1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Analysis/AliasAnalysis.h" 63 #include "llvm/Analysis/AssumptionCache.h" 64 #include "llvm/Analysis/BasicAliasAnalysis.h" 65 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 66 #include "llvm/Analysis/TypeMetadataUtils.h" 67 #include "llvm/Bitcode/BitcodeReader.h" 68 #include "llvm/Bitcode/BitcodeWriter.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugLoc.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/ModuleSummaryIndexYAML.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/PassRegistry.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Errc.h" 92 #include "llvm/Support/Error.h" 93 #include "llvm/Support/FileSystem.h" 94 #include "llvm/Support/GlobPattern.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Transforms/IPO.h" 97 #include "llvm/Transforms/IPO/FunctionAttrs.h" 98 #include "llvm/Transforms/Utils/Evaluator.h" 99 #include <algorithm> 100 #include <cstddef> 101 #include <map> 102 #include <set> 103 #include <string> 104 105 using namespace llvm; 106 using namespace wholeprogramdevirt; 107 108 #define DEBUG_TYPE "wholeprogramdevirt" 109 110 static cl::opt<PassSummaryAction> ClSummaryAction( 111 "wholeprogramdevirt-summary-action", 112 cl::desc("What to do with the summary when running this pass"), 113 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 114 clEnumValN(PassSummaryAction::Import, "import", 115 "Import typeid resolutions from summary and globals"), 116 clEnumValN(PassSummaryAction::Export, "export", 117 "Export typeid resolutions to summary and globals")), 118 cl::Hidden); 119 120 static cl::opt<std::string> ClReadSummary( 121 "wholeprogramdevirt-read-summary", 122 cl::desc( 123 "Read summary from given bitcode or YAML file before running pass"), 124 cl::Hidden); 125 126 static cl::opt<std::string> ClWriteSummary( 127 "wholeprogramdevirt-write-summary", 128 cl::desc("Write summary to given bitcode or YAML file after running pass. " 129 "Output file format is deduced from extension: *.bc means writing " 130 "bitcode, otherwise YAML"), 131 cl::Hidden); 132 133 static cl::opt<unsigned> 134 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 135 cl::init(10), cl::ZeroOrMore, 136 cl::desc("Maximum number of call targets per " 137 "call site to enable branch funnels")); 138 139 static cl::opt<bool> 140 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 141 cl::init(false), cl::ZeroOrMore, 142 cl::desc("Print index-based devirtualization messages")); 143 144 /// Provide a way to force enable whole program visibility in tests. 145 /// This is needed to support legacy tests that don't contain 146 /// !vcall_visibility metadata (the mere presense of type tests 147 /// previously implied hidden visibility). 148 cl::opt<bool> 149 WholeProgramVisibility("whole-program-visibility", cl::init(false), 150 cl::Hidden, cl::ZeroOrMore, 151 cl::desc("Enable whole program visibility")); 152 153 /// Provide a way to force disable whole program for debugging or workarounds, 154 /// when enabled via the linker. 155 cl::opt<bool> DisableWholeProgramVisibility( 156 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 157 cl::ZeroOrMore, 158 cl::desc("Disable whole program visibility (overrides enabling options)")); 159 160 /// Provide way to prevent certain function from being devirtualized 161 cl::list<std::string> 162 SkipFunctionNames("wholeprogramdevirt-skip", 163 cl::desc("Prevent function(s) from being devirtualized"), 164 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); 165 166 namespace { 167 struct PatternList { 168 std::vector<GlobPattern> Patterns; 169 template <class T> void init(const T &StringList) { 170 for (const auto &S : StringList) 171 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 172 Patterns.push_back(std::move(*Pat)); 173 } 174 bool match(StringRef S) { 175 for (const GlobPattern &P : Patterns) 176 if (P.match(S)) 177 return true; 178 return false; 179 } 180 }; 181 } // namespace 182 183 // Find the minimum offset that we may store a value of size Size bits at. If 184 // IsAfter is set, look for an offset before the object, otherwise look for an 185 // offset after the object. 186 uint64_t 187 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 188 bool IsAfter, uint64_t Size) { 189 // Find a minimum offset taking into account only vtable sizes. 190 uint64_t MinByte = 0; 191 for (const VirtualCallTarget &Target : Targets) { 192 if (IsAfter) 193 MinByte = std::max(MinByte, Target.minAfterBytes()); 194 else 195 MinByte = std::max(MinByte, Target.minBeforeBytes()); 196 } 197 198 // Build a vector of arrays of bytes covering, for each target, a slice of the 199 // used region (see AccumBitVector::BytesUsed in 200 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 201 // this aligns the used regions to start at MinByte. 202 // 203 // In this example, A, B and C are vtables, # is a byte already allocated for 204 // a virtual function pointer, AAAA... (etc.) are the used regions for the 205 // vtables and Offset(X) is the value computed for the Offset variable below 206 // for X. 207 // 208 // Offset(A) 209 // | | 210 // |MinByte 211 // A: ################AAAAAAAA|AAAAAAAA 212 // B: ########BBBBBBBBBBBBBBBB|BBBB 213 // C: ########################|CCCCCCCCCCCCCCCC 214 // | Offset(B) | 215 // 216 // This code produces the slices of A, B and C that appear after the divider 217 // at MinByte. 218 std::vector<ArrayRef<uint8_t>> Used; 219 for (const VirtualCallTarget &Target : Targets) { 220 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 221 : Target.TM->Bits->Before.BytesUsed; 222 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 223 : MinByte - Target.minBeforeBytes(); 224 225 // Disregard used regions that are smaller than Offset. These are 226 // effectively all-free regions that do not need to be checked. 227 if (VTUsed.size() > Offset) 228 Used.push_back(VTUsed.slice(Offset)); 229 } 230 231 if (Size == 1) { 232 // Find a free bit in each member of Used. 233 for (unsigned I = 0;; ++I) { 234 uint8_t BitsUsed = 0; 235 for (auto &&B : Used) 236 if (I < B.size()) 237 BitsUsed |= B[I]; 238 if (BitsUsed != 0xff) 239 return (MinByte + I) * 8 + 240 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 241 } 242 } else { 243 // Find a free (Size/8) byte region in each member of Used. 244 // FIXME: see if alignment helps. 245 for (unsigned I = 0;; ++I) { 246 for (auto &&B : Used) { 247 unsigned Byte = 0; 248 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 249 if (B[I + Byte]) 250 goto NextI; 251 ++Byte; 252 } 253 } 254 return (MinByte + I) * 8; 255 NextI:; 256 } 257 } 258 } 259 260 void wholeprogramdevirt::setBeforeReturnValues( 261 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 262 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 263 if (BitWidth == 1) 264 OffsetByte = -(AllocBefore / 8 + 1); 265 else 266 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 267 OffsetBit = AllocBefore % 8; 268 269 for (VirtualCallTarget &Target : Targets) { 270 if (BitWidth == 1) 271 Target.setBeforeBit(AllocBefore); 272 else 273 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 274 } 275 } 276 277 void wholeprogramdevirt::setAfterReturnValues( 278 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 279 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 280 if (BitWidth == 1) 281 OffsetByte = AllocAfter / 8; 282 else 283 OffsetByte = (AllocAfter + 7) / 8; 284 OffsetBit = AllocAfter % 8; 285 286 for (VirtualCallTarget &Target : Targets) { 287 if (BitWidth == 1) 288 Target.setAfterBit(AllocAfter); 289 else 290 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 291 } 292 } 293 294 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 295 : Fn(Fn), TM(TM), 296 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 297 298 namespace { 299 300 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 301 // tables, and the ByteOffset is the offset in bytes from the address point to 302 // the virtual function pointer. 303 struct VTableSlot { 304 Metadata *TypeID; 305 uint64_t ByteOffset; 306 }; 307 308 } // end anonymous namespace 309 310 namespace llvm { 311 312 template <> struct DenseMapInfo<VTableSlot> { 313 static VTableSlot getEmptyKey() { 314 return {DenseMapInfo<Metadata *>::getEmptyKey(), 315 DenseMapInfo<uint64_t>::getEmptyKey()}; 316 } 317 static VTableSlot getTombstoneKey() { 318 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 319 DenseMapInfo<uint64_t>::getTombstoneKey()}; 320 } 321 static unsigned getHashValue(const VTableSlot &I) { 322 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 323 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 324 } 325 static bool isEqual(const VTableSlot &LHS, 326 const VTableSlot &RHS) { 327 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 328 } 329 }; 330 331 template <> struct DenseMapInfo<VTableSlotSummary> { 332 static VTableSlotSummary getEmptyKey() { 333 return {DenseMapInfo<StringRef>::getEmptyKey(), 334 DenseMapInfo<uint64_t>::getEmptyKey()}; 335 } 336 static VTableSlotSummary getTombstoneKey() { 337 return {DenseMapInfo<StringRef>::getTombstoneKey(), 338 DenseMapInfo<uint64_t>::getTombstoneKey()}; 339 } 340 static unsigned getHashValue(const VTableSlotSummary &I) { 341 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 342 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 343 } 344 static bool isEqual(const VTableSlotSummary &LHS, 345 const VTableSlotSummary &RHS) { 346 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 347 } 348 }; 349 350 } // end namespace llvm 351 352 namespace { 353 354 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 355 // the indirect virtual call. 356 struct VirtualCallSite { 357 Value *VTable = nullptr; 358 CallBase &CB; 359 360 // If non-null, this field points to the associated unsafe use count stored in 361 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 362 // of that field for details. 