1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Analysis/AliasAnalysis.h" 63 #include "llvm/Analysis/BasicAliasAnalysis.h" 64 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 65 #include "llvm/Analysis/TypeMetadataUtils.h" 66 #include "llvm/Bitcode/BitcodeReader.h" 67 #include "llvm/Bitcode/BitcodeWriter.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugLoc.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/ModuleSummaryIndexYAML.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/PassRegistry.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Errc.h" 91 #include "llvm/Support/Error.h" 92 #include "llvm/Support/FileSystem.h" 93 #include "llvm/Support/GlobPattern.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Transforms/IPO.h" 96 #include "llvm/Transforms/IPO/FunctionAttrs.h" 97 #include "llvm/Transforms/Utils/Evaluator.h" 98 #include <algorithm> 99 #include <cstddef> 100 #include <map> 101 #include <set> 102 #include <string> 103 104 using namespace llvm; 105 using namespace wholeprogramdevirt; 106 107 #define DEBUG_TYPE "wholeprogramdevirt" 108 109 static cl::opt<PassSummaryAction> ClSummaryAction( 110 "wholeprogramdevirt-summary-action", 111 cl::desc("What to do with the summary when running this pass"), 112 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 113 clEnumValN(PassSummaryAction::Import, "import", 114 "Import typeid resolutions from summary and globals"), 115 clEnumValN(PassSummaryAction::Export, "export", 116 "Export typeid resolutions to summary and globals")), 117 cl::Hidden); 118 119 static cl::opt<std::string> ClReadSummary( 120 "wholeprogramdevirt-read-summary", 121 cl::desc( 122 "Read summary from given bitcode or YAML file before running pass"), 123 cl::Hidden); 124 125 static cl::opt<std::string> ClWriteSummary( 126 "wholeprogramdevirt-write-summary", 127 cl::desc("Write summary to given bitcode or YAML file after running pass. " 128 "Output file format is deduced from extension: *.bc means writing " 129 "bitcode, otherwise YAML"), 130 cl::Hidden); 131 132 static cl::opt<unsigned> 133 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 134 cl::init(10), cl::ZeroOrMore, 135 cl::desc("Maximum number of call targets per " 136 "call site to enable branch funnels")); 137 138 static cl::opt<bool> 139 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 140 cl::init(false), cl::ZeroOrMore, 141 cl::desc("Print index-based devirtualization messages")); 142 143 /// Provide a way to force enable whole program visibility in tests. 144 /// This is needed to support legacy tests that don't contain 145 /// !vcall_visibility metadata (the mere presense of type tests 146 /// previously implied hidden visibility). 147 cl::opt<bool> 148 WholeProgramVisibility("whole-program-visibility", cl::init(false), 149 cl::Hidden, cl::ZeroOrMore, 150 cl::desc("Enable whole program visibility")); 151 152 /// Provide a way to force disable whole program for debugging or workarounds, 153 /// when enabled via the linker. 154 cl::opt<bool> DisableWholeProgramVisibility( 155 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 156 cl::ZeroOrMore, 157 cl::desc("Disable whole program visibility (overrides enabling options)")); 158 159 /// Provide way to prevent certain function from being devirtualized 160 cl::list<std::string> 161 SkipFunctionNames("wholeprogramdevirt-skip", 162 cl::desc("Prevent function(s) from being devirtualized"), 163 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); 164 165 namespace { 166 struct PatternList { 167 std::vector<GlobPattern> Patterns; 168 template <class T> void init(const T &StringList) { 169 for (const auto &S : StringList) 170 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 171 Patterns.push_back(std::move(*Pat)); 172 } 173 bool match(StringRef S) { 174 for (const GlobPattern &P : Patterns) 175 if (P.match(S)) 176 return true; 177 return false; 178 } 179 }; 180 } // namespace 181 182 // Find the minimum offset that we may store a value of size Size bits at. If 183 // IsAfter is set, look for an offset before the object, otherwise look for an 184 // offset after the object. 185 uint64_t 186 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 187 bool IsAfter, uint64_t Size) { 188 // Find a minimum offset taking into account only vtable sizes. 189 uint64_t MinByte = 0; 190 for (const VirtualCallTarget &Target : Targets) { 191 if (IsAfter) 192 MinByte = std::max(MinByte, Target.minAfterBytes()); 193 else 194 MinByte = std::max(MinByte, Target.minBeforeBytes()); 195 } 196 197 // Build a vector of arrays of bytes covering, for each target, a slice of the 198 // used region (see AccumBitVector::BytesUsed in 199 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 200 // this aligns the used regions to start at MinByte. 201 // 202 // In this example, A, B and C are vtables, # is a byte already allocated for 203 // a virtual function pointer, AAAA... (etc.) are the used regions for the 204 // vtables and Offset(X) is the value computed for the Offset variable below 205 // for X. 206 // 207 // Offset(A) 208 // | | 209 // |MinByte 210 // A: ################AAAAAAAA|AAAAAAAA 211 // B: ########BBBBBBBBBBBBBBBB|BBBB 212 // C: ########################|CCCCCCCCCCCCCCCC 213 // | Offset(B) | 214 // 215 // This code produces the slices of A, B and C that appear after the divider 216 // at MinByte. 217 std::vector<ArrayRef<uint8_t>> Used; 218 for (const VirtualCallTarget &Target : Targets) { 219 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 220 : Target.TM->Bits->Before.BytesUsed; 221 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 222 : MinByte - Target.minBeforeBytes(); 223 224 // Disregard used regions that are smaller than Offset. These are 225 // effectively all-free regions that do not need to be checked. 226 if (VTUsed.size() > Offset) 227 Used.push_back(VTUsed.slice(Offset)); 228 } 229 230 if (Size == 1) { 231 // Find a free bit in each member of Used. 232 for (unsigned I = 0;; ++I) { 233 uint8_t BitsUsed = 0; 234 for (auto &&B : Used) 235 if (I < B.size()) 236 BitsUsed |= B[I]; 237 if (BitsUsed != 0xff) 238 return (MinByte + I) * 8 + 239 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 240 } 241 } else { 242 // Find a free (Size/8) byte region in each member of Used. 243 // FIXME: see if alignment helps. 244 for (unsigned I = 0;; ++I) { 245 for (auto &&B : Used) { 246 unsigned Byte = 0; 247 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 248 if (B[I + Byte]) 249 goto NextI; 250 ++Byte; 251 } 252 } 253 return (MinByte + I) * 8; 254 NextI:; 255 } 256 } 257 } 258 259 void wholeprogramdevirt::setBeforeReturnValues( 260 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 261 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 262 if (BitWidth == 1) 263 OffsetByte = -(AllocBefore / 8 + 1); 264 else 265 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 266 OffsetBit = AllocBefore % 8; 267 268 for (VirtualCallTarget &Target : Targets) { 269 if (BitWidth == 1) 270 Target.setBeforeBit(AllocBefore); 271 else 272 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 273 } 274 } 275 276 void wholeprogramdevirt::setAfterReturnValues( 277 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 278 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 279 if (BitWidth == 1) 280 OffsetByte = AllocAfter / 8; 281 else 282 OffsetByte = (AllocAfter + 7) / 8; 283 OffsetBit = AllocAfter % 8; 284 285 for (VirtualCallTarget &Target : Targets) { 286 if (BitWidth == 1) 287 Target.setAfterBit(AllocAfter); 288 else 289 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 290 } 291 } 292 293 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 294 : Fn(Fn), TM(TM), 295 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 296 297 namespace { 298 299 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 300 // tables, and the ByteOffset is the offset in bytes from the address point to 301 // the virtual function pointer. 302 struct VTableSlot { 303 Metadata *TypeID; 304 uint64_t ByteOffset; 305 }; 306 307 } // end anonymous namespace 308 309 namespace llvm { 310 311 template <> struct DenseMapInfo<VTableSlot> { 312 static VTableSlot getEmptyKey() { 313 return {DenseMapInfo<Metadata *>::getEmptyKey(), 314 DenseMapInfo<uint64_t>::getEmptyKey()}; 315 } 316 static VTableSlot getTombstoneKey() { 317 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 318 DenseMapInfo<uint64_t>::getTombstoneKey()}; 319 } 320 static unsigned getHashValue(const VTableSlot &I) { 321 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 322 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 323 } 324 static bool isEqual(const VTableSlot &LHS, 325 const VTableSlot &RHS) { 326 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 327 } 328 }; 329 330 template <> struct DenseMapInfo<VTableSlotSummary> { 331 static VTableSlotSummary getEmptyKey() { 332 return {DenseMapInfo<StringRef>::getEmptyKey(), 333 DenseMapInfo<uint64_t>::getEmptyKey()}; 334 } 335 static VTableSlotSummary getTombstoneKey() { 336 return {DenseMapInfo<StringRef>::getTombstoneKey(), 337 DenseMapInfo<uint64_t>::getTombstoneKey()}; 338 } 339 static unsigned getHashValue(const VTableSlotSummary &I) { 340 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 341 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 342 } 343 static bool isEqual(const VTableSlotSummary &LHS, 344 const VTableSlotSummary &RHS) { 345 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 346 } 347 }; 348 349 } // end namespace llvm 350 351 namespace { 352 353 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 354 // the indirect virtual call. 355 struct VirtualCallSite { 356 Value *VTable = nullptr; 357 CallBase &CB; 358 359 // If non-null, this field points to the associated unsafe use count stored in 360 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 361 // of that field for details. 