1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/Analysis/TypeMetadataUtils.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/Utils/Evaluator.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 48 #include <set> 49 50 using namespace llvm; 51 using namespace wholeprogramdevirt; 52 53 #define DEBUG_TYPE "wholeprogramdevirt" 54 55 // Find the minimum offset that we may store a value of size Size bits at. If 56 // IsAfter is set, look for an offset before the object, otherwise look for an 57 // offset after the object. 58 uint64_t 59 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 60 bool IsAfter, uint64_t Size) { 61 // Find a minimum offset taking into account only vtable sizes. 62 uint64_t MinByte = 0; 63 for (const VirtualCallTarget &Target : Targets) { 64 if (IsAfter) 65 MinByte = std::max(MinByte, Target.minAfterBytes()); 66 else 67 MinByte = std::max(MinByte, Target.minBeforeBytes()); 68 } 69 70 // Build a vector of arrays of bytes covering, for each target, a slice of the 71 // used region (see AccumBitVector::BytesUsed in 72 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 73 // this aligns the used regions to start at MinByte. 74 // 75 // In this example, A, B and C are vtables, # is a byte already allocated for 76 // a virtual function pointer, AAAA... (etc.) are the used regions for the 77 // vtables and Offset(X) is the value computed for the Offset variable below 78 // for X. 79 // 80 // Offset(A) 81 // | | 82 // |MinByte 83 // A: ################AAAAAAAA|AAAAAAAA 84 // B: ########BBBBBBBBBBBBBBBB|BBBB 85 // C: ########################|CCCCCCCCCCCCCCCC 86 // | Offset(B) | 87 // 88 // This code produces the slices of A, B and C that appear after the divider 89 // at MinByte. 90 std::vector<ArrayRef<uint8_t>> Used; 91 for (const VirtualCallTarget &Target : Targets) { 92 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 93 : Target.TM->Bits->Before.BytesUsed; 94 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 95 : MinByte - Target.minBeforeBytes(); 96 97 // Disregard used regions that are smaller than Offset. These are 98 // effectively all-free regions that do not need to be checked. 99 if (VTUsed.size() > Offset) 100 Used.push_back(VTUsed.slice(Offset)); 101 } 102 103 if (Size == 1) { 104 // Find a free bit in each member of Used. 105 for (unsigned I = 0;; ++I) { 106 uint8_t BitsUsed = 0; 107 for (auto &&B : Used) 108 if (I < B.size()) 109 BitsUsed |= B[I]; 110 if (BitsUsed != 0xff) 111 return (MinByte + I) * 8 + 112 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 113 } 114 } else { 115 // Find a free (Size/8) byte region in each member of Used. 116 // FIXME: see if alignment helps. 117 for (unsigned I = 0;; ++I) { 118 for (auto &&B : Used) { 119 unsigned Byte = 0; 120 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 121 if (B[I + Byte]) 122 goto NextI; 123 ++Byte; 124 } 125 } 126 return (MinByte + I) * 8; 127 NextI:; 128 } 129 } 130 } 131 132 void wholeprogramdevirt::setBeforeReturnValues( 133 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 134 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 135 if (BitWidth == 1) 136 OffsetByte = -(AllocBefore / 8 + 1); 137 else 138 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 139 OffsetBit = AllocBefore % 8; 140 141 for (VirtualCallTarget &Target : Targets) { 142 if (BitWidth == 1) 143 Target.setBeforeBit(AllocBefore); 144 else 145 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 146 } 147 } 148 149 void wholeprogramdevirt::setAfterReturnValues( 150 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 151 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 152 if (BitWidth == 1) 153 OffsetByte = AllocAfter / 8; 154 else 155 OffsetByte = (AllocAfter + 7) / 8; 156 OffsetBit = AllocAfter % 8; 157 158 for (VirtualCallTarget &Target : Targets) { 159 if (BitWidth == 1) 160 Target.setAfterBit(AllocAfter); 161 else 162 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 163 } 164 } 165 166 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 167 : Fn(Fn), TM(TM), 168 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {} 169 170 namespace { 171 172 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 173 // tables, and the ByteOffset is the offset in bytes from the address point to 174 // the virtual function pointer. 