1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BasicAliasAnalysis.h" 64 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 65 #include "llvm/Analysis/TypeMetadataUtils.h" 66 #include "llvm/Bitcode/BitcodeReader.h" 67 #include "llvm/Bitcode/BitcodeWriter.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugLoc.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/ModuleSummaryIndexYAML.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/PassRegistry.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Errc.h" 91 #include "llvm/Support/Error.h" 92 #include "llvm/Support/FileSystem.h" 93 #include "llvm/Support/GlobPattern.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Transforms/IPO.h" 96 #include "llvm/Transforms/IPO/FunctionAttrs.h" 97 #include "llvm/Transforms/Utils/Evaluator.h" 98 #include <algorithm> 99 #include <cstddef> 100 #include <map> 101 #include <set> 102 #include <string> 103 104 using namespace llvm; 105 using namespace wholeprogramdevirt; 106 107 #define DEBUG_TYPE "wholeprogramdevirt" 108 109 static cl::opt<PassSummaryAction> ClSummaryAction( 110 "wholeprogramdevirt-summary-action", 111 cl::desc("What to do with the summary when running this pass"), 112 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 113 clEnumValN(PassSummaryAction::Import, "import", 114 "Import typeid resolutions from summary and globals"), 115 clEnumValN(PassSummaryAction::Export, "export", 116 "Export typeid resolutions to summary and globals")), 117 cl::Hidden); 118 119 static cl::opt<std::string> ClReadSummary( 120 "wholeprogramdevirt-read-summary", 121 cl::desc( 122 "Read summary from given bitcode or YAML file before running pass"), 123 cl::Hidden); 124 125 static cl::opt<std::string> ClWriteSummary( 126 "wholeprogramdevirt-write-summary", 127 cl::desc("Write summary to given bitcode or YAML file after running pass. " 128 "Output file format is deduced from extension: *.bc means writing " 129 "bitcode, otherwise YAML"), 130 cl::Hidden); 131 132 static cl::opt<unsigned> 133 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 134 cl::init(10), cl::ZeroOrMore, 135 cl::desc("Maximum number of call targets per " 136 "call site to enable branch funnels")); 137 138 static cl::opt<bool> 139 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 140 cl::init(false), cl::ZeroOrMore, 141 cl::desc("Print index-based devirtualization messages")); 142 143 /// Provide a way to force enable whole program visibility in tests. 144 /// This is needed to support legacy tests that don't contain 145 /// !vcall_visibility metadata (the mere presense of type tests 146 /// previously implied hidden visibility). 147 cl::opt<bool> 148 WholeProgramVisibility("whole-program-visibility", cl::init(false), 149 cl::Hidden, cl::ZeroOrMore, 150 cl::desc("Enable whole program visibility")); 151 152 /// Provide a way to force disable whole program for debugging or workarounds, 153 /// when enabled via the linker. 154 cl::opt<bool> DisableWholeProgramVisibility( 155 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 156 cl::ZeroOrMore, 157 cl::desc("Disable whole program visibility (overrides enabling options)")); 158 159 /// Provide way to prevent certain function from being devirtualized 160 cl::list<std::string> 161 SkipFunctionNames("wholeprogramdevirt-skip", 162 cl::desc("Prevent function(s) from being devirtualized"), 163 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); 164 165 namespace { 166 struct PatternList { 167 std::vector<GlobPattern> Patterns; 168 template <class T> void init(const T &StringList) { 169 for (const auto &S : StringList) 170 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 171 Patterns.push_back(std::move(*Pat)); 172 } 173 bool match(StringRef S) { 174 for (const GlobPattern &P : Patterns) 175 if (P.match(S)) 176 return true; 177 return false; 178 } 179 }; 180 } // namespace 181 182 // Find the minimum offset that we may store a value of size Size bits at. If 183 // IsAfter is set, look for an offset before the object, otherwise look for an 184 // offset after the object. 185 uint64_t 186 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 187 bool IsAfter, uint64_t Size) { 188 // Find a minimum offset taking into account only vtable sizes. 189 uint64_t MinByte = 0; 190 for (const VirtualCallTarget &Target : Targets) { 191 if (IsAfter) 192 MinByte = std::max(MinByte, Target.minAfterBytes()); 193 else 194 MinByte = std::max(MinByte, Target.minBeforeBytes()); 195 } 196 197 // Build a vector of arrays of bytes covering, for each target, a slice of the 198 // used region (see AccumBitVector::BytesUsed in 199 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 200 // this aligns the used regions to start at MinByte. 201 // 202 // In this example, A, B and C are vtables, # is a byte already allocated for 203 // a virtual function pointer, AAAA... (etc.) are the used regions for the 204 // vtables and Offset(X) is the value computed for the Offset variable below 205 // for X. 206 // 207 // Offset(A) 208 // | | 209 // |MinByte 210 // A: ################AAAAAAAA|AAAAAAAA 211 // B: ########BBBBBBBBBBBBBBBB|BBBB 212 // C: ########################|CCCCCCCCCCCCCCCC 213 // | Offset(B) | 214 // 215 // This code produces the slices of A, B and C that appear after the divider 216 // at MinByte. 217 std::vector<ArrayRef<uint8_t>> Used; 218 for (const VirtualCallTarget &Target : Targets) { 219 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 220 : Target.TM->Bits->Before.BytesUsed; 221 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 222 : MinByte - Target.minBeforeBytes(); 223 224 // Disregard used regions that are smaller than Offset. These are 225 // effectively all-free regions that do not need to be checked. 226 if (VTUsed.size() > Offset) 227 Used.push_back(VTUsed.slice(Offset)); 228 } 229 230 if (Size == 1) { 231 // Find a free bit in each member of Used. 232 for (unsigned I = 0;; ++I) { 233 uint8_t BitsUsed = 0; 234 for (auto &&B : Used) 235 if (I < B.size()) 236 BitsUsed |= B[I]; 237 if (BitsUsed != 0xff) 238 return (MinByte + I) * 8 + 239 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 240 } 241 } else { 242 // Find a free (Size/8) byte region in each member of Used. 243 // FIXME: see if alignment helps. 244 for (unsigned I = 0;; ++I) { 245 for (auto &&B : Used) { 246 unsigned Byte = 0; 247 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 248 if (B[I + Byte]) 249 goto NextI; 250 ++Byte; 251 } 252 } 253 return (MinByte + I) * 8; 254 NextI:; 255 } 256 } 257 } 258 259 void wholeprogramdevirt::setBeforeReturnValues( 260 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 261 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 262 if (BitWidth == 1) 263 OffsetByte = -(AllocBefore / 8 + 1); 264 else 265 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 266 OffsetBit = AllocBefore % 8; 267 268 for (VirtualCallTarget &Target : Targets) { 269 if (BitWidth == 1) 270 Target.setBeforeBit(AllocBefore); 271 else 272 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 273 } 274 } 275 276 void wholeprogramdevirt::setAfterReturnValues( 277 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 278 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 279 if (BitWidth == 1) 280 OffsetByte = AllocAfter / 8; 281 else 282 OffsetByte = (AllocAfter + 7) / 8; 283 OffsetBit = AllocAfter % 8; 284 285 for (VirtualCallTarget &Target : Targets) { 286 if (BitWidth == 1) 287 Target.setAfterBit(AllocAfter); 288 else 289 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 290 } 291 } 292 293 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 294 : Fn(Fn), TM(TM), 295 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 296 297 namespace { 298 299 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 300 // tables, and the ByteOffset is the offset in bytes from the address point to 301 // the virtual function pointer. 302 struct VTableSlot { 303 Metadata *TypeID; 304 uint64_t ByteOffset; 305 }; 306 307 } // end anonymous namespace 308 309 namespace llvm { 310 311 template <> struct DenseMapInfo<VTableSlot> { 312 static VTableSlot getEmptyKey() { 313 return {DenseMapInfo<Metadata *>::getEmptyKey(), 314 DenseMapInfo<uint64_t>::getEmptyKey()}; 315 } 316 static VTableSlot getTombstoneKey() { 317 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 318 DenseMapInfo<uint64_t>::getTombstoneKey()}; 319 } 320 static unsigned getHashValue(const VTableSlot &I) { 321 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 322 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 323 } 324 static bool isEqual(const VTableSlot &LHS, 325 const VTableSlot &RHS) { 326 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 327 } 328 }; 329 330 template <> struct DenseMapInfo<VTableSlotSummary> { 331 static VTableSlotSummary getEmptyKey() { 332 return {DenseMapInfo<StringRef>::getEmptyKey(), 333 DenseMapInfo<uint64_t>::getEmptyKey()}; 334 } 335 static VTableSlotSummary getTombstoneKey() { 336 return {DenseMapInfo<StringRef>::getTombstoneKey(), 337 DenseMapInfo<uint64_t>::getTombstoneKey()}; 338 } 339 static unsigned getHashValue(const VTableSlotSummary &I) { 340 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 341 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 342 } 343 static bool isEqual(const VTableSlotSummary &LHS, 344 const VTableSlotSummary &RHS) { 345 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 346 } 347 }; 348 349 } // end namespace llvm 350 351 namespace { 352 353 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 354 // the indirect virtual call. 355 struct VirtualCallSite { 356 Value *VTable = nullptr; 357 CallBase &CB; 358 359 // If non-null, this field points to the associated unsafe use count stored in 360 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 361 // of that field for details. 