1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Analysis/AliasAnalysis.h" 62 #include "llvm/Analysis/BasicAliasAnalysis.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TypeMetadataUtils.h" 65 #include "llvm/Bitcode/BitcodeReader.h" 66 #include "llvm/Bitcode/BitcodeWriter.h" 67 #include "llvm/IR/CallSite.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugLoc.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/ModuleSummaryIndexYAML.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/PassRegistry.h" 88 #include "llvm/PassSupport.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Errc.h" 92 #include "llvm/Support/Error.h" 93 #include "llvm/Support/FileSystem.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Transforms/IPO.h" 96 #include "llvm/Transforms/IPO/FunctionAttrs.h" 97 #include "llvm/Transforms/Utils/Evaluator.h" 98 #include <algorithm> 99 #include <cstddef> 100 #include <map> 101 #include <set> 102 #include <string> 103 104 using namespace llvm; 105 using namespace wholeprogramdevirt; 106 107 #define DEBUG_TYPE "wholeprogramdevirt" 108 109 static cl::opt<PassSummaryAction> ClSummaryAction( 110 "wholeprogramdevirt-summary-action", 111 cl::desc("What to do with the summary when running this pass"), 112 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 113 clEnumValN(PassSummaryAction::Import, "import", 114 "Import typeid resolutions from summary and globals"), 115 clEnumValN(PassSummaryAction::Export, "export", 116 "Export typeid resolutions to summary and globals")), 117 cl::Hidden); 118 119 static cl::opt<std::string> ClReadSummary( 120 "wholeprogramdevirt-read-summary", 121 cl::desc( 122 "Read summary from given bitcode or YAML file before running pass"), 123 cl::Hidden); 124 125 static cl::opt<std::string> ClWriteSummary( 126 "wholeprogramdevirt-write-summary", 127 cl::desc("Write summary to given bitcode or YAML file after running pass. " 128 "Output file format is deduced from extension: *.bc means writing " 129 "bitcode, otherwise YAML"), 130 cl::Hidden); 131 132 static cl::opt<unsigned> 133 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 134 cl::init(10), cl::ZeroOrMore, 135 cl::desc("Maximum number of call targets per " 136 "call site to enable branch funnels")); 137 138 static cl::opt<bool> 139 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 140 cl::init(false), cl::ZeroOrMore, 141 cl::desc("Print index-based devirtualization messages")); 142 143 /// Provide a way to force enable whole program visibility in tests. 144 /// This is needed to support legacy tests that don't contain 145 /// !vcall_visibility metadata (the mere presense of type tests 146 /// previously implied hidden visibility). 147 cl::opt<bool> 148 WholeProgramVisibility("whole-program-visibility", cl::init(false), 149 cl::Hidden, cl::ZeroOrMore, 150 cl::desc("Enable whole program visibility")); 151 152 /// Provide a way to force disable whole program for debugging or workarounds, 153 /// when enabled via the linker. 154 cl::opt<bool> DisableWholeProgramVisibility( 155 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 156 cl::ZeroOrMore, 157 cl::desc("Disable whole program visibility (overrides enabling options)")); 158 159 // Find the minimum offset that we may store a value of size Size bits at. If 160 // IsAfter is set, look for an offset before the object, otherwise look for an 161 // offset after the object. 162 uint64_t 163 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 164 bool IsAfter, uint64_t Size) { 165 // Find a minimum offset taking into account only vtable sizes. 166 uint64_t MinByte = 0; 167 for (const VirtualCallTarget &Target : Targets) { 168 if (IsAfter) 169 MinByte = std::max(MinByte, Target.minAfterBytes()); 170 else 171 MinByte = std::max(MinByte, Target.minBeforeBytes()); 172 } 173 174 // Build a vector of arrays of bytes covering, for each target, a slice of the 175 // used region (see AccumBitVector::BytesUsed in 176 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 177 // this aligns the used regions to start at MinByte. 178 // 179 // In this example, A, B and C are vtables, # is a byte already allocated for 180 // a virtual function pointer, AAAA... (etc.) are the used regions for the 181 // vtables and Offset(X) is the value computed for the Offset variable below 182 // for X. 183 // 184 // Offset(A) 185 // | | 186 // |MinByte 187 // A: ################AAAAAAAA|AAAAAAAA 188 // B: ########BBBBBBBBBBBBBBBB|BBBB 189 // C: ########################|CCCCCCCCCCCCCCCC 190 // | Offset(B) | 191 // 192 // This code produces the slices of A, B and C that appear after the divider 193 // at MinByte. 194 std::vector<ArrayRef<uint8_t>> Used; 195 for (const VirtualCallTarget &Target : Targets) { 196 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 197 : Target.TM->Bits->Before.BytesUsed; 198 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 199 : MinByte - Target.minBeforeBytes(); 200 201 // Disregard used regions that are smaller than Offset. These are 202 // effectively all-free regions that do not need to be checked. 203 if (VTUsed.size() > Offset) 204 Used.push_back(VTUsed.slice(Offset)); 205 } 206 207 if (Size == 1) { 208 // Find a free bit in each member of Used. 209 for (unsigned I = 0;; ++I) { 210 uint8_t BitsUsed = 0; 211 for (auto &&B : Used) 212 if (I < B.size()) 213 BitsUsed |= B[I]; 214 if (BitsUsed != 0xff) 215 return (MinByte + I) * 8 + 216 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 217 } 218 } else { 219 // Find a free (Size/8) byte region in each member of Used. 220 // FIXME: see if alignment helps. 221 for (unsigned I = 0;; ++I) { 222 for (auto &&B : Used) { 223 unsigned Byte = 0; 224 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 225 if (B[I + Byte]) 226 goto NextI; 227 ++Byte; 228 } 229 } 230 return (MinByte + I) * 8; 231 NextI:; 232 } 233 } 234 } 235 236 void wholeprogramdevirt::setBeforeReturnValues( 237 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 238 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 239 if (BitWidth == 1) 240 OffsetByte = -(AllocBefore / 8 + 1); 241 else 242 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 243 OffsetBit = AllocBefore % 8; 244 245 for (VirtualCallTarget &Target : Targets) { 246 if (BitWidth == 1) 247 Target.setBeforeBit(AllocBefore); 248 else 249 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 250 } 251 } 252 253 void wholeprogramdevirt::setAfterReturnValues( 254 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 255 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 256 if (BitWidth == 1) 257 OffsetByte = AllocAfter / 8; 258 else 259 OffsetByte = (AllocAfter + 7) / 8; 260 OffsetBit = AllocAfter % 8; 261 262 for (VirtualCallTarget &Target : Targets) { 263 if (BitWidth == 1) 264 Target.setAfterBit(AllocAfter); 265 else 266 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 267 } 268 } 269 270 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 271 : Fn(Fn), TM(TM), 272 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 273 274 namespace { 275 276 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 277 // tables, and the ByteOffset is the offset in bytes from the address point to 278 // the virtual function pointer. 279 struct VTableSlot { 280 Metadata *TypeID; 281 uint64_t ByteOffset; 282 }; 283 284 } // end anonymous namespace 285 286 namespace llvm { 287 288 template <> struct DenseMapInfo<VTableSlot> { 289 static VTableSlot getEmptyKey() { 290 return {DenseMapInfo<Metadata *>::getEmptyKey(), 291 DenseMapInfo<uint64_t>::getEmptyKey()}; 292 } 293 static VTableSlot getTombstoneKey() { 294 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 295 DenseMapInfo<uint64_t>::getTombstoneKey()}; 296 } 297 static unsigned getHashValue(const VTableSlot &I) { 298 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 299 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 300 } 301 static bool isEqual(const VTableSlot &LHS, 302 const VTableSlot &RHS) { 303 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 304 } 305 }; 306 307 template <> struct DenseMapInfo<VTableSlotSummary> { 308 static VTableSlotSummary getEmptyKey() { 309 return {DenseMapInfo<StringRef>::getEmptyKey(), 310 DenseMapInfo<uint64_t>::getEmptyKey()}; 311 } 312 static VTableSlotSummary getTombstoneKey() { 313 return {DenseMapInfo<StringRef>::getTombstoneKey(), 314 DenseMapInfo<uint64_t>::getTombstoneKey()}; 315 } 316 static unsigned getHashValue(const VTableSlotSummary &I) { 317 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 318 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 319 } 320 static bool isEqual(const VTableSlotSummary &LHS, 321 const VTableSlotSummary &RHS) { 322 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 323 } 324 }; 325 326 } // end namespace llvm 327 328 namespace { 329 330 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 331 // the indirect virtual call. 332 struct VirtualCallSite { 333 Value *VTable; 334 CallSite CS; 335 336 // If non-null, this field points to the associated unsafe use count stored in 337 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 338 // of that field for details. 