363 unsigned *NumUnsafeUses = nullptr; 364 365 void 366 emitRemark(const StringRef OptName, const StringRef TargetName, 367 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 368 Function *F = CB.getCaller(); 369 DebugLoc DLoc = CB.getDebugLoc(); 370 BasicBlock *Block = CB.getParent(); 371 372 using namespace ore; 373 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 374 << NV("Optimization", OptName) 375 << ": devirtualized a call to " 376 << NV("FunctionName", TargetName)); 377 } 378 379 void replaceAndErase( 380 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 381 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 382 Value *New) { 383 if (RemarksEnabled) 384 emitRemark(OptName, TargetName, OREGetter); 385 CB.replaceAllUsesWith(New); 386 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 387 BranchInst::Create(II->getNormalDest(), &CB); 388 II->getUnwindDest()->removePredecessor(II->getParent()); 389 } 390 CB.eraseFromParent(); 391 // This use is no longer unsafe. 392 if (NumUnsafeUses) 393 --*NumUnsafeUses; 394 } 395 }; 396 397 // Call site information collected for a specific VTableSlot and possibly a list 398 // of constant integer arguments. The grouping by arguments is handled by the 399 // VTableSlotInfo class. 400 struct CallSiteInfo { 401 /// The set of call sites for this slot. Used during regular LTO and the 402 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 403 /// call sites that appear in the merged module itself); in each of these 404 /// cases we are directly operating on the call sites at the IR level. 405 std::vector<VirtualCallSite> CallSites; 406 407 /// Whether all call sites represented by this CallSiteInfo, including those 408 /// in summaries, have been devirtualized. This starts off as true because a 409 /// default constructed CallSiteInfo represents no call sites. 410 bool AllCallSitesDevirted = true; 411 412 // These fields are used during the export phase of ThinLTO and reflect 413 // information collected from function summaries. 414 415 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 416 /// this slot. 417 bool SummaryHasTypeTestAssumeUsers = false; 418 419 /// CFI-specific: a vector containing the list of function summaries that use 420 /// the llvm.type.checked.load intrinsic and therefore will require 421 /// resolutions for llvm.type.test in order to implement CFI checks if 422 /// devirtualization was unsuccessful. If devirtualization was successful, the 423 /// pass will clear this vector by calling markDevirt(). If at the end of the 424 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 425 /// to each of the function summaries in the vector. 426 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 427 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 428 429 bool isExported() const { 430 return SummaryHasTypeTestAssumeUsers || 431 !SummaryTypeCheckedLoadUsers.empty(); 432 } 433 434 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 435 SummaryTypeCheckedLoadUsers.push_back(FS); 436 AllCallSitesDevirted = false; 437 } 438 439 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 440 SummaryTypeTestAssumeUsers.push_back(FS); 441 SummaryHasTypeTestAssumeUsers = true; 442 AllCallSitesDevirted = false; 443 } 444 445 void markDevirt() { 446 AllCallSitesDevirted = true; 447 448 // As explained in the comment for SummaryTypeCheckedLoadUsers. 449 SummaryTypeCheckedLoadUsers.clear(); 450 } 451 }; 452 453 // Call site information collected for a specific VTableSlot. 454 struct VTableSlotInfo { 455 // The set of call sites which do not have all constant integer arguments 456 // (excluding "this"). 457 CallSiteInfo CSInfo; 458 459 // The set of call sites with all constant integer arguments (excluding 460 // "this"), grouped by argument list. 461 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 462 463 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 464 465 private: 466 CallSiteInfo &findCallSiteInfo(CallBase &CB); 467 }; 468 469 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 470 std::vector<uint64_t> Args; 471 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 472 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 473 return CSInfo; 474 for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) { 475 auto *CI = dyn_cast<ConstantInt>(Arg); 476 if (!CI || CI->getBitWidth() > 64) 477 return CSInfo; 478 Args.push_back(CI->getZExtValue()); 479 } 480 return ConstCSInfo[Args]; 481 } 482 483 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 484 unsigned *NumUnsafeUses) { 485 auto &CSI = findCallSiteInfo(CB); 486 CSI.AllCallSitesDevirted = false; 487 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 488 } 489 490 struct DevirtModule { 491 Module &M; 492 function_ref<AAResults &(Function &)> AARGetter; 493 function_ref<DominatorTree &(Function &)> LookupDomTree; 494 495 ModuleSummaryIndex *ExportSummary; 496 const ModuleSummaryIndex *ImportSummary; 497 498 IntegerType *Int8Ty; 499 PointerType *Int8PtrTy; 500 IntegerType *Int32Ty; 501 IntegerType *Int64Ty; 502 IntegerType *IntPtrTy; 503 /// Sizeless array type, used for imported vtables. This provides a signal 504 /// to analyzers that these imports may alias, as they do for example 505 /// when multiple unique return values occur in the same vtable. 506 ArrayType *Int8Arr0Ty; 507 508 bool RemarksEnabled; 509 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 510 511 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 512 513 // This map keeps track of the number of "unsafe" uses of a loaded function 514 // pointer. The key is the associated llvm.type.test intrinsic call generated 515 // by this pass. An unsafe use is one that calls the loaded function pointer 516 // directly. Every time we eliminate an unsafe use (for example, by 517 // devirtualizing it or by applying virtual constant propagation), we 518 // decrement the value stored in this map. If a value reaches zero, we can 519 // eliminate the type check by RAUWing the associated llvm.type.test call with 520 // true. 521 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 522 PatternList FunctionsToSkip; 523 524 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 525 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 526 function_ref<DominatorTree &(Function &)> LookupDomTree, 527 ModuleSummaryIndex *ExportSummary, 528 const ModuleSummaryIndex *ImportSummary) 529 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 530 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 531 Int8Ty(Type::getInt8Ty(M.getContext())), 532 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 533 Int32Ty(Type::getInt32Ty(M.getContext())), 534 Int64Ty(Type::getInt64Ty(M.getContext())), 535 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 536 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 537 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 538 assert(!(ExportSummary && ImportSummary)); 539 FunctionsToSkip.init(SkipFunctionNames); 540 } 541 542 bool areRemarksEnabled(); 543 544 void 545 scanTypeTestUsers(Function *TypeTestFunc, 546 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 547 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 548 549 void buildTypeIdentifierMap( 550 std::vector<VTableBits> &Bits, 551 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 552 bool 553 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 554 const std::set<TypeMemberInfo> &TypeMemberInfos, 555 uint64_t ByteOffset); 556 557 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 558 bool &IsExported); 559 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 560 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 561 VTableSlotInfo &SlotInfo, 562 WholeProgramDevirtResolution *Res); 563 564 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 565 bool &IsExported); 566 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 567 VTableSlotInfo &SlotInfo, 568 WholeProgramDevirtResolution *Res, VTableSlot Slot); 569 570 bool tryEvaluateFunctionsWithArgs( 571 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 572 ArrayRef<uint64_t> Args); 573 574 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 575 uint64_t TheRetVal); 576 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 577 CallSiteInfo &CSInfo, 578 WholeProgramDevirtResolution::ByArg *Res); 579 580 // Returns the global symbol name that is used to export information about the 581 // given vtable slot and list of arguments. 582 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 583 StringRef Name); 584 585 bool shouldExportConstantsAsAbsoluteSymbols(); 586 587 // This function is called during the export phase to create a symbol 588 // definition containing information about the given vtable slot and list of 589 // arguments. 590 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 591 Constant *C); 592 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 593 uint32_t Const, uint32_t &Storage); 594 595 // This function is called during the import phase to create a reference to 596 // the symbol definition created during the export phase. 