1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/PassSupport.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Errc.h"
92 #include "llvm/Support/Error.h"
93 #include "llvm/Support/FileSystem.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
98 #include <algorithm>
99 #include <cstddef>
100 #include <map>
101 #include <set>
102 #include <string>
103 
104 using namespace llvm;
105 using namespace wholeprogramdevirt;
106 
107 #define DEBUG_TYPE "wholeprogramdevirt"
108 
109 static cl::opt<PassSummaryAction> ClSummaryAction(
110     "wholeprogramdevirt-summary-action",
111     cl::desc("What to do with the summary when running this pass"),
112     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
113                clEnumValN(PassSummaryAction::Import, "import",
114                           "Import typeid resolutions from summary and globals"),
115                clEnumValN(PassSummaryAction::Export, "export",
116                           "Export typeid resolutions to summary and globals")),
117     cl::Hidden);
118 
119 static cl::opt<std::string> ClReadSummary(
120     "wholeprogramdevirt-read-summary",
121     cl::desc(
122         "Read summary from given bitcode or YAML file before running pass"),
123     cl::Hidden);
124 
125 static cl::opt<std::string> ClWriteSummary(
126     "wholeprogramdevirt-write-summary",
127     cl::desc("Write summary to given bitcode or YAML file after running pass. "
128              "Output file format is deduced from extension: *.bc means writing "
129              "bitcode, otherwise YAML"),
130     cl::Hidden);
131 
132 static cl::opt<unsigned>
133     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
134                 cl::init(10), cl::ZeroOrMore,
135                 cl::desc("Maximum number of call targets per "
136                          "call site to enable branch funnels"));
137 
138 static cl::opt<bool>
139     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
140                        cl::init(false), cl::ZeroOrMore,
141                        cl::desc("Print index-based devirtualization messages"));
142 
143 // Find the minimum offset that we may store a value of size Size bits at. If
144 // IsAfter is set, look for an offset before the object, otherwise look for an
145 // offset after the object.
146 uint64_t
147 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
148                                      bool IsAfter, uint64_t Size) {
149   // Find a minimum offset taking into account only vtable sizes.
150   uint64_t MinByte = 0;
151   for (const VirtualCallTarget &Target : Targets) {
152     if (IsAfter)
153       MinByte = std::max(MinByte, Target.minAfterBytes());
154     else
155       MinByte = std::max(MinByte, Target.minBeforeBytes());
156   }
157 
158   // Build a vector of arrays of bytes covering, for each target, a slice of the
159   // used region (see AccumBitVector::BytesUsed in
160   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
161   // this aligns the used regions to start at MinByte.
162   //
163   // In this example, A, B and C are vtables, # is a byte already allocated for
164   // a virtual function pointer, AAAA... (etc.) are the used regions for the
165   // vtables and Offset(X) is the value computed for the Offset variable below
166   // for X.
167   //
168   //                    Offset(A)
169   //                    |       |
170   //                            |MinByte
171   // A: ################AAAAAAAA|AAAAAAAA
172   // B: ########BBBBBBBBBBBBBBBB|BBBB
173   // C: ########################|CCCCCCCCCCCCCCCC
174   //            |   Offset(B)   |
175   //
176   // This code produces the slices of A, B and C that appear after the divider
177   // at MinByte.
178   std::vector<ArrayRef<uint8_t>> Used;
179   for (const VirtualCallTarget &Target : Targets) {
180     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
181                                        : Target.TM->Bits->Before.BytesUsed;
182     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
183                               : MinByte - Target.minBeforeBytes();
184 
185     // Disregard used regions that are smaller than Offset. These are
186     // effectively all-free regions that do not need to be checked.
187     if (VTUsed.size() > Offset)
188       Used.push_back(VTUsed.slice(Offset));
189   }
190 
191   if (Size == 1) {
192     // Find a free bit in each member of Used.
193     for (unsigned I = 0;; ++I) {
194       uint8_t BitsUsed = 0;
195       for (auto &&B : Used)
196         if (I < B.size())
197           BitsUsed |= B[I];
198       if (BitsUsed != 0xff)
199         return (MinByte + I) * 8 +
200                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
201     }
202   } else {
203     // Find a free (Size/8) byte region in each member of Used.
204     // FIXME: see if alignment helps.
205     for (unsigned I = 0;; ++I) {
206       for (auto &&B : Used) {
207         unsigned Byte = 0;
208         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
209           if (B[I + Byte])
210             goto NextI;
211           ++Byte;
212         }
213       }
214       return (MinByte + I) * 8;
215     NextI:;
216     }
217   }
218 }
219 
220 void wholeprogramdevirt::setBeforeReturnValues(
221     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
222     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
223   if (BitWidth == 1)
224     OffsetByte = -(AllocBefore / 8 + 1);
225   else
226     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
227   OffsetBit = AllocBefore % 8;
228 
229   for (VirtualCallTarget &Target : Targets) {
230     if (BitWidth == 1)
231       Target.setBeforeBit(AllocBefore);
232     else
233       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
234   }
235 }
236 
237 void wholeprogramdevirt::setAfterReturnValues(
238     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
239     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
240   if (BitWidth == 1)
241     OffsetByte = AllocAfter / 8;
242   else
243     OffsetByte = (AllocAfter + 7) / 8;
244   OffsetBit = AllocAfter % 8;
245 
246   for (VirtualCallTarget &Target : Targets) {
247     if (BitWidth == 1)
248       Target.setAfterBit(AllocAfter);
249     else
250       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
251   }
252 }
253 
254 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
255     : Fn(Fn), TM(TM),
256       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
257 
258 namespace {
259 
260 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
261 // tables, and the ByteOffset is the offset in bytes from the address point to
262 // the virtual function pointer.
263 struct VTableSlot {
264   Metadata *TypeID;
265   uint64_t ByteOffset;
266 };
267 
268 } // end anonymous namespace
269 
270 namespace llvm {
271 
272 template <> struct DenseMapInfo<VTableSlot> {
273   static VTableSlot getEmptyKey() {
274     return {DenseMapInfo<Metadata *>::getEmptyKey(),
275             DenseMapInfo<uint64_t>::getEmptyKey()};
276   }
277   static VTableSlot getTombstoneKey() {
278     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
279             DenseMapInfo<uint64_t>::getTombstoneKey()};
280   }
281   static unsigned getHashValue(const VTableSlot &I) {
282     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
283            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
284   }
285   static bool isEqual(const VTableSlot &LHS,
286                       const VTableSlot &RHS) {
287     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
288   }
289 };
290 
291 template <> struct DenseMapInfo<VTableSlotSummary> {
292   static VTableSlotSummary getEmptyKey() {
293     return {DenseMapInfo<StringRef>::getEmptyKey(),
294             DenseMapInfo<uint64_t>::getEmptyKey()};
295   }
296   static VTableSlotSummary getTombstoneKey() {
297     return {DenseMapInfo<StringRef>::getTombstoneKey(),
298             DenseMapInfo<uint64_t>::getTombstoneKey()};
299   }
300   static unsigned getHashValue(const VTableSlotSummary &I) {
301     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
302            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
303   }
304   static bool isEqual(const VTableSlotSummary &LHS,
305                       const VTableSlotSummary &RHS) {
306     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
307   }
308 };
309 
310 } // end namespace llvm
311 
312 namespace {
313 
314 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
315 // the indirect virtual call.
316 struct VirtualCallSite {
317   Value *VTable;
318   CallSite CS;
319 
320   // If non-null, this field points to the associated unsafe use count stored in
321   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
322   // of that field for details.