339 unsigned *NumUnsafeUses; 340 341 void 342 emitRemark(const StringRef OptName, const StringRef TargetName, 343 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 344 Function *F = CS.getCaller(); 345 DebugLoc DLoc = CS->getDebugLoc(); 346 BasicBlock *Block = CS.getParent(); 347 348 using namespace ore; 349 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 350 << NV("Optimization", OptName) 351 << ": devirtualized a call to " 352 << NV("FunctionName", TargetName)); 353 } 354 355 void replaceAndErase( 356 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 357 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 358 Value *New) { 359 if (RemarksEnabled) 360 emitRemark(OptName, TargetName, OREGetter); 361 CS->replaceAllUsesWith(New); 362 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 363 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 364 II->getUnwindDest()->removePredecessor(II->getParent()); 365 } 366 CS->eraseFromParent(); 367 // This use is no longer unsafe. 368 if (NumUnsafeUses) 369 --*NumUnsafeUses; 370 } 371 }; 372 373 // Call site information collected for a specific VTableSlot and possibly a list 374 // of constant integer arguments. The grouping by arguments is handled by the 375 // VTableSlotInfo class. 376 struct CallSiteInfo { 377 /// The set of call sites for this slot. Used during regular LTO and the 378 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 379 /// call sites that appear in the merged module itself); in each of these 380 /// cases we are directly operating on the call sites at the IR level. 381 std::vector<VirtualCallSite> CallSites; 382 383 /// Whether all call sites represented by this CallSiteInfo, including those 384 /// in summaries, have been devirtualized. This starts off as true because a 385 /// default constructed CallSiteInfo represents no call sites. 386 bool AllCallSitesDevirted = true; 387 388 // These fields are used during the export phase of ThinLTO and reflect 389 // information collected from function summaries. 390 391 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 392 /// this slot. 393 bool SummaryHasTypeTestAssumeUsers = false; 394 395 /// CFI-specific: a vector containing the list of function summaries that use 396 /// the llvm.type.checked.load intrinsic and therefore will require 397 /// resolutions for llvm.type.test in order to implement CFI checks if 398 /// devirtualization was unsuccessful. If devirtualization was successful, the 399 /// pass will clear this vector by calling markDevirt(). If at the end of the 400 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 401 /// to each of the function summaries in the vector. 402 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 403 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 404 405 bool isExported() const { 406 return SummaryHasTypeTestAssumeUsers || 407 !SummaryTypeCheckedLoadUsers.empty(); 408 } 409 410 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 411 SummaryTypeCheckedLoadUsers.push_back(FS); 412 AllCallSitesDevirted = false; 413 } 414 415 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 416 SummaryTypeTestAssumeUsers.push_back(FS); 417 SummaryHasTypeTestAssumeUsers = true; 418 AllCallSitesDevirted = false; 419 } 420 421 void markDevirt() { 422 AllCallSitesDevirted = true; 423 424 // As explained in the comment for SummaryTypeCheckedLoadUsers. 425 SummaryTypeCheckedLoadUsers.clear(); 426 } 427 }; 428 429 // Call site information collected for a specific VTableSlot. 430 struct VTableSlotInfo { 431 // The set of call sites which do not have all constant integer arguments 432 // (excluding "this"). 433 CallSiteInfo CSInfo; 434 435 // The set of call sites with all constant integer arguments (excluding 436 // "this"), grouped by argument list. 437 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 438 439 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 440 441 private: 442 CallSiteInfo &findCallSiteInfo(CallSite CS); 443 }; 444 445 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 446 std::vector<uint64_t> Args; 447 auto *CI = dyn_cast<IntegerType>(CS.getType()); 448 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 449 return CSInfo; 450 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 451 auto *CI = dyn_cast<ConstantInt>(Arg); 452 if (!CI || CI->getBitWidth() > 64) 453 return CSInfo; 454 Args.push_back(CI->getZExtValue()); 455 } 456 return ConstCSInfo[Args]; 457 } 458 459 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 460 unsigned *NumUnsafeUses) { 461 auto &CSI = findCallSiteInfo(CS); 462 CSI.AllCallSitesDevirted = false; 463 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 464 } 465 466 struct DevirtModule { 467 Module &M; 468 function_ref<AAResults &(Function &)> AARGetter; 469 function_ref<DominatorTree &(Function &)> LookupDomTree; 470 471 ModuleSummaryIndex *ExportSummary; 472 const ModuleSummaryIndex *ImportSummary; 473 474 IntegerType *Int8Ty; 475 PointerType *Int8PtrTy; 476 IntegerType *Int32Ty; 477 IntegerType *Int64Ty; 478 IntegerType *IntPtrTy; 479 480 bool RemarksEnabled; 481 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 482 483 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 484 485 // This map keeps track of the number of "unsafe" uses of a loaded function 486 // pointer. The key is the associated llvm.type.test intrinsic call generated 487 // by this pass. An unsafe use is one that calls the loaded function pointer 488 // directly. Every time we eliminate an unsafe use (for example, by 489 // devirtualizing it or by applying virtual constant propagation), we 490 // decrement the value stored in this map. If a value reaches zero, we can 491 // eliminate the type check by RAUWing the associated llvm.type.test call with 492 // true. 493 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 494 495 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 496 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 497 function_ref<DominatorTree &(Function &)> LookupDomTree, 498 ModuleSummaryIndex *ExportSummary, 499 const ModuleSummaryIndex *ImportSummary) 500 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 501 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 502 Int8Ty(Type::getInt8Ty(M.getContext())), 503 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 504 Int32Ty(Type::getInt32Ty(M.getContext())), 505 Int64Ty(Type::getInt64Ty(M.getContext())), 506 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 507 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 508 assert(!(ExportSummary && ImportSummary)); 509 } 510 511 bool areRemarksEnabled(); 512 513 void 514 scanTypeTestUsers(Function *TypeTestFunc, 515 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 516 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 517 518 void buildTypeIdentifierMap( 519 std::vector<VTableBits> &Bits, 520 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 521 bool 522 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 523 const std::set<TypeMemberInfo> &TypeMemberInfos, 524 uint64_t ByteOffset); 525 526 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 527 bool &IsExported); 528 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 529 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 530 VTableSlotInfo &SlotInfo, 531 WholeProgramDevirtResolution *Res); 532 533 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 534 bool &IsExported); 535 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 536 VTableSlotInfo &SlotInfo, 537 WholeProgramDevirtResolution *Res, VTableSlot Slot); 538 539 bool tryEvaluateFunctionsWithArgs( 540 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 541 ArrayRef<uint64_t> Args); 542 543 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 544 uint64_t TheRetVal); 545 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 546 CallSiteInfo &CSInfo, 547 WholeProgramDevirtResolution::ByArg *Res); 548 549 // Returns the global symbol name that is used to export information about the 550 // given vtable slot and list of arguments. 551 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 552 StringRef Name); 553 554 bool shouldExportConstantsAsAbsoluteSymbols(); 555 556 // This function is called during the export phase to create a symbol 557 // definition containing information about the given vtable slot and list of 558 // arguments. 559 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 560 Constant *C); 561 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 562 uint32_t Const, uint32_t &Storage); 563 564 // This function is called during the import phase to create a reference to 565 // the symbol definition created during the export phase. 566 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 567 StringRef Name); 568 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 569 StringRef Name, IntegerType *IntTy, 570 uint32_t Storage); 571 572 Constant *getMemberAddr(const TypeMemberInfo *M); 573 574 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 575 Constant *UniqueMemberAddr); 576 bool tryUniqueRetValOpt(unsigned BitWidth, 577 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 578 CallSiteInfo &CSInfo, 579 WholeProgramDevirtResolution::ByArg *Res, 580 VTableSlot Slot, ArrayRef<uint64_t> Args); 581 582 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 583 Constant *Byte, Constant *Bit); 584 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 585 VTableSlotInfo &SlotInfo, 586 WholeProgramDevirtResolution *Res, VTableSlot Slot); 587 588 void rebuildGlobal(VTableBits &B); 589 590 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 591 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 592 593 // If we were able to eliminate all unsafe uses for a type checked load, 594 // eliminate the associated type tests by replacing them with true. 595 void removeRedundantTypeTests(); 596 597 bool run(); 598 599 // Lower the module using the action and summary passed as command line 600 // arguments. For testing purposes only. 601 static bool 602 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 603 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 604 function_ref<DominatorTree &(Function &)> LookupDomTree); 605 }; 606 607 struct DevirtIndex { 608 ModuleSummaryIndex &ExportSummary; 609 // The set in which to record GUIDs exported from their module by 610 // devirtualization, used by client to ensure they are not internalized. 