1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via !type metadata) that the list of callees is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 // This pass is intended to be used during the regular and thin LTO pipelines.
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
33 // ThinLTO, the pass operates in two phases:
34 // - Export phase: this is run during the thin link over a single merged module
35 //   that contains all vtables with !type metadata that participate in the link.
36 //   The pass computes a resolution for each virtual call and stores it in the
37 //   type identifier summary.
38 // - Import phase: this is run during the thin backends over the individual
39 //   modules. The pass applies the resolutions previously computed during the
40 //   import phase to each eligible virtual call.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseMapInfo.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/iterator_range.h"
52 #include "llvm/Analysis/AliasAnalysis.h"
53 #include "llvm/Analysis/BasicAliasAnalysis.h"
54 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
55 #include "llvm/Analysis/TypeMetadataUtils.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugLoc.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalAlias.h"
63 #include "llvm/IR/GlobalVariable.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/LLVMContext.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ModuleSummaryIndexYAML.h"
73 #include "llvm/Pass.h"
74 #include "llvm/PassRegistry.h"
75 #include "llvm/PassSupport.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Error.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Transforms/IPO.h"
81 #include "llvm/Transforms/IPO/FunctionAttrs.h"
82 #include "llvm/Transforms/Utils/Evaluator.h"
83 #include <algorithm>
84 #include <cstddef>
85 #include <map>
86 #include <set>
87 #include <string>
88 
89 using namespace llvm;
90 using namespace wholeprogramdevirt;
91 
92 #define DEBUG_TYPE "wholeprogramdevirt"
93 
94 static cl::opt<PassSummaryAction> ClSummaryAction(
95     "wholeprogramdevirt-summary-action",
96     cl::desc("What to do with the summary when running this pass"),
97     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
98                clEnumValN(PassSummaryAction::Import, "import",
99                           "Import typeid resolutions from summary and globals"),
100                clEnumValN(PassSummaryAction::Export, "export",
101                           "Export typeid resolutions to summary and globals")),
102     cl::Hidden);
103 
104 static cl::opt<std::string> ClReadSummary(
105     "wholeprogramdevirt-read-summary",
106     cl::desc("Read summary from given YAML file before running pass"),
107     cl::Hidden);
108 
109 static cl::opt<std::string> ClWriteSummary(
110     "wholeprogramdevirt-write-summary",
111     cl::desc("Write summary to given YAML file after running pass"),
112     cl::Hidden);
113 
114 static cl::opt<unsigned>
115     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
116                 cl::init(10), cl::ZeroOrMore,
117                 cl::desc("Maximum number of call targets per "
118                          "call site to enable branch funnels"));
119 
120 // Find the minimum offset that we may store a value of size Size bits at. If
121 // IsAfter is set, look for an offset before the object, otherwise look for an
122 // offset after the object.
123 uint64_t
124 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
125                                      bool IsAfter, uint64_t Size) {
126   // Find a minimum offset taking into account only vtable sizes.
127   uint64_t MinByte = 0;
128   for (const VirtualCallTarget &Target : Targets) {
129     if (IsAfter)
130       MinByte = std::max(MinByte, Target.minAfterBytes());
131     else
132       MinByte = std::max(MinByte, Target.minBeforeBytes());
133   }
134 
135   // Build a vector of arrays of bytes covering, for each target, a slice of the
136   // used region (see AccumBitVector::BytesUsed in
137   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
138   // this aligns the used regions to start at MinByte.
139   //
140   // In this example, A, B and C are vtables, # is a byte already allocated for
141   // a virtual function pointer, AAAA... (etc.) are the used regions for the
142   // vtables and Offset(X) is the value computed for the Offset variable below
143   // for X.
144   //
145   //                    Offset(A)
146   //                    |       |
147   //                            |MinByte
148   // A: ################AAAAAAAA|AAAAAAAA
149   // B: ########BBBBBBBBBBBBBBBB|BBBB
150   // C: ########################|CCCCCCCCCCCCCCCC
151   //            |   Offset(B)   |
152   //
153   // This code produces the slices of A, B and C that appear after the divider
154   // at MinByte.
155   std::vector<ArrayRef<uint8_t>> Used;
156   for (const VirtualCallTarget &Target : Targets) {
157     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
158                                        : Target.TM->Bits->Before.BytesUsed;
159     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
160                               : MinByte - Target.minBeforeBytes();
161 
162     // Disregard used regions that are smaller than Offset. These are
163     // effectively all-free regions that do not need to be checked.
164     if (VTUsed.size() > Offset)
165       Used.push_back(VTUsed.slice(Offset));
166   }
167 
168   if (Size == 1) {
169     // Find a free bit in each member of Used.
170     for (unsigned I = 0;; ++I) {
171       uint8_t BitsUsed = 0;
172       for (auto &&B : Used)
173         if (I < B.size())
174           BitsUsed |= B[I];
175       if (BitsUsed != 0xff)
176         return (MinByte + I) * 8 +
177                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
178     }
179   } else {
180     // Find a free (Size/8) byte region in each member of Used.
181     // FIXME: see if alignment helps.
182     for (unsigned I = 0;; ++I) {
183       for (auto &&B : Used) {
184         unsigned Byte = 0;
185         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
186           if (B[I + Byte])
187             goto NextI;
188           ++Byte;
189         }
190       }
191       return (MinByte + I) * 8;
192     NextI:;
193     }
194   }
195 }
196 
197 void wholeprogramdevirt::setBeforeReturnValues(
198     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
199     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
200   if (BitWidth == 1)
201     OffsetByte = -(AllocBefore / 8 + 1);
202   else
203     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
204   OffsetBit = AllocBefore % 8;
205 
206   for (VirtualCallTarget &Target : Targets) {
207     if (BitWidth == 1)
208       Target.setBeforeBit(AllocBefore);
209     else
210       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
211   }
212 }
213 
214 void wholeprogramdevirt::setAfterReturnValues(
215     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
216     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217   if (BitWidth == 1)
218     OffsetByte = AllocAfter / 8;
219   else
220     OffsetByte = (AllocAfter + 7) / 8;
221   OffsetBit = AllocAfter % 8;
222 
223   for (VirtualCallTarget &Target : Targets) {
224     if (BitWidth == 1)
225       Target.setAfterBit(AllocAfter);
226     else
227       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
228   }
229 }
230 
231 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
232     : Fn(Fn), TM(TM),
233       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
234 
235 namespace {
236 
237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
238 // tables, and the ByteOffset is the offset in bytes from the address point to
239 // the virtual function pointer.
