1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Analysis/AliasAnalysis.h" 62 #include "llvm/Analysis/BasicAliasAnalysis.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TypeMetadataUtils.h" 65 #include "llvm/Bitcode/BitcodeReader.h" 66 #include "llvm/Bitcode/BitcodeWriter.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/ModuleSummaryIndexYAML.h" 84 #include "llvm/InitializePasses.h" 85 #include "llvm/Pass.h" 86 #include "llvm/PassRegistry.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Errc.h" 90 #include "llvm/Support/Error.h" 91 #include "llvm/Support/FileSystem.h" 92 #include "llvm/Support/GlobPattern.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Transforms/IPO.h" 95 #include "llvm/Transforms/IPO/FunctionAttrs.h" 96 #include "llvm/Transforms/Utils/Evaluator.h" 97 #include <algorithm> 98 #include <cstddef> 99 #include <map> 100 #include <set> 101 #include <string> 102 103 using namespace llvm; 104 using namespace wholeprogramdevirt; 105 106 #define DEBUG_TYPE "wholeprogramdevirt" 107 108 static cl::opt<PassSummaryAction> ClSummaryAction( 109 "wholeprogramdevirt-summary-action", 110 cl::desc("What to do with the summary when running this pass"), 111 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 112 clEnumValN(PassSummaryAction::Import, "import", 113 "Import typeid resolutions from summary and globals"), 114 clEnumValN(PassSummaryAction::Export, "export", 115 "Export typeid resolutions to summary and globals")), 116 cl::Hidden); 117 118 static cl::opt<std::string> ClReadSummary( 119 "wholeprogramdevirt-read-summary", 120 cl::desc( 121 "Read summary from given bitcode or YAML file before running pass"), 122 cl::Hidden); 123 124 static cl::opt<std::string> ClWriteSummary( 125 "wholeprogramdevirt-write-summary", 126 cl::desc("Write summary to given bitcode or YAML file after running pass. " 127 "Output file format is deduced from extension: *.bc means writing " 128 "bitcode, otherwise YAML"), 129 cl::Hidden); 130 131 static cl::opt<unsigned> 132 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 133 cl::init(10), cl::ZeroOrMore, 134 cl::desc("Maximum number of call targets per " 135 "call site to enable branch funnels")); 136 137 static cl::opt<bool> 138 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 139 cl::init(false), cl::ZeroOrMore, 140 cl::desc("Print index-based devirtualization messages")); 141 142 /// Provide a way to force enable whole program visibility in tests. 143 /// This is needed to support legacy tests that don't contain 144 /// !vcall_visibility metadata (the mere presense of type tests 145 /// previously implied hidden visibility). 146 cl::opt<bool> 147 WholeProgramVisibility("whole-program-visibility", cl::init(false), 148 cl::Hidden, cl::ZeroOrMore, 149 cl::desc("Enable whole program visibility")); 150 151 /// Provide a way to force disable whole program for debugging or workarounds, 152 /// when enabled via the linker. 153 cl::opt<bool> DisableWholeProgramVisibility( 154 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 155 cl::ZeroOrMore, 156 cl::desc("Disable whole program visibility (overrides enabling options)")); 157 158 /// Provide way to prevent certain function from being devirtualized 159 cl::list<std::string> 160 SkipFunctionNames("wholeprogramdevirt-skip", 161 cl::desc("Prevent function(s) from being devirtualized"), 162 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); 163 164 namespace { 165 struct PatternList { 166 std::vector<GlobPattern> Patterns; 167 template <class T> void init(const T &StringList) { 168 for (const auto &S : StringList) 169 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 170 Patterns.push_back(std::move(*Pat)); 171 } 172 bool match(StringRef S) { 173 for (const GlobPattern &P : Patterns) 174 if (P.match(S)) 175 return true; 176 return false; 177 } 178 }; 179 } // namespace 180 181 // Find the minimum offset that we may store a value of size Size bits at. If 182 // IsAfter is set, look for an offset before the object, otherwise look for an 183 // offset after the object. 184 uint64_t 185 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 186 bool IsAfter, uint64_t Size) { 187 // Find a minimum offset taking into account only vtable sizes. 188 uint64_t MinByte = 0; 189 for (const VirtualCallTarget &Target : Targets) { 190 if (IsAfter) 191 MinByte = std::max(MinByte, Target.minAfterBytes()); 192 else 193 MinByte = std::max(MinByte, Target.minBeforeBytes()); 194 } 195 196 // Build a vector of arrays of bytes covering, for each target, a slice of the 197 // used region (see AccumBitVector::BytesUsed in 198 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 199 // this aligns the used regions to start at MinByte. 200 // 201 // In this example, A, B and C are vtables, # is a byte already allocated for 202 // a virtual function pointer, AAAA... (etc.) are the used regions for the 203 // vtables and Offset(X) is the value computed for the Offset variable below 204 // for X. 205 // 206 // Offset(A) 207 // | | 208 // |MinByte 209 // A: ################AAAAAAAA|AAAAAAAA 210 // B: ########BBBBBBBBBBBBBBBB|BBBB 211 // C: ########################|CCCCCCCCCCCCCCCC 212 // | Offset(B) | 213 // 214 // This code produces the slices of A, B and C that appear after the divider 215 // at MinByte. 