362 unsigned *NumUnsafeUses = nullptr; 363 364 void 365 emitRemark(const StringRef OptName, const StringRef TargetName, 366 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 367 Function *F = CB.getCaller(); 368 DebugLoc DLoc = CB.getDebugLoc(); 369 BasicBlock *Block = CB.getParent(); 370 371 using namespace ore; 372 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 373 << NV("Optimization", OptName) 374 << ": devirtualized a call to " 375 << NV("FunctionName", TargetName)); 376 } 377 378 void replaceAndErase( 379 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 380 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 381 Value *New) { 382 if (RemarksEnabled) 383 emitRemark(OptName, TargetName, OREGetter); 384 CB.replaceAllUsesWith(New); 385 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 386 BranchInst::Create(II->getNormalDest(), &CB); 387 II->getUnwindDest()->removePredecessor(II->getParent()); 388 } 389 CB.eraseFromParent(); 390 // This use is no longer unsafe. 391 if (NumUnsafeUses) 392 --*NumUnsafeUses; 393 } 394 }; 395 396 // Call site information collected for a specific VTableSlot and possibly a list 397 // of constant integer arguments. The grouping by arguments is handled by the 398 // VTableSlotInfo class. 399 struct CallSiteInfo { 400 /// The set of call sites for this slot. Used during regular LTO and the 401 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 402 /// call sites that appear in the merged module itself); in each of these 403 /// cases we are directly operating on the call sites at the IR level. 404 std::vector<VirtualCallSite> CallSites; 405 406 /// Whether all call sites represented by this CallSiteInfo, including those 407 /// in summaries, have been devirtualized. This starts off as true because a 408 /// default constructed CallSiteInfo represents no call sites. 409 bool AllCallSitesDevirted = true; 410 411 // These fields are used during the export phase of ThinLTO and reflect 412 // information collected from function summaries. 413 414 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 415 /// this slot. 416 bool SummaryHasTypeTestAssumeUsers = false; 417 418 /// CFI-specific: a vector containing the list of function summaries that use 419 /// the llvm.type.checked.load intrinsic and therefore will require 420 /// resolutions for llvm.type.test in order to implement CFI checks if 421 /// devirtualization was unsuccessful. If devirtualization was successful, the 422 /// pass will clear this vector by calling markDevirt(). If at the end of the 423 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 424 /// to each of the function summaries in the vector. 425 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 426 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 427 428 bool isExported() const { 429 return SummaryHasTypeTestAssumeUsers || 430 !SummaryTypeCheckedLoadUsers.empty(); 431 } 432 433 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 434 SummaryTypeCheckedLoadUsers.push_back(FS); 435 AllCallSitesDevirted = false; 436 } 437 438 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 439 SummaryTypeTestAssumeUsers.push_back(FS); 440 SummaryHasTypeTestAssumeUsers = true; 441 AllCallSitesDevirted = false; 442 } 443 444 void markDevirt() { 445 AllCallSitesDevirted = true; 446 447 // As explained in the comment for SummaryTypeCheckedLoadUsers. 448 SummaryTypeCheckedLoadUsers.clear(); 449 } 450 }; 451 452 // Call site information collected for a specific VTableSlot. 453 struct VTableSlotInfo { 454 // The set of call sites which do not have all constant integer arguments 455 // (excluding "this"). 456 CallSiteInfo CSInfo; 457 458 // The set of call sites with all constant integer arguments (excluding 459 // "this"), grouped by argument list. 460 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 461 462 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 463 464 private: 465 CallSiteInfo &findCallSiteInfo(CallBase &CB); 466 }; 467 468 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 469 std::vector<uint64_t> Args; 470 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 471 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 472 return CSInfo; 473 for (auto &&Arg : drop_begin(CB.args())) { 474 auto *CI = dyn_cast<ConstantInt>(Arg); 475 if (!CI || CI->getBitWidth() > 64) 476 return CSInfo; 477 Args.push_back(CI->getZExtValue()); 478 } 479 return ConstCSInfo[Args]; 480 } 481 482 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 483 unsigned *NumUnsafeUses) { 484 auto &CSI = findCallSiteInfo(CB); 485 CSI.AllCallSitesDevirted = false; 486 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 487 } 488 489 struct DevirtModule { 490 Module &M; 491 function_ref<AAResults &(Function &)> AARGetter; 492 function_ref<DominatorTree &(Function &)> LookupDomTree; 493 494 ModuleSummaryIndex *ExportSummary; 495 const ModuleSummaryIndex *ImportSummary; 496 497 IntegerType *Int8Ty; 498 PointerType *Int8PtrTy; 499 IntegerType *Int32Ty; 500 IntegerType *Int64Ty; 501 IntegerType *IntPtrTy; 502 /// Sizeless array type, used for imported vtables. This provides a signal 503 /// to analyzers that these imports may alias, as they do for example 504 /// when multiple unique return values occur in the same vtable. 505 ArrayType *Int8Arr0Ty; 506 507 bool RemarksEnabled; 508 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 509 510 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 511 512 // This map keeps track of the number of "unsafe" uses of a loaded function 513 // pointer. The key is the associated llvm.type.test intrinsic call generated 514 // by this pass. An unsafe use is one that calls the loaded function pointer 515 // directly. Every time we eliminate an unsafe use (for example, by 516 // devirtualizing it or by applying virtual constant propagation), we 517 // decrement the value stored in this map. If a value reaches zero, we can 518 // eliminate the type check by RAUWing the associated llvm.type.test call with 519 // true. 520 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 521 PatternList FunctionsToSkip; 522 523 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 524 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 525 function_ref<DominatorTree &(Function &)> LookupDomTree, 526 ModuleSummaryIndex *ExportSummary, 527 const ModuleSummaryIndex *ImportSummary) 528 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 529 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 530 Int8Ty(Type::getInt8Ty(M.getContext())), 531 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 532 Int32Ty(Type::getInt32Ty(M.getContext())), 533 Int64Ty(Type::getInt64Ty(M.getContext())), 534 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 535 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 536 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 537 assert(!(ExportSummary && ImportSummary)); 538 FunctionsToSkip.init(SkipFunctionNames); 539 } 540 541 bool areRemarksEnabled(); 542 543 void 544 scanTypeTestUsers(Function *TypeTestFunc, 545 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 546 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 547 548 void buildTypeIdentifierMap( 549 std::vector<VTableBits> &Bits, 550 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 551 bool 552 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 553 const std::set<TypeMemberInfo> &TypeMemberInfos, 554 uint64_t ByteOffset); 555 556 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 557 bool &IsExported); 558 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 559 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 560 VTableSlotInfo &SlotInfo, 561 WholeProgramDevirtResolution *Res); 562 563 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 564 bool &IsExported); 565 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 566 VTableSlotInfo &SlotInfo, 567 WholeProgramDevirtResolution *Res, VTableSlot Slot); 568 569 bool tryEvaluateFunctionsWithArgs( 570 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 571 ArrayRef<uint64_t> Args); 572 573 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 574 uint64_t TheRetVal); 575 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 576 CallSiteInfo &CSInfo, 577 WholeProgramDevirtResolution::ByArg *Res); 578 579 // Returns the global symbol name that is used to export information about the 580 // given vtable slot and list of arguments. 581 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 582 StringRef Name); 583 584 bool shouldExportConstantsAsAbsoluteSymbols(); 585 586 // This function is called during the export phase to create a symbol 587 // definition containing information about the given vtable slot and list of 588 // arguments. 589 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 590 Constant *C); 591 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 592 uint32_t Const, uint32_t &Storage); 593 594 // This function is called during the import phase to create a reference to 595 // the symbol definition created during the export phase. 