1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/iterator_range.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/TypeMetadataUtils.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalVariable.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/LLVMContext.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ModuleSummaryIndexYAML.h" 73 #include "llvm/Pass.h" 74 #include "llvm/PassRegistry.h" 75 #include "llvm/PassSupport.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Error.h" 78 #include "llvm/Support/FileSystem.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Transforms/IPO.h" 81 #include "llvm/Transforms/IPO/FunctionAttrs.h" 82 #include "llvm/Transforms/Utils/Evaluator.h" 83 #include <algorithm> 84 #include <cstddef> 85 #include <map> 86 #include <set> 87 #include <string> 88 89 using namespace llvm; 90 using namespace wholeprogramdevirt; 91 92 #define DEBUG_TYPE "wholeprogramdevirt" 93 94 static cl::opt<PassSummaryAction> ClSummaryAction( 95 "wholeprogramdevirt-summary-action", 96 cl::desc("What to do with the summary when running this pass"), 97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 98 clEnumValN(PassSummaryAction::Import, "import", 99 "Import typeid resolutions from summary and globals"), 100 clEnumValN(PassSummaryAction::Export, "export", 101 "Export typeid resolutions to summary and globals")), 102 cl::Hidden); 103 104 static cl::opt<std::string> ClReadSummary( 105 "wholeprogramdevirt-read-summary", 106 cl::desc("Read summary from given YAML file before running pass"), 107 cl::Hidden); 108 109 static cl::opt<std::string> ClWriteSummary( 110 "wholeprogramdevirt-write-summary", 111 cl::desc("Write summary to given YAML file after running pass"), 112 cl::Hidden); 113 114 // Find the minimum offset that we may store a value of size Size bits at. If 115 // IsAfter is set, look for an offset before the object, otherwise look for an 116 // offset after the object. 117 uint64_t 118 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 119 bool IsAfter, uint64_t Size) { 120 // Find a minimum offset taking into account only vtable sizes. 121 uint64_t MinByte = 0; 122 for (const VirtualCallTarget &Target : Targets) { 123 if (IsAfter) 124 MinByte = std::max(MinByte, Target.minAfterBytes()); 125 else 126 MinByte = std::max(MinByte, Target.minBeforeBytes()); 127 } 128 129 // Build a vector of arrays of bytes covering, for each target, a slice of the 130 // used region (see AccumBitVector::BytesUsed in 131 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 132 // this aligns the used regions to start at MinByte. 133 // 134 // In this example, A, B and C are vtables, # is a byte already allocated for 135 // a virtual function pointer, AAAA... (etc.) are the used regions for the 136 // vtables and Offset(X) is the value computed for the Offset variable below 137 // for X. 138 // 139 // Offset(A) 140 // | | 141 // |MinByte 142 // A: ################AAAAAAAA|AAAAAAAA 143 // B: ########BBBBBBBBBBBBBBBB|BBBB 144 // C: ########################|CCCCCCCCCCCCCCCC 145 // | Offset(B) | 146 // 147 // This code produces the slices of A, B and C that appear after the divider 148 // at MinByte. 149 std::vector<ArrayRef<uint8_t>> Used; 150 for (const VirtualCallTarget &Target : Targets) { 151 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 152 : Target.TM->Bits->Before.BytesUsed; 153 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 154 : MinByte - Target.minBeforeBytes(); 155 156 // Disregard used regions that are smaller than Offset. These are 157 // effectively all-free regions that do not need to be checked. 158 if (VTUsed.size() > Offset) 159 Used.push_back(VTUsed.slice(Offset)); 160 } 161 162 if (Size == 1) { 163 // Find a free bit in each member of Used. 164 for (unsigned I = 0;; ++I) { 165 uint8_t BitsUsed = 0; 166 for (auto &&B : Used) 167 if (I < B.size()) 168 BitsUsed |= B[I]; 169 if (BitsUsed != 0xff) 170 return (MinByte + I) * 8 + 171 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 172 } 173 } else { 174 // Find a free (Size/8) byte region in each member of Used. 175 // FIXME: see if alignment helps. 176 for (unsigned I = 0;; ++I) { 177 for (auto &&B : Used) { 178 unsigned Byte = 0; 179 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 180 if (B[I + Byte]) 181 goto NextI; 182 ++Byte; 183 } 184 } 185 return (MinByte + I) * 8; 186 NextI:; 187 } 188 } 189 } 190 191 void wholeprogramdevirt::setBeforeReturnValues( 192 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 193 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 194 if (BitWidth == 1) 195 OffsetByte = -(AllocBefore / 8 + 1); 196 else 197 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 198 OffsetBit = AllocBefore % 8; 199 200 for (VirtualCallTarget &Target : Targets) { 201 if (BitWidth == 1) 202 Target.setBeforeBit(AllocBefore); 203 else 204 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 205 } 206 } 207 208 void wholeprogramdevirt::setAfterReturnValues( 209 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 210 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 211 if (BitWidth == 1) 212 OffsetByte = AllocAfter / 8; 213 else 214 OffsetByte = (AllocAfter + 7) / 8; 215 OffsetBit = AllocAfter % 8; 216 217 for (VirtualCallTarget &Target : Targets) { 218 if (BitWidth == 1) 219 Target.setAfterBit(AllocAfter); 220 else 221 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 222 } 223 } 224 225 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 226 : Fn(Fn), TM(TM), 227 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 228 229 namespace { 230 231 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 232 // tables, and the ByteOffset is the offset in bytes from the address point to 233 // the virtual function pointer. 234 struct VTableSlot { 235 Metadata *TypeID; 236 uint64_t ByteOffset; 237 }; 238 239 } // end anonymous namespace 240 241 namespace llvm { 242 243 template <> struct DenseMapInfo<VTableSlot> { 244 static VTableSlot getEmptyKey() { 245 return {DenseMapInfo<Metadata *>::getEmptyKey(), 246 DenseMapInfo<uint64_t>::getEmptyKey()}; 247 } 248 static VTableSlot getTombstoneKey() { 249 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 250 DenseMapInfo<uint64_t>::getTombstoneKey()}; 251 } 252 static unsigned getHashValue(const VTableSlot &I) { 253 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 254 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 255 } 256 static bool isEqual(const VTableSlot &LHS, 257 const VTableSlot &RHS) { 258 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 259 } 260 }; 261 262 } // end namespace llvm 263 264 namespace { 265 266 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 267 // the indirect virtual call. 268 struct VirtualCallSite { 269 Value *VTable; 270 CallSite CS; 271 272 // If non-null, this field points to the associated unsafe use count stored in 273 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 274 // of that field for details. 