362 unsigned *NumUnsafeUses = nullptr; 363 364 void 365 emitRemark(const StringRef OptName, const StringRef TargetName, 366 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 367 Function *F = CB.getCaller(); 368 DebugLoc DLoc = CB.getDebugLoc(); 369 BasicBlock *Block = CB.getParent(); 370 371 using namespace ore; 372 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 373 << NV("Optimization", OptName) 374 << ": devirtualized a call to " 375 << NV("FunctionName", TargetName)); 376 } 377 378 void replaceAndErase( 379 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 380 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 381 Value *New) { 382 if (RemarksEnabled) 383 emitRemark(OptName, TargetName, OREGetter); 384 CB.replaceAllUsesWith(New); 385 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 386 BranchInst::Create(II->getNormalDest(), &CB); 387 II->getUnwindDest()->removePredecessor(II->getParent()); 388 } 389 CB.eraseFromParent(); 390 // This use is no longer unsafe. 391 if (NumUnsafeUses) 392 --*NumUnsafeUses; 393 } 394 }; 395 396 // Call site information collected for a specific VTableSlot and possibly a list 397 // of constant integer arguments. The grouping by arguments is handled by the 398 // VTableSlotInfo class. 399 struct CallSiteInfo { 400 /// The set of call sites for this slot. Used during regular LTO and the 401 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 402 /// call sites that appear in the merged module itself); in each of these 403 /// cases we are directly operating on the call sites at the IR level. 404 std::vector<VirtualCallSite> CallSites; 405 406 /// Whether all call sites represented by this CallSiteInfo, including those 407 /// in summaries, have been devirtualized. This starts off as true because a 408 /// default constructed CallSiteInfo represents no call sites. 409 bool AllCallSitesDevirted = true; 410 411 // These fields are used during the export phase of ThinLTO and reflect 412 // information collected from function summaries. 413 414 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 415 /// this slot. 416 bool SummaryHasTypeTestAssumeUsers = false; 417 418 /// CFI-specific: a vector containing the list of function summaries that use 419 /// the llvm.type.checked.load intrinsic and therefore will require 420 /// resolutions for llvm.type.test in order to implement CFI checks if 421 /// devirtualization was unsuccessful. If devirtualization was successful, the 422 /// pass will clear this vector by calling markDevirt(). If at the end of the 423 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 424 /// to each of the function summaries in the vector. 425 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 426 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 427 428 bool isExported() const { 429 return SummaryHasTypeTestAssumeUsers || 430 !SummaryTypeCheckedLoadUsers.empty(); 431 } 432 433 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 434 SummaryTypeCheckedLoadUsers.push_back(FS); 435 AllCallSitesDevirted = false; 436 } 437 438 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 439 SummaryTypeTestAssumeUsers.push_back(FS); 440 SummaryHasTypeTestAssumeUsers = true; 441 AllCallSitesDevirted = false; 442 } 443 444 void markDevirt() { 445 AllCallSitesDevirted = true; 446 447 // As explained in the comment for SummaryTypeCheckedLoadUsers. 448 SummaryTypeCheckedLoadUsers.clear(); 449 } 450 }; 451 452 // Call site information collected for a specific VTableSlot. 453 struct VTableSlotInfo { 454 // The set of call sites which do not have all constant integer arguments 455 // (excluding "this"). 456 CallSiteInfo CSInfo; 457 458 // The set of call sites with all constant integer arguments (excluding 459 // "this"), grouped by argument list. 460 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 461 462 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 463 464 private: 465 CallSiteInfo &findCallSiteInfo(CallBase &CB); 466 }; 467 468 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 469 std::vector<uint64_t> Args; 470 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 471 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 472 return CSInfo; 473 for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) { 474 auto *CI = dyn_cast<ConstantInt>(Arg); 475 if (!CI || CI->getBitWidth() > 64) 476 return CSInfo; 477 Args.push_back(CI->getZExtValue()); 478 } 479 return ConstCSInfo[Args]; 480 } 481 482 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 483 unsigned *NumUnsafeUses) { 484 auto &CSI = findCallSiteInfo(CB); 485 CSI.AllCallSitesDevirted = false; 486 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 487 } 488 489 struct DevirtModule { 490 Module &M; 491 function_ref<AAResults &(Function &)> AARGetter; 492 function_ref<DominatorTree &(Function &)> LookupDomTree; 493 494 ModuleSummaryIndex *ExportSummary; 495 const ModuleSummaryIndex *ImportSummary; 496 497 IntegerType *Int8Ty; 498 PointerType *Int8PtrTy; 499 IntegerType *Int32Ty; 500 IntegerType *Int64Ty; 501 IntegerType *IntPtrTy; 502 /// Sizeless array type, used for imported vtables. This provides a signal 503 /// to analyzers that these imports may alias, as they do for example 504 /// when multiple unique return values occur in the same vtable. 505 ArrayType *Int8Arr0Ty; 506 507 bool RemarksEnabled; 508 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 509 510 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 511 512 // This map keeps track of the number of "unsafe" uses of a loaded function 513 // pointer. The key is the associated llvm.type.test intrinsic call generated 514 // by this pass. An unsafe use is one that calls the loaded function pointer 515 // directly. Every time we eliminate an unsafe use (for example, by 516 // devirtualizing it or by applying virtual constant propagation), we 517 // decrement the value stored in this map. If a value reaches zero, we can 518 // eliminate the type check by RAUWing the associated llvm.type.test call with 519 // true. 520 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 521 PatternList FunctionsToSkip; 522 523 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 524 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 525 function_ref<DominatorTree &(Function &)> LookupDomTree, 526 ModuleSummaryIndex *ExportSummary, 527 const ModuleSummaryIndex *ImportSummary) 528 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 529 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 530 Int8Ty(Type::getInt8Ty(M.getContext())), 531 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 532 Int32Ty(Type::getInt32Ty(M.getContext())), 533 Int64Ty(Type::getInt64Ty(M.getContext())), 534 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 535 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 536 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 537 assert(!(ExportSummary && ImportSummary)); 538 FunctionsToSkip.init(SkipFunctionNames); 539 } 540 541 bool areRemarksEnabled(); 542 543 void scanTypeTestUsers(Function *TypeTestFunc); 544 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 545 546 void buildTypeIdentifierMap( 547 std::vector<VTableBits> &Bits, 548 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 549 bool 550 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 551 const std::set<TypeMemberInfo> &TypeMemberInfos, 552 uint64_t ByteOffset); 553 554 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 555 bool &IsExported); 556 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 557 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 558 VTableSlotInfo &SlotInfo, 559 WholeProgramDevirtResolution *Res); 560 561 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 562 bool &IsExported); 563 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 564 VTableSlotInfo &SlotInfo, 565 WholeProgramDevirtResolution *Res, VTableSlot Slot); 566 567 bool tryEvaluateFunctionsWithArgs( 568 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 569 ArrayRef<uint64_t> Args); 570 571 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 572 uint64_t TheRetVal); 573 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 574 CallSiteInfo &CSInfo, 575 WholeProgramDevirtResolution::ByArg *Res); 576 577 // Returns the global symbol name that is used to export information about the 578 // given vtable slot and list of arguments. 579 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 580 StringRef Name); 581 582 bool shouldExportConstantsAsAbsoluteSymbols(); 583 584 // This function is called during the export phase to create a symbol 585 // definition containing information about the given vtable slot and list of 586 // arguments. 587 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 588 Constant *C); 589 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 590 uint32_t Const, uint32_t &Storage); 591 592 // This function is called during the import phase to create a reference to 593 // the symbol definition created during the export phase. 