596 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 597 StringRef Name); 598 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 599 StringRef Name, IntegerType *IntTy, 600 uint32_t Storage); 601 602 Constant *getMemberAddr(const TypeMemberInfo *M); 603 604 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 605 Constant *UniqueMemberAddr); 606 bool tryUniqueRetValOpt(unsigned BitWidth, 607 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 608 CallSiteInfo &CSInfo, 609 WholeProgramDevirtResolution::ByArg *Res, 610 VTableSlot Slot, ArrayRef<uint64_t> Args); 611 612 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 613 Constant *Byte, Constant *Bit); 614 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 615 VTableSlotInfo &SlotInfo, 616 WholeProgramDevirtResolution *Res, VTableSlot Slot); 617 618 void rebuildGlobal(VTableBits &B); 619 620 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 621 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 622 623 // If we were able to eliminate all unsafe uses for a type checked load, 624 // eliminate the associated type tests by replacing them with true. 625 void removeRedundantTypeTests(); 626 627 bool run(); 628 629 // Lower the module using the action and summary passed as command line 630 // arguments. For testing purposes only. 631 static bool 632 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 633 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 634 function_ref<DominatorTree &(Function &)> LookupDomTree); 635 }; 636 637 struct DevirtIndex { 638 ModuleSummaryIndex &ExportSummary; 639 // The set in which to record GUIDs exported from their module by 640 // devirtualization, used by client to ensure they are not internalized. 641 std::set<GlobalValue::GUID> &ExportedGUIDs; 642 // A map in which to record the information necessary to locate the WPD 643 // resolution for local targets in case they are exported by cross module 644 // importing. 645 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 646 647 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 648 649 PatternList FunctionsToSkip; 650 651 DevirtIndex( 652 ModuleSummaryIndex &ExportSummary, 653 std::set<GlobalValue::GUID> &ExportedGUIDs, 654 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 655 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 656 LocalWPDTargetsMap(LocalWPDTargetsMap) { 657 FunctionsToSkip.init(SkipFunctionNames); 658 } 659 660 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 661 const TypeIdCompatibleVtableInfo TIdInfo, 662 uint64_t ByteOffset); 663 664 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 665 VTableSlotSummary &SlotSummary, 666 VTableSlotInfo &SlotInfo, 667 WholeProgramDevirtResolution *Res, 668 std::set<ValueInfo> &DevirtTargets); 669 670 void run(); 671 }; 672 673 struct WholeProgramDevirt : public ModulePass { 674 static char ID; 675 676 bool UseCommandLine = false; 677 678 ModuleSummaryIndex *ExportSummary = nullptr; 679 const ModuleSummaryIndex *ImportSummary = nullptr; 680 681 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 682 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 683 } 684 685 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 686 const ModuleSummaryIndex *ImportSummary) 687 : ModulePass(ID), ExportSummary(ExportSummary), 688 ImportSummary(ImportSummary) { 689 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 690 } 691 692 bool runOnModule(Module &M) override { 693 if (skipModule(M)) 694 return false; 695 696 // In the new pass manager, we can request the optimization 697 // remark emitter pass on a per-function-basis, which the 698 // OREGetter will do for us. 699 // In the old pass manager, this is harder, so we just build 700 // an optimization remark emitter on the fly, when we need it. 701 std::unique_ptr<OptimizationRemarkEmitter> ORE; 702 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 703 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 704 return *ORE; 705 }; 706 707 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 708 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 709 }; 710 711 if (UseCommandLine) 712 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 713 LookupDomTree); 714 715 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 716 ExportSummary, ImportSummary) 717 .run(); 718 } 719 720 void getAnalysisUsage(AnalysisUsage &AU) const override { 721 AU.addRequired<AssumptionCacheTracker>(); 722 AU.addRequired<TargetLibraryInfoWrapperPass>(); 723 AU.addRequired<DominatorTreeWrapperPass>(); 724 } 725 }; 726 727 } // end anonymous namespace 728 729 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 730 "Whole program devirtualization", false, false) 731 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 732 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 733 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 734 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 735 "Whole program devirtualization", false, false) 736 char WholeProgramDevirt::ID = 0; 737 738 ModulePass * 739 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 740 const ModuleSummaryIndex *ImportSummary) { 741 return new WholeProgramDevirt(ExportSummary, ImportSummary); 742 } 743 744 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 745 ModuleAnalysisManager &AM) { 746 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 747 auto AARGetter = [&](Function &F) -> AAResults & { 748 return FAM.getResult<AAManager>(F); 749 }; 750 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 751 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 752 }; 753 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 754 return FAM.getResult<DominatorTreeAnalysis>(F); 755 }; 756 if (UseCommandLine) { 757 if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) 758 return PreservedAnalyses::all(); 759 return PreservedAnalyses::none(); 760 } 761 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 762 ImportSummary) 763 .run()) 764 return PreservedAnalyses::all(); 765 return PreservedAnalyses::none(); 766 } 767 768 // Enable whole program visibility if enabled by client (e.g. linker) or 769 // internal option, and not force disabled. 770 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 771 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 772 !DisableWholeProgramVisibility; 773 } 774 775 namespace llvm { 776 777 /// If whole program visibility asserted, then upgrade all public vcall 778 /// visibility metadata on vtable definitions to linkage unit visibility in 779 /// Module IR (for regular or hybrid LTO). 780 void updateVCallVisibilityInModule( 781 Module &M, bool WholeProgramVisibilityEnabledInLTO, 782 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 783 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 784 return; 785 for (GlobalVariable &GV : M.globals()) 786 // Add linkage unit visibility to any variable with type metadata, which are 787 // the vtable definitions. We won't have an existing vcall_visibility 788 // metadata on vtable definitions with public visibility. 789 if (GV.hasMetadata(LLVMContext::MD_type) && 790 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic && 791 // Don't upgrade the visibility for symbols exported to the dynamic 792 // linker, as we have no information on their eventual use. 793 !DynamicExportSymbols.count(GV.getGUID())) 794 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 795 } 796 797 /// If whole program visibility asserted, then upgrade all public vcall 798 /// visibility metadata on vtable definition summaries to linkage unit 799 /// visibility in Module summary index (for ThinLTO). 800 void updateVCallVisibilityInIndex( 801 ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO, 802 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 803 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 804 return; 805 for (auto &P : Index) { 806 for (auto &S : P.second.SummaryList) { 807 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 808 if (!GVar || GVar->vTableFuncs().empty() || 809 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic || 810 // Don't upgrade the visibility for symbols exported to the dynamic 811 // linker, as we have no information on their eventual use. 812 DynamicExportSymbols.count(P.first)) 813 continue; 814 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 815 } 816 } 817 } 818 819 void runWholeProgramDevirtOnIndex( 820 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 821 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 822 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 823 } 824 825 void updateIndexWPDForExports( 826 ModuleSummaryIndex &Summary, 827 function_ref<bool(StringRef, ValueInfo)> isExported, 828 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 829 for (auto &T : LocalWPDTargetsMap) { 830 auto &VI = T.first; 831 // This was enforced earlier during trySingleImplDevirt. 832 assert(VI.getSummaryList().size() == 1 && 833 "Devirt of local target has more than one copy"); 834 auto &S = VI.getSummaryList()[0]; 835 if (!isExported(S->modulePath(), VI)) 836 continue; 837 838 // It's been exported by a cross module import. 839 for (auto &SlotSummary : T.second) { 840 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 841 assert(TIdSum); 842 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 843 assert(WPDRes != TIdSum->WPDRes.end()); 844 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 845 WPDRes->second.SingleImplName, 846 Summary.getModuleHash(S->modulePath())); 847 } 848 } 849 } 850 851 } // end namespace llvm 852 853 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 854 // Check that summary index contains regular LTO module when performing 855 // export to prevent occasional use of index from pure ThinLTO compilation 856 // (-fno-split-lto-module). This kind of summary index is passed to 857 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 858 const auto &ModPaths = Summary->modulePaths(); 859 if (ClSummaryAction != PassSummaryAction::Import && 860 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 861 ModPaths.end()) 862 return createStringError( 863 errc::invalid_argument, 864 "combined summary should contain Regular LTO module"); 865 return ErrorSuccess(); 866 } 867 868 bool DevirtModule::runForTesting( 869 Module &M, function_ref<AAResults &(Function &)> AARGetter, 870 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 871 function_ref<DominatorTree &(Function &)> LookupDomTree) { 872 std::unique_ptr<ModuleSummaryIndex> Summary = 873 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 874 875 // Handle the command-line summary arguments. This code is for testing 876 // purposes only, so we handle errors directly. 