1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/iterator_range.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/TypeMetadataUtils.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalVariable.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/LLVMContext.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ModuleSummaryIndexYAML.h" 73 #include "llvm/Pass.h" 74 #include "llvm/PassRegistry.h" 75 #include "llvm/PassSupport.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Error.h" 78 #include "llvm/Support/FileSystem.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Transforms/IPO.h" 81 #include "llvm/Transforms/IPO/FunctionAttrs.h" 82 #include "llvm/Transforms/Utils/Evaluator.h" 83 #include <algorithm> 84 #include <cstddef> 85 #include <map> 86 #include <set> 87 #include <string> 88 89 using namespace llvm; 90 using namespace wholeprogramdevirt; 91 92 #define DEBUG_TYPE "wholeprogramdevirt" 93 94 static cl::opt<PassSummaryAction> ClSummaryAction( 95 "wholeprogramdevirt-summary-action", 96 cl::desc("What to do with the summary when running this pass"), 97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 98 clEnumValN(PassSummaryAction::Import, "import", 99 "Import typeid resolutions from summary and globals"), 100 clEnumValN(PassSummaryAction::Export, "export", 101 "Export typeid resolutions to summary and globals")), 102 cl::Hidden); 103 104 static cl::opt<std::string> ClReadSummary( 105 "wholeprogramdevirt-read-summary", 106 cl::desc("Read summary from given YAML file before running pass"), 107 cl::Hidden); 108 109 static cl::opt<std::string> ClWriteSummary( 110 "wholeprogramdevirt-write-summary", 111 cl::desc("Write summary to given YAML file after running pass"), 112 cl::Hidden); 113 114 static cl::opt<unsigned> 115 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 116 cl::init(10), cl::ZeroOrMore, 117 cl::desc("Maximum number of call targets per " 118 "call site to enable branch funnels")); 119 120 // Find the minimum offset that we may store a value of size Size bits at. If 121 // IsAfter is set, look for an offset before the object, otherwise look for an 122 // offset after the object. 123 uint64_t 124 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 125 bool IsAfter, uint64_t Size) { 126 // Find a minimum offset taking into account only vtable sizes. 127 uint64_t MinByte = 0; 128 for (const VirtualCallTarget &Target : Targets) { 129 if (IsAfter) 130 MinByte = std::max(MinByte, Target.minAfterBytes()); 131 else 132 MinByte = std::max(MinByte, Target.minBeforeBytes()); 133 } 134 135 // Build a vector of arrays of bytes covering, for each target, a slice of the 136 // used region (see AccumBitVector::BytesUsed in 137 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 138 // this aligns the used regions to start at MinByte. 139 // 140 // In this example, A, B and C are vtables, # is a byte already allocated for 141 // a virtual function pointer, AAAA... (etc.) are the used regions for the 142 // vtables and Offset(X) is the value computed for the Offset variable below 143 // for X. 144 // 145 // Offset(A) 146 // | | 147 // |MinByte 148 // A: ################AAAAAAAA|AAAAAAAA 149 // B: ########BBBBBBBBBBBBBBBB|BBBB 150 // C: ########################|CCCCCCCCCCCCCCCC 151 // | Offset(B) | 152 // 153 // This code produces the slices of A, B and C that appear after the divider 154 // at MinByte. 155 std::vector<ArrayRef<uint8_t>> Used; 156 for (const VirtualCallTarget &Target : Targets) { 157 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 158 : Target.TM->Bits->Before.BytesUsed; 159 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 160 : MinByte - Target.minBeforeBytes(); 161 162 // Disregard used regions that are smaller than Offset. These are 163 // effectively all-free regions that do not need to be checked. 164 if (VTUsed.size() > Offset) 165 Used.push_back(VTUsed.slice(Offset)); 166 } 167 168 if (Size == 1) { 169 // Find a free bit in each member of Used. 170 for (unsigned I = 0;; ++I) { 171 uint8_t BitsUsed = 0; 172 for (auto &&B : Used) 173 if (I < B.size()) 174 BitsUsed |= B[I]; 175 if (BitsUsed != 0xff) 176 return (MinByte + I) * 8 + 177 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 178 } 179 } else { 180 // Find a free (Size/8) byte region in each member of Used. 181 // FIXME: see if alignment helps. 182 for (unsigned I = 0;; ++I) { 183 for (auto &&B : Used) { 184 unsigned Byte = 0; 185 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 186 if (B[I + Byte]) 187 goto NextI; 188 ++Byte; 189 } 190 } 191 return (MinByte + I) * 8; 192 NextI:; 193 } 194 } 195 } 196 197 void wholeprogramdevirt::setBeforeReturnValues( 198 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 199 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 200 if (BitWidth == 1) 201 OffsetByte = -(AllocBefore / 8 + 1); 202 else 203 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 204 OffsetBit = AllocBefore % 8; 205 206 for (VirtualCallTarget &Target : Targets) { 207 if (BitWidth == 1) 208 Target.setBeforeBit(AllocBefore); 209 else 210 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 211 } 212 } 213 214 void wholeprogramdevirt::setAfterReturnValues( 215 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 216 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 217 if (BitWidth == 1) 218 OffsetByte = AllocAfter / 8; 219 else 220 OffsetByte = (AllocAfter + 7) / 8; 221 OffsetBit = AllocAfter % 8; 222 223 for (VirtualCallTarget &Target : Targets) { 224 if (BitWidth == 1) 225 Target.setAfterBit(AllocAfter); 226 else 227 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 228 } 229 } 230 231 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 232 : Fn(Fn), TM(TM), 233 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 234 235 namespace { 236 237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 238 // tables, and the ByteOffset is the offset in bytes from the address point to 239 // the virtual function pointer. 240 struct VTableSlot { 241 Metadata *TypeID; 242 uint64_t ByteOffset; 243 }; 244 245 } // end anonymous namespace 246 247 namespace llvm { 248 249 template <> struct DenseMapInfo<VTableSlot> { 250 static VTableSlot getEmptyKey() { 251 return {DenseMapInfo<Metadata *>::getEmptyKey(), 252 DenseMapInfo<uint64_t>::getEmptyKey()}; 253 } 254 static VTableSlot getTombstoneKey() { 255 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 256 DenseMapInfo<uint64_t>::getTombstoneKey()}; 257 } 258 static unsigned getHashValue(const VTableSlot &I) { 259 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 260 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 261 } 262 static bool isEqual(const VTableSlot &LHS, 263 const VTableSlot &RHS) { 264 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 265 } 266 }; 267 268 } // end namespace llvm 269 270 namespace { 271 272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 273 // the indirect virtual call. 274 struct VirtualCallSite { 275 Value *VTable; 276 CallSite CS; 277 278 // If non-null, this field points to the associated unsafe use count stored in 279 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 280 // of that field for details. 