1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AliasAnalysis.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Errc.h"
91 #include "llvm/Support/Error.h"
92 #include "llvm/Support/FileSystem.h"
93 #include "llvm/Support/GlobPattern.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
98 #include <algorithm>
99 #include <cstddef>
100 #include <map>
101 #include <set>
102 #include <string>
103 
104 using namespace llvm;
105 using namespace wholeprogramdevirt;
106 
107 #define DEBUG_TYPE "wholeprogramdevirt"
108 
109 static cl::opt<PassSummaryAction> ClSummaryAction(
110     "wholeprogramdevirt-summary-action",
111     cl::desc("What to do with the summary when running this pass"),
112     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
113                clEnumValN(PassSummaryAction::Import, "import",
114                           "Import typeid resolutions from summary and globals"),
115                clEnumValN(PassSummaryAction::Export, "export",
116                           "Export typeid resolutions to summary and globals")),
117     cl::Hidden);
118 
119 static cl::opt<std::string> ClReadSummary(
120     "wholeprogramdevirt-read-summary",
121     cl::desc(
122         "Read summary from given bitcode or YAML file before running pass"),
123     cl::Hidden);
124 
125 static cl::opt<std::string> ClWriteSummary(
126     "wholeprogramdevirt-write-summary",
127     cl::desc("Write summary to given bitcode or YAML file after running pass. "
128              "Output file format is deduced from extension: *.bc means writing "
129              "bitcode, otherwise YAML"),
130     cl::Hidden);
131 
132 static cl::opt<unsigned>
133     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
134                 cl::init(10), cl::ZeroOrMore,
135                 cl::desc("Maximum number of call targets per "
136                          "call site to enable branch funnels"));
137 
138 static cl::opt<bool>
139     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
140                        cl::init(false), cl::ZeroOrMore,
141                        cl::desc("Print index-based devirtualization messages"));
142 
143 /// Provide a way to force enable whole program visibility in tests.
144 /// This is needed to support legacy tests that don't contain
145 /// !vcall_visibility metadata (the mere presense of type tests
146 /// previously implied hidden visibility).
147 cl::opt<bool>
148     WholeProgramVisibility("whole-program-visibility", cl::init(false),
149                            cl::Hidden, cl::ZeroOrMore,
150                            cl::desc("Enable whole program visibility"));
151 
152 /// Provide a way to force disable whole program for debugging or workarounds,
153 /// when enabled via the linker.
154 cl::opt<bool> DisableWholeProgramVisibility(
155     "disable-whole-program-visibility", cl::init(false), cl::Hidden,
156     cl::ZeroOrMore,
157     cl::desc("Disable whole program visibility (overrides enabling options)"));
158 
159 /// Provide way to prevent certain function from being devirtualized
160 cl::list<std::string>
161     SkipFunctionNames("wholeprogramdevirt-skip",
162                       cl::desc("Prevent function(s) from being devirtualized"),
163                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
164 
165 namespace {
166 struct PatternList {
167   std::vector<GlobPattern> Patterns;
168   template <class T> void init(const T &StringList) {
169     for (const auto &S : StringList)
170       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
171         Patterns.push_back(std::move(*Pat));
172   }
173   bool match(StringRef S) {
174     for (const GlobPattern &P : Patterns)
175       if (P.match(S))
176         return true;
177     return false;
178   }
179 };
180 } // namespace
181 
182 // Find the minimum offset that we may store a value of size Size bits at. If
183 // IsAfter is set, look for an offset before the object, otherwise look for an
184 // offset after the object.
185 uint64_t
186 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
187                                      bool IsAfter, uint64_t Size) {
188   // Find a minimum offset taking into account only vtable sizes.
189   uint64_t MinByte = 0;
190   for (const VirtualCallTarget &Target : Targets) {
191     if (IsAfter)
192       MinByte = std::max(MinByte, Target.minAfterBytes());
193     else
194       MinByte = std::max(MinByte, Target.minBeforeBytes());
195   }
196 
197   // Build a vector of arrays of bytes covering, for each target, a slice of the
198   // used region (see AccumBitVector::BytesUsed in
199   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
200   // this aligns the used regions to start at MinByte.
201   //
202   // In this example, A, B and C are vtables, # is a byte already allocated for
203   // a virtual function pointer, AAAA... (etc.) are the used regions for the
204   // vtables and Offset(X) is the value computed for the Offset variable below
205   // for X.
206   //
207   //                    Offset(A)
208   //                    |       |
209   //                            |MinByte
210   // A: ################AAAAAAAA|AAAAAAAA
211   // B: ########BBBBBBBBBBBBBBBB|BBBB
212   // C: ########################|CCCCCCCCCCCCCCCC
213   //            |   Offset(B)   |
214   //
215   // This code produces the slices of A, B and C that appear after the divider
216   // at MinByte.
217   std::vector<ArrayRef<uint8_t>> Used;
218   for (const VirtualCallTarget &Target : Targets) {
219     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
220                                        : Target.TM->Bits->Before.BytesUsed;
221     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
222                               : MinByte - Target.minBeforeBytes();
223 
224     // Disregard used regions that are smaller than Offset. These are
225     // effectively all-free regions that do not need to be checked.
226     if (VTUsed.size() > Offset)
227       Used.push_back(VTUsed.slice(Offset));
228   }
229 
230   if (Size == 1) {
231     // Find a free bit in each member of Used.
232     for (unsigned I = 0;; ++I) {
233       uint8_t BitsUsed = 0;
234       for (auto &&B : Used)
235         if (I < B.size())
236           BitsUsed |= B[I];
237       if (BitsUsed != 0xff)
238         return (MinByte + I) * 8 +
239                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
240     }
241   } else {
242     // Find a free (Size/8) byte region in each member of Used.
243     // FIXME: see if alignment helps.
244     for (unsigned I = 0;; ++I) {
245       for (auto &&B : Used) {
246         unsigned Byte = 0;
247         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
248           if (B[I + Byte])
249             goto NextI;
250           ++Byte;
251         }
252       }
253       return (MinByte + I) * 8;
254     NextI:;
255     }
256   }
257 }
258 
259 void wholeprogramdevirt::setBeforeReturnValues(
260     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
261     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
262   if (BitWidth == 1)
263     OffsetByte = -(AllocBefore / 8 + 1);
264   else
265     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
266   OffsetBit = AllocBefore % 8;
267 
268   for (VirtualCallTarget &Target : Targets) {
269     if (BitWidth == 1)
270       Target.setBeforeBit(AllocBefore);
271     else
272       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
273   }
274 }
275 
276 void wholeprogramdevirt::setAfterReturnValues(
277     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
278     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
279   if (BitWidth == 1)
280     OffsetByte = AllocAfter / 8;
281   else
282     OffsetByte = (AllocAfter + 7) / 8;
283   OffsetBit = AllocAfter % 8;
284 
285   for (VirtualCallTarget &Target : Targets) {
286     if (BitWidth == 1)
287       Target.setAfterBit(AllocAfter);
288     else
289       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
290   }
291 }
292 
293 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
294     : Fn(Fn), TM(TM),
295       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
296 
297 namespace {
298 
299 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
300 // tables, and the ByteOffset is the offset in bytes from the address point to
301 // the virtual function pointer.
302 struct VTableSlot {
303   Metadata *TypeID;
304   uint64_t ByteOffset;
305 };
306 
307 } // end anonymous namespace
308 
309 namespace llvm {
310 
311 template <> struct DenseMapInfo<VTableSlot> {
312   static VTableSlot getEmptyKey() {
313     return {DenseMapInfo<Metadata *>::getEmptyKey(),
314             DenseMapInfo<uint64_t>::getEmptyKey()};
315   }
316   static VTableSlot getTombstoneKey() {
317     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
318             DenseMapInfo<uint64_t>::getTombstoneKey()};
319   }
320   static unsigned getHashValue(const VTableSlot &I) {
321     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
322            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
323   }
324   static bool isEqual(const VTableSlot &LHS,
325                       const VTableSlot &RHS) {
326     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
327   }
328 };
329 
330 template <> struct DenseMapInfo<VTableSlotSummary> {
331   static VTableSlotSummary getEmptyKey() {
332     return {DenseMapInfo<StringRef>::getEmptyKey(),
333             DenseMapInfo<uint64_t>::getEmptyKey()};
334   }
335   static VTableSlotSummary getTombstoneKey() {
336     return {DenseMapInfo<StringRef>::getTombstoneKey(),
337             DenseMapInfo<uint64_t>::getTombstoneKey()};
338   }
339   static unsigned getHashValue(const VTableSlotSummary &I) {
340     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
341            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
342   }
343   static bool isEqual(const VTableSlotSummary &LHS,
344                       const VTableSlotSummary &RHS) {
345     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
346   }
347 };
348 
349 } // end namespace llvm
350 
351 namespace {
352 
353 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
354 // the indirect virtual call.
