1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via bitset information) that the list of callee is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/Utils/Evaluator.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 
47 #include <set>
48 
49 using namespace llvm;
50 using namespace wholeprogramdevirt;
51 
52 #define DEBUG_TYPE "wholeprogramdevirt"
53 
54 // Find the minimum offset that we may store a value of size Size bits at. If
55 // IsAfter is set, look for an offset before the object, otherwise look for an
56 // offset after the object.
57 uint64_t
58 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
59                                      bool IsAfter, uint64_t Size) {
60   // Find a minimum offset taking into account only vtable sizes.
61   uint64_t MinByte = 0;
62   for (const VirtualCallTarget &Target : Targets) {
63     if (IsAfter)
64       MinByte = std::max(MinByte, Target.minAfterBytes());
65     else
66       MinByte = std::max(MinByte, Target.minBeforeBytes());
67   }
68 
69   // Build a vector of arrays of bytes covering, for each target, a slice of the
70   // used region (see AccumBitVector::BytesUsed in
71   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
72   // this aligns the used regions to start at MinByte.
73   //
74   // In this example, A, B and C are vtables, # is a byte already allocated for
75   // a virtual function pointer, AAAA... (etc.) are the used regions for the
76   // vtables and Offset(X) is the value computed for the Offset variable below
77   // for X.
78   //
79   //                    Offset(A)
80   //                    |       |
81   //                            |MinByte
82   // A: ################AAAAAAAA|AAAAAAAA
83   // B: ########BBBBBBBBBBBBBBBB|BBBB
84   // C: ########################|CCCCCCCCCCCCCCCC
85   //            |   Offset(B)   |
86   //
87   // This code produces the slices of A, B and C that appear after the divider
88   // at MinByte.
89   std::vector<ArrayRef<uint8_t>> Used;
90   for (const VirtualCallTarget &Target : Targets) {
91     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
92                                        : Target.BS->Bits->Before.BytesUsed;
93     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
94                               : MinByte - Target.minBeforeBytes();
95 
96     // Disregard used regions that are smaller than Offset. These are
97     // effectively all-free regions that do not need to be checked.
98     if (VTUsed.size() > Offset)
99       Used.push_back(VTUsed.slice(Offset));
100   }
101 
102   if (Size == 1) {
103     // Find a free bit in each member of Used.
104     for (unsigned I = 0;; ++I) {
105       uint8_t BitsUsed = 0;
106       for (auto &&B : Used)
107         if (I < B.size())
108           BitsUsed |= B[I];
109       if (BitsUsed != 0xff)
110         return (MinByte + I) * 8 +
111                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
112     }
113   } else {
114     // Find a free (Size/8) byte region in each member of Used.
115     // FIXME: see if alignment helps.
116     for (unsigned I = 0;; ++I) {
117       for (auto &&B : Used) {
118         unsigned Byte = 0;
119         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
120           if (B[I + Byte])
121             goto NextI;
122           ++Byte;
123         }
124       }
125       return (MinByte + I) * 8;
126     NextI:;
127     }
128   }
129 }
130 
131 void wholeprogramdevirt::setBeforeReturnValues(
132     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
133     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
134   if (BitWidth == 1)
135     OffsetByte = -(AllocBefore / 8 + 1);
136   else
137     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
138   OffsetBit = AllocBefore % 8;
139 
140   for (VirtualCallTarget &Target : Targets) {
141     if (BitWidth == 1)
142       Target.setBeforeBit(AllocBefore);
143     else
144       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
145   }
146 }
147 
148 void wholeprogramdevirt::setAfterReturnValues(
149     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
150     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
151   if (BitWidth == 1)
152     OffsetByte = AllocAfter / 8;
153   else
154     OffsetByte = (AllocAfter + 7) / 8;
155   OffsetBit = AllocAfter % 8;
156 
157   for (VirtualCallTarget &Target : Targets) {
158     if (BitWidth == 1)
159       Target.setAfterBit(AllocAfter);
160     else
161       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
162   }
163 }
164 
165 VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
166     : Fn(Fn), BS(BS),
167       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
168 
169 namespace {
170 
171 // A slot in a set of virtual tables. The BitSetID identifies the set of virtual
172 // tables, and the ByteOffset is the offset in bytes from the address point to
173 // the virtual function pointer.