323   unsigned *NumUnsafeUses;
324 
325   void
326   emitRemark(const StringRef OptName, const StringRef TargetName,
327              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
328     Function *F = CS.getCaller();
329     DebugLoc DLoc = CS->getDebugLoc();
330     BasicBlock *Block = CS.getParent();
331 
332     using namespace ore;
333     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
334                       << NV("Optimization", OptName)
335                       << ": devirtualized a call to "
336                       << NV("FunctionName", TargetName));
337   }
338 
339   void replaceAndErase(
340       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
341       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
342       Value *New) {
343     if (RemarksEnabled)
344       emitRemark(OptName, TargetName, OREGetter);
345     CS->replaceAllUsesWith(New);
346     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
347       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
348       II->getUnwindDest()->removePredecessor(II->getParent());
349     }
350     CS->eraseFromParent();
351     // This use is no longer unsafe.
352     if (NumUnsafeUses)
353       --*NumUnsafeUses;
354   }
355 };
356 
357 // Call site information collected for a specific VTableSlot and possibly a list
358 // of constant integer arguments. The grouping by arguments is handled by the
359 // VTableSlotInfo class.
360 struct CallSiteInfo {
361   /// The set of call sites for this slot. Used during regular LTO and the
362   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
363   /// call sites that appear in the merged module itself); in each of these
364   /// cases we are directly operating on the call sites at the IR level.
365   std::vector<VirtualCallSite> CallSites;
366 
367   /// Whether all call sites represented by this CallSiteInfo, including those
368   /// in summaries, have been devirtualized. This starts off as true because a
369   /// default constructed CallSiteInfo represents no call sites.
370   bool AllCallSitesDevirted = true;
371 
372   // These fields are used during the export phase of ThinLTO and reflect
373   // information collected from function summaries.
374 
375   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
376   /// this slot.
377   bool SummaryHasTypeTestAssumeUsers = false;
378 
379   /// CFI-specific: a vector containing the list of function summaries that use
380   /// the llvm.type.checked.load intrinsic and therefore will require
381   /// resolutions for llvm.type.test in order to implement CFI checks if
382   /// devirtualization was unsuccessful. If devirtualization was successful, the
383   /// pass will clear this vector by calling markDevirt(). If at the end of the
384   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
385   /// to each of the function summaries in the vector.
386   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
387   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
388 
389   bool isExported() const {
390     return SummaryHasTypeTestAssumeUsers ||
391            !SummaryTypeCheckedLoadUsers.empty();
392   }
393 
394   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
395     SummaryTypeCheckedLoadUsers.push_back(FS);
396     AllCallSitesDevirted = false;
397   }
398 
399   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
400     SummaryTypeTestAssumeUsers.push_back(FS);
401     SummaryHasTypeTestAssumeUsers = true;
402     AllCallSitesDevirted = false;
403   }
404 
405   void markDevirt() {
406     AllCallSitesDevirted = true;
407 
408     // As explained in the comment for SummaryTypeCheckedLoadUsers.
409     SummaryTypeCheckedLoadUsers.clear();
410   }
411 };
412 
413 // Call site information collected for a specific VTableSlot.
414 struct VTableSlotInfo {
415   // The set of call sites which do not have all constant integer arguments
416   // (excluding "this").
417   CallSiteInfo CSInfo;
418 
419   // The set of call sites with all constant integer arguments (excluding
420   // "this"), grouped by argument list.
421   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
422 
423   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
424 
425 private:
426   CallSiteInfo &findCallSiteInfo(CallSite CS);
427 };
428 
429 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
430   std::vector<uint64_t> Args;
431   auto *CI = dyn_cast<IntegerType>(CS.getType());
432   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
433     return CSInfo;
434   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
435     auto *CI = dyn_cast<ConstantInt>(Arg);
436     if (!CI || CI->getBitWidth() > 64)
437       return CSInfo;
438     Args.push_back(CI->getZExtValue());
439   }
440   return ConstCSInfo[Args];
441 }
442 
443 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
444                                  unsigned *NumUnsafeUses) {
445   auto &CSI = findCallSiteInfo(CS);
446   CSI.AllCallSitesDevirted = false;
447   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
448 }
449 
450 struct DevirtModule {
451   Module &M;
452   function_ref<AAResults &(Function &)> AARGetter;
453   function_ref<DominatorTree &(Function &)> LookupDomTree;
454 
455   ModuleSummaryIndex *ExportSummary;
456   const ModuleSummaryIndex *ImportSummary;
457 
458   IntegerType *Int8Ty;
459   PointerType *Int8PtrTy;
460   IntegerType *Int32Ty;
461   IntegerType *Int64Ty;
462   IntegerType *IntPtrTy;
463 
464   bool RemarksEnabled;
465   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
466 
467   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
468 
469   // This map keeps track of the number of "unsafe" uses of a loaded function
470   // pointer. The key is the associated llvm.type.test intrinsic call generated
471   // by this pass. An unsafe use is one that calls the loaded function pointer
472   // directly. Every time we eliminate an unsafe use (for example, by
473   // devirtualizing it or by applying virtual constant propagation), we
474   // decrement the value stored in this map. If a value reaches zero, we can
475   // eliminate the type check by RAUWing the associated llvm.type.test call with
476   // true.
477   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
478 
479   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
480                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
481                function_ref<DominatorTree &(Function &)> LookupDomTree,
482                ModuleSummaryIndex *ExportSummary,
483                const ModuleSummaryIndex *ImportSummary)
484       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
485         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
486         Int8Ty(Type::getInt8Ty(M.getContext())),
487         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
488         Int32Ty(Type::getInt32Ty(M.getContext())),
489         Int64Ty(Type::getInt64Ty(M.getContext())),
490         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
491         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
492     assert(!(ExportSummary && ImportSummary));
493   }
494 
495   bool areRemarksEnabled();
496 
497   void scanTypeTestUsers(Function *TypeTestFunc);
498   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
499 
500   void buildTypeIdentifierMap(
501       std::vector<VTableBits> &Bits,
502       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
503   bool
504   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
505                             const std::set<TypeMemberInfo> &TypeMemberInfos,
506                             uint64_t ByteOffset);
507 
508   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
509                              bool &IsExported);
510   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
511                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
512                            VTableSlotInfo &SlotInfo,
513                            WholeProgramDevirtResolution *Res);
514 
515   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
516                               bool &IsExported);
517   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
518                             VTableSlotInfo &SlotInfo,
519                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
520 
521   bool tryEvaluateFunctionsWithArgs(
522       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
523       ArrayRef<uint64_t> Args);
524 
525   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
526                              uint64_t TheRetVal);
527   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
528                            CallSiteInfo &CSInfo,
529                            WholeProgramDevirtResolution::ByArg *Res);
530 
531   // Returns the global symbol name that is used to export information about the
532   // given vtable slot and list of arguments.
533   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
534                             StringRef Name);
535 
536   bool shouldExportConstantsAsAbsoluteSymbols();
537 
538   // This function is called during the export phase to create a symbol
539   // definition containing information about the given vtable slot and list of
540   // arguments.
541   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
542                     Constant *C);
543   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
544                       uint32_t Const, uint32_t &Storage);
545 
546   // This function is called during the import phase to create a reference to
547   // the symbol definition created during the export phase.
548   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
549                          StringRef Name);
550   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
551                            StringRef Name, IntegerType *IntTy,
552                            uint32_t Storage);
553 
554   Constant *getMemberAddr(const TypeMemberInfo *M);
555 
556   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
557                             Constant *UniqueMemberAddr);
558   bool tryUniqueRetValOpt(unsigned BitWidth,
559                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
560                           CallSiteInfo &CSInfo,
561                           WholeProgramDevirtResolution::ByArg *Res,
562                           VTableSlot Slot, ArrayRef<uint64_t> Args);
563 
564   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
565                              Constant *Byte, Constant *Bit);
566   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
567                            VTableSlotInfo &SlotInfo,
568                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
569 
570   void rebuildGlobal(VTableBits &B);
571 
572   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
573   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
574 
575   // If we were able to eliminate all unsafe uses for a type checked load,
576   // eliminate the associated type tests by replacing them with true.