597 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 598 StringRef Name); 599 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 600 StringRef Name, IntegerType *IntTy, 601 uint32_t Storage); 602 603 Constant *getMemberAddr(const TypeMemberInfo *M); 604 605 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 606 Constant *UniqueMemberAddr); 607 bool tryUniqueRetValOpt(unsigned BitWidth, 608 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 609 CallSiteInfo &CSInfo, 610 WholeProgramDevirtResolution::ByArg *Res, 611 VTableSlot Slot, ArrayRef<uint64_t> Args); 612 613 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 614 Constant *Byte, Constant *Bit); 615 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 616 VTableSlotInfo &SlotInfo, 617 WholeProgramDevirtResolution *Res, VTableSlot Slot); 618 619 void rebuildGlobal(VTableBits &B); 620 621 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 622 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 623 624 // If we were able to eliminate all unsafe uses for a type checked load, 625 // eliminate the associated type tests by replacing them with true. 626 void removeRedundantTypeTests(); 627 628 bool run(); 629 630 // Lower the module using the action and summary passed as command line 631 // arguments. For testing purposes only. 632 static bool 633 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 634 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 635 function_ref<DominatorTree &(Function &)> LookupDomTree); 636 }; 637 638 struct DevirtIndex { 639 ModuleSummaryIndex &ExportSummary; 640 // The set in which to record GUIDs exported from their module by 641 // devirtualization, used by client to ensure they are not internalized. 642 std::set<GlobalValue::GUID> &ExportedGUIDs; 643 // A map in which to record the information necessary to locate the WPD 644 // resolution for local targets in case they are exported by cross module 645 // importing. 646 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 647 648 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 649 650 PatternList FunctionsToSkip; 651 652 DevirtIndex( 653 ModuleSummaryIndex &ExportSummary, 654 std::set<GlobalValue::GUID> &ExportedGUIDs, 655 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 656 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 657 LocalWPDTargetsMap(LocalWPDTargetsMap) { 658 FunctionsToSkip.init(SkipFunctionNames); 659 } 660 661 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 662 const TypeIdCompatibleVtableInfo TIdInfo, 663 uint64_t ByteOffset); 664 665 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 666 VTableSlotSummary &SlotSummary, 667 VTableSlotInfo &SlotInfo, 668 WholeProgramDevirtResolution *Res, 669 std::set<ValueInfo> &DevirtTargets); 670 671 void run(); 672 }; 673 674 struct WholeProgramDevirt : public ModulePass { 675 static char ID; 676 677 bool UseCommandLine = false; 678 679 ModuleSummaryIndex *ExportSummary = nullptr; 680 const ModuleSummaryIndex *ImportSummary = nullptr; 681 682 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 683 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 684 } 685 686 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 687 const ModuleSummaryIndex *ImportSummary) 688 : ModulePass(ID), ExportSummary(ExportSummary), 689 ImportSummary(ImportSummary) { 690 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 691 } 692 693 bool runOnModule(Module &M) override { 694 if (skipModule(M)) 695 return false; 696 697 // In the new pass manager, we can request the optimization 698 // remark emitter pass on a per-function-basis, which the 699 // OREGetter will do for us. 700 // In the old pass manager, this is harder, so we just build 701 // an optimization remark emitter on the fly, when we need it. 702 std::unique_ptr<OptimizationRemarkEmitter> ORE; 703 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 704 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 705 return *ORE; 706 }; 707 708 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 709 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 710 }; 711 712 if (UseCommandLine) 713 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 714 LookupDomTree); 715 716 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 717 ExportSummary, ImportSummary) 718 .run(); 719 } 720 721 void getAnalysisUsage(AnalysisUsage &AU) const override { 722 AU.addRequired<AssumptionCacheTracker>(); 723 AU.addRequired<TargetLibraryInfoWrapperPass>(); 724 AU.addRequired<DominatorTreeWrapperPass>(); 725 } 726 }; 727 728 } // end anonymous namespace 729 730 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 731 "Whole program devirtualization", false, false) 732 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 733 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 734 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 735 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 736 "Whole program devirtualization", false, false) 737 char WholeProgramDevirt::ID = 0; 738 739 ModulePass * 740 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 741 const ModuleSummaryIndex *ImportSummary) { 742 return new WholeProgramDevirt(ExportSummary, ImportSummary); 743 } 744 745 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 746 ModuleAnalysisManager &AM) { 747 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 748 auto AARGetter = [&](Function &F) -> AAResults & { 749 return FAM.getResult<AAManager>(F); 750 }; 751 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 752 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 753 }; 754 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 755 return FAM.getResult<DominatorTreeAnalysis>(F); 756 }; 757 if (UseCommandLine) { 758 if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) 759 return PreservedAnalyses::all(); 760 return PreservedAnalyses::none(); 761 } 762 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 763 ImportSummary) 764 .run()) 765 return PreservedAnalyses::all(); 766 return PreservedAnalyses::none(); 767 } 768 769 // Enable whole program visibility if enabled by client (e.g. linker) or 770 // internal option, and not force disabled. 771 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 772 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 773 !DisableWholeProgramVisibility; 774 } 775 776 namespace llvm { 777 778 /// If whole program visibility asserted, then upgrade all public vcall 779 /// visibility metadata on vtable definitions to linkage unit visibility in 780 /// Module IR (for regular or hybrid LTO). 781 void updateVCallVisibilityInModule(Module &M, 782 bool WholeProgramVisibilityEnabledInLTO) { 783 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 784 return; 785 for (GlobalVariable &GV : M.globals()) 786 // Add linkage unit visibility to any variable with type metadata, which are 787 // the vtable definitions. We won't have an existing vcall_visibility 788 // metadata on vtable definitions with public visibility. 789 if (GV.hasMetadata(LLVMContext::MD_type) && 790 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 791 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 792 } 793 794 /// If whole program visibility asserted, then upgrade all public vcall 795 /// visibility metadata on vtable definition summaries to linkage unit 796 /// visibility in Module summary index (for ThinLTO). 797 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, 798 bool WholeProgramVisibilityEnabledInLTO) { 799 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 800 return; 801 for (auto &P : Index) { 802 for (auto &S : P.second.SummaryList) { 803 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 804 if (!GVar || GVar->vTableFuncs().empty() || 805 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 806 continue; 807 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 808 } 809 } 810 } 811 812 void runWholeProgramDevirtOnIndex( 813 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 814 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 815 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 816 } 817 818 void updateIndexWPDForExports( 819 ModuleSummaryIndex &Summary, 820 function_ref<bool(StringRef, ValueInfo)> isExported, 821 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 822 for (auto &T : LocalWPDTargetsMap) { 823 auto &VI = T.first; 824 // This was enforced earlier during trySingleImplDevirt. 825 assert(VI.getSummaryList().size() == 1 && 826 "Devirt of local target has more than one copy"); 827 auto &S = VI.getSummaryList()[0]; 828 if (!isExported(S->modulePath(), VI)) 829 continue; 830 831 // It's been exported by a cross module import. 832 for (auto &SlotSummary : T.second) { 833 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 834 assert(TIdSum); 835 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 836 assert(WPDRes != TIdSum->WPDRes.end()); 837 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 838 WPDRes->second.SingleImplName, 839 Summary.getModuleHash(S->modulePath())); 840 } 841 } 842 } 843 844 } // end namespace llvm 845 846 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 847 // Check that summary index contains regular LTO module when performing 848 // export to prevent occasional use of index from pure ThinLTO compilation 849 // (-fno-split-lto-module). This kind of summary index is passed to 850 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 851 const auto &ModPaths = Summary->modulePaths(); 852 if (ClSummaryAction != PassSummaryAction::Import && 853 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 854 ModPaths.end()) 855 return createStringError( 856 errc::invalid_argument, 857 "combined summary should contain Regular LTO module"); 858 return ErrorSuccess(); 859 } 860 861 bool DevirtModule::runForTesting( 862 Module &M, function_ref<AAResults &(Function &)> AARGetter, 863 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 864 function_ref<DominatorTree &(Function &)> LookupDomTree) { 865 std::unique_ptr<ModuleSummaryIndex> Summary = 866 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 867 868 // Handle the command-line summary arguments. This code is for testing 869 // purposes only, so we handle errors directly. 