1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via !type metadata) that the list of callees is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 // This pass is intended to be used during the regular and thin LTO pipelines.
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
33 // ThinLTO, the pass operates in two phases:
34 // - Export phase: this is run during the thin link over a single merged module
35 //   that contains all vtables with !type metadata that participate in the link.
36 //   The pass computes a resolution for each virtual call and stores it in the
37 //   type identifier summary.
38 // - Import phase: this is run during the thin backends over the individual
39 //   modules. The pass applies the resolutions previously computed during the
40 //   import phase to each eligible virtual call.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseMapInfo.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/iterator_range.h"
52 #include "llvm/Analysis/AliasAnalysis.h"
53 #include "llvm/Analysis/BasicAliasAnalysis.h"
54 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
55 #include "llvm/Analysis/TypeMetadataUtils.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/GlobalAlias.h"
64 #include "llvm/IR/GlobalVariable.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/LLVMContext.h"
71 #include "llvm/IR/Metadata.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/ModuleSummaryIndexYAML.h"
74 #include "llvm/Pass.h"
75 #include "llvm/PassRegistry.h"
76 #include "llvm/PassSupport.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/Error.h"
79 #include "llvm/Support/FileSystem.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Transforms/IPO.h"
82 #include "llvm/Transforms/IPO/FunctionAttrs.h"
83 #include "llvm/Transforms/Utils/Evaluator.h"
84 #include <algorithm>
85 #include <cstddef>
86 #include <map>
87 #include <set>
88 #include <string>
89 
90 using namespace llvm;
91 using namespace wholeprogramdevirt;
92 
93 #define DEBUG_TYPE "wholeprogramdevirt"
94 
95 static cl::opt<PassSummaryAction> ClSummaryAction(
96     "wholeprogramdevirt-summary-action",
97     cl::desc("What to do with the summary when running this pass"),
98     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
99                clEnumValN(PassSummaryAction::Import, "import",
100                           "Import typeid resolutions from summary and globals"),
101                clEnumValN(PassSummaryAction::Export, "export",
102                           "Export typeid resolutions to summary and globals")),
103     cl::Hidden);
104 
105 static cl::opt<std::string> ClReadSummary(
106     "wholeprogramdevirt-read-summary",
107     cl::desc("Read summary from given YAML file before running pass"),
108     cl::Hidden);
109 
110 static cl::opt<std::string> ClWriteSummary(
111     "wholeprogramdevirt-write-summary",
112     cl::desc("Write summary to given YAML file after running pass"),
113     cl::Hidden);
114 
115 // Find the minimum offset that we may store a value of size Size bits at. If
116 // IsAfter is set, look for an offset before the object, otherwise look for an
117 // offset after the object.
118 uint64_t
119 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
120                                      bool IsAfter, uint64_t Size) {
121   // Find a minimum offset taking into account only vtable sizes.
122   uint64_t MinByte = 0;
123   for (const VirtualCallTarget &Target : Targets) {
124     if (IsAfter)
125       MinByte = std::max(MinByte, Target.minAfterBytes());
126     else
127       MinByte = std::max(MinByte, Target.minBeforeBytes());
128   }
129 
130   // Build a vector of arrays of bytes covering, for each target, a slice of the
131   // used region (see AccumBitVector::BytesUsed in
132   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
133   // this aligns the used regions to start at MinByte.
134   //
135   // In this example, A, B and C are vtables, # is a byte already allocated for
136   // a virtual function pointer, AAAA... (etc.) are the used regions for the
137   // vtables and Offset(X) is the value computed for the Offset variable below
138   // for X.
139   //
140   //                    Offset(A)
141   //                    |       |
142   //                            |MinByte
143   // A: ################AAAAAAAA|AAAAAAAA
144   // B: ########BBBBBBBBBBBBBBBB|BBBB
145   // C: ########################|CCCCCCCCCCCCCCCC
146   //            |   Offset(B)   |
147   //
148   // This code produces the slices of A, B and C that appear after the divider
149   // at MinByte.
150   std::vector<ArrayRef<uint8_t>> Used;
151   for (const VirtualCallTarget &Target : Targets) {
152     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
153                                        : Target.TM->Bits->Before.BytesUsed;
154     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
155                               : MinByte - Target.minBeforeBytes();
156 
157     // Disregard used regions that are smaller than Offset. These are
158     // effectively all-free regions that do not need to be checked.
159     if (VTUsed.size() > Offset)
160       Used.push_back(VTUsed.slice(Offset));
161   }
162 
163   if (Size == 1) {
164     // Find a free bit in each member of Used.
165     for (unsigned I = 0;; ++I) {
166       uint8_t BitsUsed = 0;
167       for (auto &&B : Used)
168         if (I < B.size())
169           BitsUsed |= B[I];
170       if (BitsUsed != 0xff)
171         return (MinByte + I) * 8 +
172                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
173     }
174   } else {
175     // Find a free (Size/8) byte region in each member of Used.
176     // FIXME: see if alignment helps.
177     for (unsigned I = 0;; ++I) {
178       for (auto &&B : Used) {
179         unsigned Byte = 0;
180         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
181           if (B[I + Byte])
182             goto NextI;
183           ++Byte;
184         }
185       }
186       return (MinByte + I) * 8;
187     NextI:;
188     }
189   }
190 }
191 
192 void wholeprogramdevirt::setBeforeReturnValues(
193     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
194     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
195   if (BitWidth == 1)
196     OffsetByte = -(AllocBefore / 8 + 1);
197   else
198     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
199   OffsetBit = AllocBefore % 8;
200 
201   for (VirtualCallTarget &Target : Targets) {
202     if (BitWidth == 1)
203       Target.setBeforeBit(AllocBefore);
204     else
205       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
206   }
207 }
208 
209 void wholeprogramdevirt::setAfterReturnValues(
210     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
211     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
212   if (BitWidth == 1)
213     OffsetByte = AllocAfter / 8;
214   else
215     OffsetByte = (AllocAfter + 7) / 8;
216   OffsetBit = AllocAfter % 8;
217 
218   for (VirtualCallTarget &Target : Targets) {
219     if (BitWidth == 1)
220       Target.setAfterBit(AllocAfter);
221     else
222       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
223   }
224 }
225 
226 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
227     : Fn(Fn), TM(TM),
228       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
229 
230 namespace {
231 
232 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
233 // tables, and the ByteOffset is the offset in bytes from the address point to
234 // the virtual function pointer.
