1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Analysis/AliasAnalysis.h" 62 #include "llvm/Analysis/BasicAliasAnalysis.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TypeMetadataUtils.h" 65 #include "llvm/IR/CallSite.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/ModuleSummaryIndexYAML.h" 83 #include "llvm/Pass.h" 84 #include "llvm/PassRegistry.h" 85 #include "llvm/PassSupport.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/Error.h" 88 #include "llvm/Support/FileSystem.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Transforms/IPO.h" 91 #include "llvm/Transforms/IPO/FunctionAttrs.h" 92 #include "llvm/Transforms/Utils/Evaluator.h" 93 #include <algorithm> 94 #include <cstddef> 95 #include <map> 96 #include <set> 97 #include <string> 98 99 using namespace llvm; 100 using namespace wholeprogramdevirt; 101 102 #define DEBUG_TYPE "wholeprogramdevirt" 103 104 static cl::opt<PassSummaryAction> ClSummaryAction( 105 "wholeprogramdevirt-summary-action", 106 cl::desc("What to do with the summary when running this pass"), 107 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 108 clEnumValN(PassSummaryAction::Import, "import", 109 "Import typeid resolutions from summary and globals"), 110 clEnumValN(PassSummaryAction::Export, "export", 111 "Export typeid resolutions to summary and globals")), 112 cl::Hidden); 113 114 static cl::opt<std::string> ClReadSummary( 115 "wholeprogramdevirt-read-summary", 116 cl::desc("Read summary from given YAML file before running pass"), 117 cl::Hidden); 118 119 static cl::opt<std::string> ClWriteSummary( 120 "wholeprogramdevirt-write-summary", 121 cl::desc("Write summary to given YAML file after running pass"), 122 cl::Hidden); 123 124 static cl::opt<unsigned> 125 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 126 cl::init(10), cl::ZeroOrMore, 127 cl::desc("Maximum number of call targets per " 128 "call site to enable branch funnels")); 129 130 static cl::opt<bool> 131 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 132 cl::init(false), cl::ZeroOrMore, 133 cl::desc("Print index-based devirtualization messages")); 134 135 // Find the minimum offset that we may store a value of size Size bits at. If 136 // IsAfter is set, look for an offset before the object, otherwise look for an 137 // offset after the object. 138 uint64_t 139 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 140 bool IsAfter, uint64_t Size) { 141 // Find a minimum offset taking into account only vtable sizes. 142 uint64_t MinByte = 0; 143 for (const VirtualCallTarget &Target : Targets) { 144 if (IsAfter) 145 MinByte = std::max(MinByte, Target.minAfterBytes()); 146 else 147 MinByte = std::max(MinByte, Target.minBeforeBytes()); 148 } 149 150 // Build a vector of arrays of bytes covering, for each target, a slice of the 151 // used region (see AccumBitVector::BytesUsed in 152 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 153 // this aligns the used regions to start at MinByte. 154 // 155 // In this example, A, B and C are vtables, # is a byte already allocated for 156 // a virtual function pointer, AAAA... (etc.) are the used regions for the 157 // vtables and Offset(X) is the value computed for the Offset variable below 158 // for X. 159 // 160 // Offset(A) 161 // | | 162 // |MinByte 163 // A: ################AAAAAAAA|AAAAAAAA 164 // B: ########BBBBBBBBBBBBBBBB|BBBB 165 // C: ########################|CCCCCCCCCCCCCCCC 166 // | Offset(B) | 167 // 168 // This code produces the slices of A, B and C that appear after the divider 169 // at MinByte. 170 std::vector<ArrayRef<uint8_t>> Used; 171 for (const VirtualCallTarget &Target : Targets) { 172 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 173 : Target.TM->Bits->Before.BytesUsed; 174 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 175 : MinByte - Target.minBeforeBytes(); 176 177 // Disregard used regions that are smaller than Offset. These are 178 // effectively all-free regions that do not need to be checked. 179 if (VTUsed.size() > Offset) 180 Used.push_back(VTUsed.slice(Offset)); 181 } 182 183 if (Size == 1) { 184 // Find a free bit in each member of Used. 185 for (unsigned I = 0;; ++I) { 186 uint8_t BitsUsed = 0; 187 for (auto &&B : Used) 188 if (I < B.size()) 189 BitsUsed |= B[I]; 190 if (BitsUsed != 0xff) 191 return (MinByte + I) * 8 + 192 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 193 } 194 } else { 195 // Find a free (Size/8) byte region in each member of Used. 196 // FIXME: see if alignment helps. 197 for (unsigned I = 0;; ++I) { 198 for (auto &&B : Used) { 199 unsigned Byte = 0; 200 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 201 if (B[I + Byte]) 202 goto NextI; 203 ++Byte; 204 } 205 } 206 return (MinByte + I) * 8; 207 NextI:; 208 } 209 } 210 } 211 212 void wholeprogramdevirt::setBeforeReturnValues( 213 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 214 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 215 if (BitWidth == 1) 216 OffsetByte = -(AllocBefore / 8 + 1); 217 else 218 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 219 OffsetBit = AllocBefore % 8; 220 221 for (VirtualCallTarget &Target : Targets) { 222 if (BitWidth == 1) 223 Target.setBeforeBit(AllocBefore); 224 else 225 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 226 } 227 } 228 229 void wholeprogramdevirt::setAfterReturnValues( 230 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 231 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 232 if (BitWidth == 1) 233 OffsetByte = AllocAfter / 8; 234 else 235 OffsetByte = (AllocAfter + 7) / 8; 236 OffsetBit = AllocAfter % 8; 237 238 for (VirtualCallTarget &Target : Targets) { 239 if (BitWidth == 1) 240 Target.setAfterBit(AllocAfter); 241 else 242 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 243 } 244 } 245 246 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 247 : Fn(Fn), TM(TM), 248 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 249 250 namespace { 251 252 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 253 // tables, and the ByteOffset is the offset in bytes from the address point to 254 // the virtual function pointer. 255 struct VTableSlot { 256 Metadata *TypeID; 257 uint64_t ByteOffset; 258 }; 259 260 } // end anonymous namespace 261 262 namespace llvm { 263 264 template <> struct DenseMapInfo<VTableSlot> { 265 static VTableSlot getEmptyKey() { 266 return {DenseMapInfo<Metadata *>::getEmptyKey(), 267 DenseMapInfo<uint64_t>::getEmptyKey()}; 268 } 269 static VTableSlot getTombstoneKey() { 270 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 271 DenseMapInfo<uint64_t>::getTombstoneKey()}; 272 } 273 static unsigned getHashValue(const VTableSlot &I) { 274 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 275 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 276 } 277 static bool isEqual(const VTableSlot &LHS, 278 const VTableSlot &RHS) { 279 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 280 } 281 }; 282 283 template <> struct DenseMapInfo<VTableSlotSummary> { 284 static VTableSlotSummary getEmptyKey() { 285 return {DenseMapInfo<StringRef>::getEmptyKey(), 286 DenseMapInfo<uint64_t>::getEmptyKey()}; 287 } 288 static VTableSlotSummary getTombstoneKey() { 289 return {DenseMapInfo<StringRef>::getTombstoneKey(), 290 DenseMapInfo<uint64_t>::getTombstoneKey()}; 291 } 292 static unsigned getHashValue(const VTableSlotSummary &I) { 293 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 294 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 295 } 296 static bool isEqual(const VTableSlotSummary &LHS, 297 const VTableSlotSummary &RHS) { 298 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 299 } 300 }; 301 302 } // end namespace llvm 303 304 namespace { 305 306 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 307 // the indirect virtual call. 308 struct VirtualCallSite { 309 Value *VTable; 310 CallSite CS; 311 312 // If non-null, this field points to the associated unsafe use count stored in 313 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 314 // of that field for details. 315 unsigned *NumUnsafeUses; 316 317 void 318 emitRemark(const StringRef OptName, const StringRef TargetName, 319 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 320 Function *F = CS.getCaller(); 321 DebugLoc DLoc = CS->getDebugLoc(); 322 BasicBlock *Block = CS.getParent(); 323 324 using namespace ore; 325 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 326 << NV("Optimization", OptName) 327 << ": devirtualized a call to " 328 << NV("FunctionName", TargetName)); 329 } 330 331 void replaceAndErase( 332 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 333 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 334 Value *New) { 335 if (RemarksEnabled) 336 emitRemark(OptName, TargetName, OREGetter); 337 CS->replaceAllUsesWith(New); 338 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 339 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 340 II->getUnwindDest()->removePredecessor(II->getParent()); 341 } 342 CS->eraseFromParent(); 343 // This use is no longer unsafe. 