611 std::set<GlobalValue::GUID> &ExportedGUIDs; 612 // A map in which to record the information necessary to locate the WPD 613 // resolution for local targets in case they are exported by cross module 614 // importing. 615 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 616 617 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 618 619 DevirtIndex( 620 ModuleSummaryIndex &ExportSummary, 621 std::set<GlobalValue::GUID> &ExportedGUIDs, 622 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 623 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 624 LocalWPDTargetsMap(LocalWPDTargetsMap) {} 625 626 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 627 const TypeIdCompatibleVtableInfo TIdInfo, 628 uint64_t ByteOffset); 629 630 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 631 VTableSlotSummary &SlotSummary, 632 VTableSlotInfo &SlotInfo, 633 WholeProgramDevirtResolution *Res, 634 std::set<ValueInfo> &DevirtTargets); 635 636 void run(); 637 }; 638 639 struct WholeProgramDevirt : public ModulePass { 640 static char ID; 641 642 bool UseCommandLine = false; 643 644 ModuleSummaryIndex *ExportSummary = nullptr; 645 const ModuleSummaryIndex *ImportSummary = nullptr; 646 647 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 648 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 649 } 650 651 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 652 const ModuleSummaryIndex *ImportSummary) 653 : ModulePass(ID), ExportSummary(ExportSummary), 654 ImportSummary(ImportSummary) { 655 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 656 } 657 658 bool runOnModule(Module &M) override { 659 if (skipModule(M)) 660 return false; 661 662 // In the new pass manager, we can request the optimization 663 // remark emitter pass on a per-function-basis, which the 664 // OREGetter will do for us. 665 // In the old pass manager, this is harder, so we just build 666 // an optimization remark emitter on the fly, when we need it. 667 std::unique_ptr<OptimizationRemarkEmitter> ORE; 668 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 669 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 670 return *ORE; 671 }; 672 673 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 674 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 675 }; 676 677 if (UseCommandLine) 678 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 679 LookupDomTree); 680 681 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 682 ExportSummary, ImportSummary) 683 .run(); 684 } 685 686 void getAnalysisUsage(AnalysisUsage &AU) const override { 687 AU.addRequired<AssumptionCacheTracker>(); 688 AU.addRequired<TargetLibraryInfoWrapperPass>(); 689 AU.addRequired<DominatorTreeWrapperPass>(); 690 } 691 }; 692 693 } // end anonymous namespace 694 695 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 696 "Whole program devirtualization", false, false) 697 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 698 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 700 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 701 "Whole program devirtualization", false, false) 702 char WholeProgramDevirt::ID = 0; 703 704 ModulePass * 705 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 706 const ModuleSummaryIndex *ImportSummary) { 707 return new WholeProgramDevirt(ExportSummary, ImportSummary); 708 } 709 710 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 711 ModuleAnalysisManager &AM) { 712 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 713 auto AARGetter = [&](Function &F) -> AAResults & { 714 return FAM.getResult<AAManager>(F); 715 }; 716 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 717 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 718 }; 719 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 720 return FAM.getResult<DominatorTreeAnalysis>(F); 721 }; 722 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 723 ImportSummary) 724 .run()) 725 return PreservedAnalyses::all(); 726 return PreservedAnalyses::none(); 727 } 728 729 // Enable whole program visibility if enabled by client (e.g. linker) or 730 // internal option, and not force disabled. 731 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 732 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 733 !DisableWholeProgramVisibility; 734 } 735 736 namespace llvm { 737 738 /// If whole program visibility asserted, then upgrade all public vcall 739 /// visibility metadata on vtable definitions to linkage unit visibility in 740 /// Module IR (for regular or hybrid LTO). 741 void updateVCallVisibilityInModule(Module &M, 742 bool WholeProgramVisibilityEnabledInLTO) { 743 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 744 return; 745 for (GlobalVariable &GV : M.globals()) 746 // Add linkage unit visibility to any variable with type metadata, which are 747 // the vtable definitions. We won't have an existing vcall_visibility 748 // metadata on vtable definitions with public visibility. 749 if (GV.hasMetadata(LLVMContext::MD_type) && 750 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 751 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 752 } 753 754 /// If whole program visibility asserted, then upgrade all public vcall 755 /// visibility metadata on vtable definition summaries to linkage unit 756 /// visibility in Module summary index (for ThinLTO). 757 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, 758 bool WholeProgramVisibilityEnabledInLTO) { 759 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 760 return; 761 for (auto &P : Index) { 762 for (auto &S : P.second.SummaryList) { 763 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 764 if (!GVar || GVar->vTableFuncs().empty() || 765 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 766 continue; 767 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 768 } 769 } 770 } 771 772 void runWholeProgramDevirtOnIndex( 773 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 774 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 775 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 776 } 777 778 void updateIndexWPDForExports( 779 ModuleSummaryIndex &Summary, 780 function_ref<bool(StringRef, ValueInfo)> isExported, 781 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 782 for (auto &T : LocalWPDTargetsMap) { 783 auto &VI = T.first; 784 // This was enforced earlier during trySingleImplDevirt. 785 assert(VI.getSummaryList().size() == 1 && 786 "Devirt of local target has more than one copy"); 787 auto &S = VI.getSummaryList()[0]; 788 if (!isExported(S->modulePath(), VI)) 789 continue; 790 791 // It's been exported by a cross module import. 792 for (auto &SlotSummary : T.second) { 793 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 794 assert(TIdSum); 795 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 796 assert(WPDRes != TIdSum->WPDRes.end()); 797 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 798 WPDRes->second.SingleImplName, 799 Summary.getModuleHash(S->modulePath())); 800 } 801 } 802 } 803 804 } // end namespace llvm 805 806 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 807 // Check that summary index contains regular LTO module when performing 808 // export to prevent occasional use of index from pure ThinLTO compilation 809 // (-fno-split-lto-module). This kind of summary index is passed to 810 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 811 const auto &ModPaths = Summary->modulePaths(); 812 if (ClSummaryAction != PassSummaryAction::Import && 813 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 814 ModPaths.end()) 815 return createStringError( 816 errc::invalid_argument, 817 "combined summary should contain Regular LTO module"); 818 return ErrorSuccess(); 819 } 820 821 bool DevirtModule::runForTesting( 822 Module &M, function_ref<AAResults &(Function &)> AARGetter, 823 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 824 function_ref<DominatorTree &(Function &)> LookupDomTree) { 825 std::unique_ptr<ModuleSummaryIndex> Summary = 826 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 827 828 // Handle the command-line summary arguments. This code is for testing 829 // purposes only, so we handle errors directly. 830 if (!ClReadSummary.empty()) { 831 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 832 ": "); 833 auto ReadSummaryFile = 834 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 835 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 836 getModuleSummaryIndex(*ReadSummaryFile)) { 837 Summary = std::move(*SummaryOrErr); 838 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 839 } else { 840 // Try YAML if we've failed with bitcode. 