1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via bitset information) that the list of callee is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/Utils/Evaluator.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 
47 #include <set>
48 
49 using namespace llvm;
50 using namespace wholeprogramdevirt;
51 
52 #define DEBUG_TYPE "wholeprogramdevirt"
53 
54 // Find the minimum offset that we may store a value of size Size bits at. If
55 // IsAfter is set, look for an offset before the object, otherwise look for an
56 // offset after the object.
57 uint64_t
58 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
59                                      bool IsAfter, uint64_t Size) {
60   // Find a minimum offset taking into account only vtable sizes.
61   uint64_t MinByte = 0;
62   for (const VirtualCallTarget &Target : Targets) {
63     if (IsAfter)
64       MinByte = std::max(MinByte, Target.minAfterBytes());
65     else
66       MinByte = std::max(MinByte, Target.minBeforeBytes());
67   }
68 
69   // Build a vector of arrays of bytes covering, for each target, a slice of the
70   // used region (see AccumBitVector::BytesUsed in
71   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
72   // this aligns the used regions to start at MinByte.
73   //
74   // In this example, A, B and C are vtables, # is a byte already allocated for
75   // a virtual function pointer, AAAA... (etc.) are the used regions for the
76   // vtables and Offset(X) is the value computed for the Offset variable below
77   // for X.
78   //
79   //                    Offset(A)
80   //                    |       |
81   //                            |MinByte
82   // A: ################AAAAAAAA|AAAAAAAA
83   // B: ########BBBBBBBBBBBBBBBB|BBBB
84   // C: ########################|CCCCCCCCCCCCCCCC
85   //            |   Offset(B)   |
86   //
87   // This code produces the slices of A, B and C that appear after the divider
88   // at MinByte.
89   std::vector<ArrayRef<uint8_t>> Used;
90   for (const VirtualCallTarget &Target : Targets) {
91     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
92                                        : Target.BS->Bits->Before.BytesUsed;
93     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
94                               : MinByte - Target.minBeforeBytes();
95 
96     // Disregard used regions that are smaller than Offset. These are
97     // effectively all-free regions that do not need to be checked.
98     if (VTUsed.size() > Offset)
99       Used.push_back(VTUsed.slice(Offset));
100   }
101 
102   if (Size == 1) {
103     // Find a free bit in each member of Used.
104     for (unsigned I = 0;; ++I) {
105       uint8_t BitsUsed = 0;
106       for (auto &&B : Used)
107         if (I < B.size())
108           BitsUsed |= B[I];
109       if (BitsUsed != 0xff)
110         return (MinByte + I) * 8 +
111                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
112     }
113   } else {
114     // Find a free (Size/8) byte region in each member of Used.
115     // FIXME: see if alignment helps.
116     for (unsigned I = 0;; ++I) {
117       for (auto &&B : Used) {
118         unsigned Byte = 0;
119         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
120           if (B[I + Byte])
121             goto NextI;
122           ++Byte;
123         }
124       }
125       return (MinByte + I) * 8;
126     NextI:;
127     }
128   }
129 }
130 
131 void wholeprogramdevirt::setBeforeReturnValues(
132     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
133     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
134   if (BitWidth == 1)
135     OffsetByte = -(AllocBefore / 8 + 1);
136   else
137     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
138   OffsetBit = AllocBefore % 8;
139 
140   for (VirtualCallTarget &Target : Targets) {
141     if (BitWidth == 1)
142       Target.setBeforeBit(AllocBefore);
143     else
144       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
145   }
146 }
147 
148 void wholeprogramdevirt::setAfterReturnValues(
149     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
150     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
151   if (BitWidth == 1)
152     OffsetByte = AllocAfter / 8;
153   else
154     OffsetByte = (AllocAfter + 7) / 8;
155   OffsetBit = AllocAfter % 8;
156 
157   for (VirtualCallTarget &Target : Targets) {
158     if (BitWidth == 1)
159       Target.setAfterBit(AllocAfter);
160     else
161       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
162   }
163 }
164 
165 VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
166     : Fn(Fn), BS(BS),
167       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
168 
169 namespace {
170 
171 // A slot in a set of virtual tables. The BitSetID identifies the set of virtual
172 // tables, and the ByteOffset is the offset in bytes from the address point to
173 // the virtual function pointer.