344 if (NumUnsafeUses) 345 --*NumUnsafeUses; 346 } 347 }; 348 349 // Call site information collected for a specific VTableSlot and possibly a list 350 // of constant integer arguments. The grouping by arguments is handled by the 351 // VTableSlotInfo class. 352 struct CallSiteInfo { 353 /// The set of call sites for this slot. Used during regular LTO and the 354 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 355 /// call sites that appear in the merged module itself); in each of these 356 /// cases we are directly operating on the call sites at the IR level. 357 std::vector<VirtualCallSite> CallSites; 358 359 /// Whether all call sites represented by this CallSiteInfo, including those 360 /// in summaries, have been devirtualized. This starts off as true because a 361 /// default constructed CallSiteInfo represents no call sites. 362 bool AllCallSitesDevirted = true; 363 364 // These fields are used during the export phase of ThinLTO and reflect 365 // information collected from function summaries. 366 367 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 368 /// this slot. 369 bool SummaryHasTypeTestAssumeUsers = false; 370 371 /// CFI-specific: a vector containing the list of function summaries that use 372 /// the llvm.type.checked.load intrinsic and therefore will require 373 /// resolutions for llvm.type.test in order to implement CFI checks if 374 /// devirtualization was unsuccessful. If devirtualization was successful, the 375 /// pass will clear this vector by calling markDevirt(). If at the end of the 376 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 377 /// to each of the function summaries in the vector. 378 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 379 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 380 381 bool isExported() const { 382 return SummaryHasTypeTestAssumeUsers || 383 !SummaryTypeCheckedLoadUsers.empty(); 384 } 385 386 void markSummaryHasTypeTestAssumeUsers() { 387 SummaryHasTypeTestAssumeUsers = true; 388 AllCallSitesDevirted = false; 389 } 390 391 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 392 SummaryTypeCheckedLoadUsers.push_back(FS); 393 AllCallSitesDevirted = false; 394 } 395 396 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 397 SummaryTypeTestAssumeUsers.push_back(FS); 398 markSummaryHasTypeTestAssumeUsers(); 399 } 400 401 void markDevirt() { 402 AllCallSitesDevirted = true; 403 404 // As explained in the comment for SummaryTypeCheckedLoadUsers. 405 SummaryTypeCheckedLoadUsers.clear(); 406 } 407 }; 408 409 // Call site information collected for a specific VTableSlot. 410 struct VTableSlotInfo { 411 // The set of call sites which do not have all constant integer arguments 412 // (excluding "this"). 413 CallSiteInfo CSInfo; 414 415 // The set of call sites with all constant integer arguments (excluding 416 // "this"), grouped by argument list. 417 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 418 419 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 420 421 private: 422 CallSiteInfo &findCallSiteInfo(CallSite CS); 423 }; 424 425 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 426 std::vector<uint64_t> Args; 427 auto *CI = dyn_cast<IntegerType>(CS.getType()); 428 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 429 return CSInfo; 430 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 431 auto *CI = dyn_cast<ConstantInt>(Arg); 432 if (!CI || CI->getBitWidth() > 64) 433 return CSInfo; 434 Args.push_back(CI->getZExtValue()); 435 } 436 return ConstCSInfo[Args]; 437 } 438 439 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 440 unsigned *NumUnsafeUses) { 441 auto &CSI = findCallSiteInfo(CS); 442 CSI.AllCallSitesDevirted = false; 443 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 444 } 445 446 struct DevirtModule { 447 Module &M; 448 function_ref<AAResults &(Function &)> AARGetter; 449 function_ref<DominatorTree &(Function &)> LookupDomTree; 450 451 ModuleSummaryIndex *ExportSummary; 452 const ModuleSummaryIndex *ImportSummary; 453 454 IntegerType *Int8Ty; 455 PointerType *Int8PtrTy; 456 IntegerType *Int32Ty; 457 IntegerType *Int64Ty; 458 IntegerType *IntPtrTy; 459 460 bool RemarksEnabled; 461 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 462 463 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 464 465 // This map keeps track of the number of "unsafe" uses of a loaded function 466 // pointer. The key is the associated llvm.type.test intrinsic call generated 467 // by this pass. An unsafe use is one that calls the loaded function pointer 468 // directly. Every time we eliminate an unsafe use (for example, by 469 // devirtualizing it or by applying virtual constant propagation), we 470 // decrement the value stored in this map. If a value reaches zero, we can 471 // eliminate the type check by RAUWing the associated llvm.type.test call with 472 // true. 473 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 474 475 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 476 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 477 function_ref<DominatorTree &(Function &)> LookupDomTree, 478 ModuleSummaryIndex *ExportSummary, 479 const ModuleSummaryIndex *ImportSummary) 480 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 481 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 482 Int8Ty(Type::getInt8Ty(M.getContext())), 483 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 484 Int32Ty(Type::getInt32Ty(M.getContext())), 485 Int64Ty(Type::getInt64Ty(M.getContext())), 486 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 487 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 488 assert(!(ExportSummary && ImportSummary)); 489 } 490 491 bool areRemarksEnabled(); 492 493 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 494 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 495 496 void buildTypeIdentifierMap( 497 std::vector<VTableBits> &Bits, 498 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 499 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 500 bool 501 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 502 const std::set<TypeMemberInfo> &TypeMemberInfos, 503 uint64_t ByteOffset); 504 505 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 506 bool &IsExported); 507 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 508 VTableSlotInfo &SlotInfo, 509 WholeProgramDevirtResolution *Res); 510 511 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 512 bool &IsExported); 513 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 514 VTableSlotInfo &SlotInfo, 515 WholeProgramDevirtResolution *Res, VTableSlot Slot); 516 517 bool tryEvaluateFunctionsWithArgs( 518 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 519 ArrayRef<uint64_t> Args); 520 521 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 522 uint64_t TheRetVal); 523 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 524 CallSiteInfo &CSInfo, 525 WholeProgramDevirtResolution::ByArg *Res); 526 527 // Returns the global symbol name that is used to export information about the 528 // given vtable slot and list of arguments. 529 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 530 StringRef Name); 531 532 bool shouldExportConstantsAsAbsoluteSymbols(); 533 534 // This function is called during the export phase to create a symbol 535 // definition containing information about the given vtable slot and list of 536 // arguments. 537 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 538 Constant *C); 539 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 540 uint32_t Const, uint32_t &Storage); 541 542 // This function is called during the import phase to create a reference to 543 // the symbol definition created during the export phase. 