175 struct VTableSlot { 176 Metadata *TypeID; 177 uint64_t ByteOffset; 178 }; 179 180 } 181 182 namespace llvm { 183 184 template <> struct DenseMapInfo<VTableSlot> { 185 static VTableSlot getEmptyKey() { 186 return {DenseMapInfo<Metadata *>::getEmptyKey(), 187 DenseMapInfo<uint64_t>::getEmptyKey()}; 188 } 189 static VTableSlot getTombstoneKey() { 190 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 191 DenseMapInfo<uint64_t>::getTombstoneKey()}; 192 } 193 static unsigned getHashValue(const VTableSlot &I) { 194 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 195 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 196 } 197 static bool isEqual(const VTableSlot &LHS, 198 const VTableSlot &RHS) { 199 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 200 } 201 }; 202 203 } 204 205 namespace { 206 207 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 208 // the indirect virtual call. 209 struct VirtualCallSite { 210 Value *VTable; 211 CallSite CS; 212 213 // If non-null, this field points to the associated unsafe use count stored in 214 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 215 // of that field for details. 216 unsigned *NumUnsafeUses; 217 218 void replaceAndErase(Value *New) { 219 CS->replaceAllUsesWith(New); 220 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 221 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 222 II->getUnwindDest()->removePredecessor(II->getParent()); 223 } 224 CS->eraseFromParent(); 225 // This use is no longer unsafe. 226 if (NumUnsafeUses) 227 --*NumUnsafeUses; 228 } 229 }; 230 231 struct DevirtModule { 232 Module &M; 233 IntegerType *Int8Ty; 234 PointerType *Int8PtrTy; 235 IntegerType *Int32Ty; 236 237 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; 238 239 // This map keeps track of the number of "unsafe" uses of a loaded function 240 // pointer. The key is the associated llvm.type.test intrinsic call generated 241 // by this pass. An unsafe use is one that calls the loaded function pointer 242 // directly. Every time we eliminate an unsafe use (for example, by 243 // devirtualizing it or by applying virtual constant propagation), we 244 // decrement the value stored in this map. If a value reaches zero, we can 245 // eliminate the type check by RAUWing the associated llvm.type.test call with 246 // true. 247 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 248 249 DevirtModule(Module &M) 250 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), 251 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 252 Int32Ty(Type::getInt32Ty(M.getContext())) {} 253 254 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 255 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 256 257 void buildTypeIdentifierMap( 258 std::vector<VTableBits> &Bits, 259 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 260 bool 261 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 262 const std::set<TypeMemberInfo> &TypeMemberInfos, 263 uint64_t ByteOffset); 264 bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot, 265 MutableArrayRef<VirtualCallSite> CallSites); 266 bool tryEvaluateFunctionsWithArgs( 267 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 268 ArrayRef<ConstantInt *> Args); 269 bool tryUniformRetValOpt(IntegerType *RetType, 270 ArrayRef<VirtualCallTarget> TargetsForSlot, 271 MutableArrayRef<VirtualCallSite> CallSites); 272 bool tryUniqueRetValOpt(unsigned BitWidth, 273 ArrayRef<VirtualCallTarget> TargetsForSlot, 274 MutableArrayRef<VirtualCallSite> CallSites); 275 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 276 ArrayRef<VirtualCallSite> CallSites); 277 278 void rebuildGlobal(VTableBits &B); 279 280 bool run(); 281 }; 282 283 struct WholeProgramDevirt : public ModulePass { 284 static char ID; 285 WholeProgramDevirt() : ModulePass(ID) { 286 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 287 } 288 bool runOnModule(Module &M) { 289 if (skipModule(M)) 290 return false; 291 292 return DevirtModule(M).run(); 293 } 294 }; 295 296 } // anonymous namespace 297 298 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", 299 "Whole program devirtualization", false, false) 300 char WholeProgramDevirt::ID = 0; 301 302 ModulePass *llvm::createWholeProgramDevirtPass() { 303 return new WholeProgramDevirt; 304 } 305 306 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 307 ModuleAnalysisManager &) { 308 if (!DevirtModule(M).run()) 309 return PreservedAnalyses::all(); 310 return PreservedAnalyses::none(); 311 } 312 313 void DevirtModule::buildTypeIdentifierMap( 314 std::vector<VTableBits> &Bits, 315 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 316 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 317 