1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/PassSupport.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Errc.h"
92 #include "llvm/Support/Error.h"
93 #include "llvm/Support/FileSystem.h"
94 #include "llvm/Support/GlobPattern.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Transforms/IPO.h"
97 #include "llvm/Transforms/IPO/FunctionAttrs.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
104 
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
107 
108 #define DEBUG_TYPE "wholeprogramdevirt"
109 
110 static cl::opt<PassSummaryAction> ClSummaryAction(
111     "wholeprogramdevirt-summary-action",
112     cl::desc("What to do with the summary when running this pass"),
113     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
114                clEnumValN(PassSummaryAction::Import, "import",
115                           "Import typeid resolutions from summary and globals"),
116                clEnumValN(PassSummaryAction::Export, "export",
117                           "Export typeid resolutions to summary and globals")),
118     cl::Hidden);
119 
120 static cl::opt<std::string> ClReadSummary(
121     "wholeprogramdevirt-read-summary",
122     cl::desc(
123         "Read summary from given bitcode or YAML file before running pass"),
124     cl::Hidden);
125 
126 static cl::opt<std::string> ClWriteSummary(
127     "wholeprogramdevirt-write-summary",
128     cl::desc("Write summary to given bitcode or YAML file after running pass. "
129              "Output file format is deduced from extension: *.bc means writing "
130              "bitcode, otherwise YAML"),
131     cl::Hidden);
132 
133 static cl::opt<unsigned>
134     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
135                 cl::init(10), cl::ZeroOrMore,
136                 cl::desc("Maximum number of call targets per "
137                          "call site to enable branch funnels"));
138 
139 static cl::opt<bool>
140     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
141                        cl::init(false), cl::ZeroOrMore,
142                        cl::desc("Print index-based devirtualization messages"));
143 
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
148 cl::opt<bool>
149     WholeProgramVisibility("whole-program-visibility", cl::init(false),
150                            cl::Hidden, cl::ZeroOrMore,
151                            cl::desc("Enable whole program visibility"));
152 
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 cl::opt<bool> DisableWholeProgramVisibility(
156     "disable-whole-program-visibility", cl::init(false), cl::Hidden,
157     cl::ZeroOrMore,
158     cl::desc("Disable whole program visibility (overrides enabling options)"));
159 
160 /// Provide way to prevent certain function from being devirtualized
161 cl::list<std::string>
162     SkipFunctionNames("wholeprogramdevirt-skip",
163                       cl::desc("Prevent function(s) from being devirtualized"),
164                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
165 
166 namespace {
167 struct PatternList {
168   std::vector<GlobPattern> Patterns;
169   template <class T> void init(const T &StringList) {
170     for (const auto &S : StringList)
171       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
172         Patterns.push_back(std::move(*Pat));
173   }
174   bool match(StringRef S) {
175     for (const GlobPattern &P : Patterns)
176       if (P.match(S))
177         return true;
178     return false;
179   }
180 };
181 } // namespace
182 
183 // Find the minimum offset that we may store a value of size Size bits at. If
184 // IsAfter is set, look for an offset before the object, otherwise look for an
185 // offset after the object.
186 uint64_t
187 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
188                                      bool IsAfter, uint64_t Size) {
189   // Find a minimum offset taking into account only vtable sizes.
190   uint64_t MinByte = 0;
191   for (const VirtualCallTarget &Target : Targets) {
192     if (IsAfter)
193       MinByte = std::max(MinByte, Target.minAfterBytes());
194     else
195       MinByte = std::max(MinByte, Target.minBeforeBytes());
196   }
197 
198   // Build a vector of arrays of bytes covering, for each target, a slice of the
199   // used region (see AccumBitVector::BytesUsed in
200   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
201   // this aligns the used regions to start at MinByte.
202   //
203   // In this example, A, B and C are vtables, # is a byte already allocated for
204   // a virtual function pointer, AAAA... (etc.) are the used regions for the
205   // vtables and Offset(X) is the value computed for the Offset variable below
206   // for X.
207   //
208   //                    Offset(A)
209   //                    |       |
210   //                            |MinByte
211   // A: ################AAAAAAAA|AAAAAAAA
212   // B: ########BBBBBBBBBBBBBBBB|BBBB
213   // C: ########################|CCCCCCCCCCCCCCCC
214   //            |   Offset(B)   |
215   //
216   // This code produces the slices of A, B and C that appear after the divider
217   // at MinByte.
218   std::vector<ArrayRef<uint8_t>> Used;
219   for (const VirtualCallTarget &Target : Targets) {
220     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
221                                        : Target.TM->Bits->Before.BytesUsed;
222     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
223                               : MinByte - Target.minBeforeBytes();
224 
225     // Disregard used regions that are smaller than Offset. These are
226     // effectively all-free regions that do not need to be checked.
227     if (VTUsed.size() > Offset)
228       Used.push_back(VTUsed.slice(Offset));
229   }
230 
231   if (Size == 1) {
232     // Find a free bit in each member of Used.
233     for (unsigned I = 0;; ++I) {
234       uint8_t BitsUsed = 0;
235       for (auto &&B : Used)
236         if (I < B.size())
237           BitsUsed |= B[I];
238       if (BitsUsed != 0xff)
239         return (MinByte + I) * 8 +
240                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
241     }
242   } else {
243     // Find a free (Size/8) byte region in each member of Used.
244     // FIXME: see if alignment helps.
245     for (unsigned I = 0;; ++I) {
246       for (auto &&B : Used) {
247         unsigned Byte = 0;
248         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
249           if (B[I + Byte])
250             goto NextI;
251           ++Byte;
252         }
253       }
254       return (MinByte + I) * 8;
255     NextI:;
256     }
257   }
258 }
259 
260 void wholeprogramdevirt::setBeforeReturnValues(
261     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
262     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
263   if (BitWidth == 1)
264     OffsetByte = -(AllocBefore / 8 + 1);
265   else
266     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
267   OffsetBit = AllocBefore % 8;
268 
269   for (VirtualCallTarget &Target : Targets) {
270     if (BitWidth == 1)
271       Target.setBeforeBit(AllocBefore);
272     else
273       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
274   }
275 }
276 
277 void wholeprogramdevirt::setAfterReturnValues(
278     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
279     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
280   if (BitWidth == 1)
281     OffsetByte = AllocAfter / 8;
282   else
283     OffsetByte = (AllocAfter + 7) / 8;
284   OffsetBit = AllocAfter % 8;
285 
286   for (VirtualCallTarget &Target : Targets) {
287     if (BitWidth == 1)
288       Target.setAfterBit(AllocAfter);
289     else
290       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
291   }
292 }
293 
294 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
295     : Fn(Fn), TM(TM),
296       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
297 
298 namespace {
299 
300 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
301 // tables, and the ByteOffset is the offset in bytes from the address point to
302 // the virtual function pointer.
303 struct VTableSlot {
304   Metadata *TypeID;
305   uint64_t ByteOffset;
306 };
307 
308 } // end anonymous namespace
309 
310 namespace llvm {
311 
312 template <> struct DenseMapInfo<VTableSlot> {
313   static VTableSlot getEmptyKey() {
314     return {DenseMapInfo<Metadata *>::getEmptyKey(),
315             DenseMapInfo<uint64_t>::getEmptyKey()};
316   }
317   static VTableSlot getTombstoneKey() {
318     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
319             DenseMapInfo<uint64_t>::getTombstoneKey()};
320   }
321   static unsigned getHashValue(const VTableSlot &I) {
322     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
323            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
324   }
325   static bool isEqual(const VTableSlot &LHS,
326                       const VTableSlot &RHS) {
327     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
328   }
329 };
330 
331 template <> struct DenseMapInfo<VTableSlotSummary> {
332   static VTableSlotSummary getEmptyKey() {
333     return {DenseMapInfo<StringRef>::getEmptyKey(),
334             DenseMapInfo<uint64_t>::getEmptyKey()};
335   }
336   static VTableSlotSummary getTombstoneKey() {
337     return {DenseMapInfo<StringRef>::getTombstoneKey(),
338             DenseMapInfo<uint64_t>::getTombstoneKey()};
339   }
340   static unsigned getHashValue(const VTableSlotSummary &I) {
341     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
342            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343   }
344   static bool isEqual(const VTableSlotSummary &LHS,
345                       const VTableSlotSummary &RHS) {
346     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347   }
348 };
349 
350 } // end namespace llvm
351 
352 namespace {
353 
354 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
355 // the indirect virtual call.