870 if (!ClReadSummary.empty()) { 871 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 872 ": "); 873 auto ReadSummaryFile = 874 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 875 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 876 getModuleSummaryIndex(*ReadSummaryFile)) { 877 Summary = std::move(*SummaryOrErr); 878 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 879 } else { 880 // Try YAML if we've failed with bitcode. 881 consumeError(SummaryOrErr.takeError()); 882 yaml::Input In(ReadSummaryFile->getBuffer()); 883 In >> *Summary; 884 ExitOnErr(errorCodeToError(In.error())); 885 } 886 } 887 888 bool Changed = 889 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 890 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 891 : nullptr, 892 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 893 : nullptr) 894 .run(); 895 896 if (!ClWriteSummary.empty()) { 897 ExitOnError ExitOnErr( 898 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 899 std::error_code EC; 900 if (StringRef(ClWriteSummary).endswith(".bc")) { 901 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 902 ExitOnErr(errorCodeToError(EC)); 903 WriteIndexToFile(*Summary, OS); 904 } else { 905 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 906 ExitOnErr(errorCodeToError(EC)); 907 yaml::Output Out(OS); 908 Out << *Summary; 909 } 910 } 911 912 return Changed; 913 } 914 915 void DevirtModule::buildTypeIdentifierMap( 916 std::vector<VTableBits> &Bits, 917 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 918 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 919 Bits.reserve(M.getGlobalList().size()); 920 SmallVector<MDNode *, 2> Types; 921 for (GlobalVariable &GV : M.globals()) { 922 Types.clear(); 923 GV.getMetadata(LLVMContext::MD_type, Types); 924 if (GV.isDeclaration() || Types.empty()) 925 continue; 926 927 VTableBits *&BitsPtr = GVToBits[&GV]; 928 if (!BitsPtr) { 929 Bits.emplace_back(); 930 Bits.back().GV = &GV; 931 Bits.back().ObjectSize = 932 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 933 BitsPtr = &Bits.back(); 934 } 935 936 for (MDNode *Type : Types) { 937 auto TypeID = Type->getOperand(1).get(); 938 939 uint64_t Offset = 940 cast<ConstantInt>( 941 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 942 ->getZExtValue(); 943 944 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 945 } 946 } 947 } 948 949 bool DevirtModule::tryFindVirtualCallTargets( 950 std::vector<VirtualCallTarget> &TargetsForSlot, 951 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 952 for (const TypeMemberInfo &TM : TypeMemberInfos) { 953 if (!TM.Bits->GV->isConstant()) 954 return false; 955 956 // We cannot perform whole program devirtualization analysis on a vtable 957 // with public LTO visibility. 958 if (TM.Bits->GV->getVCallVisibility() == 959 GlobalObject::VCallVisibilityPublic) 960 return false; 961 962 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 963 TM.Offset + ByteOffset, M); 964 if (!Ptr) 965 return false; 966 967 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 968 if (!Fn) 969 return false; 970 971 if (FunctionsToSkip.match(Fn->getName())) 972 return false; 973 974 // We can disregard __cxa_pure_virtual as a possible call target, as 975 // calls to pure virtuals are UB. 976 if (Fn->getName() == "__cxa_pure_virtual") 977 continue; 978 979 TargetsForSlot.push_back({Fn, &TM}); 980 } 981 982 // Give up if we couldn't find any targets. 983 return !TargetsForSlot.empty(); 984 } 985 986 bool DevirtIndex::tryFindVirtualCallTargets( 987 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 988 uint64_t ByteOffset) { 989 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 990 // Find the first non-available_externally linkage vtable initializer. 991 // We can have multiple available_externally, linkonce_odr and weak_odr 992 // vtable initializers, however we want to skip available_externally as they 993 // do not have type metadata attached, and therefore the summary will not 994 // contain any vtable functions. We can also have multiple external 995 // vtable initializers in the case of comdats, which we cannot check here. 996 // The linker should give an error in this case. 997 // 998 // Also, handle the case of same-named local Vtables with the same path 999 // and therefore the same GUID. This can happen if there isn't enough 1000 // distinguishing path when compiling the source file. In that case we 1001 // conservatively return false early. 1002 const GlobalVarSummary *VS = nullptr; 1003 bool LocalFound = false; 1004 for (auto &S : P.VTableVI.getSummaryList()) { 1005 if (GlobalValue::isLocalLinkage(S->linkage())) { 1006 if (LocalFound) 1007 return false; 1008 LocalFound = true; 1009 } 1010 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1011 VS = cast<GlobalVarSummary>(S->getBaseObject()); 1012 // We cannot perform whole program devirtualization analysis on a vtable 1013 // with public LTO visibility. 1014 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1015 return false; 1016 } 1017 } 1018 if (!VS->isLive()) 1019 continue; 1020 for (auto VTP : VS->vTableFuncs()) { 1021 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1022 continue; 1023 1024 TargetsForSlot.push_back(VTP.FuncVI); 1025 } 1026 } 1027 1028 // Give up if we couldn't find any targets. 1029 return !TargetsForSlot.empty(); 1030 } 1031 1032 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1033 Constant *TheFn, bool &IsExported) { 1034 // Don't devirtualize function if we're told to skip it 1035 // in -wholeprogramdevirt-skip. 1036 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) 1037 return; 1038 auto Apply = [&](CallSiteInfo &CSInfo) { 1039 for (auto &&VCallSite : CSInfo.CallSites) { 1040 if (RemarksEnabled) 1041 VCallSite.emitRemark("single-impl", 1042 TheFn->stripPointerCasts()->getName(), OREGetter); 1043 VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast( 1044 TheFn, VCallSite.CB.getCalledOperand()->getType())); 1045 // This use is no longer unsafe. 1046 if (VCallSite.NumUnsafeUses) 1047 --*VCallSite.NumUnsafeUses; 1048 } 1049 if (CSInfo.isExported()) 1050 IsExported = true; 1051 CSInfo.markDevirt(); 1052 }; 1053 Apply(SlotInfo.CSInfo); 1054 for (auto &P : SlotInfo.ConstCSInfo) 1055 Apply(P.second); 1056 } 1057 1058 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1059 // We can't add calls if we haven't seen a definition 1060 if (Callee.getSummaryList().empty()) 1061 return false; 1062 1063 // Insert calls into the summary index so that the devirtualized targets 1064 // are eligible for import. 1065 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1066 // to better ensure we have the opportunity to inline them. 1067 bool IsExported = false; 1068 auto &S = Callee.getSummaryList()[0]; 1069 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1070 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1071 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1072 FS->addCall({Callee, CI}); 1073 IsExported |= S->modulePath() != FS->modulePath(); 1074 } 1075 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1076 FS->addCall({Callee, CI}); 1077 IsExported |= S->modulePath() != FS->modulePath(); 1078 } 1079 }; 1080 AddCalls(SlotInfo.CSInfo); 1081 for (auto &P : SlotInfo.ConstCSInfo) 1082 AddCalls(P.second); 1083 return IsExported; 1084 } 1085 1086 bool DevirtModule::trySingleImplDevirt( 1087 ModuleSummaryIndex *ExportSummary, 1088 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1089 WholeProgramDevirtResolution *Res) { 1090 // See if the program contains a single implementation of this virtual 1091 // function. 1092 Function *TheFn = TargetsForSlot[0].Fn; 1093 for (auto &&Target : TargetsForSlot) 1094 if (TheFn != Target.Fn) 1095 return false; 1096 1097 // If so, update each call site to call that implementation directly. 1098 if (RemarksEnabled) 1099 TargetsForSlot[0].WasDevirt = true; 1100 1101 bool IsExported = false; 1102 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1103 if (!IsExported) 1104 return false; 1105 1106 // If the only implementation has local linkage, we must promote to external 1107 // to make it visible to thin LTO objects. We can only get here during the 1108 // ThinLTO export phase. 1109 if (TheFn->hasLocalLinkage()) { 1110 std::string NewName = (TheFn->getName() + "$merged").str(); 1111 1112 // Since we are renaming the function, any comdats with the same name must 1113 // also be renamed. This is required when targeting COFF, as the comdat name 1114 // must match one of the names of the symbols in the comdat. 1115 if (Comdat *C = TheFn->getComdat()) { 1116 if (C->getName() == TheFn->getName()) { 1117 Comdat *NewC = M.getOrInsertComdat(NewName); 1118 NewC->setSelectionKind(C->getSelectionKind()); 1119 for (GlobalObject &GO : M.global_objects()) 1120 if (GO.getComdat() == C) 1121 GO.setComdat(NewC); 1122 } 1123 } 1124 1125 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1126 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1127 TheFn->setName(NewName); 1128 } 1129 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1130 // Any needed promotion of 'TheFn' has already been done during 1131 // LTO unit split, so we can ignore return value of AddCalls. 1132 AddCalls(SlotInfo, TheFnVI); 1133 1134 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1135 Res->SingleImplName = std::string(TheFn->getName()); 1136 1137 return true; 1138 } 1139 1140 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1141 VTableSlotSummary &SlotSummary, 1142 VTableSlotInfo &SlotInfo, 1143 WholeProgramDevirtResolution *Res, 1144 std::set<ValueInfo> &DevirtTargets) { 1145 // See if the program contains a single implementation of this virtual 1146 // function. 1147 auto TheFn = TargetsForSlot[0]; 1148 for (auto &&Target : TargetsForSlot) 1149 if (TheFn != Target) 1150 return false; 1151 1152 // Don't devirtualize if we don't have target definition. 