Bits.reserve(M.getGlobalList().size()); 318 SmallVector<MDNode *, 2> Types; 319 for (GlobalVariable &GV : M.globals()) { 320 Types.clear(); 321 GV.getMetadata(LLVMContext::MD_type, Types); 322 if (Types.empty()) 323 continue; 324 325 VTableBits *&BitsPtr = GVToBits[&GV]; 326 if (!BitsPtr) { 327 Bits.emplace_back(); 328 Bits.back().GV = &GV; 329 Bits.back().ObjectSize = 330 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 331 BitsPtr = &Bits.back(); 332 } 333 334 for (MDNode *Type : Types) { 335 auto TypeID = Type->getOperand(1).get(); 336 337 uint64_t Offset = 338 cast<ConstantInt>( 339 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 340 ->getZExtValue(); 341 342 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 343 } 344 } 345 } 346 347 bool DevirtModule::tryFindVirtualCallTargets( 348 std::vector<VirtualCallTarget> &TargetsForSlot, 349 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 350 for (const TypeMemberInfo &TM : TypeMemberInfos) { 351 if (!TM.Bits->GV->isConstant()) 352 return false; 353 354 auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer()); 355 if (!Init) 356 return false; 357 ArrayType *VTableTy = Init->getType(); 358 359 uint64_t ElemSize = 360 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType()); 361 uint64_t GlobalSlotOffset = TM.Offset + ByteOffset; 362 if (GlobalSlotOffset % ElemSize != 0) 363 return false; 364 365 unsigned Op = GlobalSlotOffset / ElemSize; 366 if (Op >= Init->getNumOperands()) 367 return false; 368 369 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts()); 370 if (!Fn) 371 return false; 372 373 // We can disregard __cxa_pure_virtual as a possible call target, as 374 // calls to pure virtuals are UB. 375 if (Fn->getName() == "__cxa_pure_virtual") 376 continue; 377 378 TargetsForSlot.push_back({Fn, &TM}); 379 } 380 381 // Give up if we couldn't find any targets. 382 return !TargetsForSlot.empty(); 383 } 384 385 bool DevirtModule::trySingleImplDevirt( 386 ArrayRef<VirtualCallTarget> TargetsForSlot, 387 MutableArrayRef<VirtualCallSite> CallSites) { 388 // See if the program contains a single implementation of this virtual 389 // function. 390 Function *TheFn = TargetsForSlot[0].Fn; 391 for (auto &&Target : TargetsForSlot) 392 if (TheFn != Target.Fn) 393 return false; 394 395 // If so, update each call site to call that implementation directly. 396 for (auto &&VCallSite : CallSites) { 397 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 398 TheFn, VCallSite.CS.getCalledValue()->getType())); 399 // This use is no longer unsafe. 400 if (VCallSite.NumUnsafeUses) 401 --*VCallSite.NumUnsafeUses; 402 } 403 return true; 404 } 405 406 bool DevirtModule::tryEvaluateFunctionsWithArgs( 407 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 408 ArrayRef<ConstantInt *> Args) { 409 // Evaluate each function and store the result in each target's RetVal 410 // field. 411 for (VirtualCallTarget &Target : TargetsForSlot) { 412 if (Target.Fn->arg_size() != Args.size() + 1) 413 return false; 414 for (unsigned I = 0; I != Args.size(); ++I) 415 if (Target.Fn->getFunctionType()->getParamType(I + 1) != 416 Args[I]->getType()) 417 return false; 418 419 Evaluator Eval(M.getDataLayout(), nullptr); 420 SmallVector<Constant *, 2> EvalArgs; 421 EvalArgs.push_back( 422 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 423 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); 424 Constant *RetVal; 425 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 426 !isa<ConstantInt>(RetVal)) 427 return false; 428 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 429 } 430 return true; 431 } 432 433 bool DevirtModule::tryUniformRetValOpt( 434 IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot, 435 MutableArrayRef<VirtualCallSite> CallSites) { 436 // Uniform return value optimization. If all functions return the same 437 // constant, replace all calls with that constant. 438 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 439 for (const VirtualCallTarget &Target : TargetsForSlot) 440 if (Target.RetVal != TheRetVal) 441 return false; 442 443 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); 444 for (auto Call : CallSites) 445 Call.replaceAndErase(TheRetValConst); 446 return true; 447 } 448 449 bool DevirtModule::tryUniqueRetValOpt( 450 unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot, 451 MutableArrayRef<VirtualCallSite> CallSites) { 452 // IsOne controls whether we look for a 0 or a 1. 