281 unsigned *NumUnsafeUses; 282 283 void 284 emitRemark(const StringRef OptName, const StringRef TargetName, 285 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 286 Function *F = CS.getCaller(); 287 DebugLoc DLoc = CS->getDebugLoc(); 288 BasicBlock *Block = CS.getParent(); 289 290 using namespace ore; 291 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 292 << NV("Optimization", OptName) 293 << ": devirtualized a call to " 294 << NV("FunctionName", TargetName)); 295 } 296 297 void replaceAndErase( 298 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 299 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 300 Value *New) { 301 if (RemarksEnabled) 302 emitRemark(OptName, TargetName, OREGetter); 303 CS->replaceAllUsesWith(New); 304 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 305 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 306 II->getUnwindDest()->removePredecessor(II->getParent()); 307 } 308 CS->eraseFromParent(); 309 // This use is no longer unsafe. 310 if (NumUnsafeUses) 311 --*NumUnsafeUses; 312 } 313 }; 314 315 // Call site information collected for a specific VTableSlot and possibly a list 316 // of constant integer arguments. The grouping by arguments is handled by the 317 // VTableSlotInfo class. 318 struct CallSiteInfo { 319 /// The set of call sites for this slot. Used during regular LTO and the 320 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 321 /// call sites that appear in the merged module itself); in each of these 322 /// cases we are directly operating on the call sites at the IR level. 323 std::vector<VirtualCallSite> CallSites; 324 325 /// Whether all call sites represented by this CallSiteInfo, including those 326 /// in summaries, have been devirtualized. This starts off as true because a 327 /// default constructed CallSiteInfo represents no call sites. 328 bool AllCallSitesDevirted = true; 329 330 // These fields are used during the export phase of ThinLTO and reflect 331 // information collected from function summaries. 332 333 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 334 /// this slot. 335 bool SummaryHasTypeTestAssumeUsers = false; 336 337 /// CFI-specific: a vector containing the list of function summaries that use 338 /// the llvm.type.checked.load intrinsic and therefore will require 339 /// resolutions for llvm.type.test in order to implement CFI checks if 340 /// devirtualization was unsuccessful. If devirtualization was successful, the 341 /// pass will clear this vector by calling markDevirt(). If at the end of the 342 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 343 /// to each of the function summaries in the vector. 344 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 345 346 bool isExported() const { 347 return SummaryHasTypeTestAssumeUsers || 348 !SummaryTypeCheckedLoadUsers.empty(); 349 } 350 351 void markSummaryHasTypeTestAssumeUsers() { 352 SummaryHasTypeTestAssumeUsers = true; 353 AllCallSitesDevirted = false; 354 } 355 356 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 357 SummaryTypeCheckedLoadUsers.push_back(FS); 358 AllCallSitesDevirted = false; 359 } 360 361 void markDevirt() { 362 AllCallSitesDevirted = true; 363 364 // As explained in the comment for SummaryTypeCheckedLoadUsers. 365 SummaryTypeCheckedLoadUsers.clear(); 366 } 367 }; 368 369 // Call site information collected for a specific VTableSlot. 370 struct VTableSlotInfo { 371 // The set of call sites which do not have all constant integer arguments 372 // (excluding "this"). 373 CallSiteInfo CSInfo; 374 375 // The set of call sites with all constant integer arguments (excluding 376 // "this"), grouped by argument list. 377 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 378 379 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 380 381 private: 382 CallSiteInfo &findCallSiteInfo(CallSite CS); 383 }; 384 385 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 386 std::vector<uint64_t> Args; 387 auto *CI = dyn_cast<IntegerType>(CS.getType()); 388 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 389 return CSInfo; 390 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 391 auto *CI = dyn_cast<ConstantInt>(Arg); 392 if (!CI || CI->getBitWidth() > 64) 393 return CSInfo; 394 Args.push_back(CI->getZExtValue()); 395 } 396 return ConstCSInfo[Args]; 397 } 398 399 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 400 unsigned *NumUnsafeUses) { 401 auto &CSI = findCallSiteInfo(CS); 402 CSI.AllCallSitesDevirted = false; 403 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 404 } 405 406 struct DevirtModule { 407 Module &M; 408 function_ref<AAResults &(Function &)> AARGetter; 409 410 ModuleSummaryIndex *ExportSummary; 411 const ModuleSummaryIndex *ImportSummary; 412 413 IntegerType *Int8Ty; 414 PointerType *Int8PtrTy; 415 IntegerType *Int32Ty; 416 IntegerType *Int64Ty; 417 IntegerType *IntPtrTy; 418 419 bool RemarksEnabled; 420 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 421 422 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 423 424 // This map keeps track of the number of "unsafe" uses of a loaded function 425 // pointer. The key is the associated llvm.type.test intrinsic call generated 426 // by this pass. An unsafe use is one that calls the loaded function pointer 427 // directly. Every time we eliminate an unsafe use (for example, by 428 // devirtualizing it or by applying virtual constant propagation), we 429 // decrement the value stored in this map. If a value reaches zero, we can 430 // eliminate the type check by RAUWing the associated llvm.type.test call with 431 // true. 432 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 433 434 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 435 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 436 ModuleSummaryIndex *ExportSummary, 437 const ModuleSummaryIndex *ImportSummary) 438 : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary), 439 ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), 440 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 441 Int32Ty(Type::getInt32Ty(M.getContext())), 442 Int64Ty(Type::getInt64Ty(M.getContext())), 443 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 444 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 445 assert(!(ExportSummary && ImportSummary)); 446 } 447 448 bool areRemarksEnabled(); 449 450 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 451 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 452 453 void buildTypeIdentifierMap( 454 std::vector<VTableBits> &Bits, 455 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 456 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 457 bool 458 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 459 const std::set<TypeMemberInfo> &TypeMemberInfos, 460 uint64_t ByteOffset); 461 462 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 463 bool &IsExported); 464 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 465 VTableSlotInfo &SlotInfo, 466 WholeProgramDevirtResolution *Res); 467 468 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 469 bool &IsExported); 470 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 471 VTableSlotInfo &SlotInfo, 472 WholeProgramDevirtResolution *Res, VTableSlot Slot); 473 474 bool tryEvaluateFunctionsWithArgs( 475 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 476 ArrayRef<uint64_t> Args); 477 478 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 479 uint64_t TheRetVal); 480 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 481 CallSiteInfo &CSInfo, 482 WholeProgramDevirtResolution::ByArg *Res); 483 484 // Returns the global symbol name that is used to export information about the 485 // given vtable slot and list of arguments. 