240 struct VTableSlot {
241   Metadata *TypeID;
242   uint64_t ByteOffset;
243 };
244 
245 } // end anonymous namespace
246 
247 namespace llvm {
248 
249 template <> struct DenseMapInfo<VTableSlot> {
250   static VTableSlot getEmptyKey() {
251     return {DenseMapInfo<Metadata *>::getEmptyKey(),
252             DenseMapInfo<uint64_t>::getEmptyKey()};
253   }
254   static VTableSlot getTombstoneKey() {
255     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
256             DenseMapInfo<uint64_t>::getTombstoneKey()};
257   }
258   static unsigned getHashValue(const VTableSlot &I) {
259     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
260            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
261   }
262   static bool isEqual(const VTableSlot &LHS,
263                       const VTableSlot &RHS) {
264     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
265   }
266 };
267 
268 } // end namespace llvm
269 
270 namespace {
271 
272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
273 // the indirect virtual call.
274 struct VirtualCallSite {
275   Value *VTable;
276   CallSite CS;
277 
278   // If non-null, this field points to the associated unsafe use count stored in
279   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
280   // of that field for details.
281   unsigned *NumUnsafeUses;
282 
283   void
284   emitRemark(const StringRef OptName, const StringRef TargetName,
285              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
286     Function *F = CS.getCaller();
287     DebugLoc DLoc = CS->getDebugLoc();
288     BasicBlock *Block = CS.getParent();
289 
290     using namespace ore;
291     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
292                       << NV("Optimization", OptName)
293                       << ": devirtualized a call to "
294                       << NV("FunctionName", TargetName));
295   }
296 
297   void replaceAndErase(
298       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
299       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
300       Value *New) {
301     if (RemarksEnabled)
302       emitRemark(OptName, TargetName, OREGetter);
303     CS->replaceAllUsesWith(New);
304     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
305       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
306       II->getUnwindDest()->removePredecessor(II->getParent());
307     }
308     CS->eraseFromParent();
309     // This use is no longer unsafe.
310     if (NumUnsafeUses)
311       --*NumUnsafeUses;
312   }
313 };
314 
315 // Call site information collected for a specific VTableSlot and possibly a list
316 // of constant integer arguments. The grouping by arguments is handled by the
317 // VTableSlotInfo class.
318 struct CallSiteInfo {
319   /// The set of call sites for this slot. Used during regular LTO and the
320   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
321   /// call sites that appear in the merged module itself); in each of these
322   /// cases we are directly operating on the call sites at the IR level.
323   std::vector<VirtualCallSite> CallSites;
324 
325   /// Whether all call sites represented by this CallSiteInfo, including those
326   /// in summaries, have been devirtualized. This starts off as true because a
327   /// default constructed CallSiteInfo represents no call sites.
328   bool AllCallSitesDevirted = true;
329 
330   // These fields are used during the export phase of ThinLTO and reflect
331   // information collected from function summaries.
332 
333   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
334   /// this slot.
335   bool SummaryHasTypeTestAssumeUsers = false;
336 
337   /// CFI-specific: a vector containing the list of function summaries that use
338   /// the llvm.type.checked.load intrinsic and therefore will require
339   /// resolutions for llvm.type.test in order to implement CFI checks if
340   /// devirtualization was unsuccessful. If devirtualization was successful, the
341   /// pass will clear this vector by calling markDevirt(). If at the end of the
342   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
343   /// to each of the function summaries in the vector.
344   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
345 
346   bool isExported() const {
347     return SummaryHasTypeTestAssumeUsers ||
348            !SummaryTypeCheckedLoadUsers.empty();
349   }
350 
351   void markSummaryHasTypeTestAssumeUsers() {
352     SummaryHasTypeTestAssumeUsers = true;
353     AllCallSitesDevirted = false;
354   }
355 
356   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
357     SummaryTypeCheckedLoadUsers.push_back(FS);
358     AllCallSitesDevirted = false;
359   }
360 
361   void markDevirt() {
362     AllCallSitesDevirted = true;
363 
364     // As explained in the comment for SummaryTypeCheckedLoadUsers.
365     SummaryTypeCheckedLoadUsers.clear();
366   }
367 };
368 
369 // Call site information collected for a specific VTableSlot.
370 struct VTableSlotInfo {
371   // The set of call sites which do not have all constant integer arguments
372   // (excluding "this").
373   CallSiteInfo CSInfo;
374 
375   // The set of call sites with all constant integer arguments (excluding
376   // "this"), grouped by argument list.
377   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
378 
379   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
380 
381 private:
382   CallSiteInfo &findCallSiteInfo(CallSite CS);
383 };
384 
385 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
386   std::vector<uint64_t> Args;
387   auto *CI = dyn_cast<IntegerType>(CS.getType());
388   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
389     return CSInfo;
390   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
391     auto *CI = dyn_cast<ConstantInt>(Arg);
392     if (!CI || CI->getBitWidth() > 64)
393       return CSInfo;
394     Args.push_back(CI->getZExtValue());
395   }
396   return ConstCSInfo[Args];
397 }
398 
399 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
400                                  unsigned *NumUnsafeUses) {
401   auto &CSI = findCallSiteInfo(CS);
402   CSI.AllCallSitesDevirted = false;
403   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
404 }
405 
406 struct DevirtModule {
407   Module &M;
408   function_ref<AAResults &(Function &)> AARGetter;
409 
410   ModuleSummaryIndex *ExportSummary;
411   const ModuleSummaryIndex *ImportSummary;
412 
413   IntegerType *Int8Ty;
414   PointerType *Int8PtrTy;
415   IntegerType *Int32Ty;
416   IntegerType *Int64Ty;
417   IntegerType *IntPtrTy;
418 
419   bool RemarksEnabled;
420   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
421 
422   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
423 
424   // This map keeps track of the number of "unsafe" uses of a loaded function
425   // pointer. The key is the associated llvm.type.test intrinsic call generated
426   // by this pass. An unsafe use is one that calls the loaded function pointer
427   // directly. Every time we eliminate an unsafe use (for example, by
428   // devirtualizing it or by applying virtual constant propagation), we
429   // decrement the value stored in this map. If a value reaches zero, we can
430   // eliminate the type check by RAUWing the associated llvm.type.test call with
431   // true.
