1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via bitset information) that the list of callee is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/Analysis/BitSetUtils.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/IPO.h"
45 #include "llvm/Transforms/Utils/Evaluator.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 
48 #include <set>
49 
50 using namespace llvm;
51 using namespace wholeprogramdevirt;
52 
53 #define DEBUG_TYPE "wholeprogramdevirt"
54 
55 // Find the minimum offset that we may store a value of size Size bits at. If
56 // IsAfter is set, look for an offset before the object, otherwise look for an
57 // offset after the object.
58 uint64_t
59 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
60                                      bool IsAfter, uint64_t Size) {
61   // Find a minimum offset taking into account only vtable sizes.
62   uint64_t MinByte = 0;
63   for (const VirtualCallTarget &Target : Targets) {
64     if (IsAfter)
65       MinByte = std::max(MinByte, Target.minAfterBytes());
66     else
67       MinByte = std::max(MinByte, Target.minBeforeBytes());
68   }
69 
70   // Build a vector of arrays of bytes covering, for each target, a slice of the
71   // used region (see AccumBitVector::BytesUsed in
72   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
73   // this aligns the used regions to start at MinByte.
74   //
75   // In this example, A, B and C are vtables, # is a byte already allocated for
76   // a virtual function pointer, AAAA... (etc.) are the used regions for the
77   // vtables and Offset(X) is the value computed for the Offset variable below
78   // for X.
79   //
80   //                    Offset(A)
81   //                    |       |
82   //                            |MinByte
83   // A: ################AAAAAAAA|AAAAAAAA
84   // B: ########BBBBBBBBBBBBBBBB|BBBB
85   // C: ########################|CCCCCCCCCCCCCCCC
86   //            |   Offset(B)   |
87   //
88   // This code produces the slices of A, B and C that appear after the divider
89   // at MinByte.
90   std::vector<ArrayRef<uint8_t>> Used;
91   for (const VirtualCallTarget &Target : Targets) {
92     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
93                                        : Target.BS->Bits->Before.BytesUsed;
94     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
95                               : MinByte - Target.minBeforeBytes();
96 
97     // Disregard used regions that are smaller than Offset. These are
98     // effectively all-free regions that do not need to be checked.
99     if (VTUsed.size() > Offset)
100       Used.push_back(VTUsed.slice(Offset));
101   }
102 
103   if (Size == 1) {
104     // Find a free bit in each member of Used.
105     for (unsigned I = 0;; ++I) {
106       uint8_t BitsUsed = 0;
107       for (auto &&B : Used)
108         if (I < B.size())
109           BitsUsed |= B[I];
110       if (BitsUsed != 0xff)
111         return (MinByte + I) * 8 +
112                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
113     }
114   } else {
115     // Find a free (Size/8) byte region in each member of Used.
116     // FIXME: see if alignment helps.
117     for (unsigned I = 0;; ++I) {
118       for (auto &&B : Used) {
119         unsigned Byte = 0;
120         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
121           if (B[I + Byte])
122             goto NextI;
123           ++Byte;
124         }
125       }
126       return (MinByte + I) * 8;
127     NextI:;
128     }
129   }
130 }
131 
132 void wholeprogramdevirt::setBeforeReturnValues(
133     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
134     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
135   if (BitWidth == 1)
136     OffsetByte = -(AllocBefore / 8 + 1);
137   else
138     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
139   OffsetBit = AllocBefore % 8;
140 
141   for (VirtualCallTarget &Target : Targets) {
142     if (BitWidth == 1)
143       Target.setBeforeBit(AllocBefore);
144     else
145       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
146   }
147 }
148 
149 void wholeprogramdevirt::setAfterReturnValues(
150     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
151     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
152   if (BitWidth == 1)
153     OffsetByte = AllocAfter / 8;
154   else
155     OffsetByte = (AllocAfter + 7) / 8;
156   OffsetBit = AllocAfter % 8;
157 
158   for (VirtualCallTarget &Target : Targets) {
159     if (BitWidth == 1)
160       Target.setAfterBit(AllocAfter);
161     else
162       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
163   }
164 }
165 
166 VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
167     : Fn(Fn), BS(BS),
168       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
169 
170 namespace {
171 
172 // A slot in a set of virtual tables. The BitSetID identifies the set of virtual
173 // tables, and the ByteOffset is the offset in bytes from the address point to
174 // the virtual function pointer.