453 auto tryUniqueRetValOptFor = [&](bool IsOne) { 454 const TypeMemberInfo *UniqueMember = 0; 455 for (const VirtualCallTarget &Target : TargetsForSlot) { 456 if (Target.RetVal == (IsOne ? 1 : 0)) { 457 if (UniqueMember) 458 return false; 459 UniqueMember = Target.TM; 460 } 461 } 462 463 // We should have found a unique member or bailed out by now. We already 464 // checked for a uniform return value in tryUniformRetValOpt. 465 assert(UniqueMember); 466 467 // Replace each call with the comparison. 468 for (auto &&Call : CallSites) { 469 IRBuilder<> B(Call.CS.getInstruction()); 470 Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy); 471 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset); 472 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 473 Call.VTable, OneAddr); 474 Call.replaceAndErase(Cmp); 475 } 476 return true; 477 }; 478 479 if (BitWidth == 1) { 480 if (tryUniqueRetValOptFor(true)) 481 return true; 482 if (tryUniqueRetValOptFor(false)) 483 return true; 484 } 485 return false; 486 } 487 488 bool DevirtModule::tryVirtualConstProp( 489 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 490 ArrayRef<VirtualCallSite> CallSites) { 491 // This only works if the function returns an integer. 492 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 493 if (!RetType) 494 return false; 495 unsigned BitWidth = RetType->getBitWidth(); 496 if (BitWidth > 64) 497 return false; 498 499 // Make sure that each function does not access memory, takes at least one 500 // argument, does not use its first argument (which we assume is 'this'), 501 // and has the same return type. 502 for (VirtualCallTarget &Target : TargetsForSlot) { 503 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || 504 !Target.Fn->arg_begin()->use_empty() || 505 Target.Fn->getReturnType() != RetType) 506 return false; 507 } 508 509 // Group call sites by the list of constant arguments they pass. 510 // The comparator ensures deterministic ordering. 511 struct ByAPIntValue { 512 bool operator()(const std::vector<ConstantInt *> &A, 513 const std::vector<ConstantInt *> &B) const { 514 return std::lexicographical_compare( 515 A.begin(), A.end(), B.begin(), B.end(), 516 [](ConstantInt *AI, ConstantInt *BI) { 517 return AI->getValue().ult(BI->getValue()); 518 }); 519 } 520 }; 521 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, 522 ByAPIntValue> 523 VCallSitesByConstantArg; 524 for (auto &&VCallSite : CallSites) { 525 std::vector<ConstantInt *> Args; 526 if (VCallSite.CS.getType() != RetType) 527 continue; 528 for (auto &&Arg : 529 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { 530 if (!isa<ConstantInt>(Arg)) 531 break; 532 Args.push_back(cast<ConstantInt>(&Arg)); 533 } 534 if (Args.size() + 1 != VCallSite.CS.arg_size()) 535 continue; 536 537 VCallSitesByConstantArg[Args].push_back(VCallSite); 538 } 539 540 for (auto &&CSByConstantArg : VCallSitesByConstantArg) { 541 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 542 continue; 543 544 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) 545 continue; 546 547 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) 548 continue; 549 550 // Find an allocation offset in bits in all vtables associated with the 551 // type. 552 uint64_t AllocBefore = 553 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 554 uint64_t AllocAfter = 555 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 556 557 // Calculate the total amount of padding needed to store a value at both 558 // ends of the object. 559 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 560 for (auto &&Target : TargetsForSlot) { 561 TotalPaddingBefore += std::max<int64_t>( 562 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 563 TotalPaddingAfter += std::max<int64_t>( 564 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 565 } 566 567 // If the amount of padding is too large, give up. 568 // FIXME: do something smarter here. 569 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 570 continue; 571 572 // Calculate the offset to the value as a (possibly negative) byte offset 573 // and (if applicable) a bit offset, and store the values in the targets. 574 int64_t OffsetByte; 575 uint64_t OffsetBit; 576 if (TotalPaddingBefore <= TotalPaddingAfter) 577 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 578 OffsetBit); 579 else 580 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 581 OffsetBit); 582 583 // Rewrite each call to a load from OffsetByte/OffsetBit. 