544 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 545 StringRef Name); 546 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 547 StringRef Name, IntegerType *IntTy, 548 uint32_t Storage); 549 550 Constant *getMemberAddr(const TypeMemberInfo *M); 551 552 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 553 Constant *UniqueMemberAddr); 554 bool tryUniqueRetValOpt(unsigned BitWidth, 555 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 556 CallSiteInfo &CSInfo, 557 WholeProgramDevirtResolution::ByArg *Res, 558 VTableSlot Slot, ArrayRef<uint64_t> Args); 559 560 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 561 Constant *Byte, Constant *Bit); 562 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 563 VTableSlotInfo &SlotInfo, 564 WholeProgramDevirtResolution *Res, VTableSlot Slot); 565 566 void rebuildGlobal(VTableBits &B); 567 568 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 569 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 570 571 // If we were able to eliminate all unsafe uses for a type checked load, 572 // eliminate the associated type tests by replacing them with true. 573 void removeRedundantTypeTests(); 574 575 bool run(); 576 577 // Lower the module using the action and summary passed as command line 578 // arguments. For testing purposes only. 579 static bool 580 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 581 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 582 function_ref<DominatorTree &(Function &)> LookupDomTree); 583 }; 584 585 struct DevirtIndex { 586 ModuleSummaryIndex &ExportSummary; 587 // The set in which to record GUIDs exported from their module by 588 // devirtualization, used by client to ensure they are not internalized. 589 std::set<GlobalValue::GUID> &ExportedGUIDs; 590 // A map in which to record the information necessary to locate the WPD 591 // resolution for local targets in case they are exported by cross module 592 // importing. 593 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 594 595 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 596 597 DevirtIndex( 598 ModuleSummaryIndex &ExportSummary, 599 std::set<GlobalValue::GUID> &ExportedGUIDs, 600 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 601 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 602 LocalWPDTargetsMap(LocalWPDTargetsMap) {} 603 604 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 605 const TypeIdCompatibleVtableInfo TIdInfo, 606 uint64_t ByteOffset); 607 608 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 609 VTableSlotSummary &SlotSummary, 610 VTableSlotInfo &SlotInfo, 611 WholeProgramDevirtResolution *Res, 612 std::set<ValueInfo> &DevirtTargets); 613 614 void run(); 615 }; 616 617 struct WholeProgramDevirt : public ModulePass { 618 static char ID; 619 620 bool UseCommandLine = false; 621 622 ModuleSummaryIndex *ExportSummary; 623 const ModuleSummaryIndex *ImportSummary; 624 625 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 626 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 627 } 628 629 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 630 const ModuleSummaryIndex *ImportSummary) 631 : ModulePass(ID), ExportSummary(ExportSummary), 632 ImportSummary(ImportSummary) { 633 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 634 } 635 636 bool runOnModule(Module &M) override { 637 if (skipModule(M)) 638 return false; 639 640 // In the new pass manager, we can request the optimization 641 // remark emitter pass on a per-function-basis, which the 642 // OREGetter will do for us. 643 // In the old pass manager, this is harder, so we just build 644 // an optimization remark emitter on the fly, when we need it. 645 std::unique_ptr<OptimizationRemarkEmitter> ORE; 646 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 647 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 648 return *ORE; 649 }; 650 651 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 652 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 653 }; 654 655 if (UseCommandLine) 656 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 657 LookupDomTree); 658 659 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 660 ExportSummary, ImportSummary) 661 .run(); 662 } 663 664 void getAnalysisUsage(AnalysisUsage &AU) const override { 665 AU.addRequired<AssumptionCacheTracker>(); 666 AU.addRequired<TargetLibraryInfoWrapperPass>(); 667 AU.addRequired<DominatorTreeWrapperPass>(); 668 } 669 }; 670 671 } // end anonymous namespace 672 673 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 674 "Whole program devirtualization", false, false) 675 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 676 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 678 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 679 "Whole program devirtualization", false, false) 680 char WholeProgramDevirt::ID = 0; 681 682 ModulePass * 683 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 684 const ModuleSummaryIndex *ImportSummary) { 685 return new WholeProgramDevirt(ExportSummary, ImportSummary); 686 } 687 688 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 689 ModuleAnalysisManager &AM) { 690 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 691 auto AARGetter = [&](Function &F) -> AAResults & { 692 return FAM.getResult<AAManager>(F); 693 }; 694 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 695 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 696 }; 697 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 698 return FAM.getResult<DominatorTreeAnalysis>(F); 699 }; 700 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 701 ImportSummary) 702 .run()) 703 return PreservedAnalyses::all(); 704 return PreservedAnalyses::none(); 705 } 706 707 namespace llvm { 708 void runWholeProgramDevirtOnIndex( 709 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 710 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 711 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 712 } 713 714 void updateIndexWPDForExports( 715 ModuleSummaryIndex &Summary, 716 function_ref<bool(StringRef, GlobalValue::GUID)> isExported, 717 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 718 for (auto &T : LocalWPDTargetsMap) { 719 auto &VI = T.first; 720 // This was enforced earlier during trySingleImplDevirt. 721 assert(VI.getSummaryList().size() == 1 && 722 "Devirt of local target has more than one copy"); 723 auto &S = VI.getSummaryList()[0]; 724 if (!isExported(S->modulePath(), VI.getGUID())) 725 continue; 726 727 // It's been exported by a cross module import. 728 for (auto &SlotSummary : T.second) { 729 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 730 assert(TIdSum); 731 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 732 assert(WPDRes != TIdSum->WPDRes.end()); 733 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 734 WPDRes->second.SingleImplName, 735 Summary.getModuleHash(S->modulePath())); 736 } 737 } 738 } 739 740 } // end namespace llvm 741 742 bool DevirtModule::runForTesting( 743 Module &M, function_ref<AAResults &(Function &)> AARGetter, 744 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 745 function_ref<DominatorTree &(Function &)> LookupDomTree) { 746 ModuleSummaryIndex Summary(/*HaveGVs=*/false); 747 748 // Handle the command-line summary arguments. This code is for testing 749 // purposes only, so we handle errors directly. 750 if (!ClReadSummary.empty()) { 751 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 752 ": "); 753 auto ReadSummaryFile = 754 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 755 756 yaml::Input In(ReadSummaryFile->getBuffer()); 757 In >> Summary; 758 ExitOnErr(errorCodeToError(In.error())); 759 } 760 761 bool Changed = 762 DevirtModule( 763 M, AARGetter, OREGetter, LookupDomTree, 764 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 765 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 766 .run(); 767 768 if (!ClWriteSummary.empty()) { 769 ExitOnError ExitOnErr( 770 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 771 std::error_code EC; 772 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 773 ExitOnErr(errorCodeToError(EC)); 774 775 yaml::Output Out(OS); 776 Out << Summary; 777 } 778 779 return Changed; 780 } 781 782 void DevirtModule::buildTypeIdentifierMap( 783 std::vector<VTableBits> &Bits, 784 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 785 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 786 Bits.reserve(M.getGlobalList().size()); 787 SmallVector<MDNode *, 2> Types; 788 for (GlobalVariable &GV : M.globals()) { 789 Types.clear(); 790 GV.getMetadata(LLVMContext::MD_type, Types); 791 if (GV.isDeclaration() || Types.empty()) 792 continue; 793 794 VTableBits *&BitsPtr = GVToBits[&GV]; 795 if (!BitsPtr) { 796 Bits.emplace_back(); 797 Bits.back().GV = &GV; 798 Bits.back().ObjectSize = 799 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 800 BitsPtr = &Bits.back(); 801 } 802 803 for (MDNode *Type : Types) { 804 auto TypeID = Type->getOperand(1).get(); 805 806 uint64_t Offset = 807 cast<ConstantInt>( 808 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 