594 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 595 StringRef Name); 596 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 597 StringRef Name, IntegerType *IntTy, 598 uint32_t Storage); 599 600 Constant *getMemberAddr(const TypeMemberInfo *M); 601 602 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 603 Constant *UniqueMemberAddr); 604 bool tryUniqueRetValOpt(unsigned BitWidth, 605 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 606 CallSiteInfo &CSInfo, 607 WholeProgramDevirtResolution::ByArg *Res, 608 VTableSlot Slot, ArrayRef<uint64_t> Args); 609 610 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 611 Constant *Byte, Constant *Bit); 612 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 613 VTableSlotInfo &SlotInfo, 614 WholeProgramDevirtResolution *Res, VTableSlot Slot); 615 616 void rebuildGlobal(VTableBits &B); 617 618 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 619 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 620 621 // If we were able to eliminate all unsafe uses for a type checked load, 622 // eliminate the associated type tests by replacing them with true. 623 void removeRedundantTypeTests(); 624 625 bool run(); 626 627 // Lower the module using the action and summary passed as command line 628 // arguments. For testing purposes only. 629 static bool 630 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 631 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 632 function_ref<DominatorTree &(Function &)> LookupDomTree); 633 }; 634 635 struct DevirtIndex { 636 ModuleSummaryIndex &ExportSummary; 637 // The set in which to record GUIDs exported from their module by 638 // devirtualization, used by client to ensure they are not internalized. 639 std::set<GlobalValue::GUID> &ExportedGUIDs; 640 // A map in which to record the information necessary to locate the WPD 641 // resolution for local targets in case they are exported by cross module 642 // importing. 643 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 644 645 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 646 647 PatternList FunctionsToSkip; 648 649 DevirtIndex( 650 ModuleSummaryIndex &ExportSummary, 651 std::set<GlobalValue::GUID> &ExportedGUIDs, 652 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 653 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 654 LocalWPDTargetsMap(LocalWPDTargetsMap) { 655 FunctionsToSkip.init(SkipFunctionNames); 656 } 657 658 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 659 const TypeIdCompatibleVtableInfo TIdInfo, 660 uint64_t ByteOffset); 661 662 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 663 VTableSlotSummary &SlotSummary, 664 VTableSlotInfo &SlotInfo, 665 WholeProgramDevirtResolution *Res, 666 std::set<ValueInfo> &DevirtTargets); 667 668 void run(); 669 }; 670 671 struct WholeProgramDevirt : public ModulePass { 672 static char ID; 673 674 bool UseCommandLine = false; 675 676 ModuleSummaryIndex *ExportSummary = nullptr; 677 const ModuleSummaryIndex *ImportSummary = nullptr; 678 679 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 680 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 681 } 682 683 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 684 const ModuleSummaryIndex *ImportSummary) 685 : ModulePass(ID), ExportSummary(ExportSummary), 686 ImportSummary(ImportSummary) { 687 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 688 } 689 690 bool runOnModule(Module &M) override { 691 if (skipModule(M)) 692 return false; 693 694 // In the new pass manager, we can request the optimization 695 // remark emitter pass on a per-function-basis, which the 696 // OREGetter will do for us. 697 // In the old pass manager, this is harder, so we just build 698 // an optimization remark emitter on the fly, when we need it. 699 std::unique_ptr<OptimizationRemarkEmitter> ORE; 700 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 701 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 702 return *ORE; 703 }; 704 705 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 706 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 707 }; 708 709 if (UseCommandLine) 710 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 711 LookupDomTree); 712 713 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 714 ExportSummary, ImportSummary) 715 .run(); 716 } 717 718 void getAnalysisUsage(AnalysisUsage &AU) const override { 719 AU.addRequired<AssumptionCacheTracker>(); 720 AU.addRequired<TargetLibraryInfoWrapperPass>(); 721 AU.addRequired<DominatorTreeWrapperPass>(); 722 } 723 }; 724 725 } // end anonymous namespace 726 727 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 728 "Whole program devirtualization", false, false) 729 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 730 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 732 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 733 "Whole program devirtualization", false, false) 734 char WholeProgramDevirt::ID = 0; 735 736 ModulePass * 737 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 738 const ModuleSummaryIndex *ImportSummary) { 739 return new WholeProgramDevirt(ExportSummary, ImportSummary); 740 } 741 742 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 743 ModuleAnalysisManager &AM) { 744 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 745 auto AARGetter = [&](Function &F) -> AAResults & { 746 return FAM.getResult<AAManager>(F); 747 }; 748 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 749 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 750 }; 751 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 752 return FAM.getResult<DominatorTreeAnalysis>(F); 753 }; 754 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 755 ImportSummary) 756 .run()) 757 return PreservedAnalyses::all(); 758 return PreservedAnalyses::none(); 759 } 760 761 // Enable whole program visibility if enabled by client (e.g. linker) or 762 // internal option, and not force disabled. 763 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 764 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 765 !DisableWholeProgramVisibility; 766 } 767 768 namespace llvm { 769 770 /// If whole program visibility asserted, then upgrade all public vcall 771 /// visibility metadata on vtable definitions to linkage unit visibility in 772 /// Module IR (for regular or hybrid LTO). 773 void updateVCallVisibilityInModule(Module &M, 774 bool WholeProgramVisibilityEnabledInLTO) { 775 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 776 return; 777 for (GlobalVariable &GV : M.globals()) 778 // Add linkage unit visibility to any variable with type metadata, which are 779 // the vtable definitions. We won't have an existing vcall_visibility 780 // metadata on vtable definitions with public visibility. 781 if (GV.hasMetadata(LLVMContext::MD_type) && 782 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 783 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 784 } 785 786 /// If whole program visibility asserted, then upgrade all public vcall 787 /// visibility metadata on vtable definition summaries to linkage unit 788 /// visibility in Module summary index (for ThinLTO). 789 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, 790 bool WholeProgramVisibilityEnabledInLTO) { 791 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 792 return; 793 for (auto &P : Index) { 794 for (auto &S : P.second.SummaryList) { 795 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 796 if (!GVar || GVar->vTableFuncs().empty() || 797 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 798 continue; 799 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 800 } 801 } 802 } 803 804 void runWholeProgramDevirtOnIndex( 805 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 806 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 807 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 808 } 809 810 void updateIndexWPDForExports( 811 ModuleSummaryIndex &Summary, 812 function_ref<bool(StringRef, ValueInfo)> isExported, 813 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 814 for (auto &T : LocalWPDTargetsMap) { 815 auto &VI = T.first; 816 // This was enforced earlier during trySingleImplDevirt. 817 assert(VI.getSummaryList().size() == 1 && 818 "Devirt of local target has more than one copy"); 819 auto &S = VI.getSummaryList()[0]; 820 if (!isExported(S->modulePath(), VI)) 821 continue; 822 823 // It's been exported by a cross module import. 824 for (auto &SlotSummary : T.second) { 825 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 826 assert(TIdSum); 827 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 828 assert(WPDRes != TIdSum->WPDRes.end()); 829 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 830 WPDRes->second.SingleImplName, 831 Summary.getModuleHash(S->modulePath())); 832 } 833 } 834 } 835 836 } // end namespace llvm 837 838 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 839 // Check that summary index contains regular LTO module when performing 840 // export to prevent occasional use of index from pure ThinLTO compilation 841 // (-fno-split-lto-module). This kind of summary index is passed to 842 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 843 const auto &ModPaths = Summary->modulePaths(); 844 if (ClSummaryAction != PassSummaryAction::Import && 845 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 846 ModPaths.end()) 847 return createStringError( 848 errc::invalid_argument, 849 "combined summary should contain Regular LTO module"); 850 return ErrorSuccess(); 851 } 852 853 bool DevirtModule::runForTesting( 854 Module &M, function_ref<AAResults &(Function &)> AARGetter, 855 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 856 function_ref<DominatorTree &(Function &)> LookupDomTree) { 857 std::unique_ptr<ModuleSummaryIndex> Summary = 858 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 859 860 // Handle the command-line summary arguments. This code is for testing 861 // purposes only, so we handle errors directly. 