356 struct VirtualCallSite {
357   Value *VTable;
358   CallSite CS;
359 
360   // If non-null, this field points to the associated unsafe use count stored in
361   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
362   // of that field for details.
363   unsigned *NumUnsafeUses;
364 
365   void
366   emitRemark(const StringRef OptName, const StringRef TargetName,
367              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
368     Function *F = CS.getCaller();
369     DebugLoc DLoc = CS->getDebugLoc();
370     BasicBlock *Block = CS.getParent();
371 
372     using namespace ore;
373     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
374                       << NV("Optimization", OptName)
375                       << ": devirtualized a call to "
376                       << NV("FunctionName", TargetName));
377   }
378 
379   void replaceAndErase(
380       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
381       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
382       Value *New) {
383     if (RemarksEnabled)
384       emitRemark(OptName, TargetName, OREGetter);
385     CS->replaceAllUsesWith(New);
386     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
387       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
388       II->getUnwindDest()->removePredecessor(II->getParent());
389     }
390     CS->eraseFromParent();
391     // This use is no longer unsafe.
392     if (NumUnsafeUses)
393       --*NumUnsafeUses;
394   }
395 };
396 
397 // Call site information collected for a specific VTableSlot and possibly a list
398 // of constant integer arguments. The grouping by arguments is handled by the
399 // VTableSlotInfo class.
400 struct CallSiteInfo {
401   /// The set of call sites for this slot. Used during regular LTO and the
402   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
403   /// call sites that appear in the merged module itself); in each of these
404   /// cases we are directly operating on the call sites at the IR level.
405   std::vector<VirtualCallSite> CallSites;
406 
407   /// Whether all call sites represented by this CallSiteInfo, including those
408   /// in summaries, have been devirtualized. This starts off as true because a
409   /// default constructed CallSiteInfo represents no call sites.
410   bool AllCallSitesDevirted = true;
411 
412   // These fields are used during the export phase of ThinLTO and reflect
413   // information collected from function summaries.
414 
415   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
416   /// this slot.
417   bool SummaryHasTypeTestAssumeUsers = false;
418 
419   /// CFI-specific: a vector containing the list of function summaries that use
420   /// the llvm.type.checked.load intrinsic and therefore will require
421   /// resolutions for llvm.type.test in order to implement CFI checks if
422   /// devirtualization was unsuccessful. If devirtualization was successful, the
423   /// pass will clear this vector by calling markDevirt(). If at the end of the
424   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
425   /// to each of the function summaries in the vector.
426   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
427   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
428 
429   bool isExported() const {
430     return SummaryHasTypeTestAssumeUsers ||
431            !SummaryTypeCheckedLoadUsers.empty();
432   }
433 
434   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
435     SummaryTypeCheckedLoadUsers.push_back(FS);
436     AllCallSitesDevirted = false;
437   }
438 
439   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
440     SummaryTypeTestAssumeUsers.push_back(FS);
441     SummaryHasTypeTestAssumeUsers = true;
442     AllCallSitesDevirted = false;
443   }
444 
445   void markDevirt() {
446     AllCallSitesDevirted = true;
447 
448     // As explained in the comment for SummaryTypeCheckedLoadUsers.
449     SummaryTypeCheckedLoadUsers.clear();
450   }
451 };
452 
453 // Call site information collected for a specific VTableSlot.
454 struct VTableSlotInfo {
455   // The set of call sites which do not have all constant integer arguments
456   // (excluding "this").
457   CallSiteInfo CSInfo;
458 
459   // The set of call sites with all constant integer arguments (excluding
460   // "this"), grouped by argument list.
461   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
462 
463   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
464 
465 private:
466   CallSiteInfo &findCallSiteInfo(CallSite CS);
467 };
468 
469 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
470   std::vector<uint64_t> Args;
471   auto *CI = dyn_cast<IntegerType>(CS.getType());
472   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
473     return CSInfo;
474   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
475     auto *CI = dyn_cast<ConstantInt>(Arg);
476     if (!CI || CI->getBitWidth() > 64)
477       return CSInfo;
478     Args.push_back(CI->getZExtValue());
479   }
480   return ConstCSInfo[Args];
481 }
482 
483 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
484                                  unsigned *NumUnsafeUses) {
485   auto &CSI = findCallSiteInfo(CS);
486   CSI.AllCallSitesDevirted = false;
487   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
488 }
489 
490 struct DevirtModule {
491   Module &M;
492   function_ref<AAResults &(Function &)> AARGetter;
493   function_ref<DominatorTree &(Function &)> LookupDomTree;
494 
495   ModuleSummaryIndex *ExportSummary;
496   const ModuleSummaryIndex *ImportSummary;
497 
498   IntegerType *Int8Ty;
499   PointerType *Int8PtrTy;
500   IntegerType *Int32Ty;
501   IntegerType *Int64Ty;
502   IntegerType *IntPtrTy;
503   /// Sizeless array type, used for imported vtables. This provides a signal
504   /// to analyzers that these imports may alias, as they do for example
505   /// when multiple unique return values occur in the same vtable.
506   ArrayType *Int8Arr0Ty;
507 
508   bool RemarksEnabled;
509   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
510 
511   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
512 
513   // This map keeps track of the number of "unsafe" uses of a loaded function
514   // pointer. The key is the associated llvm.type.test intrinsic call generated
515   // by this pass. An unsafe use is one that calls the loaded function pointer
516   // directly. Every time we eliminate an unsafe use (for example, by
517   // devirtualizing it or by applying virtual constant propagation), we
518   // decrement the value stored in this map. If a value reaches zero, we can
519   // eliminate the type check by RAUWing the associated llvm.type.test call with
520   // true.
521   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
522   PatternList FunctionsToSkip;
523 
524   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
525                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
526                function_ref<DominatorTree &(Function &)> LookupDomTree,
527                ModuleSummaryIndex *ExportSummary,
528                const ModuleSummaryIndex *ImportSummary)
529       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
530         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
531         Int8Ty(Type::getInt8Ty(M.getContext())),
532         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
533         Int32Ty(Type::getInt32Ty(M.getContext())),
534         Int64Ty(Type::getInt64Ty(M.getContext())),
535         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
536         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
537         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
538     assert(!(ExportSummary && ImportSummary));
539     FunctionsToSkip.init(SkipFunctionNames);
540   }
541 
542   bool areRemarksEnabled();
543 
544   void scanTypeTestUsers(Function *TypeTestFunc);
545   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
546 
547   void buildTypeIdentifierMap(
548       std::vector<VTableBits> &Bits,
549       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
550   bool
551   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
552                             const std::set<TypeMemberInfo> &TypeMemberInfos,
553                             uint64_t ByteOffset);
554 
555   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
556                              bool &IsExported);
557   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
558                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
559                            VTableSlotInfo &SlotInfo,
560                            WholeProgramDevirtResolution *Res);
561 
562   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
563                               bool &IsExported);
564   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
565                             VTableSlotInfo &SlotInfo,
566                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
567 
568   bool tryEvaluateFunctionsWithArgs(
569       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
570       ArrayRef<uint64_t> Args);
571 
572   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
573                              uint64_t TheRetVal);
574   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
575                            CallSiteInfo &CSInfo,
576                            WholeProgramDevirtResolution::ByArg *Res);
577 
578   // Returns the global symbol name that is used to export information about the
579   // given vtable slot and list of arguments.
580   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
581                             StringRef Name);
582 
583   bool shouldExportConstantsAsAbsoluteSymbols();
584 
585   // This function is called during the export phase to create a symbol
586   // definition containing information about the given vtable slot and list of
587   // arguments.
588   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
589                     Constant *C);
590   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
591                       uint32_t Const, uint32_t &Storage);
592 
593   // This function is called during the import phase to create a reference to
594   // the symbol definition created during the export phase.
