : TargetsForSlot)
1230     if (Target.RetVal != TheRetVal)
1231       return false;
1232 
1233   if (CSInfo.isExported()) {
1234     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1235     Res->Info = TheRetVal;
1236   }
1237 
1238   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1239   if (RemarksEnabled)
1240     for (auto &&Target : TargetsForSlot)
1241       Target.WasDevirt = true;
1242   return true;
1243 }
1244 
1245 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1246                                         ArrayRef<uint64_t> Args,
1247                                         StringRef Name) {
1248   std::string FullName = "__typeid_";
1249   raw_string_ostream OS(FullName);
1250   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1251   for (uint64_t Arg : Args)
1252     OS << '_' << Arg;
1253   OS << '_' << Name;
1254   return OS.str();
1255 }
1256 
1257 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1258   Triple T(M.getTargetTriple());
1259   return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1260          T.getObjectFormat() == Triple::ELF;
1261 }
1262 
1263 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1264                                 StringRef Name, Constant *C) {
1265   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1266                                         getGlobalName(Slot, Args, Name), C, &M);
1267   GA->setVisibility(GlobalValue::HiddenVisibility);
1268 }
1269 
1270 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1271                                   StringRef Name, uint32_t Const,
1272                                   uint32_t &Storage) {
1273   if (shouldExportConstantsAsAbsoluteSymbols()) {
1274     exportGlobal(
1275         Slot, Args, Name,
1276         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1277     return;
1278   }
1279 
1280   Storage = Const;
1281 }
1282 
1283 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1284                                      StringRef Name) {
1285   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1286   auto *GV = dyn_cast<GlobalVariable>(C);
1287   if (GV)
1288     GV->setVisibility(GlobalValue::HiddenVisibility);
1289   return C;
1290 }
1291 
1292 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1293                                        StringRef Name, IntegerType *IntTy,
1294                                        uint32_t Storage) {
1295   if (!shouldExportConstantsAsAbsoluteSymbols())
1296     return ConstantInt::get(IntTy, Storage);
1297 
1298   Constant *C = importGlobal(Slot, Args, Name);
1299   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1300   C = ConstantExpr::getPtrToInt(C, IntTy);
1301 
1302   // We only need to set metadata if the global is newly created, in which
1303   // case it would not have hidden visibility.
1304   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1305     return C;
1306 
1307   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1308     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1309     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1310     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1311                     MDNode::get(M.getContext(), {MinC, MaxC}));
1312   };
1313   unsigned AbsWidth = IntTy->getBitWidth();
1314   if (AbsWidth == IntPtrTy->getBitWidth())
1315     SetAbsRange(~0ull, ~0ull); // Full set.
1316   else
1317     SetAbsRange(0, 1ull << AbsWidth);
1318   return C;
1319 }
1320 
1321 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1322                                         bool IsOne,
1323                                         Constant *UniqueMemberAddr) {
1324   for (auto &&Call : CSInfo.CallSites) {
1325     IRBuilder<> B(Call.CS.getInstruction());
1326     Value *Cmp =
1327         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1328                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1329     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1330     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1331                          Cmp);
1332   }
1333   CSInfo.markDevirt();
1334 }
1335 
1336 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1337   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1338   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1339                                         ConstantInt::get(Int64Ty, M->Offset));
1340 }
1341 
1342 bool DevirtModule::tryUniqueRetValOpt(
1343     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1344     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1345     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1346   // IsOne controls whether we look for a 0 or a 1.
1347   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1348     const TypeMemberInfo *UniqueMember = nullptr;
1349     for (const VirtualCallTarget &Target : TargetsForSlot) {
1350       if (Target.RetVal == (IsOne ? 1 : 0)) {
1351         if (UniqueMember)
1352           return false;
1353         UniqueMember = Target.TM;
1354       }
1355     }
1356 
1357     // We should have found a unique member or bailed out by now. We already
1358     // checked for a uniform return value in tryUniformRetValOpt.
1359     assert(UniqueMember);
1360 
1361     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1362     if (CSInfo.isExported()) {
1363       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1364       Res->Info = IsOne;
1365 
1366       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1367     }
1368 
1369     // Replace each call with the comparison.