841 consumeError(SummaryOrErr.takeError()); 842 yaml::Input In(ReadSummaryFile->getBuffer()); 843 In >> *Summary; 844 ExitOnErr(errorCodeToError(In.error())); 845 } 846 } 847 848 bool Changed = 849 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 850 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 851 : nullptr, 852 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 853 : nullptr) 854 .run(); 855 856 if (!ClWriteSummary.empty()) { 857 ExitOnError ExitOnErr( 858 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 859 std::error_code EC; 860 if (StringRef(ClWriteSummary).endswith(".bc")) { 861 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 862 ExitOnErr(errorCodeToError(EC)); 863 WriteIndexToFile(*Summary, OS); 864 } else { 865 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 866 ExitOnErr(errorCodeToError(EC)); 867 yaml::Output Out(OS); 868 Out << *Summary; 869 } 870 } 871 872 return Changed; 873 } 874 875 void DevirtModule::buildTypeIdentifierMap( 876 std::vector<VTableBits> &Bits, 877 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 878 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 879 Bits.reserve(M.getGlobalList().size()); 880 SmallVector<MDNode *, 2> Types; 881 for (GlobalVariable &GV : M.globals()) { 882 Types.clear(); 883 GV.getMetadata(LLVMContext::MD_type, Types); 884 if (GV.isDeclaration() || Types.empty()) 885 continue; 886 887 VTableBits *&BitsPtr = GVToBits[&GV]; 888 if (!BitsPtr) { 889 Bits.emplace_back(); 890 Bits.back().GV = &GV; 891 Bits.back().ObjectSize = 892 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 893 BitsPtr = &Bits.back(); 894 } 895 896 for (MDNode *Type : Types) { 897 auto TypeID = Type->getOperand(1).get(); 898 899 uint64_t Offset = 900 cast<ConstantInt>( 901 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 902 ->getZExtValue(); 903 904 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 905 } 906 } 907 } 908 909 bool DevirtModule::tryFindVirtualCallTargets( 910 std::vector<VirtualCallTarget> &TargetsForSlot, 911 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 912 for (const TypeMemberInfo &TM : TypeMemberInfos) { 913 if (!TM.Bits->GV->isConstant()) 914 return false; 915 916 // We cannot perform whole program devirtualization analysis on a vtable 917 // with public LTO visibility. 918 if (TM.Bits->GV->getVCallVisibility() == 919 GlobalObject::VCallVisibilityPublic) 920 return false; 921 922 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 923 TM.Offset + ByteOffset, M); 924 if (!Ptr) 925 return false; 926 927 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 928 if (!Fn) 929 return false; 930 931 // We can disregard __cxa_pure_virtual as a possible call target, as 932 // calls to pure virtuals are UB. 933 if (Fn->getName() == "__cxa_pure_virtual") 934 continue; 935 936 TargetsForSlot.push_back({Fn, &TM}); 937 } 938 939 // Give up if we couldn't find any targets. 940 return !TargetsForSlot.empty(); 941 } 942 943 bool DevirtIndex::tryFindVirtualCallTargets( 944 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 945 uint64_t ByteOffset) { 946 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 947 // Find the first non-available_externally linkage vtable initializer. 948 // We can have multiple available_externally, linkonce_odr and weak_odr 949 // vtable initializers, however we want to skip available_externally as they 950 // do not have type metadata attached, and therefore the summary will not 951 // contain any vtable functions. We can also have multiple external 952 // vtable initializers in the case of comdats, which we cannot check here. 953 // The linker should give an error in this case. 954 // 955 // Also, handle the case of same-named local Vtables with the same path 956 // and therefore the same GUID. This can happen if there isn't enough 957 // distinguishing path when compiling the source file. In that case we 958 // conservatively return false early. 959 const GlobalVarSummary *VS = nullptr; 960 bool LocalFound = false; 961 for (auto &S : P.VTableVI.getSummaryList()) { 962 if (GlobalValue::isLocalLinkage(S->linkage())) { 963 if (LocalFound) 964 return false; 965 LocalFound = true; 966 } 967 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 968 VS = cast<GlobalVarSummary>(S->getBaseObject()); 969 // We cannot perform whole program devirtualization analysis on a vtable 970 // with public LTO visibility. 971 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 972 return false; 973 } 974 } 975 if (!VS->isLive()) 976 continue; 977 for (auto VTP : VS->vTableFuncs()) { 978 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 979 continue; 980 981 TargetsForSlot.push_back(VTP.FuncVI); 982 } 983 } 984 985 // Give up if we couldn't find any targets. 986 return !TargetsForSlot.empty(); 987 } 988 989 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 990 Constant *TheFn, bool &IsExported) { 991 auto Apply = [&](CallSiteInfo &CSInfo) { 992 for (auto &&VCallSite : CSInfo.CallSites) { 993 if (RemarksEnabled) 994 VCallSite.emitRemark("single-impl", 995 TheFn->stripPointerCasts()->getName(), OREGetter); 996 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 997 TheFn, VCallSite.CS.getCalledValue()->getType())); 998 // This use is no longer unsafe. 999 if (VCallSite.NumUnsafeUses) 1000 --*VCallSite.NumUnsafeUses; 1001 } 1002 if (CSInfo.isExported()) 1003 IsExported = true; 1004 CSInfo.markDevirt(); 1005 }; 1006 Apply(SlotInfo.CSInfo); 1007 for (auto &P : SlotInfo.ConstCSInfo) 1008 Apply(P.second); 1009 } 1010 1011 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1012 // We can't add calls if we haven't seen a definition 1013 if (Callee.getSummaryList().empty()) 1014 return false; 1015 1016 // Insert calls into the summary index so that the devirtualized targets 1017 // are eligible for import. 1018 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1019 // to better ensure we have the opportunity to inline them. 1020 bool IsExported = false; 1021 auto &S = Callee.getSummaryList()[0]; 1022 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1023 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1024 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1025 FS->addCall({Callee, CI}); 1026 IsExported |= S->modulePath() != FS->modulePath(); 1027 } 1028 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1029 FS->addCall({Callee, CI}); 1030 IsExported |= S->modulePath() != FS->modulePath(); 1031 } 1032 }; 1033 AddCalls(SlotInfo.CSInfo); 1034 for (auto &P : SlotInfo.ConstCSInfo) 1035 AddCalls(P.second); 1036 return IsExported; 1037 } 1038 1039 bool DevirtModule::trySingleImplDevirt( 1040 ModuleSummaryIndex *ExportSummary, 1041 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1042 WholeProgramDevirtResolution *Res) { 1043 // See if the program contains a single implementation of this virtual 1044 // function. 1045 Function *TheFn = TargetsForSlot[0].Fn; 1046 for (auto &&Target : TargetsForSlot) 1047 if (TheFn != Target.Fn) 1048 return false; 1049 1050 // If so, update each call site to call that implementation directly. 1051 if (RemarksEnabled) 1052 TargetsForSlot[0].WasDevirt = true; 1053 1054 bool IsExported = false; 1055 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1056 if (!IsExported) 1057 return false; 1058 1059 // If the only implementation has local linkage, we must promote to external 1060 // to make it visible to thin LTO objects. We can only get here during the 1061 // ThinLTO export phase. 1062 if (TheFn->hasLocalLinkage()) { 1063 std::string NewName = (TheFn->getName() + "$merged").str(); 1064 1065 // Since we are renaming the function, any comdats with the same name must 1066 // also be renamed. This is required when targeting COFF, as the comdat name 1067 // must match one of the names of the symbols in the comdat. 1068 if (Comdat *C = TheFn->getComdat()) { 1069 if (C->getName() == TheFn->getName()) { 1070 Comdat *NewC = M.getOrInsertComdat(NewName); 1071 NewC->setSelectionKind(C->getSelectionKind()); 1072 for (GlobalObject &GO : M.global_objects()) 1073 if (GO.getComdat() == C) 1074 GO.setComdat(NewC); 1075 } 1076 } 1077 1078 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1079 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1080 TheFn->setName(NewName); 1081 } 1082 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1083 // Any needed promotion of 'TheFn' has already been done during 1084 // LTO unit split, so we can ignore return value of AddCalls. 1085 AddCalls(SlotInfo, TheFnVI); 1086 1087 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1088 Res->SingleImplName = std::string(TheFn->getName()); 1089 1090 return true; 1091 } 1092 1093 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1094 VTableSlotSummary &SlotSummary, 1095 VTableSlotInfo &SlotInfo, 1096 WholeProgramDevirtResolution *Res, 1097 std::set<ValueInfo> &DevirtTargets) { 1098 // See if the program contains a single implementation of this virtual 1099 // function. 1100 auto TheFn = TargetsForSlot[0]; 1101 for (auto &&Target : TargetsForSlot) 1102 if (TheFn != Target) 1103 return false; 1104 1105 // Don't devirtualize if we don't have target definition. 1106 auto Size = TheFn.getSummaryList().size(); 1107 if (!Size) 1108 return false; 1109 1110 // If the summary list contains multiple summaries where at least one is 1111 // a local, give up, as we won't know which (possibly promoted) name to use. 1112 for (auto &S : TheFn.getSummaryList()) 1113 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1114 return false; 1115 1116 // Collect functions devirtualized at least for one call site for stats. 