877 if (!ClReadSummary.empty()) { 878 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 879 ": "); 880 auto ReadSummaryFile = 881 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 882 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 883 getModuleSummaryIndex(*ReadSummaryFile)) { 884 Summary = std::move(*SummaryOrErr); 885 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 886 } else { 887 // Try YAML if we've failed with bitcode. 888 consumeError(SummaryOrErr.takeError()); 889 yaml::Input In(ReadSummaryFile->getBuffer()); 890 In >> *Summary; 891 ExitOnErr(errorCodeToError(In.error())); 892 } 893 } 894 895 bool Changed = 896 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 897 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 898 : nullptr, 899 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 900 : nullptr) 901 .run(); 902 903 if (!ClWriteSummary.empty()) { 904 ExitOnError ExitOnErr( 905 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 906 std::error_code EC; 907 if (StringRef(ClWriteSummary).endswith(".bc")) { 908 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 909 ExitOnErr(errorCodeToError(EC)); 910 WriteIndexToFile(*Summary, OS); 911 } else { 912 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 913 ExitOnErr(errorCodeToError(EC)); 914 yaml::Output Out(OS); 915 Out << *Summary; 916 } 917 } 918 919 return Changed; 920 } 921 922 void DevirtModule::buildTypeIdentifierMap( 923 std::vector<VTableBits> &Bits, 924 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 925 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 926 Bits.reserve(M.getGlobalList().size()); 927 SmallVector<MDNode *, 2> Types; 928 for (GlobalVariable &GV : M.globals()) { 929 Types.clear(); 930 GV.getMetadata(LLVMContext::MD_type, Types); 931 if (GV.isDeclaration() || Types.empty()) 932 continue; 933 934 VTableBits *&BitsPtr = GVToBits[&GV]; 935 if (!BitsPtr) { 936 Bits.emplace_back(); 937 Bits.back().GV = &GV; 938 Bits.back().ObjectSize = 939 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 940 BitsPtr = &Bits.back(); 941 } 942 943 for (MDNode *Type : Types) { 944 auto TypeID = Type->getOperand(1).get(); 945 946 uint64_t Offset = 947 cast<ConstantInt>( 948 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 949 ->getZExtValue(); 950 951 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 952 } 953 } 954 } 955 956 bool DevirtModule::tryFindVirtualCallTargets( 957 std::vector<VirtualCallTarget> &TargetsForSlot, 958 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 959 for (const TypeMemberInfo &TM : TypeMemberInfos) { 960 if (!TM.Bits->GV->isConstant()) 961 return false; 962 963 // We cannot perform whole program devirtualization analysis on a vtable 964 // with public LTO visibility. 965 if (TM.Bits->GV->getVCallVisibility() == 966 GlobalObject::VCallVisibilityPublic) 967 return false; 968 969 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 970 TM.Offset + ByteOffset, M); 971 if (!Ptr) 972 return false; 973 974 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 975 if (!Fn) 976 return false; 977 978 if (FunctionsToSkip.match(Fn->getName())) 979 return false; 980 981 // We can disregard __cxa_pure_virtual as a possible call target, as 982 // calls to pure virtuals are UB. 983 if (Fn->getName() == "__cxa_pure_virtual") 984 continue; 985 986 TargetsForSlot.push_back({Fn, &TM}); 987 } 988 989 // Give up if we couldn't find any targets. 990 return !TargetsForSlot.empty(); 991 } 992 993 bool DevirtIndex::tryFindVirtualCallTargets( 994 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 995 uint64_t ByteOffset) { 996 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 997 // Find the first non-available_externally linkage vtable initializer. 998 // We can have multiple available_externally, linkonce_odr and weak_odr 999 // vtable initializers, however we want to skip available_externally as they 1000 // do not have type metadata attached, and therefore the summary will not 1001 // contain any vtable functions. We can also have multiple external 1002 // vtable initializers in the case of comdats, which we cannot check here. 1003 // The linker should give an error in this case. 1004 // 1005 // Also, handle the case of same-named local Vtables with the same path 1006 // and therefore the same GUID. This can happen if there isn't enough 1007 // distinguishing path when compiling the source file. In that case we 1008 // conservatively return false early. 1009 const GlobalVarSummary *VS = nullptr; 1010 bool LocalFound = false; 1011 for (auto &S : P.VTableVI.getSummaryList()) { 1012 if (GlobalValue::isLocalLinkage(S->linkage())) { 1013 if (LocalFound) 1014 return false; 1015 LocalFound = true; 1016 } 1017 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1018 VS = cast<GlobalVarSummary>(S->getBaseObject()); 1019 // We cannot perform whole program devirtualization analysis on a vtable 1020 // with public LTO visibility. 1021 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1022 return false; 1023 } 1024 } 1025 if (!VS->isLive()) 1026 continue; 1027 for (auto VTP : VS->vTableFuncs()) { 1028 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1029 continue; 1030 1031 TargetsForSlot.push_back(VTP.FuncVI); 1032 } 1033 } 1034 1035 // Give up if we couldn't find any targets. 1036 return !TargetsForSlot.empty(); 1037 } 1038 1039 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1040 Constant *TheFn, bool &IsExported) { 1041 // Don't devirtualize function if we're told to skip it 1042 // in -wholeprogramdevirt-skip. 1043 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) 1044 return; 1045 auto Apply = [&](CallSiteInfo &CSInfo) { 1046 for (auto &&VCallSite : CSInfo.CallSites) { 1047 if (RemarksEnabled) 1048 VCallSite.emitRemark("single-impl", 1049 TheFn->stripPointerCasts()->getName(), OREGetter); 1050 VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast( 1051 TheFn, VCallSite.CB.getCalledOperand()->getType())); 1052 // This use is no longer unsafe. 1053 if (VCallSite.NumUnsafeUses) 1054 --*VCallSite.NumUnsafeUses; 1055 } 1056 if (CSInfo.isExported()) 1057 IsExported = true; 1058 CSInfo.markDevirt(); 1059 }; 1060 Apply(SlotInfo.CSInfo); 1061 for (auto &P : SlotInfo.ConstCSInfo) 1062 Apply(P.second); 1063 } 1064 1065 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1066 // We can't add calls if we haven't seen a definition 1067 if (Callee.getSummaryList().empty()) 1068 return false; 1069 1070 // Insert calls into the summary index so that the devirtualized targets 1071 // are eligible for import. 1072 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1073 // to better ensure we have the opportunity to inline them. 1074 bool IsExported = false; 1075 auto &S = Callee.getSummaryList()[0]; 1076 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1077 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1078 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1079 FS->addCall({Callee, CI}); 1080 IsExported |= S->modulePath() != FS->modulePath(); 1081 } 1082 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1083 FS->addCall({Callee, CI}); 1084 IsExported |= S->modulePath() != FS->modulePath(); 1085 } 1086 }; 1087 AddCalls(SlotInfo.CSInfo); 1088 for (auto &P : SlotInfo.ConstCSInfo) 1089 AddCalls(P.second); 1090 return IsExported; 1091 } 1092 1093 bool DevirtModule::trySingleImplDevirt( 1094 ModuleSummaryIndex *ExportSummary, 1095 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1096 WholeProgramDevirtResolution *Res) { 1097 // See if the program contains a single implementation of this virtual 1098 // function. 1099 Function *TheFn = TargetsForSlot[0].Fn; 1100 for (auto &&Target : TargetsForSlot) 1101 if (TheFn != Target.Fn) 1102 return false; 1103 1104 // If so, update each call site to call that implementation directly. 1105 if (RemarksEnabled) 1106 TargetsForSlot[0].WasDevirt = true; 1107 1108 bool IsExported = false; 1109 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1110 if (!IsExported) 1111 return false; 1112 1113 // If the only implementation has local linkage, we must promote to external 1114 // to make it visible to thin LTO objects. We can only get here during the 1115 // ThinLTO export phase. 1116 if (TheFn->hasLocalLinkage()) { 1117 std::string NewName = (TheFn->getName() + "$merged").str(); 1118 1119 // Since we are renaming the function, any comdats with the same name must 1120 // also be renamed. This is required when targeting COFF, as the comdat name 1121 // must match one of the names of the symbols in the comdat. 1122 if (Comdat *C = TheFn->getComdat()) { 1123 if (C->getName() == TheFn->getName()) { 1124 Comdat *NewC = M.getOrInsertComdat(NewName); 1125 NewC->setSelectionKind(C->getSelectionKind()); 1126 for (GlobalObject &GO : M.global_objects()) 1127 if (GO.getComdat() == C) 1128 GO.setComdat(NewC); 1129 } 1130 } 1131 1132 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1133 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1134 TheFn->setName(NewName); 1135 } 1136 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1137 // Any needed promotion of 'TheFn' has already been done during 1138 // LTO unit split, so we can ignore return value of AddCalls. 1139 AddCalls(SlotInfo, TheFnVI); 1140 1141 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1142 Res->SingleImplName = std::string(TheFn->getName()); 1143 1144 return true; 1145 } 1146 1147 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1148 VTableSlotSummary &SlotSummary, 1149 VTableSlotInfo &SlotInfo, 1150 WholeProgramDevirtResolution *Res, 1151 std::set<ValueInfo> &DevirtTargets) { 1152 // See if the program contains a single implementation of this virtual 1153 // function. 1154 auto TheFn = TargetsForSlot[0]; 1155 for (auto &&Target : TargetsForSlot) 1156 if (TheFn != Target) 1157 return false; 1158 1159 // Don't devirtualize if we don't have target definition. 