862 if (!ClReadSummary.empty()) { 863 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 864 ": "); 865 auto ReadSummaryFile = 866 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 867 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 868 getModuleSummaryIndex(*ReadSummaryFile)) { 869 Summary = std::move(*SummaryOrErr); 870 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 871 } else { 872 // Try YAML if we've failed with bitcode. 873 consumeError(SummaryOrErr.takeError()); 874 yaml::Input In(ReadSummaryFile->getBuffer()); 875 In >> *Summary; 876 ExitOnErr(errorCodeToError(In.error())); 877 } 878 } 879 880 bool Changed = 881 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 882 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 883 : nullptr, 884 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 885 : nullptr) 886 .run(); 887 888 if (!ClWriteSummary.empty()) { 889 ExitOnError ExitOnErr( 890 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 891 std::error_code EC; 892 if (StringRef(ClWriteSummary).endswith(".bc")) { 893 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 894 ExitOnErr(errorCodeToError(EC)); 895 WriteIndexToFile(*Summary, OS); 896 } else { 897 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 898 ExitOnErr(errorCodeToError(EC)); 899 yaml::Output Out(OS); 900 Out << *Summary; 901 } 902 } 903 904 return Changed; 905 } 906 907 void DevirtModule::buildTypeIdentifierMap( 908 std::vector<VTableBits> &Bits, 909 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 910 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 911 Bits.reserve(M.getGlobalList().size()); 912 SmallVector<MDNode *, 2> Types; 913 for (GlobalVariable &GV : M.globals()) { 914 Types.clear(); 915 GV.getMetadata(LLVMContext::MD_type, Types); 916 if (GV.isDeclaration() || Types.empty()) 917 continue; 918 919 VTableBits *&BitsPtr = GVToBits[&GV]; 920 if (!BitsPtr) { 921 Bits.emplace_back(); 922 Bits.back().GV = &GV; 923 Bits.back().ObjectSize = 924 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 925 BitsPtr = &Bits.back(); 926 } 927 928 for (MDNode *Type : Types) { 929 auto TypeID = Type->getOperand(1).get(); 930 931 uint64_t Offset = 932 cast<ConstantInt>( 933 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 934 ->getZExtValue(); 935 936 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 937 } 938 } 939 } 940 941 bool DevirtModule::tryFindVirtualCallTargets( 942 std::vector<VirtualCallTarget> &TargetsForSlot, 943 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 944 for (const TypeMemberInfo &TM : TypeMemberInfos) { 945 if (!TM.Bits->GV->isConstant()) 946 return false; 947 948 // We cannot perform whole program devirtualization analysis on a vtable 949 // with public LTO visibility. 950 if (TM.Bits->GV->getVCallVisibility() == 951 GlobalObject::VCallVisibilityPublic) 952 return false; 953 954 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 955 TM.Offset + ByteOffset, M); 956 if (!Ptr) 957 return false; 958 959 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 960 if (!Fn) 961 return false; 962 963 if (FunctionsToSkip.match(Fn->getName())) 964 return false; 965 966 // We can disregard __cxa_pure_virtual as a possible call target, as 967 // calls to pure virtuals are UB. 968 if (Fn->getName() == "__cxa_pure_virtual") 969 continue; 970 971 TargetsForSlot.push_back({Fn, &TM}); 972 } 973 974 // Give up if we couldn't find any targets. 975 return !TargetsForSlot.empty(); 976 } 977 978 bool DevirtIndex::tryFindVirtualCallTargets( 979 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 980 uint64_t ByteOffset) { 981 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 982 // Find the first non-available_externally linkage vtable initializer. 983 // We can have multiple available_externally, linkonce_odr and weak_odr 984 // vtable initializers, however we want to skip available_externally as they 985 // do not have type metadata attached, and therefore the summary will not 986 // contain any vtable functions. We can also have multiple external 987 // vtable initializers in the case of comdats, which we cannot check here. 988 // The linker should give an error in this case. 989 // 990 // Also, handle the case of same-named local Vtables with the same path 991 // and therefore the same GUID. This can happen if there isn't enough 992 // distinguishing path when compiling the source file. In that case we 993 // conservatively return false early. 994 const GlobalVarSummary *VS = nullptr; 995 bool LocalFound = false; 996 for (auto &S : P.VTableVI.getSummaryList()) { 997 if (GlobalValue::isLocalLinkage(S->linkage())) { 998 if (LocalFound) 999 return false; 1000 LocalFound = true; 1001 } 1002 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1003 VS = cast<GlobalVarSummary>(S->getBaseObject()); 1004 // We cannot perform whole program devirtualization analysis on a vtable 1005 // with public LTO visibility. 1006 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1007 return false; 1008 } 1009 } 1010 if (!VS->isLive()) 1011 continue; 1012 for (auto VTP : VS->vTableFuncs()) { 1013 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1014 continue; 1015 1016 TargetsForSlot.push_back(VTP.FuncVI); 1017 } 1018 } 1019 1020 // Give up if we couldn't find any targets. 1021 return !TargetsForSlot.empty(); 1022 } 1023 1024 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1025 Constant *TheFn, bool &IsExported) { 1026 auto Apply = [&](CallSiteInfo &CSInfo) { 1027 for (auto &&VCallSite : CSInfo.CallSites) { 1028 if (RemarksEnabled) 1029 VCallSite.emitRemark("single-impl", 1030 TheFn->stripPointerCasts()->getName(), OREGetter); 1031 VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast( 1032 TheFn, VCallSite.CB.getCalledOperand()->getType())); 1033 // This use is no longer unsafe. 1034 if (VCallSite.NumUnsafeUses) 1035 --*VCallSite.NumUnsafeUses; 1036 } 1037 if (CSInfo.isExported()) 1038 IsExported = true; 1039 CSInfo.markDevirt(); 1040 }; 1041 Apply(SlotInfo.CSInfo); 1042 for (auto &P : SlotInfo.ConstCSInfo) 1043 Apply(P.second); 1044 } 1045 1046 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1047 // We can't add calls if we haven't seen a definition 1048 if (Callee.getSummaryList().empty()) 1049 return false; 1050 1051 // Insert calls into the summary index so that the devirtualized targets 1052 // are eligible for import. 1053 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1054 // to better ensure we have the opportunity to inline them. 1055 bool IsExported = false; 1056 auto &S = Callee.getSummaryList()[0]; 1057 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1058 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1059 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1060 FS->addCall({Callee, CI}); 1061 IsExported |= S->modulePath() != FS->modulePath(); 1062 } 1063 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1064 FS->addCall({Callee, CI}); 1065 IsExported |= S->modulePath() != FS->modulePath(); 1066 } 1067 }; 1068 AddCalls(SlotInfo.CSInfo); 1069 for (auto &P : SlotInfo.ConstCSInfo) 1070 AddCalls(P.second); 1071 return IsExported; 1072 } 1073 1074 bool DevirtModule::trySingleImplDevirt( 1075 ModuleSummaryIndex *ExportSummary, 1076 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1077 WholeProgramDevirtResolution *Res) { 1078 // See if the program contains a single implementation of this virtual 1079 // function. 1080 Function *TheFn = TargetsForSlot[0].Fn; 1081 for (auto &&Target : TargetsForSlot) 1082 if (TheFn != Target.Fn) 1083 return false; 1084 1085 // If so, update each call site to call that implementation directly. 1086 if (RemarksEnabled) 1087 TargetsForSlot[0].WasDevirt = true; 1088 1089 bool IsExported = false; 1090 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1091 if (!IsExported) 1092 return false; 1093 1094 // If the only implementation has local linkage, we must promote to external 1095 // to make it visible to thin LTO objects. We can only get here during the 1096 // ThinLTO export phase. 1097 if (TheFn->hasLocalLinkage()) { 1098 std::string NewName = (TheFn->getName() + "$merged").str(); 1099 1100 // Since we are renaming the function, any comdats with the same name must 1101 // also be renamed. This is required when targeting COFF, as the comdat name 1102 // must match one of the names of the symbols in the comdat. 1103 if (Comdat *C = TheFn->getComdat()) { 1104 if (C->getName() == TheFn->getName()) { 1105 Comdat *NewC = M.getOrInsertComdat(NewName); 1106 NewC->setSelectionKind(C->getSelectionKind()); 1107 for (GlobalObject &GO : M.global_objects()) 1108 if (GO.getComdat() == C) 1109 GO.setComdat(NewC); 1110 } 1111 } 1112 1113 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1114 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1115 TheFn->setName(NewName); 1116 } 1117 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1118 // Any needed promotion of 'TheFn' has already been done during 1119 // LTO unit split, so we can ignore return value of AddCalls. 