216 std::vector<ArrayRef<uint8_t>> Used; 217 for (const VirtualCallTarget &Target : Targets) { 218 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 219 : Target.TM->Bits->Before.BytesUsed; 220 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 221 : MinByte - Target.minBeforeBytes(); 222 223 // Disregard used regions that are smaller than Offset. These are 224 // effectively all-free regions that do not need to be checked. 225 if (VTUsed.size() > Offset) 226 Used.push_back(VTUsed.slice(Offset)); 227 } 228 229 if (Size == 1) { 230 // Find a free bit in each member of Used. 231 for (unsigned I = 0;; ++I) { 232 uint8_t BitsUsed = 0; 233 for (auto &&B : Used) 234 if (I < B.size()) 235 BitsUsed |= B[I]; 236 if (BitsUsed != 0xff) 237 return (MinByte + I) * 8 + 238 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 239 } 240 } else { 241 // Find a free (Size/8) byte region in each member of Used. 242 // FIXME: see if alignment helps. 243 for (unsigned I = 0;; ++I) { 244 for (auto &&B : Used) { 245 unsigned Byte = 0; 246 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 247 if (B[I + Byte]) 248 goto NextI; 249 ++Byte; 250 } 251 } 252 return (MinByte + I) * 8; 253 NextI:; 254 } 255 } 256 } 257 258 void wholeprogramdevirt::setBeforeReturnValues( 259 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 260 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 261 if (BitWidth == 1) 262 OffsetByte = -(AllocBefore / 8 + 1); 263 else 264 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 265 OffsetBit = AllocBefore % 8; 266 267 for (VirtualCallTarget &Target : Targets) { 268 if (BitWidth == 1) 269 Target.setBeforeBit(AllocBefore); 270 else 271 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 272 } 273 } 274 275 void wholeprogramdevirt::setAfterReturnValues( 276 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 277 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 278 if (BitWidth == 1) 279 OffsetByte = AllocAfter / 8; 280 else 281 OffsetByte = (AllocAfter + 7) / 8; 282 OffsetBit = AllocAfter % 8; 283 284 for (VirtualCallTarget &Target : Targets) { 285 if (BitWidth == 1) 286 Target.setAfterBit(AllocAfter); 287 else 288 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 289 } 290 } 291 292 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 293 : Fn(Fn), TM(TM), 294 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 295 296 namespace { 297 298 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 299 // tables, and the ByteOffset is the offset in bytes from the address point to 300 // the virtual function pointer. 301 struct VTableSlot { 302 Metadata *TypeID; 303 uint64_t ByteOffset; 304 }; 305 306 } // end anonymous namespace 307 308 namespace llvm { 309 310 template <> struct DenseMapInfo<VTableSlot> { 311 static VTableSlot getEmptyKey() { 312 return {DenseMapInfo<Metadata *>::getEmptyKey(), 313 DenseMapInfo<uint64_t>::getEmptyKey()}; 314 } 315 static VTableSlot getTombstoneKey() { 316 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 317 DenseMapInfo<uint64_t>::getTombstoneKey()}; 318 } 319 static unsigned getHashValue(const VTableSlot &I) { 320 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 321 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 322 } 323 static bool isEqual(const VTableSlot &LHS, 324 const VTableSlot &RHS) { 325 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 326 } 327 }; 328 329 template <> struct DenseMapInfo<VTableSlotSummary> { 330 static VTableSlotSummary getEmptyKey() { 331 return {DenseMapInfo<StringRef>::getEmptyKey(), 332 DenseMapInfo<uint64_t>::getEmptyKey()}; 333 } 334 static VTableSlotSummary getTombstoneKey() { 335 return {DenseMapInfo<StringRef>::getTombstoneKey(), 336 DenseMapInfo<uint64_t>::getTombstoneKey()}; 337 } 338 static unsigned getHashValue(const VTableSlotSummary &I) { 339 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 340 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 341 } 342 static bool isEqual(const VTableSlotSummary &LHS, 343 const VTableSlotSummary &RHS) { 344 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 345 } 346 }; 347 348 } // end namespace llvm 349 350 namespace { 351 352 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 353 // the indirect virtual call. 354 struct VirtualCallSite { 355 Value *VTable = nullptr; 356 CallBase &CB; 357 358 // If non-null, this field points to the associated unsafe use count stored in 359 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 360 // of that field for details. 