1370     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1371                          UniqueMemberAddr);
1372 
1373     // Update devirtualization statistics for targets.
1374     if (RemarksEnabled)
1375       for (auto &&Target : TargetsForSlot)
1376         Target.WasDevirt = true;
1377 
1378     return true;
1379   };
1380 
1381   if (BitWidth == 1) {
1382     if (tryUniqueRetValOptFor(true))
1383       return true;
1384     if (tryUniqueRetValOptFor(false))
1385       return true;
1386   }
1387   return false;
1388 }
1389 
1390 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1391                                          Constant *Byte, Constant *Bit) {
1392   for (auto Call : CSInfo.CallSites) {
1393     auto *RetType = cast<IntegerType>(Call.CS.getType());
1394     IRBuilder<> B(Call.CS.getInstruction());
1395     Value *Addr =
1396         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1397     if (RetType->getBitWidth() == 1) {
1398       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1399       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1400       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1401       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1402                            OREGetter, IsBitSet);
1403     } else {
1404       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1405       Value *Val = B.CreateLoad(RetType, ValAddr);
1406       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1407                            OREGetter, Val);
1408     }
1409   }
1410   CSInfo.markDevirt();
1411 }
1412 
1413 bool DevirtModule::tryVirtualConstProp(
1414     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1415     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1416   // This only works if the function returns an integer.
1417   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1418   if (!RetType)
1419     return false;
1420   unsigned BitWidth = RetType->getBitWidth();
1421   if (BitWidth > 64)
1422     return false;
1423 
1424   // Make sure that each function is defined, does not access memory, takes at
1425   // least one argument, does not use its first argument (which we assume is
1426   // 'this'), and has the same return type.
1427   //
1428   // Note that we test whether this copy of the function is readnone, rather
1429   // than testing function attributes, which must hold for any copy of the
1430   // function, even a less optimized version substituted at link time. This is
1431   // sound because the virtual constant propagation optimizations effectively
1432   // inline all implementations of the virtual function into each call site,
1433   // rather than using function attributes to perform local optimization.
1434   for (VirtualCallTarget &Target : TargetsForSlot) {
1435     if (Target.Fn->isDeclaration() ||
1436         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1437             MAK_ReadNone ||
1438         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1439         Target.Fn->getReturnType() != RetType)
1440       return false;
1441   }
1442 
1443   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1444     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1445       continue;
1446 
1447     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1448     if (Res)
1449       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1450 
1451     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1452       continue;
1453 
1454     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1455                            ResByArg, Slot, CSByConstantArg.first))
1456       continue;
1457 
1458     // Find an allocation offset in bits in all vtables associated with the
1459     // type.
1460     uint64_t AllocBefore =
1461         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1462     uint64_t AllocAfter =
1463         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1464 
1465     // Calculate the total amount of padding needed to store a value at both
1466     // ends of the object.
1467     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1468     for (auto &&Target : TargetsForSlot) {
1469       TotalPaddingBefore += std::max<int64_t>(
1470           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1471       TotalPaddingAfter += std::max<int64_t>(
1472           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1473     }
1474 
1475     // If the amount of padding is too large, give up.
1476     // FIXME: do something smarter here.
1477     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1478       continue;
1479 
1480     // Calculate the offset to the value as a (possibly negative) byte offset
1481     // and (if applicable) a bit offset, and store the values in the targets.
1482     int64_t OffsetByte;
1483     uint64_t OffsetBit;
1484     if (TotalPaddingBefore <= TotalPaddingAfter)
1485       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1486                             OffsetBit);
1487     else
1488       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1489                            OffsetBit);
1490 
1491     if (RemarksEnabled)
1492       for (auto &&Target : TargetsForSlot)
1493         Target.WasDevirt = true;
1494 
1495 
1496     if (CSByConstantArg.second.isExported()) {
1497       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1498       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1499                      ResByArg->Byte);
1500       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1501                      ResByArg->Bit);
1502     }
1503 
1504     // Rewrite each call to a load from OffsetByte/OffsetBit.
1505     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1506     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1507     applyVirtualConstProp(CSByConstantArg.second,
1508                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1509   }
1510   return true;
1511 }
1512 
1513 void DevirtModule::rebuildGlobal(VTableBits &B) {
1514   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1515     return;
1516 
1517   // Align the before byte array to the global's minimum alignment so that we
1518   // don't break any alignment requirements on the global.