355 struct VirtualCallSite {
356   Value *VTable = nullptr;
357   CallBase &CB;
358 
359   // If non-null, this field points to the associated unsafe use count stored in
360   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
361   // of that field for details.
362   unsigned *NumUnsafeUses = nullptr;
363 
364   void
365   emitRemark(const StringRef OptName, const StringRef TargetName,
366              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
367     Function *F = CB.getCaller();
368     DebugLoc DLoc = CB.getDebugLoc();
369     BasicBlock *Block = CB.getParent();
370 
371     using namespace ore;
372     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
373                       << NV("Optimization", OptName)
374                       << ": devirtualized a call to "
375                       << NV("FunctionName", TargetName));
376   }
377 
378   void replaceAndErase(
379       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
380       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
381       Value *New) {
382     if (RemarksEnabled)
383       emitRemark(OptName, TargetName, OREGetter);
384     CB.replaceAllUsesWith(New);
385     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
386       BranchInst::Create(II->getNormalDest(), &CB);
387       II->getUnwindDest()->removePredecessor(II->getParent());
388     }
389     CB.eraseFromParent();
390     // This use is no longer unsafe.
391     if (NumUnsafeUses)
392       --*NumUnsafeUses;
393   }
394 };
395 
396 // Call site information collected for a specific VTableSlot and possibly a list
397 // of constant integer arguments. The grouping by arguments is handled by the
398 // VTableSlotInfo class.
399 struct CallSiteInfo {
400   /// The set of call sites for this slot. Used during regular LTO and the
401   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
402   /// call sites that appear in the merged module itself); in each of these
403   /// cases we are directly operating on the call sites at the IR level.
404   std::vector<VirtualCallSite> CallSites;
405 
406   /// Whether all call sites represented by this CallSiteInfo, including those
407   /// in summaries, have been devirtualized. This starts off as true because a
408   /// default constructed CallSiteInfo represents no call sites.
409   bool AllCallSitesDevirted = true;
410 
411   // These fields are used during the export phase of ThinLTO and reflect
412   // information collected from function summaries.
413 
414   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
415   /// this slot.
416   bool SummaryHasTypeTestAssumeUsers = false;
417 
418   /// CFI-specific: a vector containing the list of function summaries that use
419   /// the llvm.type.checked.load intrinsic and therefore will require
420   /// resolutions for llvm.type.test in order to implement CFI checks if
421   /// devirtualization was unsuccessful. If devirtualization was successful, the
422   /// pass will clear this vector by calling markDevirt(). If at the end of the
423   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
424   /// to each of the function summaries in the vector.
425   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
426   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
427 
428   bool isExported() const {
429     return SummaryHasTypeTestAssumeUsers ||
430            !SummaryTypeCheckedLoadUsers.empty();
431   }
432 
433   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
434     SummaryTypeCheckedLoadUsers.push_back(FS);
435     AllCallSitesDevirted = false;
436   }
437 
438   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
439     SummaryTypeTestAssumeUsers.push_back(FS);
440     SummaryHasTypeTestAssumeUsers = true;
441     AllCallSitesDevirted = false;
442   }
443 
444   void markDevirt() {
445     AllCallSitesDevirted = true;
446 
447     // As explained in the comment for SummaryTypeCheckedLoadUsers.
448     SummaryTypeCheckedLoadUsers.clear();
449   }
450 };
451 
452 // Call site information collected for a specific VTableSlot.
453 struct VTableSlotInfo {
454   // The set of call sites which do not have all constant integer arguments
455   // (excluding "this").
456   CallSiteInfo CSInfo;
457 
458   // The set of call sites with all constant integer arguments (excluding
459   // "this"), grouped by argument list.
460   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
461 
462   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
463 
464 private:
465   CallSiteInfo &findCallSiteInfo(CallBase &CB);
466 };
467 
468 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
469   std::vector<uint64_t> Args;
470   auto *CBType = dyn_cast<IntegerType>(CB.getType());
471   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
472     return CSInfo;
473   for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) {
474     auto *CI = dyn_cast<ConstantInt>(Arg);
475     if (!CI || CI->getBitWidth() > 64)
476       return CSInfo;
477     Args.push_back(CI->getZExtValue());
478   }
479   return ConstCSInfo[Args];
480 }
481 
482 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
483                                  unsigned *NumUnsafeUses) {
484   auto &CSI = findCallSiteInfo(CB);
485   CSI.AllCallSitesDevirted = false;
486   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
487 }
488 
489 struct DevirtModule {
490   Module &M;
491   function_ref<AAResults &(Function &)> AARGetter;
492   function_ref<DominatorTree &(Function &)> LookupDomTree;
493 
494   ModuleSummaryIndex *ExportSummary;
495   const ModuleSummaryIndex *ImportSummary;
496 
497   IntegerType *Int8Ty;
498   PointerType *Int8PtrTy;
499   IntegerType *Int32Ty;
500   IntegerType *Int64Ty;
501   IntegerType *IntPtrTy;
502   /// Sizeless array type, used for imported vtables. This provides a signal
503   /// to analyzers that these imports may alias, as they do for example
504   /// when multiple unique return values occur in the same vtable.
505   ArrayType *Int8Arr0Ty;
506 
507   bool RemarksEnabled;
508   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
509 
510   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
511 
512   // This map keeps track of the number of "unsafe" uses of a loaded function
513   // pointer. The key is the associated llvm.type.test intrinsic call generated
514   // by this pass. An unsafe use is one that calls the loaded function pointer
515   // directly. Every time we eliminate an unsafe use (for example, by
516   // devirtualizing it or by applying virtual constant propagation), we
517   // decrement the value stored in this map. If a value reaches zero, we can
518   // eliminate the type check by RAUWing the associated llvm.type.test call with
519   // true.
520   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
521   PatternList FunctionsToSkip;
522 
523   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
524                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
525                function_ref<DominatorTree &(Function &)> LookupDomTree,
526                ModuleSummaryIndex *ExportSummary,
527                const ModuleSummaryIndex *ImportSummary)
528       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
529         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
530         Int8Ty(Type::getInt8Ty(M.getContext())),
531         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
532         Int32Ty(Type::getInt32Ty(M.getContext())),
533         Int64Ty(Type::getInt64Ty(M.getContext())),
534         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
535         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
536         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
537     assert(!(ExportSummary && ImportSummary));
538     FunctionsToSkip.init(SkipFunctionNames);
539   }
540 
541   bool areRemarksEnabled();
542 
543   void scanTypeTestUsers(Function *TypeTestFunc);
544   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
545 
546   void buildTypeIdentifierMap(
547       std::vector<VTableBits> &Bits,
548       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
549   bool
550   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
551                             const std::set<TypeMemberInfo> &TypeMemberInfos,
552                             uint64_t ByteOffset);
553 
554   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
555                              bool &IsExported);
556   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
557                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
558                            VTableSlotInfo &SlotInfo,
559                            WholeProgramDevirtResolution *Res);
560 
561   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
562                               bool &IsExported);
563   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
564                             VTableSlotInfo &SlotInfo,
565                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
566 
567   bool tryEvaluateFunctionsWithArgs(
568       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
569       ArrayRef<uint64_t> Args);
570 
571   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
572                              uint64_t TheRetVal);
573   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
574                            CallSiteInfo &CSInfo,
575                            WholeProgramDevirtResolution::ByArg *Res);
576 
577   // Returns the global symbol name that is used to export information about the
578   // given vtable slot and list of arguments.
579   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
580                             StringRef Name);
581 
582   bool shouldExportConstantsAsAbsoluteSymbols();
583 
584   // This function is called during the export phase to create a symbol
585   // definition containing information about the given vtable slot and list of
586   // arguments.
587   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
588                     Constant *C);
589   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
590                       uint32_t Const, uint32_t &Storage);
591 
592   // This function is called during the import phase to create a reference to
593   // the symbol definition created during the export phase.