175 struct VTableSlot {
176   Metadata *BitSetID;
177   uint64_t ByteOffset;
178 };
179 
180 }
181 
182 namespace llvm {
183 
184 template <> struct DenseMapInfo<VTableSlot> {
185   static VTableSlot getEmptyKey() {
186     return {DenseMapInfo<Metadata *>::getEmptyKey(),
187             DenseMapInfo<uint64_t>::getEmptyKey()};
188   }
189   static VTableSlot getTombstoneKey() {
190     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
191             DenseMapInfo<uint64_t>::getTombstoneKey()};
192   }
193   static unsigned getHashValue(const VTableSlot &I) {
194     return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
195            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
196   }
197   static bool isEqual(const VTableSlot &LHS,
198                       const VTableSlot &RHS) {
199     return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
200   }
201 };
202 
203 }
204 
205 namespace {
206 
207 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
208 // the indirect virtual call.
209 struct VirtualCallSite {
210   Value *VTable;
211   CallSite CS;
212 
213   void replaceAndErase(Value *New) {
214     CS->replaceAllUsesWith(New);
215     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
216       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
217       II->getUnwindDest()->removePredecessor(II->getParent());
218     }
219     CS->eraseFromParent();
220   }
221 };
222 
223 struct DevirtModule {
224   Module &M;
225   IntegerType *Int8Ty;
226   PointerType *Int8PtrTy;
227   IntegerType *Int32Ty;
228 
229   MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
230 
231   DevirtModule(Module &M)
232       : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
233         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
234         Int32Ty(Type::getInt32Ty(M.getContext())) {}
235 
236   void buildBitSets(std::vector<VTableBits> &Bits,
237                     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
238   bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
239                                  const std::set<BitSetInfo> &BitSetInfos,
240                                  uint64_t ByteOffset);
241   bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
242                            MutableArrayRef<VirtualCallSite> CallSites);
243   bool tryEvaluateFunctionsWithArgs(
244       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
245       ArrayRef<ConstantInt *> Args);
246   bool tryUniformRetValOpt(IntegerType *RetType,
247                            ArrayRef<VirtualCallTarget> TargetsForSlot,
248                            MutableArrayRef<VirtualCallSite> CallSites);
249   bool tryUniqueRetValOpt(unsigned BitWidth,
250                           ArrayRef<VirtualCallTarget> TargetsForSlot,
251                           MutableArrayRef<VirtualCallSite> CallSites);
252   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
253                            ArrayRef<VirtualCallSite> CallSites);
254 
255   void rebuildGlobal(VTableBits &B);
256 
257   bool run();
258 };
259 
260 struct WholeProgramDevirt : public ModulePass {
261   static char ID;
262   WholeProgramDevirt() : ModulePass(ID) {
263     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
264   }
265   bool runOnModule(Module &M) {
266     if (skipModule(M))
267       return false;
268 
269     return DevirtModule(M).run();
270   }
271 };
272 
273 } // anonymous namespace
274 
275 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
276                 "Whole program devirtualization", false, false)
277 char WholeProgramDevirt::ID = 0;
278 
279 ModulePass *llvm::createWholeProgramDevirtPass() {
280   return new WholeProgramDevirt;
281 }
282 
283 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
284                                               ModuleAnalysisManager &) {
285   if (!DevirtModule(M).run())
286     return PreservedAnalyses::all();
287   return PreservedAnalyses::none();
288 }
289 
290 void DevirtModule::buildBitSets(
291     std::vector<VTableBits> &Bits,
292     DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
293   NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
294   if (!BitSetNM)
295     return;
296 
297   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
298   Bits.reserve(BitSetNM->getNumOperands());
299   for (auto Op : BitSetNM->operands()) {
300     auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
301     if (!OpConstMD)
302       continue;
303     auto BitSetID = Op->getOperand(0).get();
304 
305     Constant *OpConst = OpConstMD->getValue();
306     if (auto GA = dyn_cast<GlobalAlias>(OpConst))
307       OpConst = GA->getAliasee();
308     auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
309     if (!OpGlobal)
310       continue;
311 
312     uint64_t Offset =
313         cast<ConstantInt>(