1153 auto Size = TheFn.getSummaryList().size(); 1154 if (!Size) 1155 return false; 1156 1157 // Don't devirtualize function if we're told to skip it 1158 // in -wholeprogramdevirt-skip. 1159 if (FunctionsToSkip.match(TheFn.name())) 1160 return false; 1161 1162 // If the summary list contains multiple summaries where at least one is 1163 // a local, give up, as we won't know which (possibly promoted) name to use. 1164 for (auto &S : TheFn.getSummaryList()) 1165 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1166 return false; 1167 1168 // Collect functions devirtualized at least for one call site for stats. 1169 if (PrintSummaryDevirt) 1170 DevirtTargets.insert(TheFn); 1171 1172 auto &S = TheFn.getSummaryList()[0]; 1173 bool IsExported = AddCalls(SlotInfo, TheFn); 1174 if (IsExported) 1175 ExportedGUIDs.insert(TheFn.getGUID()); 1176 1177 // Record in summary for use in devirtualization during the ThinLTO import 1178 // step. 1179 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1180 if (GlobalValue::isLocalLinkage(S->linkage())) { 1181 if (IsExported) 1182 // If target is a local function and we are exporting it by 1183 // devirtualizing a call in another module, we need to record the 1184 // promoted name. 1185 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1186 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1187 else { 1188 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1189 Res->SingleImplName = std::string(TheFn.name()); 1190 } 1191 } else 1192 Res->SingleImplName = std::string(TheFn.name()); 1193 1194 // Name will be empty if this thin link driven off of serialized combined 1195 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1196 // legacy LTO API anyway. 1197 assert(!Res->SingleImplName.empty()); 1198 1199 return true; 1200 } 1201 1202 void DevirtModule::tryICallBranchFunnel( 1203 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1204 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1205 Triple T(M.getTargetTriple()); 1206 if (T.getArch() != Triple::x86_64) 1207 return; 1208 1209 if (TargetsForSlot.size() > ClThreshold) 1210 return; 1211 1212 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1213 if (!HasNonDevirt) 1214 for (auto &P : SlotInfo.ConstCSInfo) 1215 if (!P.second.AllCallSitesDevirted) { 1216 HasNonDevirt = true; 1217 break; 1218 } 1219 1220 if (!HasNonDevirt) 1221 return; 1222 1223 FunctionType *FT = 1224 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1225 Function *JT; 1226 if (isa<MDString>(Slot.TypeID)) { 1227 JT = Function::Create(FT, Function::ExternalLinkage, 1228 M.getDataLayout().getProgramAddressSpace(), 1229 getGlobalName(Slot, {}, "branch_funnel"), &M); 1230 JT->setVisibility(GlobalValue::HiddenVisibility); 1231 } else { 1232 JT = Function::Create(FT, Function::InternalLinkage, 1233 M.getDataLayout().getProgramAddressSpace(), 1234 "branch_funnel", &M); 1235 } 1236 JT->addAttribute(1, Attribute::Nest); 1237 1238 std::vector<Value *> JTArgs; 1239 JTArgs.push_back(JT->arg_begin()); 1240 for (auto &T : TargetsForSlot) { 1241 JTArgs.push_back(getMemberAddr(T.TM)); 1242 JTArgs.push_back(T.Fn); 1243 } 1244 1245 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1246 Function *Intr = 1247 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1248 1249 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1250 CI->setTailCallKind(CallInst::TCK_MustTail); 1251 ReturnInst::Create(M.getContext(), nullptr, BB); 1252 1253 bool IsExported = false; 1254 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1255 if (IsExported) 1256 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1257 } 1258 1259 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1260 Constant *JT, bool &IsExported) { 1261 auto Apply = [&](CallSiteInfo &CSInfo) { 1262 if (CSInfo.isExported()) 1263 IsExported = true; 1264 if (CSInfo.AllCallSitesDevirted) 1265 return; 1266 for (auto &&VCallSite : CSInfo.CallSites) { 1267 CallBase &CB = VCallSite.CB; 1268 1269 // Jump tables are only profitable if the retpoline mitigation is enabled. 1270 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1271 if (!FSAttr.isValid() || 1272 !FSAttr.getValueAsString().contains("+retpoline")) 1273 continue; 1274 1275 if (RemarksEnabled) 1276 VCallSite.emitRemark("branch-funnel", 1277 JT->stripPointerCasts()->getName(), OREGetter); 1278 1279 // Pass the address of the vtable in the nest register, which is r10 on 1280 // x86_64. 1281 std::vector<Type *> NewArgs; 1282 NewArgs.push_back(Int8PtrTy); 1283 for (Type *T : CB.getFunctionType()->params()) 1284 NewArgs.push_back(T); 1285 FunctionType *NewFT = 1286 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1287 CB.getFunctionType()->isVarArg()); 1288 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1289 1290 IRBuilder<> IRB(&CB); 1291 std::vector<Value *> Args; 1292 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1293 Args.insert(Args.end(), CB.arg_begin(), CB.arg_end()); 1294 1295 CallBase *NewCS = nullptr; 1296 if (isa<CallInst>(CB)) 1297 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1298 else 1299 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1300 cast<InvokeInst>(CB).getNormalDest(), 1301 cast<InvokeInst>(CB).getUnwindDest(), Args); 1302 NewCS->setCallingConv(CB.getCallingConv()); 1303 1304 AttributeList Attrs = CB.getAttributes(); 1305 std::vector<AttributeSet> NewArgAttrs; 1306 NewArgAttrs.push_back(AttributeSet::get( 1307 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1308 M.getContext(), Attribute::Nest)})); 1309 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1310 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1311 NewCS->setAttributes( 1312 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1313 Attrs.getRetAttributes(), NewArgAttrs)); 1314 1315 CB.replaceAllUsesWith(NewCS); 1316 CB.eraseFromParent(); 1317 1318 // This use is no longer unsafe. 1319 if (VCallSite.NumUnsafeUses) 1320 --*VCallSite.NumUnsafeUses; 1321 } 1322 // Don't mark as devirtualized because there may be callers compiled without 1323 // retpoline mitigation, which would mean that they are lowered to 1324 // llvm.type.test and therefore require an llvm.type.test resolution for the 1325 // type identifier. 1326 }; 1327 Apply(SlotInfo.CSInfo); 1328 for (auto &P : SlotInfo.ConstCSInfo) 1329 Apply(P.second); 1330 } 1331 1332 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1333 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1334 ArrayRef<uint64_t> Args) { 1335 // Evaluate each function and store the result in each target's RetVal 1336 // field. 1337 for (VirtualCallTarget &Target : TargetsForSlot) { 1338 if (Target.Fn->arg_size() != Args.size() + 1) 1339 return false; 1340 1341 Evaluator Eval(M.getDataLayout(), nullptr); 1342 SmallVector<Constant *, 2> EvalArgs; 1343 EvalArgs.push_back( 1344 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1345 for (unsigned I = 0; I != Args.size(); ++I) { 1346 auto *ArgTy = dyn_cast<IntegerType>( 1347 Target.Fn->getFunctionType()->getParamType(I + 1)); 1348 if (!ArgTy) 1349 return false; 1350 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1351 } 1352 1353 Constant *RetVal; 1354 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1355 !isa<ConstantInt>(RetVal)) 1356 return false; 1357 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1358 } 1359 return true; 1360 } 1361 1362 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1363 uint64_t TheRetVal) { 1364 for (auto Call : CSInfo.CallSites) 1365 Call.replaceAndErase( 1366 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1367 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1368 CSInfo.markDevirt(); 1369 } 1370 1371 bool DevirtModule::tryUniformRetValOpt( 1372 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1373 WholeProgramDevirtResolution::ByArg *Res) { 1374 // Uniform return value optimization. If all functions return the same 1375 // constant, replace all calls with that constant. 1376 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1377 for (const VirtualCallTarget &Target : TargetsForSlot) 1378 if (Target.RetVal != TheRetVal) 1379 return false; 1380 1381 if (CSInfo.isExported()) { 1382 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1383 Res->Info = TheRetVal; 1384 } 1385 1386 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1387 if (RemarksEnabled) 1388 for (auto &&Target : TargetsForSlot) 1389 Target.WasDevirt = true; 1390 return true; 1391 } 1392 1393 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1394 ArrayRef<uint64_t> Args, 1395 StringRef Name) { 1396 std::string FullName = "__typeid_"; 1397 raw_string_ostream OS(FullName); 1398 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1399 for (uint64_t Arg : Args) 1400 OS << '_' << Arg; 1401 OS << '_' << Name; 1402 return OS.str(); 1403 } 1404 1405 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1406 Triple T(M.getTargetTriple()); 1407 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1408 } 1409 1410 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1411 StringRef Name, Constant *C) { 1412 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1413 getGlobalName(Slot, Args, Name), C, &M); 1414 GA->setVisibility(GlobalValue::HiddenVisibility); 1415 } 1416 1417 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1418 StringRef Name, uint32_t Const, 1419 uint32_t &Storage) { 1420 if (shouldExportConstantsAsAbsoluteSymbols()) { 1421 exportGlobal( 1422 Slot, Args, Name, 1423 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1424 return; 1425 } 1426 1427 Storage = Const; 1428 } 1429 1430 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1431 StringRef Name) { 1432 Constant *C = 1433 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1434 auto *GV = dyn_cast<GlobalVariable>(C); 1435 if (GV) 1436 GV->setVisibility(GlobalValue::HiddenVisibility); 1437 return C; 1438 } 1439 1440 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1441 StringRef Name, IntegerType *IntTy, 1442 uint32_t Storage) { 1443 if (!shouldExportConstantsAsAbsoluteSymbols()) 1444 return ConstantInt::get(IntTy, Storage); 1445 1446 Constant *C = importGlobal(Slot, Args, Name); 1447 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1448 C = ConstantExpr::getPtrToInt(C, IntTy); 1449 1450 // We only need to set metadata if the global is newly created, in which 1451 // case it would not have hidden visibility. 