594   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
595                          StringRef Name);
596   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
597                            StringRef Name, IntegerType *IntTy,
598                            uint32_t Storage);
599 
600   Constant *getMemberAddr(const TypeMemberInfo *M);
601 
602   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
603                             Constant *UniqueMemberAddr);
604   bool tryUniqueRetValOpt(unsigned BitWidth,
605                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
606                           CallSiteInfo &CSInfo,
607                           WholeProgramDevirtResolution::ByArg *Res,
608                           VTableSlot Slot, ArrayRef<uint64_t> Args);
609 
610   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
611                              Constant *Byte, Constant *Bit);
612   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
613                            VTableSlotInfo &SlotInfo,
614                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
615 
616   void rebuildGlobal(VTableBits &B);
617 
618   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
619   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
620 
621   // If we were able to eliminate all unsafe uses for a type checked load,
622   // eliminate the associated type tests by replacing them with true.
623   void removeRedundantTypeTests();
624 
625   bool run();
626 
627   // Lower the module using the action and summary passed as command line
628   // arguments. For testing purposes only.
629   static bool
630   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
631                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
632                 function_ref<DominatorTree &(Function &)> LookupDomTree);
633 };
634 
635 struct DevirtIndex {
636   ModuleSummaryIndex &ExportSummary;
637   // The set in which to record GUIDs exported from their module by
638   // devirtualization, used by client to ensure they are not internalized.
639   std::set<GlobalValue::GUID> &ExportedGUIDs;
640   // A map in which to record the information necessary to locate the WPD
641   // resolution for local targets in case they are exported by cross module
642   // importing.
643   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
644 
645   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
646 
647   PatternList FunctionsToSkip;
648 
649   DevirtIndex(
650       ModuleSummaryIndex &ExportSummary,
651       std::set<GlobalValue::GUID> &ExportedGUIDs,
652       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
653       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
654         LocalWPDTargetsMap(LocalWPDTargetsMap) {
655     FunctionsToSkip.init(SkipFunctionNames);
656   }
657 
658   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
659                                  const TypeIdCompatibleVtableInfo TIdInfo,
660                                  uint64_t ByteOffset);
661 
662   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
663                            VTableSlotSummary &SlotSummary,
664                            VTableSlotInfo &SlotInfo,
665                            WholeProgramDevirtResolution *Res,
666                            std::set<ValueInfo> &DevirtTargets);
667 
668   void run();
669 };
670 
671 struct WholeProgramDevirt : public ModulePass {
672   static char ID;
673 
674   bool UseCommandLine = false;
675 
676   ModuleSummaryIndex *ExportSummary = nullptr;
677   const ModuleSummaryIndex *ImportSummary = nullptr;
678 
679   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
680     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
681   }
682 
683   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
684                      const ModuleSummaryIndex *ImportSummary)
685       : ModulePass(ID), ExportSummary(ExportSummary),
686         ImportSummary(ImportSummary) {
687     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
688   }
689 
690   bool runOnModule(Module &M) override {
691     if (skipModule(M))
692       return false;
693 
694     // In the new pass manager, we can request the optimization
695     // remark emitter pass on a per-function-basis, which the
696     // OREGetter will do for us.
697     // In the old pass manager, this is harder, so we just build
698     // an optimization remark emitter on the fly, when we need it.
699     std::unique_ptr<OptimizationRemarkEmitter> ORE;
700     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
701       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
702       return *ORE;
703     };
704 
705     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
706       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
707     };
708 
709     if (UseCommandLine)
710       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
711                                          LookupDomTree);
712 
713     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
714                         ExportSummary, ImportSummary)
715         .run();
716   }
717 
718   void getAnalysisUsage(AnalysisUsage &AU) const override {
719     AU.addRequired<AssumptionCacheTracker>();
720     AU.addRequired<TargetLibraryInfoWrapperPass>();
721     AU.addRequired<DominatorTreeWrapperPass>();
722   }
723 };
724 
725 } // end anonymous namespace
726 
727 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
728                       "Whole program devirtualization", false, false)
729 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
730 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
732 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
733                     "Whole program devirtualization", false, false)
734 char WholeProgramDevirt::ID = 0;
735 
736 ModulePass *
737 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
738                                    const ModuleSummaryIndex *ImportSummary) {
739   return new WholeProgramDevirt(ExportSummary, ImportSummary);
740 }
741 
742 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
743                                               ModuleAnalysisManager &AM) {
744   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
745   auto AARGetter = [&](Function &F) -> AAResults & {
746     return FAM.getResult<AAManager>(F);
747   };
748   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
749     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
750   };
751   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
752     return FAM.getResult<DominatorTreeAnalysis>(F);
753   };
754   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
755                     ImportSummary)
756            .run())
757     return PreservedAnalyses::all();
758   return PreservedAnalyses::none();
759 }
760 
761 // Enable whole program visibility if enabled by client (e.g. linker) or
762 // internal option, and not force disabled.
763 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
764   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
765          !DisableWholeProgramVisibility;
766 }
767 
768 namespace llvm {
769 
770 /// If whole program visibility asserted, then upgrade all public vcall
771 /// visibility metadata on vtable definitions to linkage unit visibility in
772 /// Module IR (for regular or hybrid LTO).
773 void updateVCallVisibilityInModule(Module &M,
774                                    bool WholeProgramVisibilityEnabledInLTO) {
775   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
776     return;
777   for (GlobalVariable &GV : M.globals())
778     // Add linkage unit visibility to any variable with type metadata, which are
779     // the vtable definitions. We won't have an existing vcall_visibility
780     // metadata on vtable definitions with public visibility.
781     if (GV.hasMetadata(LLVMContext::MD_type) &&
782         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
783       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
784 }
785 
786 /// If whole program visibility asserted, then upgrade all public vcall
787 /// visibility metadata on vtable definition summaries to linkage unit
788 /// visibility in Module summary index (for ThinLTO).
789 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
790                                   bool WholeProgramVisibilityEnabledInLTO) {
791   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
792     return;
793   for (auto &P : Index) {
794     for (auto &S : P.second.SummaryList) {
795       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
796       if (!GVar || GVar->vTableFuncs().empty() ||
797           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
798         continue;
799       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
800     }
801   }
802 }
803 
804 void runWholeProgramDevirtOnIndex(
805     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
806     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
807   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
808 }
809 
810 void updateIndexWPDForExports(
811     ModuleSummaryIndex &Summary,
812     function_ref<bool(StringRef, ValueInfo)> isExported,
813     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
814   for (auto &T : LocalWPDTargetsMap) {
815     auto &VI = T.first;
816     // This was enforced earlier during trySingleImplDevirt.
817     assert(VI.getSummaryList().size() == 1 &&
818            "Devirt of local target has more than one copy");
819     auto &S = VI.getSummaryList()[0];
820     if (!isExported(S->modulePath(), VI))
821       continue;
822 
823     // It's been exported by a cross module import.
824     for (auto &SlotSummary : T.second) {
825       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
826       assert(TIdSum);
827       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
828       assert(WPDRes != TIdSum->WPDRes.end());
829       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
830           WPDRes->second.SingleImplName,
831           Summary.getModuleHash(S->modulePath()));
832     }
833   }
834 }
835 
836 } // end namespace llvm
837 
838 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
839   // Check that summary index contains regular LTO module when performing
840   // export to prevent occasional use of index from pure ThinLTO compilation
841   // (-fno-split-lto-module). This kind of summary index is passed to
842   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
843   const auto &ModPaths = Summary->modulePaths();
844   if (ClSummaryAction != PassSummaryAction::Import &&
845       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
846           ModPaths.end())
847     return createStringError(
848         errc::invalid_argument,
849         "combined summary should contain Regular LTO module");
850   return ErrorSuccess();
851 }
852 
853 bool DevirtModule::runForTesting(
854     Module &M, function_ref<AAResults &(Function &)> AARGetter,
855     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
856     function_ref<DominatorTree &(Function &)> LookupDomTree) {
857   std::unique_ptr<ModuleSummaryIndex> Summary =
858       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
859 
860   // Handle the command-line summary arguments. This code is for testing
861   // purposes only, so we handle errors directly.