275 unsigned *NumUnsafeUses; 276 277 void 278 emitRemark(const StringRef OptName, const StringRef TargetName, 279 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 280 Function *F = CS.getCaller(); 281 DebugLoc DLoc = CS->getDebugLoc(); 282 BasicBlock *Block = CS.getParent(); 283 284 using namespace ore; 285 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 286 << NV("Optimization", OptName) 287 << ": devirtualized a call to " 288 << NV("FunctionName", TargetName)); 289 } 290 291 void replaceAndErase( 292 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 293 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 294 Value *New) { 295 if (RemarksEnabled) 296 emitRemark(OptName, TargetName, OREGetter); 297 CS->replaceAllUsesWith(New); 298 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 299 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 300 II->getUnwindDest()->removePredecessor(II->getParent()); 301 } 302 CS->eraseFromParent(); 303 // This use is no longer unsafe. 304 if (NumUnsafeUses) 305 --*NumUnsafeUses; 306 } 307 }; 308 309 // Call site information collected for a specific VTableSlot and possibly a list 310 // of constant integer arguments. The grouping by arguments is handled by the 311 // VTableSlotInfo class. 312 struct CallSiteInfo { 313 /// The set of call sites for this slot. Used during regular LTO and the 314 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 315 /// call sites that appear in the merged module itself); in each of these 316 /// cases we are directly operating on the call sites at the IR level. 317 std::vector<VirtualCallSite> CallSites; 318 319 /// Whether all call sites represented by this CallSiteInfo, including those 320 /// in summaries, have been devirtualized. This starts off as true because a 321 /// default constructed CallSiteInfo represents no call sites. 322 bool AllCallSitesDevirted = true; 323 324 // These fields are used during the export phase of ThinLTO and reflect 325 // information collected from function summaries. 326 327 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 328 /// this slot. 329 bool SummaryHasTypeTestAssumeUsers = false; 330 331 /// CFI-specific: a vector containing the list of function summaries that use 332 /// the llvm.type.checked.load intrinsic and therefore will require 333 /// resolutions for llvm.type.test in order to implement CFI checks if 334 /// devirtualization was unsuccessful. If devirtualization was successful, the 335 /// pass will clear this vector by calling markDevirt(). If at the end of the 336 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 337 /// to each of the function summaries in the vector. 338 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 339 340 bool isExported() const { 341 return SummaryHasTypeTestAssumeUsers || 342 !SummaryTypeCheckedLoadUsers.empty(); 343 } 344 345 void markSummaryHasTypeTestAssumeUsers() { 346 SummaryHasTypeTestAssumeUsers = true; 347 AllCallSitesDevirted = false; 348 } 349 350 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 351 SummaryTypeCheckedLoadUsers.push_back(FS); 352 AllCallSitesDevirted = false; 353 } 354 355 void markDevirt() { 356 AllCallSitesDevirted = true; 357 358 // As explained in the comment for SummaryTypeCheckedLoadUsers. 359 SummaryTypeCheckedLoadUsers.clear(); 360 } 361 }; 362 363 // Call site information collected for a specific VTableSlot. 364 struct VTableSlotInfo { 365 // The set of call sites which do not have all constant integer arguments 366 // (excluding "this"). 367 CallSiteInfo CSInfo; 368 369 // The set of call sites with all constant integer arguments (excluding 370 // "this"), grouped by argument list. 371 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 372 373 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 374 375 private: 376 CallSiteInfo &findCallSiteInfo(CallSite CS); 377 }; 378 379 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 380 std::vector<uint64_t> Args; 381 auto *CI = dyn_cast<IntegerType>(CS.getType()); 382 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 383 return CSInfo; 384 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 385 auto *CI = dyn_cast<ConstantInt>(Arg); 386 if (!CI || CI->getBitWidth() > 64) 387 return CSInfo; 388 Args.push_back(CI->getZExtValue()); 389 } 390 return ConstCSInfo[Args]; 391 } 392 393 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 394 unsigned *NumUnsafeUses) { 395 auto &CSI = findCallSiteInfo(CS); 396 CSI.AllCallSitesDevirted = false; 397 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 398 } 399 400 struct DevirtModule { 401 Module &M; 402 function_ref<AAResults &(Function &)> AARGetter; 403 404 ModuleSummaryIndex *ExportSummary; 405 const ModuleSummaryIndex *ImportSummary; 406 407 IntegerType *Int8Ty; 408 PointerType *Int8PtrTy; 409 IntegerType *Int32Ty; 410 IntegerType *Int64Ty; 411 IntegerType *IntPtrTy; 412 413 bool RemarksEnabled; 414 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 415 416 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 417 418 // This map keeps track of the number of "unsafe" uses of a loaded function 419 // pointer. The key is the associated llvm.type.test intrinsic call generated 420 // by this pass. An unsafe use is one that calls the loaded function pointer 421 // directly. Every time we eliminate an unsafe use (for example, by 422 // devirtualizing it or by applying virtual constant propagation), we 423 // decrement the value stored in this map. If a value reaches zero, we can 424 // eliminate the type check by RAUWing the associated llvm.type.test call with 425 // true. 426 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 427 428 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 429 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 430 ModuleSummaryIndex *ExportSummary, 431 const ModuleSummaryIndex *ImportSummary) 432 : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary), 433 ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), 434 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 435 Int32Ty(Type::getInt32Ty(M.getContext())), 436 Int64Ty(Type::getInt64Ty(M.getContext())), 437 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 438 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 439 assert(!(ExportSummary && ImportSummary)); 440 } 441 442 bool areRemarksEnabled(); 443 444 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 445 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 446 447 void buildTypeIdentifierMap( 448 std::vector<VTableBits> &Bits, 449 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 450 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 451 bool 452 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 453 const std::set<TypeMemberInfo> &TypeMemberInfos, 454 uint64_t ByteOffset); 455 456 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 457 bool &IsExported); 458 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 459 VTableSlotInfo &SlotInfo, 460 WholeProgramDevirtResolution *Res); 461 462 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 463 bool &IsExported); 464 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 465 VTableSlotInfo &SlotInfo, 466 WholeProgramDevirtResolution *Res, VTableSlot Slot); 467 468 bool tryEvaluateFunctionsWithArgs( 469 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 470 ArrayRef<uint64_t> Args); 471 472 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 473 uint64_t TheRetVal); 474 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 475 CallSiteInfo &CSInfo, 476 WholeProgramDevirtResolution::ByArg *Res); 477 478 // Returns the global symbol name that is used to export information about the 479 // given vtable slot and list of arguments. 