174 struct VTableSlot {
175   Metadata *BitSetID;
176   uint64_t ByteOffset;
177 };
178 
179 }
180 
181 namespace llvm {
182 
183 template <> struct DenseMapInfo<VTableSlot> {
184   static VTableSlot getEmptyKey() {
185     return {DenseMapInfo<Metadata *>::getEmptyKey(),
186             DenseMapInfo<uint64_t>::getEmptyKey()};
187   }
188   static VTableSlot getTombstoneKey() {
189     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
190             DenseMapInfo<uint64_t>::getTombstoneKey()};
191   }
192   static unsigned getHashValue(const VTableSlot &I) {
193     return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
194            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
195   }
196   static bool isEqual(const VTableSlot &LHS,
197                       const VTableSlot &RHS) {
198     return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
199   }
200 };
201 
202 }
203 
204 namespace {
205 
206 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
207 // the indirect virtual call.
208 struct VirtualCallSite {
209   Value *VTable;
210   CallSite CS;
211 
212   void replaceAndErase(Value *New) {
213     CS->replaceAllUsesWith(New);
214     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
215       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
216       II->getUnwindDest()->removePredecessor(II->getParent());
217     }
218     CS->eraseFromParent();
219   }
220 };
221 
222 struct DevirtModule {
223   Module &M;
224   IntegerType *Int8Ty;
225   PointerType *Int8PtrTy;
226   IntegerType *Int32Ty;
227 
228   MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
229 
230   DevirtModule(Module &M)
231       : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
232         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
233         Int32Ty(Type::getInt32Ty(M.getContext())) {}
234   void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
235                                      uint64_t Offset, Value *VTable);
236   void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
237                                  Value *VTable);
238 
239   void buildBitSets(std::vector<VTableBits> &Bits,
240                     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
241   bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
242                                  const std::set<BitSetInfo> &BitSetInfos,
243                                  uint64_t ByteOffset);
244   bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
245                            MutableArrayRef<VirtualCallSite> CallSites);
246   bool tryEvaluateFunctionsWithArgs(
247       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
248       ArrayRef<ConstantInt *> Args);
249   bool tryUniformRetValOpt(IntegerType *RetType,
250                            ArrayRef<VirtualCallTarget> TargetsForSlot,
251                            MutableArrayRef<VirtualCallSite> CallSites);
252   bool tryUniqueRetValOpt(unsigned BitWidth,
253                           ArrayRef<VirtualCallTarget> TargetsForSlot,
254                           MutableArrayRef<VirtualCallSite> CallSites);
255   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
256                            ArrayRef<VirtualCallSite> CallSites);
257 
258   void rebuildGlobal(VTableBits &B);
259 
260   bool run();
261 };
262 
263 struct WholeProgramDevirt : public ModulePass {
264   static char ID;
265   WholeProgramDevirt() : ModulePass(ID) {
266     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
267   }
268   bool runOnModule(Module &M) {
269     if (skipModule(M))
270       return false;
271 
272     return DevirtModule(M).run();
273   }
274 };
275 
276 } // anonymous namespace
277 
278 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
279                 "Whole program devirtualization", false, false)
280 char WholeProgramDevirt::ID = 0;
281 
282 ModulePass *llvm::createWholeProgramDevirtPass() {
283   return new WholeProgramDevirt;
284 }
285 
286 // Search for virtual calls that call FPtr and add them to CallSlots.
287 void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
288                                              uint64_t Offset, Value *VTable) {
289   for (const Use &U : FPtr->uses()) {
290     Value *User = U.getUser();
291     if (isa<BitCastInst>(User)) {
292       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
293     } else if (auto CI = dyn_cast<CallInst>(User)) {
294       CallSlots[{BitSet, Offset}].push_back({VTable, CI});
295     } else if (auto II = dyn_cast<InvokeInst>(User)) {
296       CallSlots[{BitSet, Offset}].push_back({VTable, II});
297     }
298   }
299 }
300 
301 // Search for virtual calls that load from VPtr and add them to CallSlots.
302 void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
303                                                  uint64_t Offset,
304                                                  Value *VTable) {
305   for (const Use &U : VPtr->uses()) {
306     Value *User = U.getUser();
307     if (isa<BitCastInst>(User)) {
308       findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
309     } else if (isa<LoadInst>(User)) {
310       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
311     } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
312       // Take into account the GEP offset.