486 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 487 StringRef Name); 488 489 bool shouldExportConstantsAsAbsoluteSymbols(); 490 491 // This function is called during the export phase to create a symbol 492 // definition containing information about the given vtable slot and list of 493 // arguments. 494 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 495 Constant *C); 496 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 497 uint32_t Const, uint32_t &Storage); 498 499 // This function is called during the import phase to create a reference to 500 // the symbol definition created during the export phase. 501 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 502 StringRef Name); 503 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 504 StringRef Name, IntegerType *IntTy, 505 uint32_t Storage); 506 507 Constant *getMemberAddr(const TypeMemberInfo *M); 508 509 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 510 Constant *UniqueMemberAddr); 511 bool tryUniqueRetValOpt(unsigned BitWidth, 512 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 513 CallSiteInfo &CSInfo, 514 WholeProgramDevirtResolution::ByArg *Res, 515 VTableSlot Slot, ArrayRef<uint64_t> Args); 516 517 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 518 Constant *Byte, Constant *Bit); 519 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 520 VTableSlotInfo &SlotInfo, 521 WholeProgramDevirtResolution *Res, VTableSlot Slot); 522 523 void rebuildGlobal(VTableBits &B); 524 525 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 526 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 527 528 // If we were able to eliminate all unsafe uses for a type checked load, 529 // eliminate the associated type tests by replacing them with true. 530 void removeRedundantTypeTests(); 531 532 bool run(); 533 534 // Lower the module using the action and summary passed as command line 535 // arguments. For testing purposes only. 536 static bool runForTesting( 537 Module &M, function_ref<AAResults &(Function &)> AARGetter, 538 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter); 539 }; 540 541 struct WholeProgramDevirt : public ModulePass { 542 static char ID; 543 544 bool UseCommandLine = false; 545 546 ModuleSummaryIndex *ExportSummary; 547 const ModuleSummaryIndex *ImportSummary; 548 549 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 550 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 551 } 552 553 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 554 const ModuleSummaryIndex *ImportSummary) 555 : ModulePass(ID), ExportSummary(ExportSummary), 556 ImportSummary(ImportSummary) { 557 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 558 } 559 560 bool runOnModule(Module &M) override { 561 if (skipModule(M)) 562 return false; 563 564 // In the new pass manager, we can request the optimization 565 // remark emitter pass on a per-function-basis, which the 566 // OREGetter will do for us. 567 // In the old pass manager, this is harder, so we just build 568 // an optimization remark emitter on the fly, when we need it. 569 std::unique_ptr<OptimizationRemarkEmitter> ORE; 570 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 571 ORE = make_unique<OptimizationRemarkEmitter>(F); 572 return *ORE; 573 }; 574 575 if (UseCommandLine) 576 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter); 577 578 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary, 579 ImportSummary) 580 .run(); 581 } 582 583 void getAnalysisUsage(AnalysisUsage &AU) const override { 584 AU.addRequired<AssumptionCacheTracker>(); 585 AU.addRequired<TargetLibraryInfoWrapperPass>(); 586 } 587 }; 588 589 } // end anonymous namespace 590 591 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 592 "Whole program devirtualization", false, false) 593 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 594 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 595 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 596 "Whole program devirtualization", false, false) 597 char WholeProgramDevirt::ID = 0; 598 599 ModulePass * 600 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 601 const ModuleSummaryIndex *ImportSummary) { 602 return new WholeProgramDevirt(ExportSummary, ImportSummary); 603 } 604 605 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 606 ModuleAnalysisManager &AM) { 607 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 608 auto AARGetter = [&](Function &F) -> AAResults & { 609 return FAM.getResult<AAManager>(F); 610 }; 611 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 612 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 613 }; 614 if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run()) 615 return PreservedAnalyses::all(); 616 return PreservedAnalyses::none(); 617 } 618 619 bool DevirtModule::runForTesting( 620 Module &M, function_ref<AAResults &(Function &)> AARGetter, 621 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 622 ModuleSummaryIndex Summary(/*IsPerformingAnalysis=*/false); 623 624 // Handle the command-line summary arguments. This code is for testing 625 // purposes only, so we handle errors directly. 626 if (!ClReadSummary.empty()) { 627 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 628 ": "); 629 auto ReadSummaryFile = 630 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 631 632 yaml::Input In(ReadSummaryFile->getBuffer()); 633 In >> Summary; 634 ExitOnErr(errorCodeToError(In.error())); 635 } 636 637 bool Changed = 638 DevirtModule( 639 M, AARGetter, OREGetter, 640 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 641 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 642 .run(); 643 644 if (!ClWriteSummary.empty()) { 645 ExitOnError ExitOnErr( 646 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 647 std::error_code EC; 648 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 649 ExitOnErr(errorCodeToError(EC)); 650 651 yaml::Output Out(OS); 652 Out << Summary; 653 } 654 655 return Changed; 656 } 657 658 void DevirtModule::buildTypeIdentifierMap( 659 std::vector<VTableBits> &Bits, 660 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 661 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 662 Bits.reserve(M.getGlobalList().size()); 663 SmallVector<MDNode *, 2> Types; 664 for (GlobalVariable &GV : M.globals()) { 665 Types.clear(); 666 GV.getMetadata(LLVMContext::MD_type, Types); 667 if (Types.empty()) 668 continue; 669 670 VTableBits *&BitsPtr = GVToBits[&GV]; 671 if (!BitsPtr) { 672 Bits.emplace_back(); 673 Bits.back().GV = &GV; 674 Bits.back().ObjectSize = 675 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 676 BitsPtr = &Bits.back(); 677 } 678 679 for (MDNode *Type : Types) { 680 auto TypeID = Type->getOperand(1).get(); 681 682 uint64_t Offset = 683 cast<ConstantInt>( 684 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 685 ->getZExtValue(); 686 687 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 688 } 689 } 690 } 691 692 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 693 if (I->getType()->isPointerTy()) { 694 if (Offset == 0) 695 return I; 696 return nullptr; 697 } 698 699 const DataLayout &DL = M.getDataLayout(); 700 701 if (auto *C = dyn_cast<ConstantStruct>(I)) { 702 const StructLayout *SL = DL.getStructLayout(C->getType()); 703 if (Offset >= SL->getSizeInBytes()) 704 return nullptr; 705 706 unsigned Op = SL->getElementContainingOffset(Offset); 707 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 708 Offset - SL->getElementOffset(Op)); 709 } 710 if (auto *C = dyn_cast<ConstantArray>(I)) { 711 ArrayType *VTableTy = C->getType(); 712 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 713 714 unsigned Op = Offset / ElemSize; 715 if (Op >= C->getNumOperands()) 716 return nullptr; 717 718 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 719 Offset % ElemSize); 720 } 721 return nullptr; 722 } 723 724 bool DevirtModule::tryFindVirtualCallTargets( 725 std::vector<VirtualCallTarget> &TargetsForSlot, 726 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 727 for (const TypeMemberInfo &TM : TypeMemberInfos) { 728 if (!TM.Bits->GV->isConstant()) 729 return false; 730 731 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 732 TM.Offset + ByteOffset); 733 if (!Ptr) 734 return false; 735 736 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 737 if (!Fn) 738 return false; 739 740 // We can disregard __cxa_pure_virtual as a possible call target, as 741 // calls to pure virtuals are UB. 742 if (Fn->getName() == "__cxa_pure_virtual") 743 continue; 744 745 TargetsForSlot.push_back({Fn, &TM}); 746 } 747 748 // Give up if we couldn't find any targets. 749 return !TargetsForSlot.empty(); 750 } 751 752 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 753 Constant *TheFn, bool &IsExported) { 754 auto Apply = [&](CallSiteInfo &CSInfo) { 755 for (auto &&VCallSite : CSInfo.CallSites) { 756 if (RemarksEnabled) 757 VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter); 758 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 759 TheFn, VCallSite.CS.getCalledValue()->getType())); 760 // This use is no longer unsafe. 761 if (VCallSite.NumUnsafeUses) 762 --*VCallSite.NumUnsafeUses; 763 } 764 if (CSInfo.isExported()) 765 IsExported = true; 766 CSInfo.markDevirt(); 767 }; 768 Apply(SlotInfo.CSInfo); 769 for (auto &P : SlotInfo.ConstCSInfo) 770 Apply(P.second); 771 } 772 773 bool DevirtModule::trySingleImplDevirt( 774 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 775 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 776 // See if the program contains a single implementation of this virtual 777 // function. 778 Function *TheFn = TargetsForSlot[0].Fn; 779 for (auto &&Target : TargetsForSlot) 780 if (TheFn != Target.Fn) 781 return false; 782 783 // If so, update each call site to call that implementation directly. 784 if (RemarksEnabled) 785 TargetsForSlot[0].WasDevirt = true; 786 787 bool IsExported = false; 788 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 789 if (!IsExported) 790 return false; 791 792 // If the only implementation has local linkage, we must promote to external 793 // to make it visible to thin LTO objects. We can only get here during the 794 // ThinLTO export phase. 795 if (TheFn->hasLocalLinkage()) { 796 std::string NewName = (TheFn->getName() + "$merged").str(); 797 798 // Since we are renaming the function, any comdats with the same name must 799 // also be renamed. This is required when targeting COFF, as the comdat name 800 // must match one of the names of the symbols in the comdat. 801 if (Comdat *C = TheFn->getComdat()) { 802 if (C->getName() == TheFn->getName()) { 803 Comdat *NewC = M.getOrInsertComdat(NewName); 804 NewC->setSelectionKind(C->getSelectionKind()); 805 for (GlobalObject &GO : M.global_objects()) 806 if (GO.getComdat() == C) 807 GO.setComdat(NewC); 808 } 809 } 810 811 TheFn->setLinkage(GlobalValue::ExternalLinkage); 812 TheFn->setVisibility(GlobalValue::HiddenVisibility); 813 TheFn->setName(NewName); 814 } 815 816 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 817 Res->SingleImplName = TheFn->getName(); 818 819 return true; 820 } 821 822 void DevirtModule::tryICallBranchFunnel( 823 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 824 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 825 Triple T(M.getTargetTriple()); 826 if (T.getArch() != Triple::x86_64) 827 return; 828 829 if (TargetsForSlot.size() > ClThreshold) 830 return; 831 832 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 833 if (!HasNonDevirt) 834 for (auto &P : SlotInfo.ConstCSInfo) 835 if (!P.second.AllCallSitesDevirted) { 836 HasNonDevirt = true; 837 break; 838 } 839 840 if (!HasNonDevirt) 841 return; 842 843 FunctionType *FT = 844 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 845 Function *JT; 846 if (isa<MDString>(Slot.TypeID)) { 847 JT = Function::Create(FT, Function::ExternalLinkage, 848 getGlobalName(Slot, {}, "branch_funnel"), &M); 849 JT->setVisibility(GlobalValue::HiddenVisibility); 850 } else { 851 JT = Function::Create(FT, Function::InternalLinkage, "branch_funnel", &M); 852 } 853 JT->addAttribute(1, Attribute::Nest); 854 855 std::vector<Value *> JTArgs; 856 JTArgs.push_back(JT->arg_begin()); 857 for (auto &T : TargetsForSlot) { 858 JTArgs.push_back(getMemberAddr(T.TM)); 859 JTArgs.push_back(T.Fn); 860 } 861 862 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 863 Constant *Intr = 864 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 865 866 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 867 CI->setTailCallKind(CallInst::TCK_MustTail); 868 ReturnInst::Create(M.getContext(), nullptr, BB); 869 870 bool IsExported = false; 871 applyICallBranchFunnel(SlotInfo, JT, IsExported); 872 if (IsExported) 873 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 874 } 875 876 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 877 Constant *JT, bool &IsExported) { 878 auto Apply = [&](CallSiteInfo &CSInfo) { 879 if (CSInfo.isExported()) 880 IsExported = true; 881 if (CSInfo.AllCallSitesDevirted) 882 return; 883 for (auto &&VCallSite : CSInfo.CallSites) { 884 CallSite CS = VCallSite.CS; 885 886 // Jump tables are only profitable if the retpoline mitigation is enabled. 887 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 888 if (FSAttr.hasAttribute(Attribute::None) || 889 !FSAttr.getValueAsString().contains("+retpoline")) 890 continue; 891 892 if (RemarksEnabled) 893 VCallSite.emitRemark("branch-funnel", JT->getName(), OREGetter); 894 895 // Pass the address of the vtable in the nest register, which is r10 on 896 // x86_64. 