480 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 481 StringRef Name); 482 483 bool shouldExportConstantsAsAbsoluteSymbols(); 484 485 // This function is called during the export phase to create a symbol 486 // definition containing information about the given vtable slot and list of 487 // arguments. 488 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 489 Constant *C); 490 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 491 uint32_t Const, uint32_t &Storage); 492 493 // This function is called during the import phase to create a reference to 494 // the symbol definition created during the export phase. 495 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 496 StringRef Name); 497 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 498 StringRef Name, IntegerType *IntTy, 499 uint32_t Storage); 500 501 Constant *getMemberAddr(const TypeMemberInfo *M); 502 503 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 504 Constant *UniqueMemberAddr); 505 bool tryUniqueRetValOpt(unsigned BitWidth, 506 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 507 CallSiteInfo &CSInfo, 508 WholeProgramDevirtResolution::ByArg *Res, 509 VTableSlot Slot, ArrayRef<uint64_t> Args); 510 511 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 512 Constant *Byte, Constant *Bit); 513 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 514 VTableSlotInfo &SlotInfo, 515 WholeProgramDevirtResolution *Res, VTableSlot Slot); 516 517 void rebuildGlobal(VTableBits &B); 518 519 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 520 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 521 522 // If we were able to eliminate all unsafe uses for a type checked load, 523 // eliminate the associated type tests by replacing them with true. 524 void removeRedundantTypeTests(); 525 526 bool run(); 527 528 // Lower the module using the action and summary passed as command line 529 // arguments. For testing purposes only. 530 static bool runForTesting( 531 Module &M, function_ref<AAResults &(Function &)> AARGetter, 532 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter); 533 }; 534 535 struct WholeProgramDevirt : public ModulePass { 536 static char ID; 537 538 bool UseCommandLine = false; 539 540 ModuleSummaryIndex *ExportSummary; 541 const ModuleSummaryIndex *ImportSummary; 542 543 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 544 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 545 } 546 547 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 548 const ModuleSummaryIndex *ImportSummary) 549 : ModulePass(ID), ExportSummary(ExportSummary), 550 ImportSummary(ImportSummary) { 551 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 552 } 553 554 bool runOnModule(Module &M) override { 555 if (skipModule(M)) 556 return false; 557 558 // In the new pass manager, we can request the optimization 559 // remark emitter pass on a per-function-basis, which the 560 // OREGetter will do for us. 561 // In the old pass manager, this is harder, so we just build 562 // an optimization remark emitter on the fly, when we need it. 563 std::unique_ptr<OptimizationRemarkEmitter> ORE; 564 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 565 ORE = make_unique<OptimizationRemarkEmitter>(F); 566 return *ORE; 567 }; 568 569 if (UseCommandLine) 570 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter); 571 572 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary, 573 ImportSummary) 574 .run(); 575 } 576 577 void getAnalysisUsage(AnalysisUsage &AU) const override { 578 AU.addRequired<AssumptionCacheTracker>(); 579 AU.addRequired<TargetLibraryInfoWrapperPass>(); 580 } 581 }; 582 583 } // end anonymous namespace 584 585 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 586 "Whole program devirtualization", false, false) 587 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 588 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 589 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 590 "Whole program devirtualization", false, false) 591 char WholeProgramDevirt::ID = 0; 592 593 ModulePass * 594 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 595 const ModuleSummaryIndex *ImportSummary) { 596 return new WholeProgramDevirt(ExportSummary, ImportSummary); 597 } 598 599 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 600 ModuleAnalysisManager &AM) { 601 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 602 auto AARGetter = [&](Function &F) -> AAResults & { 603 return FAM.getResult<AAManager>(F); 604 }; 605 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 606 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 607 }; 608 if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run()) 609 return PreservedAnalyses::all(); 610 return PreservedAnalyses::none(); 611 } 612 613 bool DevirtModule::runForTesting( 614 Module &M, function_ref<AAResults &(Function &)> AARGetter, 615 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 616 ModuleSummaryIndex Summary(/*IsPerformingAnalysis=*/false); 617 618 // Handle the command-line summary arguments. This code is for testing 619 // purposes only, so we handle errors directly. 620 if (!ClReadSummary.empty()) { 621 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 622 ": "); 623 auto ReadSummaryFile = 624 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 625 626 yaml::Input In(ReadSummaryFile->getBuffer()); 627 In >> Summary; 628 ExitOnErr(errorCodeToError(In.error())); 629 } 630 631 bool Changed = 632 DevirtModule( 633 M, AARGetter, OREGetter, 634 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 635 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 636 .run(); 637 638 if (!ClWriteSummary.empty()) { 639 ExitOnError ExitOnErr( 640 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 641 std::error_code EC; 642 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 643 ExitOnErr(errorCodeToError(EC)); 644 645 yaml::Output Out(OS); 646 Out << Summary; 647 } 648 649 return Changed; 650 } 651 652 void DevirtModule::buildTypeIdentifierMap( 653 std::vector<VTableBits> &Bits, 654 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 655 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 656 Bits.reserve(M.getGlobalList().size()); 657 SmallVector<MDNode *, 2> Types; 658 for (GlobalVariable &GV : M.globals()) { 659 Types.clear(); 660 GV.getMetadata(LLVMContext::MD_type, Types); 661 if (Types.empty()) 662 continue; 663 664 VTableBits *&BitsPtr = GVToBits[&GV]; 665 if (!BitsPtr) { 666 Bits.emplace_back(); 667 Bits.back().GV = &GV; 668 Bits.back().ObjectSize = 669 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 