174 struct VTableSlot {
175   Metadata *BitSetID;
176   uint64_t ByteOffset;
177 };
178 
179 }
180 
181 namespace llvm {
182 
183 template <> struct DenseMapInfo<VTableSlot> {
184   static VTableSlot getEmptyKey() {
185     return {DenseMapInfo<Metadata *>::getEmptyKey(),
186             DenseMapInfo<uint64_t>::getEmptyKey()};
187   }
188   static VTableSlot getTombstoneKey() {
189     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
190             DenseMapInfo<uint64_t>::getTombstoneKey()};
191   }
192   static unsigned getHashValue(const VTableSlot &I) {
193     return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
194            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
195   }
196   static bool isEqual(const VTableSlot &LHS,
197                       const VTableSlot &RHS) {
198     return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
199   }
200 };
201 
202 }
203 
204 namespace {
205 
206 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
207 // the indirect virtual call.
208 struct VirtualCallSite {
209   Value *VTable;
210   CallSite CS;
211 
212   void replaceAndErase(Value *New) {
213     CS->replaceAllUsesWith(New);
214     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
215       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
216       II->getUnwindDest()->removePredecessor(II->getParent());
217     }
218     CS->eraseFromParent();
219   }
220 };
221 
222 struct DevirtModule {
223   Module &M;
224   IntegerType *Int8Ty;
225   PointerType *Int8PtrTy;
226   IntegerType *Int32Ty;
227 
228   MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
229 
230   DevirtModule(Module &M)
231       : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
232         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
233         Int32Ty(Type::getInt32Ty(M.getContext())) {}
234   void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
235                                      uint64_t Offset, Value *VTable);
236   void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
237                                  Value *VTable);
238 
239   void buildBitSets(std::vector<VTableBits> &Bits,
240                     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
241   bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
242                                  const std::set<BitSetInfo> &BitSetInfos,
243                                  uint64_t ByteOffset);
244   bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
245                            MutableArrayRef<VirtualCallSite> CallSites);
246   bool tryEvaluateFunctionsWithArgs(
247       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
248       ArrayRef<ConstantInt *> Args);
249   bool tryUniformRetValOpt(IntegerType *RetType,
250                            ArrayRef<VirtualCallTarget> TargetsForSlot,
251                            MutableArrayRef<VirtualCallSite> CallSites);
252   bool tryUniqueRetValOpt(unsigned BitWidth,
253                           ArrayRef<VirtualCallTarget> TargetsForSlot,
254                           MutableArrayRef<VirtualCallSite> CallSites);
255   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
256                            ArrayRef<VirtualCallSite> CallSites);
257 
258   void rebuildGlobal(VTableBits &B);
259 
260   bool run();
261 };
262 
263 struct WholeProgramDevirt : public ModulePass {
264   static char ID;
265   WholeProgramDevirt() : ModulePass(ID) {
266     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
267   }
268   bool runOnModule(Module &M) { return DevirtModule(M).run(); }
269 };
270 
271 } // anonymous namespace
272 
273 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
274                 "Whole program devirtualization", false, false)
275 char WholeProgramDevirt::ID = 0;
276 
277 ModulePass *llvm::createWholeProgramDevirtPass() {
278   return new WholeProgramDevirt;
279 }
280 
281 // Search for virtual calls that call FPtr and add them to CallSlots.
282 void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
283                                              uint64_t Offset, Value *VTable) {
284   for (const Use &U : FPtr->uses()) {
285     Value *User = U.getUser();
286     if (isa<BitCastInst>(User)) {
287       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
288     } else if (auto CI = dyn_cast<CallInst>(User)) {
289       CallSlots[{BitSet, Offset}].push_back({VTable, CI});
290     } else if (auto II = dyn_cast<InvokeInst>(User)) {
291       CallSlots[{BitSet, Offset}].push_back({VTable, II});
292     }
293   }
294 }
295 
296 // Search for virtual calls that load from VPtr and add them to CallSlots.
297 void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
298                                                  uint64_t Offset,
299                                                  Value *VTable) {
300   for (const Use &U : VPtr->uses()) {
301     Value *User = U.getUser();
302     if (isa<BitCastInst>(User)) {
303       findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
304     } else if (isa<LoadInst>(User)) {
305       findCallsAtConstantOffset(BitSet, User, Offset, VTable);
306     } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
307       // Take into account the GEP offset.