361 unsigned *NumUnsafeUses = nullptr; 362 363 void 364 emitRemark(const StringRef OptName, const StringRef TargetName, 365 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 366 Function *F = CB.getCaller(); 367 DebugLoc DLoc = CB.getDebugLoc(); 368 BasicBlock *Block = CB.getParent(); 369 370 using namespace ore; 371 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 372 << NV("Optimization", OptName) 373 << ": devirtualized a call to " 374 << NV("FunctionName", TargetName)); 375 } 376 377 void replaceAndErase( 378 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 379 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 380 Value *New) { 381 if (RemarksEnabled) 382 emitRemark(OptName, TargetName, OREGetter); 383 CB.replaceAllUsesWith(New); 384 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 385 BranchInst::Create(II->getNormalDest(), &CB); 386 II->getUnwindDest()->removePredecessor(II->getParent()); 387 } 388 CB.eraseFromParent(); 389 // This use is no longer unsafe. 390 if (NumUnsafeUses) 391 --*NumUnsafeUses; 392 } 393 }; 394 395 // Call site information collected for a specific VTableSlot and possibly a list 396 // of constant integer arguments. The grouping by arguments is handled by the 397 // VTableSlotInfo class. 398 struct CallSiteInfo { 399 /// The set of call sites for this slot. Used during regular LTO and the 400 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 401 /// call sites that appear in the merged module itself); in each of these 402 /// cases we are directly operating on the call sites at the IR level. 403 std::vector<VirtualCallSite> CallSites; 404 405 /// Whether all call sites represented by this CallSiteInfo, including those 406 /// in summaries, have been devirtualized. This starts off as true because a 407 /// default constructed CallSiteInfo represents no call sites. 408 bool AllCallSitesDevirted = true; 409 410 // These fields are used during the export phase of ThinLTO and reflect 411 // information collected from function summaries. 412 413 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 414 /// this slot. 415 bool SummaryHasTypeTestAssumeUsers = false; 416 417 /// CFI-specific: a vector containing the list of function summaries that use 418 /// the llvm.type.checked.load intrinsic and therefore will require 419 /// resolutions for llvm.type.test in order to implement CFI checks if 420 /// devirtualization was unsuccessful. If devirtualization was successful, the 421 /// pass will clear this vector by calling markDevirt(). If at the end of the 422 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 423 /// to each of the function summaries in the vector. 424 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 425 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 426 427 bool isExported() const { 428 return SummaryHasTypeTestAssumeUsers || 429 !SummaryTypeCheckedLoadUsers.empty(); 430 } 431 432 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 433 SummaryTypeCheckedLoadUsers.push_back(FS); 434 AllCallSitesDevirted = false; 435 } 436 437 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 438 SummaryTypeTestAssumeUsers.push_back(FS); 439 SummaryHasTypeTestAssumeUsers = true; 440 AllCallSitesDevirted = false; 441 } 442 443 void markDevirt() { 444 AllCallSitesDevirted = true; 445 446 // As explained in the comment for SummaryTypeCheckedLoadUsers. 447 SummaryTypeCheckedLoadUsers.clear(); 448 } 449 }; 450 451 // Call site information collected for a specific VTableSlot. 452 struct VTableSlotInfo { 453 // The set of call sites which do not have all constant integer arguments 454 // (excluding "this"). 455 CallSiteInfo CSInfo; 456 457 // The set of call sites with all constant integer arguments (excluding 458 // "this"), grouped by argument list. 459 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 460 461 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 462 463 private: 464 CallSiteInfo &findCallSiteInfo(CallBase &CB); 465 }; 466 467 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 468 std::vector<uint64_t> Args; 469 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 470 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 471 return CSInfo; 472 for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) { 473 auto *CI = dyn_cast<ConstantInt>(Arg); 474 if (!CI || CI->getBitWidth() > 64) 475 return CSInfo; 476 Args.push_back(CI->getZExtValue()); 477 } 478 return ConstCSInfo[Args]; 479 } 480 481 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 482 unsigned *NumUnsafeUses) { 483 auto &CSI = findCallSiteInfo(CB); 484 CSI.AllCallSitesDevirted = false; 485 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 486 } 487 488 struct DevirtModule { 489 Module &M; 490 function_ref<AAResults &(Function &)> AARGetter; 491 function_ref<DominatorTree &(Function &)> LookupDomTree; 492 493 ModuleSummaryIndex *ExportSummary; 494 const ModuleSummaryIndex *ImportSummary; 495 496 IntegerType *Int8Ty; 497 PointerType *Int8PtrTy; 498 IntegerType *Int32Ty; 499 IntegerType *Int64Ty; 500 IntegerType *IntPtrTy; 501 /// Sizeless array type, used for imported vtables. This provides a signal 502 /// to analyzers that these imports may alias, as they do for example 503 /// when multiple unique return values occur in the same vtable. 