595   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
596                          StringRef Name);
597   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
598                            StringRef Name, IntegerType *IntTy,
599                            uint32_t Storage);
600 
601   Constant *getMemberAddr(const TypeMemberInfo *M);
602 
603   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
604                             Constant *UniqueMemberAddr);
605   bool tryUniqueRetValOpt(unsigned BitWidth,
606                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
607                           CallSiteInfo &CSInfo,
608                           WholeProgramDevirtResolution::ByArg *Res,
609                           VTableSlot Slot, ArrayRef<uint64_t> Args);
610 
611   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
612                              Constant *Byte, Constant *Bit);
613   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
614                            VTableSlotInfo &SlotInfo,
615                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
616 
617   void rebuildGlobal(VTableBits &B);
618 
619   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
620   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
621 
622   // If we were able to eliminate all unsafe uses for a type checked load,
623   // eliminate the associated type tests by replacing them with true.
624   void removeRedundantTypeTests();
625 
626   bool run();
627 
628   // Lower the module using the action and summary passed as command line
629   // arguments. For testing purposes only.
630   static bool
631   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
632                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
633                 function_ref<DominatorTree &(Function &)> LookupDomTree);
634 };
635 
636 struct DevirtIndex {
637   ModuleSummaryIndex &ExportSummary;
638   // The set in which to record GUIDs exported from their module by
639   // devirtualization, used by client to ensure they are not internalized.
640   std::set<GlobalValue::GUID> &ExportedGUIDs;
641   // A map in which to record the information necessary to locate the WPD
642   // resolution for local targets in case they are exported by cross module
643   // importing.
644   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
645 
646   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
647 
648   PatternList FunctionsToSkip;
649 
650   DevirtIndex(
651       ModuleSummaryIndex &ExportSummary,
652       std::set<GlobalValue::GUID> &ExportedGUIDs,
653       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
654       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
655         LocalWPDTargetsMap(LocalWPDTargetsMap) {
656     FunctionsToSkip.init(SkipFunctionNames);
657   }
658 
659   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
660                                  const TypeIdCompatibleVtableInfo TIdInfo,
661                                  uint64_t ByteOffset);
662 
663   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
664                            VTableSlotSummary &SlotSummary,
665                            VTableSlotInfo &SlotInfo,
666                            WholeProgramDevirtResolution *Res,
667                            std::set<ValueInfo> &DevirtTargets);
668 
669   void run();
670 };
671 
672 struct WholeProgramDevirt : public ModulePass {
673   static char ID;
674 
675   bool UseCommandLine = false;
676 
677   ModuleSummaryIndex *ExportSummary = nullptr;
678   const ModuleSummaryIndex *ImportSummary = nullptr;
679 
680   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
681     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
682   }
683 
684   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
685                      const ModuleSummaryIndex *ImportSummary)
686       : ModulePass(ID), ExportSummary(ExportSummary),
687         ImportSummary(ImportSummary) {
688     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
689   }
690 
691   bool runOnModule(Module &M) override {
692     if (skipModule(M))
693       return false;
694 
695     // In the new pass manager, we can request the optimization
696     // remark emitter pass on a per-function-basis, which the
697     // OREGetter will do for us.
698     // In the old pass manager, this is harder, so we just build
699     // an optimization remark emitter on the fly, when we need it.
700     std::unique_ptr<OptimizationRemarkEmitter> ORE;
701     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
702       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
703       return *ORE;
704     };
705 
706     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
707       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
708     };
709 
710     if (UseCommandLine)
711       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
712                                          LookupDomTree);
713 
714     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
715                         ExportSummary, ImportSummary)
716         .run();
717   }
718 
719   void getAnalysisUsage(AnalysisUsage &AU) const override {
720     AU.addRequired<AssumptionCacheTracker>();
721     AU.addRequired<TargetLibraryInfoWrapperPass>();
722     AU.addRequired<DominatorTreeWrapperPass>();
723   }
724 };
725 
726 } // end anonymous namespace
727 
728 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
729                       "Whole program devirtualization", false, false)
730 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
731 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
732 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
733 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
734                     "Whole program devirtualization", false, false)
735 char WholeProgramDevirt::ID = 0;
736 
737 ModulePass *
738 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
739                                    const ModuleSummaryIndex *ImportSummary) {
740   return new WholeProgramDevirt(ExportSummary, ImportSummary);
741 }
742 
743 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
744                                               ModuleAnalysisManager &AM) {
745   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
746   auto AARGetter = [&](Function &F) -> AAResults & {
747     return FAM.getResult<AAManager>(F);
748   };
749   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
750     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
751   };
752   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
753     return FAM.getResult<DominatorTreeAnalysis>(F);
754   };
755   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
756                     ImportSummary)
757            .run())
758     return PreservedAnalyses::all();
759   return PreservedAnalyses::none();
760 }
761 
762 // Enable whole program visibility if enabled by client (e.g. linker) or
763 // internal option, and not force disabled.
764 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
765   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
766          !DisableWholeProgramVisibility;
767 }
768 
769 namespace llvm {
770 
771 /// If whole program visibility asserted, then upgrade all public vcall
772 /// visibility metadata on vtable definitions to linkage unit visibility in
773 /// Module IR (for regular or hybrid LTO).
774 void updateVCallVisibilityInModule(Module &M,
775                                    bool WholeProgramVisibilityEnabledInLTO) {
776   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
777     return;
778   for (GlobalVariable &GV : M.globals())
779     // Add linkage unit visibility to any variable with type metadata, which are
780     // the vtable definitions. We won't have an existing vcall_visibility
781     // metadata on vtable definitions with public visibility.
782     if (GV.hasMetadata(LLVMContext::MD_type) &&
783         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
784       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
785 }
786 
787 /// If whole program visibility asserted, then upgrade all public vcall
788 /// visibility metadata on vtable definition summaries to linkage unit
789 /// visibility in Module summary index (for ThinLTO).
790 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
791                                   bool WholeProgramVisibilityEnabledInLTO) {
792   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
793     return;
794   for (auto &P : Index) {
795     for (auto &S : P.second.SummaryList) {
796       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
797       if (!GVar || GVar->vTableFuncs().empty() ||
798           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
799         continue;
800       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
801     }
802   }
803 }
804 
805 void runWholeProgramDevirtOnIndex(
806     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
807     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
808   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
809 }
810 
811 void updateIndexWPDForExports(
812     ModuleSummaryIndex &Summary,
813     function_ref<bool(StringRef, ValueInfo)> isExported,
814     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
815   for (auto &T : LocalWPDTargetsMap) {
816     auto &VI = T.first;
817     // This was enforced earlier during trySingleImplDevirt.
818     assert(VI.getSummaryList().size() == 1 &&
819            "Devirt of local target has more than one copy");
820     auto &S = VI.getSummaryList()[0];
821     if (!isExported(S->modulePath(), VI))
822       continue;
823 
824     // It's been exported by a cross module import.
825     for (auto &SlotSummary : T.second) {
826       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
827       assert(TIdSum);
828       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
829       assert(WPDRes != TIdSum->WPDRes.end());
830       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
831           WPDRes->second.SingleImplName,
832           Summary.getModuleHash(S->modulePath()));
833     }
834   }
835 }
836 
837 } // end namespace llvm
838 
839 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
840   // Check that summary index contains regular LTO module when performing
841   // export to prevent occasional use of index from pure ThinLTO compilation
842   // (-fno-split-lto-module). This kind of summary index is passed to
843   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
844   const auto &ModPaths = Summary->modulePaths();
845   if (ClSummaryAction != PassSummaryAction::Import &&
846       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
847           ModPaths.end())
848     return createStringError(
849         errc::invalid_argument,
850         "combined summary should contain Regular LTO module");
851   return ErrorSuccess();
852 }
853 
854 bool DevirtModule::runForTesting(
855     Module &M, function_ref<AAResults &(Function &)> AARGetter,
856     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
857     function_ref<DominatorTree &(Function &)> LookupDomTree) {
858   std::unique_ptr<ModuleSummaryIndex> Summary =
859       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
860 
861   // Handle the command-line summary arguments. This code is for testing
862   // purposes only, so we handle errors directly.
863   if (!ClReadSummary.empty()) {
864     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
865                           ": ");
866     auto ReadSummaryFile =
867         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
868     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
869             getModuleSummaryIndex(*ReadSummaryFile)) {
870       Summary = std::move(*SummaryOrErr);
871       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
872     } else {
873       // Try YAML if we've failed with bitcode.