1117 if (PrintSummaryDevirt) 1118 DevirtTargets.insert(TheFn); 1119 1120 auto &S = TheFn.getSummaryList()[0]; 1121 bool IsExported = AddCalls(SlotInfo, TheFn); 1122 if (IsExported) 1123 ExportedGUIDs.insert(TheFn.getGUID()); 1124 1125 // Record in summary for use in devirtualization during the ThinLTO import 1126 // step. 1127 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1128 if (GlobalValue::isLocalLinkage(S->linkage())) { 1129 if (IsExported) 1130 // If target is a local function and we are exporting it by 1131 // devirtualizing a call in another module, we need to record the 1132 // promoted name. 1133 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1134 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1135 else { 1136 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1137 Res->SingleImplName = std::string(TheFn.name()); 1138 } 1139 } else 1140 Res->SingleImplName = std::string(TheFn.name()); 1141 1142 // Name will be empty if this thin link driven off of serialized combined 1143 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1144 // legacy LTO API anyway. 1145 assert(!Res->SingleImplName.empty()); 1146 1147 return true; 1148 } 1149 1150 void DevirtModule::tryICallBranchFunnel( 1151 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1152 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1153 Triple T(M.getTargetTriple()); 1154 if (T.getArch() != Triple::x86_64) 1155 return; 1156 1157 if (TargetsForSlot.size() > ClThreshold) 1158 return; 1159 1160 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1161 if (!HasNonDevirt) 1162 for (auto &P : SlotInfo.ConstCSInfo) 1163 if (!P.second.AllCallSitesDevirted) { 1164 HasNonDevirt = true; 1165 break; 1166 } 1167 1168 if (!HasNonDevirt) 1169 return; 1170 1171 FunctionType *FT = 1172 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1173 Function *JT; 1174 if (isa<MDString>(Slot.TypeID)) { 1175 JT = Function::Create(FT, Function::ExternalLinkage, 1176 M.getDataLayout().getProgramAddressSpace(), 1177 getGlobalName(Slot, {}, "branch_funnel"), &M); 1178 JT->setVisibility(GlobalValue::HiddenVisibility); 1179 } else { 1180 JT = Function::Create(FT, Function::InternalLinkage, 1181 M.getDataLayout().getProgramAddressSpace(), 1182 "branch_funnel", &M); 1183 } 1184 JT->addAttribute(1, Attribute::Nest); 1185 1186 std::vector<Value *> JTArgs; 1187 JTArgs.push_back(JT->arg_begin()); 1188 for (auto &T : TargetsForSlot) { 1189 JTArgs.push_back(getMemberAddr(T.TM)); 1190 JTArgs.push_back(T.Fn); 1191 } 1192 1193 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1194 Function *Intr = 1195 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1196 1197 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1198 CI->setTailCallKind(CallInst::TCK_MustTail); 1199 ReturnInst::Create(M.getContext(), nullptr, BB); 1200 1201 bool IsExported = false; 1202 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1203 if (IsExported) 1204 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1205 } 1206 1207 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1208 Constant *JT, bool &IsExported) { 1209 auto Apply = [&](CallSiteInfo &CSInfo) { 1210 if (CSInfo.isExported()) 1211 IsExported = true; 1212 if (CSInfo.AllCallSitesDevirted) 1213 return; 1214 for (auto &&VCallSite : CSInfo.CallSites) { 1215 CallSite CS = VCallSite.CS; 1216 1217 // Jump tables are only profitable if the retpoline mitigation is enabled. 1218 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 1219 if (FSAttr.hasAttribute(Attribute::None) || 1220 !FSAttr.getValueAsString().contains("+retpoline")) 1221 continue; 1222 1223 if (RemarksEnabled) 1224 VCallSite.emitRemark("branch-funnel", 1225 JT->stripPointerCasts()->getName(), OREGetter); 1226 1227 // Pass the address of the vtable in the nest register, which is r10 on 1228 // x86_64. 1229 std::vector<Type *> NewArgs; 1230 NewArgs.push_back(Int8PtrTy); 1231 for (Type *T : CS.getFunctionType()->params()) 1232 NewArgs.push_back(T); 1233 FunctionType *NewFT = 1234 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 1235 CS.getFunctionType()->isVarArg()); 1236 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1237 1238 IRBuilder<> IRB(CS.getInstruction()); 1239 std::vector<Value *> Args; 1240 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1241 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 1242 Args.push_back(CS.getArgOperand(I)); 1243 1244 CallSite NewCS; 1245 if (CS.isCall()) 1246 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1247 else 1248 NewCS = IRB.CreateInvoke( 1249 NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1250 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 1251 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 1252 NewCS.setCallingConv(CS.getCallingConv()); 1253 1254 AttributeList Attrs = CS.getAttributes(); 1255 std::vector<AttributeSet> NewArgAttrs; 1256 NewArgAttrs.push_back(AttributeSet::get( 1257 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1258 M.getContext(), Attribute::Nest)})); 1259 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1260 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1261 NewCS.setAttributes( 1262 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1263 Attrs.getRetAttributes(), NewArgAttrs)); 1264 1265 CS->replaceAllUsesWith(NewCS.getInstruction()); 1266 CS->eraseFromParent(); 1267 1268 // This use is no longer unsafe. 1269 if (VCallSite.NumUnsafeUses) 1270 --*VCallSite.NumUnsafeUses; 1271 } 1272 // Don't mark as devirtualized because there may be callers compiled without 1273 // retpoline mitigation, which would mean that they are lowered to 1274 // llvm.type.test and therefore require an llvm.type.test resolution for the 1275 // type identifier. 1276 }; 1277 Apply(SlotInfo.CSInfo); 1278 for (auto &P : SlotInfo.ConstCSInfo) 1279 Apply(P.second); 1280 } 1281 1282 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1283 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1284 ArrayRef<uint64_t> Args) { 1285 // Evaluate each function and store the result in each target's RetVal 1286 // field. 1287 for (VirtualCallTarget &Target : TargetsForSlot) { 1288 if (Target.Fn->arg_size() != Args.size() + 1) 1289 return false; 1290 1291 Evaluator Eval(M.getDataLayout(), nullptr); 1292 SmallVector<Constant *, 2> EvalArgs; 1293 EvalArgs.push_back( 1294 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1295 for (unsigned I = 0; I != Args.size(); ++I) { 1296 auto *ArgTy = dyn_cast<IntegerType>( 1297 Target.Fn->getFunctionType()->getParamType(I + 1)); 1298 if (!ArgTy) 1299 return false; 1300 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1301 } 1302 1303 Constant *RetVal; 1304 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1305 !isa<ConstantInt>(RetVal)) 1306 return false; 1307 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1308 } 1309 return true; 1310 } 1311 1312 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1313 uint64_t TheRetVal) { 1314 for (auto Call : CSInfo.CallSites) 1315 Call.replaceAndErase( 1316 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1317 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1318 CSInfo.markDevirt(); 1319 } 1320 1321 bool DevirtModule::tryUniformRetValOpt( 1322 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1323 WholeProgramDevirtResolution::ByArg *Res) { 1324 // Uniform return value optimization. If all functions return the same 1325 // constant, replace all calls with that constant. 1326 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1327 for (const VirtualCallTarget &Target : TargetsForSlot) 1328 if (Target.RetVal != TheRetVal) 1329 return false; 1330 1331 if (CSInfo.isExported()) { 1332 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1333 Res->Info = TheRetVal; 1334 } 1335 1336 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1337 if (RemarksEnabled) 1338 for (auto &&Target : TargetsForSlot) 1339 Target.WasDevirt = true; 1340 return true; 1341 } 1342 1343 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1344 ArrayRef<uint64_t> Args, 1345 StringRef Name) { 1346 std::string FullName = "__typeid_"; 1347 raw_string_ostream OS(FullName); 1348 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1349 for (uint64_t Arg : Args) 1350 OS << '_' << Arg; 1351 OS << '_' << Name; 1352 return OS.str(); 1353 } 1354 1355 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1356 Triple T(M.getTargetTriple()); 1357 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1358 } 1359 1360 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1361 StringRef Name, Constant *C) { 1362 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1363 getGlobalName(Slot, Args, Name), C, &M); 1364 GA->setVisibility(GlobalValue::HiddenVisibility); 1365 } 1366 1367 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1368 StringRef Name, uint32_t Const, 1369 uint32_t &Storage) { 1370 if (shouldExportConstantsAsAbsoluteSymbols()) { 1371 exportGlobal( 1372 Slot, Args, Name, 1373 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1374 return; 1375 } 1376 1377 Storage = Const; 1378 } 1379 1380 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1381 StringRef Name) { 1382 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1383 auto *GV = dyn_cast<GlobalVariable>(C); 1384 if (GV) 1385 GV->setVisibility(GlobalValue::HiddenVisibility); 1386 return C; 1387 } 1388 1389 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1390 StringRef Name, IntegerType *IntTy, 1391 uint32_t Storage) { 1392 if (!shouldExportConstantsAsAbsoluteSymbols()) 1393 return ConstantInt::get(IntTy, Storage); 1394 1395 Constant *C = importGlobal(Slot, Args, Name); 1396 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1397 C = ConstantExpr::getPtrToInt(C, IntTy); 1398 1399 // We only need to set metadata if the global is newly created, in which 1400 // case it would not have hidden visibility. 