313       if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
314         SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
315         uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
316             GEP->getSourceElementType(), Indices);
317         findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
318       }
319     }
320   }
321 }
322 
323 void DevirtModule::buildBitSets(
324     std::vector<VTableBits> &Bits,
325     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
326   NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
327   if (!BitSetNM)
328     return;
329 
330   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
331   Bits.reserve(BitSetNM->getNumOperands());
332   for (auto Op : BitSetNM->operands()) {
333     auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
334     if (!OpConstMD)
335       continue;
336     auto BitSetID = Op->getOperand(0).get();
337 
338     Constant *OpConst = OpConstMD->getValue();
339     if (auto GA = dyn_cast<GlobalAlias>(OpConst))
340       OpConst = GA->getAliasee();
341     auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
342     if (!OpGlobal)
343       continue;
344 
345     uint64_t Offset =
346         cast<ConstantInt>(
347             cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
348             ->getZExtValue();
349 
350     VTableBits *&BitsPtr = GVToBits[OpGlobal];
351     if (!BitsPtr) {
352       Bits.emplace_back();
353       Bits.back().GV = OpGlobal;
354       Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
355           OpGlobal->getInitializer()->getType());
356       BitsPtr = &Bits.back();
357     }
358     BitSets[BitSetID].insert({BitsPtr, Offset});
359   }
360 }
361 
362 bool DevirtModule::tryFindVirtualCallTargets(
363     std::vector<VirtualCallTarget> &TargetsForSlot,
364     const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
365   for (const BitSetInfo &BS : BitSetInfos) {
366     if (!BS.Bits->GV->isConstant())
367       return false;
368 
369     auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
370     if (!Init)
371       return false;
372     ArrayType *VTableTy = Init->getType();
373 
374     uint64_t ElemSize =
375         M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
376     uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
377     if (GlobalSlotOffset % ElemSize != 0)
378       return false;
379 
380     unsigned Op = GlobalSlotOffset / ElemSize;
381     if (Op >= Init->getNumOperands())
382       return false;
383 
384     auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
385     if (!Fn)
386       return false;
387 
388     // We can disregard __cxa_pure_virtual as a possible call target, as
389     // calls to pure virtuals are UB.
390     if (Fn->getName() == "__cxa_pure_virtual")
391       continue;
392 
393     TargetsForSlot.push_back({Fn, &BS});
394   }
395 
396   // Give up if we couldn't find any targets.
397   return !TargetsForSlot.empty();
398 }
399 
400 bool DevirtModule::trySingleImplDevirt(
401     ArrayRef<VirtualCallTarget> TargetsForSlot,
402     MutableArrayRef<VirtualCallSite> CallSites) {
403   // See if the program contains a single implementation of this virtual
404   // function.
405   Function *TheFn = TargetsForSlot[0].Fn;
406   for (auto &&Target : TargetsForSlot)
407     if (TheFn != Target.Fn)
408       return false;
409 
410   // If so, update each call site to call that implementation directly.
411   for (auto &&VCallSite : CallSites) {
412     VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
413         TheFn, VCallSite.CS.getCalledValue()->getType()));
414   }
415   return true;
416 }
417 
418 bool DevirtModule::tryEvaluateFunctionsWithArgs(
419     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
420     ArrayRef<ConstantInt *> Args) {
421   // Evaluate each function and store the result in each target's RetVal
422   // field.
423   for (VirtualCallTarget &Target : TargetsForSlot) {
424     if (Target.Fn->arg_size() != Args.size() + 1)
425       return false;
426     for (unsigned I = 0; I != Args.size(); ++I)
427       if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
428           Args[I]->getType())
429         return false;
430 
431     Evaluator Eval(M.getDataLayout(), nullptr);
432     SmallVector<Constant *, 2> EvalArgs;
433     EvalArgs.push_back(
434         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
435     EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
436     Constant *RetVal;
437     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
438         !isa<ConstantInt>(RetVal))
439       return false;
440     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
441   }
442   return true;
443 }
444 
445 bool DevirtModule::tryUniformRetValOpt(
446     IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
447     MutableArrayRef<VirtualCallSite> CallSites) {
448   // Uniform return value optimization. If all functions return the same
449   // constant, replace all calls with that constant.