1160 auto Size = TheFn.getSummaryList().size(); 1161 if (!Size) 1162 return false; 1163 1164 // Don't devirtualize function if we're told to skip it 1165 // in -wholeprogramdevirt-skip. 1166 if (FunctionsToSkip.match(TheFn.name())) 1167 return false; 1168 1169 // If the summary list contains multiple summaries where at least one is 1170 // a local, give up, as we won't know which (possibly promoted) name to use. 1171 for (auto &S : TheFn.getSummaryList()) 1172 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1173 return false; 1174 1175 // Collect functions devirtualized at least for one call site for stats. 1176 if (PrintSummaryDevirt) 1177 DevirtTargets.insert(TheFn); 1178 1179 auto &S = TheFn.getSummaryList()[0]; 1180 bool IsExported = AddCalls(SlotInfo, TheFn); 1181 if (IsExported) 1182 ExportedGUIDs.insert(TheFn.getGUID()); 1183 1184 // Record in summary for use in devirtualization during the ThinLTO import 1185 // step. 1186 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1187 if (GlobalValue::isLocalLinkage(S->linkage())) { 1188 if (IsExported) 1189 // If target is a local function and we are exporting it by 1190 // devirtualizing a call in another module, we need to record the 1191 // promoted name. 1192 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1193 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1194 else { 1195 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1196 Res->SingleImplName = std::string(TheFn.name()); 1197 } 1198 } else 1199 Res->SingleImplName = std::string(TheFn.name()); 1200 1201 // Name will be empty if this thin link driven off of serialized combined 1202 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1203 // legacy LTO API anyway. 1204 assert(!Res->SingleImplName.empty()); 1205 1206 return true; 1207 } 1208 1209 void DevirtModule::tryICallBranchFunnel( 1210 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1211 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1212 Triple T(M.getTargetTriple()); 1213 if (T.getArch() != Triple::x86_64) 1214 return; 1215 1216 if (TargetsForSlot.size() > ClThreshold) 1217 return; 1218 1219 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1220 if (!HasNonDevirt) 1221 for (auto &P : SlotInfo.ConstCSInfo) 1222 if (!P.second.AllCallSitesDevirted) { 1223 HasNonDevirt = true; 1224 break; 1225 } 1226 1227 if (!HasNonDevirt) 1228 return; 1229 1230 FunctionType *FT = 1231 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1232 Function *JT; 1233 if (isa<MDString>(Slot.TypeID)) { 1234 JT = Function::Create(FT, Function::ExternalLinkage, 1235 M.getDataLayout().getProgramAddressSpace(), 1236 getGlobalName(Slot, {}, "branch_funnel"), &M); 1237 JT->setVisibility(GlobalValue::HiddenVisibility); 1238 } else { 1239 JT = Function::Create(FT, Function::InternalLinkage, 1240 M.getDataLayout().getProgramAddressSpace(), 1241 "branch_funnel", &M); 1242 } 1243 JT->addAttribute(1, Attribute::Nest); 1244 1245 std::vector<Value *> JTArgs; 1246 JTArgs.push_back(JT->arg_begin()); 1247 for (auto &T : TargetsForSlot) { 1248 JTArgs.push_back(getMemberAddr(T.TM)); 1249 JTArgs.push_back(T.Fn); 1250 } 1251 1252 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1253 Function *Intr = 1254 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1255 1256 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1257 CI->setTailCallKind(CallInst::TCK_MustTail); 1258 ReturnInst::Create(M.getContext(), nullptr, BB); 1259 1260 bool IsExported = false; 1261 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1262 if (IsExported) 1263 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1264 } 1265 1266 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1267 Constant *JT, bool &IsExported) { 1268 auto Apply = [&](CallSiteInfo &CSInfo) { 1269 if (CSInfo.isExported()) 1270 IsExported = true; 1271 if (CSInfo.AllCallSitesDevirted) 1272 return; 1273 for (auto &&VCallSite : CSInfo.CallSites) { 1274 CallBase &CB = VCallSite.CB; 1275 1276 // Jump tables are only profitable if the retpoline mitigation is enabled. 1277 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1278 if (!FSAttr.isValid() || 1279 !FSAttr.getValueAsString().contains("+retpoline")) 1280 continue; 1281 1282 if (RemarksEnabled) 1283 VCallSite.emitRemark("branch-funnel", 1284 JT->stripPointerCasts()->getName(), OREGetter); 1285 1286 // Pass the address of the vtable in the nest register, which is r10 on 1287 // x86_64. 1288 std::vector<Type *> NewArgs; 1289 NewArgs.push_back(Int8PtrTy); 1290 append_range(NewArgs, CB.getFunctionType()->params()); 1291 FunctionType *NewFT = 1292 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1293 CB.getFunctionType()->isVarArg()); 1294 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1295 1296 IRBuilder<> IRB(&CB); 1297 std::vector<Value *> Args; 1298 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1299 llvm::append_range(Args, CB.args()); 1300 1301 CallBase *NewCS = nullptr; 1302 if (isa<CallInst>(CB)) 1303 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1304 else 1305 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1306 cast<InvokeInst>(CB).getNormalDest(), 1307 cast<InvokeInst>(CB).getUnwindDest(), Args); 1308 NewCS->setCallingConv(CB.getCallingConv()); 1309 1310 AttributeList Attrs = CB.getAttributes(); 1311 std::vector<AttributeSet> NewArgAttrs; 1312 NewArgAttrs.push_back(AttributeSet::get( 1313 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1314 M.getContext(), Attribute::Nest)})); 1315 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1316 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1317 NewCS->setAttributes( 1318 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1319 Attrs.getRetAttributes(), NewArgAttrs)); 1320 1321 CB.replaceAllUsesWith(NewCS); 1322 CB.eraseFromParent(); 1323 1324 // This use is no longer unsafe. 1325 if (VCallSite.NumUnsafeUses) 1326 --*VCallSite.NumUnsafeUses; 1327 } 1328 // Don't mark as devirtualized because there may be callers compiled without 1329 // retpoline mitigation, which would mean that they are lowered to 1330 // llvm.type.test and therefore require an llvm.type.test resolution for the 1331 // type identifier. 1332 }; 1333 Apply(SlotInfo.CSInfo); 1334 for (auto &P : SlotInfo.ConstCSInfo) 1335 Apply(P.second); 1336 } 1337 1338 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1339 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1340 ArrayRef<uint64_t> Args) { 1341 // Evaluate each function and store the result in each target's RetVal 1342 // field. 1343 for (VirtualCallTarget &Target : TargetsForSlot) { 1344 if (Target.Fn->arg_size() != Args.size() + 1) 1345 return false; 1346 1347 Evaluator Eval(M.getDataLayout(), nullptr); 1348 SmallVector<Constant *, 2> EvalArgs; 1349 EvalArgs.push_back( 1350 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1351 for (unsigned I = 0; I != Args.size(); ++I) { 1352 auto *ArgTy = dyn_cast<IntegerType>( 1353 Target.Fn->getFunctionType()->getParamType(I + 1)); 1354 if (!ArgTy) 1355 return false; 1356 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1357 } 1358 1359 Constant *RetVal; 1360 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1361 !isa<ConstantInt>(RetVal)) 1362 return false; 1363 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1364 } 1365 return true; 1366 } 1367 1368 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1369 uint64_t TheRetVal) { 1370 for (auto Call : CSInfo.CallSites) 1371 Call.replaceAndErase( 1372 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1373 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1374 CSInfo.markDevirt(); 1375 } 1376 1377 bool DevirtModule::tryUniformRetValOpt( 1378 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1379 WholeProgramDevirtResolution::ByArg *Res) { 1380 // Uniform return value optimization. If all functions return the same 1381 // constant, replace all calls with that constant. 1382 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1383 for (const VirtualCallTarget &Target : TargetsForSlot) 1384 if (Target.RetVal != TheRetVal) 1385 return false; 1386 1387 if (CSInfo.isExported()) { 1388 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1389 Res->Info = TheRetVal; 1390 } 1391 1392 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1393 if (RemarksEnabled) 1394 for (auto &&Target : TargetsForSlot) 1395 Target.WasDevirt = true; 1396 return true; 1397 } 1398 1399 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1400 ArrayRef<uint64_t> Args, 1401 StringRef Name) { 1402 std::string FullName = "__typeid_"; 1403 raw_string_ostream OS(FullName); 1404 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1405 for (uint64_t Arg : Args) 1406 OS << '_' << Arg; 1407 OS << '_' << Name; 1408 return OS.str(); 1409 } 1410 1411 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1412 Triple T(M.getTargetTriple()); 1413 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1414 } 1415 1416 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1417 StringRef Name, Constant *C) { 1418 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1419 getGlobalName(Slot, Args, Name), C, &M); 1420 GA->setVisibility(GlobalValue::HiddenVisibility); 1421 } 1422 1423 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1424 StringRef Name, uint32_t Const, 1425 uint32_t &Storage) { 1426 if (shouldExportConstantsAsAbsoluteSymbols()) { 1427 exportGlobal( 1428 Slot, Args, Name, 1429 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1430 return; 1431 } 1432 1433 Storage = Const; 1434 } 1435 1436 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1437 StringRef Name) { 1438 Constant *C = 1439 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1440 auto *GV = dyn_cast<GlobalVariable>(C); 1441 if (GV) 1442 GV->setVisibility(GlobalValue::HiddenVisibility); 1443 return C; 1444 } 1445 1446 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1447 StringRef Name, IntegerType *IntTy, 1448 uint32_t Storage) { 1449 if (!shouldExportConstantsAsAbsoluteSymbols()) 1450 return ConstantInt::get(IntTy, Storage); 1451 1452 Constant *C = importGlobal(Slot, Args, Name); 1453 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1454 C = ConstantExpr::getPtrToInt(C, IntTy); 1455 1456 // We only need to set metadata if the global is newly created, in which 1457 // case it would not have hidden visibility. 