235 struct VTableSlot {
236   Metadata *TypeID;
237   uint64_t ByteOffset;
238 };
239 
240 } // end anonymous namespace
241 
242 namespace llvm {
243 
244 template <> struct DenseMapInfo<VTableSlot> {
245   static VTableSlot getEmptyKey() {
246     return {DenseMapInfo<Metadata *>::getEmptyKey(),
247             DenseMapInfo<uint64_t>::getEmptyKey()};
248   }
249   static VTableSlot getTombstoneKey() {
250     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
251             DenseMapInfo<uint64_t>::getTombstoneKey()};
252   }
253   static unsigned getHashValue(const VTableSlot &I) {
254     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
255            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
256   }
257   static bool isEqual(const VTableSlot &LHS,
258                       const VTableSlot &RHS) {
259     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
260   }
261 };
262 
263 } // end namespace llvm
264 
265 namespace {
266 
267 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
268 // the indirect virtual call.
269 struct VirtualCallSite {
270   Value *VTable;
271   CallSite CS;
272 
273   // If non-null, this field points to the associated unsafe use count stored in
274   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
275   // of that field for details.
276   unsigned *NumUnsafeUses;
277 
278   void
279   emitRemark(const StringRef OptName, const StringRef TargetName,
280              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
281     Function *F = CS.getCaller();
282     DebugLoc DLoc = CS->getDebugLoc();
283     BasicBlock *Block = CS.getParent();
284 
285     // In the new pass manager, we can request the optimization
286     // remark emitter pass on a per-function-basis, which the
287     // OREGetter will do for us.
288     // In the old pass manager, this is harder, so we just build
289     // a optimization remark emitter on the fly, when we need it.
290     std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
291     OptimizationRemarkEmitter *ORE;
292     if (OREGetter)
293       ORE = &OREGetter(F);
294     else {
295       OwnedORE = make_unique<OptimizationRemarkEmitter>(F);
296       ORE = OwnedORE.get();
297     }
298 
299     using namespace ore;
300     ORE->emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
301               << NV("Optimization", OptName) << ": devirtualized a call to "
302               << NV("FunctionName", TargetName));
303   }
304 
305   void replaceAndErase(
306       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
307       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
308       Value *New) {
309     if (RemarksEnabled)
310       emitRemark(OptName, TargetName, OREGetter);
311     CS->replaceAllUsesWith(New);
312     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
313       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
314       II->getUnwindDest()->removePredecessor(II->getParent());
315     }
316     CS->eraseFromParent();
317     // This use is no longer unsafe.
318     if (NumUnsafeUses)
319       --*NumUnsafeUses;
320   }
321 };
322 
323 // Call site information collected for a specific VTableSlot and possibly a list
324 // of constant integer arguments. The grouping by arguments is handled by the
325 // VTableSlotInfo class.
326 struct CallSiteInfo {
327   /// The set of call sites for this slot. Used during regular LTO and the
328   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
329   /// call sites that appear in the merged module itself); in each of these
330   /// cases we are directly operating on the call sites at the IR level.
331   std::vector<VirtualCallSite> CallSites;
332 
333   // These fields are used during the export phase of ThinLTO and reflect
334   // information collected from function summaries.
335 
336   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
337   /// this slot.
338   bool SummaryHasTypeTestAssumeUsers;
339 
340   /// CFI-specific: a vector containing the list of function summaries that use
341   /// the llvm.type.checked.load intrinsic and therefore will require
342   /// resolutions for llvm.type.test in order to implement CFI checks if
343   /// devirtualization was unsuccessful. If devirtualization was successful, the
344   /// pass will clear this vector by calling markDevirt(). If at the end of the
345   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
346   /// to each of the function summaries in the vector.
347   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
348 
349   bool isExported() const {
350     return SummaryHasTypeTestAssumeUsers ||
351            !SummaryTypeCheckedLoadUsers.empty();
352   }
353 
354   /// As explained in the comment for SummaryTypeCheckedLoadUsers.
355   void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); }
356 };
357 
358 // Call site information collected for a specific VTableSlot.
359 struct VTableSlotInfo {
360   // The set of call sites which do not have all constant integer arguments
361   // (excluding "this").
362   CallSiteInfo CSInfo;
363 
364   // The set of call sites with all constant integer arguments (excluding
365   // "this"), grouped by argument list.
366   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
367 
368   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
369 
370 private:
371   CallSiteInfo &findCallSiteInfo(CallSite CS);
372 };
373 
374 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
375   std::vector<uint64_t> Args;
376   auto *CI = dyn_cast<IntegerType>(CS.getType());
377   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
378     return CSInfo;
379   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
380     auto *CI = dyn_cast<ConstantInt>(Arg);
381     if (!CI || CI->getBitWidth() > 64)
382       return CSInfo;
383     Args.push_back(CI->getZExtValue());
384   }
385   return ConstCSInfo[Args];
386 }
387 
388 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
389                                  unsigned *NumUnsafeUses) {
390   findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses});
391 }
392 
393 struct DevirtModule {
394   Module &M;
395   function_ref<AAResults &(Function &)> AARGetter;
396 
397   ModuleSummaryIndex *ExportSummary;
398   const ModuleSummaryIndex *ImportSummary;
399 
400   IntegerType *Int8Ty;
401   PointerType *Int8PtrTy;
402   IntegerType *Int32Ty;
403   IntegerType *Int64Ty;
404   IntegerType *IntPtrTy;
405 
406   bool RemarksEnabled;
407   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
408 
409   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
410 
411   // This map keeps track of the number of "unsafe" uses of a loaded function
412   // pointer. The key is the associated llvm.type.test intrinsic call generated
413   // by this pass. An unsafe use is one that calls the loaded function pointer
414   // directly. Every time we eliminate an unsafe use (for example, by
415   // devirtualizing it or by applying virtual constant propagation), we
416   // decrement the value stored in this map. If a value reaches zero, we can
417   // eliminate the type check by RAUWing the associated llvm.type.test call with
418   // true.