432   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
433 
434   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
435                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
436                ModuleSummaryIndex *ExportSummary,
437                const ModuleSummaryIndex *ImportSummary)
438       : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary),
439         ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())),
440         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
441         Int32Ty(Type::getInt32Ty(M.getContext())),
442         Int64Ty(Type::getInt64Ty(M.getContext())),
443         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
444         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
445     assert(!(ExportSummary && ImportSummary));
446   }
447 
448   bool areRemarksEnabled();
449 
450   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
451   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
452 
453   void buildTypeIdentifierMap(
454       std::vector<VTableBits> &Bits,
455       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
456   Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
457   bool
458   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
459                             const std::set<TypeMemberInfo> &TypeMemberInfos,
460                             uint64_t ByteOffset);
461 
462   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
463                              bool &IsExported);
464   bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
465                            VTableSlotInfo &SlotInfo,
466                            WholeProgramDevirtResolution *Res);
467 
468   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
469                               bool &IsExported);
470   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
471                             VTableSlotInfo &SlotInfo,
472                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
473 
474   bool tryEvaluateFunctionsWithArgs(
475       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
476       ArrayRef<uint64_t> Args);
477 
478   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
479                              uint64_t TheRetVal);
480   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
481                            CallSiteInfo &CSInfo,
482                            WholeProgramDevirtResolution::ByArg *Res);
483 
484   // Returns the global symbol name that is used to export information about the
485   // given vtable slot and list of arguments.
486   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
487                             StringRef Name);
488 
489   bool shouldExportConstantsAsAbsoluteSymbols();
490 
491   // This function is called during the export phase to create a symbol
492   // definition containing information about the given vtable slot and list of
493   // arguments.
494   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
495                     Constant *C);
496   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
497                       uint32_t Const, uint32_t &Storage);
498 
499   // This function is called during the import phase to create a reference to
500   // the symbol definition created during the export phase.
501   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
502                          StringRef Name);
503   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
504                            StringRef Name, IntegerType *IntTy,
505                            uint32_t Storage);
506 
507   Constant *getMemberAddr(const TypeMemberInfo *M);
508 
509   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
510                             Constant *UniqueMemberAddr);
511   bool tryUniqueRetValOpt(unsigned BitWidth,
512                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
513                           CallSiteInfo &CSInfo,
514                           WholeProgramDevirtResolution::ByArg *Res,
515                           VTableSlot Slot, ArrayRef<uint64_t> Args);
516 
517   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
518                              Constant *Byte, Constant *Bit);
519   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
520                            VTableSlotInfo &SlotInfo,
521                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
522 
523   void rebuildGlobal(VTableBits &B);
524 
525   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
526   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
527 
528   // If we were able to eliminate all unsafe uses for a type checked load,
529   // eliminate the associated type tests by replacing them with true.
530   void removeRedundantTypeTests();
531 
532   bool run();
533 
534   // Lower the module using the action and summary passed as command line
535   // arguments. For testing purposes only.
536   static bool runForTesting(
537       Module &M, function_ref<AAResults &(Function &)> AARGetter,
538       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
539 };
540 
541 struct WholeProgramDevirt : public ModulePass {
542   static char ID;
543 
544   bool UseCommandLine = false;
545 
546   ModuleSummaryIndex *ExportSummary;
547   const ModuleSummaryIndex *ImportSummary;
548 
549   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
550     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
551   }
552 
553   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
554                      const ModuleSummaryIndex *ImportSummary)
555       : ModulePass(ID), ExportSummary(ExportSummary),
556         ImportSummary(ImportSummary) {
557     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
558   }
559 
560   bool runOnModule(Module &M) override {
561     if (skipModule(M))
562       return false;
563 
564     // In the new pass manager, we can request the optimization
565     // remark emitter pass on a per-function-basis, which the
566     // OREGetter will do for us.
567     // In the old pass manager, this is harder, so we just build
568     // an optimization remark emitter on the fly, when we need it.
569     std::unique_ptr<OptimizationRemarkEmitter> ORE;
570     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
571       ORE = make_unique<OptimizationRemarkEmitter>(F);
572       return *ORE;
573     };
574 
575     if (UseCommandLine)
576       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter);
577 
578     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary,
579                         ImportSummary)
580         .run();
581   }
582 
583   void getAnalysisUsage(AnalysisUsage &AU) const override {
584     AU.addRequired<AssumptionCacheTracker>();
585     AU.addRequired<TargetLibraryInfoWrapperPass>();
586   }
587 };
588 
589 } // end anonymous namespace
590 
591 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
592                       "Whole program devirtualization", false, false)
593 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
594 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
595 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
596                     "Whole program devirtualization", false, false)
597 char WholeProgramDevirt::ID = 0;
598 
599 ModulePass *
600 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
601                                    const ModuleSummaryIndex *ImportSummary) {
602   return new WholeProgramDevirt(ExportSummary, ImportSummary);
603 }
604 
605 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
606                                               ModuleAnalysisManager &AM) {
607   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
608   auto AARGetter = [&](Function &F) -> AAResults & {
609     return FAM.getResult<AAManager>(F);
610   };
611   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
612     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
613   };
614   if (!DevirtModule(M, AARGetter, OREGetter, ExportSummary, ImportSummary)
615            .run())
616     return PreservedAnalyses::all();
617   return PreservedAnalyses::none();
618 }
619 
620 bool DevirtModule::runForTesting(
621     Module &M, function_ref<AAResults &(Function &)> AARGetter,
622     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
623   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
624 
625   // Handle the command-line summary arguments. This code is for testing
626   // purposes only, so we handle errors directly.