862   if (!ClReadSummary.empty()) {
863     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
864                           ": ");
865     auto ReadSummaryFile =
866         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
867     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
868             getModuleSummaryIndex(*ReadSummaryFile)) {
869       Summary = std::move(*SummaryOrErr);
870       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
871     } else {
872       // Try YAML if we've failed with bitcode.
873       consumeError(SummaryOrErr.takeError());
874       yaml::Input In(ReadSummaryFile->getBuffer());
875       In >> *Summary;
876       ExitOnErr(errorCodeToError(In.error()));
877     }
878   }
879 
880   bool Changed =
881       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
882                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
883                                                                 : nullptr,
884                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
885                                                                 : nullptr)
886           .run();
887 
888   if (!ClWriteSummary.empty()) {
889     ExitOnError ExitOnErr(
890         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
891     std::error_code EC;
892     if (StringRef(ClWriteSummary).endswith(".bc")) {
893       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
894       ExitOnErr(errorCodeToError(EC));
895       WriteIndexToFile(*Summary, OS);
896     } else {
897       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
898       ExitOnErr(errorCodeToError(EC));
899       yaml::Output Out(OS);
900       Out << *Summary;
901     }
902   }
903 
904   return Changed;
905 }
906 
907 void DevirtModule::buildTypeIdentifierMap(
908     std::vector<VTableBits> &Bits,
909     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
910   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
911   Bits.reserve(M.getGlobalList().size());
912   SmallVector<MDNode *, 2> Types;
913   for (GlobalVariable &GV : M.globals()) {
914     Types.clear();
915     GV.getMetadata(LLVMContext::MD_type, Types);
916     if (GV.isDeclaration() || Types.empty())
917       continue;
918 
919     VTableBits *&BitsPtr = GVToBits[&GV];
920     if (!BitsPtr) {
921       Bits.emplace_back();
922       Bits.back().GV = &GV;
923       Bits.back().ObjectSize =
924           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
925       BitsPtr = &Bits.back();
926     }
927 
928     for (MDNode *Type : Types) {
929       auto TypeID = Type->getOperand(1).get();
930 
931       uint64_t Offset =
932           cast<ConstantInt>(
933               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
934               ->getZExtValue();
935 
936       TypeIdMap[TypeID].insert({BitsPtr, Offset});
937     }
938   }
939 }
940 
941 bool DevirtModule::tryFindVirtualCallTargets(
942     std::vector<VirtualCallTarget> &TargetsForSlot,
943     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
944   for (const TypeMemberInfo &TM : TypeMemberInfos) {
945     if (!TM.Bits->GV->isConstant())
946       return false;
947 
948     // We cannot perform whole program devirtualization analysis on a vtable
949     // with public LTO visibility.
950     if (TM.Bits->GV->getVCallVisibility() ==
951         GlobalObject::VCallVisibilityPublic)
952       return false;
953 
954     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
955                                        TM.Offset + ByteOffset, M);
956     if (!Ptr)
957       return false;
958 
959     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
960     if (!Fn)
961       return false;
962 
963     if (FunctionsToSkip.match(Fn->getName()))
964       return false;
965 
966     // We can disregard __cxa_pure_virtual as a possible call target, as
967     // calls to pure virtuals are UB.
968     if (Fn->getName() == "__cxa_pure_virtual")
969       continue;
970 
971     TargetsForSlot.push_back({Fn, &TM});
972   }
973 
974   // Give up if we couldn't find any targets.
975   return !TargetsForSlot.empty();
976 }
977 
978 bool DevirtIndex::tryFindVirtualCallTargets(
979     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
980     uint64_t ByteOffset) {
981   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
982     // Find the first non-available_externally linkage vtable initializer.
983     // We can have multiple available_externally, linkonce_odr and weak_odr
984     // vtable initializers, however we want to skip available_externally as they
985     // do not have type metadata attached, and therefore the summary will not
986     // contain any vtable functions. We can also have multiple external
987     // vtable initializers in the case of comdats, which we cannot check here.
988     // The linker should give an error in this case.
989     //
990     // Also, handle the case of same-named local Vtables with the same path
991     // and therefore the same GUID. This can happen if there isn't enough
992     // distinguishing path when compiling the source file. In that case we
993     // conservatively return false early.
994     const GlobalVarSummary *VS = nullptr;
995     bool LocalFound = false;
996     for (auto &S : P.VTableVI.getSummaryList()) {
997       if (GlobalValue::isLocalLinkage(S->linkage())) {
998         if (LocalFound)
999           return false;
1000         LocalFound = true;
1001       }
1002       if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1003         VS = cast<GlobalVarSummary>(S->getBaseObject());
1004         // We cannot perform whole program devirtualization analysis on a vtable
1005         // with public LTO visibility.
1006         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1007           return false;
1008       }
1009     }
1010     if (!VS->isLive())
1011       continue;
1012     for (auto VTP : VS->vTableFuncs()) {
1013       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1014         continue;
1015 
1016       TargetsForSlot.push_back(VTP.FuncVI);
1017     }
1018   }
1019 
1020   // Give up if we couldn't find any targets.
1021   return !TargetsForSlot.empty();
1022 }
1023 
1024 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1025                                          Constant *TheFn, bool &IsExported) {
1026   auto Apply = [&](CallSiteInfo &CSInfo) {
1027     for (auto &&VCallSite : CSInfo.CallSites) {
1028       if (RemarksEnabled)
1029         VCallSite.emitRemark("single-impl",
1030                              TheFn->stripPointerCasts()->getName(), OREGetter);
1031       VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast(
1032           TheFn, VCallSite.CB.getCalledOperand()->getType()));
1033       // This use is no longer unsafe.
1034       if (VCallSite.NumUnsafeUses)
1035         --*VCallSite.NumUnsafeUses;
1036     }
1037     if (CSInfo.isExported())
1038       IsExported = true;
1039     CSInfo.markDevirt();
1040   };
1041   Apply(SlotInfo.CSInfo);
1042   for (auto &P : SlotInfo.ConstCSInfo)
1043     Apply(P.second);
1044 }
1045 
1046 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1047   // We can't add calls if we haven't seen a definition
1048   if (Callee.getSummaryList().empty())
1049     return false;
1050 
1051   // Insert calls into the summary index so that the devirtualized targets
1052   // are eligible for import.
1053   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1054   // to better ensure we have the opportunity to inline them.
1055   bool IsExported = false;
1056   auto &S = Callee.getSummaryList()[0];
1057   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1058   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1059     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1060       FS->addCall({Callee, CI});
1061       IsExported |= S->modulePath() != FS->modulePath();
1062     }
1063     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1064       FS->addCall({Callee, CI});
1065       IsExported |= S->modulePath() != FS->modulePath();
1066     }
1067   };
1068   AddCalls(SlotInfo.CSInfo);
1069   for (auto &P : SlotInfo.ConstCSInfo)
1070     AddCalls(P.second);
1071   return IsExported;
1072 }
1073 
1074 bool DevirtModule::trySingleImplDevirt(
1075     ModuleSummaryIndex *ExportSummary,
1076     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1077     WholeProgramDevirtResolution *Res) {
1078   // See if the program contains a single implementation of this virtual
1079   // function.
1080   Function *TheFn = TargetsForSlot[0].Fn;
1081   for (auto &&Target : TargetsForSlot)
1082     if (TheFn != Target.Fn)
1083       return false;
1084 
1085   // If so, update each call site to call that implementation directly.
1086   if (RemarksEnabled)
1087     TargetsForSlot[0].WasDevirt = true;
1088 
1089   bool IsExported = false;
1090   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1091   if (!IsExported)
1092     return false;
1093 
1094   // If the only implementation has local linkage, we must promote to external
1095   // to make it visible to thin LTO objects. We can only get here during the
1096   // ThinLTO export phase.
1097   if (TheFn->hasLocalLinkage()) {
1098     std::string NewName = (TheFn->getName() + "$merged").str();
1099 
1100     // Since we are renaming the function, any comdats with the same name must
1101     // also be renamed. This is required when targeting COFF, as the comdat name
1102     // must match one of the names of the symbols in the comdat.
1103     if (Comdat *C = TheFn->getComdat()) {
1104       if (C->getName() == TheFn->getName()) {
1105         Comdat *NewC = M.getOrInsertComdat(NewName);
1106         NewC->setSelectionKind(C->getSelectionKind());
1107         for (GlobalObject &GO : M.global_objects())
1108           if (GO.getComdat() == C)
1109             GO.setComdat(NewC);
1110       }
1111     }
1112 
1113     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1114     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1115     TheFn->setName(NewName);
1116   }
1117   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1118     // Any needed promotion of 'TheFn' has already been done during
1119     // LTO unit split, so we can ignore return value of AddCalls.