584 for (auto Call : CSByConstantArg.second) { 585 IRBuilder<> B(Call.CS.getInstruction()); 586 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); 587 if (BitWidth == 1) { 588 Value *Bits = B.CreateLoad(Addr); 589 Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 590 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 591 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 592 Call.replaceAndErase(IsBitSet); 593 } else { 594 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 595 Value *Val = B.CreateLoad(RetType, ValAddr); 596 Call.replaceAndErase(Val); 597 } 598 } 599 } 600 return true; 601 } 602 603 void DevirtModule::rebuildGlobal(VTableBits &B) { 604 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 605 return; 606 607 // Align each byte array to pointer width. 608 unsigned PointerSize = M.getDataLayout().getPointerSize(); 609 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 610 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 611 612 // Before was stored in reverse order; flip it now. 613 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 614 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 615 616 // Build an anonymous global containing the before bytes, followed by the 617 // original initializer, followed by the after bytes. 618 auto NewInit = ConstantStruct::getAnon( 619 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 620 B.GV->getInitializer(), 621 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 622 auto NewGV = 623 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 624 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 625 NewGV->setSection(B.GV->getSection()); 626 NewGV->setComdat(B.GV->getComdat()); 627 628 // Copy the original vtable's metadata to the anonymous global, adjusting 629 // offsets as required. 630 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 631 632 // Build an alias named after the original global, pointing at the second 633 // element (the original initializer). 634 auto Alias = GlobalAlias::create( 635 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 636 ConstantExpr::getGetElementPtr( 637 NewInit->getType(), NewGV, 638 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 639 ConstantInt::get(Int32Ty, 1)}), 640 &M); 641 Alias->setVisibility(B.GV->getVisibility()); 642 Alias->takeName(B.GV); 643 644 B.GV->replaceAllUsesWith(Alias); 645 B.GV->eraseFromParent(); 646 } 647 648 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 649 Function *AssumeFunc) { 650 // Find all virtual calls via a virtual table pointer %p under an assumption 651 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 652 // points to a member of the type identifier %md. Group calls by (type ID, 653 // offset) pair (effectively the identity of the virtual function) and store 654 // to CallSlots. 655 DenseSet<Value *> SeenPtrs; 656 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 657 I != E;) { 658 auto CI = dyn_cast<CallInst>(I->getUser()); 659 ++I; 660 if (!CI) 661 continue; 662 663 // Search for virtual calls based on %p and add them to DevirtCalls. 664 SmallVector<DevirtCallSite, 1> DevirtCalls; 665 SmallVector<CallInst *, 1> Assumes; 666 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 667 668 // If we found any, add them to CallSlots. Only do this if we haven't seen 669 // the vtable pointer before, as it may have been CSE'd with pointers from 670 // other call sites, and we don't want to process call sites multiple times. 671 if (!Assumes.empty()) { 672 Metadata *TypeId = 673 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 674 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 675 if (SeenPtrs.insert(Ptr).second) { 676 for (DevirtCallSite Call : DevirtCalls) { 677 CallSlots[{TypeId, Call.Offset}].push_back( 678 {CI->getArgOperand(0), Call.CS, nullptr}); 679 } 680 } 681 } 682 683 // We no longer need the assumes or the type test. 684 for (auto Assume : Assumes) 685 Assume->eraseFromParent(); 686 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 687 // may use the vtable argument later. 688 if (CI->use_empty()) 689 CI->eraseFromParent(); 690 } 691 } 692 693 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 694 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 695 696 for (auto I = TypeCheckedLoadFunc->use_begin(), 697 E = TypeCheckedLoadFunc->use_end(); 698 I != E;) { 699 auto CI = dyn_cast<CallInst>(I->getUser()); 700 ++I; 701 if (!CI) 702 continue; 703 704 Value *Ptr = CI->getArgOperand(0); 705 Value *Offset = CI->getArgOperand(1); 706 Value *TypeIdValue = CI->getArgOperand(2); 707 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 708 709 SmallVector<DevirtCallSite, 1> DevirtCalls; 710 SmallVector<Instruction *, 1> LoadedPtrs; 711 SmallVector<Instruction *, 1> Preds; 712 bool HasNonCallUses = false; 713 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 714 HasNonCallUses, CI); 715 716 // Start by generating "pessimistic" code that explicitly loads the function 717 // pointer from the vtable and performs the type check. If possible, we will 718 // eliminate the load and the type check later. 