670 BitsPtr = &Bits.back(); 671 } 672 673 for (MDNode *Type : Types) { 674 auto TypeID = Type->getOperand(1).get(); 675 676 uint64_t Offset = 677 cast<ConstantInt>( 678 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 679 ->getZExtValue(); 680 681 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 682 } 683 } 684 } 685 686 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 687 if (I->getType()->isPointerTy()) { 688 if (Offset == 0) 689 return I; 690 return nullptr; 691 } 692 693 const DataLayout &DL = M.getDataLayout(); 694 695 if (auto *C = dyn_cast<ConstantStruct>(I)) { 696 const StructLayout *SL = DL.getStructLayout(C->getType()); 697 if (Offset >= SL->getSizeInBytes()) 698 return nullptr; 699 700 unsigned Op = SL->getElementContainingOffset(Offset); 701 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 702 Offset - SL->getElementOffset(Op)); 703 } 704 if (auto *C = dyn_cast<ConstantArray>(I)) { 705 ArrayType *VTableTy = C->getType(); 706 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 707 708 unsigned Op = Offset / ElemSize; 709 if (Op >= C->getNumOperands()) 710 return nullptr; 711 712 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 713 Offset % ElemSize); 714 } 715 return nullptr; 716 } 717 718 bool DevirtModule::tryFindVirtualCallTargets( 719 std::vector<VirtualCallTarget> &TargetsForSlot, 720 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 721 for (const TypeMemberInfo &TM : TypeMemberInfos) { 722 if (!TM.Bits->GV->isConstant()) 723 return false; 724 725 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 726 TM.Offset + ByteOffset); 727 if (!Ptr) 728 return false; 729 730 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 731 if (!Fn) 732 return false; 733 734 // We can disregard __cxa_pure_virtual as a possible call target, as 735 // calls to pure virtuals are UB. 736 if (Fn->getName() == "__cxa_pure_virtual") 737 continue; 738 739 TargetsForSlot.push_back({Fn, &TM}); 740 } 741 742 // Give up if we couldn't find any targets. 743 return !TargetsForSlot.empty(); 744 } 745 746 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 747 Constant *TheFn, bool &IsExported) { 748 auto Apply = [&](CallSiteInfo &CSInfo) { 749 for (auto &&VCallSite : CSInfo.CallSites) { 750 if (RemarksEnabled) 751 VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter); 752 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 753 TheFn, VCallSite.CS.getCalledValue()->getType())); 754 // This use is no longer unsafe. 755 if (VCallSite.NumUnsafeUses) 756 --*VCallSite.NumUnsafeUses; 757 } 758 if (CSInfo.isExported()) 759 IsExported = true; 760 CSInfo.markDevirt(); 761 }; 762 Apply(SlotInfo.CSInfo); 763 for (auto &P : SlotInfo.ConstCSInfo) 764 Apply(P.second); 765 } 766 767 bool DevirtModule::trySingleImplDevirt( 768 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 769 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 770 // See if the program contains a single implementation of this virtual 771 // function. 772 Function *TheFn = TargetsForSlot[0].Fn; 773 for (auto &&Target : TargetsForSlot) 774 if (TheFn != Target.Fn) 775 return false; 776 777 // If so, update each call site to call that implementation directly. 778 if (RemarksEnabled) 779 TargetsForSlot[0].WasDevirt = true; 780 781 bool IsExported = false; 782 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 783 if (!IsExported) 784 return false; 785 786 // If the only implementation has local linkage, we must promote to external 787 // to make it visible to thin LTO objects. We can only get here during the 788 // ThinLTO export phase. 789 if (TheFn->hasLocalLinkage()) { 790 std::string NewName = (TheFn->getName() + "$merged").str(); 791 792 // Since we are renaming the function, any comdats with the same name must 793 // also be renamed. This is required when targeting COFF, as the comdat name 794 // must match one of the names of the symbols in the comdat. 795 if (Comdat *C = TheFn->getComdat()) { 796 if (C->getName() == TheFn->getName()) { 797 Comdat *NewC = M.getOrInsertComdat(NewName); 798 NewC->setSelectionKind(C->getSelectionKind()); 799 for (GlobalObject &GO : M.global_objects()) 800 if (GO.getComdat() == C) 801 GO.setComdat(NewC); 802 } 803 } 804 805 TheFn->setLinkage(GlobalValue::ExternalLinkage); 806 TheFn->setVisibility(GlobalValue::HiddenVisibility); 807 TheFn->setName(NewName); 808 } 809 810 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 811 Res->SingleImplName = TheFn->getName(); 812 813 return true; 814 } 815 816 void DevirtModule::tryICallBranchFunnel( 817 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 818 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 819 Triple T(M.getTargetTriple()); 820 if (T.getArch() != Triple::x86_64) 821 return; 822 823 const unsigned kBranchFunnelThreshold = 10; 824 if (TargetsForSlot.size() > kBranchFunnelThreshold) 825 return; 826 827 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 828 if (!HasNonDevirt) 829 for (auto &P : SlotInfo.ConstCSInfo) 830 if (!P.second.AllCallSitesDevirted) { 831 HasNonDevirt = true; 832 break; 833 } 834 835 if (!HasNonDevirt) 836 return; 837 838 FunctionType *FT = 839 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 840 Function *JT; 841 if (isa<MDString>(Slot.TypeID)) { 842 JT = Function::Create(FT, Function::ExternalLinkage, 843 getGlobalName(Slot, {}, "branch_funnel"), &M); 844 JT->setVisibility(GlobalValue::HiddenVisibility); 845 } else { 846 JT = Function::Create(FT, Function::InternalLinkage, "branch_funnel", &M); 847 } 848 JT->addAttribute(1, Attribute::Nest); 849 850 std::vector<Value *> JTArgs; 851 JTArgs.push_back(JT->arg_begin()); 852 for (auto &T : TargetsForSlot) { 853 JTArgs.push_back(getMemberAddr(T.TM)); 854 JTArgs.push_back(T.Fn); 855 } 856 857 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 858 Constant *Intr = 859 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 860 861 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 862 CI->setTailCallKind(CallInst::TCK_MustTail); 863 ReturnInst::Create(M.getContext(), nullptr, BB); 864 865 bool IsExported = false; 866 applyICallBranchFunnel(SlotInfo, JT, IsExported); 867 if (IsExported) 868 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 869 } 870 871 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 872 Constant *JT, bool &IsExported) { 873 auto Apply = [&](CallSiteInfo &CSInfo) { 874 if (CSInfo.isExported()) 875 IsExported = true; 876 if (CSInfo.AllCallSitesDevirted) 877 return; 878 for (auto &&VCallSite : CSInfo.CallSites) { 879 CallSite CS = VCallSite.CS; 880 881 // Jump tables are only profitable if the retpoline mitigation is enabled. 882 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 883 if (FSAttr.hasAttribute(Attribute::None) || 884 !FSAttr.getValueAsString().contains("+retpoline")) 885 continue; 886 887 if (RemarksEnabled) 888 VCallSite.emitRemark("branch-funnel", JT->getName(), OREGetter); 889 890 // Pass the address of the vtable in the nest register, which is r10 on 891 // x86_64. 