627   if (!ClReadSummary.empty()) {
628     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
629                           ": ");
630     auto ReadSummaryFile =
631         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
632 
633     yaml::Input In(ReadSummaryFile->getBuffer());
634     In >> Summary;
635     ExitOnErr(errorCodeToError(In.error()));
636   }
637 
638   bool Changed =
639       DevirtModule(
640           M, AARGetter, OREGetter,
641           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
642           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
643           .run();
644 
645   if (!ClWriteSummary.empty()) {
646     ExitOnError ExitOnErr(
647         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
648     std::error_code EC;
649     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
650     ExitOnErr(errorCodeToError(EC));
651 
652     yaml::Output Out(OS);
653     Out << Summary;
654   }
655 
656   return Changed;
657 }
658 
659 void DevirtModule::buildTypeIdentifierMap(
660     std::vector<VTableBits> &Bits,
661     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
662   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
663   Bits.reserve(M.getGlobalList().size());
664   SmallVector<MDNode *, 2> Types;
665   for (GlobalVariable &GV : M.globals()) {
666     Types.clear();
667     GV.getMetadata(LLVMContext::MD_type, Types);
668     if (GV.isDeclaration() || Types.empty())
669       continue;
670 
671     VTableBits *&BitsPtr = GVToBits[&GV];
672     if (!BitsPtr) {
673       Bits.emplace_back();
674       Bits.back().GV = &GV;
675       Bits.back().ObjectSize =
676           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
677       BitsPtr = &Bits.back();
678     }
679 
680     for (MDNode *Type : Types) {
681       auto TypeID = Type->getOperand(1).get();
682 
683       uint64_t Offset =
684           cast<ConstantInt>(
685               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
686               ->getZExtValue();
687 
688       TypeIdMap[TypeID].insert({BitsPtr, Offset});
689     }
690   }
691 }
692 
693 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
694   if (I->getType()->isPointerTy()) {
695     if (Offset == 0)
696       return I;
697     return nullptr;
698   }
699 
700   const DataLayout &DL = M.getDataLayout();
701 
702   if (auto *C = dyn_cast<ConstantStruct>(I)) {
703     const StructLayout *SL = DL.getStructLayout(C->getType());
704     if (Offset >= SL->getSizeInBytes())
705       return nullptr;
706 
707     unsigned Op = SL->getElementContainingOffset(Offset);
708     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
709                               Offset - SL->getElementOffset(Op));
710   }
711   if (auto *C = dyn_cast<ConstantArray>(I)) {
712     ArrayType *VTableTy = C->getType();
713     uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
714 
715     unsigned Op = Offset / ElemSize;
716     if (Op >= C->getNumOperands())
717       return nullptr;
718 
719     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
720                               Offset % ElemSize);
721   }
722   return nullptr;
723 }
724 
725 bool DevirtModule::tryFindVirtualCallTargets(
726     std::vector<VirtualCallTarget> &TargetsForSlot,
727     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
728   for (const TypeMemberInfo &TM : TypeMemberInfos) {
729     if (!TM.Bits->GV->isConstant())
730       return false;
731 
732     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
733                                        TM.Offset + ByteOffset);
734     if (!Ptr)
735       return false;
736 
737     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
738     if (!Fn)
739       return false;
740 
741     // We can disregard __cxa_pure_virtual as a possible call target, as
742     // calls to pure virtuals are UB.
743     if (Fn->getName() == "__cxa_pure_virtual")
744       continue;
745 
746     TargetsForSlot.push_back({Fn, &TM});
747   }
748 
749   // Give up if we couldn't find any targets.
750   return !TargetsForSlot.empty();
751 }
752 
753 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
754                                          Constant *TheFn, bool &IsExported) {
755   auto Apply = [&](CallSiteInfo &CSInfo) {
756     for (auto &&VCallSite : CSInfo.CallSites) {
757       if (RemarksEnabled)
758         VCallSite.emitRemark("single-impl",
759                              TheFn->stripPointerCasts()->getName(), OREGetter);
760       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
761           TheFn, VCallSite.CS.getCalledValue()->getType()));
762       // This use is no longer unsafe.
763       if (VCallSite.NumUnsafeUses)
764         --*VCallSite.NumUnsafeUses;
765     }
766     if (CSInfo.isExported())
767       IsExported = true;
768     CSInfo.markDevirt();
769   };
770   Apply(SlotInfo.CSInfo);
771   for (auto &P : SlotInfo.ConstCSInfo)
772     Apply(P.second);
773 }
774 
775 bool DevirtModule::trySingleImplDevirt(
776     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
777     VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
778   // See if the program contains a single implementation of this virtual
779   // function.
780   Function *TheFn = TargetsForSlot[0].Fn;
781   for (auto &&Target : TargetsForSlot)
782     if (TheFn != Target.Fn)
783       return false;
784 
785   // If so, update each call site to call that implementation directly.
786   if (RemarksEnabled)
787     TargetsForSlot[0].WasDevirt = true;
788 
789   bool IsExported = false;
790   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
791   if (!IsExported)
792     return false;
793 
794   // If the only implementation has local linkage, we must promote to external
795   // to make it visible to thin LTO objects. We can only get here during the
796   // ThinLTO export phase.
797   if (TheFn->hasLocalLinkage()) {
798     std::string NewName = (TheFn->getName() + "$merged").str();
799 
800     // Since we are renaming the function, any comdats with the same name must
801     // also be renamed. This is required when targeting COFF, as the comdat name
802     // must match one of the names of the symbols in the comdat.
803     if (Comdat *C = TheFn->getComdat()) {
804       if (C->getName() == TheFn->getName()) {
805         Comdat *NewC = M.getOrInsertComdat(NewName);
806         NewC->setSelectionKind(C->getSelectionKind());
807         for (GlobalObject &GO : M.global_objects())
808           if (GO.getComdat() == C)
809             GO.setComdat(NewC);
810       }
811     }
812 
813     TheFn->setLinkage(GlobalValue::ExternalLinkage);
814     TheFn->setVisibility(GlobalValue::HiddenVisibility);
815     TheFn->setName(NewName);
816   }
817 
818   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
819   Res->SingleImplName = TheFn->getName();
820 
821   return true;
822 }
823 
824 void DevirtModule::tryICallBranchFunnel(
825     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
826     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
827   Triple T(M.getTargetTriple());
828   if (T.getArch() != Triple::x86_64)
829     return;
830 
831   if (TargetsForSlot.size() > ClThreshold)
832     return;
833 
834   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
835   if (!HasNonDevirt)
836     for (auto &P : SlotInfo.ConstCSInfo)
837       if (!P.second.AllCallSitesDevirted) {
838         HasNonDevirt = true;
839         break;
840       }
841 
842   if (!HasNonDevirt)
843     return;
844 
845   FunctionType *FT =
846       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
847   Function *JT;
848   if (isa<MDString>(Slot.TypeID)) {
849     JT = Function::Create(FT, Function::ExternalLinkage,
850                           getGlobalName(Slot, {}, "branch_funnel"), &M);
851     JT->setVisibility(GlobalValue::HiddenVisibility);
852   } else {
853     JT = Function::Create(FT, Function::InternalLinkage, "branch_funnel", &M);
854   }
855   JT->addAttribute(1, Attribute::Nest);
856 
857   std::vector<Value *> JTArgs;
858   JTArgs.push_back(JT->arg_begin());
859   for (auto &T : TargetsForSlot) {
860     JTArgs.push_back(getMemberAddr(T.TM));
861     JTArgs.push_back(T.Fn);
862   }
863 
864   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
865   Constant *Intr =
866       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
867 
868   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
869   CI->setTailCallKind(CallInst::TCK_MustTail);
870   ReturnInst::Create(M.getContext(), nullptr, BB);
871 
872   bool IsExported = false;
873   applyICallBranchFunnel(SlotInfo, JT, IsExported);
874   if (IsExported)
875     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
876 }
877 
878 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
879                                           Constant *JT, bool &IsExported) {
880   auto Apply = [&](CallSiteInfo &CSInfo) {
881     if (CSInfo.isExported())
882       IsExported = true;
883     if (CSInfo.AllCallSitesDevirted)
884       return;
885     for (auto &&VCallSite : CSInfo.CallSites) {
886       CallSite CS = VCallSite.CS;
887 
888       // Jump tables are only profitable if the retpoline mitigation is enabled.