419   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
420 
421   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
422                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
423                ModuleSummaryIndex *ExportSummary,
424                const ModuleSummaryIndex *ImportSummary)
425       : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary),
426         ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())),
427         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
428         Int32Ty(Type::getInt32Ty(M.getContext())),
429         Int64Ty(Type::getInt64Ty(M.getContext())),
430         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
431         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
432     assert(!(ExportSummary && ImportSummary));
433   }
434 
435   bool areRemarksEnabled();
436 
437   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
438   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
439 
440   void buildTypeIdentifierMap(
441       std::vector<VTableBits> &Bits,
442       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
443   Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
444   bool
445   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
446                             const std::set<TypeMemberInfo> &TypeMemberInfos,
447                             uint64_t ByteOffset);
448 
449   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
450                              bool &IsExported);
451   bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
452                            VTableSlotInfo &SlotInfo,
453                            WholeProgramDevirtResolution *Res);
454 
455   bool tryEvaluateFunctionsWithArgs(
456       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
457       ArrayRef<uint64_t> Args);
458 
459   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
460                              uint64_t TheRetVal);
461   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
462                            CallSiteInfo &CSInfo,
463                            WholeProgramDevirtResolution::ByArg *Res);
464 
465   // Returns the global symbol name that is used to export information about the
466   // given vtable slot and list of arguments.
467   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
468                             StringRef Name);
469 
470   bool shouldExportConstantsAsAbsoluteSymbols();
471 
472   // This function is called during the export phase to create a symbol
473   // definition containing information about the given vtable slot and list of
474   // arguments.
475   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
476                     Constant *C);
477   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
478                       uint32_t Const, uint32_t &Storage);
479 
480   // This function is called during the import phase to create a reference to
481   // the symbol definition created during the export phase.
482   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
483                          StringRef Name);
484   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
485                            StringRef Name, IntegerType *IntTy,
486                            uint32_t Storage);
487 
488   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
489                             Constant *UniqueMemberAddr);
490   bool tryUniqueRetValOpt(unsigned BitWidth,
491                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
492                           CallSiteInfo &CSInfo,
493                           WholeProgramDevirtResolution::ByArg *Res,
494                           VTableSlot Slot, ArrayRef<uint64_t> Args);
495 
496   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
497                              Constant *Byte, Constant *Bit);
498   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
499                            VTableSlotInfo &SlotInfo,
500                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
501 
502   void rebuildGlobal(VTableBits &B);
503 
504   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
505   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
506 
507   // If we were able to eliminate all unsafe uses for a type checked load,
508   // eliminate the associated type tests by replacing them with true.
509   void removeRedundantTypeTests();
510 
511   bool run();
512 
513   // Lower the module using the action and summary passed as command line
514   // arguments. For testing purposes only.
515   static bool runForTesting(
516       Module &M, function_ref<AAResults &(Function &)> AARGetter,
517       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
518 };
519 
520 struct WholeProgramDevirt : public ModulePass {
521   static char ID;
522 
523   bool UseCommandLine = false;
524 
525   ModuleSummaryIndex *ExportSummary;
526   const ModuleSummaryIndex *ImportSummary;
527 
528   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
529     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
530   }
531 
532   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
533                      const ModuleSummaryIndex *ImportSummary)
534       : ModulePass(ID), ExportSummary(ExportSummary),
535         ImportSummary(ImportSummary) {
536     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
537   }
538 
539   bool runOnModule(Module &M) override {
540     if (skipModule(M))
541       return false;
542 
543     auto OREGetter = function_ref<OptimizationRemarkEmitter &(Function *)>();
544 
545     if (UseCommandLine)
546       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter);
547 
548     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary,
549                         ImportSummary)
550         .run();
551   }
552 
553   void getAnalysisUsage(AnalysisUsage &AU) const override {
554     AU.addRequired<AssumptionCacheTracker>();
555     AU.addRequired<TargetLibraryInfoWrapperPass>();
556   }
557 };
558 
559 } // end anonymous namespace
560 
561 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
562                       "Whole program devirtualization", false, false)
563 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
564 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
565 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
566                     "Whole program devirtualization", false, false)
567 char WholeProgramDevirt::ID = 0;
568 
569 ModulePass *
570 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
571                                    const ModuleSummaryIndex *ImportSummary) {
572   return new WholeProgramDevirt(ExportSummary, ImportSummary);
573 }
574 
575 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
576                                               ModuleAnalysisManager &AM) {
577   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
578   auto AARGetter = [&](Function &F) -> AAResults & {
579     return FAM.getResult<AAManager>(F);
580   };
581   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
582     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
583   };
584   if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run())
585     return PreservedAnalyses::all();
586   return PreservedAnalyses::none();
587 }
588 
589 bool DevirtModule::runForTesting(
590     Module &M, function_ref<AAResults &(Function &)> AARGetter,
591     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
592   ModuleSummaryIndex Summary;
593 
594   // Handle the command-line summary arguments. This code is for testing
595   // purposes only, so we handle errors directly.