809 ->getZExtValue(); 810 811 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 812 } 813 } 814 } 815 816 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 817 if (I->getType()->isPointerTy()) { 818 if (Offset == 0) 819 return I; 820 return nullptr; 821 } 822 823 const DataLayout &DL = M.getDataLayout(); 824 825 if (auto *C = dyn_cast<ConstantStruct>(I)) { 826 const StructLayout *SL = DL.getStructLayout(C->getType()); 827 if (Offset >= SL->getSizeInBytes()) 828 return nullptr; 829 830 unsigned Op = SL->getElementContainingOffset(Offset); 831 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 832 Offset - SL->getElementOffset(Op)); 833 } 834 if (auto *C = dyn_cast<ConstantArray>(I)) { 835 ArrayType *VTableTy = C->getType(); 836 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 837 838 unsigned Op = Offset / ElemSize; 839 if (Op >= C->getNumOperands()) 840 return nullptr; 841 842 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 843 Offset % ElemSize); 844 } 845 return nullptr; 846 } 847 848 bool DevirtModule::tryFindVirtualCallTargets( 849 std::vector<VirtualCallTarget> &TargetsForSlot, 850 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 851 for (const TypeMemberInfo &TM : TypeMemberInfos) { 852 if (!TM.Bits->GV->isConstant()) 853 return false; 854 855 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 856 TM.Offset + ByteOffset); 857 if (!Ptr) 858 return false; 859 860 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 861 if (!Fn) 862 return false; 863 864 // We can disregard __cxa_pure_virtual as a possible call target, as 865 // calls to pure virtuals are UB. 866 if (Fn->getName() == "__cxa_pure_virtual") 867 continue; 868 869 TargetsForSlot.push_back({Fn, &TM}); 870 } 871 872 // Give up if we couldn't find any targets. 873 return !TargetsForSlot.empty(); 874 } 875 876 bool DevirtIndex::tryFindVirtualCallTargets( 877 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 878 uint64_t ByteOffset) { 879 for (const TypeIdOffsetVtableInfo P : TIdInfo) { 880 // VTable initializer should have only one summary, or all copies must be 881 // linkonce/weak ODR. 882 assert(P.VTableVI.getSummaryList().size() == 1 || 883 llvm::all_of( 884 P.VTableVI.getSummaryList(), 885 [&](const std::unique_ptr<GlobalValueSummary> &Summary) { 886 return GlobalValue::isLinkOnceODRLinkage(Summary->linkage()) || 887 GlobalValue::isWeakODRLinkage(Summary->linkage()); 888 })); 889 const auto *VS = cast<GlobalVarSummary>(P.VTableVI.getSummaryList()[0].get()); 890 if (!P.VTableVI.getSummaryList()[0]->isLive()) 891 continue; 892 for (auto VTP : VS->vTableFuncs()) { 893 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 894 continue; 895 896 TargetsForSlot.push_back(VTP.FuncVI); 897 } 898 } 899 900 // Give up if we couldn't find any targets. 901 return !TargetsForSlot.empty(); 902 } 903 904 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 905 Constant *TheFn, bool &IsExported) { 906 auto Apply = [&](CallSiteInfo &CSInfo) { 907 for (auto &&VCallSite : CSInfo.CallSites) { 908 if (RemarksEnabled) 909 VCallSite.emitRemark("single-impl", 910 TheFn->stripPointerCasts()->getName(), OREGetter); 911 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 912 TheFn, VCallSite.CS.getCalledValue()->getType())); 913 // This use is no longer unsafe. 914 if (VCallSite.NumUnsafeUses) 915 --*VCallSite.NumUnsafeUses; 916 } 917 if (CSInfo.isExported()) 918 IsExported = true; 919 CSInfo.markDevirt(); 920 }; 921 Apply(SlotInfo.CSInfo); 922 for (auto &P : SlotInfo.ConstCSInfo) 923 Apply(P.second); 924 } 925 926 bool DevirtModule::trySingleImplDevirt( 927 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 928 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 929 // See if the program contains a single implementation of this virtual 930 // function. 931 Function *TheFn = TargetsForSlot[0].Fn; 932 for (auto &&Target : TargetsForSlot) 933 if (TheFn != Target.Fn) 934 return false; 935 936 // If so, update each call site to call that implementation directly. 937 if (RemarksEnabled) 938 TargetsForSlot[0].WasDevirt = true; 939 940 bool IsExported = false; 941 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 942 if (!IsExported) 943 return false; 944 945 // If the only implementation has local linkage, we must promote to external 946 // to make it visible to thin LTO objects. We can only get here during the 947 // ThinLTO export phase. 948 if (TheFn->hasLocalLinkage()) { 949 std::string NewName = (TheFn->getName() + "$merged").str(); 950 951 // Since we are renaming the function, any comdats with the same name must 952 // also be renamed. This is required when targeting COFF, as the comdat name 953 // must match one of the names of the symbols in the comdat. 954 if (Comdat *C = TheFn->getComdat()) { 955 if (C->getName() == TheFn->getName()) { 956 Comdat *NewC = M.getOrInsertComdat(NewName); 957 NewC->setSelectionKind(C->getSelectionKind()); 958 for (GlobalObject &GO : M.global_objects()) 959 if (GO.getComdat() == C) 960 GO.setComdat(NewC); 961 } 962 } 963 964 TheFn->setLinkage(GlobalValue::ExternalLinkage); 965 TheFn->setVisibility(GlobalValue::HiddenVisibility); 966 TheFn->setName(NewName); 967 } 968 969 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 970 Res->SingleImplName = TheFn->getName(); 971 972 return true; 973 } 974 975 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 976 VTableSlotSummary &SlotSummary, 977 VTableSlotInfo &SlotInfo, 978 WholeProgramDevirtResolution *Res, 979 std::set<ValueInfo> &DevirtTargets) { 980 // See if the program contains a single implementation of this virtual 981 // function. 982 auto TheFn = TargetsForSlot[0]; 983 for (auto &&Target : TargetsForSlot) 984 if (TheFn != Target) 985 return false; 986 987 // Don't devirtualize if we don't have target definition. 988 auto Size = TheFn.getSummaryList().size(); 989 if (!Size) 990 return false; 991 992 // If the summary list contains multiple summaries where at least one is 993 // a local, give up, as we won't know which (possibly promoted) name to use. 994 for (auto &S : TheFn.getSummaryList()) 995 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 996 return false; 997 998 // Collect functions devirtualized at least for one call site for stats. 999 if (PrintSummaryDevirt) 1000 DevirtTargets.insert(TheFn); 1001 1002 auto &S = TheFn.getSummaryList()[0]; 1003 bool IsExported = false; 1004 1005 // Insert calls into the summary index so that the devirtualized targets 1006 // are eligible for import. 1007 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1008 // to better ensure we have the opportunity to inline them. 1009 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1010 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1011 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1012 FS->addCall({TheFn, CI}); 1013 IsExported |= S->modulePath() != FS->modulePath(); 1014 } 1015 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1016 FS->addCall({TheFn, CI}); 1017 IsExported |= S->modulePath() != FS->modulePath(); 1018 } 1019 }; 1020 AddCalls(SlotInfo.CSInfo); 1021 for (auto &P : SlotInfo.ConstCSInfo) 1022 AddCalls(P.second); 1023 1024 if (IsExported) 1025 ExportedGUIDs.insert(TheFn.getGUID()); 1026 1027 // Record in summary for use in devirtualization during the ThinLTO import 1028 // step. 1029 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1030 if (GlobalValue::isLocalLinkage(S->linkage())) { 1031 if (IsExported) 1032 // If target is a local function and we are exporting it by 1033 // devirtualizing a call in another module, we need to record the 1034 // promoted name. 1035 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1036 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1037 else { 1038 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1039 Res->SingleImplName = TheFn.name(); 1040 } 1041 } else 1042 Res->SingleImplName = TheFn.name(); 1043 1044 // Name will be empty if this thin link driven off of serialized combined 1045 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1046 // legacy LTO API anyway. 