308       if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
309         SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
310         uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
311             GEP->getSourceElementType(), Indices);
312         findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
313       }
314     }
315   }
316 }
317 
318 void DevirtModule::buildBitSets(
319     std::vector<VTableBits> &Bits,
320     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
321   NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
322   if (!BitSetNM)
323     return;
324 
325   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
326   Bits.reserve(BitSetNM->getNumOperands());
327   for (auto Op : BitSetNM->operands()) {
328     auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
329     if (!OpConstMD)
330       continue;
331     auto BitSetID = Op->getOperand(0).get();
332 
333     Constant *OpConst = OpConstMD->getValue();
334     if (auto GA = dyn_cast<GlobalAlias>(OpConst))
335       OpConst = GA->getAliasee();
336     auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
337     if (!OpGlobal)
338       continue;
339 
340     uint64_t Offset =
341         cast<ConstantInt>(
342             cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
343             ->getZExtValue();
344 
345     VTableBits *&BitsPtr = GVToBits[OpGlobal];
346     if (!BitsPtr) {
347       Bits.emplace_back();
348       Bits.back().GV = OpGlobal;
349       Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
350           OpGlobal->getInitializer()->getType());
351       BitsPtr = &Bits.back();
352     }
353     BitSets[BitSetID].insert({BitsPtr, Offset});
354   }
355 }
356 
357 bool DevirtModule::tryFindVirtualCallTargets(
358     std::vector<VirtualCallTarget> &TargetsForSlot,
359     const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
360   for (const BitSetInfo &BS : BitSetInfos) {
361     if (!BS.Bits->GV->isConstant())
362       return false;
363 
364     auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
365     if (!Init)
366       return false;
367     ArrayType *VTableTy = Init->getType();
368 
369     uint64_t ElemSize =
370         M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
371     uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
372     if (GlobalSlotOffset % ElemSize != 0)
373       return false;
374 
375     unsigned Op = GlobalSlotOffset / ElemSize;
376     if (Op >= Init->getNumOperands())
377       return false;
378 
379     auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
380     if (!Fn)
381       return false;
382 
383     // We can disregard __cxa_pure_virtual as a possible call target, as
384     // calls to pure virtuals are UB.
385     if (Fn->getName() == "__cxa_pure_virtual")
386       continue;
387 
388     TargetsForSlot.push_back({Fn, &BS});
389   }
390 
391   // Give up if we couldn't find any targets.
392   return !TargetsForSlot.empty();
393 }
394 
395 bool DevirtModule::trySingleImplDevirt(
396     ArrayRef<VirtualCallTarget> TargetsForSlot,
397     MutableArrayRef<VirtualCallSite> CallSites) {
398   // See if the program contains a single implementation of this virtual
399   // function.
400   Function *TheFn = TargetsForSlot[0].Fn;
401   for (auto &&Target : TargetsForSlot)
402     if (TheFn != Target.Fn)
403       return false;
404 
405   // If so, update each call site to call that implementation directly.
406   for (auto &&VCallSite : CallSites) {
407     VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
408         TheFn, VCallSite.CS.getCalledValue()->getType()));
409   }
410   return true;
411 }
412 
413 bool DevirtModule::tryEvaluateFunctionsWithArgs(
414     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
415     ArrayRef<ConstantInt *> Args) {
416   // Evaluate each function and store the result in each target's RetVal
417   // field.
418   for (VirtualCallTarget &Target : TargetsForSlot) {
419     if (Target.Fn->arg_size() != Args.size() + 1)
420       return false;
421     for (unsigned I = 0; I != Args.size(); ++I)
422       if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
423           Args[I]->getType())
424         return false;
425 
426     Evaluator Eval(M.getDataLayout(), nullptr);
427     SmallVector<Constant *, 2> EvalArgs;
428     EvalArgs.push_back(
429         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
430     EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
431     Constant *RetVal;
432     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
433         !isa<ConstantInt>(RetVal))
434       return false;
435     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
436   }
437   return true;
438 }
439 
440 bool DevirtModule::tryUniformRetValOpt(
441     IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
442     MutableArrayRef<VirtualCallSite> CallSites) {
443   // Uniform return value optimization. If all functions return the same
444   // constant, replace all calls with that constant.