1120     AddCalls(SlotInfo, TheFnVI);
1121 
1122   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1123   Res->SingleImplName = std::string(TheFn->getName());
1124 
1125   return true;
1126 }
1127 
1128 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1129                                       VTableSlotSummary &SlotSummary,
1130                                       VTableSlotInfo &SlotInfo,
1131                                       WholeProgramDevirtResolution *Res,
1132                                       std::set<ValueInfo> &DevirtTargets) {
1133   // See if the program contains a single implementation of this virtual
1134   // function.
1135   auto TheFn = TargetsForSlot[0];
1136   for (auto &&Target : TargetsForSlot)
1137     if (TheFn != Target)
1138       return false;
1139 
1140   // Don't devirtualize if we don't have target definition.
1141   auto Size = TheFn.getSummaryList().size();
1142   if (!Size)
1143     return false;
1144 
1145   // Don't devirtualize function if we're told to skip it
1146   // in -wholeprogramdevirt-skip.
1147   if (FunctionsToSkip.match(TheFn.name()))
1148     return false;
1149 
1150   // If the summary list contains multiple summaries where at least one is
1151   // a local, give up, as we won't know which (possibly promoted) name to use.
1152   for (auto &S : TheFn.getSummaryList())
1153     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1154       return false;
1155 
1156   // Collect functions devirtualized at least for one call site for stats.
1157   if (PrintSummaryDevirt)
1158     DevirtTargets.insert(TheFn);
1159 
1160   auto &S = TheFn.getSummaryList()[0];
1161   bool IsExported = AddCalls(SlotInfo, TheFn);
1162   if (IsExported)
1163     ExportedGUIDs.insert(TheFn.getGUID());
1164 
1165   // Record in summary for use in devirtualization during the ThinLTO import
1166   // step.
1167   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1168   if (GlobalValue::isLocalLinkage(S->linkage())) {
1169     if (IsExported)
1170       // If target is a local function and we are exporting it by
1171       // devirtualizing a call in another module, we need to record the
1172       // promoted name.
1173       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1174           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1175     else {
1176       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1177       Res->SingleImplName = std::string(TheFn.name());
1178     }
1179   } else
1180     Res->SingleImplName = std::string(TheFn.name());
1181 
1182   // Name will be empty if this thin link driven off of serialized combined
1183   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1184   // legacy LTO API anyway.
1185   assert(!Res->SingleImplName.empty());
1186 
1187   return true;
1188 }
1189 
1190 void DevirtModule::tryICallBranchFunnel(
1191     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1192     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1193   Triple T(M.getTargetTriple());
1194   if (T.getArch() != Triple::x86_64)
1195     return;
1196 
1197   if (TargetsForSlot.size() > ClThreshold)
1198     return;
1199 
1200   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1201   if (!HasNonDevirt)
1202     for (auto &P : SlotInfo.ConstCSInfo)
1203       if (!P.second.AllCallSitesDevirted) {
1204         HasNonDevirt = true;
1205         break;
1206       }
1207 
1208   if (!HasNonDevirt)
1209     return;
1210 
1211   FunctionType *FT =
1212       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1213   Function *JT;
1214   if (isa<MDString>(Slot.TypeID)) {
1215     JT = Function::Create(FT, Function::ExternalLinkage,
1216                           M.getDataLayout().getProgramAddressSpace(),
1217                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1218     JT->setVisibility(GlobalValue::HiddenVisibility);
1219   } else {
1220     JT = Function::Create(FT, Function::InternalLinkage,
1221                           M.getDataLayout().getProgramAddressSpace(),
1222                           "branch_funnel", &M);
1223   }
1224   JT->addAttribute(1, Attribute::Nest);
1225 
1226   std::vector<Value *> JTArgs;
1227   JTArgs.push_back(JT->arg_begin());
1228   for (auto &T : TargetsForSlot) {
1229     JTArgs.push_back(getMemberAddr(T.TM));
1230     JTArgs.push_back(T.Fn);
1231   }
1232 
1233   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1234   Function *Intr =
1235       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1236 
1237   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1238   CI->setTailCallKind(CallInst::TCK_MustTail);
1239   ReturnInst::Create(M.getContext(), nullptr, BB);
1240 
1241   bool IsExported = false;
1242   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1243   if (IsExported)
1244     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1245 }
1246 
1247 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1248                                           Constant *JT, bool &IsExported) {
1249   auto Apply = [&](CallSiteInfo &CSInfo) {
1250     if (CSInfo.isExported())
1251       IsExported = true;
1252     if (CSInfo.AllCallSitesDevirted)
1253       return;
1254     for (auto &&VCallSite : CSInfo.CallSites) {
1255       CallBase &CB = VCallSite.CB;
1256 
1257       // Jump tables are only profitable if the retpoline mitigation is enabled.
1258       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1259       if (FSAttr.hasAttribute(Attribute::None) ||
1260           !FSAttr.getValueAsString().contains("+retpoline"))
1261         continue;
1262 
1263       if (RemarksEnabled)
1264         VCallSite.emitRemark("branch-funnel",
1265                              JT->stripPointerCasts()->getName(), OREGetter);
1266 
1267       // Pass the address of the vtable in the nest register, which is r10 on
1268       // x86_64.
1269       std::vector<Type *> NewArgs;
1270       NewArgs.push_back(Int8PtrTy);
1271       for (Type *T : CB.getFunctionType()->params())
1272         NewArgs.push_back(T);
1273       FunctionType *NewFT =
1274           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1275                             CB.getFunctionType()->isVarArg());
1276       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1277 
1278       IRBuilder<> IRB(&CB);
1279       std::vector<Value *> Args;
1280       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1281       Args.insert(Args.end(), CB.arg_begin(), CB.arg_end());
1282 
1283       CallBase *NewCS = nullptr;
1284       if (isa<CallInst>(CB))
1285         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1286       else
1287         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1288                                  cast<InvokeInst>(CB).getNormalDest(),
1289                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1290       NewCS->setCallingConv(CB.getCallingConv());
1291 
1292       AttributeList Attrs = CB.getAttributes();
1293       std::vector<AttributeSet> NewArgAttrs;
1294       NewArgAttrs.push_back(AttributeSet::get(
1295           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1296                               M.getContext(), Attribute::Nest)}));
1297       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1298         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1299       NewCS->setAttributes(
1300           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1301                              Attrs.getRetAttributes(), NewArgAttrs));
1302 
1303       CB.replaceAllUsesWith(NewCS);
1304       CB.eraseFromParent();
1305 
1306       // This use is no longer unsafe.
1307       if (VCallSite.NumUnsafeUses)
1308         --*VCallSite.NumUnsafeUses;
1309     }
1310     // Don't mark as devirtualized because there may be callers compiled without
1311     // retpoline mitigation, which would mean that they are lowered to
1312     // llvm.type.test and therefore require an llvm.type.test resolution for the
1313     // type identifier.
1314   };
1315   Apply(SlotInfo.CSInfo);
1316   for (auto &P : SlotInfo.ConstCSInfo)
1317     Apply(P.second);
1318 }
1319 
1320 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1321     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1322     ArrayRef<uint64_t> Args) {
1323   // Evaluate each function and store the result in each target's RetVal
1324   // field.
1325   for (VirtualCallTarget &Target : TargetsForSlot) {
1326     if (Target.Fn->arg_size() != Args.size() + 1)
1327       return false;
1328 
1329     Evaluator Eval(M.getDataLayout(), nullptr);
1330     SmallVector<Constant *, 2> EvalArgs;
1331     EvalArgs.push_back(
1332         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1333     for (unsigned I = 0; I != Args.size(); ++I) {
1334       auto *ArgTy = dyn_cast<IntegerType>(
1335           Target.Fn->getFunctionType()->getParamType(I + 1));
1336       if (!ArgTy)
1337         return false;
1338       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1339     }
1340 
1341     Constant *RetVal;
1342     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1343         !isa<ConstantInt>(RetVal))
1344       return false;
1345     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1346   }
1347   return true;
1348 }
1349 
1350 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1351                                          uint64_t TheRetVal) {
1352   for (auto Call : CSInfo.CallSites)
1353     Call.replaceAndErase(
1354         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1355         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1356   CSInfo.markDevirt();
1357 }
1358 
1359 bool DevirtModule::tryUniformRetValOpt(
1360     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1361     WholeProgramDevirtResolution::ByArg *Res) {
1362   // Uniform return value optimization. If all functions return the same
1363   // constant, replace all calls with that constant.