1519   MaybeAlign Alignment(B.GV->getAlignment());
1520   if (!Alignment)
1521     Alignment =
1522         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1523   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1524 
1525   // Before was stored in reverse order; flip it now.
1526   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1527     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1528 
1529   // Build an anonymous global containing the before bytes, followed by the
1530   // original initializer, followed by the after bytes.
1531   auto NewInit = ConstantStruct::getAnon(
1532       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1533        B.GV->getInitializer(),
1534        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1535   auto NewGV =
1536       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1537                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1538   NewGV->setSection(B.GV->getSection());
1539   NewGV->setComdat(B.GV->getComdat());
1540   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1541 
1542   // Copy the original vtable's metadata to the anonymous global, adjusting
1543   // offsets as required.
1544   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1545 
1546   // Build an alias named after the original global, pointing at the second
1547   // element (the original initializer).
1548   auto Alias = GlobalAlias::create(
1549       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1550       ConstantExpr::getGetElementPtr(
1551           NewInit->getType(), NewGV,
1552           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1553                                ConstantInt::get(Int32Ty, 1)}),
1554       &M);
1555   Alias->setVisibility(B.GV->getVisibility());
1556   Alias->takeName(B.GV);
1557 
1558   B.GV->replaceAllUsesWith(Alias);
1559   B.GV->eraseFromParent();
1560 }
1561 
1562 bool DevirtModule::areRemarksEnabled() {
1563   const auto &FL = M.getFunctionList();
1564   for (const Function &Fn : FL) {
1565     const auto &BBL = Fn.getBasicBlockList();
1566     if (BBL.empty())
1567       continue;
1568     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1569     return DI.isEnabled();
1570   }
1571   return false;
1572 }
1573 
1574 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1575                                      Function *AssumeFunc) {
1576   // Find all virtual calls via a virtual table pointer %p under an assumption
1577   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1578   // points to a member of the type identifier %md. Group calls by (type ID,
1579   // offset) pair (effectively the identity of the virtual function) and store
1580   // to CallSlots.
1581   DenseSet<CallSite> SeenCallSites;
1582   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1583        I != E;) {
1584     auto CI = dyn_cast<CallInst>(I->getUser());
1585     ++I;
1586     if (!CI)
1587       continue;
1588 
1589     // Search for virtual calls based on %p and add them to DevirtCalls.
1590     SmallVector<DevirtCallSite, 1> DevirtCalls;
1591     SmallVector<CallInst *, 1> Assumes;
1592     auto &DT = LookupDomTree(*CI->getFunction());
1593     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1594 
1595     // If we found any, add them to CallSlots.
1596     if (!Assumes.empty()) {
1597       Metadata *TypeId =
1598           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1599       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1600       for (DevirtCallSite Call : DevirtCalls) {
1601         // Only add this CallSite if we haven't seen it before. The vtable
1602         // pointer may have been CSE'd with pointers from other call sites,
1603         // and we don't want to process call sites multiple times. We can't
1604         // just skip the vtable Ptr if it has been seen before, however, since
1605         // it may be shared by type tests that dominate different calls.
1606         if (SeenCallSites.insert(Call.CS).second)
1607           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1608       }
1609     }
1610 
1611     // We no longer need the assumes or the type test.
1612     for (auto Assume : Assumes)
1613       Assume->eraseFromParent();
1614     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1615     // may use the vtable argument later.
1616     if (CI->use_empty())
1617       CI->eraseFromParent();
1618   }
1619 }
1620 
1621 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1622   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1623 
1624   for (auto I = TypeCheckedLoadFunc->use_begin(),
1625             E = TypeCheckedLoadFunc->use_end();
1626        I != E;) {
1627     auto CI = dyn_cast<CallInst>(I->getUser());
1628     ++I;
1629     if (!CI)
1630       continue;
1631 
1632     Value *Ptr = CI->getArgOperand(0);
1633     Value *Offset = CI->getArgOperand(1);
1634     Value *TypeIdValue = CI->getArgOperand(2);
1635     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1636 
1637     SmallVector<DevirtCallSite, 1> DevirtCalls;
1638     SmallVector<Instruction *, 1> LoadedPtrs;
1639     SmallVector<Instruction *, 1> Preds;
1640     bool HasNonCallUses = false;
1641     auto &DT = LookupDomTree(*CI->getFunction());
1642     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1643                                                HasNonCallUses, CI, DT);
1644 
1645     // Start by generating "pessimistic" code that explicitly loads the function
1646     // pointer from the vtable and performs the type check. If possible, we will
1647     // eliminate the load and the type check later.