1458 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1459 return C; 1460 1461 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1462 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1463 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1464 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1465 MDNode::get(M.getContext(), {MinC, MaxC})); 1466 }; 1467 unsigned AbsWidth = IntTy->getBitWidth(); 1468 if (AbsWidth == IntPtrTy->getBitWidth()) 1469 SetAbsRange(~0ull, ~0ull); // Full set. 1470 else 1471 SetAbsRange(0, 1ull << AbsWidth); 1472 return C; 1473 } 1474 1475 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1476 bool IsOne, 1477 Constant *UniqueMemberAddr) { 1478 for (auto &&Call : CSInfo.CallSites) { 1479 IRBuilder<> B(&Call.CB); 1480 Value *Cmp = 1481 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1482 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1483 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1484 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1485 Cmp); 1486 } 1487 CSInfo.markDevirt(); 1488 } 1489 1490 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1491 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1492 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1493 ConstantInt::get(Int64Ty, M->Offset)); 1494 } 1495 1496 bool DevirtModule::tryUniqueRetValOpt( 1497 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1498 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1499 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1500 // IsOne controls whether we look for a 0 or a 1. 1501 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1502 const TypeMemberInfo *UniqueMember = nullptr; 1503 for (const VirtualCallTarget &Target : TargetsForSlot) { 1504 if (Target.RetVal == (IsOne ? 1 : 0)) { 1505 if (UniqueMember) 1506 return false; 1507 UniqueMember = Target.TM; 1508 } 1509 } 1510 1511 // We should have found a unique member or bailed out by now. We already 1512 // checked for a uniform return value in tryUniformRetValOpt. 1513 assert(UniqueMember); 1514 1515 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1516 if (CSInfo.isExported()) { 1517 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1518 Res->Info = IsOne; 1519 1520 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1521 } 1522 1523 // Replace each call with the comparison. 1524 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1525 UniqueMemberAddr); 1526 1527 // Update devirtualization statistics for targets. 1528 if (RemarksEnabled) 1529 for (auto &&Target : TargetsForSlot) 1530 Target.WasDevirt = true; 1531 1532 return true; 1533 }; 1534 1535 if (BitWidth == 1) { 1536 if (tryUniqueRetValOptFor(true)) 1537 return true; 1538 if (tryUniqueRetValOptFor(false)) 1539 return true; 1540 } 1541 return false; 1542 } 1543 1544 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1545 Constant *Byte, Constant *Bit) { 1546 for (auto Call : CSInfo.CallSites) { 1547 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1548 IRBuilder<> B(&Call.CB); 1549 Value *Addr = 1550 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1551 if (RetType->getBitWidth() == 1) { 1552 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1553 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1554 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1555 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1556 OREGetter, IsBitSet); 1557 } else { 1558 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1559 Value *Val = B.CreateLoad(RetType, ValAddr); 1560 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1561 OREGetter, Val); 1562 } 1563 } 1564 CSInfo.markDevirt(); 1565 } 1566 1567 bool DevirtModule::tryVirtualConstProp( 1568 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1569 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1570 // This only works if the function returns an integer. 1571 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1572 if (!RetType) 1573 return false; 1574 unsigned BitWidth = RetType->getBitWidth(); 1575 if (BitWidth > 64) 1576 return false; 1577 1578 // Make sure that each function is defined, does not access memory, takes at 1579 // least one argument, does not use its first argument (which we assume is 1580 // 'this'), and has the same return type. 1581 // 1582 // Note that we test whether this copy of the function is readnone, rather 1583 // than testing function attributes, which must hold for any copy of the 1584 // function, even a less optimized version substituted at link time. This is 1585 // sound because the virtual constant propagation optimizations effectively 1586 // inline all implementations of the virtual function into each call site, 1587 // rather than using function attributes to perform local optimization. 1588 for (VirtualCallTarget &Target : TargetsForSlot) { 1589 if (Target.Fn->isDeclaration() || 1590 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1591 MAK_ReadNone || 1592 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1593 Target.Fn->getReturnType() != RetType) 1594 return false; 1595 } 1596 1597 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1598 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1599 continue; 1600 1601 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1602 if (Res) 1603 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1604 1605 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1606 continue; 1607 1608 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1609 ResByArg, Slot, CSByConstantArg.first)) 1610 continue; 1611 1612 // Find an allocation offset in bits in all vtables associated with the 1613 // type. 1614 uint64_t AllocBefore = 1615 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1616 uint64_t AllocAfter = 1617 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1618 1619 // Calculate the total amount of padding needed to store a value at both 1620 // ends of the object. 1621 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1622 for (auto &&Target : TargetsForSlot) { 1623 TotalPaddingBefore += std::max<int64_t>( 1624 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1625 TotalPaddingAfter += std::max<int64_t>( 1626 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1627 } 1628 1629 // If the amount of padding is too large, give up. 1630 // FIXME: do something smarter here. 1631 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1632 continue; 1633 1634 // Calculate the offset to the value as a (possibly negative) byte offset 1635 // and (if applicable) a bit offset, and store the values in the targets. 1636 int64_t OffsetByte; 1637 uint64_t OffsetBit; 1638 if (TotalPaddingBefore <= TotalPaddingAfter) 1639 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1640 OffsetBit); 1641 else 1642 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1643 OffsetBit); 1644 1645 if (RemarksEnabled) 1646 for (auto &&Target : TargetsForSlot) 1647 Target.WasDevirt = true; 1648 1649 1650 if (CSByConstantArg.second.isExported()) { 1651 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1652 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1653 ResByArg->Byte); 1654 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1655 ResByArg->Bit); 1656 } 1657 1658 // Rewrite each call to a load from OffsetByte/OffsetBit. 1659 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1660 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1661 applyVirtualConstProp(CSByConstantArg.second, 1662 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1663 } 1664 return true; 1665 } 1666 1667 void DevirtModule::rebuildGlobal(VTableBits &B) { 1668 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1669 return; 1670 1671 // Align the before byte array to the global's minimum alignment so that we 1672 // don't break any alignment requirements on the global. 1673 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( 1674 B.GV->getAlign(), B.GV->getValueType()); 1675 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1676 1677 // Before was stored in reverse order; flip it now. 1678 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1679 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1680 1681 // Build an anonymous global containing the before bytes, followed by the 1682 // original initializer, followed by the after bytes. 1683 auto NewInit = ConstantStruct::getAnon( 1684 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1685 B.GV->getInitializer(), 1686 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1687 auto NewGV = 1688 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1689 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1690 NewGV->setSection(B.GV->getSection()); 1691 NewGV->setComdat(B.GV->getComdat()); 1692 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1693 1694 // Copy the original vtable's metadata to the anonymous global, adjusting 1695 // offsets as required. 1696 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1697 1698 // Build an alias named after the original global, pointing at the second 1699 // element (the original initializer). 