445   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
446   for (const VirtualCallTarget &Target : TargetsForSlot)
447     if (Target.RetVal != TheRetVal)
448       return false;
449 
450   auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
451   for (auto Call : CallSites)
452     Call.replaceAndErase(TheRetValConst);
453   return true;
454 }
455 
456 bool DevirtModule::tryUniqueRetValOpt(
457     unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
458     MutableArrayRef<VirtualCallSite> CallSites) {
459   // IsOne controls whether we look for a 0 or a 1.
460   auto tryUniqueRetValOptFor = [&](bool IsOne) {
461     const BitSetInfo *UniqueBitSet = 0;
462     for (const VirtualCallTarget &Target : TargetsForSlot) {
463       if (Target.RetVal == (IsOne ? 1 : 0)) {
464         if (UniqueBitSet)
465           return false;
466         UniqueBitSet = Target.BS;
467       }
468     }
469 
470     // We should have found a unique bit set or bailed out by now. We already
471     // checked for a uniform return value in tryUniformRetValOpt.
472     assert(UniqueBitSet);
473 
474     // Replace each call with the comparison.
475     for (auto &&Call : CallSites) {
476       IRBuilder<> B(Call.CS.getInstruction());
477       Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
478       OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
479       Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
480                                 Call.VTable, OneAddr);
481       Call.replaceAndErase(Cmp);
482     }
483     return true;
484   };
485 
486   if (BitWidth == 1) {
487     if (tryUniqueRetValOptFor(true))
488       return true;
489     if (tryUniqueRetValOptFor(false))
490       return true;
491   }
492   return false;
493 }
494 
495 bool DevirtModule::tryVirtualConstProp(
496     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
497     ArrayRef<VirtualCallSite> CallSites) {
498   // This only works if the function returns an integer.
499   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
500   if (!RetType)
501     return false;
502   unsigned BitWidth = RetType->getBitWidth();
503   if (BitWidth > 64)
504     return false;
505 
506   // Make sure that each function does not access memory, takes at least one
507   // argument, does not use its first argument (which we assume is 'this'),
508   // and has the same return type.
509   for (VirtualCallTarget &Target : TargetsForSlot) {
510     if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
511         !Target.Fn->arg_begin()->use_empty() ||
512         Target.Fn->getReturnType() != RetType)
513       return false;
514   }
515 
516   // Group call sites by the list of constant arguments they pass.
517   // The comparator ensures deterministic ordering.
518   struct ByAPIntValue {
519     bool operator()(const std::vector<ConstantInt *> &A,
520                     const std::vector<ConstantInt *> &B) const {
521       return std::lexicographical_compare(
522           A.begin(), A.end(), B.begin(), B.end(),
523           [](ConstantInt *AI, ConstantInt *BI) {
524             return AI->getValue().ult(BI->getValue());
525           });
526     }
527   };
528   std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
529            ByAPIntValue>
530       VCallSitesByConstantArg;
531   for (auto &&VCallSite : CallSites) {
532     std::vector<ConstantInt *> Args;
533     if (VCallSite.CS.getType() != RetType)
534       continue;
535     for (auto &&Arg :
536          make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
537       if (!isa<ConstantInt>(Arg))
538         break;
539       Args.push_back(cast<ConstantInt>(&Arg));
540     }
541     if (Args.size() + 1 != VCallSite.CS.arg_size())
542       continue;
543 
544     VCallSitesByConstantArg[Args].push_back(VCallSite);
545   }
546 
547   for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
548     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
549       continue;
550 
551     if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
552       continue;
553 
554     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
555       continue;
556 
557     // Find an allocation offset in bits in all vtables in the bitset.
558     uint64_t AllocBefore =
559         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
560     uint64_t AllocAfter =
561         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
562 
563     // Calculate the total amount of padding needed to store a value at both
564     // ends of the object.
565     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
566     for (auto &&Target : TargetsForSlot) {
567       TotalPaddingBefore += std::max<int64_t>(
568           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
569       TotalPaddingAfter += std::max<int64_t>(
570           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
571     }
572 
573     // If the amount of padding is too large, give up.
574     // FIXME: do something smarter here.
575     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
576       continue;
577 
578     // Calculate the offset to the value as a (possibly negative) byte offset
579     // and (if applicable) a bit offset, and store the values in the targets.
580     int64_t OffsetByte;
581     uint64_t OffsetBit;
582     if (TotalPaddingBefore <= TotalPaddingAfter)
583       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
584                             OffsetBit);
585     else
586       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
587                            OffsetBit);
588 
589     // Rewrite each call to a load from OffsetByte/OffsetBit.