314             cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
315             ->getZExtValue();
316 
317     VTableBits *&BitsPtr = GVToBits[OpGlobal];
318     if (!BitsPtr) {
319       Bits.emplace_back();
320       Bits.back().GV = OpGlobal;
321       Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
322           OpGlobal->getInitializer()->getType());
323       BitsPtr = &Bits.back();
324     }
325     BitSets[BitSetID].insert({BitsPtr, Offset});
326   }
327 }
328 
329 bool DevirtModule::tryFindVirtualCallTargets(
330     std::vector<VirtualCallTarget> &TargetsForSlot,
331     const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
332   for (const BitSetInfo &BS : BitSetInfos) {
333     if (!BS.Bits->GV->isConstant())
334       return false;
335 
336     auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
337     if (!Init)
338       return false;
339     ArrayType *VTableTy = Init->getType();
340 
341     uint64_t ElemSize =
342         M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
343     uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
344     if (GlobalSlotOffset % ElemSize != 0)
345       return false;
346 
347     unsigned Op = GlobalSlotOffset / ElemSize;
348     if (Op >= Init->getNumOperands())
349       return false;
350 
351     auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
352     if (!Fn)
353       return false;
354 
355     // We can disregard __cxa_pure_virtual as a possible call target, as
356     // calls to pure virtuals are UB.
357     if (Fn->getName() == "__cxa_pure_virtual")
358       continue;
359 
360     TargetsForSlot.push_back({Fn, &BS});
361   }
362 
363   // Give up if we couldn't find any targets.
364   return !TargetsForSlot.empty();
365 }
366 
367 bool DevirtModule::trySingleImplDevirt(
368     ArrayRef<VirtualCallTarget> TargetsForSlot,
369     MutableArrayRef<VirtualCallSite> CallSites) {
370   // See if the program contains a single implementation of this virtual
371   // function.
372   Function *TheFn = TargetsForSlot[0].Fn;
373   for (auto &&Target : TargetsForSlot)
374     if (TheFn != Target.Fn)
375       return false;
376 
377   // If so, update each call site to call that implementation directly.
378   for (auto &&VCallSite : CallSites) {
379     VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
380         TheFn, VCallSite.CS.getCalledValue()->getType()));
381   }
382   return true;
383 }
384 
385 bool DevirtModule::tryEvaluateFunctionsWithArgs(
386     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
387     ArrayRef<ConstantInt *> Args) {
388   // Evaluate each function and store the result in each target's RetVal
389   // field.
390   for (VirtualCallTarget &Target : TargetsForSlot) {
391     if (Target.Fn->arg_size() != Args.size() + 1)
392       return false;
393     for (unsigned I = 0; I != Args.size(); ++I)
394       if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
395           Args[I]->getType())
396         return false;
397 
398     Evaluator Eval(M.getDataLayout(), nullptr);
399     SmallVector<Constant *, 2> EvalArgs;
400     EvalArgs.push_back(
401         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
402     EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
403     Constant *RetVal;
404     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
405         !isa<ConstantInt>(RetVal))
406       return false;
407     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
408   }
409   return true;
410 }
411 
412 bool DevirtModule::tryUniformRetValOpt(
413     IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
414     MutableArrayRef<VirtualCallSite> CallSites) {
415   // Uniform return value optimization. If all functions return the same
416   // constant, replace all calls with that constant.
417   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
418   for (const VirtualCallTarget &Target : TargetsForSlot)
419     if (Target.RetVal != TheRetVal)
420       return false;
421 
422   auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
423   for (auto Call : CallSites)
424     Call.replaceAndErase(TheRetValConst);
425   return true;
426 }
427 
428 bool DevirtModule::tryUniqueRetValOpt(
429     unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
430     MutableArrayRef<VirtualCallSite> CallSites) {
431   // IsOne controls whether we look for a 0 or a 1.
432   auto tryUniqueRetValOptFor = [&](bool IsOne) {
433     const BitSetInfo *UniqueBitSet = 0;
434     for (const VirtualCallTarget &Target : TargetsForSlot) {
435       if (Target.RetVal == (IsOne ? 1 : 0)) {
436         if (UniqueBitSet)
437           return false;
438         UniqueBitSet = Target.BS;
439       }
440     }
441 
442     // We should have found a unique bit set or bailed out by now. We already
443     // checked for a uniform return value in tryUniformRetValOpt.