450   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
451   for (const VirtualCallTarget &Target : TargetsForSlot)
452     if (Target.RetVal != TheRetVal)
453       return false;
454 
455   auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
456   for (auto Call : CallSites)
457     Call.replaceAndErase(TheRetValConst);
458   return true;
459 }
460 
461 bool DevirtModule::tryUniqueRetValOpt(
462     unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
463     MutableArrayRef<VirtualCallSite> CallSites) {
464   // IsOne controls whether we look for a 0 or a 1.
465   auto tryUniqueRetValOptFor = [&](bool IsOne) {
466     const BitSetInfo *UniqueBitSet = 0;
467     for (const VirtualCallTarget &Target : TargetsForSlot) {
468       if (Target.RetVal == (IsOne ? 1 : 0)) {
469         if (UniqueBitSet)
470           return false;
471         UniqueBitSet = Target.BS;
472       }
473     }
474 
475     // We should have found a unique bit set or bailed out by now. We already
476     // checked for a uniform return value in tryUniformRetValOpt.
477     assert(UniqueBitSet);
478 
479     // Replace each call with the comparison.
480     for (auto &&Call : CallSites) {
481       IRBuilder<> B(Call.CS.getInstruction());
482       Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
483       OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
484       Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
485                                 Call.VTable, OneAddr);
486       Call.replaceAndErase(Cmp);
487     }
488     return true;
489   };
490 
491   if (BitWidth == 1) {
492     if (tryUniqueRetValOptFor(true))
493       return true;
494     if (tryUniqueRetValOptFor(false))
495       return true;
496   }
497   return false;
498 }
499 
500 bool DevirtModule::tryVirtualConstProp(
501     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
502     ArrayRef<VirtualCallSite> CallSites) {
503   // This only works if the function returns an integer.
504   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
505   if (!RetType)
506     return false;
507   unsigned BitWidth = RetType->getBitWidth();
508   if (BitWidth > 64)
509     return false;
510 
511   // Make sure that each function does not access memory, takes at least one
512   // argument, does not use its first argument (which we assume is 'this'),
513   // and has the same return type.
514   for (VirtualCallTarget &Target : TargetsForSlot) {
515     if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
516         !Target.Fn->arg_begin()->use_empty() ||
517         Target.Fn->getReturnType() != RetType)
518       return false;
519   }
520 
521   // Group call sites by the list of constant arguments they pass.
522   // The comparator ensures deterministic ordering.
523   struct ByAPIntValue {
524     bool operator()(const std::vector<ConstantInt *> &A,
525                     const std::vector<ConstantInt *> &B) const {
526       return std::lexicographical_compare(
527           A.begin(), A.end(), B.begin(), B.end(),
528           [](ConstantInt *AI, ConstantInt *BI) {
529             return AI->getValue().ult(BI->getValue());
530           });
531     }
532   };
533   std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
534            ByAPIntValue>
535       VCallSitesByConstantArg;
536   for (auto &&VCallSite : CallSites) {
537     std::vector<ConstantInt *> Args;
538     if (VCallSite.CS.getType() != RetType)
539       continue;
540     for (auto &&Arg :
541          make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
542       if (!isa<ConstantInt>(Arg))
543         break;
544       Args.push_back(cast<ConstantInt>(&Arg));
545     }
546     if (Args.size() + 1 != VCallSite.CS.arg_size())
547       continue;
548 
549     VCallSitesByConstantArg[Args].push_back(VCallSite);
550   }
551 
552   for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
553     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
554       continue;
555 
556     if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
557       continue;
558 
559     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
560       continue;
561 
562     // Find an allocation offset in bits in all vtables in the bitset.
563     uint64_t AllocBefore =
564         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
565     uint64_t AllocAfter =
566         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
567 
568     // Calculate the total amount of padding needed to store a value at both
569     // ends of the object.
570     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
571     for (auto &&Target : TargetsForSlot) {
572       TotalPaddingBefore += std::max<int64_t>(
573           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
574       TotalPaddingAfter += std::max<int64_t>(
575           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
576     }
577 
578     // If the amount of padding is too large, give up.
579     // FIXME: do something smarter here.
580     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
581       continue;
582 
583     // Calculate the offset to the value as a (possibly negative) byte offset
584     // and (if applicable) a bit offset, and store the values in the targets.
585     int64_t OffsetByte;
586     uint64_t OffsetBit;
587     if (TotalPaddingBefore <= TotalPaddingAfter)
588       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
589                             OffsetBit);
590     else
591       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
592                            OffsetBit);
593 
594     // Rewrite each call to a load from OffsetByte/OffsetBit.