590     for (auto Call : CSByConstantArg.second) {
591       IRBuilder<> B(Call.CS.getInstruction());
592       Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
593       if (BitWidth == 1) {
594         Value *Bits = B.CreateLoad(Addr);
595         Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
596         Value *BitsAndBit = B.CreateAnd(Bits, Bit);
597         auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
598         Call.replaceAndErase(IsBitSet);
599       } else {
600         Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
601         Value *Val = B.CreateLoad(RetType, ValAddr);
602         Call.replaceAndErase(Val);
603       }
604     }
605   }
606   return true;
607 }
608 
609 void DevirtModule::rebuildGlobal(VTableBits &B) {
610   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
611     return;
612 
613   // Align each byte array to pointer width.
614   unsigned PointerSize = M.getDataLayout().getPointerSize();
615   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
616   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
617 
618   // Before was stored in reverse order; flip it now.
619   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
620     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
621 
622   // Build an anonymous global containing the before bytes, followed by the
623   // original initializer, followed by the after bytes.
624   auto NewInit = ConstantStruct::getAnon(
625       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
626        B.GV->getInitializer(),
627        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
628   auto NewGV =
629       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
630                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
631   NewGV->setSection(B.GV->getSection());
632   NewGV->setComdat(B.GV->getComdat());
633 
634   // Build an alias named after the original global, pointing at the second
635   // element (the original initializer).
636   auto Alias = GlobalAlias::create(
637       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
638       ConstantExpr::getGetElementPtr(
639           NewInit->getType(), NewGV,
640           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
641                                ConstantInt::get(Int32Ty, 1)}),
642       &M);
643   Alias->setVisibility(B.GV->getVisibility());
644   Alias->takeName(B.GV);
645 
646   B.GV->replaceAllUsesWith(Alias);
647   B.GV->eraseFromParent();
648 }
649 
650 bool DevirtModule::run() {
651   Function *BitSetTestFunc =
652       M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
653   if (!BitSetTestFunc || BitSetTestFunc->use_empty())
654     return false;
655 
656   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
657   if (!AssumeFunc || AssumeFunc->use_empty())
658     return false;
659 
660   // Find all virtual calls via a virtual table pointer %p under an assumption
661   // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
662   // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
663   // (effectively the identity of the virtual function) and store to CallSlots.
664   DenseSet<Value *> SeenPtrs;
665   for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
666        I != E;) {
667     auto CI = dyn_cast<CallInst>(I->getUser());
668     ++I;
669     if (!CI)
670       continue;
671 
672     // Find llvm.assume intrinsics for this llvm.bitset.test call.
673     SmallVector<CallInst *, 1> Assumes;
674     for (const Use &CIU : CI->uses()) {
675       auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
676       if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
677         Assumes.push_back(AssumeCI);
678     }
679 
680     // If we found any, search for virtual calls based on %p and add them to
681     // CallSlots.
682     if (!Assumes.empty()) {
683       Metadata *BitSet =
684           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
685       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
686       if (SeenPtrs.insert(Ptr).second)
687         findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
688     }
689 
690     // We no longer need the assumes or the bitset test.
691     for (auto Assume : Assumes)
692       Assume->eraseFromParent();
693     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
694     // may use the vtable argument later.
695     if (CI->use_empty())
696       CI->eraseFromParent();
697   }
698 
699   // Rebuild llvm.bitsets metadata into a map for easy lookup.
700   std::vector<VTableBits> Bits;
701   DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
702   buildBitSets(Bits, BitSets);
703   if (BitSets.empty())
704     return true;
705 
706   // For each (bitset, offset) pair:
707   bool DidVirtualConstProp = false;
708   for (auto &S : CallSlots) {
709     // Search each of the vtables in the bitset for the virtual function
710     // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
711     std::vector<VirtualCallTarget> TargetsForSlot;
712     if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
713                                    S.first.ByteOffset))
714       continue;
715 
716     if (trySingleImplDevirt(TargetsForSlot, S.second))
717       continue;
718 
719     DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
720   }
721 
722   // Rebuild each global we touched as part of virtual constant propagation to
723   // include the before and after bytes.
724   if (DidVirtualConstProp)
725     for (VTableBits &B : Bits)
726       rebuildGlobal(B);
727 
728   return true;
729 }
730