596   if (!ClReadSummary.empty()) {
597     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
598                           ": ");
599     auto ReadSummaryFile =
600         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
601 
602     yaml::Input In(ReadSummaryFile->getBuffer());
603     In >> Summary;
604     ExitOnErr(errorCodeToError(In.error()));
605   }
606 
607   bool Changed =
608       DevirtModule(
609           M, AARGetter, OREGetter,
610           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
611           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
612           .run();
613 
614   if (!ClWriteSummary.empty()) {
615     ExitOnError ExitOnErr(
616         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
617     std::error_code EC;
618     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
619     ExitOnErr(errorCodeToError(EC));
620 
621     yaml::Output Out(OS);
622     Out << Summary;
623   }
624 
625   return Changed;
626 }
627 
628 void DevirtModule::buildTypeIdentifierMap(
629     std::vector<VTableBits> &Bits,
630     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
631   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
632   Bits.reserve(M.getGlobalList().size());
633   SmallVector<MDNode *, 2> Types;
634   for (GlobalVariable &GV : M.globals()) {
635     Types.clear();
636     GV.getMetadata(LLVMContext::MD_type, Types);
637     if (Types.empty())
638       continue;
639 
640     VTableBits *&BitsPtr = GVToBits[&GV];
641     if (!BitsPtr) {
642       Bits.emplace_back();
643       Bits.back().GV = &GV;
644       Bits.back().ObjectSize =
645           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
646       BitsPtr = &Bits.back();
647     }
648 
649     for (MDNode *Type : Types) {
650       auto TypeID = Type->getOperand(1).get();
651 
652       uint64_t Offset =
653           cast<ConstantInt>(
654               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
655               ->getZExtValue();
656 
657       TypeIdMap[TypeID].insert({BitsPtr, Offset});
658     }
659   }
660 }
661 
662 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
663   if (I->getType()->isPointerTy()) {
664     if (Offset == 0)
665       return I;
666     return nullptr;
667   }
668 
669   const DataLayout &DL = M.getDataLayout();
670 
671   if (auto *C = dyn_cast<ConstantStruct>(I)) {
672     const StructLayout *SL = DL.getStructLayout(C->getType());
673     if (Offset >= SL->getSizeInBytes())
674       return nullptr;
675 
676     unsigned Op = SL->getElementContainingOffset(Offset);
677     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
678                               Offset - SL->getElementOffset(Op));
679   }
680   if (auto *C = dyn_cast<ConstantArray>(I)) {
681     ArrayType *VTableTy = C->getType();
682     uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
683 
684     unsigned Op = Offset / ElemSize;
685     if (Op >= C->getNumOperands())
686       return nullptr;
687 
688     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
689                               Offset % ElemSize);
690   }
691   return nullptr;
692 }
693 
694 bool DevirtModule::tryFindVirtualCallTargets(
695     std::vector<VirtualCallTarget> &TargetsForSlot,
696     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
697   for (const TypeMemberInfo &TM : TypeMemberInfos) {
698     if (!TM.Bits->GV->isConstant())
699       return false;
700 
701     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
702                                        TM.Offset + ByteOffset);
703     if (!Ptr)
704       return false;
705 
706     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
707     if (!Fn)
708       return false;
709 
710     // We can disregard __cxa_pure_virtual as a possible call target, as
711     // calls to pure virtuals are UB.
712     if (Fn->getName() == "__cxa_pure_virtual")
713       continue;
714 
715     TargetsForSlot.push_back({Fn, &TM});
716   }
717 
718   // Give up if we couldn't find any targets.
719   return !TargetsForSlot.empty();
720 }
721 
722 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
723                                          Constant *TheFn, bool &IsExported) {
724   auto Apply = [&](CallSiteInfo &CSInfo) {
725     for (auto &&VCallSite : CSInfo.CallSites) {
726       if (RemarksEnabled)
727         VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter);
728       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
729           TheFn, VCallSite.CS.getCalledValue()->getType()));
730       // This use is no longer unsafe.
731       if (VCallSite.NumUnsafeUses)
732         --*VCallSite.NumUnsafeUses;
733     }
734     if (CSInfo.isExported()) {
735       IsExported = true;
736       CSInfo.markDevirt();
737     }
738   };
739   Apply(SlotInfo.CSInfo);
740   for (auto &P : SlotInfo.ConstCSInfo)
741     Apply(P.second);
742 }
743 
744 bool DevirtModule::trySingleImplDevirt(
745     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
746     VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
747   // See if the program contains a single implementation of this virtual
748   // function.
749   Function *TheFn = TargetsForSlot[0].Fn;
750   for (auto &&Target : TargetsForSlot)
751     if (TheFn != Target.Fn)
752       return false;
753 
754   // If so, update each call site to call that implementation directly.
755   if (RemarksEnabled)
756     TargetsForSlot[0].WasDevirt = true;
757 
758   bool IsExported = false;
759   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
760   if (!IsExported)
761     return false;
762 
763   // If the only implementation has local linkage, we must promote to external
764   // to make it visible to thin LTO objects. We can only get here during the
765   // ThinLTO export phase.
766   if (TheFn->hasLocalLinkage()) {
767     std::string NewName = (TheFn->getName() + "$merged").str();
768 
769     // Since we are renaming the function, any comdats with the same name must
770     // also be renamed. This is required when targeting COFF, as the comdat name
771     // must match one of the names of the symbols in the comdat.
772     if (Comdat *C = TheFn->getComdat()) {
773       if (C->getName() == TheFn->getName()) {
774         Comdat *NewC = M.getOrInsertComdat(NewName);
775         NewC->setSelectionKind(C->getSelectionKind());
776         for (GlobalObject &GO : M.global_objects())
777           if (GO.getComdat() == C)
778             GO.setComdat(NewC);
779       }
780     }
781 
782     TheFn->setLinkage(GlobalValue::ExternalLinkage);
783     TheFn->setVisibility(GlobalValue::HiddenVisibility);
784     TheFn->setName(NewName);
785   }
786 
787   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
788   Res->SingleImplName = TheFn->getName();
789 
790   return true;
791 }
792 
793 bool DevirtModule::tryEvaluateFunctionsWithArgs(
794     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
795     ArrayRef<uint64_t> Args) {
796   // Evaluate each function and store the result in each target's RetVal
797   // field.