1047 assert(!Res->SingleImplName.empty()); 1048 1049 return true; 1050 } 1051 1052 void DevirtModule::tryICallBranchFunnel( 1053 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1054 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1055 Triple T(M.getTargetTriple()); 1056 if (T.getArch() != Triple::x86_64) 1057 return; 1058 1059 if (TargetsForSlot.size() > ClThreshold) 1060 return; 1061 1062 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1063 if (!HasNonDevirt) 1064 for (auto &P : SlotInfo.ConstCSInfo) 1065 if (!P.second.AllCallSitesDevirted) { 1066 HasNonDevirt = true; 1067 break; 1068 } 1069 1070 if (!HasNonDevirt) 1071 return; 1072 1073 FunctionType *FT = 1074 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1075 Function *JT; 1076 if (isa<MDString>(Slot.TypeID)) { 1077 JT = Function::Create(FT, Function::ExternalLinkage, 1078 M.getDataLayout().getProgramAddressSpace(), 1079 getGlobalName(Slot, {}, "branch_funnel"), &M); 1080 JT->setVisibility(GlobalValue::HiddenVisibility); 1081 } else { 1082 JT = Function::Create(FT, Function::InternalLinkage, 1083 M.getDataLayout().getProgramAddressSpace(), 1084 "branch_funnel", &M); 1085 } 1086 JT->addAttribute(1, Attribute::Nest); 1087 1088 std::vector<Value *> JTArgs; 1089 JTArgs.push_back(JT->arg_begin()); 1090 for (auto &T : TargetsForSlot) { 1091 JTArgs.push_back(getMemberAddr(T.TM)); 1092 JTArgs.push_back(T.Fn); 1093 } 1094 1095 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1096 Function *Intr = 1097 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1098 1099 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1100 CI->setTailCallKind(CallInst::TCK_MustTail); 1101 ReturnInst::Create(M.getContext(), nullptr, BB); 1102 1103 bool IsExported = false; 1104 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1105 if (IsExported) 1106 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1107 } 1108 1109 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1110 Constant *JT, bool &IsExported) { 1111 auto Apply = [&](CallSiteInfo &CSInfo) { 1112 if (CSInfo.isExported()) 1113 IsExported = true; 1114 if (CSInfo.AllCallSitesDevirted) 1115 return; 1116 for (auto &&VCallSite : CSInfo.CallSites) { 1117 CallSite CS = VCallSite.CS; 1118 1119 // Jump tables are only profitable if the retpoline mitigation is enabled. 1120 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 1121 if (FSAttr.hasAttribute(Attribute::None) || 1122 !FSAttr.getValueAsString().contains("+retpoline")) 1123 continue; 1124 1125 if (RemarksEnabled) 1126 VCallSite.emitRemark("branch-funnel", 1127 JT->stripPointerCasts()->getName(), OREGetter); 1128 1129 // Pass the address of the vtable in the nest register, which is r10 on 1130 // x86_64. 1131 std::vector<Type *> NewArgs; 1132 NewArgs.push_back(Int8PtrTy); 1133 for (Type *T : CS.getFunctionType()->params()) 1134 NewArgs.push_back(T); 1135 FunctionType *NewFT = 1136 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 1137 CS.getFunctionType()->isVarArg()); 1138 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1139 1140 IRBuilder<> IRB(CS.getInstruction()); 1141 std::vector<Value *> Args; 1142 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1143 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 1144 Args.push_back(CS.getArgOperand(I)); 1145 1146 CallSite NewCS; 1147 if (CS.isCall()) 1148 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1149 else 1150 NewCS = IRB.CreateInvoke( 1151 NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1152 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 1153 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 1154 NewCS.setCallingConv(CS.getCallingConv()); 1155 1156 AttributeList Attrs = CS.getAttributes(); 1157 std::vector<AttributeSet> NewArgAttrs; 1158 NewArgAttrs.push_back(AttributeSet::get( 1159 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1160 M.getContext(), Attribute::Nest)})); 1161 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1162 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1163 NewCS.setAttributes( 1164 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1165 Attrs.getRetAttributes(), NewArgAttrs)); 1166 1167 CS->replaceAllUsesWith(NewCS.getInstruction()); 1168 CS->eraseFromParent(); 1169 1170 // This use is no longer unsafe. 1171 if (VCallSite.NumUnsafeUses) 1172 --*VCallSite.NumUnsafeUses; 1173 } 1174 // Don't mark as devirtualized because there may be callers compiled without 1175 // retpoline mitigation, which would mean that they are lowered to 1176 // llvm.type.test and therefore require an llvm.type.test resolution for the 1177 // type identifier. 1178 }; 1179 Apply(SlotInfo.CSInfo); 1180 for (auto &P : SlotInfo.ConstCSInfo) 1181 Apply(P.second); 1182 } 1183 1184 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1185 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1186 ArrayRef<uint64_t> Args) { 1187 // Evaluate each function and store the result in each target's RetVal 1188 // field. 1189 for (VirtualCallTarget &Target : TargetsForSlot) { 1190 if (Target.Fn->arg_size() != Args.size() + 1) 1191 return false; 1192 1193 Evaluator Eval(M.getDataLayout(), nullptr); 1194 SmallVector<Constant *, 2> EvalArgs; 1195 EvalArgs.push_back( 1196 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1197 for (unsigned I = 0; I != Args.size(); ++I) { 1198 auto *ArgTy = dyn_cast<IntegerType>( 1199 Target.Fn->getFunctionType()->getParamType(I + 1)); 1200 if (!ArgTy) 1201 return false; 1202 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1203 } 1204 1205 Constant *RetVal; 1206 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1207 !isa<ConstantInt>(RetVal)) 1208 return false; 1209 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1210 } 1211 return true; 1212 } 1213 1214 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1215 uint64_t TheRetVal) { 1216 for (auto Call : CSInfo.CallSites) 1217 Call.replaceAndErase( 1218 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1219 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1220 CSInfo.markDevirt(); 1221 } 1222 1223 bool DevirtModule::tryUniformRetValOpt( 1224 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1225 WholeProgramDevirtResolution::ByArg *Res) { 1226 // Uniform return value optimization. If all functions return the same 1227 // constant, replace all calls with that constant. 1228 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1229 for (const VirtualCallTarget &Target : TargetsForSlot) 1230 if (Target.RetVal != TheRetVal) 1231 return false; 1232 1233 if (CSInfo.isExported()) { 1234 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1235 Res->Info = TheRetVal; 1236 } 1237 1238 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1239 if (RemarksEnabled) 1240 for (auto &&Target : TargetsForSlot) 1241 Target.WasDevirt = true; 1242 return true; 1243 } 1244 1245 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1246 ArrayRef<uint64_t> Args, 1247 StringRef Name) { 1248 std::string FullName = "__typeid_"; 1249 raw_string_ostream OS(FullName); 1250 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1251 for (uint64_t Arg : Args) 1252 OS << '_' << Arg; 1253 OS << '_' << Name; 1254 return OS.str(); 1255 } 1256 1257 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1258 Triple T(M.getTargetTriple()); 1259 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1260 T.getObjectFormat() == Triple::ELF; 1261 } 1262 1263 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1264 StringRef Name, Constant *C) { 1265 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1266 getGlobalName(Slot, Args, Name), C, &M); 1267 GA->setVisibility(GlobalValue::HiddenVisibility); 1268 } 1269 1270 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1271 StringRef Name, uint32_t Const, 1272 uint32_t &Storage) { 1273 if (shouldExportConstantsAsAbsoluteSymbols()) { 1274 exportGlobal( 1275 Slot, Args, Name, 1276 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1277 return; 1278 } 1279 1280 Storage = Const; 1281 } 1282 1283 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1284 StringRef Name) { 1285 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1286 auto *GV = dyn_cast<GlobalVariable>(C); 1287 if (GV) 1288 GV->setVisibility(GlobalValue::HiddenVisibility); 1289 return C; 1290 } 1291 1292 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1293 StringRef Name, IntegerType *IntTy, 1294 uint32_t Storage) { 1295 if (!shouldExportConstantsAsAbsoluteSymbols()) 1296 return ConstantInt::get(IntTy, Storage); 1297 1298 Constant *C = importGlobal(Slot, Args, Name); 1299 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1300 C = ConstantExpr::getPtrToInt(C, IntTy); 1301 1302 // We only need to set metadata if the global is newly created, in which 1303 // case it would not have hidden visibility. 