1120 AddCalls(SlotInfo, TheFnVI); 1121 1122 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1123 Res->SingleImplName = std::string(TheFn->getName()); 1124 1125 return true; 1126 } 1127 1128 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1129 VTableSlotSummary &SlotSummary, 1130 VTableSlotInfo &SlotInfo, 1131 WholeProgramDevirtResolution *Res, 1132 std::set<ValueInfo> &DevirtTargets) { 1133 // See if the program contains a single implementation of this virtual 1134 // function. 1135 auto TheFn = TargetsForSlot[0]; 1136 for (auto &&Target : TargetsForSlot) 1137 if (TheFn != Target) 1138 return false; 1139 1140 // Don't devirtualize if we don't have target definition. 1141 auto Size = TheFn.getSummaryList().size(); 1142 if (!Size) 1143 return false; 1144 1145 // Don't devirtualize function if we're told to skip it 1146 // in -wholeprogramdevirt-skip. 1147 if (FunctionsToSkip.match(TheFn.name())) 1148 return false; 1149 1150 // If the summary list contains multiple summaries where at least one is 1151 // a local, give up, as we won't know which (possibly promoted) name to use. 1152 for (auto &S : TheFn.getSummaryList()) 1153 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1154 return false; 1155 1156 // Collect functions devirtualized at least for one call site for stats. 1157 if (PrintSummaryDevirt) 1158 DevirtTargets.insert(TheFn); 1159 1160 auto &S = TheFn.getSummaryList()[0]; 1161 bool IsExported = AddCalls(SlotInfo, TheFn); 1162 if (IsExported) 1163 ExportedGUIDs.insert(TheFn.getGUID()); 1164 1165 // Record in summary for use in devirtualization during the ThinLTO import 1166 // step. 1167 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1168 if (GlobalValue::isLocalLinkage(S->linkage())) { 1169 if (IsExported) 1170 // If target is a local function and we are exporting it by 1171 // devirtualizing a call in another module, we need to record the 1172 // promoted name. 1173 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1174 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1175 else { 1176 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1177 Res->SingleImplName = std::string(TheFn.name()); 1178 } 1179 } else 1180 Res->SingleImplName = std::string(TheFn.name()); 1181 1182 // Name will be empty if this thin link driven off of serialized combined 1183 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1184 // legacy LTO API anyway. 1185 assert(!Res->SingleImplName.empty()); 1186 1187 return true; 1188 } 1189 1190 void DevirtModule::tryICallBranchFunnel( 1191 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1192 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1193 Triple T(M.getTargetTriple()); 1194 if (T.getArch() != Triple::x86_64) 1195 return; 1196 1197 if (TargetsForSlot.size() > ClThreshold) 1198 return; 1199 1200 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1201 if (!HasNonDevirt) 1202 for (auto &P : SlotInfo.ConstCSInfo) 1203 if (!P.second.AllCallSitesDevirted) { 1204 HasNonDevirt = true; 1205 break; 1206 } 1207 1208 if (!HasNonDevirt) 1209 return; 1210 1211 FunctionType *FT = 1212 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1213 Function *JT; 1214 if (isa<MDString>(Slot.TypeID)) { 1215 JT = Function::Create(FT, Function::ExternalLinkage, 1216 M.getDataLayout().getProgramAddressSpace(), 1217 getGlobalName(Slot, {}, "branch_funnel"), &M); 1218 JT->setVisibility(GlobalValue::HiddenVisibility); 1219 } else { 1220 JT = Function::Create(FT, Function::InternalLinkage, 1221 M.getDataLayout().getProgramAddressSpace(), 1222 "branch_funnel", &M); 1223 } 1224 JT->addAttribute(1, Attribute::Nest); 1225 1226 std::vector<Value *> JTArgs; 1227 JTArgs.push_back(JT->arg_begin()); 1228 for (auto &T : TargetsForSlot) { 1229 JTArgs.push_back(getMemberAddr(T.TM)); 1230 JTArgs.push_back(T.Fn); 1231 } 1232 1233 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1234 Function *Intr = 1235 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1236 1237 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1238 CI->setTailCallKind(CallInst::TCK_MustTail); 1239 ReturnInst::Create(M.getContext(), nullptr, BB); 1240 1241 bool IsExported = false; 1242 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1243 if (IsExported) 1244 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1245 } 1246 1247 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1248 Constant *JT, bool &IsExported) { 1249 auto Apply = [&](CallSiteInfo &CSInfo) { 1250 if (CSInfo.isExported()) 1251 IsExported = true; 1252 if (CSInfo.AllCallSitesDevirted) 1253 return; 1254 for (auto &&VCallSite : CSInfo.CallSites) { 1255 CallBase &CB = VCallSite.CB; 1256 1257 // Jump tables are only profitable if the retpoline mitigation is enabled. 1258 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1259 if (FSAttr.hasAttribute(Attribute::None) || 1260 !FSAttr.getValueAsString().contains("+retpoline")) 1261 continue; 1262 1263 if (RemarksEnabled) 1264 VCallSite.emitRemark("branch-funnel", 1265 JT->stripPointerCasts()->getName(), OREGetter); 1266 1267 // Pass the address of the vtable in the nest register, which is r10 on 1268 // x86_64. 1269 std::vector<Type *> NewArgs; 1270 NewArgs.push_back(Int8PtrTy); 1271 for (Type *T : CB.getFunctionType()->params()) 1272 NewArgs.push_back(T); 1273 FunctionType *NewFT = 1274 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1275 CB.getFunctionType()->isVarArg()); 1276 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1277 1278 IRBuilder<> IRB(&CB); 1279 std::vector<Value *> Args; 1280 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1281 Args.insert(Args.end(), CB.arg_begin(), CB.arg_end()); 1282 1283 CallBase *NewCS = nullptr; 1284 if (isa<CallInst>(CB)) 1285 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1286 else 1287 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1288 cast<InvokeInst>(CB).getNormalDest(), 1289 cast<InvokeInst>(CB).getUnwindDest(), Args); 1290 NewCS->setCallingConv(CB.getCallingConv()); 1291 1292 AttributeList Attrs = CB.getAttributes(); 1293 std::vector<AttributeSet> NewArgAttrs; 1294 NewArgAttrs.push_back(AttributeSet::get( 1295 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1296 M.getContext(), Attribute::Nest)})); 1297 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1298 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1299 NewCS->setAttributes( 1300 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1301 Attrs.getRetAttributes(), NewArgAttrs)); 1302 1303 CB.replaceAllUsesWith(NewCS); 1304 CB.eraseFromParent(); 1305 1306 // This use is no longer unsafe. 1307 if (VCallSite.NumUnsafeUses) 1308 --*VCallSite.NumUnsafeUses; 1309 } 1310 // Don't mark as devirtualized because there may be callers compiled without 1311 // retpoline mitigation, which would mean that they are lowered to 1312 // llvm.type.test and therefore require an llvm.type.test resolution for the 1313 // type identifier. 1314 }; 1315 Apply(SlotInfo.CSInfo); 1316 for (auto &P : SlotInfo.ConstCSInfo) 1317 Apply(P.second); 1318 } 1319 1320 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1321 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1322 ArrayRef<uint64_t> Args) { 1323 // Evaluate each function and store the result in each target's RetVal 1324 // field. 1325 for (VirtualCallTarget &Target : TargetsForSlot) { 1326 if (Target.Fn->arg_size() != Args.size() + 1) 1327 return false; 1328 1329 Evaluator Eval(M.getDataLayout(), nullptr); 1330 SmallVector<Constant *, 2> EvalArgs; 1331 EvalArgs.push_back( 1332 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1333 for (unsigned I = 0; I != Args.size(); ++I) { 1334 auto *ArgTy = dyn_cast<IntegerType>( 1335 Target.Fn->getFunctionType()->getParamType(I + 1)); 1336 if (!ArgTy) 1337 return false; 1338 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1339 } 1340 1341 Constant *RetVal; 1342 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1343 !isa<ConstantInt>(RetVal)) 1344 return false; 1345 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1346 } 1347 return true; 1348 } 1349 1350 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1351 uint64_t TheRetVal) { 1352 for (auto Call : CSInfo.CallSites) 1353 Call.replaceAndErase( 1354 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1355 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1356 CSInfo.markDevirt(); 1357 } 1358 1359 bool DevirtModule::tryUniformRetValOpt( 1360 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1361 WholeProgramDevirtResolution::ByArg *Res) { 1362 // Uniform return value optimization. If all functions return the same 1363 // constant, replace all calls with that constant. 