889       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
890       if (FSAttr.hasAttribute(Attribute::None) ||
891           !FSAttr.getValueAsString().contains("+retpoline"))
892         continue;
893 
894       if (RemarksEnabled)
895         VCallSite.emitRemark("branch-funnel",
896                              JT->stripPointerCasts()->getName(), OREGetter);
897 
898       // Pass the address of the vtable in the nest register, which is r10 on
899       // x86_64.
900       std::vector<Type *> NewArgs;
901       NewArgs.push_back(Int8PtrTy);
902       for (Type *T : CS.getFunctionType()->params())
903         NewArgs.push_back(T);
904       PointerType *NewFT = PointerType::getUnqual(
905           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
906                             CS.getFunctionType()->isVarArg()));
907 
908       IRBuilder<> IRB(CS.getInstruction());
909       std::vector<Value *> Args;
910       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
911       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
912         Args.push_back(CS.getArgOperand(I));
913 
914       CallSite NewCS;
915       if (CS.isCall())
916         NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args);
917       else
918         NewCS = IRB.CreateInvoke(
919             IRB.CreateBitCast(JT, NewFT),
920             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
921             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
922       NewCS.setCallingConv(CS.getCallingConv());
923 
924       AttributeList Attrs = CS.getAttributes();
925       std::vector<AttributeSet> NewArgAttrs;
926       NewArgAttrs.push_back(AttributeSet::get(
927           M.getContext(), ArrayRef<Attribute>{Attribute::get(
928                               M.getContext(), Attribute::Nest)}));
929       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
930         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
931       NewCS.setAttributes(
932           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
933                              Attrs.getRetAttributes(), NewArgAttrs));
934 
935       CS->replaceAllUsesWith(NewCS.getInstruction());
936       CS->eraseFromParent();
937 
938       // This use is no longer unsafe.
939       if (VCallSite.NumUnsafeUses)
940         --*VCallSite.NumUnsafeUses;
941     }
942     // Don't mark as devirtualized because there may be callers compiled without
943     // retpoline mitigation, which would mean that they are lowered to
944     // llvm.type.test and therefore require an llvm.type.test resolution for the
945     // type identifier.
946   };
947   Apply(SlotInfo.CSInfo);
948   for (auto &P : SlotInfo.ConstCSInfo)
949     Apply(P.second);
950 }
951 
952 bool DevirtModule::tryEvaluateFunctionsWithArgs(
953     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
954     ArrayRef<uint64_t> Args) {
955   // Evaluate each function and store the result in each target's RetVal
956   // field.
957   for (VirtualCallTarget &Target : TargetsForSlot) {
958     if (Target.Fn->arg_size() != Args.size() + 1)
959       return false;
960 
961     Evaluator Eval(M.getDataLayout(), nullptr);
962     SmallVector<Constant *, 2> EvalArgs;
963     EvalArgs.push_back(
964         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
965     for (unsigned I = 0; I != Args.size(); ++I) {
966       auto *ArgTy = dyn_cast<IntegerType>(
967           Target.Fn->getFunctionType()->getParamType(I + 1));
968       if (!ArgTy)
969         return false;
970       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
971     }
972 
973     Constant *RetVal;
974     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
975         !isa<ConstantInt>(RetVal))
976       return false;
977     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
978   }
979   return true;
980 }
981 
982 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
983                                          uint64_t TheRetVal) {
984   for (auto Call : CSInfo.CallSites)
985     Call.replaceAndErase(
986         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
987         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
988   CSInfo.markDevirt();
989 }
990 
991 bool DevirtModule::tryUniformRetValOpt(
992     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
993     WholeProgramDevirtResolution::ByArg *Res) {
994   // Uniform return value optimization. If all functions return the same
995   // constant, replace all calls with that constant.
996   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
997   for (const VirtualCallTarget &Target : TargetsForSlot)
998     if (Target.RetVal != TheRetVal)
999       return false;
1000 
1001   if (CSInfo.isExported()) {
1002     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1003     Res->Info = TheRetVal;
1004   }
1005 
1006   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1007   if (RemarksEnabled)
1008     for (auto &&Target : TargetsForSlot)
1009       Target.WasDevirt = true;
1010   return true;
1011 }
1012 
1013 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1014                                         ArrayRef<uint64_t> Args,
1015                                         StringRef Name) {
1016   std::string FullName = "__typeid_";
1017   raw_string_ostream OS(FullName);
1018   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1019   for (uint64_t Arg : Args)
1020     OS << '_' << Arg;
1021   OS << '_' << Name;
1022   return OS.str();
1023 }
1024 
1025 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1026   Triple T(M.getTargetTriple());
1027   return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1028          T.getObjectFormat() == Triple::ELF;
1029 }
1030 
1031 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1032                                 StringRef Name, Constant *C) {
1033   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1034                                         getGlobalName(Slot, Args, Name), C, &M);
1035   GA->setVisibility(GlobalValue::HiddenVisibility);
1036 }
1037 
1038 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1039                                   StringRef Name, uint32_t Const,
1040                                   uint32_t &Storage) {
1041   if (shouldExportConstantsAsAbsoluteSymbols()) {
1042     exportGlobal(
1043         Slot, Args, Name,
1044         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1045     return;
1046   }
1047 
1048   Storage = Const;
1049 }
1050 
1051 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1052                                      StringRef Name) {
1053   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1054   auto *GV = dyn_cast<GlobalVariable>(C);
1055   if (GV)
1056     GV->setVisibility(GlobalValue::HiddenVisibility);
1057   return C;
1058 }
1059 
1060 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1061                                        StringRef Name, IntegerType *IntTy,
1062                                        uint32_t Storage) {
1063   if (!shouldExportConstantsAsAbsoluteSymbols())
1064     return ConstantInt::get(IntTy, Storage);
1065 
1066   Constant *C = importGlobal(Slot, Args, Name);
1067   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1068   C = ConstantExpr::getPtrToInt(C, IntTy);
1069 
1070   // We only need to set metadata if the global is newly created, in which
1071   // case it would not have hidden visibility.