1452 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1453 return C; 1454 1455 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1456 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1457 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1458 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1459 MDNode::get(M.getContext(), {MinC, MaxC})); 1460 }; 1461 unsigned AbsWidth = IntTy->getBitWidth(); 1462 if (AbsWidth == IntPtrTy->getBitWidth()) 1463 SetAbsRange(~0ull, ~0ull); // Full set. 1464 else 1465 SetAbsRange(0, 1ull << AbsWidth); 1466 return C; 1467 } 1468 1469 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1470 bool IsOne, 1471 Constant *UniqueMemberAddr) { 1472 for (auto &&Call : CSInfo.CallSites) { 1473 IRBuilder<> B(&Call.CB); 1474 Value *Cmp = 1475 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1476 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1477 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1478 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1479 Cmp); 1480 } 1481 CSInfo.markDevirt(); 1482 } 1483 1484 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1485 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1486 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1487 ConstantInt::get(Int64Ty, M->Offset)); 1488 } 1489 1490 bool DevirtModule::tryUniqueRetValOpt( 1491 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1492 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1493 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1494 // IsOne controls whether we look for a 0 or a 1. 1495 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1496 const TypeMemberInfo *UniqueMember = nullptr; 1497 for (const VirtualCallTarget &Target : TargetsForSlot) { 1498 if (Target.RetVal == (IsOne ? 1 : 0)) { 1499 if (UniqueMember) 1500 return false; 1501 UniqueMember = Target.TM; 1502 } 1503 } 1504 1505 // We should have found a unique member or bailed out by now. We already 1506 // checked for a uniform return value in tryUniformRetValOpt. 1507 assert(UniqueMember); 1508 1509 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1510 if (CSInfo.isExported()) { 1511 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1512 Res->Info = IsOne; 1513 1514 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1515 } 1516 1517 // Replace each call with the comparison. 1518 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1519 UniqueMemberAddr); 1520 1521 // Update devirtualization statistics for targets. 1522 if (RemarksEnabled) 1523 for (auto &&Target : TargetsForSlot) 1524 Target.WasDevirt = true; 1525 1526 return true; 1527 }; 1528 1529 if (BitWidth == 1) { 1530 if (tryUniqueRetValOptFor(true)) 1531 return true; 1532 if (tryUniqueRetValOptFor(false)) 1533 return true; 1534 } 1535 return false; 1536 } 1537 1538 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1539 Constant *Byte, Constant *Bit) { 1540 for (auto Call : CSInfo.CallSites) { 1541 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1542 IRBuilder<> B(&Call.CB); 1543 Value *Addr = 1544 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1545 if (RetType->getBitWidth() == 1) { 1546 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1547 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1548 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1549 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1550 OREGetter, IsBitSet); 1551 } else { 1552 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1553 Value *Val = B.CreateLoad(RetType, ValAddr); 1554 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1555 OREGetter, Val); 1556 } 1557 } 1558 CSInfo.markDevirt(); 1559 } 1560 1561 bool DevirtModule::tryVirtualConstProp( 1562 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1563 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1564 // This only works if the function returns an integer. 1565 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1566 if (!RetType) 1567 return false; 1568 unsigned BitWidth = RetType->getBitWidth(); 1569 if (BitWidth > 64) 1570 return false; 1571 1572 // Make sure that each function is defined, does not access memory, takes at 1573 // least one argument, does not use its first argument (which we assume is 1574 // 'this'), and has the same return type. 1575 // 1576 // Note that we test whether this copy of the function is readnone, rather 1577 // than testing function attributes, which must hold for any copy of the 1578 // function, even a less optimized version substituted at link time. This is 1579 // sound because the virtual constant propagation optimizations effectively 1580 // inline all implementations of the virtual function into each call site, 1581 // rather than using function attributes to perform local optimization. 1582 for (VirtualCallTarget &Target : TargetsForSlot) { 1583 if (Target.Fn->isDeclaration() || 1584 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1585 MAK_ReadNone || 1586 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1587 Target.Fn->getReturnType() != RetType) 1588 return false; 1589 } 1590 1591 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1592 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1593 continue; 1594 1595 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1596 if (Res) 1597 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1598 1599 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1600 continue; 1601 1602 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1603 ResByArg, Slot, CSByConstantArg.first)) 1604 continue; 1605 1606 // Find an allocation offset in bits in all vtables associated with the 1607 // type. 1608 uint64_t AllocBefore = 1609 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1610 uint64_t AllocAfter = 1611 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1612 1613 // Calculate the total amount of padding needed to store a value at both 1614 // ends of the object. 1615 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1616 for (auto &&Target : TargetsForSlot) { 1617 TotalPaddingBefore += std::max<int64_t>( 1618 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1619 TotalPaddingAfter += std::max<int64_t>( 1620 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1621 } 1622 1623 // If the amount of padding is too large, give up. 1624 // FIXME: do something smarter here. 1625 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1626 continue; 1627 1628 // Calculate the offset to the value as a (possibly negative) byte offset 1629 // and (if applicable) a bit offset, and store the values in the targets. 1630 int64_t OffsetByte; 1631 uint64_t OffsetBit; 1632 if (TotalPaddingBefore <= TotalPaddingAfter) 1633 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1634 OffsetBit); 1635 else 1636 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1637 OffsetBit); 1638 1639 if (RemarksEnabled) 1640 for (auto &&Target : TargetsForSlot) 1641 Target.WasDevirt = true; 1642 1643 1644 if (CSByConstantArg.second.isExported()) { 1645 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1646 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1647 ResByArg->Byte); 1648 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1649 ResByArg->Bit); 1650 } 1651 1652 // Rewrite each call to a load from OffsetByte/OffsetBit. 1653 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1654 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1655 applyVirtualConstProp(CSByConstantArg.second, 1656 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1657 } 1658 return true; 1659 } 1660 1661 void DevirtModule::rebuildGlobal(VTableBits &B) { 1662 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1663 return; 1664 1665 // Align the before byte array to the global's minimum alignment so that we 1666 // don't break any alignment requirements on the global. 1667 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( 1668 B.GV->getAlign(), B.GV->getValueType()); 1669 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1670 1671 // Before was stored in reverse order; flip it now. 1672 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1673 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1674 1675 // Build an anonymous global containing the before bytes, followed by the 1676 // original initializer, followed by the after bytes. 1677 auto NewInit = ConstantStruct::getAnon( 1678 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1679 B.GV->getInitializer(), 1680 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1681 auto NewGV = 1682 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1683 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1684 NewGV->setSection(B.GV->getSection()); 1685 NewGV->setComdat(B.GV->getComdat()); 1686 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1687 1688 // Copy the original vtable's metadata to the anonymous global, adjusting 1689 // offsets as required. 1690 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1691 1692 // Build an alias named after the original global, pointing at the second 1693 // element (the original initializer). 