798   for (VirtualCallTarget &Target : TargetsForSlot) {
799     if (Target.Fn->arg_size() != Args.size() + 1)
800       return false;
801 
802     Evaluator Eval(M.getDataLayout(), nullptr);
803     SmallVector<Constant *, 2> EvalArgs;
804     EvalArgs.push_back(
805         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
806     for (unsigned I = 0; I != Args.size(); ++I) {
807       auto *ArgTy = dyn_cast<IntegerType>(
808           Target.Fn->getFunctionType()->getParamType(I + 1));
809       if (!ArgTy)
810         return false;
811       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
812     }
813 
814     Constant *RetVal;
815     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
816         !isa<ConstantInt>(RetVal))
817       return false;
818     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
819   }
820   return true;
821 }
822 
823 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
824                                          uint64_t TheRetVal) {
825   for (auto Call : CSInfo.CallSites)
826     Call.replaceAndErase(
827         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
828         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
829   CSInfo.markDevirt();
830 }
831 
832 bool DevirtModule::tryUniformRetValOpt(
833     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
834     WholeProgramDevirtResolution::ByArg *Res) {
835   // Uniform return value optimization. If all functions return the same
836   // constant, replace all calls with that constant.
837   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
838   for (const VirtualCallTarget &Target : TargetsForSlot)
839     if (Target.RetVal != TheRetVal)
840       return false;
841 
842   if (CSInfo.isExported()) {
843     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
844     Res->Info = TheRetVal;
845   }
846 
847   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
848   if (RemarksEnabled)
849     for (auto &&Target : TargetsForSlot)
850       Target.WasDevirt = true;
851   return true;
852 }
853 
854 std::string DevirtModule::getGlobalName(VTableSlot Slot,
855                                         ArrayRef<uint64_t> Args,
856                                         StringRef Name) {
857   std::string FullName = "__typeid_";
858   raw_string_ostream OS(FullName);
859   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
860   for (uint64_t Arg : Args)
861     OS << '_' << Arg;
862   OS << '_' << Name;
863   return OS.str();
864 }
865 
866 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
867   Triple T(M.getTargetTriple());
868   return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
869          T.getObjectFormat() == Triple::ELF;
870 }
871 
872 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
873                                 StringRef Name, Constant *C) {
874   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
875                                         getGlobalName(Slot, Args, Name), C, &M);
876   GA->setVisibility(GlobalValue::HiddenVisibility);
877 }
878 
879 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
880                                   StringRef Name, uint32_t Const,
881                                   uint32_t &Storage) {
882   if (shouldExportConstantsAsAbsoluteSymbols()) {
883     exportGlobal(
884         Slot, Args, Name,
885         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
886     return;
887   }
888 
889   Storage = Const;
890 }
891 
892 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
893                                      StringRef Name) {
894   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
895   auto *GV = dyn_cast<GlobalVariable>(C);
896   if (GV)
897     GV->setVisibility(GlobalValue::HiddenVisibility);
898   return C;
899 }
900 
901 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
902                                        StringRef Name, IntegerType *IntTy,
903                                        uint32_t Storage) {
904   if (!shouldExportConstantsAsAbsoluteSymbols())
905     return ConstantInt::get(IntTy, Storage);
906 
907   Constant *C = importGlobal(Slot, Args, Name);
908   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
909   C = ConstantExpr::getPtrToInt(C, IntTy);
910 
911   // We only need to set metadata if the global is newly created, in which
912   // case it would not have hidden visibility.
913   if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
914     return C;
915 
916   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
917     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
918     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
919     GV->setMetadata(LLVMContext::MD_absolute_symbol,
920                     MDNode::get(M.getContext(), {MinC, MaxC}));
921   };
922   unsigned AbsWidth = IntTy->getBitWidth();
923   if (AbsWidth == IntPtrTy->getBitWidth())
924     SetAbsRange(~0ull, ~0ull); // Full set.
925   else
926     SetAbsRange(0, 1ull << AbsWidth);
927   return C;
928 }
929 
930 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
931                                         bool IsOne,
932                                         Constant *UniqueMemberAddr) {
933   for (auto &&Call : CSInfo.CallSites) {
934     IRBuilder<> B(Call.CS.getInstruction());
935     Value *Cmp =
936         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
937                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
938     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
939     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
940                          Cmp);
941   }
942   CSInfo.markDevirt();
943 }
944 
945 bool DevirtModule::tryUniqueRetValOpt(
946     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
947     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
948     VTableSlot Slot, ArrayRef<uint64_t> Args) {
949   // IsOne controls whether we look for a 0 or a 1.
950   auto tryUniqueRetValOptFor = [&](bool IsOne) {
951     const TypeMemberInfo *UniqueMember = nullptr;
952     for (const VirtualCallTarget &Target : TargetsForSlot) {
953       if (Target.RetVal == (IsOne ? 1 : 0)) {
954         if (UniqueMember)
955           return false;
956         UniqueMember = Target.TM;
957       }
958     }
959 
960     // We should have found a unique member or bailed out by now. We already
961     // checked for a uniform return value in tryUniformRetValOpt.
962     assert(UniqueMember);
963 
964     Constant *UniqueMemberAddr =
965         ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy);
966     UniqueMemberAddr = ConstantExpr::getGetElementPtr(
967         Int8Ty, UniqueMemberAddr,
968         ConstantInt::get(Int64Ty, UniqueMember->Offset));
969 
970     if (CSInfo.isExported()) {
971       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
972       Res->Info = IsOne;
973 
974       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
975     }
976 
977     // Replace each call with the comparison.
978     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
979                          UniqueMemberAddr);
980 
981     // Update devirtualization statistics for targets.