1072   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1073     return C;
1074 
1075   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1076     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1077     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1078     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1079                     MDNode::get(M.getContext(), {MinC, MaxC}));
1080   };
1081   unsigned AbsWidth = IntTy->getBitWidth();
1082   if (AbsWidth == IntPtrTy->getBitWidth())
1083     SetAbsRange(~0ull, ~0ull); // Full set.
1084   else
1085     SetAbsRange(0, 1ull << AbsWidth);
1086   return C;
1087 }
1088 
1089 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1090                                         bool IsOne,
1091                                         Constant *UniqueMemberAddr) {
1092   for (auto &&Call : CSInfo.CallSites) {
1093     IRBuilder<> B(Call.CS.getInstruction());
1094     Value *Cmp =
1095         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1096                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1097     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1098     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1099                          Cmp);
1100   }
1101   CSInfo.markDevirt();
1102 }
1103 
1104 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1105   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1106   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1107                                         ConstantInt::get(Int64Ty, M->Offset));
1108 }
1109 
1110 bool DevirtModule::tryUniqueRetValOpt(
1111     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1112     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1113     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1114   // IsOne controls whether we look for a 0 or a 1.
1115   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1116     const TypeMemberInfo *UniqueMember = nullptr;
1117     for (const VirtualCallTarget &Target : TargetsForSlot) {
1118       if (Target.RetVal == (IsOne ? 1 : 0)) {
1119         if (UniqueMember)
1120           return false;
1121         UniqueMember = Target.TM;
1122       }
1123     }
1124 
1125     // We should have found a unique member or bailed out by now. We already
1126     // checked for a uniform return value in tryUniformRetValOpt.
1127     assert(UniqueMember);
1128 
1129     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1130     if (CSInfo.isExported()) {
1131       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1132       Res->Info = IsOne;
1133 
1134       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1135     }
1136 
1137     // Replace each call with the comparison.
1138     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1139                          UniqueMemberAddr);
1140 
1141     // Update devirtualization statistics for targets.
1142     if (RemarksEnabled)
1143       for (auto &&Target : TargetsForSlot)
1144         Target.WasDevirt = true;
1145 
1146     return true;
1147   };
1148 
1149   if (BitWidth == 1) {
1150     if (tryUniqueRetValOptFor(true))
1151       return true;
1152     if (tryUniqueRetValOptFor(false))
1153       return true;
1154   }
1155   return false;
1156 }
1157 
1158 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1159                                          Constant *Byte, Constant *Bit) {
1160   for (auto Call : CSInfo.CallSites) {
1161     auto *RetType = cast<IntegerType>(Call.CS.getType());
1162     IRBuilder<> B(Call.CS.getInstruction());
1163     Value *Addr =
1164         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1165     if (RetType->getBitWidth() == 1) {
1166       Value *Bits = B.CreateLoad(Addr);
1167       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1168       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1169       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1170                            OREGetter, IsBitSet);
1171     } else {
1172       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1173       Value *Val = B.CreateLoad(RetType, ValAddr);
1174       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1175                            OREGetter, Val);
1176     }
1177   }
1178   CSInfo.markDevirt();
1179 }
1180 
1181 bool DevirtModule::tryVirtualConstProp(
1182     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1183     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1184   // This only works if the function returns an integer.
1185   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1186   if (!RetType)
1187     return false;
1188   unsigned BitWidth = RetType->getBitWidth();
1189   if (BitWidth > 64)
1190     return false;
1191 
1192   // Make sure that each function is defined, does not access memory, takes at
1193   // least one argument, does not use its first argument (which we assume is
1194   // 'this'), and has the same return type.
1195   //
1196   // Note that we test whether this copy of the function is readnone, rather
1197   // than testing function attributes, which must hold for any copy of the
1198   // function, even a less optimized version substituted at link time. This is
1199   // sound because the virtual constant propagation optimizations effectively
1200   // inline all implementations of the virtual function into each call site,
1201   // rather than using function attributes to perform local optimization.
1202   for (VirtualCallTarget &Target : TargetsForSlot) {
1203     if (Target.Fn->isDeclaration() ||
1204         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1205             MAK_ReadNone ||
1206         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1207         Target.Fn->getReturnType() != RetType)
1208       return false;
1209   }
1210 
1211   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1212     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1213       continue;
1214 
1215     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1216     if (Res)
1217       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1218 
1219     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1220       continue;
1221 
1222     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1223                            ResByArg, Slot, CSByConstantArg.first))
1224       continue;
1225 
1226     // Find an allocation offset in bits in all vtables associated with the
1227     // type.
1228     uint64_t AllocBefore =
1229         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1230     uint64_t AllocAfter =
1231         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1232 
1233     // Calculate the total amount of padding needed to store a value at both
1234     // ends of the object.
1235     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1236     for (auto &&Target : TargetsForSlot) {
1237       TotalPaddingBefore += std::max<int64_t>(
1238           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1239       TotalPaddingAfter += std::max<int64_t>(
1240           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1241     }
1242 
1243     // If the amount of padding is too large, give up.
1244     // FIXME: do something smarter here.
1245     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1246       continue;
1247 
1248     // Calculate the offset to the value as a (possibly negative) byte offset
1249     // and (if applicable) a bit offset, and store the values in the targets.
1250     int64_t OffsetByte;
1251     uint64_t OffsetBit;
1252     if (TotalPaddingBefore <= TotalPaddingAfter)
1253       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1254                             OffsetBit);
1255     else
1256       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1257                            OffsetBit);
1258 
1259     if (RemarksEnabled)
1260       for (auto &&Target : TargetsForSlot)
1261         Target.WasDevirt = true;
1262 
1263 
1264     if (CSByConstantArg.second.isExported()) {
1265       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1266       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1267                      ResByArg->Byte);
1268       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1269                      ResByArg->Bit);
1270     }
1271 
1272     // Rewrite each call to a load from OffsetByte/OffsetBit.
1273     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1274     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1275     applyVirtualConstProp(CSByConstantArg.second,
1276                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1277   }
1278   return true;
1279 }
1280 
1281 void DevirtModule::rebuildGlobal(VTableBits &B) {
1282   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1283     return;
1284 
1285   // Align each byte array to pointer width.
1286   unsigned PointerSize = M.getDataLayout().getPointerSize();
1287   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
1288   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
1289 
1290   // Before was stored in reverse order; flip it now.