577   void removeRedundantTypeTests();
578 
579   bool run();
580 
581   // Lower the module using the action and summary passed as command line
582   // arguments. For testing purposes only.
583   static bool
584   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
585                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
586                 function_ref<DominatorTree &(Function &)> LookupDomTree);
587 };
588 
589 struct DevirtIndex {
590   ModuleSummaryIndex &ExportSummary;
591   // The set in which to record GUIDs exported from their module by
592   // devirtualization, used by client to ensure they are not internalized.
593   std::set<GlobalValue::GUID> &ExportedGUIDs;
594   // A map in which to record the information necessary to locate the WPD
595   // resolution for local targets in case they are exported by cross module
596   // importing.
597   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
598 
599   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
600 
601   DevirtIndex(
602       ModuleSummaryIndex &ExportSummary,
603       std::set<GlobalValue::GUID> &ExportedGUIDs,
604       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
605       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
606         LocalWPDTargetsMap(LocalWPDTargetsMap) {}
607 
608   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
609                                  const TypeIdCompatibleVtableInfo TIdInfo,
610                                  uint64_t ByteOffset);
611 
612   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
613                            VTableSlotSummary &SlotSummary,
614                            VTableSlotInfo &SlotInfo,
615                            WholeProgramDevirtResolution *Res,
616                            std::set<ValueInfo> &DevirtTargets);
617 
618   void run();
619 };
620 
621 struct WholeProgramDevirt : public ModulePass {
622   static char ID;
623 
624   bool UseCommandLine = false;
625 
626   ModuleSummaryIndex *ExportSummary = nullptr;
627   const ModuleSummaryIndex *ImportSummary = nullptr;
628 
629   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
630     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
631   }
632 
633   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
634                      const ModuleSummaryIndex *ImportSummary)
635       : ModulePass(ID), ExportSummary(ExportSummary),
636         ImportSummary(ImportSummary) {
637     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
638   }
639 
640   bool runOnModule(Module &M) override {
641     if (skipModule(M))
642       return false;
643 
644     // In the new pass manager, we can request the optimization
645     // remark emitter pass on a per-function-basis, which the
646     // OREGetter will do for us.
647     // In the old pass manager, this is harder, so we just build
648     // an optimization remark emitter on the fly, when we need it.
649     std::unique_ptr<OptimizationRemarkEmitter> ORE;
650     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
651       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
652       return *ORE;
653     };
654 
655     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
656       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
657     };
658 
659     if (UseCommandLine)
660       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
661                                          LookupDomTree);
662 
663     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
664                         ExportSummary, ImportSummary)
665         .run();
666   }
667 
668   void getAnalysisUsage(AnalysisUsage &AU) const override {
669     AU.addRequired<AssumptionCacheTracker>();
670     AU.addRequired<TargetLibraryInfoWrapperPass>();
671     AU.addRequired<DominatorTreeWrapperPass>();
672   }
673 };
674 
675 } // end anonymous namespace
676 
677 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
678                       "Whole program devirtualization", false, false)
679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
680 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
681 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
682 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
683                     "Whole program devirtualization", false, false)
684 char WholeProgramDevirt::ID = 0;
685 
686 ModulePass *
687 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
688                                    const ModuleSummaryIndex *ImportSummary) {
689   return new WholeProgramDevirt(ExportSummary, ImportSummary);
690 }
691 
692 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
693                                               ModuleAnalysisManager &AM) {
694   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
695   auto AARGetter = [&](Function &F) -> AAResults & {
696     return FAM.getResult<AAManager>(F);
697   };
698   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
699     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
700   };
701   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
702     return FAM.getResult<DominatorTreeAnalysis>(F);
703   };
704   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
705                     ImportSummary)
706            .run())
707     return PreservedAnalyses::all();
708   return PreservedAnalyses::none();
709 }
710 
711 namespace llvm {
712 void runWholeProgramDevirtOnIndex(
713     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
714     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
715   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
716 }
717 
718 void updateIndexWPDForExports(
719     ModuleSummaryIndex &Summary,
720     function_ref<bool(StringRef, ValueInfo)> isExported,
721     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
722   for (auto &T : LocalWPDTargetsMap) {
723     auto &VI = T.first;
724     // This was enforced earlier during trySingleImplDevirt.
725     assert(VI.getSummaryList().size() == 1 &&
726            "Devirt of local target has more than one copy");
727     auto &S = VI.getSummaryList()[0];
728     if (!isExported(S->modulePath(), VI))
729       continue;
730 
731     // It's been exported by a cross module import.
732     for (auto &SlotSummary : T.second) {
733       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
734       assert(TIdSum);
735       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
736       assert(WPDRes != TIdSum->WPDRes.end());
737       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
738           WPDRes->second.SingleImplName,
739           Summary.getModuleHash(S->modulePath()));
740     }
741   }
742 }
743 
744 } // end namespace llvm
745 
746 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
747   // Check that summary index contains regular LTO module when performing
748   // export to prevent occasional use of index from pure ThinLTO compilation
749   // (-fno-split-lto-module). This kind of summary index is passed to
750   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
751   const auto &ModPaths = Summary->modulePaths();
752   if (ClSummaryAction != PassSummaryAction::Import &&
753       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
754           ModPaths.end())
755     return createStringError(
756         errc::invalid_argument,
757         "combined summary should contain Regular LTO module");
758   return ErrorSuccess();
759 }
760 
761 bool DevirtModule::runForTesting(
762     Module &M, function_ref<AAResults &(Function &)> AARGetter,
763     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
764     function_ref<DominatorTree &(Function &)> LookupDomTree) {
765   std::unique_ptr<ModuleSummaryIndex> Summary =
766       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
767 
768   // Handle the command-line summary arguments. This code is for testing
769   // purposes only, so we handle errors directly.
770   if (!ClReadSummary.empty()) {
771     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
772                           ": ");
773     auto ReadSummaryFile =
774         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
775     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
776             getModuleSummaryIndex(*ReadSummaryFile)) {
777       Summary = std::move(*SummaryOrErr);
778       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
779     } else {
780       // Try YAML if we've failed with bitcode.
781       consumeError(SummaryOrErr.takeError());
782       yaml::Input In(ReadSummaryFile->getBuffer());
783       In >> *Summary;
784       ExitOnErr(errorCodeToError(In.error()));
785     }
786   }
787 
788   bool Changed =
789       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
790                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
791                                                                 : nullptr,
792                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
793                                                                 : nullptr)
794           .run();
795 
796   if (!ClWriteSummary.empty()) {
797     ExitOnError ExitOnErr(
798         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
799     std::error_code EC;
800     if (StringRef(ClWriteSummary).endswith(".bc")) {
801       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
802       ExitOnErr(errorCodeToError(EC));
803       WriteIndexToFile(*Summary, OS);
804     } else {
805       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
806       ExitOnErr(errorCodeToError(EC));
807       yaml::Output Out(OS);
808       Out << *Summary;
809     }
810   }
811 
812   return Changed;
813 }
814 
815 void DevirtModule::buildTypeIdentifierMap(
816     std::vector<VTableBits> &Bits,
817     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
818   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
819   Bits.reserve(M.getGlobalList().size());
820   SmallVector<MDNode *, 2> Types;
821   for (GlobalVariable &GV : M.globals()) {
822     Types.clear();
823     GV.getMetadata(LLVMContext::MD_type, Types);
824     if (GV.isDeclaration() || Types.empty())
825       continue;
826 
827     VTableBits *&BitsPtr = GVToBits[&GV];
828     if (!BitsPtr) {
829       Bits.emplace_back();
830       Bits.back().GV = &GV;
831       Bits.back().ObjectSize =
832           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
833       BitsPtr = &Bits.back();
834     }
835 
836     for (MDNode *Type : Types) {
837       auto TypeID = Type->getOperand(1).get();
838 
839       uint64_t Offset =
840           cast<ConstantInt>(
841               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
842               ->getZExtValue();
843 
844       TypeIdMap[TypeID].insert({BitsPtr, Offset});
845     }
846   }
847 }
848 
849 bool DevirtModule::tryFindVirtualCallTargets(
850     std::vector<VirtualCallTarget> &TargetsForSlot,
851     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
852   for (const TypeMemberInfo &TM : TypeMemberInfos) {
853     if (!TM.Bits->GV->isConstant())
854       return false;
855 
856     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
857                                        TM.Offset + ByteOffset, M);
858     if (!Ptr)
859       return false;
860 
861     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
862     if (!Fn)
863       return false;
864 
865     // We can disregard __cxa_pure_virtual as a possible call target, as
866     // calls to pure virtuals are UB.