1364 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1365 for (const VirtualCallTarget &Target : TargetsForSlot) 1366 if (Target.RetVal != TheRetVal) 1367 return false; 1368 1369 if (CSInfo.isExported()) { 1370 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1371 Res->Info = TheRetVal; 1372 } 1373 1374 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1375 if (RemarksEnabled) 1376 for (auto &&Target : TargetsForSlot) 1377 Target.WasDevirt = true; 1378 return true; 1379 } 1380 1381 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1382 ArrayRef<uint64_t> Args, 1383 StringRef Name) { 1384 std::string FullName = "__typeid_"; 1385 raw_string_ostream OS(FullName); 1386 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1387 for (uint64_t Arg : Args) 1388 OS << '_' << Arg; 1389 OS << '_' << Name; 1390 return OS.str(); 1391 } 1392 1393 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1394 Triple T(M.getTargetTriple()); 1395 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1396 } 1397 1398 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1399 StringRef Name, Constant *C) { 1400 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1401 getGlobalName(Slot, Args, Name), C, &M); 1402 GA->setVisibility(GlobalValue::HiddenVisibility); 1403 } 1404 1405 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1406 StringRef Name, uint32_t Const, 1407 uint32_t &Storage) { 1408 if (shouldExportConstantsAsAbsoluteSymbols()) { 1409 exportGlobal( 1410 Slot, Args, Name, 1411 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1412 return; 1413 } 1414 1415 Storage = Const; 1416 } 1417 1418 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1419 StringRef Name) { 1420 Constant *C = 1421 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1422 auto *GV = dyn_cast<GlobalVariable>(C); 1423 if (GV) 1424 GV->setVisibility(GlobalValue::HiddenVisibility); 1425 return C; 1426 } 1427 1428 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1429 StringRef Name, IntegerType *IntTy, 1430 uint32_t Storage) { 1431 if (!shouldExportConstantsAsAbsoluteSymbols()) 1432 return ConstantInt::get(IntTy, Storage); 1433 1434 Constant *C = importGlobal(Slot, Args, Name); 1435 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1436 C = ConstantExpr::getPtrToInt(C, IntTy); 1437 1438 // We only need to set metadata if the global is newly created, in which 1439 // case it would not have hidden visibility. 1440 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1441 return C; 1442 1443 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1444 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1445 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1446 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1447 MDNode::get(M.getContext(), {MinC, MaxC})); 1448 }; 1449 unsigned AbsWidth = IntTy->getBitWidth(); 1450 if (AbsWidth == IntPtrTy->getBitWidth()) 1451 SetAbsRange(~0ull, ~0ull); // Full set. 1452 else 1453 SetAbsRange(0, 1ull << AbsWidth); 1454 return C; 1455 } 1456 1457 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1458 bool IsOne, 1459 Constant *UniqueMemberAddr) { 1460 for (auto &&Call : CSInfo.CallSites) { 1461 IRBuilder<> B(&Call.CB); 1462 Value *Cmp = 1463 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1464 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1465 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1466 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1467 Cmp); 1468 } 1469 CSInfo.markDevirt(); 1470 } 1471 1472 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1473 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1474 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1475 ConstantInt::get(Int64Ty, M->Offset)); 1476 } 1477 1478 bool DevirtModule::tryUniqueRetValOpt( 1479 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1480 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1481 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1482 // IsOne controls whether we look for a 0 or a 1. 1483 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1484 const TypeMemberInfo *UniqueMember = nullptr; 1485 for (const VirtualCallTarget &Target : TargetsForSlot) { 1486 if (Target.RetVal == (IsOne ? 1 : 0)) { 1487 if (UniqueMember) 1488 return false; 1489 UniqueMember = Target.TM; 1490 } 1491 } 1492 1493 // We should have found a unique member or bailed out by now. We already 1494 // checked for a uniform return value in tryUniformRetValOpt. 1495 assert(UniqueMember); 1496 1497 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1498 if (CSInfo.isExported()) { 1499 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1500 Res->Info = IsOne; 1501 1502 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1503 } 1504 1505 // Replace each call with the comparison. 1506 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1507 UniqueMemberAddr); 1508 1509 // Update devirtualization statistics for targets. 1510 if (RemarksEnabled) 1511 for (auto &&Target : TargetsForSlot) 1512 Target.WasDevirt = true; 1513 1514 return true; 1515 }; 1516 1517 if (BitWidth == 1) { 1518 if (tryUniqueRetValOptFor(true)) 1519 return true; 1520 if (tryUniqueRetValOptFor(false)) 1521 return true; 1522 } 1523 return false; 1524 } 1525 1526 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1527 Constant *Byte, Constant *Bit) { 1528 for (auto Call : CSInfo.CallSites) { 1529 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1530 IRBuilder<> B(&Call.CB); 1531 Value *Addr = 1532 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1533 if (RetType->getBitWidth() == 1) { 1534 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1535 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1536 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1537 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1538 OREGetter, IsBitSet); 1539 } else { 1540 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1541 Value *Val = B.CreateLoad(RetType, ValAddr); 1542 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1543 OREGetter, Val); 1544 } 1545 } 1546 CSInfo.markDevirt(); 1547 } 1548 1549 bool DevirtModule::tryVirtualConstProp( 1550 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1551 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1552 // This only works if the function returns an integer. 1553 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1554 if (!RetType) 1555 return false; 1556 unsigned BitWidth = RetType->getBitWidth(); 1557 if (BitWidth > 64) 1558 return false; 1559 1560 // Make sure that each function is defined, does not access memory, takes at 1561 // least one argument, does not use its first argument (which we assume is 1562 // 'this'), and has the same return type. 1563 // 1564 // Note that we test whether this copy of the function is readnone, rather 1565 // than testing function attributes, which must hold for any copy of the 1566 // function, even a less optimized version substituted at link time. This is 1567 // sound because the virtual constant propagation optimizations effectively 1568 // inline all implementations of the virtual function into each call site, 1569 // rather than using function attributes to perform local optimization. 1570 for (VirtualCallTarget &Target : TargetsForSlot) { 1571 if (Target.Fn->isDeclaration() || 1572 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1573 MAK_ReadNone || 1574 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1575 Target.Fn->getReturnType() != RetType) 1576 return false; 1577 } 1578 1579 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1580 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1581 continue; 1582 1583 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1584 if (Res) 1585 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1586 1587 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1588 continue; 1589 1590 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1591 ResByArg, Slot, CSByConstantArg.first)) 1592 continue; 1593 1594 // Find an allocation offset in bits in all vtables associated with the 1595 // type. 1596 uint64_t AllocBefore = 1597 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1598 uint64_t AllocAfter = 1599 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1600 1601 // Calculate the total amount of padding needed to store a value at both 1602 // ends of the object. 1603 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1604 for (auto &&Target : TargetsForSlot) { 1605 TotalPaddingBefore += std::max<int64_t>( 1606 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1607 TotalPaddingAfter += std::max<int64_t>( 1608 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1609 } 1610 1611 // If the amount of padding is too large, give up. 1612 // FIXME: do something smarter here. 1613 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1614 continue; 1615 1616 // Calculate the offset to the value as a (possibly negative) byte offset 1617 // and (if applicable) a bit offset, and store the values in the targets. 1618 int64_t OffsetByte; 1619 uint64_t OffsetBit; 1620 if (TotalPaddingBefore <= TotalPaddingAfter) 1621 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1622 OffsetBit); 1623 else 1624 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1625 OffsetBit); 1626 1627 if (RemarksEnabled) 1628 for (auto &&Target : TargetsForSlot) 1629 Target.WasDevirt = true; 1630 1631 1632 if (CSByConstantArg.second.isExported()) { 1633 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1634 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1635 ResByArg->Byte); 1636 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1637 ResByArg->Bit); 1638 } 1639 1640 // Rewrite each call to a load from OffsetByte/OffsetBit. 