1648 
1649     // If possible, only generate the load at the point where it is used.
1650     // This helps avoid unnecessary spills.
1651     IRBuilder<> LoadB(
1652         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1653     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1654     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1655     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1656 
1657     for (Instruction *LoadedPtr : LoadedPtrs) {
1658       LoadedPtr->replaceAllUsesWith(LoadedValue);
1659       LoadedPtr->eraseFromParent();
1660     }
1661 
1662     // Likewise for the type test.
1663     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1664     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1665 
1666     for (Instruction *Pred : Preds) {
1667       Pred->replaceAllUsesWith(TypeTestCall);
1668       Pred->eraseFromParent();
1669     }
1670 
1671     // We have already erased any extractvalue instructions that refer to the
1672     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1673     // (although this is unlikely). In that case, explicitly build a pair and
1674     // RAUW it.
1675     if (!CI->use_empty()) {
1676       Value *Pair = UndefValue::get(CI->getType());
1677       IRBuilder<> B(CI);
1678       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1679       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1680       CI->replaceAllUsesWith(Pair);
1681     }
1682 
1683     // The number of unsafe uses is initially the number of uses.
1684     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1685     NumUnsafeUses = DevirtCalls.size();
1686 
1687     // If the function pointer has a non-call user, we cannot eliminate the type
1688     // check, as one of those users may eventually call the pointer. Increment
1689     // the unsafe use count to make sure it cannot reach zero.
1690     if (HasNonCallUses)
1691       ++NumUnsafeUses;
1692     for (DevirtCallSite Call : DevirtCalls) {
1693       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1694                                                    &NumUnsafeUses);
1695     }
1696 
1697     CI->eraseFromParent();
1698   }
1699 }
1700 
1701 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1702   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1703   if (!TypeId)
1704     return;
1705   const TypeIdSummary *TidSummary =
1706       ImportSummary->getTypeIdSummary(TypeId->getString());
1707   if (!TidSummary)
1708     return;
1709   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1710   if (ResI == TidSummary->WPDRes.end())
1711     return;
1712   const WholeProgramDevirtResolution &Res = ResI->second;
1713 
1714   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1715     assert(!Res.SingleImplName.empty());
1716     // The type of the function in the declaration is irrelevant because every
1717     // call site will cast it to the correct type.
1718     Constant *SingleImpl =
1719         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1720                                              Type::getVoidTy(M.getContext()))
1721                            .getCallee());
1722 
1723     // This is the import phase so we should not be exporting anything.
1724     bool IsExported = false;
1725     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1726     assert(!IsExported);
1727   }
1728 
1729   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1730     auto I = Res.ResByArg.find(CSByConstantArg.first);
1731     if (I == Res.ResByArg.end())
1732       continue;
1733     auto &ResByArg = I->second;
1734     // FIXME: We should figure out what to do about the "function name" argument
1735     // to the apply* functions, as the function names are unavailable during the
1736     // importing phase. For now we just pass the empty string. This does not
1737     // impact correctness because the function names are just used for remarks.
1738     switch (ResByArg.TheKind) {
1739     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1740       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1741       break;
1742     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1743       Constant *UniqueMemberAddr =
1744           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1745       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1746                            UniqueMemberAddr);
1747       break;
1748     }
1749     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1750       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1751                                       Int32Ty, ResByArg.Byte);
1752       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1753                                      ResByArg.Bit);
1754       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1755       break;
1756     }
1757     default:
1758       break;
1759     }
1760   }
1761 
1762   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1763     // The type of the function is irrelevant, because it's bitcast at calls
1764     // anyhow.