892 std::vector<Type *> NewArgs; 893 NewArgs.push_back(Int8PtrTy); 894 for (Type *T : CS.getFunctionType()->params()) 895 NewArgs.push_back(T); 896 PointerType *NewFT = PointerType::getUnqual( 897 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 898 CS.getFunctionType()->isVarArg())); 899 900 IRBuilder<> IRB(CS.getInstruction()); 901 std::vector<Value *> Args; 902 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 903 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 904 Args.push_back(CS.getArgOperand(I)); 905 906 CallSite NewCS; 907 if (CS.isCall()) 908 NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args); 909 else 910 NewCS = IRB.CreateInvoke( 911 IRB.CreateBitCast(JT, NewFT), 912 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 913 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 914 NewCS.setCallingConv(CS.getCallingConv()); 915 916 AttributeList Attrs = CS.getAttributes(); 917 std::vector<AttributeSet> NewArgAttrs; 918 NewArgAttrs.push_back(AttributeSet::get( 919 M.getContext(), ArrayRef<Attribute>{Attribute::get( 920 M.getContext(), Attribute::Nest)})); 921 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 922 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 923 NewCS.setAttributes( 924 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 925 Attrs.getRetAttributes(), NewArgAttrs)); 926 927 CS->replaceAllUsesWith(NewCS.getInstruction()); 928 CS->eraseFromParent(); 929 930 // This use is no longer unsafe. 931 if (VCallSite.NumUnsafeUses) 932 --*VCallSite.NumUnsafeUses; 933 } 934 // Don't mark as devirtualized because there may be callers compiled without 935 // retpoline mitigation, which would mean that they are lowered to 936 // llvm.type.test and therefore require an llvm.type.test resolution for the 937 // type identifier. 938 }; 939 Apply(SlotInfo.CSInfo); 940 for (auto &P : SlotInfo.ConstCSInfo) 941 Apply(P.second); 942 } 943 944 bool DevirtModule::tryEvaluateFunctionsWithArgs( 945 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 946 ArrayRef<uint64_t> Args) { 947 // Evaluate each function and store the result in each target's RetVal 948 // field. 949 for (VirtualCallTarget &Target : TargetsForSlot) { 950 if (Target.Fn->arg_size() != Args.size() + 1) 951 return false; 952 953 Evaluator Eval(M.getDataLayout(), nullptr); 954 SmallVector<Constant *, 2> EvalArgs; 955 EvalArgs.push_back( 956 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 957 for (unsigned I = 0; I != Args.size(); ++I) { 958 auto *ArgTy = dyn_cast<IntegerType>( 959 Target.Fn->getFunctionType()->getParamType(I + 1)); 960 if (!ArgTy) 961 return false; 962 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 963 } 964 965 Constant *RetVal; 966 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 967 !isa<ConstantInt>(RetVal)) 968 return false; 969 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 970 } 971 return true; 972 } 973 974 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 975 uint64_t TheRetVal) { 976 for (auto Call : CSInfo.CallSites) 977 Call.replaceAndErase( 978 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 979 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 980 CSInfo.markDevirt(); 981 } 982 983 bool DevirtModule::tryUniformRetValOpt( 984 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 985 WholeProgramDevirtResolution::ByArg *Res) { 986 // Uniform return value optimization. If all functions return the same 987 // constant, replace all calls with that constant. 988 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 989 for (const VirtualCallTarget &Target : TargetsForSlot) 990 if (Target.RetVal != TheRetVal) 991 return false; 992 993 if (CSInfo.isExported()) { 994 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 995 Res->Info = TheRetVal; 996 } 997 998 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 999 if (RemarksEnabled) 1000 for (auto &&Target : TargetsForSlot) 1001 Target.WasDevirt = true; 1002 return true; 1003 } 1004 1005 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1006 ArrayRef<uint64_t> Args, 1007 StringRef Name) { 1008 std::string FullName = "__typeid_"; 1009 raw_string_ostream OS(FullName); 1010 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1011 for (uint64_t Arg : Args) 1012 OS << '_' << Arg; 1013 OS << '_' << Name; 1014 return OS.str(); 1015 } 1016 1017 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1018 Triple T(M.getTargetTriple()); 1019 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1020 T.getObjectFormat() == Triple::ELF; 1021 } 1022 1023 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1024 StringRef Name, Constant *C) { 1025 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1026 getGlobalName(Slot, Args, Name), C, &M); 1027 GA->setVisibility(GlobalValue::HiddenVisibility); 1028 } 1029 1030 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1031 StringRef Name, uint32_t Const, 1032 uint32_t &Storage) { 1033 if (shouldExportConstantsAsAbsoluteSymbols()) { 1034 exportGlobal( 1035 Slot, Args, Name, 1036 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1037 return; 1038 } 1039 1040 Storage = Const; 1041 } 1042 1043 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1044 StringRef Name) { 1045 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1046 auto *GV = dyn_cast<GlobalVariable>(C); 1047 if (GV) 1048 GV->setVisibility(GlobalValue::HiddenVisibility); 1049 return C; 1050 } 1051 1052 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1053 StringRef Name, IntegerType *IntTy, 1054 uint32_t Storage) { 1055 if (!shouldExportConstantsAsAbsoluteSymbols()) 1056 return ConstantInt::get(IntTy, Storage); 1057 1058 Constant *C = importGlobal(Slot, Args, Name); 1059 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1060 C = ConstantExpr::getPtrToInt(C, IntTy); 1061 1062 // We only need to set metadata if the global is newly created, in which 1063 // case it would not have hidden visibility. 1064 if (GV->getMetadata(LLVMContext::MD_absolute_symbol)) 1065 return C; 1066 1067 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1068 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1069 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1070 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1071 MDNode::get(M.getContext(), {MinC, MaxC})); 1072 }; 1073 unsigned AbsWidth = IntTy->getBitWidth(); 1074 if (AbsWidth == IntPtrTy->getBitWidth()) 1075 SetAbsRange(~0ull, ~0ull); // Full set. 1076 else 1077 SetAbsRange(0, 1ull << AbsWidth); 1078 return C; 1079 } 1080 1081 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1082 bool IsOne, 1083 Constant *UniqueMemberAddr) { 1084 for (auto &&Call : CSInfo.CallSites) { 1085 IRBuilder<> B(Call.CS.getInstruction()); 1086 Value *Cmp = 1087 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1088 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1089 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1090 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1091 Cmp); 1092 } 1093 CSInfo.markDevirt(); 1094 } 1095 1096 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1097 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1098 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1099 ConstantInt::get(Int64Ty, M->Offset)); 1100 } 1101 1102 bool DevirtModule::tryUniqueRetValOpt( 1103 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1104 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1105 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1106 // IsOne controls whether we look for a 0 or a 1. 