1694 auto Alias = GlobalAlias::create( 1695 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1696 ConstantExpr::getGetElementPtr( 1697 NewInit->getType(), NewGV, 1698 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1699 ConstantInt::get(Int32Ty, 1)}), 1700 &M); 1701 Alias->setVisibility(B.GV->getVisibility()); 1702 Alias->takeName(B.GV); 1703 1704 B.GV->replaceAllUsesWith(Alias); 1705 B.GV->eraseFromParent(); 1706 } 1707 1708 bool DevirtModule::areRemarksEnabled() { 1709 const auto &FL = M.getFunctionList(); 1710 for (const Function &Fn : FL) { 1711 const auto &BBL = Fn.getBasicBlockList(); 1712 if (BBL.empty()) 1713 continue; 1714 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1715 return DI.isEnabled(); 1716 } 1717 return false; 1718 } 1719 1720 void DevirtModule::scanTypeTestUsers( 1721 Function *TypeTestFunc, 1722 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 1723 // Find all virtual calls via a virtual table pointer %p under an assumption 1724 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1725 // points to a member of the type identifier %md. Group calls by (type ID, 1726 // offset) pair (effectively the identity of the virtual function) and store 1727 // to CallSlots. 1728 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1729 I != E;) { 1730 auto CI = dyn_cast<CallInst>(I->getUser()); 1731 ++I; 1732 if (!CI) 1733 continue; 1734 1735 // Search for virtual calls based on %p and add them to DevirtCalls. 1736 SmallVector<DevirtCallSite, 1> DevirtCalls; 1737 SmallVector<CallInst *, 1> Assumes; 1738 auto &DT = LookupDomTree(*CI->getFunction()); 1739 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1740 1741 Metadata *TypeId = 1742 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1743 // If we found any, add them to CallSlots. 1744 if (!Assumes.empty()) { 1745 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1746 for (DevirtCallSite Call : DevirtCalls) 1747 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1748 } 1749 1750 auto RemoveTypeTestAssumes = [&]() { 1751 // We no longer need the assumes or the type test. 1752 for (auto Assume : Assumes) 1753 Assume->eraseFromParent(); 1754 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1755 // may use the vtable argument later. 1756 if (CI->use_empty()) 1757 CI->eraseFromParent(); 1758 }; 1759 1760 // At this point we could remove all type test assume sequences, as they 1761 // were originally inserted for WPD. However, we can keep these in the 1762 // code stream for later analysis (e.g. to help drive more efficient ICP 1763 // sequences). They will eventually be removed by a second LowerTypeTests 1764 // invocation that cleans them up. In order to do this correctly, the first 1765 // LowerTypeTests invocation needs to know that they have "Unknown" type 1766 // test resolution, so that they aren't treated as Unsat and lowered to 1767 // False, which will break any uses on assumes. Below we remove any type 1768 // test assumes that will not be treated as Unknown by LTT. 1769 1770 // The type test assumes will be treated by LTT as Unsat if the type id is 1771 // not used on a global (in which case it has no entry in the TypeIdMap). 1772 if (!TypeIdMap.count(TypeId)) 1773 RemoveTypeTestAssumes(); 1774 1775 // For ThinLTO importing, we need to remove the type test assumes if this is 1776 // an MDString type id without a corresponding TypeIdSummary. Any 1777 // non-MDString type ids are ignored and treated as Unknown by LTT, so their 1778 // type test assumes can be kept. If the MDString type id is missing a 1779 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the 1780 // exporting phase of WPD from analyzing it), then it would be treated as 1781 // Unsat by LTT and we need to remove its type test assumes here. If not 1782 // used on a vcall we don't need them for later optimization use in any 1783 // case. 1784 else if (ImportSummary && isa<MDString>(TypeId)) { 1785 const TypeIdSummary *TidSummary = 1786 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString()); 1787 if (!TidSummary) 1788 RemoveTypeTestAssumes(); 1789 else 1790 // If one was created it should not be Unsat, because if we reached here 1791 // the type id was used on a global. 1792 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); 1793 } 1794 } 1795 } 1796 1797 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1798 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1799 1800 for (auto I = TypeCheckedLoadFunc->use_begin(), 1801 E = TypeCheckedLoadFunc->use_end(); 1802 I != E;) { 1803 auto CI = dyn_cast<CallInst>(I->getUser()); 1804 ++I; 1805 if (!CI) 1806 continue; 1807 1808 Value *Ptr = CI->getArgOperand(0); 1809 Value *Offset = CI->getArgOperand(1); 1810 Value *TypeIdValue = CI->getArgOperand(2); 1811 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1812 1813 SmallVector<DevirtCallSite, 1> DevirtCalls; 1814 SmallVector<Instruction *, 1> LoadedPtrs; 1815 SmallVector<Instruction *, 1> Preds; 1816 bool HasNonCallUses = false; 1817 auto &DT = LookupDomTree(*CI->getFunction()); 1818 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1819 HasNonCallUses, CI, DT); 1820 1821 // Start by generating "pessimistic" code that explicitly loads the function 1822 // pointer from the vtable and performs the type check. If possible, we will 1823 // eliminate the load and the type check later. 1824 1825 // If possible, only generate the load at the point where it is used. 1826 // This helps avoid unnecessary spills. 1827 IRBuilder<> LoadB( 1828 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1829 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1830 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1831 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1832 1833 for (Instruction *LoadedPtr : LoadedPtrs) { 1834 LoadedPtr->replaceAllUsesWith(LoadedValue); 1835 LoadedPtr->eraseFromParent(); 1836 } 1837 1838 // Likewise for the type test. 1839 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1840 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1841 1842 for (Instruction *Pred : Preds) { 1843 Pred->replaceAllUsesWith(TypeTestCall); 1844 Pred->eraseFromParent(); 1845 } 1846 1847 // We have already erased any extractvalue instructions that refer to the 1848 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1849 // (although this is unlikely). In that case, explicitly build a pair and 1850 // RAUW it. 1851 if (!CI->use_empty()) { 1852 Value *Pair = UndefValue::get(CI->getType()); 1853 IRBuilder<> B(CI); 1854 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1855 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1856 CI->replaceAllUsesWith(Pair); 1857 } 1858 1859 // The number of unsafe uses is initially the number of uses. 1860 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1861 NumUnsafeUses = DevirtCalls.size(); 1862 1863 // If the function pointer has a non-call user, we cannot eliminate the type 1864 // check, as one of those users may eventually call the pointer. Increment 1865 // the unsafe use count to make sure it cannot reach zero. 1866 if (HasNonCallUses) 1867 ++NumUnsafeUses; 1868 for (DevirtCallSite Call : DevirtCalls) { 1869 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1870 &NumUnsafeUses); 1871 } 1872 1873 CI->eraseFromParent(); 1874 } 1875 } 1876 1877 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1878 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1879 if (!TypeId) 1880 return; 1881 const TypeIdSummary *TidSummary = 1882 ImportSummary->getTypeIdSummary(TypeId->getString()); 1883 if (!TidSummary) 1884 return; 1885 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1886 if (ResI == TidSummary->WPDRes.end()) 1887 return; 1888 const WholeProgramDevirtResolution &Res = ResI->second; 1889 1890 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1891 assert(!Res.SingleImplName.empty()); 1892 // The type of the function in the declaration is irrelevant because every 1893 // call site will cast it to the correct type. 1894 Constant *SingleImpl = 1895 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1896 Type::getVoidTy(M.getContext())) 1897 .getCallee()); 1898 1899 // This is the import phase so we should not be exporting anything. 1900 bool IsExported = false; 1901 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1902 assert(!IsExported); 1903 } 1904 1905 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1906 auto I = Res.ResByArg.find(CSByConstantArg.first); 1907 if (I == Res.ResByArg.end()) 1908 continue; 1909 auto &ResByArg = I->second; 1910 // FIXME: We should figure out what to do about the "function name" argument 1911 // to the apply* functions, as the function names are unavailable during the 1912 // importing phase. For now we just pass the empty string. This does not 1913 // impact correctness because the function names are just used for remarks. 1914 switch (ResByArg.TheKind) { 1915 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1916 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1917 break; 1918 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1919 Constant *UniqueMemberAddr = 1920 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1921 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1922 UniqueMemberAddr); 1923 break; 1924 } 1925 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1926 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1927 Int32Ty, ResByArg.Byte); 1928 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1929 ResByArg.Bit); 1930 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1931 break; 1932 } 1933 default: 1934 break; 1935 } 1936 } 1937 1938 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1939 // The type of the function is irrelevant, because it's bitcast at calls 1940 // anyhow. 