1304 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1305 return C; 1306 1307 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1308 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1309 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1310 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1311 MDNode::get(M.getContext(), {MinC, MaxC})); 1312 }; 1313 unsigned AbsWidth = IntTy->getBitWidth(); 1314 if (AbsWidth == IntPtrTy->getBitWidth()) 1315 SetAbsRange(~0ull, ~0ull); // Full set. 1316 else 1317 SetAbsRange(0, 1ull << AbsWidth); 1318 return C; 1319 } 1320 1321 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1322 bool IsOne, 1323 Constant *UniqueMemberAddr) { 1324 for (auto &&Call : CSInfo.CallSites) { 1325 IRBuilder<> B(Call.CS.getInstruction()); 1326 Value *Cmp = 1327 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1328 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1329 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1330 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1331 Cmp); 1332 } 1333 CSInfo.markDevirt(); 1334 } 1335 1336 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1337 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1338 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1339 ConstantInt::get(Int64Ty, M->Offset)); 1340 } 1341 1342 bool DevirtModule::tryUniqueRetValOpt( 1343 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1344 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1345 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1346 // IsOne controls whether we look for a 0 or a 1. 1347 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1348 const TypeMemberInfo *UniqueMember = nullptr; 1349 for (const VirtualCallTarget &Target : TargetsForSlot) { 1350 if (Target.RetVal == (IsOne ? 1 : 0)) { 1351 if (UniqueMember) 1352 return false; 1353 UniqueMember = Target.TM; 1354 } 1355 } 1356 1357 // We should have found a unique member or bailed out by now. We already 1358 // checked for a uniform return value in tryUniformRetValOpt. 1359 assert(UniqueMember); 1360 1361 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1362 if (CSInfo.isExported()) { 1363 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1364 Res->Info = IsOne; 1365 1366 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1367 } 1368 1369 // Replace each call with the comparison. 1370 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1371 UniqueMemberAddr); 1372 1373 // Update devirtualization statistics for targets. 1374 if (RemarksEnabled) 1375 for (auto &&Target : TargetsForSlot) 1376 Target.WasDevirt = true; 1377 1378 return true; 1379 }; 1380 1381 if (BitWidth == 1) { 1382 if (tryUniqueRetValOptFor(true)) 1383 return true; 1384 if (tryUniqueRetValOptFor(false)) 1385 return true; 1386 } 1387 return false; 1388 } 1389 1390 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1391 Constant *Byte, Constant *Bit) { 1392 for (auto Call : CSInfo.CallSites) { 1393 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1394 IRBuilder<> B(Call.CS.getInstruction()); 1395 Value *Addr = 1396 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1397 if (RetType->getBitWidth() == 1) { 1398 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1399 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1400 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1401 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1402 OREGetter, IsBitSet); 1403 } else { 1404 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1405 Value *Val = B.CreateLoad(RetType, ValAddr); 1406 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1407 OREGetter, Val); 1408 } 1409 } 1410 CSInfo.markDevirt(); 1411 } 1412 1413 bool DevirtModule::tryVirtualConstProp( 1414 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1415 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1416 // This only works if the function returns an integer. 1417 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1418 if (!RetType) 1419 return false; 1420 unsigned BitWidth = RetType->getBitWidth(); 1421 if (BitWidth > 64) 1422 return false; 1423 1424 // Make sure that each function is defined, does not access memory, takes at 1425 // least one argument, does not use its first argument (which we assume is 1426 // 'this'), and has the same return type. 1427 // 1428 // Note that we test whether this copy of the function is readnone, rather 1429 // than testing function attributes, which must hold for any copy of the 1430 // function, even a less optimized version substituted at link time. This is 1431 // sound because the virtual constant propagation optimizations effectively 1432 // inline all implementations of the virtual function into each call site, 1433 // rather than using function attributes to perform local optimization. 1434 for (VirtualCallTarget &Target : TargetsForSlot) { 1435 if (Target.Fn->isDeclaration() || 1436 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1437 MAK_ReadNone || 1438 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1439 Target.Fn->getReturnType() != RetType) 1440 return false; 1441 } 1442 1443 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1444 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1445 continue; 1446 1447 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1448 if (Res) 1449 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1450 1451 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1452 continue; 1453 1454 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1455 ResByArg, Slot, CSByConstantArg.first)) 1456 continue; 1457 1458 // Find an allocation offset in bits in all vtables associated with the 1459 // type. 1460 uint64_t AllocBefore = 1461 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1462 uint64_t AllocAfter = 1463 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1464 1465 // Calculate the total amount of padding needed to store a value at both 1466 // ends of the object. 1467 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1468 for (auto &&Target : TargetsForSlot) { 1469 TotalPaddingBefore += std::max<int64_t>( 1470 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1471 TotalPaddingAfter += std::max<int64_t>( 1472 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1473 } 1474 1475 // If the amount of padding is too large, give up. 1476 // FIXME: do something smarter here. 1477 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1478 continue; 1479 1480 // Calculate the offset to the value as a (possibly negative) byte offset 1481 // and (if applicable) a bit offset, and store the values in the targets. 1482 int64_t OffsetByte; 1483 uint64_t OffsetBit; 1484 if (TotalPaddingBefore <= TotalPaddingAfter) 1485 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1486 OffsetBit); 1487 else 1488 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1489 OffsetBit); 1490 1491 if (RemarksEnabled) 1492 for (auto &&Target : TargetsForSlot) 1493 Target.WasDevirt = true; 1494 1495 1496 if (CSByConstantArg.second.isExported()) { 1497 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1498 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1499 ResByArg->Byte); 1500 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1501 ResByArg->Bit); 1502 } 1503 1504 // Rewrite each call to a load from OffsetByte/OffsetBit. 1505 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1506 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1507 applyVirtualConstProp(CSByConstantArg.second, 1508 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1509 } 1510 return true; 1511 } 1512 1513 void DevirtModule::rebuildGlobal(VTableBits &B) { 1514 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1515 return; 1516 1517 // Align the before byte array to the global's minimum alignment so that we 1518 // don't break any alignment requirements on the global. 1519 MaybeAlign Alignment(B.GV->getAlignment()); 1520 if (!Alignment) 1521 Alignment = 1522 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType())); 1523 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1524 1525 // Before was stored in reverse order; flip it now. 1526 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1527 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1528 1529 // Build an anonymous global containing the before bytes, followed by the 1530 // original initializer, followed by the after bytes. 1531 auto NewInit = ConstantStruct::getAnon( 1532 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1533 B.GV->getInitializer(), 1534 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1535 auto NewGV = 1536 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1537 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1538 NewGV->setSection(B.GV->getSection()); 1539 NewGV->setComdat(B.GV->getComdat()); 1540 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1541 1542 // Copy the original vtable's metadata to the anonymous global, adjusting 1543 // offsets as required. 