897 std::vector<Type *> NewArgs; 898 NewArgs.push_back(Int8PtrTy); 899 for (Type *T : CS.getFunctionType()->params()) 900 NewArgs.push_back(T); 901 PointerType *NewFT = PointerType::getUnqual( 902 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 903 CS.getFunctionType()->isVarArg())); 904 905 IRBuilder<> IRB(CS.getInstruction()); 906 std::vector<Value *> Args; 907 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 908 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 909 Args.push_back(CS.getArgOperand(I)); 910 911 CallSite NewCS; 912 if (CS.isCall()) 913 NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args); 914 else 915 NewCS = IRB.CreateInvoke( 916 IRB.CreateBitCast(JT, NewFT), 917 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 918 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 919 NewCS.setCallingConv(CS.getCallingConv()); 920 921 AttributeList Attrs = CS.getAttributes(); 922 std::vector<AttributeSet> NewArgAttrs; 923 NewArgAttrs.push_back(AttributeSet::get( 924 M.getContext(), ArrayRef<Attribute>{Attribute::get( 925 M.getContext(), Attribute::Nest)})); 926 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 927 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 928 NewCS.setAttributes( 929 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 930 Attrs.getRetAttributes(), NewArgAttrs)); 931 932 CS->replaceAllUsesWith(NewCS.getInstruction()); 933 CS->eraseFromParent(); 934 935 // This use is no longer unsafe. 936 if (VCallSite.NumUnsafeUses) 937 --*VCallSite.NumUnsafeUses; 938 } 939 // Don't mark as devirtualized because there may be callers compiled without 940 // retpoline mitigation, which would mean that they are lowered to 941 // llvm.type.test and therefore require an llvm.type.test resolution for the 942 // type identifier. 943 }; 944 Apply(SlotInfo.CSInfo); 945 for (auto &P : SlotInfo.ConstCSInfo) 946 Apply(P.second); 947 } 948 949 bool DevirtModule::tryEvaluateFunctionsWithArgs( 950 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 951 ArrayRef<uint64_t> Args) { 952 // Evaluate each function and store the result in each target's RetVal 953 // field. 954 for (VirtualCallTarget &Target : TargetsForSlot) { 955 if (Target.Fn->arg_size() != Args.size() + 1) 956 return false; 957 958 Evaluator Eval(M.getDataLayout(), nullptr); 959 SmallVector<Constant *, 2> EvalArgs; 960 EvalArgs.push_back( 961 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 962 for (unsigned I = 0; I != Args.size(); ++I) { 963 auto *ArgTy = dyn_cast<IntegerType>( 964 Target.Fn->getFunctionType()->getParamType(I + 1)); 965 if (!ArgTy) 966 return false; 967 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 968 } 969 970 Constant *RetVal; 971 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 972 !isa<ConstantInt>(RetVal)) 973 return false; 974 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 975 } 976 return true; 977 } 978 979 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 980 uint64_t TheRetVal) { 981 for (auto Call : CSInfo.CallSites) 982 Call.replaceAndErase( 983 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 984 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 985 CSInfo.markDevirt(); 986 } 987 988 bool DevirtModule::tryUniformRetValOpt( 989 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 990 WholeProgramDevirtResolution::ByArg *Res) { 991 // Uniform return value optimization. If all functions return the same 992 // constant, replace all calls with that constant. 993 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 994 for (const VirtualCallTarget &Target : TargetsForSlot) 995 if (Target.RetVal != TheRetVal) 996 return false; 997 998 if (CSInfo.isExported()) { 999 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1000 Res->Info = TheRetVal; 1001 } 1002 1003 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1004 if (RemarksEnabled) 1005 for (auto &&Target : TargetsForSlot) 1006 Target.WasDevirt = true; 1007 return true; 1008 } 1009 1010 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1011 ArrayRef<uint64_t> Args, 1012 StringRef Name) { 1013 std::string FullName = "__typeid_"; 1014 raw_string_ostream OS(FullName); 1015 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1016 for (uint64_t Arg : Args) 1017 OS << '_' << Arg; 1018 OS << '_' << Name; 1019 return OS.str(); 1020 } 1021 1022 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1023 Triple T(M.getTargetTriple()); 1024 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1025 T.getObjectFormat() == Triple::ELF; 1026 } 1027 1028 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1029 StringRef Name, Constant *C) { 1030 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1031 getGlobalName(Slot, Args, Name), C, &M); 1032 GA->setVisibility(GlobalValue::HiddenVisibility); 1033 } 1034 1035 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1036 StringRef Name, uint32_t Const, 1037 uint32_t &Storage) { 1038 if (shouldExportConstantsAsAbsoluteSymbols()) { 1039 exportGlobal( 1040 Slot, Args, Name, 1041 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1042 return; 1043 } 1044 1045 Storage = Const; 1046 } 1047 1048 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1049 StringRef Name) { 1050 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1051 auto *GV = dyn_cast<GlobalVariable>(C); 1052 if (GV) 1053 GV->setVisibility(GlobalValue::HiddenVisibility); 1054 return C; 1055 } 1056 1057 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1058 StringRef Name, IntegerType *IntTy, 1059 uint32_t Storage) { 1060 if (!shouldExportConstantsAsAbsoluteSymbols()) 1061 return ConstantInt::get(IntTy, Storage); 1062 1063 Constant *C = importGlobal(Slot, Args, Name); 1064 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1065 C = ConstantExpr::getPtrToInt(C, IntTy); 1066 1067 // We only need to set metadata if the global is newly created, in which 1068 // case it would not have hidden visibility. 1069 if (GV->getMetadata(LLVMContext::MD_absolute_symbol)) 1070 return C; 1071 1072 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1073 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1074 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1075 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1076 MDNode::get(M.getContext(), {MinC, MaxC})); 1077 }; 1078 unsigned AbsWidth = IntTy->getBitWidth(); 1079 if (AbsWidth == IntPtrTy->getBitWidth()) 1080 SetAbsRange(~0ull, ~0ull); // Full set. 1081 else 1082 SetAbsRange(0, 1ull << AbsWidth); 1083 return C; 1084 } 1085 1086 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1087 bool IsOne, 1088 Constant *UniqueMemberAddr) { 1089 for (auto &&Call : CSInfo.CallSites) { 1090 IRBuilder<> B(Call.CS.getInstruction()); 1091 Value *Cmp = 1092 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1093 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1094 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1095 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1096 Cmp); 1097 } 1098 CSInfo.markDevirt(); 1099 } 1100 1101 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1102 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1103 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1104 ConstantInt::get(Int64Ty, M->Offset)); 1105 } 1106 1107 bool DevirtModule::tryUniqueRetValOpt( 1108 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1109 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1110 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1111 // IsOne controls whether we look for a 0 or a 1. 