1401 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1402 return C; 1403 1404 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1405 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1406 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1407 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1408 MDNode::get(M.getContext(), {MinC, MaxC})); 1409 }; 1410 unsigned AbsWidth = IntTy->getBitWidth(); 1411 if (AbsWidth == IntPtrTy->getBitWidth()) 1412 SetAbsRange(~0ull, ~0ull); // Full set. 1413 else 1414 SetAbsRange(0, 1ull << AbsWidth); 1415 return C; 1416 } 1417 1418 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1419 bool IsOne, 1420 Constant *UniqueMemberAddr) { 1421 for (auto &&Call : CSInfo.CallSites) { 1422 IRBuilder<> B(Call.CS.getInstruction()); 1423 Value *Cmp = 1424 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1425 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1426 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1427 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1428 Cmp); 1429 } 1430 CSInfo.markDevirt(); 1431 } 1432 1433 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1434 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1435 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1436 ConstantInt::get(Int64Ty, M->Offset)); 1437 } 1438 1439 bool DevirtModule::tryUniqueRetValOpt( 1440 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1441 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1442 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1443 // IsOne controls whether we look for a 0 or a 1. 1444 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1445 const TypeMemberInfo *UniqueMember = nullptr; 1446 for (const VirtualCallTarget &Target : TargetsForSlot) { 1447 if (Target.RetVal == (IsOne ? 1 : 0)) { 1448 if (UniqueMember) 1449 return false; 1450 UniqueMember = Target.TM; 1451 } 1452 } 1453 1454 // We should have found a unique member or bailed out by now. We already 1455 // checked for a uniform return value in tryUniformRetValOpt. 1456 assert(UniqueMember); 1457 1458 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1459 if (CSInfo.isExported()) { 1460 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1461 Res->Info = IsOne; 1462 1463 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1464 } 1465 1466 // Replace each call with the comparison. 1467 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1468 UniqueMemberAddr); 1469 1470 // Update devirtualization statistics for targets. 1471 if (RemarksEnabled) 1472 for (auto &&Target : TargetsForSlot) 1473 Target.WasDevirt = true; 1474 1475 return true; 1476 }; 1477 1478 if (BitWidth == 1) { 1479 if (tryUniqueRetValOptFor(true)) 1480 return true; 1481 if (tryUniqueRetValOptFor(false)) 1482 return true; 1483 } 1484 return false; 1485 } 1486 1487 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1488 Constant *Byte, Constant *Bit) { 1489 for (auto Call : CSInfo.CallSites) { 1490 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1491 IRBuilder<> B(Call.CS.getInstruction()); 1492 Value *Addr = 1493 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1494 if (RetType->getBitWidth() == 1) { 1495 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1496 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1497 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1498 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1499 OREGetter, IsBitSet); 1500 } else { 1501 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1502 Value *Val = B.CreateLoad(RetType, ValAddr); 1503 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1504 OREGetter, Val); 1505 } 1506 } 1507 CSInfo.markDevirt(); 1508 } 1509 1510 bool DevirtModule::tryVirtualConstProp( 1511 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1512 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1513 // This only works if the function returns an integer. 1514 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1515 if (!RetType) 1516 return false; 1517 unsigned BitWidth = RetType->getBitWidth(); 1518 if (BitWidth > 64) 1519 return false; 1520 1521 // Make sure that each function is defined, does not access memory, takes at 1522 // least one argument, does not use its first argument (which we assume is 1523 // 'this'), and has the same return type. 1524 // 1525 // Note that we test whether this copy of the function is readnone, rather 1526 // than testing function attributes, which must hold for any copy of the 1527 // function, even a less optimized version substituted at link time. This is 1528 // sound because the virtual constant propagation optimizations effectively 1529 // inline all implementations of the virtual function into each call site, 1530 // rather than using function attributes to perform local optimization. 1531 for (VirtualCallTarget &Target : TargetsForSlot) { 1532 if (Target.Fn->isDeclaration() || 1533 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1534 MAK_ReadNone || 1535 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1536 Target.Fn->getReturnType() != RetType) 1537 return false; 1538 } 1539 1540 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1541 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1542 continue; 1543 1544 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1545 if (Res) 1546 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1547 1548 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1549 continue; 1550 1551 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1552 ResByArg, Slot, CSByConstantArg.first)) 1553 continue; 1554 1555 // Find an allocation offset in bits in all vtables associated with the 1556 // type. 1557 uint64_t AllocBefore = 1558 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1559 uint64_t AllocAfter = 1560 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1561 1562 // Calculate the total amount of padding needed to store a value at both 1563 // ends of the object. 1564 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1565 for (auto &&Target : TargetsForSlot) { 1566 TotalPaddingBefore += std::max<int64_t>( 1567 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1568 TotalPaddingAfter += std::max<int64_t>( 1569 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1570 } 1571 1572 // If the amount of padding is too large, give up. 1573 // FIXME: do something smarter here. 1574 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1575 continue; 1576 1577 // Calculate the offset to the value as a (possibly negative) byte offset 1578 // and (if applicable) a bit offset, and store the values in the targets. 1579 int64_t OffsetByte; 1580 uint64_t OffsetBit; 1581 if (TotalPaddingBefore <= TotalPaddingAfter) 1582 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1583 OffsetBit); 1584 else 1585 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1586 OffsetBit); 1587 1588 if (RemarksEnabled) 1589 for (auto &&Target : TargetsForSlot) 1590 Target.WasDevirt = true; 1591 1592 1593 if (CSByConstantArg.second.isExported()) { 1594 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1595 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1596 ResByArg->Byte); 1597 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1598 ResByArg->Bit); 1599 } 1600 1601 // Rewrite each call to a load from OffsetByte/OffsetBit. 1602 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1603 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1604 applyVirtualConstProp(CSByConstantArg.second, 1605 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1606 } 1607 return true; 1608 } 1609 1610 void DevirtModule::rebuildGlobal(VTableBits &B) { 1611 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1612 return; 1613 1614 // Align the before byte array to the global's minimum alignment so that we 1615 // don't break any alignment requirements on the global. 1616 MaybeAlign Alignment(B.GV->getAlignment()); 1617 if (!Alignment) 1618 Alignment = 1619 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType())); 1620 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1621 1622 // Before was stored in reverse order; flip it now. 1623 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1624 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1625 1626 // Build an anonymous global containing the before bytes, followed by the 1627 // original initializer, followed by the after bytes. 1628 auto NewInit = ConstantStruct::getAnon( 1629 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1630 B.GV->getInitializer(), 1631 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1632 auto NewGV = 1633 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1634 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1635 NewGV->setSection(B.GV->getSection()); 1636 NewGV->setComdat(B.GV->getComdat()); 1637 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1638 1639 // Copy the original vtable's metadata to the anonymous global, adjusting 1640 // offsets as required. 