444     assert(UniqueBitSet);
445 
446     // Replace each call with the comparison.
447     for (auto &&Call : CallSites) {
448       IRBuilder<> B(Call.CS.getInstruction());
449       Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
450       OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
451       Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
452                                 Call.VTable, OneAddr);
453       Call.replaceAndErase(Cmp);
454     }
455     return true;
456   };
457 
458   if (BitWidth == 1) {
459     if (tryUniqueRetValOptFor(true))
460       return true;
461     if (tryUniqueRetValOptFor(false))
462       return true;
463   }
464   return false;
465 }
466 
467 bool DevirtModule::tryVirtualConstProp(
468     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
469     ArrayRef<VirtualCallSite> CallSites) {
470   // This only works if the function returns an integer.
471   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
472   if (!RetType)
473     return false;
474   unsigned BitWidth = RetType->getBitWidth();
475   if (BitWidth > 64)
476     return false;
477 
478   // Make sure that each function does not access memory, takes at least one
479   // argument, does not use its first argument (which we assume is 'this'),
480   // and has the same return type.
481   for (VirtualCallTarget &Target : TargetsForSlot) {
482     if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
483         !Target.Fn->arg_begin()->use_empty() ||
484         Target.Fn->getReturnType() != RetType)
485       return false;
486   }
487 
488   // Group call sites by the list of constant arguments they pass.
489   // The comparator ensures deterministic ordering.
490   struct ByAPIntValue {
491     bool operator()(const std::vector<ConstantInt *> &A,
492                     const std::vector<ConstantInt *> &B) const {
493       return std::lexicographical_compare(
494           A.begin(), A.end(), B.begin(), B.end(),
495           [](ConstantInt *AI, ConstantInt *BI) {
496             return AI->getValue().ult(BI->getValue());
497           });
498     }
499   };
500   std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
501            ByAPIntValue>
502       VCallSitesByConstantArg;
503   for (auto &&VCallSite : CallSites) {
504     std::vector<ConstantInt *> Args;
505     if (VCallSite.CS.getType() != RetType)
506       continue;
507     for (auto &&Arg :
508          make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
509       if (!isa<ConstantInt>(Arg))
510         break;
511       Args.push_back(cast<ConstantInt>(&Arg));
512     }
513     if (Args.size() + 1 != VCallSite.CS.arg_size())
514       continue;
515 
516     VCallSitesByConstantArg[Args].push_back(VCallSite);
517   }
518 
519   for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
520     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
521       continue;
522 
523     if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
524       continue;
525 
526     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
527       continue;
528 
529     // Find an allocation offset in bits in all vtables in the bitset.
530     uint64_t AllocBefore =
531         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
532     uint64_t AllocAfter =
533         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
534 
535     // Calculate the total amount of padding needed to store a value at both
536     // ends of the object.
537     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
538     for (auto &&Target : TargetsForSlot) {
539       TotalPaddingBefore += std::max<int64_t>(
540           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
541       TotalPaddingAfter += std::max<int64_t>(
542           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
543     }
544 
545     // If the amount of padding is too large, give up.
546     // FIXME: do something smarter here.
547     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
548       continue;
549 
550     // Calculate the offset to the value as a (possibly negative) byte offset
551     // and (if applicable) a bit offset, and store the values in the targets.
552     int64_t OffsetByte;
553     uint64_t OffsetBit;
554     if (TotalPaddingBefore <= TotalPaddingAfter)
555       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
556                             OffsetBit);
557     else
558       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
559                            OffsetBit);
560 
561     // Rewrite each call to a load from OffsetByte/OffsetBit.
562     for (auto Call : CSByConstantArg.second) {
563       IRBuilder<> B(Call.CS.getInstruction());
564       Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
565       if (BitWidth == 1) {
566         Value *Bits = B.CreateLoad(Addr);
567         Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
568         Value *BitsAndBit = B.CreateAnd(Bits, Bit);
569         auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
570         Call.replaceAndErase(IsBitSet);
571       } else {
572         Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
573         Value *Val = B.CreateLoad(RetType, ValAddr);
574         Call.replaceAndErase(Val);
575       }
576     }
577   }
578   return true;
579 }
580 
581 void DevirtModule::rebuildGlobal(VTableBits &B) {
582   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
583     return;
584 
585   // Align each byte array to pointer width.