1112 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1113 const TypeMemberInfo *UniqueMember = nullptr; 1114 for (const VirtualCallTarget &Target : TargetsForSlot) { 1115 if (Target.RetVal == (IsOne ? 1 : 0)) { 1116 if (UniqueMember) 1117 return false; 1118 UniqueMember = Target.TM; 1119 } 1120 } 1121 1122 // We should have found a unique member or bailed out by now. We already 1123 // checked for a uniform return value in tryUniformRetValOpt. 1124 assert(UniqueMember); 1125 1126 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1127 if (CSInfo.isExported()) { 1128 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1129 Res->Info = IsOne; 1130 1131 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1132 } 1133 1134 // Replace each call with the comparison. 1135 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1136 UniqueMemberAddr); 1137 1138 // Update devirtualization statistics for targets. 1139 if (RemarksEnabled) 1140 for (auto &&Target : TargetsForSlot) 1141 Target.WasDevirt = true; 1142 1143 return true; 1144 }; 1145 1146 if (BitWidth == 1) { 1147 if (tryUniqueRetValOptFor(true)) 1148 return true; 1149 if (tryUniqueRetValOptFor(false)) 1150 return true; 1151 } 1152 return false; 1153 } 1154 1155 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1156 Constant *Byte, Constant *Bit) { 1157 for (auto Call : CSInfo.CallSites) { 1158 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1159 IRBuilder<> B(Call.CS.getInstruction()); 1160 Value *Addr = 1161 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1162 if (RetType->getBitWidth() == 1) { 1163 Value *Bits = B.CreateLoad(Addr); 1164 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1165 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1166 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1167 OREGetter, IsBitSet); 1168 } else { 1169 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1170 Value *Val = B.CreateLoad(RetType, ValAddr); 1171 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1172 OREGetter, Val); 1173 } 1174 } 1175 CSInfo.markDevirt(); 1176 } 1177 1178 bool DevirtModule::tryVirtualConstProp( 1179 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1180 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1181 // This only works if the function returns an integer. 1182 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1183 if (!RetType) 1184 return false; 1185 unsigned BitWidth = RetType->getBitWidth(); 1186 if (BitWidth > 64) 1187 return false; 1188 1189 // Make sure that each function is defined, does not access memory, takes at 1190 // least one argument, does not use its first argument (which we assume is 1191 // 'this'), and has the same return type. 1192 // 1193 // Note that we test whether this copy of the function is readnone, rather 1194 // than testing function attributes, which must hold for any copy of the 1195 // function, even a less optimized version substituted at link time. This is 1196 // sound because the virtual constant propagation optimizations effectively 1197 // inline all implementations of the virtual function into each call site, 1198 // rather than using function attributes to perform local optimization. 1199 for (VirtualCallTarget &Target : TargetsForSlot) { 1200 if (Target.Fn->isDeclaration() || 1201 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1202 MAK_ReadNone || 1203 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1204 Target.Fn->getReturnType() != RetType) 1205 return false; 1206 } 1207 1208 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1209 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1210 continue; 1211 1212 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1213 if (Res) 1214 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1215 1216 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1217 continue; 1218 1219 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1220 ResByArg, Slot, CSByConstantArg.first)) 1221 continue; 1222 1223 // Find an allocation offset in bits in all vtables associated with the 1224 // type. 1225 uint64_t AllocBefore = 1226 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1227 uint64_t AllocAfter = 1228 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1229 1230 // Calculate the total amount of padding needed to store a value at both 1231 // ends of the object. 1232 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1233 for (auto &&Target : TargetsForSlot) { 1234 TotalPaddingBefore += std::max<int64_t>( 1235 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1236 TotalPaddingAfter += std::max<int64_t>( 1237 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1238 } 1239 1240 // If the amount of padding is too large, give up. 1241 // FIXME: do something smarter here. 1242 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1243 continue; 1244 1245 // Calculate the offset to the value as a (possibly negative) byte offset 1246 // and (if applicable) a bit offset, and store the values in the targets. 1247 int64_t OffsetByte; 1248 uint64_t OffsetBit; 1249 if (TotalPaddingBefore <= TotalPaddingAfter) 1250 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1251 OffsetBit); 1252 else 1253 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1254 OffsetBit); 1255 1256 if (RemarksEnabled) 1257 for (auto &&Target : TargetsForSlot) 1258 Target.WasDevirt = true; 1259 1260 1261 if (CSByConstantArg.second.isExported()) { 1262 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1263 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1264 ResByArg->Byte); 1265 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1266 ResByArg->Bit); 1267 } 1268 1269 // Rewrite each call to a load from OffsetByte/OffsetBit. 1270 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1271 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1272 applyVirtualConstProp(CSByConstantArg.second, 1273 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1274 } 1275 return true; 1276 } 1277 1278 void DevirtModule::rebuildGlobal(VTableBits &B) { 1279 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1280 return; 1281 1282 // Align each byte array to pointer width. 1283 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1284 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1285 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1286 1287 // Before was stored in reverse order; flip it now. 1288 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1289 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1290 1291 // Build an anonymous global containing the before bytes, followed by the 1292 // original initializer, followed by the after bytes. 