1641 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1642 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1643 applyVirtualConstProp(CSByConstantArg.second, 1644 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1645 } 1646 return true; 1647 } 1648 1649 void DevirtModule::rebuildGlobal(VTableBits &B) { 1650 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1651 return; 1652 1653 // Align the before byte array to the global's minimum alignment so that we 1654 // don't break any alignment requirements on the global. 1655 MaybeAlign Alignment(B.GV->getAlignment()); 1656 if (!Alignment) 1657 Alignment = 1658 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType())); 1659 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1660 1661 // Before was stored in reverse order; flip it now. 1662 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1663 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1664 1665 // Build an anonymous global containing the before bytes, followed by the 1666 // original initializer, followed by the after bytes. 1667 auto NewInit = ConstantStruct::getAnon( 1668 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1669 B.GV->getInitializer(), 1670 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1671 auto NewGV = 1672 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1673 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1674 NewGV->setSection(B.GV->getSection()); 1675 NewGV->setComdat(B.GV->getComdat()); 1676 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1677 1678 // Copy the original vtable's metadata to the anonymous global, adjusting 1679 // offsets as required. 1680 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1681 1682 // Build an alias named after the original global, pointing at the second 1683 // element (the original initializer). 1684 auto Alias = GlobalAlias::create( 1685 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1686 ConstantExpr::getGetElementPtr( 1687 NewInit->getType(), NewGV, 1688 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1689 ConstantInt::get(Int32Ty, 1)}), 1690 &M); 1691 Alias->setVisibility(B.GV->getVisibility()); 1692 Alias->takeName(B.GV); 1693 1694 B.GV->replaceAllUsesWith(Alias); 1695 B.GV->eraseFromParent(); 1696 } 1697 1698 bool DevirtModule::areRemarksEnabled() { 1699 const auto &FL = M.getFunctionList(); 1700 for (const Function &Fn : FL) { 1701 const auto &BBL = Fn.getBasicBlockList(); 1702 if (BBL.empty()) 1703 continue; 1704 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1705 return DI.isEnabled(); 1706 } 1707 return false; 1708 } 1709 1710 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) { 1711 // Find all virtual calls via a virtual table pointer %p under an assumption 1712 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1713 // points to a member of the type identifier %md. Group calls by (type ID, 1714 // offset) pair (effectively the identity of the virtual function) and store 1715 // to CallSlots. 1716 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1717 I != E;) { 1718 auto CI = dyn_cast<CallInst>(I->getUser()); 1719 ++I; 1720 if (!CI) 1721 continue; 1722 1723 // Search for virtual calls based on %p and add them to DevirtCalls. 1724 SmallVector<DevirtCallSite, 1> DevirtCalls; 1725 SmallVector<CallInst *, 1> Assumes; 1726 auto &DT = LookupDomTree(*CI->getFunction()); 1727 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1728 1729 // If we found any, add them to CallSlots. 1730 if (!Assumes.empty()) { 1731 Metadata *TypeId = 1732 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1733 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1734 for (DevirtCallSite Call : DevirtCalls) 1735 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1736 } 1737 1738 // We no longer need the assumes or the type test. 1739 for (auto Assume : Assumes) 1740 Assume->eraseFromParent(); 1741 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1742 // may use the vtable argument later. 1743 if (CI->use_empty()) 1744 CI->eraseFromParent(); 1745 } 1746 } 1747 1748 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1749 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1750 1751 for (auto I = TypeCheckedLoadFunc->use_begin(), 1752 E = TypeCheckedLoadFunc->use_end(); 1753 I != E;) { 1754 auto CI = dyn_cast<CallInst>(I->getUser()); 1755 ++I; 1756 if (!CI) 1757 continue; 1758 1759 Value *Ptr = CI->getArgOperand(0); 1760 Value *Offset = CI->getArgOperand(1); 1761 Value *TypeIdValue = CI->getArgOperand(2); 1762 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1763 1764 SmallVector<DevirtCallSite, 1> DevirtCalls; 1765 SmallVector<Instruction *, 1> LoadedPtrs; 1766 SmallVector<Instruction *, 1> Preds; 1767 bool HasNonCallUses = false; 1768 auto &DT = LookupDomTree(*CI->getFunction()); 1769 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1770 HasNonCallUses, CI, DT); 1771 1772 // Start by generating "pessimistic" code that explicitly loads the function 1773 // pointer from the vtable and performs the type check. If possible, we will 1774 // eliminate the load and the type check later. 1775 1776 // If possible, only generate the load at the point where it is used. 1777 // This helps avoid unnecessary spills. 1778 IRBuilder<> LoadB( 1779 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1780 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1781 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1782 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1783 1784 for (Instruction *LoadedPtr : LoadedPtrs) { 1785 LoadedPtr->replaceAllUsesWith(LoadedValue); 1786 LoadedPtr->eraseFromParent(); 1787 } 1788 1789 // Likewise for the type test. 1790 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1791 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1792 1793 for (Instruction *Pred : Preds) { 1794 Pred->replaceAllUsesWith(TypeTestCall); 1795 Pred->eraseFromParent(); 1796 } 1797 1798 // We have already erased any extractvalue instructions that refer to the 1799 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1800 // (although this is unlikely). In that case, explicitly build a pair and 1801 // RAUW it. 1802 if (!CI->use_empty()) { 1803 Value *Pair = UndefValue::get(CI->getType()); 1804 IRBuilder<> B(CI); 1805 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1806 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1807 CI->replaceAllUsesWith(Pair); 1808 } 1809 1810 // The number of unsafe uses is initially the number of uses. 1811 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1812 NumUnsafeUses = DevirtCalls.size(); 1813 1814 // If the function pointer has a non-call user, we cannot eliminate the type 1815 // check, as one of those users may eventually call the pointer. Increment 1816 // the unsafe use count to make sure it cannot reach zero. 1817 if (HasNonCallUses) 1818 ++NumUnsafeUses; 1819 for (DevirtCallSite Call : DevirtCalls) { 1820 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1821 &NumUnsafeUses); 1822 } 1823 1824 CI->eraseFromParent(); 1825 } 1826 } 1827 1828 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1829 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1830 if (!TypeId) 1831 return; 1832 const TypeIdSummary *TidSummary = 1833 ImportSummary->getTypeIdSummary(TypeId->getString()); 1834 if (!TidSummary) 1835 return; 1836 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1837 if (ResI == TidSummary->WPDRes.end()) 1838 return; 1839 const WholeProgramDevirtResolution &Res = ResI->second; 1840 1841 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1842 assert(!Res.SingleImplName.empty()); 1843 // The type of the function in the declaration is irrelevant because every 1844 // call site will cast it to the correct type. 1845 Constant *SingleImpl = 1846 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1847 Type::getVoidTy(M.getContext())) 1848 .getCallee()); 1849 1850 // This is the import phase so we should not be exporting anything. 1851 bool IsExported = false; 1852 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1853 assert(!IsExported); 1854 } 1855 1856 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1857 auto I = Res.ResByArg.find(CSByConstantArg.first); 1858 if (I == Res.ResByArg.end()) 1859 continue; 1860 auto &ResByArg = I->second; 1861 // FIXME: We should figure out what to do about the "function name" argument 1862 // to the apply* functions, as the function names are unavailable during the 1863 // importing phase. For now we just pass the empty string. This does not 1864 // impact correctness because the function names are just used for remarks. 1865 switch (ResByArg.TheKind) { 1866 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1867 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1868 break; 1869 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1870 Constant *UniqueMemberAddr = 1871 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1872 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1873 UniqueMemberAddr); 1874 break; 1875 } 1876 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1877 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1878 Int32Ty, ResByArg.Byte); 1879 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1880 ResByArg.Bit); 1881 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1882 break; 1883 } 1884 default: 1885 break; 1886 } 1887 } 1888 1889 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1890 // The type of the function is irrelevant, because it's bitcast at calls 1891 // anyhow. 