867     if (Fn->getName() == "__cxa_pure_virtual")
868       continue;
869 
870     TargetsForSlot.push_back({Fn, &TM});
871   }
872 
873   // Give up if we couldn't find any targets.
874   return !TargetsForSlot.empty();
875 }
876 
877 bool DevirtIndex::tryFindVirtualCallTargets(
878     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
879     uint64_t ByteOffset) {
880   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
881     // Find the first non-available_externally linkage vtable initializer.
882     // We can have multiple available_externally, linkonce_odr and weak_odr
883     // vtable initializers, however we want to skip available_externally as they
884     // do not have type metadata attached, and therefore the summary will not
885     // contain any vtable functions. We can also have multiple external
886     // vtable initializers in the case of comdats, which we cannot check here.
887     // The linker should give an error in this case.
888     //
889     // Also, handle the case of same-named local Vtables with the same path
890     // and therefore the same GUID. This can happen if there isn't enough
891     // distinguishing path when compiling the source file. In that case we
892     // conservatively return false early.
893     const GlobalVarSummary *VS = nullptr;
894     bool LocalFound = false;
895     for (auto &S : P.VTableVI.getSummaryList()) {
896       if (GlobalValue::isLocalLinkage(S->linkage())) {
897         if (LocalFound)
898           return false;
899         LocalFound = true;
900       }
901       if (!GlobalValue::isAvailableExternallyLinkage(S->linkage()))
902         VS = cast<GlobalVarSummary>(S->getBaseObject());
903     }
904     if (!VS->isLive())
905       continue;
906     for (auto VTP : VS->vTableFuncs()) {
907       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
908         continue;
909 
910       TargetsForSlot.push_back(VTP.FuncVI);
911     }
912   }
913 
914   // Give up if we couldn't find any targets.
915   return !TargetsForSlot.empty();
916 }
917 
918 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
919                                          Constant *TheFn, bool &IsExported) {
920   auto Apply = [&](CallSiteInfo &CSInfo) {
921     for (auto &&VCallSite : CSInfo.CallSites) {
922       if (RemarksEnabled)
923         VCallSite.emitRemark("single-impl",
924                              TheFn->stripPointerCasts()->getName(), OREGetter);
925       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
926           TheFn, VCallSite.CS.getCalledValue()->getType()));
927       // This use is no longer unsafe.
928       if (VCallSite.NumUnsafeUses)
929         --*VCallSite.NumUnsafeUses;
930     }
931     if (CSInfo.isExported())
932       IsExported = true;
933     CSInfo.markDevirt();
934   };
935   Apply(SlotInfo.CSInfo);
936   for (auto &P : SlotInfo.ConstCSInfo)
937     Apply(P.second);
938 }
939 
940 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
941   // We can't add calls if we haven't seen a definition
942   if (Callee.getSummaryList().empty())
943     return false;
944 
945   // Insert calls into the summary index so that the devirtualized targets
946   // are eligible for import.
947   // FIXME: Annotate type tests with hotness. For now, mark these as hot
948   // to better ensure we have the opportunity to inline them.
949   bool IsExported = false;
950   auto &S = Callee.getSummaryList()[0];
951   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
952   auto AddCalls = [&](CallSiteInfo &CSInfo) {
953     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
954       FS->addCall({Callee, CI});
955       IsExported |= S->modulePath() != FS->modulePath();
956     }
957     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
958       FS->addCall({Callee, CI});
959       IsExported |= S->modulePath() != FS->modulePath();
960     }
961   };
962   AddCalls(SlotInfo.CSInfo);
963   for (auto &P : SlotInfo.ConstCSInfo)
964     AddCalls(P.second);
965   return IsExported;
966 }
967 
968 bool DevirtModule::trySingleImplDevirt(
969     ModuleSummaryIndex *ExportSummary,
970     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
971     WholeProgramDevirtResolution *Res) {
972   // See if the program contains a single implementation of this virtual
973   // function.
974   Function *TheFn = TargetsForSlot[0].Fn;
975   for (auto &&Target : TargetsForSlot)
976     if (TheFn != Target.Fn)
977       return false;
978 
979   // If so, update each call site to call that implementation directly.
980   if (RemarksEnabled)
981     TargetsForSlot[0].WasDevirt = true;
982 
983   bool IsExported = false;
984   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
985   if (!IsExported)
986     return false;
987 
988   // If the only implementation has local linkage, we must promote to external
989   // to make it visible to thin LTO objects. We can only get here during the
990   // ThinLTO export phase.
991   if (TheFn->hasLocalLinkage()) {
992     std::string NewName = (TheFn->getName() + "$merged").str();
993 
994     // Since we are renaming the function, any comdats with the same name must
995     // also be renamed. This is required when targeting COFF, as the comdat name
996     // must match one of the names of the symbols in the comdat.
997     if (Comdat *C = TheFn->getComdat()) {
998       if (C->getName() == TheFn->getName()) {
999         Comdat *NewC = M.getOrInsertComdat(NewName);
1000         NewC->setSelectionKind(C->getSelectionKind());
1001         for (GlobalObject &GO : M.global_objects())
1002           if (GO.getComdat() == C)
1003             GO.setComdat(NewC);
1004       }
1005     }
1006 
1007     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1008     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1009     TheFn->setName(NewName);
1010   }
1011   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1012     // Any needed promotion of 'TheFn' has already been done during
1013     // LTO unit split, so we can ignore return value of AddCalls.
1014     AddCalls(SlotInfo, TheFnVI);
1015 
1016   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1017   Res->SingleImplName = TheFn->getName();
1018 
1019   return true;
1020 }
1021 
1022 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1023                                       VTableSlotSummary &SlotSummary,
1024                                       VTableSlotInfo &SlotInfo,
1025                                       WholeProgramDevirtResolution *Res,
1026                                       std::set<ValueInfo> &DevirtTargets) {
1027   // See if the program contains a single implementation of this virtual
1028   // function.
1029   auto TheFn = TargetsForSlot[0];
1030   for (auto &&Target : TargetsForSlot)
1031     if (TheFn != Target)
1032       return false;
1033 
1034   // Don't devirtualize if we don't have target definition.
1035   auto Size = TheFn.getSummaryList().size();
1036   if (!Size)
1037     return false;
1038 
1039   // If the summary list contains multiple summaries where at least one is
1040   // a local, give up, as we won't know which (possibly promoted) name to use.
1041   for (auto &S : TheFn.getSummaryList())
1042     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1043       return false;
1044 
1045   // Collect functions devirtualized at least for one call site for stats.
1046   if (PrintSummaryDevirt)
1047     DevirtTargets.insert(TheFn);
1048 
1049   auto &S = TheFn.getSummaryList()[0];
1050   bool IsExported = AddCalls(SlotInfo, TheFn);
1051   if (IsExported)
1052     ExportedGUIDs.insert(TheFn.getGUID());
1053 
1054   // Record in summary for use in devirtualization during the ThinLTO import
1055   // step.
1056   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1057   if (GlobalValue::isLocalLinkage(S->linkage())) {
1058     if (IsExported)
1059       // If target is a local function and we are exporting it by
1060       // devirtualizing a call in another module, we need to record the
1061       // promoted name.