1293 auto NewInit = ConstantStruct::getAnon( 1294 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1295 B.GV->getInitializer(), 1296 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1297 auto NewGV = 1298 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1299 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1300 NewGV->setSection(B.GV->getSection()); 1301 NewGV->setComdat(B.GV->getComdat()); 1302 1303 // Copy the original vtable's metadata to the anonymous global, adjusting 1304 // offsets as required. 1305 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1306 1307 // Build an alias named after the original global, pointing at the second 1308 // element (the original initializer). 1309 auto Alias = GlobalAlias::create( 1310 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1311 ConstantExpr::getGetElementPtr( 1312 NewInit->getType(), NewGV, 1313 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1314 ConstantInt::get(Int32Ty, 1)}), 1315 &M); 1316 Alias->setVisibility(B.GV->getVisibility()); 1317 Alias->takeName(B.GV); 1318 1319 B.GV->replaceAllUsesWith(Alias); 1320 B.GV->eraseFromParent(); 1321 } 1322 1323 bool DevirtModule::areRemarksEnabled() { 1324 const auto &FL = M.getFunctionList(); 1325 if (FL.empty()) 1326 return false; 1327 const Function &Fn = FL.front(); 1328 1329 const auto &BBL = Fn.getBasicBlockList(); 1330 if (BBL.empty()) 1331 return false; 1332 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1333 return DI.isEnabled(); 1334 } 1335 1336 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1337 Function *AssumeFunc) { 1338 // Find all virtual calls via a virtual table pointer %p under an assumption 1339 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1340 // points to a member of the type identifier %md. Group calls by (type ID, 1341 // offset) pair (effectively the identity of the virtual function) and store 1342 // to CallSlots. 1343 DenseSet<Value *> SeenPtrs; 1344 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1345 I != E;) { 1346 auto CI = dyn_cast<CallInst>(I->getUser()); 1347 ++I; 1348 if (!CI) 1349 continue; 1350 1351 // Search for virtual calls based on %p and add them to DevirtCalls. 1352 SmallVector<DevirtCallSite, 1> DevirtCalls; 1353 SmallVector<CallInst *, 1> Assumes; 1354 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 1355 1356 // If we found any, add them to CallSlots. Only do this if we haven't seen 1357 // the vtable pointer before, as it may have been CSE'd with pointers from 1358 // other call sites, and we don't want to process call sites multiple times. 1359 if (!Assumes.empty()) { 1360 Metadata *TypeId = 1361 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1362 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1363 if (SeenPtrs.insert(Ptr).second) { 1364 for (DevirtCallSite Call : DevirtCalls) { 1365 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1366 } 1367 } 1368 } 1369 1370 // We no longer need the assumes or the type test. 1371 for (auto Assume : Assumes) 1372 Assume->eraseFromParent(); 1373 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1374 // may use the vtable argument later. 1375 if (CI->use_empty()) 1376 CI->eraseFromParent(); 1377 } 1378 } 1379 1380 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1381 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1382 1383 for (auto I = TypeCheckedLoadFunc->use_begin(), 1384 E = TypeCheckedLoadFunc->use_end(); 1385 I != E;) { 1386 auto CI = dyn_cast<CallInst>(I->getUser()); 1387 ++I; 1388 if (!CI) 1389 continue; 1390 1391 Value *Ptr = CI->getArgOperand(0); 1392 Value *Offset = CI->getArgOperand(1); 1393 Value *TypeIdValue = CI->getArgOperand(2); 1394 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1395 1396 SmallVector<DevirtCallSite, 1> DevirtCalls; 1397 SmallVector<Instruction *, 1> LoadedPtrs; 1398 SmallVector<Instruction *, 1> Preds; 1399 bool HasNonCallUses = false; 1400 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1401 HasNonCallUses, CI); 1402 1403 // Start by generating "pessimistic" code that explicitly loads the function 1404 // pointer from the vtable and performs the type check. If possible, we will 1405 // eliminate the load and the type check later. 1406 1407 // If possible, only generate the load at the point where it is used. 1408 // This helps avoid unnecessary spills. 1409 IRBuilder<> LoadB( 1410 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1411 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1412 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1413 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1414 1415 for (Instruction *LoadedPtr : LoadedPtrs) { 1416 LoadedPtr->replaceAllUsesWith(LoadedValue); 1417 LoadedPtr->eraseFromParent(); 1418 } 1419 1420 // Likewise for the type test. 1421 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1422 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1423 1424 for (Instruction *Pred : Preds) { 1425 Pred->replaceAllUsesWith(TypeTestCall); 1426 Pred->eraseFromParent(); 1427 } 1428 1429 // We have already erased any extractvalue instructions that refer to the 1430 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1431 // (although this is unlikely). In that case, explicitly build a pair and 1432 // RAUW it. 1433 if (!CI->use_empty()) { 1434 Value *Pair = UndefValue::get(CI->getType()); 1435 IRBuilder<> B(CI); 1436 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1437 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1438 CI->replaceAllUsesWith(Pair); 1439 } 1440 1441 // The number of unsafe uses is initially the number of uses. 1442 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1443 NumUnsafeUses = DevirtCalls.size(); 1444 1445 // If the function pointer has a non-call user, we cannot eliminate the type 1446 // check, as one of those users may eventually call the pointer. Increment 1447 // the unsafe use count to make sure it cannot reach zero. 1448 if (HasNonCallUses) 1449 ++NumUnsafeUses; 1450 for (DevirtCallSite Call : DevirtCalls) { 1451 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1452 &NumUnsafeUses); 1453 } 1454 1455 CI->eraseFromParent(); 1456 } 1457 } 1458 1459 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1460 const TypeIdSummary *TidSummary = 1461 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1462 if (!TidSummary) 1463 return; 1464 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1465 if (ResI == TidSummary->WPDRes.end()) 1466 return; 1467 const WholeProgramDevirtResolution &Res = ResI->second; 1468 1469 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1470 // The type of the function in the declaration is irrelevant because every 1471 // call site will cast it to the correct type. 1472 auto *SingleImpl = M.getOrInsertFunction( 1473 Res.SingleImplName, Type::getVoidTy(M.getContext())); 1474 1475 // This is the import phase so we should not be exporting anything. 