595     for (auto Call : CSByConstantArg.second) {
596       IRBuilder<> B(Call.CS.getInstruction());
597       Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
598       if (BitWidth == 1) {
599         Value *Bits = B.CreateLoad(Addr);
600         Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
601         Value *BitsAndBit = B.CreateAnd(Bits, Bit);
602         auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
603         Call.replaceAndErase(IsBitSet);
604       } else {
605         Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
606         Value *Val = B.CreateLoad(RetType, ValAddr);
607         Call.replaceAndErase(Val);
608       }
609     }
610   }
611   return true;
612 }
613 
614 void DevirtModule::rebuildGlobal(VTableBits &B) {
615   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
616     return;
617 
618   // Align each byte array to pointer width.
619   unsigned PointerSize = M.getDataLayout().getPointerSize();
620   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
621   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
622 
623   // Before was stored in reverse order; flip it now.
624   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
625     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
626 
627   // Build an anonymous global containing the before bytes, followed by the
628   // original initializer, followed by the after bytes.
629   auto NewInit = ConstantStruct::getAnon(
630       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
631        B.GV->getInitializer(),
632        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
633   auto NewGV =
634       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
635                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
636   NewGV->setSection(B.GV->getSection());
637   NewGV->setComdat(B.GV->getComdat());
638 
639   // Build an alias named after the original global, pointing at the second
640   // element (the original initializer).
641   auto Alias = GlobalAlias::create(
642       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
643       ConstantExpr::getGetElementPtr(
644           NewInit->getType(), NewGV,
645           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
646                                ConstantInt::get(Int32Ty, 1)}),
647       &M);
648   Alias->setVisibility(B.GV->getVisibility());
649   Alias->takeName(B.GV);
650 
651   B.GV->replaceAllUsesWith(Alias);
652   B.GV->eraseFromParent();
653 }
654 
655 bool DevirtModule::run() {
656   Function *BitSetTestFunc =
657       M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
658   if (!BitSetTestFunc || BitSetTestFunc->use_empty())
659     return false;
660 
661   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
662   if (!AssumeFunc || AssumeFunc->use_empty())
663     return false;
664 
665   // Find all virtual calls via a virtual table pointer %p under an assumption
666   // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
667   // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
668   // (effectively the identity of the virtual function) and store to CallSlots.
669   DenseSet<Value *> SeenPtrs;
670   for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
671        I != E;) {
672     auto CI = dyn_cast<CallInst>(I->getUser());
673     ++I;
674     if (!CI)
675       continue;
676 
677     // Find llvm.assume intrinsics for this llvm.bitset.test call.
678     SmallVector<CallInst *, 1> Assumes;
679     for (const Use &CIU : CI->uses()) {
680       auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
681       if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
682         Assumes.push_back(AssumeCI);
683     }
684 
685     // If we found any, search for virtual calls based on %p and add them to
686     // CallSlots.
687     if (!Assumes.empty()) {
688       Metadata *BitSet =
689           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
690       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
691       if (SeenPtrs.insert(Ptr).second)
692         findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
693     }
694 
695     // We no longer need the assumes or the bitset test.
696     for (auto Assume : Assumes)
697       Assume->eraseFromParent();
698     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
699     // may use the vtable argument later.
700     if (CI->use_empty())
701       CI->eraseFromParent();
702   }
703 
704   // Rebuild llvm.bitsets metadata into a map for easy lookup.
705   std::vector<VTableBits> Bits;
706   DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
707   buildBitSets(Bits, BitSets);
708   if (BitSets.empty())
709     return true;
710 
711   // For each (bitset, offset) pair:
712   bool DidVirtualConstProp = false;
713   for (auto &S : CallSlots) {
714     // Search each of the vtables in the bitset for the virtual function
715     // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
716     std::vector<VirtualCallTarget> TargetsForSlot;
717     if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
718                                    S.first.ByteOffset))
719       continue;
720 
721     if (trySingleImplDevirt(TargetsForSlot, S.second))
722       continue;
723 
724     DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
725   }
726 
727   // Rebuild each global we touched as part of virtual constant propagation to
728   // include the before and after bytes.
729   if (DidVirtualConstProp)
730     for (VTableBits &B : Bits)
731       rebuildGlobal(B);
732 
733   return true;
734 }
735