874       consumeError(SummaryOrErr.takeError());
875       yaml::Input In(ReadSummaryFile->getBuffer());
876       In >> *Summary;
877       ExitOnErr(errorCodeToError(In.error()));
878     }
879   }
880 
881   bool Changed =
882       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
883                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
884                                                                 : nullptr,
885                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
886                                                                 : nullptr)
887           .run();
888 
889   if (!ClWriteSummary.empty()) {
890     ExitOnError ExitOnErr(
891         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
892     std::error_code EC;
893     if (StringRef(ClWriteSummary).endswith(".bc")) {
894       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
895       ExitOnErr(errorCodeToError(EC));
896       WriteIndexToFile(*Summary, OS);
897     } else {
898       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
899       ExitOnErr(errorCodeToError(EC));
900       yaml::Output Out(OS);
901       Out << *Summary;
902     }
903   }
904 
905   return Changed;
906 }
907 
908 void DevirtModule::buildTypeIdentifierMap(
909     std::vector<VTableBits> &Bits,
910     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
911   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
912   Bits.reserve(M.getGlobalList().size());
913   SmallVector<MDNode *, 2> Types;
914   for (GlobalVariable &GV : M.globals()) {
915     Types.clear();
916     GV.getMetadata(LLVMContext::MD_type, Types);
917     if (GV.isDeclaration() || Types.empty())
918       continue;
919 
920     VTableBits *&BitsPtr = GVToBits[&GV];
921     if (!BitsPtr) {
922       Bits.emplace_back();
923       Bits.back().GV = &GV;
924       Bits.back().ObjectSize =
925           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
926       BitsPtr = &Bits.back();
927     }
928 
929     for (MDNode *Type : Types) {
930       auto TypeID = Type->getOperand(1).get();
931 
932       uint64_t Offset =
933           cast<ConstantInt>(
934               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
935               ->getZExtValue();
936 
937       TypeIdMap[TypeID].insert({BitsPtr, Offset});
938     }
939   }
940 }
941 
942 bool DevirtModule::tryFindVirtualCallTargets(
943     std::vector<VirtualCallTarget> &TargetsForSlot,
944     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
945   for (const TypeMemberInfo &TM : TypeMemberInfos) {
946     if (!TM.Bits->GV->isConstant())
947       return false;
948 
949     // We cannot perform whole program devirtualization analysis on a vtable
950     // with public LTO visibility.
951     if (TM.Bits->GV->getVCallVisibility() ==
952         GlobalObject::VCallVisibilityPublic)
953       return false;
954 
955     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
956                                        TM.Offset + ByteOffset, M);
957     if (!Ptr)
958       return false;
959 
960     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
961     if (!Fn)
962       return false;
963 
964     if (FunctionsToSkip.match(Fn->getName()))
965       return false;
966 
967     // We can disregard __cxa_pure_virtual as a possible call target, as
968     // calls to pure virtuals are UB.
969     if (Fn->getName() == "__cxa_pure_virtual")
970       continue;
971 
972     TargetsForSlot.push_back({Fn, &TM});
973   }
974 
975   // Give up if we couldn't find any targets.
976   return !TargetsForSlot.empty();
977 }
978 
979 bool DevirtIndex::tryFindVirtualCallTargets(
980     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
981     uint64_t ByteOffset) {
982   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
983     // Find the first non-available_externally linkage vtable initializer.
984     // We can have multiple available_externally, linkonce_odr and weak_odr
985     // vtable initializers, however we want to skip available_externally as they
986     // do not have type metadata attached, and therefore the summary will not
987     // contain any vtable functions. We can also have multiple external
988     // vtable initializers in the case of comdats, which we cannot check here.
989     // The linker should give an error in this case.
990     //
991     // Also, handle the case of same-named local Vtables with the same path
992     // and therefore the same GUID. This can happen if there isn't enough
993     // distinguishing path when compiling the source file. In that case we
994     // conservatively return false early.
995     const GlobalVarSummary *VS = nullptr;
996     bool LocalFound = false;
997     for (auto &S : P.VTableVI.getSummaryList()) {
998       if (GlobalValue::isLocalLinkage(S->linkage())) {
999         if (LocalFound)
1000           return false;
1001         LocalFound = true;
1002       }
1003       if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1004         VS = cast<GlobalVarSummary>(S->getBaseObject());
1005         // We cannot perform whole program devirtualization analysis on a vtable
1006         // with public LTO visibility.
1007         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1008           return false;
1009       }
1010     }
1011     if (!VS->isLive())
1012       continue;
1013     for (auto VTP : VS->vTableFuncs()) {
1014       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1015         continue;
1016 
1017       TargetsForSlot.push_back(VTP.FuncVI);
1018     }
1019   }
1020 
1021   // Give up if we couldn't find any targets.
1022   return !TargetsForSlot.empty();
1023 }
1024 
1025 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1026                                          Constant *TheFn, bool &IsExported) {
1027   auto Apply = [&](CallSiteInfo &CSInfo) {
1028     for (auto &&VCallSite : CSInfo.CallSites) {
1029       if (RemarksEnabled)
1030         VCallSite.emitRemark("single-impl",
1031                              TheFn->stripPointerCasts()->getName(), OREGetter);
1032       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
1033           TheFn, VCallSite.CS.getCalledValue()->getType()));
1034       // This use is no longer unsafe.
1035       if (VCallSite.NumUnsafeUses)
1036         --*VCallSite.NumUnsafeUses;
1037     }
1038     if (CSInfo.isExported())
1039       IsExported = true;
1040     CSInfo.markDevirt();
1041   };
1042   Apply(SlotInfo.CSInfo);
1043   for (auto &P : SlotInfo.ConstCSInfo)
1044     Apply(P.second);
1045 }
1046 
1047 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1048   // We can't add calls if we haven't seen a definition
1049   if (Callee.getSummaryList().empty())
1050     return false;
1051 
1052   // Insert calls into the summary index so that the devirtualized targets
1053   // are eligible for import.
1054   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1055   // to better ensure we have the opportunity to inline them.
1056   bool IsExported = false;
1057   auto &S = Callee.getSummaryList()[0];
1058   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1059   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1060     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1061       FS->addCall({Callee, CI});
1062       IsExported |= S->modulePath() != FS->modulePath();
1063     }
1064     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1065       FS->addCall({Callee, CI});
1066       IsExported |= S->modulePath() != FS->modulePath();
1067     }
1068   };
1069   AddCalls(SlotInfo.CSInfo);
1070   for (auto &P : SlotInfo.ConstCSInfo)
1071     AddCalls(P.second);
1072   return IsExported;
1073 }
1074 
1075 bool DevirtModule::trySingleImplDevirt(
1076     ModuleSummaryIndex *ExportSummary,
1077     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1078     WholeProgramDevirtResolution *Res) {
1079   // See if the program contains a single implementation of this virtual
1080   // function.
1081   Function *TheFn = TargetsForSlot[0].Fn;
1082   for (auto &&Target : TargetsForSlot)
1083     if (TheFn != Target.Fn)
1084       return false;
1085 
1086   // If so, update each call site to call that implementation directly.
1087   if (RemarksEnabled)
1088     TargetsForSlot[0].WasDevirt = true;
1089 
1090   bool IsExported = false;
1091   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1092   if (!IsExported)
1093     return false;
1094 
1095   // If the only implementation has local linkage, we must promote to external
1096   // to make it visible to thin LTO objects. We can only get here during the
1097   // ThinLTO export phase.
1098   if (TheFn->hasLocalLinkage()) {
1099     std::string NewName = (TheFn->getName() + "$merged").str();
1100 
1101     // Since we are renaming the function, any comdats with the same name must
1102     // also be renamed. This is required when targeting COFF, as the comdat name
1103     // must match one of the names of the symbols in the comdat.
1104     if (Comdat *C = TheFn->getComdat()) {
1105       if (C->getName() == TheFn->getName()) {
1106         Comdat *NewC = M.getOrInsertComdat(NewName);
1107         NewC->setSelectionKind(C->getSelectionKind());
1108         for (GlobalObject &GO : M.global_objects())
1109           if (GO.getComdat() == C)
1110             GO.setComdat(NewC);
1111       }
1112     }
1113 
1114     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1115     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1116     TheFn->setName(NewName);
1117   }
1118   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1119     // Any needed promotion of 'TheFn' has already been done during
1120     // LTO unit split, so we can ignore return value of AddCalls.