1062       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1063           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1064     else {
1065       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1066       Res->SingleImplName = TheFn.name();
1067     }
1068   } else
1069     Res->SingleImplName = TheFn.name();
1070 
1071   // Name will be empty if this thin link driven off of serialized combined
1072   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1073   // legacy LTO API anyway.
1074   assert(!Res->SingleImplName.empty());
1075 
1076   return true;
1077 }
1078 
1079 void DevirtModule::tryICallBranchFunnel(
1080     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1081     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1082   Triple T(M.getTargetTriple());
1083   if (T.getArch() != Triple::x86_64)
1084     return;
1085 
1086   if (TargetsForSlot.size() > ClThreshold)
1087     return;
1088 
1089   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1090   if (!HasNonDevirt)
1091     for (auto &P : SlotInfo.ConstCSInfo)
1092       if (!P.second.AllCallSitesDevirted) {
1093         HasNonDevirt = true;
1094         break;
1095       }
1096 
1097   if (!HasNonDevirt)
1098     return;
1099 
1100   FunctionType *FT =
1101       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1102   Function *JT;
1103   if (isa<MDString>(Slot.TypeID)) {
1104     JT = Function::Create(FT, Function::ExternalLinkage,
1105                           M.getDataLayout().getProgramAddressSpace(),
1106                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1107     JT->setVisibility(GlobalValue::HiddenVisibility);
1108   } else {
1109     JT = Function::Create(FT, Function::InternalLinkage,
1110                           M.getDataLayout().getProgramAddressSpace(),
1111                           "branch_funnel", &M);
1112   }
1113   JT->addAttribute(1, Attribute::Nest);
1114 
1115   std::vector<Value *> JTArgs;
1116   JTArgs.push_back(JT->arg_begin());
1117   for (auto &T : TargetsForSlot) {
1118     JTArgs.push_back(getMemberAddr(T.TM));
1119     JTArgs.push_back(T.Fn);
1120   }
1121 
1122   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1123   Function *Intr =
1124       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1125 
1126   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1127   CI->setTailCallKind(CallInst::TCK_MustTail);
1128   ReturnInst::Create(M.getContext(), nullptr, BB);
1129 
1130   bool IsExported = false;
1131   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1132   if (IsExported)
1133     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1134 }
1135 
1136 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1137                                           Constant *JT, bool &IsExported) {
1138   auto Apply = [&](CallSiteInfo &CSInfo) {
1139     if (CSInfo.isExported())
1140       IsExported = true;
1141     if (CSInfo.AllCallSitesDevirted)
1142       return;
1143     for (auto &&VCallSite : CSInfo.CallSites) {
1144       CallSite CS = VCallSite.CS;
1145 
1146       // Jump tables are only profitable if the retpoline mitigation is enabled.
1147       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1148       if (FSAttr.hasAttribute(Attribute::None) ||
1149           !FSAttr.getValueAsString().contains("+retpoline"))
1150         continue;
1151 
1152       if (RemarksEnabled)
1153         VCallSite.emitRemark("branch-funnel",
1154                              JT->stripPointerCasts()->getName(), OREGetter);
1155 
1156       // Pass the address of the vtable in the nest register, which is r10 on
1157       // x86_64.
1158       std::vector<Type *> NewArgs;
1159       NewArgs.push_back(Int8PtrTy);
1160       for (Type *T : CS.getFunctionType()->params())
1161         NewArgs.push_back(T);
1162       FunctionType *NewFT =
1163           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1164                             CS.getFunctionType()->isVarArg());
1165       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1166 
1167       IRBuilder<> IRB(CS.getInstruction());
1168       std::vector<Value *> Args;
1169       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1170       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1171         Args.push_back(CS.getArgOperand(I));
1172 
1173       CallSite NewCS;
1174       if (CS.isCall())
1175         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1176       else
1177         NewCS = IRB.CreateInvoke(
1178             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1179             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1180             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1181       NewCS.setCallingConv(CS.getCallingConv());
1182 
1183       AttributeList Attrs = CS.getAttributes();
1184       std::vector<AttributeSet> NewArgAttrs;
1185       NewArgAttrs.push_back(AttributeSet::get(
1186           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1187                               M.getContext(), Attribute::Nest)}));
1188       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1189         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1190       NewCS.setAttributes(
1191           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1192                              Attrs.getRetAttributes(), NewArgAttrs));
1193 
1194       CS->replaceAllUsesWith(NewCS.getInstruction());
1195       CS->eraseFromParent();
1196 
1197       // This use is no longer unsafe.
1198       if (VCallSite.NumUnsafeUses)
1199         --*VCallSite.NumUnsafeUses;
1200     }
1201     // Don't mark as devirtualized because there may be callers compiled without
1202     // retpoline mitigation, which would mean that they are lowered to
1203     // llvm.type.test and therefore require an llvm.type.test resolution for the
1204     // type identifier.
1205   };
1206   Apply(SlotInfo.CSInfo);
1207   for (auto &P : SlotInfo.ConstCSInfo)
1208     Apply(P.second);
1209 }
1210 
1211 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1212     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1213     ArrayRef<uint64_t> Args) {
1214   // Evaluate each function and store the result in each target's RetVal
1215   // field.
1216   for (VirtualCallTarget &Target : TargetsForSlot) {
1217     if (Target.Fn->arg_size() != Args.size() + 1)
1218       return false;
1219 
1220     Evaluator Eval(M.getDataLayout(), nullptr);
1221     SmallVector<Constant *, 2> EvalArgs;
1222     EvalArgs.push_back(
1223         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1224     for (unsigned I = 0; I != Args.size(); ++I) {
1225       auto *ArgTy = dyn_cast<IntegerType>(
1226           Target.Fn->getFunctionType()->getParamType(I + 1));
1227       if (!ArgTy)
1228         return false;
1229       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1230     }
1231 
1232     Constant *RetVal;
1233     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1234         !isa<ConstantInt>(RetVal))
1235       return false;
1236     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1237   }
1238   return true;
1239 }
1240 
1241 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1242                                          uint64_t TheRetVal) {
1243   for (auto Call : CSInfo.CallSites)
1244     Call.replaceAndErase(
1245         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1246         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1247   CSInfo.markDevirt();
1248 }
1249 
1250 bool DevirtModule::tryUniformRetValOpt(
1251     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1252     WholeProgramDevirtResolution::ByArg *Res) {
1253   // Uniform return value optimization. If all functions return the same
1254   // constant, replace all calls with that constant.
1255   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1256   for (const VirtualCallTarget &Target : TargetsForSlot)
1257     if (Target.RetVal != TheRetVal)
1258       return false;
1259 
1260   if (CSInfo.isExported()) {
1261     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1262     Res->Info = TheRetVal;
1263   }
1264 
1265   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1266   if (RemarksEnabled)
1267     for (auto &&Target : TargetsForSlot)
1268       Target.WasDevirt = true;
1269   return true;
1270 }
1271 
1272 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1273                                         ArrayRef<uint64_t> Args,
1274                                         StringRef Name) {
1275   std::string FullName = "__typeid_";
1276   raw_string_ostream OS(FullName);
1277   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1278   for (uint64_t Arg : Args)
1279     OS << '_' << Arg;
1280   OS << '_' << Name;
1281   return OS.str();
1282 }
1283 
1284 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1285   Triple T(M.getTargetTriple());
1286   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1287 }
1288 
1289 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1290                                 StringRef Name, Constant *C) {
1291   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1292                                         getGlobalName(Slot, Args, Name), C, &M);
1293   GA->setVisibility(GlobalValue::HiddenVisibility);
1294 }
1295 
1296 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1297                                   StringRef Name, uint32_t Const,
1298                                   uint32_t &Storage) {
1299   if (shouldExportConstantsAsAbsoluteSymbols()) {
1300     exportGlobal(
1301         Slot, Args, Name,
1302         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1303     return;
1304   }
1305 
1306   Storage = Const;
1307 }
1308 
1309 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1310                                      StringRef Name) {
1311   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1312   auto *GV = dyn_cast<GlobalVariable>(C);
1313   if (GV)
1314     GV->setVisibility(GlobalValue::HiddenVisibility);
1315   return C;
1316 }
1317 
1318 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1319                                        StringRef Name, IntegerType *IntTy,
1320                                        uint32_t Storage) {
1321   if (!shouldExportConstantsAsAbsoluteSymbols())
1322     return ConstantInt::get(IntTy, Storage);
1323 
1324   Constant *C = importGlobal(Slot, Args, Name);
1325   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1326   C = ConstantExpr::getPtrToInt(C, IntTy);
1327 
1328   // We only need to set metadata if the global is newly created, in which
1329   // case it would not have hidden visibility.