504 ArrayType *Int8Arr0Ty; 505 506 bool RemarksEnabled; 507 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 508 509 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 510 511 // This map keeps track of the number of "unsafe" uses of a loaded function 512 // pointer. The key is the associated llvm.type.test intrinsic call generated 513 // by this pass. An unsafe use is one that calls the loaded function pointer 514 // directly. Every time we eliminate an unsafe use (for example, by 515 // devirtualizing it or by applying virtual constant propagation), we 516 // decrement the value stored in this map. If a value reaches zero, we can 517 // eliminate the type check by RAUWing the associated llvm.type.test call with 518 // true. 519 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 520 PatternList FunctionsToSkip; 521 522 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 523 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 524 function_ref<DominatorTree &(Function &)> LookupDomTree, 525 ModuleSummaryIndex *ExportSummary, 526 const ModuleSummaryIndex *ImportSummary) 527 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 528 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 529 Int8Ty(Type::getInt8Ty(M.getContext())), 530 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 531 Int32Ty(Type::getInt32Ty(M.getContext())), 532 Int64Ty(Type::getInt64Ty(M.getContext())), 533 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 534 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 535 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 536 assert(!(ExportSummary && ImportSummary)); 537 FunctionsToSkip.init(SkipFunctionNames); 538 } 539 540 bool areRemarksEnabled(); 541 542 void scanTypeTestUsers(Function *TypeTestFunc); 543 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 544 545 void buildTypeIdentifierMap( 546 std::vector<VTableBits> &Bits, 547 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 548 bool 549 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 550 const std::set<TypeMemberInfo> &TypeMemberInfos, 551 uint64_t ByteOffset); 552 553 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 554 bool &IsExported); 555 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 556 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 557 VTableSlotInfo &SlotInfo, 558 WholeProgramDevirtResolution *Res); 559 560 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 561 bool &IsExported); 562 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 563 VTableSlotInfo &SlotInfo, 564 WholeProgramDevirtResolution *Res, VTableSlot Slot); 565 566 bool tryEvaluateFunctionsWithArgs( 567 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 568 ArrayRef<uint64_t> Args); 569 570 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 571 uint64_t TheRetVal); 572 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 573 CallSiteInfo &CSInfo, 574 WholeProgramDevirtResolution::ByArg *Res); 575 576 // Returns the global symbol name that is used to export information about the 577 // given vtable slot and list of arguments. 578 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 579 StringRef Name); 580 581 bool shouldExportConstantsAsAbsoluteSymbols(); 582 583 // This function is called during the export phase to create a symbol 584 // definition containing information about the given vtable slot and list of 585 // arguments. 586 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 587 Constant *C); 588 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 589 uint32_t Const, uint32_t &Storage); 590 591 // This function is called during the import phase to create a reference to 592 // the symbol definition created during the export phase. 593 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 594 StringRef Name); 595 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 596 StringRef Name, IntegerType *IntTy, 597 uint32_t Storage); 598 599 Constant *getMemberAddr(const TypeMemberInfo *M); 600 601 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 602 Constant *UniqueMemberAddr); 603 bool tryUniqueRetValOpt(unsigned BitWidth, 604 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 605 CallSiteInfo &CSInfo, 606 WholeProgramDevirtResolution::ByArg *Res, 607 VTableSlot Slot, ArrayRef<uint64_t> Args); 608 609 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 610 Constant *Byte, Constant *Bit); 611 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 612 VTableSlotInfo &SlotInfo, 613 WholeProgramDevirtResolution *Res, VTableSlot Slot); 614 615 void rebuildGlobal(VTableBits &B); 616 617 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 618 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 619 620 // If we were able to eliminate all unsafe uses for a type checked load, 621 // eliminate the associated type tests by replacing them with true. 622 void removeRedundantTypeTests(); 623 624 bool run(); 625 626 // Lower the module using the action and summary passed as command line 627 // arguments. For testing purposes only. 628 static bool 629 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 630 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 631 function_ref<DominatorTree &(Function &)> LookupDomTree); 632 }; 633 634 struct DevirtIndex { 635 ModuleSummaryIndex &ExportSummary; 636 // The set in which to record GUIDs exported from their module by 637 // devirtualization, used by client to ensure they are not internalized. 