982     if (RemarksEnabled)
983       for (auto &&Target : TargetsForSlot)
984         Target.WasDevirt = true;
985 
986     return true;
987   };
988 
989   if (BitWidth == 1) {
990     if (tryUniqueRetValOptFor(true))
991       return true;
992     if (tryUniqueRetValOptFor(false))
993       return true;
994   }
995   return false;
996 }
997 
998 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
999                                          Constant *Byte, Constant *Bit) {
1000   for (auto Call : CSInfo.CallSites) {
1001     auto *RetType = cast<IntegerType>(Call.CS.getType());
1002     IRBuilder<> B(Call.CS.getInstruction());
1003     Value *Addr =
1004         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1005     if (RetType->getBitWidth() == 1) {
1006       Value *Bits = B.CreateLoad(Addr);
1007       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1008       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1009       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1010                            OREGetter, IsBitSet);
1011     } else {
1012       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1013       Value *Val = B.CreateLoad(RetType, ValAddr);
1014       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1015                            OREGetter, Val);
1016     }
1017   }
1018   CSInfo.markDevirt();
1019 }
1020 
1021 bool DevirtModule::tryVirtualConstProp(
1022     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1023     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1024   // This only works if the function returns an integer.
1025   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1026   if (!RetType)
1027     return false;
1028   unsigned BitWidth = RetType->getBitWidth();
1029   if (BitWidth > 64)
1030     return false;
1031 
1032   // Make sure that each function is defined, does not access memory, takes at
1033   // least one argument, does not use its first argument (which we assume is
1034   // 'this'), and has the same return type.
1035   //
1036   // Note that we test whether this copy of the function is readnone, rather
1037   // than testing function attributes, which must hold for any copy of the
1038   // function, even a less optimized version substituted at link time. This is
1039   // sound because the virtual constant propagation optimizations effectively
1040   // inline all implementations of the virtual function into each call site,
1041   // rather than using function attributes to perform local optimization.
1042   for (VirtualCallTarget &Target : TargetsForSlot) {
1043     if (Target.Fn->isDeclaration() ||
1044         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1045             MAK_ReadNone ||
1046         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1047         Target.Fn->getReturnType() != RetType)
1048       return false;
1049   }
1050 
1051   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1052     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1053       continue;
1054 
1055     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1056     if (Res)
1057       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1058 
1059     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1060       continue;
1061 
1062     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1063                            ResByArg, Slot, CSByConstantArg.first))
1064       continue;
1065 
1066     // Find an allocation offset in bits in all vtables associated with the
1067     // type.
1068     uint64_t AllocBefore =
1069         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1070     uint64_t AllocAfter =
1071         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1072 
1073     // Calculate the total amount of padding needed to store a value at both
1074     // ends of the object.
1075     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1076     for (auto &&Target : TargetsForSlot) {
1077       TotalPaddingBefore += std::max<int64_t>(
1078           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1079       TotalPaddingAfter += std::max<int64_t>(
1080           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1081     }
1082 
1083     // If the amount of padding is too large, give up.
1084     // FIXME: do something smarter here.
1085     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1086       continue;
1087 
1088     // Calculate the offset to the value as a (possibly negative) byte offset
1089     // and (if applicable) a bit offset, and store the values in the targets.
1090     int64_t OffsetByte;
1091     uint64_t OffsetBit;
1092     if (TotalPaddingBefore <= TotalPaddingAfter)
1093       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1094                             OffsetBit);
1095     else
1096       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1097                            OffsetBit);
1098 
1099     if (RemarksEnabled)
1100       for (auto &&Target : TargetsForSlot)
1101         Target.WasDevirt = true;
1102 
1103 
1104     if (CSByConstantArg.second.isExported()) {
1105       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1106       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1107                      ResByArg->Byte);
1108       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1109                      ResByArg->Bit);
1110     }
1111 
1112     // Rewrite each call to a load from OffsetByte/OffsetBit.
1113     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1114     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1115     applyVirtualConstProp(CSByConstantArg.second,
1116                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1117   }
1118   return true;
1119 }
1120 
1121 void DevirtModule::rebuildGlobal(VTableBits &B) {
1122   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1123     return;
1124 
1125   // Align each byte array to pointer width.
1126   unsigned PointerSize = M.getDataLayout().getPointerSize();
1127   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
1128   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
1129 
1130   // Before was stored in reverse order; flip it now.
1131   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1132     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1133 
1134   // Build an anonymous global containing the before bytes, followed by the
1135   // original initializer, followed by the after bytes.
1136   auto NewInit = ConstantStruct::getAnon(
1137       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1138        B.GV->getInitializer(),
1139        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1140   auto NewGV =
1141       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1142                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1143   NewGV->setSection(B.GV->getSection());
1144   NewGV->setComdat(B.GV->getComdat());
1145 
1146   // Copy the original vtable's metadata to the anonymous global, adjusting
1147   // offsets as required.
1148   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1149 
1150   // Build an alias named after the original global, pointing at the second
1151   // element (the original initializer).
1152   auto Alias = GlobalAlias::create(
1153       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1154       ConstantExpr::getGetElementPtr(
1155           NewInit->getType(), NewGV,
1156           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1157                                ConstantInt::get(Int32Ty, 1)}),
1158       &M);
1159   Alias->setVisibility(B.GV->getVisibility());
1160   Alias->takeName(B.GV);
1161 
1162   B.GV->replaceAllUsesWith(Alias);
1163   B.GV->eraseFromParent();
1164 }
1165 
1166 bool DevirtModule::areRemarksEnabled() {
1167   const auto &FL = M.getFunctionList();
1168   if (FL.empty())
1169     return false;
1170   const Function &Fn = FL.front();
1171 
1172   const auto &BBL = Fn.getBasicBlockList();
1173   if (BBL.empty())
1174     return false;
1175   auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1176   return DI.isEnabled();
1177 }
1178 
1179 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1180                                      Function *AssumeFunc) {
1181   // Find all virtual calls via a virtual table pointer %p under an assumption
1182   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1183   // points to a member of the type identifier %md. Group calls by (type ID,
1184   // offset) pair (effectively the identity of the virtual function) and store
1185   // to CallSlots.