1700 auto Alias = GlobalAlias::create( 1701 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1702 ConstantExpr::getGetElementPtr( 1703 NewInit->getType(), NewGV, 1704 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1705 ConstantInt::get(Int32Ty, 1)}), 1706 &M); 1707 Alias->setVisibility(B.GV->getVisibility()); 1708 Alias->takeName(B.GV); 1709 1710 B.GV->replaceAllUsesWith(Alias); 1711 B.GV->eraseFromParent(); 1712 } 1713 1714 bool DevirtModule::areRemarksEnabled() { 1715 const auto &FL = M.getFunctionList(); 1716 for (const Function &Fn : FL) { 1717 const auto &BBL = Fn.getBasicBlockList(); 1718 if (BBL.empty()) 1719 continue; 1720 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1721 return DI.isEnabled(); 1722 } 1723 return false; 1724 } 1725 1726 void DevirtModule::scanTypeTestUsers( 1727 Function *TypeTestFunc, 1728 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 1729 // Find all virtual calls via a virtual table pointer %p under an assumption 1730 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1731 // points to a member of the type identifier %md. Group calls by (type ID, 1732 // offset) pair (effectively the identity of the virtual function) and store 1733 // to CallSlots. 1734 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1735 I != E;) { 1736 auto CI = dyn_cast<CallInst>(I->getUser()); 1737 ++I; 1738 if (!CI) 1739 continue; 1740 1741 // Search for virtual calls based on %p and add them to DevirtCalls. 1742 SmallVector<DevirtCallSite, 1> DevirtCalls; 1743 SmallVector<CallInst *, 1> Assumes; 1744 auto &DT = LookupDomTree(*CI->getFunction()); 1745 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1746 1747 Metadata *TypeId = 1748 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1749 // If we found any, add them to CallSlots. 1750 if (!Assumes.empty()) { 1751 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1752 for (DevirtCallSite Call : DevirtCalls) 1753 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1754 } 1755 1756 auto RemoveTypeTestAssumes = [&]() { 1757 // We no longer need the assumes or the type test. 1758 for (auto Assume : Assumes) 1759 Assume->eraseFromParent(); 1760 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1761 // may use the vtable argument later. 1762 if (CI->use_empty()) 1763 CI->eraseFromParent(); 1764 }; 1765 1766 // At this point we could remove all type test assume sequences, as they 1767 // were originally inserted for WPD. However, we can keep these in the 1768 // code stream for later analysis (e.g. to help drive more efficient ICP 1769 // sequences). They will eventually be removed by a second LowerTypeTests 1770 // invocation that cleans them up. In order to do this correctly, the first 1771 // LowerTypeTests invocation needs to know that they have "Unknown" type 1772 // test resolution, so that they aren't treated as Unsat and lowered to 1773 // False, which will break any uses on assumes. Below we remove any type 1774 // test assumes that will not be treated as Unknown by LTT. 1775 1776 // The type test assumes will be treated by LTT as Unsat if the type id is 1777 // not used on a global (in which case it has no entry in the TypeIdMap). 1778 if (!TypeIdMap.count(TypeId)) 1779 RemoveTypeTestAssumes(); 1780 1781 // For ThinLTO importing, we need to remove the type test assumes if this is 1782 // an MDString type id without a corresponding TypeIdSummary. Any 1783 // non-MDString type ids are ignored and treated as Unknown by LTT, so their 1784 // type test assumes can be kept. If the MDString type id is missing a 1785 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the 1786 // exporting phase of WPD from analyzing it), then it would be treated as 1787 // Unsat by LTT and we need to remove its type test assumes here. If not 1788 // used on a vcall we don't need them for later optimization use in any 1789 // case. 1790 else if (ImportSummary && isa<MDString>(TypeId)) { 1791 const TypeIdSummary *TidSummary = 1792 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString()); 1793 if (!TidSummary) 1794 RemoveTypeTestAssumes(); 1795 else 1796 // If one was created it should not be Unsat, because if we reached here 1797 // the type id was used on a global. 1798 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); 1799 } 1800 } 1801 } 1802 1803 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1804 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1805 1806 for (auto I = TypeCheckedLoadFunc->use_begin(), 1807 E = TypeCheckedLoadFunc->use_end(); 1808 I != E;) { 1809 auto CI = dyn_cast<CallInst>(I->getUser()); 1810 ++I; 1811 if (!CI) 1812 continue; 1813 1814 Value *Ptr = CI->getArgOperand(0); 1815 Value *Offset = CI->getArgOperand(1); 1816 Value *TypeIdValue = CI->getArgOperand(2); 1817 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1818 1819 SmallVector<DevirtCallSite, 1> DevirtCalls; 1820 SmallVector<Instruction *, 1> LoadedPtrs; 1821 SmallVector<Instruction *, 1> Preds; 1822 bool HasNonCallUses = false; 1823 auto &DT = LookupDomTree(*CI->getFunction()); 1824 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1825 HasNonCallUses, CI, DT); 1826 1827 // Start by generating "pessimistic" code that explicitly loads the function 1828 // pointer from the vtable and performs the type check. If possible, we will 1829 // eliminate the load and the type check later. 1830 1831 // If possible, only generate the load at the point where it is used. 1832 // This helps avoid unnecessary spills. 1833 IRBuilder<> LoadB( 1834 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1835 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1836 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1837 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1838 1839 for (Instruction *LoadedPtr : LoadedPtrs) { 1840 LoadedPtr->replaceAllUsesWith(LoadedValue); 1841 LoadedPtr->eraseFromParent(); 1842 } 1843 1844 // Likewise for the type test. 1845 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1846 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1847 1848 for (Instruction *Pred : Preds) { 1849 Pred->replaceAllUsesWith(TypeTestCall); 1850 Pred->eraseFromParent(); 1851 } 1852 1853 // We have already erased any extractvalue instructions that refer to the 1854 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1855 // (although this is unlikely). In that case, explicitly build a pair and 1856 // RAUW it. 1857 if (!CI->use_empty()) { 1858 Value *Pair = UndefValue::get(CI->getType()); 1859 IRBuilder<> B(CI); 1860 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1861 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1862 CI->replaceAllUsesWith(Pair); 1863 } 1864 1865 // The number of unsafe uses is initially the number of uses. 1866 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1867 NumUnsafeUses = DevirtCalls.size(); 1868 1869 // If the function pointer has a non-call user, we cannot eliminate the type 1870 // check, as one of those users may eventually call the pointer. Increment 1871 // the unsafe use count to make sure it cannot reach zero. 1872 if (HasNonCallUses) 1873 ++NumUnsafeUses; 1874 for (DevirtCallSite Call : DevirtCalls) { 1875 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1876 &NumUnsafeUses); 1877 } 1878 1879 CI->eraseFromParent(); 1880 } 1881 } 1882 1883 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1884 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1885 if (!TypeId) 1886 return; 1887 const TypeIdSummary *TidSummary = 1888 ImportSummary->getTypeIdSummary(TypeId->getString()); 1889 if (!TidSummary) 1890 return; 1891 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1892 if (ResI == TidSummary->WPDRes.end()) 1893 return; 1894 const WholeProgramDevirtResolution &Res = ResI->second; 1895 1896 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1897 assert(!Res.SingleImplName.empty()); 1898 // The type of the function in the declaration is irrelevant because every 1899 // call site will cast it to the correct type. 1900 Constant *SingleImpl = 1901 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1902 Type::getVoidTy(M.getContext())) 1903 .getCallee()); 1904 1905 // This is the import phase so we should not be exporting anything. 1906 bool IsExported = false; 1907 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1908 assert(!IsExported); 1909 } 1910 1911 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1912 auto I = Res.ResByArg.find(CSByConstantArg.first); 1913 if (I == Res.ResByArg.end()) 1914 continue; 1915 auto &ResByArg = I->second; 1916 // FIXME: We should figure out what to do about the "function name" argument 1917 // to the apply* functions, as the function names are unavailable during the 1918 // importing phase. For now we just pass the empty string. This does not 1919 // impact correctness because the function names are just used for remarks. 1920 switch (ResByArg.TheKind) { 1921 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1922 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1923 break; 1924 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1925 Constant *UniqueMemberAddr = 1926 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1927 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1928 UniqueMemberAddr); 1929 break; 1930 } 1931 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1932 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1933 Int32Ty, ResByArg.Byte); 1934 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1935 ResByArg.Bit); 1936 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1937 break; 1938 } 1939 default: 1940 break; 1941 } 1942 } 1943 1944 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1945 // The type of the function is irrelevant, because it's bitcast at calls 1946 // anyhow. 