1364   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1365   for (const VirtualCallTarget &Target : TargetsForSlot)
1366     if (Target.RetVal != TheRetVal)
1367       return false;
1368 
1369   if (CSInfo.isExported()) {
1370     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1371     Res->Info = TheRetVal;
1372   }
1373 
1374   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1375   if (RemarksEnabled)
1376     for (auto &&Target : TargetsForSlot)
1377       Target.WasDevirt = true;
1378   return true;
1379 }
1380 
1381 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1382                                         ArrayRef<uint64_t> Args,
1383                                         StringRef Name) {
1384   std::string FullName = "__typeid_";
1385   raw_string_ostream OS(FullName);
1386   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1387   for (uint64_t Arg : Args)
1388     OS << '_' << Arg;
1389   OS << '_' << Name;
1390   return OS.str();
1391 }
1392 
1393 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1394   Triple T(M.getTargetTriple());
1395   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1396 }
1397 
1398 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1399                                 StringRef Name, Constant *C) {
1400   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1401                                         getGlobalName(Slot, Args, Name), C, &M);
1402   GA->setVisibility(GlobalValue::HiddenVisibility);
1403 }
1404 
1405 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1406                                   StringRef Name, uint32_t Const,
1407                                   uint32_t &Storage) {
1408   if (shouldExportConstantsAsAbsoluteSymbols()) {
1409     exportGlobal(
1410         Slot, Args, Name,
1411         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1412     return;
1413   }
1414 
1415   Storage = Const;
1416 }
1417 
1418 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1419                                      StringRef Name) {
1420   Constant *C =
1421       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1422   auto *GV = dyn_cast<GlobalVariable>(C);
1423   if (GV)
1424     GV->setVisibility(GlobalValue::HiddenVisibility);
1425   return C;
1426 }
1427 
1428 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1429                                        StringRef Name, IntegerType *IntTy,
1430                                        uint32_t Storage) {
1431   if (!shouldExportConstantsAsAbsoluteSymbols())
1432     return ConstantInt::get(IntTy, Storage);
1433 
1434   Constant *C = importGlobal(Slot, Args, Name);
1435   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1436   C = ConstantExpr::getPtrToInt(C, IntTy);
1437 
1438   // We only need to set metadata if the global is newly created, in which
1439   // case it would not have hidden visibility.
1440   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1441     return C;
1442 
1443   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1444     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1445     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1446     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1447                     MDNode::get(M.getContext(), {MinC, MaxC}));
1448   };
1449   unsigned AbsWidth = IntTy->getBitWidth();
1450   if (AbsWidth == IntPtrTy->getBitWidth())
1451     SetAbsRange(~0ull, ~0ull); // Full set.
1452   else
1453     SetAbsRange(0, 1ull << AbsWidth);
1454   return C;
1455 }
1456 
1457 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1458                                         bool IsOne,
1459                                         Constant *UniqueMemberAddr) {
1460   for (auto &&Call : CSInfo.CallSites) {
1461     IRBuilder<> B(&Call.CB);
1462     Value *Cmp =
1463         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1464                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1465     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1466     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1467                          Cmp);
1468   }
1469   CSInfo.markDevirt();
1470 }
1471 
1472 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1473   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1474   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1475                                         ConstantInt::get(Int64Ty, M->Offset));
1476 }
1477 
1478 bool DevirtModule::tryUniqueRetValOpt(
1479     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1480     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1481     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1482   // IsOne controls whether we look for a 0 or a 1.
1483   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1484     const TypeMemberInfo *UniqueMember = nullptr;
1485     for (const VirtualCallTarget &Target : TargetsForSlot) {
1486       if (Target.RetVal == (IsOne ? 1 : 0)) {
1487         if (UniqueMember)
1488           return false;
1489         UniqueMember = Target.TM;
1490       }
1491     }
1492 
1493     // We should have found a unique member or bailed out by now. We already
1494     // checked for a uniform return value in tryUniformRetValOpt.
1495     assert(UniqueMember);
1496 
1497     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1498     if (CSInfo.isExported()) {
1499       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1500       Res->Info = IsOne;
1501 
1502       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1503     }
1504 
1505     // Replace each call with the comparison.
1506     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1507                          UniqueMemberAddr);
1508 
1509     // Update devirtualization statistics for targets.
1510     if (RemarksEnabled)
1511       for (auto &&Target : TargetsForSlot)
1512         Target.WasDevirt = true;
1513 
1514     return true;
1515   };
1516 
1517   if (BitWidth == 1) {
1518     if (tryUniqueRetValOptFor(true))
1519       return true;
1520     if (tryUniqueRetValOptFor(false))
1521       return true;
1522   }
1523   return false;
1524 }
1525 
1526 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1527                                          Constant *Byte, Constant *Bit) {
1528   for (auto Call : CSInfo.CallSites) {
1529     auto *RetType = cast<IntegerType>(Call.CB.getType());
1530     IRBuilder<> B(&Call.CB);
1531     Value *Addr =
1532         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1533     if (RetType->getBitWidth() == 1) {
1534       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1535       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1536       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1537       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1538                            OREGetter, IsBitSet);
1539     } else {
1540       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1541       Value *Val = B.CreateLoad(RetType, ValAddr);
1542       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1543                            OREGetter, Val);
1544     }
1545   }
1546   CSInfo.markDevirt();
1547 }
1548 
1549 bool DevirtModule::tryVirtualConstProp(
1550     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1551     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1552   // This only works if the function returns an integer.
1553   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1554   if (!RetType)
1555     return false;
1556   unsigned BitWidth = RetType->getBitWidth();
1557   if (BitWidth > 64)
1558     return false;
1559 
1560   // Make sure that each function is defined, does not access memory, takes at
1561   // least one argument, does not use its first argument (which we assume is
1562   // 'this'), and has the same return type.
1563   //
1564   // Note that we test whether this copy of the function is readnone, rather
1565   // than testing function attributes, which must hold for any copy of the
1566   // function, even a less optimized version substituted at link time. This is
1567   // sound because the virtual constant propagation optimizations effectively
1568   // inline all implementations of the virtual function into each call site,
1569   // rather than using function attributes to perform local optimization.
1570   for (VirtualCallTarget &Target : TargetsForSlot) {
1571     if (Target.Fn->isDeclaration() ||
1572         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1573             MAK_ReadNone ||
1574         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1575         Target.Fn->getReturnType() != RetType)
1576       return false;
1577   }
1578 
1579   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1580     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1581       continue;
1582 
1583     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1584     if (Res)
1585       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1586 
1587     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1588       continue;
1589 
1590     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1591                            ResByArg, Slot, CSByConstantArg.first))
1592       continue;
1593 
1594     // Find an allocation offset in bits in all vtables associated with the
1595     // type.
1596     uint64_t AllocBefore =
1597         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1598     uint64_t AllocAfter =
1599         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1600 
1601     // Calculate the total amount of padding needed to store a value at both
1602     // ends of the object.
1603     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1604     for (auto &&Target : TargetsForSlot) {
1605       TotalPaddingBefore += std::max<int64_t>(
1606           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1607       TotalPaddingAfter += std::max<int64_t>(
1608           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1609     }
1610 
1611     // If the amount of padding is too large, give up.
1612     // FIXME: do something smarter here.
1613     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1614       continue;
1615 
1616     // Calculate the offset to the value as a (possibly negative) byte offset
1617     // and (if applicable) a bit offset, and store the values in the targets.
1618     int64_t OffsetByte;
1619     uint64_t OffsetBit;
1620     if (TotalPaddingBefore <= TotalPaddingAfter)
1621       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1622                             OffsetBit);
1623     else
1624       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1625                            OffsetBit);
1626 
1627     if (RemarksEnabled)
1628       for (auto &&Target : TargetsForSlot)
1629         Target.WasDevirt = true;
1630 
1631 
1632     if (CSByConstantArg.second.isExported()) {
1633       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1634       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1635                      ResByArg->Byte);
1636       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1637                      ResByArg->Bit);
1638     }
1639 
1640     // Rewrite each call to a load from OffsetByte/OffsetBit.