1941 Constant *JT = cast<Constant>( 1942 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1943 Type::getVoidTy(M.getContext())) 1944 .getCallee()); 1945 bool IsExported = false; 1946 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1947 assert(!IsExported); 1948 } 1949 } 1950 1951 void DevirtModule::removeRedundantTypeTests() { 1952 auto True = ConstantInt::getTrue(M.getContext()); 1953 for (auto &&U : NumUnsafeUsesForTypeTest) { 1954 if (U.second == 0) { 1955 U.first->replaceAllUsesWith(True); 1956 U.first->eraseFromParent(); 1957 } 1958 } 1959 } 1960 1961 bool DevirtModule::run() { 1962 // If only some of the modules were split, we cannot correctly perform 1963 // this transformation. We already checked for the presense of type tests 1964 // with partially split modules during the thin link, and would have emitted 1965 // an error if any were found, so here we can simply return. 1966 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1967 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1968 return false; 1969 1970 Function *TypeTestFunc = 1971 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1972 Function *TypeCheckedLoadFunc = 1973 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1974 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1975 1976 // Normally if there are no users of the devirtualization intrinsics in the 1977 // module, this pass has nothing to do. But if we are exporting, we also need 1978 // to handle any users that appear only in the function summaries. 1979 if (!ExportSummary && 1980 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1981 AssumeFunc->use_empty()) && 1982 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1983 return false; 1984 1985 // Rebuild type metadata into a map for easy lookup. 1986 std::vector<VTableBits> Bits; 1987 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1988 buildTypeIdentifierMap(Bits, TypeIdMap); 1989 1990 if (TypeTestFunc && AssumeFunc) 1991 scanTypeTestUsers(TypeTestFunc, TypeIdMap); 1992 1993 if (TypeCheckedLoadFunc) 1994 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1995 1996 if (ImportSummary) { 1997 for (auto &S : CallSlots) 1998 importResolution(S.first, S.second); 1999 2000 removeRedundantTypeTests(); 2001 2002 // We have lowered or deleted the type instrinsics, so we will no 2003 // longer have enough information to reason about the liveness of virtual 2004 // function pointers in GlobalDCE. 2005 for (GlobalVariable &GV : M.globals()) 2006 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2007 2008 // The rest of the code is only necessary when exporting or during regular 2009 // LTO, so we are done. 2010 return true; 2011 } 2012 2013 if (TypeIdMap.empty()) 2014 return true; 2015 2016 // Collect information from summary about which calls to try to devirtualize. 2017 if (ExportSummary) { 2018 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 2019 for (auto &P : TypeIdMap) { 2020 if (auto *TypeId = dyn_cast<MDString>(P.first)) 2021 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 2022 TypeId); 2023 } 2024 2025 for (auto &P : *ExportSummary) { 2026 for (auto &S : P.second.SummaryList) { 2027 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2028 if (!FS) 2029 continue; 2030 // FIXME: Only add live functions. 2031 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2032 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2033 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2034 } 2035 } 2036 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2037 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2038 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2039 } 2040 } 2041 for (const FunctionSummary::ConstVCall &VC : 2042 FS->type_test_assume_const_vcalls()) { 2043 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2044 CallSlots[{MD, VC.VFunc.Offset}] 2045 .ConstCSInfo[VC.Args] 2046 .addSummaryTypeTestAssumeUser(FS); 2047 } 2048 } 2049 for (const FunctionSummary::ConstVCall &VC : 2050 FS->type_checked_load_const_vcalls()) { 2051 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2052 CallSlots[{MD, VC.VFunc.Offset}] 2053 .ConstCSInfo[VC.Args] 2054 .addSummaryTypeCheckedLoadUser(FS); 2055 } 2056 } 2057 } 2058 } 2059 } 2060 2061 // For each (type, offset) pair: 2062 bool DidVirtualConstProp = false; 2063 std::map<std::string, Function*> DevirtTargets; 2064 for (auto &S : CallSlots) { 2065 // Search each of the members of the type identifier for the virtual 2066 // function implementation at offset S.first.ByteOffset, and add to 2067 // TargetsForSlot. 2068 std::vector<VirtualCallTarget> TargetsForSlot; 2069 WholeProgramDevirtResolution *Res = nullptr; 2070 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID]; 2071 if (ExportSummary && isa<MDString>(S.first.TypeID) && 2072 TypeMemberInfos.size()) 2073 // For any type id used on a global's type metadata, create the type id 2074 // summary resolution regardless of whether we can devirtualize, so that 2075 // lower type tests knows the type id is not Unsat. If it was not used on 2076 // a global's type metadata, the TypeIdMap entry set will be empty, and 2077 // we don't want to create an entry (with the default Unknown type 2078 // resolution), which can prevent detection of the Unsat. 2079 Res = &ExportSummary 2080 ->getOrInsertTypeIdSummary( 2081 cast<MDString>(S.first.TypeID)->getString()) 2082 .WPDRes[S.first.ByteOffset]; 2083 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, 2084 S.first.ByteOffset)) { 2085 2086 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2087 DidVirtualConstProp |= 2088 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2089 2090 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2091 } 2092 2093 // Collect functions devirtualized at least for one call site for stats. 2094 if (RemarksEnabled) 2095 for (const auto &T : TargetsForSlot) 2096 if (T.WasDevirt) 2097 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2098 } 2099 2100 // CFI-specific: if we are exporting and any llvm.type.checked.load 2101 // intrinsics were *not* devirtualized, we need to add the resulting 2102 // llvm.type.test intrinsics to the function summaries so that the 2103 // LowerTypeTests pass will export them. 2104 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2105 auto GUID = 2106 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2107 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2108 FS->addTypeTest(GUID); 2109 for (auto &CCS : S.second.ConstCSInfo) 2110 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2111 FS->addTypeTest(GUID); 2112 } 2113 } 2114 2115 if (RemarksEnabled) { 2116 // Generate remarks for each devirtualized function. 2117 for (const auto &DT : DevirtTargets) { 2118 Function *F = DT.second; 2119 2120 using namespace ore; 2121 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2122 << "devirtualized " 2123 << NV("FunctionName", DT.first)); 2124 } 2125 } 2126 2127 removeRedundantTypeTests(); 2128 2129 // Rebuild each global we touched as part of virtual constant propagation to 2130 // include the before and after bytes. 2131 if (DidVirtualConstProp) 2132 for (VTableBits &B : Bits) 2133 rebuildGlobal(B); 2134 2135 // We have lowered or deleted the type instrinsics, so we will no 2136 // longer have enough information to reason about the liveness of virtual 2137 // function pointers in GlobalDCE. 2138 for (GlobalVariable &GV : M.globals()) 2139 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2140 2141 return true; 2142 } 2143 2144 void DevirtIndex::run() { 2145 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2146 return; 2147 2148 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2149 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2150 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2151 } 2152 2153 // Collect information from summary about which calls to try to devirtualize. 2154 for (auto &P : ExportSummary) { 2155 for (auto &S : P.second.SummaryList) { 2156 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2157 if (!FS) 2158 continue; 2159 // FIXME: Only add live functions. 2160 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2161 for (StringRef Name : NameByGUID[VF.GUID]) { 2162 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2163 } 2164 } 2165 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2166 for (StringRef Name : NameByGUID[VF.GUID]) { 2167 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2168 } 2169 } 2170 for (const FunctionSummary::ConstVCall &VC : 2171 FS->type_test_assume_const_vcalls()) { 2172 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2173 CallSlots[{Name, VC.VFunc.Offset}] 2174 .ConstCSInfo[VC.Args] 2175 .addSummaryTypeTestAssumeUser(FS); 2176 } 2177 } 2178 for (const FunctionSummary::ConstVCall &VC : 2179 FS->type_checked_load_const_vcalls()) { 2180 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2181 CallSlots[{Name, VC.VFunc.Offset}] 2182 .ConstCSInfo[VC.Args] 2183 .addSummaryTypeCheckedLoadUser(FS); 2184 } 2185 } 2186 } 2187 } 2188 2189 std::set<ValueInfo> DevirtTargets; 2190 // For each (type, offset) pair: 2191 for (auto &S : CallSlots) { 2192 // Search each of the members of the type identifier for the virtual 2193 // function implementation at offset S.first.ByteOffset, and add to 2194 // TargetsForSlot. 2195 std::vector<ValueInfo> TargetsForSlot; 2196 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2197 assert(TidSummary); 2198 // Create the type id summary resolution regardlness of whether we can 2199 // devirtualize, so that lower type tests knows the type id is used on 2200 // a global and not Unsat. 2201 WholeProgramDevirtResolution *Res = 2202 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2203 .WPDRes[S.first.ByteOffset]; 2204 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2205 S.first.ByteOffset)) { 2206 2207 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2208 DevirtTargets)) 2209 continue; 2210 } 2211 } 2212 2213 // Optionally have the thin link print message for each devirtualized 2214 // function. 2215 if (PrintSummaryDevirt) 2216 for (const auto &DT : DevirtTargets) 2217 errs() << "Devirtualized call to " << DT << "\n"; 2218 2219 return; 2220 } 2221