1330   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1331     return C;
1332 
1333   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1334     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1335     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1336     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1337                     MDNode::get(M.getContext(), {MinC, MaxC}));
1338   };
1339   unsigned AbsWidth = IntTy->getBitWidth();
1340   if (AbsWidth == IntPtrTy->getBitWidth())
1341     SetAbsRange(~0ull, ~0ull); // Full set.
1342   else
1343     SetAbsRange(0, 1ull << AbsWidth);
1344   return C;
1345 }
1346 
1347 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1348                                         bool IsOne,
1349                                         Constant *UniqueMemberAddr) {
1350   for (auto &&Call : CSInfo.CallSites) {
1351     IRBuilder<> B(Call.CS.getInstruction());
1352     Value *Cmp =
1353         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1354                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1355     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1356     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1357                          Cmp);
1358   }
1359   CSInfo.markDevirt();
1360 }
1361 
1362 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1363   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1364   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1365                                         ConstantInt::get(Int64Ty, M->Offset));
1366 }
1367 
1368 bool DevirtModule::tryUniqueRetValOpt(
1369     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1370     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1371     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1372   // IsOne controls whether we look for a 0 or a 1.
1373   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1374     const TypeMemberInfo *UniqueMember = nullptr;
1375     for (const VirtualCallTarget &Target : TargetsForSlot) {
1376       if (Target.RetVal == (IsOne ? 1 : 0)) {
1377         if (UniqueMember)
1378           return false;
1379         UniqueMember = Target.TM;
1380       }
1381     }
1382 
1383     // We should have found a unique member or bailed out by now. We already
1384     // checked for a uniform return value in tryUniformRetValOpt.
1385     assert(UniqueMember);
1386 
1387     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1388     if (CSInfo.isExported()) {
1389       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1390       Res->Info = IsOne;
1391 
1392       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1393     }
1394 
1395     // Replace each call with the comparison.
1396     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1397                          UniqueMemberAddr);
1398 
1399     // Update devirtualization statistics for targets.
1400     if (RemarksEnabled)
1401       for (auto &&Target : TargetsForSlot)
1402         Target.WasDevirt = true;
1403 
1404     return true;
1405   };
1406 
1407   if (BitWidth == 1) {
1408     if (tryUniqueRetValOptFor(true))
1409       return true;
1410     if (tryUniqueRetValOptFor(false))
1411       return true;
1412   }
1413   return false;
1414 }
1415 
1416 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1417                                          Constant *Byte, Constant *Bit) {
1418   for (auto Call : CSInfo.CallSites) {
1419     auto *RetType = cast<IntegerType>(Call.CS.getType());
1420     IRBuilder<> B(Call.CS.getInstruction());
1421     Value *Addr =
1422         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1423     if (RetType->getBitWidth() == 1) {
1424       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1425       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1426       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1427       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1428                            OREGetter, IsBitSet);
1429     } else {
1430       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1431       Value *Val = B.CreateLoad(RetType, ValAddr);
1432       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1433                            OREGetter, Val);
1434     }
1435   }
1436   CSInfo.markDevirt();
1437 }
1438 
1439 bool DevirtModule::tryVirtualConstProp(
1440     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1441     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1442   // This only works if the function returns an integer.
1443   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1444   if (!RetType)
1445     return false;
1446   unsigned BitWidth = RetType->getBitWidth();
1447   if (BitWidth > 64)
1448     return false;
1449 
1450   // Make sure that each function is defined, does not access memory, takes at
1451   // least one argument, does not use its first argument (which we assume is
1452   // 'this'), and has the same return type.
1453   //
1454   // Note that we test whether this copy of the function is readnone, rather
1455   // than testing function attributes, which must hold for any copy of the
1456   // function, even a less optimized version substituted at link time. This is
1457   // sound because the virtual constant propagation optimizations effectively
1458   // inline all implementations of the virtual function into each call site,
1459   // rather than using function attributes to perform local optimization.
1460   for (VirtualCallTarget &Target : TargetsForSlot) {
1461     if (Target.Fn->isDeclaration() ||
1462         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1463             MAK_ReadNone ||
1464         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1465         Target.Fn->getReturnType() != RetType)
1466       return false;
1467   }
1468 
1469   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1470     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1471       continue;
1472 
1473     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1474     if (Res)
1475       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1476 
1477     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1478       continue;
1479 
1480     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1481                            ResByArg, Slot, CSByConstantArg.first))
1482       continue;
1483 
1484     // Find an allocation offset in bits in all vtables associated with the
1485     // type.
1486     uint64_t AllocBefore =
1487         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1488     uint64_t AllocAfter =
1489         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1490 
1491     // Calculate the total amount of padding needed to store a value at both
1492     // ends of the object.
1493     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1494     for (auto &&Target : TargetsForSlot) {
1495       TotalPaddingBefore += std::max<int64_t>(
1496           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1497       TotalPaddingAfter += std::max<int64_t>(
1498           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1499     }
1500 
1501     // If the amount of padding is too large, give up.
1502     // FIXME: do something smarter here.
1503     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1504       continue;
1505 
1506     // Calculate the offset to the value as a (possibly negative) byte offset
1507     // and (if applicable) a bit offset, and store the values in the targets.
1508     int64_t OffsetByte;
1509     uint64_t OffsetBit;
1510     if (TotalPaddingBefore <= TotalPaddingAfter)
1511       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1512                             OffsetBit);
1513     else
1514       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1515                            OffsetBit);
1516 
1517     if (RemarksEnabled)
1518       for (auto &&Target : TargetsForSlot)
1519         Target.WasDevirt = true;
1520 
1521 
1522     if (CSByConstantArg.second.isExported()) {
1523       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1524       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1525                      ResByArg->Byte);
1526       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1527                      ResByArg->Bit);
1528     }
1529 
1530     // Rewrite each call to a load from OffsetByte/OffsetBit.
1531     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1532     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1533     applyVirtualConstProp(CSByConstantArg.second,
1534                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1535   }
1536   return true;
1537 }
1538 
1539 void DevirtModule::rebuildGlobal(VTableBits &B) {
1540   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1541     return;
1542 
1543   // Align the before byte array to the global's minimum alignment so that we
1544   // don't break any alignment requirements on the global.
1545   MaybeAlign Alignment(B.GV->getAlignment());
1546   if (!Alignment)
1547     Alignment =
1548         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1549   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1550 
1551   // Before was stored in reverse order; flip it now.
1552   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1553     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1554 
1555   // Build an anonymous global containing the before bytes, followed by the
1556   // original initializer, followed by the after bytes.
1557   auto NewInit = ConstantStruct::getAnon(
1558       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1559        B.GV->getInitializer(),
1560        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1561   auto NewGV =
1562       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1563                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1564   NewGV->setSection(B.GV->getSection());
1565   NewGV->setComdat(B.GV->getComdat());
1566   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1567 
1568   // Copy the original vtable's metadata to the anonymous global, adjusting
1569   // offsets as required.
1570   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1571 
1572   // Build an alias named after the original global, pointing at the second
1573   // element (the original initializer).