1121     AddCalls(SlotInfo, TheFnVI);
1122 
1123   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1124   Res->SingleImplName = std::string(TheFn->getName());
1125 
1126   return true;
1127 }
1128 
1129 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1130                                       VTableSlotSummary &SlotSummary,
1131                                       VTableSlotInfo &SlotInfo,
1132                                       WholeProgramDevirtResolution *Res,
1133                                       std::set<ValueInfo> &DevirtTargets) {
1134   // See if the program contains a single implementation of this virtual
1135   // function.
1136   auto TheFn = TargetsForSlot[0];
1137   for (auto &&Target : TargetsForSlot)
1138     if (TheFn != Target)
1139       return false;
1140 
1141   // Don't devirtualize if we don't have target definition.
1142   auto Size = TheFn.getSummaryList().size();
1143   if (!Size)
1144     return false;
1145 
1146   // Don't devirtualize function if we're told to skip it
1147   // in -wholeprogramdevirt-skip.
1148   if (FunctionsToSkip.match(TheFn.name()))
1149     return false;
1150 
1151   // If the summary list contains multiple summaries where at least one is
1152   // a local, give up, as we won't know which (possibly promoted) name to use.
1153   for (auto &S : TheFn.getSummaryList())
1154     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1155       return false;
1156 
1157   // Collect functions devirtualized at least for one call site for stats.
1158   if (PrintSummaryDevirt)
1159     DevirtTargets.insert(TheFn);
1160 
1161   auto &S = TheFn.getSummaryList()[0];
1162   bool IsExported = AddCalls(SlotInfo, TheFn);
1163   if (IsExported)
1164     ExportedGUIDs.insert(TheFn.getGUID());
1165 
1166   // Record in summary for use in devirtualization during the ThinLTO import
1167   // step.
1168   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1169   if (GlobalValue::isLocalLinkage(S->linkage())) {
1170     if (IsExported)
1171       // If target is a local function and we are exporting it by
1172       // devirtualizing a call in another module, we need to record the
1173       // promoted name.
1174       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1175           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1176     else {
1177       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1178       Res->SingleImplName = std::string(TheFn.name());
1179     }
1180   } else
1181     Res->SingleImplName = std::string(TheFn.name());
1182 
1183   // Name will be empty if this thin link driven off of serialized combined
1184   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1185   // legacy LTO API anyway.
1186   assert(!Res->SingleImplName.empty());
1187 
1188   return true;
1189 }
1190 
1191 void DevirtModule::tryICallBranchFunnel(
1192     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1193     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1194   Triple T(M.getTargetTriple());
1195   if (T.getArch() != Triple::x86_64)
1196     return;
1197 
1198   if (TargetsForSlot.size() > ClThreshold)
1199     return;
1200 
1201   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1202   if (!HasNonDevirt)
1203     for (auto &P : SlotInfo.ConstCSInfo)
1204       if (!P.second.AllCallSitesDevirted) {
1205         HasNonDevirt = true;
1206         break;
1207       }
1208 
1209   if (!HasNonDevirt)
1210     return;
1211 
1212   FunctionType *FT =
1213       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1214   Function *JT;
1215   if (isa<MDString>(Slot.TypeID)) {
1216     JT = Function::Create(FT, Function::ExternalLinkage,
1217                           M.getDataLayout().getProgramAddressSpace(),
1218                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1219     JT->setVisibility(GlobalValue::HiddenVisibility);
1220   } else {
1221     JT = Function::Create(FT, Function::InternalLinkage,
1222                           M.getDataLayout().getProgramAddressSpace(),
1223                           "branch_funnel", &M);
1224   }
1225   JT->addAttribute(1, Attribute::Nest);
1226 
1227   std::vector<Value *> JTArgs;
1228   JTArgs.push_back(JT->arg_begin());
1229   for (auto &T : TargetsForSlot) {
1230     JTArgs.push_back(getMemberAddr(T.TM));
1231     JTArgs.push_back(T.Fn);
1232   }
1233 
1234   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1235   Function *Intr =
1236       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1237 
1238   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1239   CI->setTailCallKind(CallInst::TCK_MustTail);
1240   ReturnInst::Create(M.getContext(), nullptr, BB);
1241 
1242   bool IsExported = false;
1243   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1244   if (IsExported)
1245     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1246 }
1247 
1248 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1249                                           Constant *JT, bool &IsExported) {
1250   auto Apply = [&](CallSiteInfo &CSInfo) {
1251     if (CSInfo.isExported())
1252       IsExported = true;
1253     if (CSInfo.AllCallSitesDevirted)
1254       return;
1255     for (auto &&VCallSite : CSInfo.CallSites) {
1256       CallSite CS = VCallSite.CS;
1257 
1258       // Jump tables are only profitable if the retpoline mitigation is enabled.
1259       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1260       if (FSAttr.hasAttribute(Attribute::None) ||
1261           !FSAttr.getValueAsString().contains("+retpoline"))
1262         continue;
1263 
1264       if (RemarksEnabled)
1265         VCallSite.emitRemark("branch-funnel",
1266                              JT->stripPointerCasts()->getName(), OREGetter);
1267 
1268       // Pass the address of the vtable in the nest register, which is r10 on
1269       // x86_64.
1270       std::vector<Type *> NewArgs;
1271       NewArgs.push_back(Int8PtrTy);
1272       for (Type *T : CS.getFunctionType()->params())
1273         NewArgs.push_back(T);
1274       FunctionType *NewFT =
1275           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1276                             CS.getFunctionType()->isVarArg());
1277       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1278 
1279       IRBuilder<> IRB(CS.getInstruction());
1280       std::vector<Value *> Args;
1281       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1282       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1283         Args.push_back(CS.getArgOperand(I));
1284 
1285       CallSite NewCS;
1286       if (CS.isCall())
1287         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1288       else
1289         NewCS = IRB.CreateInvoke(
1290             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1291             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1292             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1293       NewCS.setCallingConv(CS.getCallingConv());
1294 
1295       AttributeList Attrs = CS.getAttributes();
1296       std::vector<AttributeSet> NewArgAttrs;
1297       NewArgAttrs.push_back(AttributeSet::get(
1298           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1299                               M.getContext(), Attribute::Nest)}));
1300       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1301         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1302       NewCS.setAttributes(
1303           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1304                              Attrs.getRetAttributes(), NewArgAttrs));
1305 
1306       CS->replaceAllUsesWith(NewCS.getInstruction());
1307       CS->eraseFromParent();
1308 
1309       // This use is no longer unsafe.
1310       if (VCallSite.NumUnsafeUses)
1311         --*VCallSite.NumUnsafeUses;
1312     }
1313     // Don't mark as devirtualized because there may be callers compiled without
1314     // retpoline mitigation, which would mean that they are lowered to
1315     // llvm.type.test and therefore require an llvm.type.test resolution for the
1316     // type identifier.
1317   };
1318   Apply(SlotInfo.CSInfo);
1319   for (auto &P : SlotInfo.ConstCSInfo)
1320     Apply(P.second);
1321 }
1322 
1323 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1324     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1325     ArrayRef<uint64_t> Args) {
1326   // Evaluate each function and store the result in each target's RetVal
1327   // field.
1328   for (VirtualCallTarget &Target : TargetsForSlot) {
1329     if (Target.Fn->arg_size() != Args.size() + 1)
1330       return false;
1331 
1332     Evaluator Eval(M.getDataLayout(), nullptr);
1333     SmallVector<Constant *, 2> EvalArgs;
1334     EvalArgs.push_back(
1335         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1336     for (unsigned I = 0; I != Args.size(); ++I) {
1337       auto *ArgTy = dyn_cast<IntegerType>(
1338           Target.Fn->getFunctionType()->getParamType(I + 1));
1339       if (!ArgTy)
1340         return false;
1341       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1342     }
1343 
1344     Constant *RetVal;
1345     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1346         !isa<ConstantInt>(RetVal))
1347       return false;
1348     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1349   }
1350   return true;
1351 }
1352 
1353 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1354                                          uint64_t TheRetVal) {
1355   for (auto Call : CSInfo.CallSites)
1356     Call.replaceAndErase(
1357         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1358         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1359   CSInfo.markDevirt();
1360 }
1361 
1362 bool DevirtModule::tryUniformRetValOpt(
1363     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1364     WholeProgramDevirtResolution::ByArg *Res) {
1365   // Uniform return value optimization. If all functions return the same
1366   // constant, replace all calls with that constant.