586   unsigned PointerSize = M.getDataLayout().getPointerSize();
587   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
588   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
589 
590   // Before was stored in reverse order; flip it now.
591   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
592     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
593 
594   // Build an anonymous global containing the before bytes, followed by the
595   // original initializer, followed by the after bytes.
596   auto NewInit = ConstantStruct::getAnon(
597       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
598        B.GV->getInitializer(),
599        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
600   auto NewGV =
601       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
602                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
603   NewGV->setSection(B.GV->getSection());
604   NewGV->setComdat(B.GV->getComdat());
605 
606   // Build an alias named after the original global, pointing at the second
607   // element (the original initializer).
608   auto Alias = GlobalAlias::create(
609       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
610       ConstantExpr::getGetElementPtr(
611           NewInit->getType(), NewGV,
612           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
613                                ConstantInt::get(Int32Ty, 1)}),
614       &M);
615   Alias->setVisibility(B.GV->getVisibility());
616   Alias->takeName(B.GV);
617 
618   B.GV->replaceAllUsesWith(Alias);
619   B.GV->eraseFromParent();
620 }
621 
622 bool DevirtModule::run() {
623   Function *BitSetTestFunc =
624       M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
625   if (!BitSetTestFunc || BitSetTestFunc->use_empty())
626     return false;
627 
628   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
629   if (!AssumeFunc || AssumeFunc->use_empty())
630     return false;
631 
632   // Find all virtual calls via a virtual table pointer %p under an assumption
633   // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
634   // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
635   // (effectively the identity of the virtual function) and store to CallSlots.
636   DenseSet<Value *> SeenPtrs;
637   for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
638        I != E;) {
639     auto CI = dyn_cast<CallInst>(I->getUser());
640     ++I;
641     if (!CI)
642       continue;
643 
644     // Search for virtual calls based on %p and add them to DevirtCalls.
645     SmallVector<DevirtCallSite, 1> DevirtCalls;
646     SmallVector<CallInst *, 1> Assumes;
647     findDevirtualizableCalls(DevirtCalls, Assumes, CI);
648 
649     // If we found any, add them to CallSlots. Only do this if we haven't seen
650     // the vtable pointer before, as it may have been CSE'd with pointers from
651     // other call sites, and we don't want to process call sites multiple times.
652     if (!Assumes.empty()) {
653       Metadata *BitSet =
654           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
655       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
656       if (SeenPtrs.insert(Ptr).second) {
657         for (DevirtCallSite Call : DevirtCalls) {
658           CallSlots[{BitSet, Call.Offset}].push_back(
659               {CI->getArgOperand(0), Call.CS});
660         }
661       }
662     }
663 
664     // We no longer need the assumes or the bitset test.
665     for (auto Assume : Assumes)
666       Assume->eraseFromParent();
667     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
668     // may use the vtable argument later.
669     if (CI->use_empty())
670       CI->eraseFromParent();
671   }
672 
673   // Rebuild llvm.bitsets metadata into a map for easy lookup.
674   std::vector<VTableBits> Bits;
675   DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
676   buildBitSets(Bits, BitSets);
677   if (BitSets.empty())
678     return true;
679 
680   // For each (bitset, offset) pair:
681   bool DidVirtualConstProp = false;
682   for (auto &S : CallSlots) {
683     // Search each of the vtables in the bitset for the virtual function
684     // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
685     std::vector<VirtualCallTarget> TargetsForSlot;
686     if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
687                                    S.first.ByteOffset))
688       continue;
689 
690     if (trySingleImplDevirt(TargetsForSlot, S.second))
691       continue;
692 
693     DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
694   }
695 
696   // Rebuild each global we touched as part of virtual constant propagation to
697   // include the before and after bytes.
698   if (DidVirtualConstProp)
699     for (VTableBits &B : Bits)
700       rebuildGlobal(B);
701 
702   return true;
703 }
704