638 std::set<GlobalValue::GUID> &ExportedGUIDs; 639 // A map in which to record the information necessary to locate the WPD 640 // resolution for local targets in case they are exported by cross module 641 // importing. 642 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 643 644 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 645 646 PatternList FunctionsToSkip; 647 648 DevirtIndex( 649 ModuleSummaryIndex &ExportSummary, 650 std::set<GlobalValue::GUID> &ExportedGUIDs, 651 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 652 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 653 LocalWPDTargetsMap(LocalWPDTargetsMap) { 654 FunctionsToSkip.init(SkipFunctionNames); 655 } 656 657 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 658 const TypeIdCompatibleVtableInfo TIdInfo, 659 uint64_t ByteOffset); 660 661 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 662 VTableSlotSummary &SlotSummary, 663 VTableSlotInfo &SlotInfo, 664 WholeProgramDevirtResolution *Res, 665 std::set<ValueInfo> &DevirtTargets); 666 667 void run(); 668 }; 669 670 struct WholeProgramDevirt : public ModulePass { 671 static char ID; 672 673 bool UseCommandLine = false; 674 675 ModuleSummaryIndex *ExportSummary = nullptr; 676 const ModuleSummaryIndex *ImportSummary = nullptr; 677 678 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 679 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 680 } 681 682 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 683 const ModuleSummaryIndex *ImportSummary) 684 : ModulePass(ID), ExportSummary(ExportSummary), 685 ImportSummary(ImportSummary) { 686 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 687 } 688 689 bool runOnModule(Module &M) override { 690 if (skipModule(M)) 691 return false; 692 693 // In the new pass manager, we can request the optimization 694 // remark emitter pass on a per-function-basis, which the 695 // OREGetter will do for us. 696 // In the old pass manager, this is harder, so we just build 697 // an optimization remark emitter on the fly, when we need it. 698 std::unique_ptr<OptimizationRemarkEmitter> ORE; 699 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 700 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 701 return *ORE; 702 }; 703 704 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 705 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 706 }; 707 708 if (UseCommandLine) 709 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 710 LookupDomTree); 711 712 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 713 ExportSummary, ImportSummary) 714 .run(); 715 } 716 717 void getAnalysisUsage(AnalysisUsage &AU) const override { 718 AU.addRequired<AssumptionCacheTracker>(); 719 AU.addRequired<TargetLibraryInfoWrapperPass>(); 720 AU.addRequired<DominatorTreeWrapperPass>(); 721 } 722 }; 723 724 } // end anonymous namespace 725 726 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 727 "Whole program devirtualization", false, false) 728 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 729 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 730 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 731 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 732 "Whole program devirtualization", false, false) 733 char WholeProgramDevirt::ID = 0; 734 735 ModulePass * 736 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 737 const ModuleSummaryIndex *ImportSummary) { 738 return new WholeProgramDevirt(ExportSummary, ImportSummary); 739 } 740 741 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 742 ModuleAnalysisManager &AM) { 743 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 744 auto AARGetter = [&](Function &F) -> AAResults & { 745 return FAM.getResult<AAManager>(F); 746 }; 747 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 748 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 749 }; 750 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 751 return FAM.getResult<DominatorTreeAnalysis>(F); 752 }; 753 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 754 ImportSummary) 755 .run()) 756 return PreservedAnalyses::all(); 757 return PreservedAnalyses::none(); 758 } 759 760 // Enable whole program visibility if enabled by client (e.g. linker) or 761 // internal option, and not force disabled. 762 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 763 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 764 !DisableWholeProgramVisibility; 765 } 766 767 namespace llvm { 768 769 /// If whole program visibility asserted, then upgrade all public vcall 770 /// visibility metadata on vtable definitions to linkage unit visibility in 771 /// Module IR (for regular or hybrid LTO). 