1367   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1368   for (const VirtualCallTarget &Target : TargetsForSlot)
1369     if (Target.RetVal != TheRetVal)
1370       return false;
1371 
1372   if (CSInfo.isExported()) {
1373     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1374     Res->Info = TheRetVal;
1375   }
1376 
1377   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1378   if (RemarksEnabled)
1379     for (auto &&Target : TargetsForSlot)
1380       Target.WasDevirt = true;
1381   return true;
1382 }
1383 
1384 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1385                                         ArrayRef<uint64_t> Args,
1386                                         StringRef Name) {
1387   std::string FullName = "__typeid_";
1388   raw_string_ostream OS(FullName);
1389   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1390   for (uint64_t Arg : Args)
1391     OS << '_' << Arg;
1392   OS << '_' << Name;
1393   return OS.str();
1394 }
1395 
1396 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1397   Triple T(M.getTargetTriple());
1398   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1399 }
1400 
1401 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1402                                 StringRef Name, Constant *C) {
1403   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1404                                         getGlobalName(Slot, Args, Name), C, &M);
1405   GA->setVisibility(GlobalValue::HiddenVisibility);
1406 }
1407 
1408 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1409                                   StringRef Name, uint32_t Const,
1410                                   uint32_t &Storage) {
1411   if (shouldExportConstantsAsAbsoluteSymbols()) {
1412     exportGlobal(
1413         Slot, Args, Name,
1414         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1415     return;
1416   }
1417 
1418   Storage = Const;
1419 }
1420 
1421 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1422                                      StringRef Name) {
1423   Constant *C =
1424       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1425   auto *GV = dyn_cast<GlobalVariable>(C);
1426   if (GV)
1427     GV->setVisibility(GlobalValue::HiddenVisibility);
1428   return C;
1429 }
1430 
1431 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1432                                        StringRef Name, IntegerType *IntTy,
1433                                        uint32_t Storage) {
1434   if (!shouldExportConstantsAsAbsoluteSymbols())
1435     return ConstantInt::get(IntTy, Storage);
1436 
1437   Constant *C = importGlobal(Slot, Args, Name);
1438   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1439   C = ConstantExpr::getPtrToInt(C, IntTy);
1440 
1441   // We only need to set metadata if the global is newly created, in which
1442   // case it would not have hidden visibility.
1443   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1444     return C;
1445 
1446   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1447     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1448     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1449     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1450                     MDNode::get(M.getContext(), {MinC, MaxC}));
1451   };
1452   unsigned AbsWidth = IntTy->getBitWidth();
1453   if (AbsWidth == IntPtrTy->getBitWidth())
1454     SetAbsRange(~0ull, ~0ull); // Full set.
1455   else
1456     SetAbsRange(0, 1ull << AbsWidth);
1457   return C;
1458 }
1459 
1460 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1461                                         bool IsOne,
1462                                         Constant *UniqueMemberAddr) {
1463   for (auto &&Call : CSInfo.CallSites) {
1464     IRBuilder<> B(Call.CS.getInstruction());
1465     Value *Cmp =
1466         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1467                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1468     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1469     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1470                          Cmp);
1471   }
1472   CSInfo.markDevirt();
1473 }
1474 
1475 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1476   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1477   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1478                                         ConstantInt::get(Int64Ty, M->Offset));
1479 }
1480 
1481 bool DevirtModule::tryUniqueRetValOpt(
1482     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1483     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1484     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1485   // IsOne controls whether we look for a 0 or a 1.
1486   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1487     const TypeMemberInfo *UniqueMember = nullptr;
1488     for (const VirtualCallTarget &Target : TargetsForSlot) {
1489       if (Target.RetVal == (IsOne ? 1 : 0)) {
1490         if (UniqueMember)
1491           return false;
1492         UniqueMember = Target.TM;
1493       }
1494     }
1495 
1496     // We should have found a unique member or bailed out by now. We already
1497     // checked for a uniform return value in tryUniformRetValOpt.
1498     assert(UniqueMember);
1499 
1500     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1501     if (CSInfo.isExported()) {
1502       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1503       Res->Info = IsOne;
1504 
1505       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1506     }
1507 
1508     // Replace each call with the comparison.
1509     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1510                          UniqueMemberAddr);
1511 
1512     // Update devirtualization statistics for targets.
1513     if (RemarksEnabled)
1514       for (auto &&Target : TargetsForSlot)
1515         Target.WasDevirt = true;
1516 
1517     return true;
1518   };
1519 
1520   if (BitWidth == 1) {
1521     if (tryUniqueRetValOptFor(true))
1522       return true;
1523     if (tryUniqueRetValOptFor(false))
1524       return true;
1525   }
1526   return false;
1527 }
1528 
1529 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1530                                          Constant *Byte, Constant *Bit) {
1531   for (auto Call : CSInfo.CallSites) {
1532     auto *RetType = cast<IntegerType>(Call.CS.getType());
1533     IRBuilder<> B(Call.CS.getInstruction());
1534     Value *Addr =
1535         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1536     if (RetType->getBitWidth() == 1) {
1537       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1538       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1539       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1540       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1541                            OREGetter, IsBitSet);
1542     } else {
1543       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1544       Value *Val = B.CreateLoad(RetType, ValAddr);
1545       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1546                            OREGetter, Val);
1547     }
1548   }
1549   CSInfo.markDevirt();
1550 }
1551 
1552 bool DevirtModule::tryVirtualConstProp(
1553     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1554     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1555   // This only works if the function returns an integer.
1556   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1557   if (!RetType)
1558     return false;
1559   unsigned BitWidth = RetType->getBitWidth();
1560   if (BitWidth > 64)
1561     return false;
1562 
1563   // Make sure that each function is defined, does not access memory, takes at
1564   // least one argument, does not use its first argument (which we assume is
1565   // 'this'), and has the same return type.
1566   //
1567   // Note that we test whether this copy of the function is readnone, rather
1568   // than testing function attributes, which must hold for any copy of the
1569   // function, even a less optimized version substituted at link time. This is
1570   // sound because the virtual constant propagation optimizations effectively
1571   // inline all implementations of the virtual function into each call site,
1572   // rather than using function attributes to perform local optimization.
1573   for (VirtualCallTarget &Target : TargetsForSlot) {
1574     if (Target.Fn->isDeclaration() ||
1575         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1576             MAK_ReadNone ||
1577         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1578         Target.Fn->getReturnType() != RetType)
1579       return false;
1580   }
1581 
1582   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1583     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1584       continue;
1585 
1586     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1587     if (Res)
1588       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1589 
1590     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1591       continue;
1592 
1593     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1594                            ResByArg, Slot, CSByConstantArg.first))
1595       continue;
1596 
1597     // Find an allocation offset in bits in all vtables associated with the
1598     // type.
1599     uint64_t AllocBefore =
1600         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1601     uint64_t AllocAfter =
1602         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1603 
1604     // Calculate the total amount of padding needed to store a value at both
1605     // ends of the object.
1606     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1607     for (auto &&Target : TargetsForSlot) {
1608       TotalPaddingBefore += std::max<int64_t>(
1609           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1610       TotalPaddingAfter += std::max<int64_t>(
1611           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1612     }
1613 
1614     // If the amount of padding is too large, give up.
1615     // FIXME: do something smarter here.
1616     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1617       continue;
1618 
1619     // Calculate the offset to the value as a (possibly negative) byte offset
1620     // and (if applicable) a bit offset, and store the values in the targets.
1621     int64_t OffsetByte;
1622     uint64_t OffsetBit;
1623     if (TotalPaddingBefore <= TotalPaddingAfter)
1624       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1625                             OffsetBit);
1626     else
1627       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1628                            OffsetBit);
1629 
1630     if (RemarksEnabled)
1631       for (auto &&Target : TargetsForSlot)
1632         Target.WasDevirt = true;
1633 
1634 
1635     if (CSByConstantArg.second.isExported()) {
1636       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1637       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1638                      ResByArg->Byte);
1639       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1640                      ResByArg->Bit);
1641     }
1642 
1643     // Rewrite each call to a load from OffsetByte/OffsetBit.
1644     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1645     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1646     applyVirtualConstProp(CSByConstantArg.second,
1647                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1648   }
1649   return true;
1650 }
1651 
1652 void DevirtModule::rebuildGlobal(VTableBits &B) {
1653   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1654     return;
1655 
1656   // Align the before byte array to the global's minimum alignment so that we
1657   // don't break any alignment requirements on the global.