1107 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1108 const TypeMemberInfo *UniqueMember = nullptr; 1109 for (const VirtualCallTarget &Target : TargetsForSlot) { 1110 if (Target.RetVal == (IsOne ? 1 : 0)) { 1111 if (UniqueMember) 1112 return false; 1113 UniqueMember = Target.TM; 1114 } 1115 } 1116 1117 // We should have found a unique member or bailed out by now. We already 1118 // checked for a uniform return value in tryUniformRetValOpt. 1119 assert(UniqueMember); 1120 1121 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1122 if (CSInfo.isExported()) { 1123 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1124 Res->Info = IsOne; 1125 1126 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1127 } 1128 1129 // Replace each call with the comparison. 1130 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1131 UniqueMemberAddr); 1132 1133 // Update devirtualization statistics for targets. 1134 if (RemarksEnabled) 1135 for (auto &&Target : TargetsForSlot) 1136 Target.WasDevirt = true; 1137 1138 return true; 1139 }; 1140 1141 if (BitWidth == 1) { 1142 if (tryUniqueRetValOptFor(true)) 1143 return true; 1144 if (tryUniqueRetValOptFor(false)) 1145 return true; 1146 } 1147 return false; 1148 } 1149 1150 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1151 Constant *Byte, Constant *Bit) { 1152 for (auto Call : CSInfo.CallSites) { 1153 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1154 IRBuilder<> B(Call.CS.getInstruction()); 1155 Value *Addr = 1156 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1157 if (RetType->getBitWidth() == 1) { 1158 Value *Bits = B.CreateLoad(Addr); 1159 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1160 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1161 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1162 OREGetter, IsBitSet); 1163 } else { 1164 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1165 Value *Val = B.CreateLoad(RetType, ValAddr); 1166 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1167 OREGetter, Val); 1168 } 1169 } 1170 CSInfo.markDevirt(); 1171 } 1172 1173 bool DevirtModule::tryVirtualConstProp( 1174 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1175 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1176 // This only works if the function returns an integer. 1177 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1178 if (!RetType) 1179 return false; 1180 unsigned BitWidth = RetType->getBitWidth(); 1181 if (BitWidth > 64) 1182 return false; 1183 1184 // Make sure that each function is defined, does not access memory, takes at 1185 // least one argument, does not use its first argument (which we assume is 1186 // 'this'), and has the same return type. 1187 // 1188 // Note that we test whether this copy of the function is readnone, rather 1189 // than testing function attributes, which must hold for any copy of the 1190 // function, even a less optimized version substituted at link time. This is 1191 // sound because the virtual constant propagation optimizations effectively 1192 // inline all implementations of the virtual function into each call site, 1193 // rather than using function attributes to perform local optimization. 1194 for (VirtualCallTarget &Target : TargetsForSlot) { 1195 if (Target.Fn->isDeclaration() || 1196 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1197 MAK_ReadNone || 1198 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1199 Target.Fn->getReturnType() != RetType) 1200 return false; 1201 } 1202 1203 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1204 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1205 continue; 1206 1207 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1208 if (Res) 1209 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1210 1211 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1212 continue; 1213 1214 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1215 ResByArg, Slot, CSByConstantArg.first)) 1216 continue; 1217 1218 // Find an allocation offset in bits in all vtables associated with the 1219 // type. 1220 uint64_t AllocBefore = 1221 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1222 uint64_t AllocAfter = 1223 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1224 1225 // Calculate the total amount of padding needed to store a value at both 1226 // ends of the object. 1227 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1228 for (auto &&Target : TargetsForSlot) { 1229 TotalPaddingBefore += std::max<int64_t>( 1230 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1231 TotalPaddingAfter += std::max<int64_t>( 1232 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1233 } 1234 1235 // If the amount of padding is too large, give up. 1236 // FIXME: do something smarter here. 1237 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1238 continue; 1239 1240 // Calculate the offset to the value as a (possibly negative) byte offset 1241 // and (if applicable) a bit offset, and store the values in the targets. 1242 int64_t OffsetByte; 1243 uint64_t OffsetBit; 1244 if (TotalPaddingBefore <= TotalPaddingAfter) 1245 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1246 OffsetBit); 1247 else 1248 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1249 OffsetBit); 1250 1251 if (RemarksEnabled) 1252 for (auto &&Target : TargetsForSlot) 1253 Target.WasDevirt = true; 1254 1255 1256 if (CSByConstantArg.second.isExported()) { 1257 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1258 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1259 ResByArg->Byte); 1260 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1261 ResByArg->Bit); 1262 } 1263 1264 // Rewrite each call to a load from OffsetByte/OffsetBit. 1265 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1266 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1267 applyVirtualConstProp(CSByConstantArg.second, 1268 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1269 } 1270 return true; 1271 } 1272 1273 void DevirtModule::rebuildGlobal(VTableBits &B) { 1274 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1275 return; 1276 1277 // Align each byte array to pointer width. 1278 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1279 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1280 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1281 1282 // Before was stored in reverse order; flip it now. 1283 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1284 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1285 1286 // Build an anonymous global containing the before bytes, followed by the 1287 // original initializer, followed by the after bytes. 