1544 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1545 1546 // Build an alias named after the original global, pointing at the second 1547 // element (the original initializer). 1548 auto Alias = GlobalAlias::create( 1549 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1550 ConstantExpr::getGetElementPtr( 1551 NewInit->getType(), NewGV, 1552 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1553 ConstantInt::get(Int32Ty, 1)}), 1554 &M); 1555 Alias->setVisibility(B.GV->getVisibility()); 1556 Alias->takeName(B.GV); 1557 1558 B.GV->replaceAllUsesWith(Alias); 1559 B.GV->eraseFromParent(); 1560 } 1561 1562 bool DevirtModule::areRemarksEnabled() { 1563 const auto &FL = M.getFunctionList(); 1564 for (const Function &Fn : FL) { 1565 const auto &BBL = Fn.getBasicBlockList(); 1566 if (BBL.empty()) 1567 continue; 1568 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1569 return DI.isEnabled(); 1570 } 1571 return false; 1572 } 1573 1574 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1575 Function *AssumeFunc) { 1576 // Find all virtual calls via a virtual table pointer %p under an assumption 1577 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1578 // points to a member of the type identifier %md. Group calls by (type ID, 1579 // offset) pair (effectively the identity of the virtual function) and store 1580 // to CallSlots. 1581 DenseSet<CallSite> SeenCallSites; 1582 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1583 I != E;) { 1584 auto CI = dyn_cast<CallInst>(I->getUser()); 1585 ++I; 1586 if (!CI) 1587 continue; 1588 1589 // Search for virtual calls based on %p and add them to DevirtCalls. 1590 SmallVector<DevirtCallSite, 1> DevirtCalls; 1591 SmallVector<CallInst *, 1> Assumes; 1592 auto &DT = LookupDomTree(*CI->getFunction()); 1593 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1594 1595 // If we found any, add them to CallSlots. 1596 if (!Assumes.empty()) { 1597 Metadata *TypeId = 1598 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1599 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1600 for (DevirtCallSite Call : DevirtCalls) { 1601 // Only add this CallSite if we haven't seen it before. The vtable 1602 // pointer may have been CSE'd with pointers from other call sites, 1603 // and we don't want to process call sites multiple times. We can't 1604 // just skip the vtable Ptr if it has been seen before, however, since 1605 // it may be shared by type tests that dominate different calls. 1606 if (SeenCallSites.insert(Call.CS).second) 1607 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1608 } 1609 } 1610 1611 // We no longer need the assumes or the type test. 1612 for (auto Assume : Assumes) 1613 Assume->eraseFromParent(); 1614 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1615 // may use the vtable argument later. 1616 if (CI->use_empty()) 1617 CI->eraseFromParent(); 1618 } 1619 } 1620 1621 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1622 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1623 1624 for (auto I = TypeCheckedLoadFunc->use_begin(), 1625 E = TypeCheckedLoadFunc->use_end(); 1626 I != E;) { 1627 auto CI = dyn_cast<CallInst>(I->getUser()); 1628 ++I; 1629 if (!CI) 1630 continue; 1631 1632 Value *Ptr = CI->getArgOperand(0); 1633 Value *Offset = CI->getArgOperand(1); 1634 Value *TypeIdValue = CI->getArgOperand(2); 1635 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1636 1637 SmallVector<DevirtCallSite, 1> DevirtCalls; 1638 SmallVector<Instruction *, 1> LoadedPtrs; 1639 SmallVector<Instruction *, 1> Preds; 1640 bool HasNonCallUses = false; 1641 auto &DT = LookupDomTree(*CI->getFunction()); 1642 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1643 HasNonCallUses, CI, DT); 1644 1645 // Start by generating "pessimistic" code that explicitly loads the function 1646 // pointer from the vtable and performs the type check. If possible, we will 1647 // eliminate the load and the type check later. 1648 1649 // If possible, only generate the load at the point where it is used. 1650 // This helps avoid unnecessary spills. 1651 IRBuilder<> LoadB( 1652 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1653 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1654 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1655 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1656 1657 for (Instruction *LoadedPtr : LoadedPtrs) { 1658 LoadedPtr->replaceAllUsesWith(LoadedValue); 1659 LoadedPtr->eraseFromParent(); 1660 } 1661 1662 // Likewise for the type test. 1663 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1664 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1665 1666 for (Instruction *Pred : Preds) { 1667 Pred->replaceAllUsesWith(TypeTestCall); 1668 Pred->eraseFromParent(); 1669 } 1670 1671 // We have already erased any extractvalue instructions that refer to the 1672 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1673 // (although this is unlikely). In that case, explicitly build a pair and 1674 // RAUW it. 1675 if (!CI->use_empty()) { 1676 Value *Pair = UndefValue::get(CI->getType()); 1677 IRBuilder<> B(CI); 1678 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1679 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1680 CI->replaceAllUsesWith(Pair); 1681 } 1682 1683 // The number of unsafe uses is initially the number of uses. 1684 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1685 NumUnsafeUses = DevirtCalls.size(); 1686 1687 // If the function pointer has a non-call user, we cannot eliminate the type 1688 // check, as one of those users may eventually call the pointer. Increment 1689 // the unsafe use count to make sure it cannot reach zero. 1690 if (HasNonCallUses) 1691 ++NumUnsafeUses; 1692 for (DevirtCallSite Call : DevirtCalls) { 1693 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1694 &NumUnsafeUses); 1695 } 1696 1697 CI->eraseFromParent(); 1698 } 1699 } 1700 1701 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1702 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1703 if (!TypeId) 1704 return; 1705 const TypeIdSummary *TidSummary = 1706 ImportSummary->getTypeIdSummary(TypeId->getString()); 1707 if (!TidSummary) 1708 return; 1709 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1710 if (ResI == TidSummary->WPDRes.end()) 1711 return; 1712 const WholeProgramDevirtResolution &Res = ResI->second; 1713 1714 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1715 assert(!Res.SingleImplName.empty()); 1716 // The type of the function in the declaration is irrelevant because every 1717 // call site will cast it to the correct type. 1718 Constant *SingleImpl = 1719 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1720 Type::getVoidTy(M.getContext())) 1721 .getCallee()); 1722 1723 // This is the import phase so we should not be exporting anything. 1724 bool IsExported = false; 1725 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1726 assert(!IsExported); 1727 } 1728 1729 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1730 auto I = Res.ResByArg.find(CSByConstantArg.first); 1731 if (I == Res.ResByArg.end()) 1732 continue; 1733 auto &ResByArg = I->second; 1734 // FIXME: We should figure out what to do about the "function name" argument 1735 // to the apply* functions, as the function names are unavailable during the 1736 // importing phase. For now we just pass the empty string. This does not 1737 // impact correctness because the function names are just used for remarks. 1738 switch (ResByArg.TheKind) { 1739 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1740 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1741 break; 1742 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1743 Constant *UniqueMemberAddr = 1744 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1745 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1746 UniqueMemberAddr); 1747 break; 1748 } 1749 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1750 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1751 Int32Ty, ResByArg.Byte); 1752 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1753 ResByArg.Bit); 1754 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1755 break; 1756 } 1757 default: 1758 break; 1759 } 1760 } 1761 1762 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1763 // The type of the function is irrelevant, because it's bitcast at calls 1764 // anyhow. 