1291   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1292     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1293 
1294   // Build an anonymous global containing the before bytes, followed by the
1295   // original initializer, followed by the after bytes.
1296   auto NewInit = ConstantStruct::getAnon(
1297       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1298        B.GV->getInitializer(),
1299        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1300   auto NewGV =
1301       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1302                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1303   NewGV->setSection(B.GV->getSection());
1304   NewGV->setComdat(B.GV->getComdat());
1305 
1306   // Copy the original vtable's metadata to the anonymous global, adjusting
1307   // offsets as required.
1308   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1309 
1310   // Build an alias named after the original global, pointing at the second
1311   // element (the original initializer).
1312   auto Alias = GlobalAlias::create(
1313       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1314       ConstantExpr::getGetElementPtr(
1315           NewInit->getType(), NewGV,
1316           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1317                                ConstantInt::get(Int32Ty, 1)}),
1318       &M);
1319   Alias->setVisibility(B.GV->getVisibility());
1320   Alias->takeName(B.GV);
1321 
1322   B.GV->replaceAllUsesWith(Alias);
1323   B.GV->eraseFromParent();
1324 }
1325 
1326 bool DevirtModule::areRemarksEnabled() {
1327   const auto &FL = M.getFunctionList();
1328   for (const Function &Fn : FL) {
1329     const auto &BBL = Fn.getBasicBlockList();
1330     if (BBL.empty())
1331       continue;
1332     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1333     return DI.isEnabled();
1334   }
1335   return false;
1336 }
1337 
1338 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1339                                      Function *AssumeFunc) {
1340   // Find all virtual calls via a virtual table pointer %p under an assumption
1341   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1342   // points to a member of the type identifier %md. Group calls by (type ID,
1343   // offset) pair (effectively the identity of the virtual function) and store
1344   // to CallSlots.
1345   DenseSet<Value *> SeenPtrs;
1346   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1347        I != E;) {
1348     auto CI = dyn_cast<CallInst>(I->getUser());
1349     ++I;
1350     if (!CI)
1351       continue;
1352 
1353     // Search for virtual calls based on %p and add them to DevirtCalls.
1354     SmallVector<DevirtCallSite, 1> DevirtCalls;
1355     SmallVector<CallInst *, 1> Assumes;
1356     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
1357 
1358     // If we found any, add them to CallSlots. Only do this if we haven't seen
1359     // the vtable pointer before, as it may have been CSE'd with pointers from
1360     // other call sites, and we don't want to process call sites multiple times.
1361     if (!Assumes.empty()) {
1362       Metadata *TypeId =
1363           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1364       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1365       if (SeenPtrs.insert(Ptr).second) {
1366         for (DevirtCallSite Call : DevirtCalls) {
1367           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1368         }
1369       }
1370     }
1371 
1372     // We no longer need the assumes or the type test.
1373     for (auto Assume : Assumes)
1374       Assume->eraseFromParent();
1375     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1376     // may use the vtable argument later.
1377     if (CI->use_empty())
1378       CI->eraseFromParent();
1379   }
1380 }
1381 
1382 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1383   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1384 
1385   for (auto I = TypeCheckedLoadFunc->use_begin(),
1386             E = TypeCheckedLoadFunc->use_end();
1387        I != E;) {
1388     auto CI = dyn_cast<CallInst>(I->getUser());
1389     ++I;
1390     if (!CI)
1391       continue;
1392 
1393     Value *Ptr = CI->getArgOperand(0);
1394     Value *Offset = CI->getArgOperand(1);
1395     Value *TypeIdValue = CI->getArgOperand(2);
1396     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1397 
1398     SmallVector<DevirtCallSite, 1> DevirtCalls;
1399     SmallVector<Instruction *, 1> LoadedPtrs;
1400     SmallVector<Instruction *, 1> Preds;
1401     bool HasNonCallUses = false;
1402     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1403                                                HasNonCallUses, CI);
1404 
1405     // Start by generating "pessimistic" code that explicitly loads the function
1406     // pointer from the vtable and performs the type check. If possible, we will
1407     // eliminate the load and the type check later.
1408 
1409     // If possible, only generate the load at the point where it is used.
1410     // This helps avoid unnecessary spills.
1411     IRBuilder<> LoadB(
1412         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1413     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1414     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1415     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1416 
1417     for (Instruction *LoadedPtr : LoadedPtrs) {
1418       LoadedPtr->replaceAllUsesWith(LoadedValue);
1419       LoadedPtr->eraseFromParent();
1420     }
1421 
1422     // Likewise for the type test.
1423     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1424     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1425 
1426     for (Instruction *Pred : Preds) {
1427       Pred->replaceAllUsesWith(TypeTestCall);
1428       Pred->eraseFromParent();
1429     }
1430 
1431     // We have already erased any extractvalue instructions that refer to the
1432     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1433     // (although this is unlikely). In that case, explicitly build a pair and
1434     // RAUW it.
1435     if (!CI->use_empty()) {
1436       Value *Pair = UndefValue::get(CI->getType());
1437       IRBuilder<> B(CI);
1438       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1439       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1440       CI->replaceAllUsesWith(Pair);
1441     }
1442 
1443     // The number of unsafe uses is initially the number of uses.
1444     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1445     NumUnsafeUses = DevirtCalls.size();
1446 
1447     // If the function pointer has a non-call user, we cannot eliminate the type
1448     // check, as one of those users may eventually call the pointer. Increment
1449     // the unsafe use count to make sure it cannot reach zero.
1450     if (HasNonCallUses)
1451       ++NumUnsafeUses;
1452     for (DevirtCallSite Call : DevirtCalls) {
1453       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1454                                                    &NumUnsafeUses);
1455     }
1456 
1457     CI->eraseFromParent();
1458   }
1459 }
1460 
1461 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1462   const TypeIdSummary *TidSummary =
1463       ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
1464   if (!TidSummary)
1465     return;
1466   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1467   if (ResI == TidSummary->WPDRes.end())
1468     return;
1469   const WholeProgramDevirtResolution &Res = ResI->second;
1470 
1471   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1472     // The type of the function in the declaration is irrelevant because every
1473     // call site will cast it to the correct type.
1474     auto *SingleImpl = M.getOrInsertFunction(
1475         Res.SingleImplName, Type::getVoidTy(M.getContext()));
1476 
1477     // This is the import phase so we should not be exporting anything.