1641     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1642     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1643     applyVirtualConstProp(CSByConstantArg.second,
1644                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1645   }
1646   return true;
1647 }
1648 
1649 void DevirtModule::rebuildGlobal(VTableBits &B) {
1650   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1651     return;
1652 
1653   // Align the before byte array to the global's minimum alignment so that we
1654   // don't break any alignment requirements on the global.
1655   MaybeAlign Alignment(B.GV->getAlignment());
1656   if (!Alignment)
1657     Alignment =
1658         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1659   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1660 
1661   // Before was stored in reverse order; flip it now.
1662   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1663     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1664 
1665   // Build an anonymous global containing the before bytes, followed by the
1666   // original initializer, followed by the after bytes.
1667   auto NewInit = ConstantStruct::getAnon(
1668       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1669        B.GV->getInitializer(),
1670        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1671   auto NewGV =
1672       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1673                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1674   NewGV->setSection(B.GV->getSection());
1675   NewGV->setComdat(B.GV->getComdat());
1676   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1677 
1678   // Copy the original vtable's metadata to the anonymous global, adjusting
1679   // offsets as required.
1680   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1681 
1682   // Build an alias named after the original global, pointing at the second
1683   // element (the original initializer).
1684   auto Alias = GlobalAlias::create(
1685       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1686       ConstantExpr::getGetElementPtr(
1687           NewInit->getType(), NewGV,
1688           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1689                                ConstantInt::get(Int32Ty, 1)}),
1690       &M);
1691   Alias->setVisibility(B.GV->getVisibility());
1692   Alias->takeName(B.GV);
1693 
1694   B.GV->replaceAllUsesWith(Alias);
1695   B.GV->eraseFromParent();
1696 }
1697 
1698 bool DevirtModule::areRemarksEnabled() {
1699   const auto &FL = M.getFunctionList();
1700   for (const Function &Fn : FL) {
1701     const auto &BBL = Fn.getBasicBlockList();
1702     if (BBL.empty())
1703       continue;
1704     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1705     return DI.isEnabled();
1706   }
1707   return false;
1708 }
1709 
1710 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1711   // Find all virtual calls via a virtual table pointer %p under an assumption
1712   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1713   // points to a member of the type identifier %md. Group calls by (type ID,
1714   // offset) pair (effectively the identity of the virtual function) and store
1715   // to CallSlots.
1716   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1717        I != E;) {
1718     auto CI = dyn_cast<CallInst>(I->getUser());
1719     ++I;
1720     if (!CI)
1721       continue;
1722 
1723     // Search for virtual calls based on %p and add them to DevirtCalls.
1724     SmallVector<DevirtCallSite, 1> DevirtCalls;
1725     SmallVector<CallInst *, 1> Assumes;
1726     auto &DT = LookupDomTree(*CI->getFunction());
1727     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1728 
1729     // If we found any, add them to CallSlots.
1730     if (!Assumes.empty()) {
1731       Metadata *TypeId =
1732           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1733       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1734       for (DevirtCallSite Call : DevirtCalls)
1735         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1736     }
1737 
1738     // We no longer need the assumes or the type test.
1739     for (auto Assume : Assumes)
1740       Assume->eraseFromParent();
1741     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1742     // may use the vtable argument later.
1743     if (CI->use_empty())
1744       CI->eraseFromParent();
1745   }
1746 }
1747 
1748 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1749   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1750 
1751   for (auto I = TypeCheckedLoadFunc->use_begin(),
1752             E = TypeCheckedLoadFunc->use_end();
1753        I != E;) {
1754     auto CI = dyn_cast<CallInst>(I->getUser());
1755     ++I;
1756     if (!CI)
1757       continue;
1758 
1759     Value *Ptr = CI->getArgOperand(0);
1760     Value *Offset = CI->getArgOperand(1);
1761     Value *TypeIdValue = CI->getArgOperand(2);
1762     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1763 
1764     SmallVector<DevirtCallSite, 1> DevirtCalls;
1765     SmallVector<Instruction *, 1> LoadedPtrs;
1766     SmallVector<Instruction *, 1> Preds;
1767     bool HasNonCallUses = false;
1768     auto &DT = LookupDomTree(*CI->getFunction());
1769     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1770                                                HasNonCallUses, CI, DT);
1771 
1772     // Start by generating "pessimistic" code that explicitly loads the function
1773     // pointer from the vtable and performs the type check. If possible, we will
1774     // eliminate the load and the type check later.
1775 
1776     // If possible, only generate the load at the point where it is used.
1777     // This helps avoid unnecessary spills.
1778     IRBuilder<> LoadB(
1779         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1780     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1781     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1782     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1783 
1784     for (Instruction *LoadedPtr : LoadedPtrs) {
1785       LoadedPtr->replaceAllUsesWith(LoadedValue);
1786       LoadedPtr->eraseFromParent();
1787     }
1788 
1789     // Likewise for the type test.
1790     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1791     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1792 
1793     for (Instruction *Pred : Preds) {
1794       Pred->replaceAllUsesWith(TypeTestCall);
1795       Pred->eraseFromParent();
1796     }
1797 
1798     // We have already erased any extractvalue instructions that refer to the
1799     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1800     // (although this is unlikely). In that case, explicitly build a pair and
1801     // RAUW it.
1802     if (!CI->use_empty()) {
1803       Value *Pair = UndefValue::get(CI->getType());
1804       IRBuilder<> B(CI);
1805       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1806       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1807       CI->replaceAllUsesWith(Pair);
1808     }
1809 
1810     // The number of unsafe uses is initially the number of uses.
1811     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1812     NumUnsafeUses = DevirtCalls.size();
1813 
1814     // If the function pointer has a non-call user, we cannot eliminate the type
1815     // check, as one of those users may eventually call the pointer. Increment
1816     // the unsafe use count to make sure it cannot reach zero.
1817     if (HasNonCallUses)
1818       ++NumUnsafeUses;
1819     for (DevirtCallSite Call : DevirtCalls) {
1820       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
1821                                                    &NumUnsafeUses);
1822     }
1823 
1824     CI->eraseFromParent();
1825   }
1826 }
1827 
1828 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1829   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1830   if (!TypeId)
1831     return;
1832   const TypeIdSummary *TidSummary =
1833       ImportSummary->getTypeIdSummary(TypeId->getString());
1834   if (!TidSummary)
1835     return;
1836   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1837   if (ResI == TidSummary->WPDRes.end())
1838     return;
1839   const WholeProgramDevirtResolution &Res = ResI->second;
1840 
1841   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1842     assert(!Res.SingleImplName.empty());
1843     // The type of the function in the declaration is irrelevant because every
1844     // call site will cast it to the correct type.
1845     Constant *SingleImpl =
1846         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1847                                              Type::getVoidTy(M.getContext()))
1848                            .getCallee());
1849 
1850     // This is the import phase so we should not be exporting anything.
1851     bool IsExported = false;
1852     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1853     assert(!IsExported);
1854   }
1855 
1856   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1857     auto I = Res.ResByArg.find(CSByConstantArg.first);
1858     if (I == Res.ResByArg.end())
1859       continue;
1860     auto &ResByArg = I->second;
1861     // FIXME: We should figure out what to do about the "function name" argument
1862     // to the apply* functions, as the function names are unavailable during the
1863     // importing phase. For now we just pass the empty string. This does not
1864     // impact correctness because the function names are just used for remarks.
1865     switch (ResByArg.TheKind) {
1866     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1867       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1868       break;
1869     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1870       Constant *UniqueMemberAddr =
1871           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1872       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1873                            UniqueMemberAddr);
1874       break;
1875     }
1876     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1877       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1878                                       Int32Ty, ResByArg.Byte);
1879       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1880                                      ResByArg.Bit);
1881       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1882       break;
1883     }
1884     default:
1885       break;
1886     }
1887   }
1888 
1889   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1890     // The type of the function is irrelevant, because it's bitcast at calls
1891     // anyhow.