1765 Constant *JT = cast<Constant>( 1766 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1767 Type::getVoidTy(M.getContext())) 1768 .getCallee()); 1769 bool IsExported = false; 1770 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1771 assert(!IsExported); 1772 } 1773 } 1774 1775 void DevirtModule::removeRedundantTypeTests() { 1776 auto True = ConstantInt::getTrue(M.getContext()); 1777 for (auto &&U : NumUnsafeUsesForTypeTest) { 1778 if (U.second == 0) { 1779 U.first->replaceAllUsesWith(True); 1780 U.first->eraseFromParent(); 1781 } 1782 } 1783 } 1784 1785 bool DevirtModule::run() { 1786 // If only some of the modules were split, we cannot correctly perform 1787 // this transformation. We already checked for the presense of type tests 1788 // with partially split modules during the thin link, and would have emitted 1789 // an error if any were found, so here we can simply return. 1790 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1791 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1792 return false; 1793 1794 Function *TypeTestFunc = 1795 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1796 Function *TypeCheckedLoadFunc = 1797 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1798 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1799 1800 // Normally if there are no users of the devirtualization intrinsics in the 1801 // module, this pass has nothing to do. But if we are exporting, we also need 1802 // to handle any users that appear only in the function summaries. 1803 if (!ExportSummary && 1804 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1805 AssumeFunc->use_empty()) && 1806 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1807 return false; 1808 1809 if (TypeTestFunc && AssumeFunc) 1810 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1811 1812 if (TypeCheckedLoadFunc) 1813 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1814 1815 if (ImportSummary) { 1816 for (auto &S : CallSlots) 1817 importResolution(S.first, S.second); 1818 1819 removeRedundantTypeTests(); 1820 1821 // The rest of the code is only necessary when exporting or during regular 1822 // LTO, so we are done. 1823 return true; 1824 } 1825 1826 // Rebuild type metadata into a map for easy lookup. 1827 std::vector<VTableBits> Bits; 1828 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1829 buildTypeIdentifierMap(Bits, TypeIdMap); 1830 if (TypeIdMap.empty()) 1831 return true; 1832 1833 // Collect information from summary about which calls to try to devirtualize. 1834 if (ExportSummary) { 1835 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1836 for (auto &P : TypeIdMap) { 1837 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1838 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1839 TypeId); 1840 } 1841 1842 for (auto &P : *ExportSummary) { 1843 for (auto &S : P.second.SummaryList) { 1844 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1845 if (!FS) 1846 continue; 1847 // FIXME: Only add live functions. 1848 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1849 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1850 CallSlots[{MD, VF.Offset}] 1851 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1852 } 1853 } 1854 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1855 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1856 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1857 } 1858 } 1859 for (const FunctionSummary::ConstVCall &VC : 1860 FS->type_test_assume_const_vcalls()) { 1861 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1862 CallSlots[{MD, VC.VFunc.Offset}] 1863 .ConstCSInfo[VC.Args] 1864 .markSummaryHasTypeTestAssumeUsers(); 1865 } 1866 } 1867 for (const FunctionSummary::ConstVCall &VC : 1868 FS->type_checked_load_const_vcalls()) { 1869 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1870 CallSlots[{MD, VC.VFunc.Offset}] 1871 .ConstCSInfo[VC.Args] 1872 .addSummaryTypeCheckedLoadUser(FS); 1873 } 1874 } 1875 } 1876 } 1877 } 1878 1879 // For each (type, offset) pair: 1880 bool DidVirtualConstProp = false; 1881 std::map<std::string, Function*> DevirtTargets; 1882 for (auto &S : CallSlots) { 1883 // Search each of the members of the type identifier for the virtual 1884 // function implementation at offset S.first.ByteOffset, and add to 1885 // TargetsForSlot. 1886 std::vector<VirtualCallTarget> TargetsForSlot; 1887 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1888 S.first.ByteOffset)) { 1889 WholeProgramDevirtResolution *Res = nullptr; 1890 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1891 Res = &ExportSummary 1892 ->getOrInsertTypeIdSummary( 1893 cast<MDString>(S.first.TypeID)->getString()) 1894 .WPDRes[S.first.ByteOffset]; 1895 1896 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1897 DidVirtualConstProp |= 1898 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1899 1900 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1901 } 1902 1903 // Collect functions devirtualized at least for one call site for stats. 1904 if (RemarksEnabled) 1905 for (const auto &T : TargetsForSlot) 1906 if (T.WasDevirt) 1907 DevirtTargets[T.Fn->getName()] = T.Fn; 1908 } 1909 1910 // CFI-specific: if we are exporting and any llvm.type.checked.load 1911 // intrinsics were *not* devirtualized, we need to add the resulting 1912 // llvm.type.test intrinsics to the function summaries so that the 1913 // LowerTypeTests pass will export them. 1914 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1915 auto GUID = 1916 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1917 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1918 FS->addTypeTest(GUID); 1919 for (auto &CCS : S.second.ConstCSInfo) 1920 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1921 FS->addTypeTest(GUID); 1922 } 1923 } 1924 1925 if (RemarksEnabled) { 1926 // Generate remarks for each devirtualized function. 1927 for (const auto &DT : DevirtTargets) { 1928 Function *F = DT.second; 1929 1930 using namespace ore; 1931 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1932 << "devirtualized " 1933 << NV("FunctionName", DT.first)); 1934 } 1935 } 1936 1937 removeRedundantTypeTests(); 1938 1939 // Rebuild each global we touched as part of virtual constant propagation to 1940 // include the before and after bytes. 1941 if (DidVirtualConstProp) 1942 for (VTableBits &B : Bits) 1943 rebuildGlobal(B); 1944 1945 return true; 1946 } 1947 1948 void DevirtIndex::run() { 1949 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 1950 return; 1951 1952 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 1953 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 1954 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 1955 } 1956 1957 // Collect information from summary about which calls to try to devirtualize. 1958 for (auto &P : ExportSummary) { 1959 for (auto &S : P.second.SummaryList) { 1960 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1961 if (!FS) 1962 continue; 1963 // FIXME: Only add live functions. 1964 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1965 for (StringRef Name : NameByGUID[VF.GUID]) { 1966 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 1967 } 1968 } 1969 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1970 for (StringRef Name : NameByGUID[VF.GUID]) { 1971 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1972 } 1973 } 1974 for (const FunctionSummary::ConstVCall &VC : 1975 FS->type_test_assume_const_vcalls()) { 1976 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 1977 CallSlots[{Name, VC.VFunc.Offset}] 1978 .ConstCSInfo[VC.Args] 1979 .addSummaryTypeTestAssumeUser(FS); 1980 } 1981 } 1982 for (const FunctionSummary::ConstVCall &VC : 1983 FS->type_checked_load_const_vcalls()) { 1984 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 1985 CallSlots[{Name, VC.VFunc.Offset}] 1986 .ConstCSInfo[VC.Args] 1987 .addSummaryTypeCheckedLoadUser(FS); 1988 } 1989 } 1990 } 1991 } 1992 1993 std::set<ValueInfo> DevirtTargets; 1994 // For each (type, offset) pair: 1995 for (auto &S : CallSlots) { 1996 // Search each of the members of the type identifier for the virtual 1997 // function implementation at offset S.first.ByteOffset, and add to 1998 // TargetsForSlot. 1999 std::vector<ValueInfo> TargetsForSlot; 2000 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2001 assert(TidSummary); 2002 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2003 S.first.ByteOffset)) { 2004 WholeProgramDevirtResolution *Res = 2005 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2006 .WPDRes[S.first.ByteOffset]; 2007 2008 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2009 DevirtTargets)) 2010 continue; 2011 } 2012 } 2013 2014 // Optionally have the thin link print message for each devirtualized 2015 // function. 2016 if (PrintSummaryDevirt) 2017 for (const auto &DT : DevirtTargets) 2018 errs() << "Devirtualized call to " << DT << "\n"; 2019 2020 return; 2021 } 2022