1658   MaybeAlign Alignment(B.GV->getAlignment());
1659   if (!Alignment)
1660     Alignment =
1661         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1662   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1663 
1664   // Before was stored in reverse order; flip it now.
1665   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1666     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1667 
1668   // Build an anonymous global containing the before bytes, followed by the
1669   // original initializer, followed by the after bytes.
1670   auto NewInit = ConstantStruct::getAnon(
1671       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1672        B.GV->getInitializer(),
1673        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1674   auto NewGV =
1675       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1676                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1677   NewGV->setSection(B.GV->getSection());
1678   NewGV->setComdat(B.GV->getComdat());
1679   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1680 
1681   // Copy the original vtable's metadata to the anonymous global, adjusting
1682   // offsets as required.
1683   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1684 
1685   // Build an alias named after the original global, pointing at the second
1686   // element (the original initializer).
1687   auto Alias = GlobalAlias::create(
1688       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1689       ConstantExpr::getGetElementPtr(
1690           NewInit->getType(), NewGV,
1691           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1692                                ConstantInt::get(Int32Ty, 1)}),
1693       &M);
1694   Alias->setVisibility(B.GV->getVisibility());
1695   Alias->takeName(B.GV);
1696 
1697   B.GV->replaceAllUsesWith(Alias);
1698   B.GV->eraseFromParent();
1699 }
1700 
1701 bool DevirtModule::areRemarksEnabled() {
1702   const auto &FL = M.getFunctionList();
1703   for (const Function &Fn : FL) {
1704     const auto &BBL = Fn.getBasicBlockList();
1705     if (BBL.empty())
1706       continue;
1707     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1708     return DI.isEnabled();
1709   }
1710   return false;
1711 }
1712 
1713 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1714   // Find all virtual calls via a virtual table pointer %p under an assumption
1715   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1716   // points to a member of the type identifier %md. Group calls by (type ID,
1717   // offset) pair (effectively the identity of the virtual function) and store
1718   // to CallSlots.
1719   DenseSet<CallSite> SeenCallSites;
1720   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1721        I != E;) {
1722     auto CI = dyn_cast<CallInst>(I->getUser());
1723     ++I;
1724     if (!CI)
1725       continue;
1726 
1727     // Search for virtual calls based on %p and add them to DevirtCalls.
1728     SmallVector<DevirtCallSite, 1> DevirtCalls;
1729     SmallVector<CallInst *, 1> Assumes;
1730     auto &DT = LookupDomTree(*CI->getFunction());
1731     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1732 
1733     // If we found any, add them to CallSlots.
1734     if (!Assumes.empty()) {
1735       Metadata *TypeId =
1736           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1737       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1738       for (DevirtCallSite Call : DevirtCalls) {
1739         // Only add this CallSite if we haven't seen it before. The vtable
1740         // pointer may have been CSE'd with pointers from other call sites,
1741         // and we don't want to process call sites multiple times. We can't
1742         // just skip the vtable Ptr if it has been seen before, however, since
1743         // it may be shared by type tests that dominate different calls.
1744         if (SeenCallSites.insert(Call.CS).second)
1745           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1746       }
1747     }
1748 
1749     // We no longer need the assumes or the type test.
1750     for (auto Assume : Assumes)
1751       Assume->eraseFromParent();
1752     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1753     // may use the vtable argument later.
1754     if (CI->use_empty())
1755       CI->eraseFromParent();
1756   }
1757 }
1758 
1759 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1760   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1761 
1762   for (auto I = TypeCheckedLoadFunc->use_begin(),
1763             E = TypeCheckedLoadFunc->use_end();
1764        I != E;) {
1765     auto CI = dyn_cast<CallInst>(I->getUser());
1766     ++I;
1767     if (!CI)
1768       continue;
1769 
1770     Value *Ptr = CI->getArgOperand(0);
1771     Value *Offset = CI->getArgOperand(1);
1772     Value *TypeIdValue = CI->getArgOperand(2);
1773     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1774 
1775     SmallVector<DevirtCallSite, 1> DevirtCalls;
1776     SmallVector<Instruction *, 1> LoadedPtrs;
1777     SmallVector<Instruction *, 1> Preds;
1778     bool HasNonCallUses = false;
1779     auto &DT = LookupDomTree(*CI->getFunction());
1780     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1781                                                HasNonCallUses, CI, DT);
1782 
1783     // Start by generating "pessimistic" code that explicitly loads the function
1784     // pointer from the vtable and performs the type check. If possible, we will
1785     // eliminate the load and the type check later.
1786 
1787     // If possible, only generate the load at the point where it is used.
1788     // This helps avoid unnecessary spills.
1789     IRBuilder<> LoadB(
1790         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1791     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1792     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1793     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1794 
1795     for (Instruction *LoadedPtr : LoadedPtrs) {
1796       LoadedPtr->replaceAllUsesWith(LoadedValue);
1797       LoadedPtr->eraseFromParent();
1798     }
1799 
1800     // Likewise for the type test.
1801     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1802     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1803 
1804     for (Instruction *Pred : Preds) {
1805       Pred->replaceAllUsesWith(TypeTestCall);
1806       Pred->eraseFromParent();
1807     }
1808 
1809     // We have already erased any extractvalue instructions that refer to the
1810     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1811     // (although this is unlikely). In that case, explicitly build a pair and
1812     // RAUW it.
1813     if (!CI->use_empty()) {
1814       Value *Pair = UndefValue::get(CI->getType());
1815       IRBuilder<> B(CI);
1816       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1817       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1818       CI->replaceAllUsesWith(Pair);
1819     }
1820 
1821     // The number of unsafe uses is initially the number of uses.
1822     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1823     NumUnsafeUses = DevirtCalls.size();
1824 
1825     // If the function pointer has a non-call user, we cannot eliminate the type
1826     // check, as one of those users may eventually call the pointer. Increment
1827     // the unsafe use count to make sure it cannot reach zero.
1828     if (HasNonCallUses)
1829       ++NumUnsafeUses;
1830     for (DevirtCallSite Call : DevirtCalls) {
1831       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1832                                                    &NumUnsafeUses);
1833     }
1834 
1835     CI->eraseFromParent();
1836   }
1837 }
1838 
1839 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1840   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1841   if (!TypeId)
1842     return;
1843   const TypeIdSummary *TidSummary =
1844       ImportSummary->getTypeIdSummary(TypeId->getString());
1845   if (!TidSummary)
1846     return;
1847   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1848   if (ResI == TidSummary->WPDRes.end())
1849     return;
1850   const WholeProgramDevirtResolution &Res = ResI->second;
1851 
1852   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1853     assert(!Res.SingleImplName.empty());
1854     // The type of the function in the declaration is irrelevant because every
1855     // call site will cast it to the correct type.
1856     Constant *SingleImpl =
1857         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1858                                              Type::getVoidTy(M.getContext()))
1859                            .getCallee());
1860 
1861     // This is the import phase so we should not be exporting anything.
1862     bool IsExported = false;
1863     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1864     assert(!IsExported);
1865   }
1866 
1867   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1868     auto I = Res.ResByArg.find(CSByConstantArg.first);
1869     if (I == Res.ResByArg.end())
1870       continue;
1871     auto &ResByArg = I->second;
1872     // FIXME: We should figure out what to do about the "function name" argument
1873     // to the apply* functions, as the function names are unavailable during the
1874     // importing phase. For now we just pass the empty string. This does not
1875     // impact correctness because the function names are just used for remarks.
1876     switch (ResByArg.TheKind) {
1877     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1878       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1879       break;
1880     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1881       Constant *UniqueMemberAddr =
1882           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1883       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1884                            UniqueMemberAddr);
1885       break;
1886     }
1887     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1888       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1889                                       Int32Ty, ResByArg.Byte);
1890       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1891                                      ResByArg.Bit);
1892       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1893       break;
1894     }
1895     default:
1896       break;
1897     }
1898   }
1899 
1900   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1901     // The type of the function is irrelevant, because it's bitcast at calls
1902     // anyhow.