719 720 // If possible, only generate the load at the point where it is used. 721 // This helps avoid unnecessary spills. 722 IRBuilder<> LoadB( 723 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 724 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 725 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 726 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 727 728 for (Instruction *LoadedPtr : LoadedPtrs) { 729 LoadedPtr->replaceAllUsesWith(LoadedValue); 730 LoadedPtr->eraseFromParent(); 731 } 732 733 // Likewise for the type test. 734 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 735 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 736 737 for (Instruction *Pred : Preds) { 738 Pred->replaceAllUsesWith(TypeTestCall); 739 Pred->eraseFromParent(); 740 } 741 742 // We have already erased any extractvalue instructions that refer to the 743 // intrinsic call, but the intrinsic may have other non-extractvalue uses 744 // (although this is unlikely). In that case, explicitly build a pair and 745 // RAUW it. 746 if (!CI->use_empty()) { 747 Value *Pair = UndefValue::get(CI->getType()); 748 IRBuilder<> B(CI); 749 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 750 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 751 CI->replaceAllUsesWith(Pair); 752 } 753 754 // The number of unsafe uses is initially the number of uses. 755 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 756 NumUnsafeUses = DevirtCalls.size(); 757 758 // If the function pointer has a non-call user, we cannot eliminate the type 759 // check, as one of those users may eventually call the pointer. Increment 760 // the unsafe use count to make sure it cannot reach zero. 761 if (HasNonCallUses) 762 ++NumUnsafeUses; 763 for (DevirtCallSite Call : DevirtCalls) { 764 CallSlots[{TypeId, Call.Offset}].push_back( 765 {Ptr, Call.CS, &NumUnsafeUses}); 766 } 767 768 CI->eraseFromParent(); 769 } 770 } 771 772 bool DevirtModule::run() { 773 Function *TypeTestFunc = 774 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 775 Function *TypeCheckedLoadFunc = 776 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 777 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 778 779 if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 780 AssumeFunc->use_empty()) && 781 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 782 return false; 783 784 if (TypeTestFunc && AssumeFunc) 785 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 786 787 if (TypeCheckedLoadFunc) 788 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 789 790 // Rebuild type metadata into a map for easy lookup. 791 std::vector<VTableBits> Bits; 792 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 793 buildTypeIdentifierMap(Bits, TypeIdMap); 794 if (TypeIdMap.empty()) 795 return true; 796 797 // For each (type, offset) pair: 798 bool DidVirtualConstProp = false; 799 for (auto &S : CallSlots) { 800 // Search each of the members of the type identifier for the virtual 801 // function implementation at offset S.first.ByteOffset, and add to 802 // TargetsForSlot. 803 std::vector<VirtualCallTarget> TargetsForSlot; 804 if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 805 S.first.ByteOffset)) 806 continue; 807 808 if (trySingleImplDevirt(TargetsForSlot, S.second)) 809 continue; 810 811 DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second); 812 } 813 814 // If we were able to eliminate all unsafe uses for a type checked load, 815 // eliminate the type test by replacing it with true. 816 if (TypeCheckedLoadFunc) { 817 auto True = ConstantInt::getTrue(M.getContext()); 818 for (auto &&U : NumUnsafeUsesForTypeTest) { 819 if (U.second == 0) { 820 U.first->replaceAllUsesWith(True); 821 U.first->eraseFromParent(); 822 } 823 } 824 } 825 826 // Rebuild each global we touched as part of virtual constant propagation to 827 // include the before and after bytes. 828 if (DidVirtualConstProp) 829 for (VTableBits &B : Bits) 830 rebuildGlobal(B); 831 832 return true; 833 } 834