1288 auto NewInit = ConstantStruct::getAnon( 1289 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1290 B.GV->getInitializer(), 1291 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1292 auto NewGV = 1293 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1294 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1295 NewGV->setSection(B.GV->getSection()); 1296 NewGV->setComdat(B.GV->getComdat()); 1297 1298 // Copy the original vtable's metadata to the anonymous global, adjusting 1299 // offsets as required. 1300 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1301 1302 // Build an alias named after the original global, pointing at the second 1303 // element (the original initializer). 1304 auto Alias = GlobalAlias::create( 1305 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1306 ConstantExpr::getGetElementPtr( 1307 NewInit->getType(), NewGV, 1308 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1309 ConstantInt::get(Int32Ty, 1)}), 1310 &M); 1311 Alias->setVisibility(B.GV->getVisibility()); 1312 Alias->takeName(B.GV); 1313 1314 B.GV->replaceAllUsesWith(Alias); 1315 B.GV->eraseFromParent(); 1316 } 1317 1318 bool DevirtModule::areRemarksEnabled() { 1319 const auto &FL = M.getFunctionList(); 1320 if (FL.empty()) 1321 return false; 1322 const Function &Fn = FL.front(); 1323 1324 const auto &BBL = Fn.getBasicBlockList(); 1325 if (BBL.empty()) 1326 return false; 1327 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1328 return DI.isEnabled(); 1329 } 1330 1331 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1332 Function *AssumeFunc) { 1333 // Find all virtual calls via a virtual table pointer %p under an assumption 1334 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1335 // points to a member of the type identifier %md. Group calls by (type ID, 1336 // offset) pair (effectively the identity of the virtual function) and store 1337 // to CallSlots. 1338 DenseSet<Value *> SeenPtrs; 1339 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1340 I != E;) { 1341 auto CI = dyn_cast<CallInst>(I->getUser()); 1342 ++I; 1343 if (!CI) 1344 continue; 1345 1346 // Search for virtual calls based on %p and add them to DevirtCalls. 1347 SmallVector<DevirtCallSite, 1> DevirtCalls; 1348 SmallVector<CallInst *, 1> Assumes; 1349 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 1350 1351 // If we found any, add them to CallSlots. Only do this if we haven't seen 1352 // the vtable pointer before, as it may have been CSE'd with pointers from 1353 // other call sites, and we don't want to process call sites multiple times. 1354 if (!Assumes.empty()) { 1355 Metadata *TypeId = 1356 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1357 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1358 if (SeenPtrs.insert(Ptr).second) { 1359 for (DevirtCallSite Call : DevirtCalls) { 1360 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1361 } 1362 } 1363 } 1364 1365 // We no longer need the assumes or the type test. 1366 for (auto Assume : Assumes) 1367 Assume->eraseFromParent(); 1368 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1369 // may use the vtable argument later. 1370 if (CI->use_empty()) 1371 CI->eraseFromParent(); 1372 } 1373 } 1374 1375 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1376 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1377 1378 for (auto I = TypeCheckedLoadFunc->use_begin(), 1379 E = TypeCheckedLoadFunc->use_end(); 1380 I != E;) { 1381 auto CI = dyn_cast<CallInst>(I->getUser()); 1382 ++I; 1383 if (!CI) 1384 continue; 1385 1386 Value *Ptr = CI->getArgOperand(0); 1387 Value *Offset = CI->getArgOperand(1); 1388 Value *TypeIdValue = CI->getArgOperand(2); 1389 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1390 1391 SmallVector<DevirtCallSite, 1> DevirtCalls; 1392 SmallVector<Instruction *, 1> LoadedPtrs; 1393 SmallVector<Instruction *, 1> Preds; 1394 bool HasNonCallUses = false; 1395 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1396 HasNonCallUses, CI); 1397 1398 // Start by generating "pessimistic" code that explicitly loads the function 1399 // pointer from the vtable and performs the type check. If possible, we will 1400 // eliminate the load and the type check later. 1401 1402 // If possible, only generate the load at the point where it is used. 1403 // This helps avoid unnecessary spills. 1404 IRBuilder<> LoadB( 1405 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1406 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1407 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1408 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1409 1410 for (Instruction *LoadedPtr : LoadedPtrs) { 1411 LoadedPtr->replaceAllUsesWith(LoadedValue); 1412 LoadedPtr->eraseFromParent(); 1413 } 1414 1415 // Likewise for the type test. 1416 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1417 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1418 1419 for (Instruction *Pred : Preds) { 1420 Pred->replaceAllUsesWith(TypeTestCall); 1421 Pred->eraseFromParent(); 1422 } 1423 1424 // We have already erased any extractvalue instructions that refer to the 1425 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1426 // (although this is unlikely). In that case, explicitly build a pair and 1427 // RAUW it. 1428 if (!CI->use_empty()) { 1429 Value *Pair = UndefValue::get(CI->getType()); 1430 IRBuilder<> B(CI); 1431 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1432 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1433 CI->replaceAllUsesWith(Pair); 1434 } 1435 1436 // The number of unsafe uses is initially the number of uses. 1437 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1438 NumUnsafeUses = DevirtCalls.size(); 1439 1440 // If the function pointer has a non-call user, we cannot eliminate the type 1441 // check, as one of those users may eventually call the pointer. Increment 1442 // the unsafe use count to make sure it cannot reach zero. 1443 if (HasNonCallUses) 1444 ++NumUnsafeUses; 1445 for (DevirtCallSite Call : DevirtCalls) { 1446 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1447 &NumUnsafeUses); 1448 } 1449 1450 CI->eraseFromParent(); 1451 } 1452 } 1453 1454 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1455 const TypeIdSummary *TidSummary = 1456 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1457 if (!TidSummary) 1458 return; 1459 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1460 if (ResI == TidSummary->WPDRes.end()) 1461 return; 1462 const WholeProgramDevirtResolution &Res = ResI->second; 1463 1464 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1465 // The type of the function in the declaration is irrelevant because every 1466 // call site will cast it to the correct type. 1467 auto *SingleImpl = M.getOrInsertFunction( 1468 Res.SingleImplName, Type::getVoidTy(M.getContext())); 1469 1470 // This is the import phase so we should not be exporting anything. 