1892 Constant *JT = cast<Constant>( 1893 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1894 Type::getVoidTy(M.getContext())) 1895 .getCallee()); 1896 bool IsExported = false; 1897 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1898 assert(!IsExported); 1899 } 1900 } 1901 1902 void DevirtModule::removeRedundantTypeTests() { 1903 auto True = ConstantInt::getTrue(M.getContext()); 1904 for (auto &&U : NumUnsafeUsesForTypeTest) { 1905 if (U.second == 0) { 1906 U.first->replaceAllUsesWith(True); 1907 U.first->eraseFromParent(); 1908 } 1909 } 1910 } 1911 1912 bool DevirtModule::run() { 1913 // If only some of the modules were split, we cannot correctly perform 1914 // this transformation. We already checked for the presense of type tests 1915 // with partially split modules during the thin link, and would have emitted 1916 // an error if any were found, so here we can simply return. 1917 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1918 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1919 return false; 1920 1921 Function *TypeTestFunc = 1922 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1923 Function *TypeCheckedLoadFunc = 1924 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1925 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1926 1927 // Normally if there are no users of the devirtualization intrinsics in the 1928 // module, this pass has nothing to do. But if we are exporting, we also need 1929 // to handle any users that appear only in the function summaries. 1930 if (!ExportSummary && 1931 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1932 AssumeFunc->use_empty()) && 1933 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1934 return false; 1935 1936 if (TypeTestFunc && AssumeFunc) 1937 scanTypeTestUsers(TypeTestFunc); 1938 1939 if (TypeCheckedLoadFunc) 1940 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1941 1942 if (ImportSummary) { 1943 for (auto &S : CallSlots) 1944 importResolution(S.first, S.second); 1945 1946 removeRedundantTypeTests(); 1947 1948 // We have lowered or deleted the type instrinsics, so we will no 1949 // longer have enough information to reason about the liveness of virtual 1950 // function pointers in GlobalDCE. 1951 for (GlobalVariable &GV : M.globals()) 1952 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 1953 1954 // The rest of the code is only necessary when exporting or during regular 1955 // LTO, so we are done. 1956 return true; 1957 } 1958 1959 // Rebuild type metadata into a map for easy lookup. 1960 std::vector<VTableBits> Bits; 1961 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1962 buildTypeIdentifierMap(Bits, TypeIdMap); 1963 if (TypeIdMap.empty()) 1964 return true; 1965 1966 // Collect information from summary about which calls to try to devirtualize. 1967 if (ExportSummary) { 1968 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1969 for (auto &P : TypeIdMap) { 1970 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1971 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1972 TypeId); 1973 } 1974 1975 for (auto &P : *ExportSummary) { 1976 for (auto &S : P.second.SummaryList) { 1977 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1978 if (!FS) 1979 continue; 1980 // FIXME: Only add live functions. 1981 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1982 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1983 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 1984 } 1985 } 1986 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1987 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1988 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1989 } 1990 } 1991 for (const FunctionSummary::ConstVCall &VC : 1992 FS->type_test_assume_const_vcalls()) { 1993 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1994 CallSlots[{MD, VC.VFunc.Offset}] 1995 .ConstCSInfo[VC.Args] 1996 .addSummaryTypeTestAssumeUser(FS); 1997 } 1998 } 1999 for (const FunctionSummary::ConstVCall &VC : 2000 FS->type_checked_load_const_vcalls()) { 2001 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2002 CallSlots[{MD, VC.VFunc.Offset}] 2003 .ConstCSInfo[VC.Args] 2004 .addSummaryTypeCheckedLoadUser(FS); 2005 } 2006 } 2007 } 2008 } 2009 } 2010 2011 // For each (type, offset) pair: 2012 bool DidVirtualConstProp = false; 2013 std::map<std::string, Function*> DevirtTargets; 2014 for (auto &S : CallSlots) { 2015 // Search each of the members of the type identifier for the virtual 2016 // function implementation at offset S.first.ByteOffset, and add to 2017 // TargetsForSlot. 2018 std::vector<VirtualCallTarget> TargetsForSlot; 2019 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 2020 S.first.ByteOffset)) { 2021 WholeProgramDevirtResolution *Res = nullptr; 2022 if (ExportSummary && isa<MDString>(S.first.TypeID)) 2023 Res = &ExportSummary 2024 ->getOrInsertTypeIdSummary( 2025 cast<MDString>(S.first.TypeID)->getString()) 2026 .WPDRes[S.first.ByteOffset]; 2027 2028 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2029 DidVirtualConstProp |= 2030 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2031 2032 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2033 } 2034 2035 // Collect functions devirtualized at least for one call site for stats. 2036 if (RemarksEnabled) 2037 for (const auto &T : TargetsForSlot) 2038 if (T.WasDevirt) 2039 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2040 } 2041 2042 // CFI-specific: if we are exporting and any llvm.type.checked.load 2043 // intrinsics were *not* devirtualized, we need to add the resulting 2044 // llvm.type.test intrinsics to the function summaries so that the 2045 // LowerTypeTests pass will export them. 2046 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2047 auto GUID = 2048 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2049 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2050 FS->addTypeTest(GUID); 2051 for (auto &CCS : S.second.ConstCSInfo) 2052 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2053 FS->addTypeTest(GUID); 2054 } 2055 } 2056 2057 if (RemarksEnabled) { 2058 // Generate remarks for each devirtualized function. 2059 for (const auto &DT : DevirtTargets) { 2060 Function *F = DT.second; 2061 2062 using namespace ore; 2063 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2064 << "devirtualized " 2065 << NV("FunctionName", DT.first)); 2066 } 2067 } 2068 2069 removeRedundantTypeTests(); 2070 2071 // Rebuild each global we touched as part of virtual constant propagation to 2072 // include the before and after bytes. 2073 if (DidVirtualConstProp) 2074 for (VTableBits &B : Bits) 2075 rebuildGlobal(B); 2076 2077 // We have lowered or deleted the type instrinsics, so we will no 2078 // longer have enough information to reason about the liveness of virtual 2079 // function pointers in GlobalDCE. 2080 for (GlobalVariable &GV : M.globals()) 2081 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2082 2083 return true; 2084 } 2085 2086 void DevirtIndex::run() { 2087 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2088 return; 2089 2090 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2091 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2092 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2093 } 2094 2095 // Collect information from summary about which calls to try to devirtualize. 2096 for (auto &P : ExportSummary) { 2097 for (auto &S : P.second.SummaryList) { 2098 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2099 if (!FS) 2100 continue; 2101 // FIXME: Only add live functions. 2102 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2103 for (StringRef Name : NameByGUID[VF.GUID]) { 2104 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2105 } 2106 } 2107 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2108 for (StringRef Name : NameByGUID[VF.GUID]) { 2109 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2110 } 2111 } 2112 for (const FunctionSummary::ConstVCall &VC : 2113 FS->type_test_assume_const_vcalls()) { 2114 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2115 CallSlots[{Name, VC.VFunc.Offset}] 2116 .ConstCSInfo[VC.Args] 2117 .addSummaryTypeTestAssumeUser(FS); 2118 } 2119 } 2120 for (const FunctionSummary::ConstVCall &VC : 2121 FS->type_checked_load_const_vcalls()) { 2122 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2123 CallSlots[{Name, VC.VFunc.Offset}] 2124 .ConstCSInfo[VC.Args] 2125 .addSummaryTypeCheckedLoadUser(FS); 2126 } 2127 } 2128 } 2129 } 2130 2131 std::set<ValueInfo> DevirtTargets; 2132 // For each (type, offset) pair: 2133 for (auto &S : CallSlots) { 2134 // Search each of the members of the type identifier for the virtual 2135 // function implementation at offset S.first.ByteOffset, and add to 2136 // TargetsForSlot. 2137 std::vector<ValueInfo> TargetsForSlot; 2138 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2139 assert(TidSummary); 2140 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2141 S.first.ByteOffset)) { 2142 WholeProgramDevirtResolution *Res = 2143 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2144 .WPDRes[S.first.ByteOffset]; 2145 2146 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2147 DevirtTargets)) 2148 continue; 2149 } 2150 } 2151 2152 // Optionally have the thin link print message for each devirtualized 2153 // function. 2154 if (PrintSummaryDevirt) 2155 for (const auto &DT : DevirtTargets) 2156 errs() << "Devirtualized call to " << DT << "\n"; 2157 2158 return; 2159 } 2160