1892     Constant *JT = cast<Constant>(
1893         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1894                               Type::getVoidTy(M.getContext()))
1895             .getCallee());
1896     bool IsExported = false;
1897     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1898     assert(!IsExported);
1899   }
1900 }
1901 
1902 void DevirtModule::removeRedundantTypeTests() {
1903   auto True = ConstantInt::getTrue(M.getContext());
1904   for (auto &&U : NumUnsafeUsesForTypeTest) {
1905     if (U.second == 0) {
1906       U.first->replaceAllUsesWith(True);
1907       U.first->eraseFromParent();
1908     }
1909   }
1910 }
1911 
1912 bool DevirtModule::run() {
1913   // If only some of the modules were split, we cannot correctly perform
1914   // this transformation. We already checked for the presense of type tests
1915   // with partially split modules during the thin link, and would have emitted
1916   // an error if any were found, so here we can simply return.
1917   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1918       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1919     return false;
1920 
1921   Function *TypeTestFunc =
1922       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1923   Function *TypeCheckedLoadFunc =
1924       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1925   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1926 
1927   // Normally if there are no users of the devirtualization intrinsics in the
1928   // module, this pass has nothing to do. But if we are exporting, we also need
1929   // to handle any users that appear only in the function summaries.
1930   if (!ExportSummary &&
1931       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1932        AssumeFunc->use_empty()) &&
1933       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1934     return false;
1935 
1936   if (TypeTestFunc && AssumeFunc)
1937     scanTypeTestUsers(TypeTestFunc);
1938 
1939   if (TypeCheckedLoadFunc)
1940     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1941 
1942   if (ImportSummary) {
1943     for (auto &S : CallSlots)
1944       importResolution(S.first, S.second);
1945 
1946     removeRedundantTypeTests();
1947 
1948     // We have lowered or deleted the type instrinsics, so we will no
1949     // longer have enough information to reason about the liveness of virtual
1950     // function pointers in GlobalDCE.
1951     for (GlobalVariable &GV : M.globals())
1952       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1953 
1954     // The rest of the code is only necessary when exporting or during regular
1955     // LTO, so we are done.
1956     return true;
1957   }
1958 
1959   // Rebuild type metadata into a map for easy lookup.
1960   std::vector<VTableBits> Bits;
1961   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1962   buildTypeIdentifierMap(Bits, TypeIdMap);
1963   if (TypeIdMap.empty())
1964     return true;
1965 
1966   // Collect information from summary about which calls to try to devirtualize.
1967   if (ExportSummary) {
1968     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1969     for (auto &P : TypeIdMap) {
1970       if (auto *TypeId = dyn_cast<MDString>(P.first))
1971         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1972             TypeId);
1973     }
1974 
1975     for (auto &P : *ExportSummary) {
1976       for (auto &S : P.second.SummaryList) {
1977         auto *FS = dyn_cast<FunctionSummary>(S.get());
1978         if (!FS)
1979           continue;
1980         // FIXME: Only add live functions.
1981         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1982           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1983             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1984           }
1985         }
1986         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1987           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1988             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1989           }
1990         }
1991         for (const FunctionSummary::ConstVCall &VC :
1992              FS->type_test_assume_const_vcalls()) {
1993           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1994             CallSlots[{MD, VC.VFunc.Offset}]
1995                 .ConstCSInfo[VC.Args]
1996                 .addSummaryTypeTestAssumeUser(FS);
1997           }
1998         }
1999         for (const FunctionSummary::ConstVCall &VC :
2000              FS->type_checked_load_const_vcalls()) {
2001           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2002             CallSlots[{MD, VC.VFunc.Offset}]
2003                 .ConstCSInfo[VC.Args]
2004                 .addSummaryTypeCheckedLoadUser(FS);
2005           }
2006         }
2007       }
2008     }
2009   }
2010 
2011   // For each (type, offset) pair:
2012   bool DidVirtualConstProp = false;
2013   std::map<std::string, Function*> DevirtTargets;
2014   for (auto &S : CallSlots) {
2015     // Search each of the members of the type identifier for the virtual
2016     // function implementation at offset S.first.ByteOffset, and add to
2017     // TargetsForSlot.
2018     std::vector<VirtualCallTarget> TargetsForSlot;
2019     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
2020                                   S.first.ByteOffset)) {
2021       WholeProgramDevirtResolution *Res = nullptr;
2022       if (ExportSummary && isa<MDString>(S.first.TypeID))
2023         Res = &ExportSummary
2024                    ->getOrInsertTypeIdSummary(
2025                        cast<MDString>(S.first.TypeID)->getString())
2026                    .WPDRes[S.first.ByteOffset];
2027 
2028       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2029         DidVirtualConstProp |=
2030             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2031 
2032         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2033       }
2034 
2035       // Collect functions devirtualized at least for one call site for stats.
2036       if (RemarksEnabled)
2037         for (const auto &T : TargetsForSlot)
2038           if (T.WasDevirt)
2039             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2040     }
2041 
2042     // CFI-specific: if we are exporting and any llvm.type.checked.load
2043     // intrinsics were *not* devirtualized, we need to add the resulting
2044     // llvm.type.test intrinsics to the function summaries so that the
2045     // LowerTypeTests pass will export them.
2046     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2047       auto GUID =
2048           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2049       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2050         FS->addTypeTest(GUID);
2051       for (auto &CCS : S.second.ConstCSInfo)
2052         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2053           FS->addTypeTest(GUID);
2054     }
2055   }
2056 
2057   if (RemarksEnabled) {
2058     // Generate remarks for each devirtualized function.
2059     for (const auto &DT : DevirtTargets) {
2060       Function *F = DT.second;
2061 
2062       using namespace ore;
2063       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2064                         << "devirtualized "
2065                         << NV("FunctionName", DT.first));
2066     }
2067   }
2068 
2069   removeRedundantTypeTests();
2070 
2071   // Rebuild each global we touched as part of virtual constant propagation to
2072   // include the before and after bytes.
2073   if (DidVirtualConstProp)
2074     for (VTableBits &B : Bits)
2075       rebuildGlobal(B);
2076 
2077   // We have lowered or deleted the type instrinsics, so we will no
2078   // longer have enough information to reason about the liveness of virtual
2079   // function pointers in GlobalDCE.
2080   for (GlobalVariable &GV : M.globals())
2081     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2082 
2083   return true;
2084 }
2085 
2086 void DevirtIndex::run() {
2087   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2088     return;
2089 
2090   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2091   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2092     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2093   }
2094 
2095   // Collect information from summary about which calls to try to devirtualize.
2096   for (auto &P : ExportSummary) {
2097     for (auto &S : P.second.SummaryList) {
2098       auto *FS = dyn_cast<FunctionSummary>(S.get());
2099       if (!FS)
2100         continue;
2101       // FIXME: Only add live functions.
2102       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2103         for (StringRef Name : NameByGUID[VF.GUID]) {
2104           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2105         }
2106       }
2107       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2108         for (StringRef Name : NameByGUID[VF.GUID]) {
2109           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2110         }
2111       }
2112       for (const FunctionSummary::ConstVCall &VC :
2113            FS->type_test_assume_const_vcalls()) {
2114         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2115           CallSlots[{Name, VC.VFunc.Offset}]
2116               .ConstCSInfo[VC.Args]
2117               .addSummaryTypeTestAssumeUser(FS);
2118         }
2119       }
2120       for (const FunctionSummary::ConstVCall &VC :
2121            FS->type_checked_load_const_vcalls()) {
2122         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2123           CallSlots[{Name, VC.VFunc.Offset}]
2124               .ConstCSInfo[VC.Args]
2125               .addSummaryTypeCheckedLoadUser(FS);
2126         }
2127       }
2128     }
2129   }
2130 
2131   std::set<ValueInfo> DevirtTargets;
2132   // For each (type, offset) pair:
2133   for (auto &S : CallSlots) {
2134     // Search each of the members of the type identifier for the virtual
2135     // function implementation at offset S.first.ByteOffset, and add to
2136     // TargetsForSlot.
2137     std::vector<ValueInfo> TargetsForSlot;
2138     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2139     assert(TidSummary);
2140     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2141                                   S.first.ByteOffset)) {
2142       WholeProgramDevirtResolution *Res =
2143           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2144                .WPDRes[S.first.ByteOffset];
2145 
2146       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2147                                DevirtTargets))
2148         continue;
2149     }
2150   }
2151 
2152   // Optionally have the thin link print message for each devirtualized
2153   // function.
2154   if (PrintSummaryDevirt)
2155     for (const auto &DT : DevirtTargets)
2156       errs() << "Devirtualized call to " << DT << "\n";
2157 
2158   return;
2159 }
2160