1476 bool IsExported = false; 1477 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1478 assert(!IsExported); 1479 } 1480 1481 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1482 auto I = Res.ResByArg.find(CSByConstantArg.first); 1483 if (I == Res.ResByArg.end()) 1484 continue; 1485 auto &ResByArg = I->second; 1486 // FIXME: We should figure out what to do about the "function name" argument 1487 // to the apply* functions, as the function names are unavailable during the 1488 // importing phase. For now we just pass the empty string. This does not 1489 // impact correctness because the function names are just used for remarks. 1490 switch (ResByArg.TheKind) { 1491 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1492 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1493 break; 1494 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1495 Constant *UniqueMemberAddr = 1496 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1497 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1498 UniqueMemberAddr); 1499 break; 1500 } 1501 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1502 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1503 Int32Ty, ResByArg.Byte); 1504 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1505 ResByArg.Bit); 1506 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1507 break; 1508 } 1509 default: 1510 break; 1511 } 1512 } 1513 1514 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1515 auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1516 Type::getVoidTy(M.getContext())); 1517 bool IsExported = false; 1518 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1519 assert(!IsExported); 1520 } 1521 } 1522 1523 void DevirtModule::removeRedundantTypeTests() { 1524 auto True = ConstantInt::getTrue(M.getContext()); 1525 for (auto &&U : NumUnsafeUsesForTypeTest) { 1526 if (U.second == 0) { 1527 U.first->replaceAllUsesWith(True); 1528 U.first->eraseFromParent(); 1529 } 1530 } 1531 } 1532 1533 bool DevirtModule::run() { 1534 Function *TypeTestFunc = 1535 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1536 Function *TypeCheckedLoadFunc = 1537 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1538 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1539 1540 // Normally if there are no users of the devirtualization intrinsics in the 1541 // module, this pass has nothing to do. But if we are exporting, we also need 1542 // to handle any users that appear only in the function summaries. 1543 if (!ExportSummary && 1544 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1545 AssumeFunc->use_empty()) && 1546 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1547 return false; 1548 1549 if (TypeTestFunc && AssumeFunc) 1550 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1551 1552 if (TypeCheckedLoadFunc) 1553 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1554 1555 if (ImportSummary) { 1556 for (auto &S : CallSlots) 1557 importResolution(S.first, S.second); 1558 1559 removeRedundantTypeTests(); 1560 1561 // The rest of the code is only necessary when exporting or during regular 1562 // LTO, so we are done. 1563 return true; 1564 } 1565 1566 // Rebuild type metadata into a map for easy lookup. 1567 std::vector<VTableBits> Bits; 1568 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1569 buildTypeIdentifierMap(Bits, TypeIdMap); 1570 if (TypeIdMap.empty()) 1571 return true; 1572 1573 // Collect information from summary about which calls to try to devirtualize. 1574 if (ExportSummary) { 1575 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1576 for (auto &P : TypeIdMap) { 1577 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1578 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1579 TypeId); 1580 } 1581 1582 for (auto &P : *ExportSummary) { 1583 for (auto &S : P.second.SummaryList) { 1584 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1585 if (!FS) 1586 continue; 1587 // FIXME: Only add live functions. 1588 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1589 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1590 CallSlots[{MD, VF.Offset}] 1591 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1592 } 1593 } 1594 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1595 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1596 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1597 } 1598 } 1599 for (const FunctionSummary::ConstVCall &VC : 1600 FS->type_test_assume_const_vcalls()) { 1601 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1602 CallSlots[{MD, VC.VFunc.Offset}] 1603 .ConstCSInfo[VC.Args] 1604 .markSummaryHasTypeTestAssumeUsers(); 1605 } 1606 } 1607 for (const FunctionSummary::ConstVCall &VC : 1608 FS->type_checked_load_const_vcalls()) { 1609 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1610 CallSlots[{MD, VC.VFunc.Offset}] 1611 .ConstCSInfo[VC.Args] 1612 .addSummaryTypeCheckedLoadUser(FS); 1613 } 1614 } 1615 } 1616 } 1617 } 1618 1619 // For each (type, offset) pair: 1620 bool DidVirtualConstProp = false; 1621 std::map<std::string, Function*> DevirtTargets; 1622 for (auto &S : CallSlots) { 1623 // Search each of the members of the type identifier for the virtual 1624 // function implementation at offset S.first.ByteOffset, and add to 1625 // TargetsForSlot. 1626 std::vector<VirtualCallTarget> TargetsForSlot; 1627 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1628 S.first.ByteOffset)) { 1629 WholeProgramDevirtResolution *Res = nullptr; 1630 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1631 Res = &ExportSummary 1632 ->getOrInsertTypeIdSummary( 1633 cast<MDString>(S.first.TypeID)->getString()) 1634 .WPDRes[S.first.ByteOffset]; 1635 1636 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1637 DidVirtualConstProp |= 1638 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1639 1640 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1641 } 1642 1643 // Collect functions devirtualized at least for one call site for stats. 1644 if (RemarksEnabled) 1645 for (const auto &T : TargetsForSlot) 1646 if (T.WasDevirt) 1647 DevirtTargets[T.Fn->getName()] = T.Fn; 1648 } 1649 1650 // CFI-specific: if we are exporting and any llvm.type.checked.load 1651 // intrinsics were *not* devirtualized, we need to add the resulting 1652 // llvm.type.test intrinsics to the function summaries so that the 1653 // LowerTypeTests pass will export them. 1654 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1655 auto GUID = 1656 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1657 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1658 FS->addTypeTest(GUID); 1659 for (auto &CCS : S.second.ConstCSInfo) 1660 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1661 FS->addTypeTest(GUID); 1662 } 1663 } 1664 1665 if (RemarksEnabled) { 1666 // Generate remarks for each devirtualized function. 1667 for (const auto &DT : DevirtTargets) { 1668 Function *F = DT.second; 1669 1670 using namespace ore; 1671 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1672 << "devirtualized " 1673 << NV("FunctionName", F->getName())); 1674 } 1675 } 1676 1677 removeRedundantTypeTests(); 1678 1679 // Rebuild each global we touched as part of virtual constant propagation to 1680 // include the before and after bytes. 1681 if (DidVirtualConstProp) 1682 for (VTableBits &B : Bits) 1683 rebuildGlobal(B); 1684 1685 return true; 1686 } 1687