1947 Constant *JT = cast<Constant>( 1948 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1949 Type::getVoidTy(M.getContext())) 1950 .getCallee()); 1951 bool IsExported = false; 1952 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1953 assert(!IsExported); 1954 } 1955 } 1956 1957 void DevirtModule::removeRedundantTypeTests() { 1958 auto True = ConstantInt::getTrue(M.getContext()); 1959 for (auto &&U : NumUnsafeUsesForTypeTest) { 1960 if (U.second == 0) { 1961 U.first->replaceAllUsesWith(True); 1962 U.first->eraseFromParent(); 1963 } 1964 } 1965 } 1966 1967 bool DevirtModule::run() { 1968 // If only some of the modules were split, we cannot correctly perform 1969 // this transformation. We already checked for the presense of type tests 1970 // with partially split modules during the thin link, and would have emitted 1971 // an error if any were found, so here we can simply return. 1972 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1973 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1974 return false; 1975 1976 Function *TypeTestFunc = 1977 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1978 Function *TypeCheckedLoadFunc = 1979 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1980 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1981 1982 // Normally if there are no users of the devirtualization intrinsics in the 1983 // module, this pass has nothing to do. But if we are exporting, we also need 1984 // to handle any users that appear only in the function summaries. 1985 if (!ExportSummary && 1986 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1987 AssumeFunc->use_empty()) && 1988 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1989 return false; 1990 1991 // Rebuild type metadata into a map for easy lookup. 1992 std::vector<VTableBits> Bits; 1993 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1994 buildTypeIdentifierMap(Bits, TypeIdMap); 1995 1996 if (TypeTestFunc && AssumeFunc) 1997 scanTypeTestUsers(TypeTestFunc, TypeIdMap); 1998 1999 if (TypeCheckedLoadFunc) 2000 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 2001 2002 if (ImportSummary) { 2003 for (auto &S : CallSlots) 2004 importResolution(S.first, S.second); 2005 2006 removeRedundantTypeTests(); 2007 2008 // We have lowered or deleted the type instrinsics, so we will no 2009 // longer have enough information to reason about the liveness of virtual 2010 // function pointers in GlobalDCE. 2011 for (GlobalVariable &GV : M.globals()) 2012 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2013 2014 // The rest of the code is only necessary when exporting or during regular 2015 // LTO, so we are done. 2016 return true; 2017 } 2018 2019 if (TypeIdMap.empty()) 2020 return true; 2021 2022 // Collect information from summary about which calls to try to devirtualize. 2023 if (ExportSummary) { 2024 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 2025 for (auto &P : TypeIdMap) { 2026 if (auto *TypeId = dyn_cast<MDString>(P.first)) 2027 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 2028 TypeId); 2029 } 2030 2031 for (auto &P : *ExportSummary) { 2032 for (auto &S : P.second.SummaryList) { 2033 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2034 if (!FS) 2035 continue; 2036 // FIXME: Only add live functions. 2037 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2038 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2039 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2040 } 2041 } 2042 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2043 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2044 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2045 } 2046 } 2047 for (const FunctionSummary::ConstVCall &VC : 2048 FS->type_test_assume_const_vcalls()) { 2049 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2050 CallSlots[{MD, VC.VFunc.Offset}] 2051 .ConstCSInfo[VC.Args] 2052 .addSummaryTypeTestAssumeUser(FS); 2053 } 2054 } 2055 for (const FunctionSummary::ConstVCall &VC : 2056 FS->type_checked_load_const_vcalls()) { 2057 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2058 CallSlots[{MD, VC.VFunc.Offset}] 2059 .ConstCSInfo[VC.Args] 2060 .addSummaryTypeCheckedLoadUser(FS); 2061 } 2062 } 2063 } 2064 } 2065 } 2066 2067 // For each (type, offset) pair: 2068 bool DidVirtualConstProp = false; 2069 std::map<std::string, Function*> DevirtTargets; 2070 for (auto &S : CallSlots) { 2071 // Search each of the members of the type identifier for the virtual 2072 // function implementation at offset S.first.ByteOffset, and add to 2073 // TargetsForSlot. 2074 std::vector<VirtualCallTarget> TargetsForSlot; 2075 WholeProgramDevirtResolution *Res = nullptr; 2076 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID]; 2077 if (ExportSummary && isa<MDString>(S.first.TypeID) && 2078 TypeMemberInfos.size()) 2079 // For any type id used on a global's type metadata, create the type id 2080 // summary resolution regardless of whether we can devirtualize, so that 2081 // lower type tests knows the type id is not Unsat. If it was not used on 2082 // a global's type metadata, the TypeIdMap entry set will be empty, and 2083 // we don't want to create an entry (with the default Unknown type 2084 // resolution), which can prevent detection of the Unsat. 2085 Res = &ExportSummary 2086 ->getOrInsertTypeIdSummary( 2087 cast<MDString>(S.first.TypeID)->getString()) 2088 .WPDRes[S.first.ByteOffset]; 2089 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, 2090 S.first.ByteOffset)) { 2091 2092 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2093 DidVirtualConstProp |= 2094 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2095 2096 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2097 } 2098 2099 // Collect functions devirtualized at least for one call site for stats. 2100 if (RemarksEnabled) 2101 for (const auto &T : TargetsForSlot) 2102 if (T.WasDevirt) 2103 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2104 } 2105 2106 // CFI-specific: if we are exporting and any llvm.type.checked.load 2107 // intrinsics were *not* devirtualized, we need to add the resulting 2108 // llvm.type.test intrinsics to the function summaries so that the 2109 // LowerTypeTests pass will export them. 2110 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2111 auto GUID = 2112 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2113 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2114 FS->addTypeTest(GUID); 2115 for (auto &CCS : S.second.ConstCSInfo) 2116 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2117 FS->addTypeTest(GUID); 2118 } 2119 } 2120 2121 if (RemarksEnabled) { 2122 // Generate remarks for each devirtualized function. 2123 for (const auto &DT : DevirtTargets) { 2124 Function *F = DT.second; 2125 2126 using namespace ore; 2127 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2128 << "devirtualized " 2129 << NV("FunctionName", DT.first)); 2130 } 2131 } 2132 2133 removeRedundantTypeTests(); 2134 2135 // Rebuild each global we touched as part of virtual constant propagation to 2136 // include the before and after bytes. 2137 if (DidVirtualConstProp) 2138 for (VTableBits &B : Bits) 2139 rebuildGlobal(B); 2140 2141 // We have lowered or deleted the type instrinsics, so we will no 2142 // longer have enough information to reason about the liveness of virtual 2143 // function pointers in GlobalDCE. 2144 for (GlobalVariable &GV : M.globals()) 2145 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2146 2147 return true; 2148 } 2149 2150 void DevirtIndex::run() { 2151 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2152 return; 2153 2154 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2155 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2156 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2157 } 2158 2159 // Collect information from summary about which calls to try to devirtualize. 2160 for (auto &P : ExportSummary) { 2161 for (auto &S : P.second.SummaryList) { 2162 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2163 if (!FS) 2164 continue; 2165 // FIXME: Only add live functions. 2166 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2167 for (StringRef Name : NameByGUID[VF.GUID]) { 2168 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2169 } 2170 } 2171 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2172 for (StringRef Name : NameByGUID[VF.GUID]) { 2173 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2174 } 2175 } 2176 for (const FunctionSummary::ConstVCall &VC : 2177 FS->type_test_assume_const_vcalls()) { 2178 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2179 CallSlots[{Name, VC.VFunc.Offset}] 2180 .ConstCSInfo[VC.Args] 2181 .addSummaryTypeTestAssumeUser(FS); 2182 } 2183 } 2184 for (const FunctionSummary::ConstVCall &VC : 2185 FS->type_checked_load_const_vcalls()) { 2186 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2187 CallSlots[{Name, VC.VFunc.Offset}] 2188 .ConstCSInfo[VC.Args] 2189 .addSummaryTypeCheckedLoadUser(FS); 2190 } 2191 } 2192 } 2193 } 2194 2195 std::set<ValueInfo> DevirtTargets; 2196 // For each (type, offset) pair: 2197 for (auto &S : CallSlots) { 2198 // Search each of the members of the type identifier for the virtual 2199 // function implementation at offset S.first.ByteOffset, and add to 2200 // TargetsForSlot. 2201 std::vector<ValueInfo> TargetsForSlot; 2202 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2203 assert(TidSummary); 2204 // Create the type id summary resolution regardlness of whether we can 2205 // devirtualize, so that lower type tests knows the type id is used on 2206 // a global and not Unsat. 2207 WholeProgramDevirtResolution *Res = 2208 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2209 .WPDRes[S.first.ByteOffset]; 2210 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2211 S.first.ByteOffset)) { 2212 2213 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2214 DevirtTargets)) 2215 continue; 2216 } 2217 } 2218 2219 // Optionally have the thin link print message for each devirtualized 2220 // function. 2221 if (PrintSummaryDevirt) 2222 for (const auto &DT : DevirtTargets) 2223 errs() << "Devirtualized call to " << DT << "\n"; 2224 } 2225