1641 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1642 1643 // Build an alias named after the original global, pointing at the second 1644 // element (the original initializer). 1645 auto Alias = GlobalAlias::create( 1646 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1647 ConstantExpr::getGetElementPtr( 1648 NewInit->getType(), NewGV, 1649 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1650 ConstantInt::get(Int32Ty, 1)}), 1651 &M); 1652 Alias->setVisibility(B.GV->getVisibility()); 1653 Alias->takeName(B.GV); 1654 1655 B.GV->replaceAllUsesWith(Alias); 1656 B.GV->eraseFromParent(); 1657 } 1658 1659 bool DevirtModule::areRemarksEnabled() { 1660 const auto &FL = M.getFunctionList(); 1661 for (const Function &Fn : FL) { 1662 const auto &BBL = Fn.getBasicBlockList(); 1663 if (BBL.empty()) 1664 continue; 1665 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1666 return DI.isEnabled(); 1667 } 1668 return false; 1669 } 1670 1671 void DevirtModule::scanTypeTestUsers( 1672 Function *TypeTestFunc, 1673 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 1674 // Find all virtual calls via a virtual table pointer %p under an assumption 1675 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1676 // points to a member of the type identifier %md. Group calls by (type ID, 1677 // offset) pair (effectively the identity of the virtual function) and store 1678 // to CallSlots. 1679 DenseSet<CallSite> SeenCallSites; 1680 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1681 I != E;) { 1682 auto CI = dyn_cast<CallInst>(I->getUser()); 1683 ++I; 1684 if (!CI) 1685 continue; 1686 1687 // Search for virtual calls based on %p and add them to DevirtCalls. 1688 SmallVector<DevirtCallSite, 1> DevirtCalls; 1689 SmallVector<CallInst *, 1> Assumes; 1690 auto &DT = LookupDomTree(*CI->getFunction()); 1691 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1692 1693 Metadata *TypeId = 1694 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1695 // If we found any, add them to CallSlots. 1696 if (!Assumes.empty()) { 1697 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1698 for (DevirtCallSite Call : DevirtCalls) { 1699 // Only add this CallSite if we haven't seen it before. The vtable 1700 // pointer may have been CSE'd with pointers from other call sites, 1701 // and we don't want to process call sites multiple times. We can't 1702 // just skip the vtable Ptr if it has been seen before, however, since 1703 // it may be shared by type tests that dominate different calls. 1704 if (SeenCallSites.insert(Call.CS).second) 1705 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1706 } 1707 } 1708 1709 // If we have any uses on type metadata, keep the type test assumes for 1710 // later analysis. Otherwise remove as they aren't useful, and 1711 // LowerTypeTests will think they are Unsat and lower to False, which 1712 // breaks any uses on assumes. 1713 if (TypeIdMap.count(TypeId)) 1714 continue; 1715 1716 // We no longer need the assumes or the type test. 1717 for (auto Assume : Assumes) 1718 Assume->eraseFromParent(); 1719 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1720 // may use the vtable argument later. 1721 if (CI->use_empty()) 1722 CI->eraseFromParent(); 1723 } 1724 } 1725 1726 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1727 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1728 1729 for (auto I = TypeCheckedLoadFunc->use_begin(), 1730 E = TypeCheckedLoadFunc->use_end(); 1731 I != E;) { 1732 auto CI = dyn_cast<CallInst>(I->getUser()); 1733 ++I; 1734 if (!CI) 1735 continue; 1736 1737 Value *Ptr = CI->getArgOperand(0); 1738 Value *Offset = CI->getArgOperand(1); 1739 Value *TypeIdValue = CI->getArgOperand(2); 1740 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1741 1742 SmallVector<DevirtCallSite, 1> DevirtCalls; 1743 SmallVector<Instruction *, 1> LoadedPtrs; 1744 SmallVector<Instruction *, 1> Preds; 1745 bool HasNonCallUses = false; 1746 auto &DT = LookupDomTree(*CI->getFunction()); 1747 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1748 HasNonCallUses, CI, DT); 1749 1750 // Start by generating "pessimistic" code that explicitly loads the function 1751 // pointer from the vtable and performs the type check. If possible, we will 1752 // eliminate the load and the type check later. 1753 1754 // If possible, only generate the load at the point where it is used. 1755 // This helps avoid unnecessary spills. 1756 IRBuilder<> LoadB( 1757 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1758 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1759 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1760 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1761 1762 for (Instruction *LoadedPtr : LoadedPtrs) { 1763 LoadedPtr->replaceAllUsesWith(LoadedValue); 1764 LoadedPtr->eraseFromParent(); 1765 } 1766 1767 // Likewise for the type test. 1768 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1769 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1770 1771 for (Instruction *Pred : Preds) { 1772 Pred->replaceAllUsesWith(TypeTestCall); 1773 Pred->eraseFromParent(); 1774 } 1775 1776 // We have already erased any extractvalue instructions that refer to the 1777 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1778 // (although this is unlikely). In that case, explicitly build a pair and 1779 // RAUW it. 1780 if (!CI->use_empty()) { 1781 Value *Pair = UndefValue::get(CI->getType()); 1782 IRBuilder<> B(CI); 1783 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1784 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1785 CI->replaceAllUsesWith(Pair); 1786 } 1787 1788 // The number of unsafe uses is initially the number of uses. 1789 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1790 NumUnsafeUses = DevirtCalls.size(); 1791 1792 // If the function pointer has a non-call user, we cannot eliminate the type 1793 // check, as one of those users may eventually call the pointer. Increment 1794 // the unsafe use count to make sure it cannot reach zero. 1795 if (HasNonCallUses) 1796 ++NumUnsafeUses; 1797 for (DevirtCallSite Call : DevirtCalls) { 1798 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1799 &NumUnsafeUses); 1800 } 1801 1802 CI->eraseFromParent(); 1803 } 1804 } 1805 1806 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1807 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1808 if (!TypeId) 1809 return; 1810 const TypeIdSummary *TidSummary = 1811 ImportSummary->getTypeIdSummary(TypeId->getString()); 1812 if (!TidSummary) 1813 return; 1814 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1815 if (ResI == TidSummary->WPDRes.end()) 1816 return; 1817 const WholeProgramDevirtResolution &Res = ResI->second; 1818 1819 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1820 assert(!Res.SingleImplName.empty()); 1821 // The type of the function in the declaration is irrelevant because every 1822 // call site will cast it to the correct type. 1823 Constant *SingleImpl = 1824 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1825 Type::getVoidTy(M.getContext())) 1826 .getCallee()); 1827 1828 // This is the import phase so we should not be exporting anything. 1829 bool IsExported = false; 1830 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1831 assert(!IsExported); 1832 } 1833 1834 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1835 auto I = Res.ResByArg.find(CSByConstantArg.first); 1836 if (I == Res.ResByArg.end()) 1837 continue; 1838 auto &ResByArg = I->second; 1839 // FIXME: We should figure out what to do about the "function name" argument 1840 // to the apply* functions, as the function names are unavailable during the 1841 // importing phase. For now we just pass the empty string. This does not 1842 // impact correctness because the function names are just used for remarks. 1843 switch (ResByArg.TheKind) { 1844 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1845 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1846 break; 1847 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1848 Constant *UniqueMemberAddr = 1849 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1850 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1851 UniqueMemberAddr); 1852 break; 1853 } 1854 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1855 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1856 Int32Ty, ResByArg.Byte); 1857 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1858 ResByArg.Bit); 1859 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1860 break; 1861 } 1862 default: 1863 break; 1864 } 1865 } 1866 1867 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1868 // The type of the function is irrelevant, because it's bitcast at calls 1869 // anyhow. 1870 Constant *JT = cast<Constant>( 1871 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1872 Type::getVoidTy(M.getContext())) 1873 .getCallee()); 1874 bool IsExported = false; 1875 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1876 assert(!IsExported); 1877 } 1878 } 1879 1880 void DevirtModule::removeRedundantTypeTests() { 1881 auto True = ConstantInt::getTrue(M.getContext()); 1882 for (auto &&U : NumUnsafeUsesForTypeTest) { 1883 if (U.second == 0) { 1884 U.first->replaceAllUsesWith(True); 1885 U.first->eraseFromParent(); 1886 } 1887 } 1888 } 1889 1890 bool DevirtModule::run() { 1891 // If only some of the modules were split, we cannot correctly perform 1892 // this transformation. We already checked for the presense of type tests 1893 // with partially split modules during the thin link, and would have emitted 1894 // an error if any were found, so here we can simply return. 