1478     bool IsExported = false;
1479     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1480     assert(!IsExported);
1481   }
1482 
1483   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1484     auto I = Res.ResByArg.find(CSByConstantArg.first);
1485     if (I == Res.ResByArg.end())
1486       continue;
1487     auto &ResByArg = I->second;
1488     // FIXME: We should figure out what to do about the "function name" argument
1489     // to the apply* functions, as the function names are unavailable during the
1490     // importing phase. For now we just pass the empty string. This does not
1491     // impact correctness because the function names are just used for remarks.
1492     switch (ResByArg.TheKind) {
1493     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1494       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1495       break;
1496     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1497       Constant *UniqueMemberAddr =
1498           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1499       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1500                            UniqueMemberAddr);
1501       break;
1502     }
1503     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1504       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1505                                       Int32Ty, ResByArg.Byte);
1506       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1507                                      ResByArg.Bit);
1508       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1509       break;
1510     }
1511     default:
1512       break;
1513     }
1514   }
1515 
1516   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1517     auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1518                                      Type::getVoidTy(M.getContext()));
1519     bool IsExported = false;
1520     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1521     assert(!IsExported);
1522   }
1523 }
1524 
1525 void DevirtModule::removeRedundantTypeTests() {
1526   auto True = ConstantInt::getTrue(M.getContext());
1527   for (auto &&U : NumUnsafeUsesForTypeTest) {
1528     if (U.second == 0) {
1529       U.first->replaceAllUsesWith(True);
1530       U.first->eraseFromParent();
1531     }
1532   }
1533 }
1534 
1535 bool DevirtModule::run() {
1536   Function *TypeTestFunc =
1537       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1538   Function *TypeCheckedLoadFunc =
1539       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1540   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1541 
1542   // Normally if there are no users of the devirtualization intrinsics in the
1543   // module, this pass has nothing to do. But if we are exporting, we also need
1544   // to handle any users that appear only in the function summaries.
1545   if (!ExportSummary &&
1546       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1547        AssumeFunc->use_empty()) &&
1548       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1549     return false;
1550 
1551   if (TypeTestFunc && AssumeFunc)
1552     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1553 
1554   if (TypeCheckedLoadFunc)
1555     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1556 
1557   if (ImportSummary) {
1558     for (auto &S : CallSlots)
1559       importResolution(S.first, S.second);
1560 
1561     removeRedundantTypeTests();
1562 
1563     // The rest of the code is only necessary when exporting or during regular
1564     // LTO, so we are done.
1565     return true;
1566   }
1567 
1568   // Rebuild type metadata into a map for easy lookup.
1569   std::vector<VTableBits> Bits;
1570   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1571   buildTypeIdentifierMap(Bits, TypeIdMap);
1572   if (TypeIdMap.empty())
1573     return true;
1574 
1575   // Collect information from summary about which calls to try to devirtualize.
1576   if (ExportSummary) {
1577     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1578     for (auto &P : TypeIdMap) {
1579       if (auto *TypeId = dyn_cast<MDString>(P.first))
1580         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1581             TypeId);
1582     }
1583 
1584     for (auto &P : *ExportSummary) {
1585       for (auto &S : P.second.SummaryList) {
1586         auto *FS = dyn_cast<FunctionSummary>(S.get());
1587         if (!FS)
1588           continue;
1589         // FIXME: Only add live functions.
1590         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1591           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1592             CallSlots[{MD, VF.Offset}]
1593                 .CSInfo.markSummaryHasTypeTestAssumeUsers();
1594           }
1595         }
1596         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1597           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1598             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1599           }
1600         }
1601         for (const FunctionSummary::ConstVCall &VC :
1602              FS->type_test_assume_const_vcalls()) {
1603           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1604             CallSlots[{MD, VC.VFunc.Offset}]
1605                 .ConstCSInfo[VC.Args]
1606                 .markSummaryHasTypeTestAssumeUsers();
1607           }
1608         }
1609         for (const FunctionSummary::ConstVCall &VC :
1610              FS->type_checked_load_const_vcalls()) {
1611           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1612             CallSlots[{MD, VC.VFunc.Offset}]
1613                 .ConstCSInfo[VC.Args]
1614                 .addSummaryTypeCheckedLoadUser(FS);
1615           }
1616         }
1617       }
1618     }
1619   }
1620 
1621   // For each (type, offset) pair:
1622   bool DidVirtualConstProp = false;
1623   std::map<std::string, Function*> DevirtTargets;
1624   for (auto &S : CallSlots) {
1625     // Search each of the members of the type identifier for the virtual
1626     // function implementation at offset S.first.ByteOffset, and add to
1627     // TargetsForSlot.
1628     std::vector<VirtualCallTarget> TargetsForSlot;
1629     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1630                                   S.first.ByteOffset)) {
1631       WholeProgramDevirtResolution *Res = nullptr;
1632       if (ExportSummary && isa<MDString>(S.first.TypeID))
1633         Res = &ExportSummary
1634                    ->getOrInsertTypeIdSummary(
1635                        cast<MDString>(S.first.TypeID)->getString())
1636                    .WPDRes[S.first.ByteOffset];
1637 
1638       if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
1639         DidVirtualConstProp |=
1640             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1641 
1642         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1643       }
1644 
1645       // Collect functions devirtualized at least for one call site for stats.
1646       if (RemarksEnabled)
1647         for (const auto &T : TargetsForSlot)
1648           if (T.WasDevirt)
1649             DevirtTargets[T.Fn->getName()] = T.Fn;
1650     }
1651 
1652     // CFI-specific: if we are exporting and any llvm.type.checked.load
1653     // intrinsics were *not* devirtualized, we need to add the resulting
1654     // llvm.type.test intrinsics to the function summaries so that the
1655     // LowerTypeTests pass will export them.
1656     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1657       auto GUID =
1658           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1659       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1660         FS->addTypeTest(GUID);
1661       for (auto &CCS : S.second.ConstCSInfo)
1662         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1663           FS->addTypeTest(GUID);
1664     }
1665   }
1666 
1667   if (RemarksEnabled) {
1668     // Generate remarks for each devirtualized function.
1669     for (const auto &DT : DevirtTargets) {
1670       Function *F = DT.second;
1671 
1672       using namespace ore;
1673       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1674                         << "devirtualized "
1675                         << NV("FunctionName", F->getName()));
1676     }
1677   }
1678 
1679   removeRedundantTypeTests();
1680 
1681   // Rebuild each global we touched as part of virtual constant propagation to
1682   // include the before and after bytes.
1683   if (DidVirtualConstProp)
1684     for (VTableBits &B : Bits)
1685       rebuildGlobal(B);
1686 
1687   return true;
1688 }
1689