1903     Constant *JT = cast<Constant>(
1904         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1905                               Type::getVoidTy(M.getContext()))
1906             .getCallee());
1907     bool IsExported = false;
1908     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1909     assert(!IsExported);
1910   }
1911 }
1912 
1913 void DevirtModule::removeRedundantTypeTests() {
1914   auto True = ConstantInt::getTrue(M.getContext());
1915   for (auto &&U : NumUnsafeUsesForTypeTest) {
1916     if (U.second == 0) {
1917       U.first->replaceAllUsesWith(True);
1918       U.first->eraseFromParent();
1919     }
1920   }
1921 }
1922 
1923 bool DevirtModule::run() {
1924   // If only some of the modules were split, we cannot correctly perform
1925   // this transformation. We already checked for the presense of type tests
1926   // with partially split modules during the thin link, and would have emitted
1927   // an error if any were found, so here we can simply return.
1928   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1929       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1930     return false;
1931 
1932   Function *TypeTestFunc =
1933       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1934   Function *TypeCheckedLoadFunc =
1935       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1936   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1937 
1938   // Normally if there are no users of the devirtualization intrinsics in the
1939   // module, this pass has nothing to do. But if we are exporting, we also need
1940   // to handle any users that appear only in the function summaries.
1941   if (!ExportSummary &&
1942       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1943        AssumeFunc->use_empty()) &&
1944       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1945     return false;
1946 
1947   if (TypeTestFunc && AssumeFunc)
1948     scanTypeTestUsers(TypeTestFunc);
1949 
1950   if (TypeCheckedLoadFunc)
1951     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1952 
1953   if (ImportSummary) {
1954     for (auto &S : CallSlots)
1955       importResolution(S.first, S.second);
1956 
1957     removeRedundantTypeTests();
1958 
1959     // We have lowered or deleted the type instrinsics, so we will no
1960     // longer have enough information to reason about the liveness of virtual
1961     // function pointers in GlobalDCE.
1962     for (GlobalVariable &GV : M.globals())
1963       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1964 
1965     // The rest of the code is only necessary when exporting or during regular
1966     // LTO, so we are done.
1967     return true;
1968   }
1969 
1970   // Rebuild type metadata into a map for easy lookup.
1971   std::vector<VTableBits> Bits;
1972   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1973   buildTypeIdentifierMap(Bits, TypeIdMap);
1974   if (TypeIdMap.empty())
1975     return true;
1976 
1977   // Collect information from summary about which calls to try to devirtualize.
1978   if (ExportSummary) {
1979     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1980     for (auto &P : TypeIdMap) {
1981       if (auto *TypeId = dyn_cast<MDString>(P.first))
1982         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1983             TypeId);
1984     }
1985 
1986     for (auto &P : *ExportSummary) {
1987       for (auto &S : P.second.SummaryList) {
1988         auto *FS = dyn_cast<FunctionSummary>(S.get());
1989         if (!FS)
1990           continue;
1991         // FIXME: Only add live functions.
1992         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1993           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1994             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1995           }
1996         }
1997         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1998           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1999             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2000           }
2001         }
2002         for (const FunctionSummary::ConstVCall &VC :
2003              FS->type_test_assume_const_vcalls()) {
2004           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2005             CallSlots[{MD, VC.VFunc.Offset}]
2006                 .ConstCSInfo[VC.Args]
2007                 .addSummaryTypeTestAssumeUser(FS);
2008           }
2009         }
2010         for (const FunctionSummary::ConstVCall &VC :
2011              FS->type_checked_load_const_vcalls()) {
2012           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2013             CallSlots[{MD, VC.VFunc.Offset}]
2014                 .ConstCSInfo[VC.Args]
2015                 .addSummaryTypeCheckedLoadUser(FS);
2016           }
2017         }
2018       }
2019     }
2020   }
2021 
2022   // For each (type, offset) pair:
2023   bool DidVirtualConstProp = false;
2024   std::map<std::string, Function*> DevirtTargets;
2025   for (auto &S : CallSlots) {
2026     // Search each of the members of the type identifier for the virtual
2027     // function implementation at offset S.first.ByteOffset, and add to
2028     // TargetsForSlot.
2029     std::vector<VirtualCallTarget> TargetsForSlot;
2030     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
2031                                   S.first.ByteOffset)) {
2032       WholeProgramDevirtResolution *Res = nullptr;
2033       if (ExportSummary && isa<MDString>(S.first.TypeID))
2034         Res = &ExportSummary
2035                    ->getOrInsertTypeIdSummary(
2036                        cast<MDString>(S.first.TypeID)->getString())
2037                    .WPDRes[S.first.ByteOffset];
2038 
2039       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2040         DidVirtualConstProp |=
2041             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2042 
2043         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2044       }
2045 
2046       // Collect functions devirtualized at least for one call site for stats.
2047       if (RemarksEnabled)
2048         for (const auto &T : TargetsForSlot)
2049           if (T.WasDevirt)
2050             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2051     }
2052 
2053     // CFI-specific: if we are exporting and any llvm.type.checked.load
2054     // intrinsics were *not* devirtualized, we need to add the resulting
2055     // llvm.type.test intrinsics to the function summaries so that the
2056     // LowerTypeTests pass will export them.
2057     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2058       auto GUID =
2059           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2060       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2061         FS->addTypeTest(GUID);
2062       for (auto &CCS : S.second.ConstCSInfo)
2063         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2064           FS->addTypeTest(GUID);
2065     }
2066   }
2067 
2068   if (RemarksEnabled) {
2069     // Generate remarks for each devirtualized function.
2070     for (const auto &DT : DevirtTargets) {
2071       Function *F = DT.second;
2072 
2073       using namespace ore;
2074       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2075                         << "devirtualized "
2076                         << NV("FunctionName", DT.first));
2077     }
2078   }
2079 
2080   removeRedundantTypeTests();
2081 
2082   // Rebuild each global we touched as part of virtual constant propagation to
2083   // include the before and after bytes.
2084   if (DidVirtualConstProp)
2085     for (VTableBits &B : Bits)
2086       rebuildGlobal(B);
2087 
2088   // We have lowered or deleted the type instrinsics, so we will no
2089   // longer have enough information to reason about the liveness of virtual
2090   // function pointers in GlobalDCE.
2091   for (GlobalVariable &GV : M.globals())
2092     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2093 
2094   return true;
2095 }
2096 
2097 void DevirtIndex::run() {
2098   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2099     return;
2100 
2101   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2102   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2103     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2104   }
2105 
2106   // Collect information from summary about which calls to try to devirtualize.
2107   for (auto &P : ExportSummary) {
2108     for (auto &S : P.second.SummaryList) {
2109       auto *FS = dyn_cast<FunctionSummary>(S.get());
2110       if (!FS)
2111         continue;
2112       // FIXME: Only add live functions.
2113       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2114         for (StringRef Name : NameByGUID[VF.GUID]) {
2115           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2116         }
2117       }
2118       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2119         for (StringRef Name : NameByGUID[VF.GUID]) {
2120           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2121         }
2122       }
2123       for (const FunctionSummary::ConstVCall &VC :
2124            FS->type_test_assume_const_vcalls()) {
2125         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2126           CallSlots[{Name, VC.VFunc.Offset}]
2127               .ConstCSInfo[VC.Args]
2128               .addSummaryTypeTestAssumeUser(FS);
2129         }
2130       }
2131       for (const FunctionSummary::ConstVCall &VC :
2132            FS->type_checked_load_const_vcalls()) {
2133         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2134           CallSlots[{Name, VC.VFunc.Offset}]
2135               .ConstCSInfo[VC.Args]
2136               .addSummaryTypeCheckedLoadUser(FS);
2137         }
2138       }
2139     }
2140   }
2141 
2142   std::set<ValueInfo> DevirtTargets;
2143   // For each (type, offset) pair:
2144   for (auto &S : CallSlots) {
2145     // Search each of the members of the type identifier for the virtual
2146     // function implementation at offset S.first.ByteOffset, and add to
2147     // TargetsForSlot.
2148     std::vector<ValueInfo> TargetsForSlot;
2149     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2150     assert(TidSummary);
2151     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2152                                   S.first.ByteOffset)) {
2153       WholeProgramDevirtResolution *Res =
2154           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2155                .WPDRes[S.first.ByteOffset];
2156 
2157       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2158                                DevirtTargets))
2159         continue;
2160     }
2161   }
2162 
2163   // Optionally have the thin link print message for each devirtualized
2164   // function.
2165   if (PrintSummaryDevirt)
2166     for (const auto &DT : DevirtTargets)
2167       errs() << "Devirtualized call to " << DT << "\n";
2168 
2169   return;
2170 }
2171