1186   DenseSet<Value *> SeenPtrs;
1187   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1188        I != E;) {
1189     auto CI = dyn_cast<CallInst>(I->getUser());
1190     ++I;
1191     if (!CI)
1192       continue;
1193 
1194     // Search for virtual calls based on %p and add them to DevirtCalls.
1195     SmallVector<DevirtCallSite, 1> DevirtCalls;
1196     SmallVector<CallInst *, 1> Assumes;
1197     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
1198 
1199     // If we found any, add them to CallSlots. Only do this if we haven't seen
1200     // the vtable pointer before, as it may have been CSE'd with pointers from
1201     // other call sites, and we don't want to process call sites multiple times.
1202     if (!Assumes.empty()) {
1203       Metadata *TypeId =
1204           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1205       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1206       if (SeenPtrs.insert(Ptr).second) {
1207         for (DevirtCallSite Call : DevirtCalls) {
1208           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1209         }
1210       }
1211     }
1212 
1213     // We no longer need the assumes or the type test.
1214     for (auto Assume : Assumes)
1215       Assume->eraseFromParent();
1216     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1217     // may use the vtable argument later.
1218     if (CI->use_empty())
1219       CI->eraseFromParent();
1220   }
1221 }
1222 
1223 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1224   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1225 
1226   for (auto I = TypeCheckedLoadFunc->use_begin(),
1227             E = TypeCheckedLoadFunc->use_end();
1228        I != E;) {
1229     auto CI = dyn_cast<CallInst>(I->getUser());
1230     ++I;
1231     if (!CI)
1232       continue;
1233 
1234     Value *Ptr = CI->getArgOperand(0);
1235     Value *Offset = CI->getArgOperand(1);
1236     Value *TypeIdValue = CI->getArgOperand(2);
1237     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1238 
1239     SmallVector<DevirtCallSite, 1> DevirtCalls;
1240     SmallVector<Instruction *, 1> LoadedPtrs;
1241     SmallVector<Instruction *, 1> Preds;
1242     bool HasNonCallUses = false;
1243     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1244                                                HasNonCallUses, CI);
1245 
1246     // Start by generating "pessimistic" code that explicitly loads the function
1247     // pointer from the vtable and performs the type check. If possible, we will
1248     // eliminate the load and the type check later.
1249 
1250     // If possible, only generate the load at the point where it is used.
1251     // This helps avoid unnecessary spills.
1252     IRBuilder<> LoadB(
1253         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1254     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1255     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1256     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1257 
1258     for (Instruction *LoadedPtr : LoadedPtrs) {
1259       LoadedPtr->replaceAllUsesWith(LoadedValue);
1260       LoadedPtr->eraseFromParent();
1261     }
1262 
1263     // Likewise for the type test.
1264     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1265     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1266 
1267     for (Instruction *Pred : Preds) {
1268       Pred->replaceAllUsesWith(TypeTestCall);
1269       Pred->eraseFromParent();
1270     }
1271 
1272     // We have already erased any extractvalue instructions that refer to the
1273     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1274     // (although this is unlikely). In that case, explicitly build a pair and
1275     // RAUW it.
1276     if (!CI->use_empty()) {
1277       Value *Pair = UndefValue::get(CI->getType());
1278       IRBuilder<> B(CI);
1279       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1280       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1281       CI->replaceAllUsesWith(Pair);
1282     }
1283 
1284     // The number of unsafe uses is initially the number of uses.
1285     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1286     NumUnsafeUses = DevirtCalls.size();
1287 
1288     // If the function pointer has a non-call user, we cannot eliminate the type
1289     // check, as one of those users may eventually call the pointer. Increment
1290     // the unsafe use count to make sure it cannot reach zero.
1291     if (HasNonCallUses)
1292       ++NumUnsafeUses;
1293     for (DevirtCallSite Call : DevirtCalls) {
1294       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1295                                                    &NumUnsafeUses);
1296     }
1297 
1298     CI->eraseFromParent();
1299   }
1300 }
1301 
1302 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1303   const TypeIdSummary *TidSummary =
1304       ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
1305   if (!TidSummary)
1306     return;
1307   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1308   if (ResI == TidSummary->WPDRes.end())
1309     return;
1310   const WholeProgramDevirtResolution &Res = ResI->second;
1311 
1312   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1313     // The type of the function in the declaration is irrelevant because every
1314     // call site will cast it to the correct type.
1315     auto *SingleImpl = M.getOrInsertFunction(
1316         Res.SingleImplName, Type::getVoidTy(M.getContext()));
1317 
1318     // This is the import phase so we should not be exporting anything.
1319     bool IsExported = false;
1320     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1321     assert(!IsExported);
1322   }
1323 
1324   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1325     auto I = Res.ResByArg.find(CSByConstantArg.first);
1326     if (I == Res.ResByArg.end())
1327       continue;
1328     auto &ResByArg = I->second;
1329     // FIXME: We should figure out what to do about the "function name" argument
1330     // to the apply* functions, as the function names are unavailable during the
1331     // importing phase. For now we just pass the empty string. This does not
1332     // impact correctness because the function names are just used for remarks.
1333     switch (ResByArg.TheKind) {
1334     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1335       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1336       break;
1337     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1338       Constant *UniqueMemberAddr =
1339           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1340       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1341                            UniqueMemberAddr);
1342       break;
1343     }
1344     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1345       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1346                                       Int32Ty, ResByArg.Byte);
1347       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1348                                      ResByArg.Bit);
1349       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1350     }
1351     default:
1352       break;
1353     }
1354   }
1355 }
1356 
1357 void DevirtModule::removeRedundantTypeTests() {
1358   auto True = ConstantInt::getTrue(M.getContext());
1359   for (auto &&U : NumUnsafeUsesForTypeTest) {
1360     if (U.second == 0) {
1361       U.first->replaceAllUsesWith(True);
1362       U.first->eraseFromParent();
1363     }
1364   }
1365 }
1366 
1367 bool DevirtModule::run() {
1368   Function *TypeTestFunc =
1369       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1370   Function *TypeCheckedLoadFunc =
1371       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1372   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1373 
1374   // Normally if there are no users of the devirtualization intrinsics in the
1375   // module, this pass has nothing to do. But if we are exporting, we also need
1376   // to handle any users that appear only in the function summaries.