1574   auto Alias = GlobalAlias::create(
1575       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1576       ConstantExpr::getGetElementPtr(
1577           NewInit->getType(), NewGV,
1578           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1579                                ConstantInt::get(Int32Ty, 1)}),
1580       &M);
1581   Alias->setVisibility(B.GV->getVisibility());
1582   Alias->takeName(B.GV);
1583 
1584   B.GV->replaceAllUsesWith(Alias);
1585   B.GV->eraseFromParent();
1586 }
1587 
1588 bool DevirtModule::areRemarksEnabled() {
1589   const auto &FL = M.getFunctionList();
1590   for (const Function &Fn : FL) {
1591     const auto &BBL = Fn.getBasicBlockList();
1592     if (BBL.empty())
1593       continue;
1594     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1595     return DI.isEnabled();
1596   }
1597   return false;
1598 }
1599 
1600 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1601   // Find all virtual calls via a virtual table pointer %p under an assumption
1602   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1603   // points to a member of the type identifier %md. Group calls by (type ID,
1604   // offset) pair (effectively the identity of the virtual function) and store
1605   // to CallSlots.
1606   DenseSet<CallSite> SeenCallSites;
1607   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1608        I != E;) {
1609     auto CI = dyn_cast<CallInst>(I->getUser());
1610     ++I;
1611     if (!CI)
1612       continue;
1613 
1614     // Search for virtual calls based on %p and add them to DevirtCalls.
1615     SmallVector<DevirtCallSite, 1> DevirtCalls;
1616     SmallVector<CallInst *, 1> Assumes;
1617     auto &DT = LookupDomTree(*CI->getFunction());
1618     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1619 
1620     // If we found any, add them to CallSlots.
1621     if (!Assumes.empty()) {
1622       Metadata *TypeId =
1623           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1624       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1625       for (DevirtCallSite Call : DevirtCalls) {
1626         // Only add this CallSite if we haven't seen it before. The vtable
1627         // pointer may have been CSE'd with pointers from other call sites,
1628         // and we don't want to process call sites multiple times. We can't
1629         // just skip the vtable Ptr if it has been seen before, however, since
1630         // it may be shared by type tests that dominate different calls.
1631         if (SeenCallSites.insert(Call.CS).second)
1632           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1633       }
1634     }
1635 
1636     // We no longer need the assumes or the type test.
1637     for (auto Assume : Assumes)
1638       Assume->eraseFromParent();
1639     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1640     // may use the vtable argument later.
1641     if (CI->use_empty())
1642       CI->eraseFromParent();
1643   }
1644 }
1645 
1646 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1647   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1648 
1649   for (auto I = TypeCheckedLoadFunc->use_begin(),
1650             E = TypeCheckedLoadFunc->use_end();
1651        I != E;) {
1652     auto CI = dyn_cast<CallInst>(I->getUser());
1653     ++I;
1654     if (!CI)
1655       continue;
1656 
1657     Value *Ptr = CI->getArgOperand(0);
1658     Value *Offset = CI->getArgOperand(1);
1659     Value *TypeIdValue = CI->getArgOperand(2);
1660     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1661 
1662     SmallVector<DevirtCallSite, 1> DevirtCalls;
1663     SmallVector<Instruction *, 1> LoadedPtrs;
1664     SmallVector<Instruction *, 1> Preds;
1665     bool HasNonCallUses = false;
1666     auto &DT = LookupDomTree(*CI->getFunction());
1667     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1668                                                HasNonCallUses, CI, DT);
1669 
1670     // Start by generating "pessimistic" code that explicitly loads the function
1671     // pointer from the vtable and performs the type check. If possible, we will
1672     // eliminate the load and the type check later.
1673 
1674     // If possible, only generate the load at the point where it is used.
1675     // This helps avoid unnecessary spills.
1676     IRBuilder<> LoadB(
1677         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1678     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1679     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1680     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1681 
1682     for (Instruction *LoadedPtr : LoadedPtrs) {
1683       LoadedPtr->replaceAllUsesWith(LoadedValue);
1684       LoadedPtr->eraseFromParent();
1685     }
1686 
1687     // Likewise for the type test.
1688     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1689     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1690 
1691     for (Instruction *Pred : Preds) {
1692       Pred->replaceAllUsesWith(TypeTestCall);
1693       Pred->eraseFromParent();
1694     }
1695 
1696     // We have already erased any extractvalue instructions that refer to the
1697     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1698     // (although this is unlikely). In that case, explicitly build a pair and
1699     // RAUW it.
1700     if (!CI->use_empty()) {
1701       Value *Pair = UndefValue::get(CI->getType());
1702       IRBuilder<> B(CI);
1703       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1704       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1705       CI->replaceAllUsesWith(Pair);
1706     }
1707 
1708     // The number of unsafe uses is initially the number of uses.
1709     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1710     NumUnsafeUses = DevirtCalls.size();
1711 
1712     // If the function pointer has a non-call user, we cannot eliminate the type
1713     // check, as one of those users may eventually call the pointer. Increment
1714     // the unsafe use count to make sure it cannot reach zero.
1715     if (HasNonCallUses)
1716       ++NumUnsafeUses;
1717     for (DevirtCallSite Call : DevirtCalls) {
1718       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1719                                                    &NumUnsafeUses);
1720     }
1721 
1722     CI->eraseFromParent();
1723   }
1724 }
1725 
1726 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1727   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1728   if (!TypeId)
1729     return;
1730   const TypeIdSummary *TidSummary =
1731       ImportSummary->getTypeIdSummary(TypeId->getString());
1732   if (!TidSummary)
1733     return;
1734   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1735   if (ResI == TidSummary->WPDRes.end())
1736     return;
1737   const WholeProgramDevirtResolution &Res = ResI->second;
1738 
1739   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1740     assert(!Res.SingleImplName.empty());
1741     // The type of the function in the declaration is irrelevant because every
1742     // call site will cast it to the correct type.
1743     Constant *SingleImpl =
1744         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1745                                              Type::getVoidTy(M.getContext()))
1746                            .getCallee());
1747 
1748     // This is the import phase so we should not be exporting anything.
1749     bool IsExported = false;
1750     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1751     assert(!IsExported);
1752   }
1753 
1754   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1755     auto I = Res.ResByArg.find(CSByConstantArg.first);
1756     if (I == Res.ResByArg.end())
1757       continue;
1758     auto &ResByArg = I->second;
1759     // FIXME: We should figure out what to do about the "function name" argument
1760     // to the apply* functions, as the function names are unavailable during the
1761     // importing phase. For now we just pass the empty string. This does not
1762     // impact correctness because the function names are just used for remarks.
1763     switch (ResByArg.TheKind) {
1764     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1765       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1766       break;
1767     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1768       Constant *UniqueMemberAddr =
1769           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1770       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1771                            UniqueMemberAddr);
1772       break;
1773     }
1774     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1775       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1776                                       Int32Ty, ResByArg.Byte);
1777       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1778                                      ResByArg.Bit);
1779       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1780       break;
1781     }
1782     default:
1783       break;
1784     }
1785   }
1786 
1787   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1788     // The type of the function is irrelevant, because it's bitcast at calls
1789     // anyhow.
1790     Constant *JT = cast<Constant>(
1791         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1792                               Type::getVoidTy(M.getContext()))
1793             .getCallee());
1794     bool IsExported = false;
1795     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1796     assert(!IsExported);
1797   }
1798 }
1799 
1800 void DevirtModule::removeRedundantTypeTests() {
1801   auto True = ConstantInt::getTrue(M.getContext());
1802   for (auto &&U : NumUnsafeUsesForTypeTest) {
1803     if (U.second == 0) {
1804       U.first->replaceAllUsesWith(True);
1805       U.first->eraseFromParent();
1806     }
1807   }
1808 }
1809 
1810 bool DevirtModule::run() {
1811   // If only some of the modules were split, we cannot correctly perform
1812   // this transformation. We already checked for the presense of type tests
1813   // with partially split modules during the thin link, and would have emitted
1814   // an error if any were found, so here we can simply return.