1765     Constant *JT = cast<Constant>(
1766         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1767                               Type::getVoidTy(M.getContext()))
1768             .getCallee());
1769     bool IsExported = false;
1770     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1771     assert(!IsExported);
1772   }
1773 }
1774 
1775 void DevirtModule::removeRedundantTypeTests() {
1776   auto True = ConstantInt::getTrue(M.getContext());
1777   for (auto &&U : NumUnsafeUsesForTypeTest) {
1778     if (U.second == 0) {
1779       U.first->replaceAllUsesWith(True);
1780       U.first->eraseFromParent();
1781     }
1782   }
1783 }
1784 
1785 bool DevirtModule::run() {
1786   // If only some of the modules were split, we cannot correctly perform
1787   // this transformation. We already checked for the presense of type tests
1788   // with partially split modules during the thin link, and would have emitted
1789   // an error if any were found, so here we can simply return.
1790   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1791       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1792     return false;
1793 
1794   Function *TypeTestFunc =
1795       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1796   Function *TypeCheckedLoadFunc =
1797       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1798   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1799 
1800   // Normally if there are no users of the devirtualization intrinsics in the
1801   // module, this pass has nothing to do. But if we are exporting, we also need
1802   // to handle any users that appear only in the function summaries.
1803   if (!ExportSummary &&
1804       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1805        AssumeFunc->use_empty()) &&
1806       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1807     return false;
1808 
1809   if (TypeTestFunc && AssumeFunc)
1810     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1811 
1812   if (TypeCheckedLoadFunc)
1813     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1814 
1815   if (ImportSummary) {
1816     for (auto &S : CallSlots)
1817       importResolution(S.first, S.second);
1818 
1819     removeRedundantTypeTests();
1820 
1821     // The rest of the code is only necessary when exporting or during regular
1822     // LTO, so we are done.
1823     return true;
1824   }
1825 
1826   // Rebuild type metadata into a map for easy lookup.
1827   std::vector<VTableBits> Bits;
1828   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1829   buildTypeIdentifierMap(Bits, TypeIdMap);
1830   if (TypeIdMap.empty())
1831     return true;
1832 
1833   // Collect information from summary about which calls to try to devirtualize.
1834   if (ExportSummary) {
1835     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1836     for (auto &P : TypeIdMap) {
1837       if (auto *TypeId = dyn_cast<MDString>(P.first))
1838         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1839             TypeId);
1840     }
1841 
1842     for (auto &P : *ExportSummary) {
1843       for (auto &S : P.second.SummaryList) {
1844         auto *FS = dyn_cast<FunctionSummary>(S.get());
1845         if (!FS)
1846           continue;
1847         // FIXME: Only add live functions.
1848         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1849           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1850             CallSlots[{MD, VF.Offset}]
1851                 .CSInfo.markSummaryHasTypeTestAssumeUsers();
1852           }
1853         }
1854         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1855           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1856             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1857           }
1858         }
1859         for (const FunctionSummary::ConstVCall &VC :
1860              FS->type_test_assume_const_vcalls()) {
1861           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1862             CallSlots[{MD, VC.VFunc.Offset}]
1863                 .ConstCSInfo[VC.Args]
1864                 .markSummaryHasTypeTestAssumeUsers();
1865           }
1866         }
1867         for (const FunctionSummary::ConstVCall &VC :
1868              FS->type_checked_load_const_vcalls()) {
1869           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1870             CallSlots[{MD, VC.VFunc.Offset}]
1871                 .ConstCSInfo[VC.Args]
1872                 .addSummaryTypeCheckedLoadUser(FS);
1873           }
1874         }
1875       }
1876     }
1877   }
1878 
1879   // For each (type, offset) pair:
1880   bool DidVirtualConstProp = false;
1881   std::map<std::string, Function*> DevirtTargets;
1882   for (auto &S : CallSlots) {
1883     // Search each of the members of the type identifier for the virtual
1884     // function implementation at offset S.first.ByteOffset, and add to
1885     // TargetsForSlot.