1471 bool IsExported = false; 1472 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1473 assert(!IsExported); 1474 } 1475 1476 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1477 auto I = Res.ResByArg.find(CSByConstantArg.first); 1478 if (I == Res.ResByArg.end()) 1479 continue; 1480 auto &ResByArg = I->second; 1481 // FIXME: We should figure out what to do about the "function name" argument 1482 // to the apply* functions, as the function names are unavailable during the 1483 // importing phase. For now we just pass the empty string. This does not 1484 // impact correctness because the function names are just used for remarks. 1485 switch (ResByArg.TheKind) { 1486 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1487 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1488 break; 1489 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1490 Constant *UniqueMemberAddr = 1491 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1492 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1493 UniqueMemberAddr); 1494 break; 1495 } 1496 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1497 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1498 Int32Ty, ResByArg.Byte); 1499 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1500 ResByArg.Bit); 1501 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1502 break; 1503 } 1504 default: 1505 break; 1506 } 1507 } 1508 1509 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1510 auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1511 Type::getVoidTy(M.getContext())); 1512 bool IsExported = false; 1513 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1514 assert(!IsExported); 1515 } 1516 } 1517 1518 void DevirtModule::removeRedundantTypeTests() { 1519 auto True = ConstantInt::getTrue(M.getContext()); 1520 for (auto &&U : NumUnsafeUsesForTypeTest) { 1521 if (U.second == 0) { 1522 U.first->replaceAllUsesWith(True); 1523 U.first->eraseFromParent(); 1524 } 1525 } 1526 } 1527 1528 bool DevirtModule::run() { 1529 Function *TypeTestFunc = 1530 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1531 Function *TypeCheckedLoadFunc = 1532 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1533 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1534 1535 // Normally if there are no users of the devirtualization intrinsics in the 1536 // module, this pass has nothing to do. But if we are exporting, we also need 1537 // to handle any users that appear only in the function summaries. 1538 if (!ExportSummary && 1539 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1540 AssumeFunc->use_empty()) && 1541 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1542 return false; 1543 1544 if (TypeTestFunc && AssumeFunc) 1545 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1546 1547 if (TypeCheckedLoadFunc) 1548 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1549 1550 if (ImportSummary) { 1551 for (auto &S : CallSlots) 1552 importResolution(S.first, S.second); 1553 1554 removeRedundantTypeTests(); 1555 1556 // The rest of the code is only necessary when exporting or during regular 1557 // LTO, so we are done. 1558 return true; 1559 } 1560 1561 // Rebuild type metadata into a map for easy lookup. 1562 std::vector<VTableBits> Bits; 1563 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1564 buildTypeIdentifierMap(Bits, TypeIdMap); 1565 if (TypeIdMap.empty()) 1566 return true; 1567 1568 // Collect information from summary about which calls to try to devirtualize. 1569 if (ExportSummary) { 1570 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1571 for (auto &P : TypeIdMap) { 1572 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1573 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1574 TypeId); 1575 } 1576 1577 for (auto &P : *ExportSummary) { 1578 for (auto &S : P.second.SummaryList) { 1579 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1580 if (!FS) 1581 continue; 1582 // FIXME: Only add live functions. 1583 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1584 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1585 CallSlots[{MD, VF.Offset}] 1586 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1587 } 1588 } 1589 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1590 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1591 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1592 } 1593 } 1594 for (const FunctionSummary::ConstVCall &VC : 1595 FS->type_test_assume_const_vcalls()) { 1596 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1597 CallSlots[{MD, VC.VFunc.Offset}] 1598 .ConstCSInfo[VC.Args] 1599 .markSummaryHasTypeTestAssumeUsers(); 1600 } 1601 } 1602 for (const FunctionSummary::ConstVCall &VC : 1603 FS->type_checked_load_const_vcalls()) { 1604 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1605 CallSlots[{MD, VC.VFunc.Offset}] 1606 .ConstCSInfo[VC.Args] 1607 .addSummaryTypeCheckedLoadUser(FS); 1608 } 1609 } 1610 } 1611 } 1612 } 1613 1614 // For each (type, offset) pair: 1615 bool DidVirtualConstProp = false; 1616 std::map<std::string, Function*> DevirtTargets; 1617 for (auto &S : CallSlots) { 1618 // Search each of the members of the type identifier for the virtual 1619 // function implementation at offset S.first.ByteOffset, and add to 1620 // TargetsForSlot. 1621 std::vector<VirtualCallTarget> TargetsForSlot; 1622 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1623 S.first.ByteOffset)) { 1624 WholeProgramDevirtResolution *Res = nullptr; 1625 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1626 Res = &ExportSummary 1627 ->getOrInsertTypeIdSummary( 1628 cast<MDString>(S.first.TypeID)->getString()) 1629 .WPDRes[S.first.ByteOffset]; 1630 1631 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1632 DidVirtualConstProp |= 1633 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1634 1635 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1636 } 1637 1638 // Collect functions devirtualized at least for one call site for stats. 1639 if (RemarksEnabled) 1640 for (const auto &T : TargetsForSlot) 1641 if (T.WasDevirt) 1642 DevirtTargets[T.Fn->getName()] = T.Fn; 1643 } 1644 1645 // CFI-specific: if we are exporting and any llvm.type.checked.load 1646 // intrinsics were *not* devirtualized, we need to add the resulting 1647 // llvm.type.test intrinsics to the function summaries so that the 1648 // LowerTypeTests pass will export them. 1649 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1650 auto GUID = 1651 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1652 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1653 FS->addTypeTest(GUID); 1654 for (auto &CCS : S.second.ConstCSInfo) 1655 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1656 FS->addTypeTest(GUID); 1657 } 1658 } 1659 1660 if (RemarksEnabled) { 1661 // Generate remarks for each devirtualized function. 1662 for (const auto &DT : DevirtTargets) { 1663 Function *F = DT.second; 1664 1665 using namespace ore; 1666 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1667 << "devirtualized " 1668 << NV("FunctionName", F->getName())); 1669 } 1670 } 1671 1672 removeRedundantTypeTests(); 1673 1674 // Rebuild each global we touched as part of virtual constant propagation to 1675 // include the before and after bytes. 1676 if (DidVirtualConstProp) 1677 for (VTableBits &B : Bits) 1678 rebuildGlobal(B); 1679 1680 return true; 1681 } 1682