1815   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1816       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1817     return false;
1818 
1819   Function *TypeTestFunc =
1820       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1821   Function *TypeCheckedLoadFunc =
1822       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1823   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1824 
1825   // Normally if there are no users of the devirtualization intrinsics in the
1826   // module, this pass has nothing to do. But if we are exporting, we also need
1827   // to handle any users that appear only in the function summaries.
1828   if (!ExportSummary &&
1829       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1830        AssumeFunc->use_empty()) &&
1831       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1832     return false;
1833 
1834   if (TypeTestFunc && AssumeFunc)
1835     scanTypeTestUsers(TypeTestFunc);
1836 
1837   if (TypeCheckedLoadFunc)
1838     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1839 
1840   if (ImportSummary) {
1841     for (auto &S : CallSlots)
1842       importResolution(S.first, S.second);
1843 
1844     removeRedundantTypeTests();
1845 
1846     // The rest of the code is only necessary when exporting or during regular
1847     // LTO, so we are done.
1848     return true;
1849   }
1850 
1851   // Rebuild type metadata into a map for easy lookup.
1852   std::vector<VTableBits> Bits;
1853   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1854   buildTypeIdentifierMap(Bits, TypeIdMap);
1855   if (TypeIdMap.empty())
1856     return true;
1857 
1858   // Collect information from summary about which calls to try to devirtualize.
1859   if (ExportSummary) {
1860     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1861     for (auto &P : TypeIdMap) {
1862       if (auto *TypeId = dyn_cast<MDString>(P.first))
1863         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1864             TypeId);
1865     }
1866 
1867     for (auto &P : *ExportSummary) {
1868       for (auto &S : P.second.SummaryList) {
1869         auto *FS = dyn_cast<FunctionSummary>(S.get());
1870         if (!FS)
1871           continue;
1872         // FIXME: Only add live functions.
1873         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1874           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1875             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1876           }
1877         }
1878         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1879           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1880             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1881           }
1882         }
1883         for (const FunctionSummary::ConstVCall &VC :
1884              FS->type_test_assume_const_vcalls()) {
1885           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1886             CallSlots[{MD, VC.VFunc.Offset}]
1887                 .ConstCSInfo[VC.Args]
1888                 .addSummaryTypeTestAssumeUser(FS);
1889           }
1890         }
1891         for (const FunctionSummary::ConstVCall &VC :
1892              FS->type_checked_load_const_vcalls()) {
1893           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1894             CallSlots[{MD, VC.VFunc.Offset}]
1895                 .ConstCSInfo[VC.Args]
1896                 .addSummaryTypeCheckedLoadUser(FS);
1897           }
1898         }
1899       }
1900     }
1901   }
1902 
1903   // For each (type, offset) pair:
1904   bool DidVirtualConstProp = false;
1905   std::map<std::string, Function*> DevirtTargets;
1906   for (auto &S : CallSlots) {
1907     // Search each of the members of the type identifier for the virtual
1908     // function implementation at offset S.first.ByteOffset, and add to
1909     // TargetsForSlot.
1910     std::vector<VirtualCallTarget> TargetsForSlot;
1911     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1912                                   S.first.ByteOffset)) {
1913       WholeProgramDevirtResolution *Res = nullptr;
1914       if (ExportSummary && isa<MDString>(S.first.TypeID))
1915         Res = &ExportSummary
1916                    ->getOrInsertTypeIdSummary(
1917                        cast<MDString>(S.first.TypeID)->getString())
1918                    .WPDRes[S.first.ByteOffset];
1919 
1920       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
1921         DidVirtualConstProp |=
1922             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1923 
1924         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1925       }
1926 
1927       // Collect functions devirtualized at least for one call site for stats.
1928       if (RemarksEnabled)
1929         for (const auto &T : TargetsForSlot)
1930           if (T.WasDevirt)
1931             DevirtTargets[T.Fn->getName()] = T.Fn;
1932     }
1933 
1934     // CFI-specific: if we are exporting and any llvm.type.checked.load
1935     // intrinsics were *not* devirtualized, we need to add the resulting
1936     // llvm.type.test intrinsics to the function summaries so that the
1937     // LowerTypeTests pass will export them.
1938     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1939       auto GUID =
1940           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1941       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1942         FS->addTypeTest(GUID);
1943       for (auto &CCS : S.second.ConstCSInfo)
1944         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1945           FS->addTypeTest(GUID);
1946     }
1947   }
1948 
1949   if (RemarksEnabled) {
1950     // Generate remarks for each devirtualized function.
1951     for (const auto &DT : DevirtTargets) {
1952       Function *F = DT.second;
1953 
1954       using namespace ore;
1955       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1956                         << "devirtualized "
1957                         << NV("FunctionName", DT.first));
1958     }
1959   }
1960 
1961   removeRedundantTypeTests();
1962 
1963   // Rebuild each global we touched as part of virtual constant propagation to
1964   // include the before and after bytes.
1965   if (DidVirtualConstProp)
1966     for (VTableBits &B : Bits)
1967       rebuildGlobal(B);
1968 
1969   // We have lowered or deleted the type checked load intrinsics, so we no
1970   // longer have enough information to reason about the liveness of virtual
1971   // function pointers in GlobalDCE.
1972   for (GlobalVariable &GV : M.globals())
1973     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1974 
1975   return true;
1976 }
1977 
1978 void DevirtIndex::run() {
1979   if (ExportSummary.typeIdCompatibleVtableMap().empty())
1980     return;
1981 
1982   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1983   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1984     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1985   }
1986 
1987   // Collect information from summary about which calls to try to devirtualize.
1988   for (auto &P : ExportSummary) {
1989     for (auto &S : P.second.SummaryList) {
1990       auto *FS = dyn_cast<FunctionSummary>(S.get());
1991       if (!FS)
1992         continue;
1993       // FIXME: Only add live functions.
1994       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1995         for (StringRef Name : NameByGUID[VF.GUID]) {
1996           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1997         }
1998       }
1999       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2000         for (StringRef Name : NameByGUID[VF.GUID]) {
2001           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2002         }
2003       }
2004       for (const FunctionSummary::ConstVCall &VC :
2005            FS->type_test_assume_const_vcalls()) {
2006         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2007           CallSlots[{Name, VC.VFunc.Offset}]
2008               .ConstCSInfo[VC.Args]
2009               .addSummaryTypeTestAssumeUser(FS);
2010         }
2011       }
2012       for (const FunctionSummary::ConstVCall &VC :
2013            FS->type_checked_load_const_vcalls()) {
2014         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2015           CallSlots[{Name, VC.VFunc.Offset}]
2016               .ConstCSInfo[VC.Args]
2017               .addSummaryTypeCheckedLoadUser(FS);
2018         }
2019       }
2020     }
2021   }
2022 
2023   std::set<ValueInfo> DevirtTargets;
2024   // For each (type, offset) pair:
2025   for (auto &S : CallSlots) {
2026     // Search each of the members of the type identifier for the virtual
2027     // function implementation at offset S.first.ByteOffset, and add to
2028     // TargetsForSlot.
2029     std::vector<ValueInfo> TargetsForSlot;
2030     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2031     assert(TidSummary);
2032     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2033                                   S.first.ByteOffset)) {
2034       WholeProgramDevirtResolution *Res =
2035           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2036                .WPDRes[S.first.ByteOffset];
2037 
2038       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2039                                DevirtTargets))
2040         continue;
2041     }
2042   }
2043 
2044   // Optionally have the thin link print message for each devirtualized
2045   // function.
2046   if (PrintSummaryDevirt)
2047     for (const auto &DT : DevirtTargets)
2048       errs() << "Devirtualized call to " << DT << "\n";
2049 
2050   return;
2051 }
2052