1895 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1896 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1897 return false; 1898 1899 Function *TypeTestFunc = 1900 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1901 Function *TypeCheckedLoadFunc = 1902 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1903 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1904 1905 // Normally if there are no users of the devirtualization intrinsics in the 1906 // module, this pass has nothing to do. But if we are exporting, we also need 1907 // to handle any users that appear only in the function summaries. 1908 if (!ExportSummary && 1909 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1910 AssumeFunc->use_empty()) && 1911 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1912 return false; 1913 1914 // Rebuild type metadata into a map for easy lookup. 1915 std::vector<VTableBits> Bits; 1916 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1917 buildTypeIdentifierMap(Bits, TypeIdMap); 1918 1919 if (TypeTestFunc && AssumeFunc) 1920 scanTypeTestUsers(TypeTestFunc, TypeIdMap); 1921 1922 if (TypeCheckedLoadFunc) 1923 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1924 1925 if (ImportSummary) { 1926 for (auto &S : CallSlots) 1927 importResolution(S.first, S.second); 1928 1929 removeRedundantTypeTests(); 1930 1931 // We have lowered or deleted the type instrinsics, so we will no 1932 // longer have enough information to reason about the liveness of virtual 1933 // function pointers in GlobalDCE. 1934 for (GlobalVariable &GV : M.globals()) 1935 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 1936 1937 // The rest of the code is only necessary when exporting or during regular 1938 // LTO, so we are done. 1939 return true; 1940 } 1941 1942 if (TypeIdMap.empty()) 1943 return true; 1944 1945 // Collect information from summary about which calls to try to devirtualize. 1946 if (ExportSummary) { 1947 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1948 for (auto &P : TypeIdMap) { 1949 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1950 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1951 TypeId); 1952 } 1953 1954 for (auto &P : *ExportSummary) { 1955 for (auto &S : P.second.SummaryList) { 1956 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1957 if (!FS) 1958 continue; 1959 // FIXME: Only add live functions. 1960 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1961 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1962 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 1963 } 1964 } 1965 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1966 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1967 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1968 } 1969 } 1970 for (const FunctionSummary::ConstVCall &VC : 1971 FS->type_test_assume_const_vcalls()) { 1972 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1973 CallSlots[{MD, VC.VFunc.Offset}] 1974 .ConstCSInfo[VC.Args] 1975 .addSummaryTypeTestAssumeUser(FS); 1976 } 1977 } 1978 for (const FunctionSummary::ConstVCall &VC : 1979 FS->type_checked_load_const_vcalls()) { 1980 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1981 CallSlots[{MD, VC.VFunc.Offset}] 1982 .ConstCSInfo[VC.Args] 1983 .addSummaryTypeCheckedLoadUser(FS); 1984 } 1985 } 1986 } 1987 } 1988 } 1989 1990 // For each (type, offset) pair: 1991 bool DidVirtualConstProp = false; 1992 std::map<std::string, Function*> DevirtTargets; 1993 for (auto &S : CallSlots) { 1994 // Search each of the members of the type identifier for the virtual 1995 // function implementation at offset S.first.ByteOffset, and add to 1996 // TargetsForSlot. 1997 std::vector<VirtualCallTarget> TargetsForSlot; 1998 WholeProgramDevirtResolution *Res = nullptr; 1999 if (ExportSummary && isa<MDString>(S.first.TypeID) && 2000 TypeIdMap.count(S.first.TypeID)) 2001 // For any type id used on a global's type metadata, create the type id 2002 // summary resolution regardless of whether we can devirtualize, so that 2003 // lower type tests knows the type id is not Unsat. 2004 Res = &ExportSummary 2005 ->getOrInsertTypeIdSummary( 2006 cast<MDString>(S.first.TypeID)->getString()) 2007 .WPDRes[S.first.ByteOffset]; 2008 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 2009 S.first.ByteOffset)) { 2010 2011 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2012 DidVirtualConstProp |= 2013 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2014 2015 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2016 } 2017 2018 // Collect functions devirtualized at least for one call site for stats. 2019 if (RemarksEnabled) 2020 for (const auto &T : TargetsForSlot) 2021 if (T.WasDevirt) 2022 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2023 } 2024 2025 // CFI-specific: if we are exporting and any llvm.type.checked.load 2026 // intrinsics were *not* devirtualized, we need to add the resulting 2027 // llvm.type.test intrinsics to the function summaries so that the 2028 // LowerTypeTests pass will export them. 2029 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2030 auto GUID = 2031 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2032 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2033 FS->addTypeTest(GUID); 2034 for (auto &CCS : S.second.ConstCSInfo) 2035 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2036 FS->addTypeTest(GUID); 2037 } 2038 } 2039 2040 if (RemarksEnabled) { 2041 // Generate remarks for each devirtualized function. 2042 for (const auto &DT : DevirtTargets) { 2043 Function *F = DT.second; 2044 2045 using namespace ore; 2046 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2047 << "devirtualized " 2048 << NV("FunctionName", DT.first)); 2049 } 2050 } 2051 2052 removeRedundantTypeTests(); 2053 2054 // Rebuild each global we touched as part of virtual constant propagation to 2055 // include the before and after bytes. 2056 if (DidVirtualConstProp) 2057 for (VTableBits &B : Bits) 2058 rebuildGlobal(B); 2059 2060 // We have lowered or deleted the type instrinsics, so we will no 2061 // longer have enough information to reason about the liveness of virtual 2062 // function pointers in GlobalDCE. 2063 for (GlobalVariable &GV : M.globals()) 2064 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2065 2066 return true; 2067 } 2068 2069 void DevirtIndex::run() { 2070 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2071 return; 2072 2073 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2074 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2075 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2076 } 2077 2078 // Collect information from summary about which calls to try to devirtualize. 2079 for (auto &P : ExportSummary) { 2080 for (auto &S : P.second.SummaryList) { 2081 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2082 if (!FS) 2083 continue; 2084 // FIXME: Only add live functions. 2085 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2086 for (StringRef Name : NameByGUID[VF.GUID]) { 2087 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2088 } 2089 } 2090 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2091 for (StringRef Name : NameByGUID[VF.GUID]) { 2092 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2093 } 2094 } 2095 for (const FunctionSummary::ConstVCall &VC : 2096 FS->type_test_assume_const_vcalls()) { 2097 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2098 CallSlots[{Name, VC.VFunc.Offset}] 2099 .ConstCSInfo[VC.Args] 2100 .addSummaryTypeTestAssumeUser(FS); 2101 } 2102 } 2103 for (const FunctionSummary::ConstVCall &VC : 2104 FS->type_checked_load_const_vcalls()) { 2105 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2106 CallSlots[{Name, VC.VFunc.Offset}] 2107 .ConstCSInfo[VC.Args] 2108 .addSummaryTypeCheckedLoadUser(FS); 2109 } 2110 } 2111 } 2112 } 2113 2114 std::set<ValueInfo> DevirtTargets; 2115 // For each (type, offset) pair: 2116 for (auto &S : CallSlots) { 2117 // Search each of the members of the type identifier for the virtual 2118 // function implementation at offset S.first.ByteOffset, and add to 2119 // TargetsForSlot. 2120 std::vector<ValueInfo> TargetsForSlot; 2121 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2122 assert(TidSummary); 2123 // Create the type id summary resolution regardlness of whether we can 2124 // devirtualize, so that lower type tests knows the type id is used on 2125 // a global and not Unsat. 2126 WholeProgramDevirtResolution *Res = 2127 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2128 .WPDRes[S.first.ByteOffset]; 2129 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2130 S.first.ByteOffset)) { 2131 2132 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2133 DevirtTargets)) 2134 continue; 2135 } 2136 } 2137 2138 // Optionally have the thin link print message for each devirtualized 2139 // function. 2140 if (PrintSummaryDevirt) 2141 for (const auto &DT : DevirtTargets) 2142 errs() << "Devirtualized call to " << DT << "\n"; 2143 2144 return; 2145 } 2146