1377   if (!ExportSummary &&
1378       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1379        AssumeFunc->use_empty()) &&
1380       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1381     return false;
1382 
1383   if (TypeTestFunc && AssumeFunc)
1384     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1385 
1386   if (TypeCheckedLoadFunc)
1387     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1388 
1389   if (ImportSummary) {
1390     for (auto &S : CallSlots)
1391       importResolution(S.first, S.second);
1392 
1393     removeRedundantTypeTests();
1394 
1395     // The rest of the code is only necessary when exporting or during regular
1396     // LTO, so we are done.
1397     return true;
1398   }
1399 
1400   // Rebuild type metadata into a map for easy lookup.
1401   std::vector<VTableBits> Bits;
1402   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1403   buildTypeIdentifierMap(Bits, TypeIdMap);
1404   if (TypeIdMap.empty())
1405     return true;
1406 
1407   // Collect information from summary about which calls to try to devirtualize.
1408   if (ExportSummary) {
1409     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1410     for (auto &P : TypeIdMap) {
1411       if (auto *TypeId = dyn_cast<MDString>(P.first))
1412         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1413             TypeId);
1414     }
1415 
1416     for (auto &P : *ExportSummary) {
1417       for (auto &S : P.second.SummaryList) {
1418         auto *FS = dyn_cast<FunctionSummary>(S.get());
1419         if (!FS)
1420           continue;
1421         // FIXME: Only add live functions.
1422         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1423           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1424             CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers =
1425                 true;
1426           }
1427         }
1428         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1429           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1430             CallSlots[{MD, VF.Offset}]
1431                 .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS);
1432           }
1433         }
1434         for (const FunctionSummary::ConstVCall &VC :
1435              FS->type_test_assume_const_vcalls()) {
1436           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1437             CallSlots[{MD, VC.VFunc.Offset}]
1438                 .ConstCSInfo[VC.Args]
1439                 .SummaryHasTypeTestAssumeUsers = true;
1440           }
1441         }
1442         for (const FunctionSummary::ConstVCall &VC :
1443              FS->type_checked_load_const_vcalls()) {
1444           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1445             CallSlots[{MD, VC.VFunc.Offset}]
1446                 .ConstCSInfo[VC.Args]
1447                 .SummaryTypeCheckedLoadUsers.push_back(FS);
1448           }
1449         }
1450       }
1451     }
1452   }
1453 
1454   // For each (type, offset) pair:
1455   bool DidVirtualConstProp = false;
1456   std::map<std::string, Function*> DevirtTargets;
1457   for (auto &S : CallSlots) {
1458     // Search each of the members of the type identifier for the virtual
1459     // function implementation at offset S.first.ByteOffset, and add to
1460     // TargetsForSlot.
1461     std::vector<VirtualCallTarget> TargetsForSlot;
1462     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1463                                   S.first.ByteOffset)) {
1464       WholeProgramDevirtResolution *Res = nullptr;
1465       if (ExportSummary && isa<MDString>(S.first.TypeID))
1466         Res = &ExportSummary
1467                    ->getOrInsertTypeIdSummary(
1468                        cast<MDString>(S.first.TypeID)->getString())
1469                    .WPDRes[S.first.ByteOffset];
1470 
1471       if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) &&
1472           tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first))
1473         DidVirtualConstProp = true;
1474 
1475       // Collect functions devirtualized at least for one call site for stats.
1476       if (RemarksEnabled)
1477         for (const auto &T : TargetsForSlot)
1478           if (T.WasDevirt)
1479             DevirtTargets[T.Fn->getName()] = T.Fn;
1480     }
1481 
1482     // CFI-specific: if we are exporting and any llvm.type.checked.load
1483     // intrinsics were *not* devirtualized, we need to add the resulting
1484     // llvm.type.test intrinsics to the function summaries so that the
1485     // LowerTypeTests pass will export them.
1486     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1487       auto GUID =
1488           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1489       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1490         FS->addTypeTest(GUID);
1491       for (auto &CCS : S.second.ConstCSInfo)
1492         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1493           FS->addTypeTest(GUID);
1494     }
1495   }
1496 
1497   if (RemarksEnabled) {
1498     // Generate remarks for each devirtualized function.
1499     for (const auto &DT : DevirtTargets) {
1500       Function *F = DT.second;
1501 
1502       // In the new pass manager, we can request the optimization
1503       // remark emitter pass on a per-function-basis, which the
1504       // OREGetter will do for us.
1505       // In the old pass manager, this is harder, so we just build
1506       // a optimization remark emitter on the fly, when we need it.
1507       std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1508       OptimizationRemarkEmitter *ORE;
1509       if (OREGetter)
1510         ORE = &OREGetter(F);
1511       else {
1512         OwnedORE = make_unique<OptimizationRemarkEmitter>(F);
1513         ORE = OwnedORE.get();
1514       }
1515 
1516       using namespace ore;
1517       ORE->emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1518                 << "devirtualized " << NV("FunctionName", F->getName()));
1519     }
1520   }
1521 
1522   removeRedundantTypeTests();
1523 
1524   // Rebuild each global we touched as part of virtual constant propagation to
1525   // include the before and after bytes.
1526   if (DidVirtualConstProp)
1527     for (VTableBits &B : Bits)
1528       rebuildGlobal(B);
1529 
1530   return true;
1531 }
1532