1886     std::vector<VirtualCallTarget> TargetsForSlot;
1887     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1888                                   S.first.ByteOffset)) {
1889       WholeProgramDevirtResolution *Res = nullptr;
1890       if (ExportSummary && isa<MDString>(S.first.TypeID))
1891         Res = &ExportSummary
1892                    ->getOrInsertTypeIdSummary(
1893                        cast<MDString>(S.first.TypeID)->getString())
1894                    .WPDRes[S.first.ByteOffset];
1895 
1896       if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
1897         DidVirtualConstProp |=
1898             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1899 
1900         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1901       }
1902 
1903       // Collect functions devirtualized at least for one call site for stats.
1904       if (RemarksEnabled)
1905         for (const auto &T : TargetsForSlot)
1906           if (T.WasDevirt)
1907             DevirtTargets[T.Fn->getName()] = T.Fn;
1908     }
1909 
1910     // CFI-specific: if we are exporting and any llvm.type.checked.load
1911     // intrinsics were *not* devirtualized, we need to add the resulting
1912     // llvm.type.test intrinsics to the function summaries so that the
1913     // LowerTypeTests pass will export them.
1914     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1915       auto GUID =
1916           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1917       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1918         FS->addTypeTest(GUID);
1919       for (auto &CCS : S.second.ConstCSInfo)
1920         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1921           FS->addTypeTest(GUID);
1922     }
1923   }
1924 
1925   if (RemarksEnabled) {
1926     // Generate remarks for each devirtualized function.
1927     for (const auto &DT : DevirtTargets) {
1928       Function *F = DT.second;
1929 
1930       using namespace ore;
1931       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1932                         << "devirtualized "
1933                         << NV("FunctionName", DT.first));
1934     }
1935   }
1936 
1937   removeRedundantTypeTests();
1938 
1939   // Rebuild each global we touched as part of virtual constant propagation to
1940   // include the before and after bytes.
1941   if (DidVirtualConstProp)
1942     for (VTableBits &B : Bits)
1943       rebuildGlobal(B);
1944 
1945   return true;
1946 }
1947 
1948 void DevirtIndex::run() {
1949   if (ExportSummary.typeIdCompatibleVtableMap().empty())
1950     return;
1951 
1952   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1953   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1954     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1955   }
1956 
1957   // Collect information from summary about which calls to try to devirtualize.
1958   for (auto &P : ExportSummary) {
1959     for (auto &S : P.second.SummaryList) {
1960       auto *FS = dyn_cast<FunctionSummary>(S.get());
1961       if (!FS)
1962         continue;
1963       // FIXME: Only add live functions.
1964       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1965         for (StringRef Name : NameByGUID[VF.GUID]) {
1966           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1967         }
1968       }
1969       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1970         for (StringRef Name : NameByGUID[VF.GUID]) {
1971           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1972         }
1973       }
1974       for (const FunctionSummary::ConstVCall &VC :
1975            FS->type_test_assume_const_vcalls()) {
1976         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1977           CallSlots[{Name, VC.VFunc.Offset}]
1978               .ConstCSInfo[VC.Args]
1979               .addSummaryTypeTestAssumeUser(FS);
1980         }
1981       }
1982       for (const FunctionSummary::ConstVCall &VC :
1983            FS->type_checked_load_const_vcalls()) {
1984         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1985           CallSlots[{Name, VC.VFunc.Offset}]
1986               .ConstCSInfo[VC.Args]
1987               .addSummaryTypeCheckedLoadUser(FS);
1988         }
1989       }
1990     }
1991   }
1992 
1993   std::set<ValueInfo> DevirtTargets;
1994   // For each (type, offset) pair:
1995   for (auto &S : CallSlots) {
1996     // Search each of the members of the type identifier for the virtual
1997     // function implementation at offset S.first.ByteOffset, and add to
1998     // TargetsForSlot.
1999     std::vector<ValueInfo> TargetsForSlot;
2000     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2001     assert(TidSummary);
2002     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2003                                   S.first.ByteOffset)) {
2004       WholeProgramDevirtResolution *Res =
2005           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2006                .WPDRes[S.first.ByteOffset];
2007 
2008       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2009                                DevirtTargets))
2010         continue;
2011     }
2012   }
2013 
2014   // Optionally have the thin link print message for each devirtualized
2015   // function.
2016   if (PrintSummaryDevirt)
2017     for (const auto &DT : DevirtTargets)
2018       errs() << "Devirtualized call to " << DT << "\n";
2019 
2020   return;
2021 }
2022