772 void updateVCallVisibilityInModule(Module &M, 773 bool WholeProgramVisibilityEnabledInLTO) { 774 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 775 return; 776 for (GlobalVariable &GV : M.globals()) 777 // Add linkage unit visibility to any variable with type metadata, which are 778 // the vtable definitions. We won't have an existing vcall_visibility 779 // metadata on vtable definitions with public visibility. 780 if (GV.hasMetadata(LLVMContext::MD_type) && 781 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 782 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 783 } 784 785 /// If whole program visibility asserted, then upgrade all public vcall 786 /// visibility metadata on vtable definition summaries to linkage unit 787 /// visibility in Module summary index (for ThinLTO). 788 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, 789 bool WholeProgramVisibilityEnabledInLTO) { 790 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 791 return; 792 for (auto &P : Index) { 793 for (auto &S : P.second.SummaryList) { 794 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 795 if (!GVar || GVar->vTableFuncs().empty() || 796 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 797 continue; 798 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 799 } 800 } 801 } 802 803 void runWholeProgramDevirtOnIndex( 804 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 805 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 806 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 807 } 808 809 void updateIndexWPDForExports( 810 ModuleSummaryIndex &Summary, 811 function_ref<bool(StringRef, ValueInfo)> isExported, 812 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 813 for (auto &T : LocalWPDTargetsMap) { 814 auto &VI = T.first; 815 // This was enforced earlier during trySingleImplDevirt. 816 assert(VI.getSummaryList().size() == 1 && 817 "Devirt of local target has more than one copy"); 818 auto &S = VI.getSummaryList()[0]; 819 if (!isExported(S->modulePath(), VI)) 820 continue; 821 822 // It's been exported by a cross module import. 823 for (auto &SlotSummary : T.second) { 824 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 825 assert(TIdSum); 826 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 827 assert(WPDRes != TIdSum->WPDRes.end()); 828 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 829 WPDRes->second.SingleImplName, 830 Summary.getModuleHash(S->modulePath())); 831 } 832 } 833 } 834 835 } // end namespace llvm 836 837 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 838 // Check that summary index contains regular LTO module when performing 839 // export to prevent occasional use of index from pure ThinLTO compilation 840 // (-fno-split-lto-module). This kind of summary index is passed to 841 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 842 const auto &ModPaths = Summary->modulePaths(); 843 if (ClSummaryAction != PassSummaryAction::Import && 844 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 845 ModPaths.end()) 846 return createStringError( 847 errc::invalid_argument, 848 "combined summary should contain Regular LTO module"); 849 return ErrorSuccess(); 850 } 851 852 bool DevirtModule::runForTesting( 853 Module &M, function_ref<AAResults &(Function &)> AARGetter, 854 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 855 function_ref<DominatorTree &(Function &)> LookupDomTree) { 856 std::unique_ptr<ModuleSummaryIndex> Summary = 857 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 858 859 // Handle the command-line summary arguments. This code is for testing 860 // purposes only, so we handle errors directly. 861 if (!ClReadSummary.empty()) { 862 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 863 ": "); 864 auto ReadSummaryFile = 865 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 866 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 867 getModuleSummaryIndex(*ReadSummaryFile)) { 868 Summary = std::move(*SummaryOrErr); 869 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 870 } else { 871 // Try YAML if we've failed with bitcode. 872 consumeError(SummaryOrErr.takeError()); 873 yaml::Input In(ReadSummaryFile->getBuffer()); 874 In >> *Summary; 875 ExitOnErr(errorCodeToError(In.error())); 876 } 877 } 878 879 bool Changed = 880 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 881 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 882 : nullptr, 883 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 884 : nullptr) 885 .run(); 886 887 if (!ClWriteSummary.empty()) { 888 ExitOnError ExitOnErr( 889 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 890 std::error_code EC; 891 if (StringRef(ClWriteSummary).endswith(".bc")) { 892 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 893 ExitOnErr(errorCodeToError(EC)); 894 WriteIndexToFile(*Summary, OS); 895 } else { 896 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 897 ExitOnErr(errorCodeToError(EC)); 898 yaml::Output Out(OS); 899 Out << *Summary; 900 } 901 } 902 903 return Changed; 904 } 905 906 void DevirtModule::buildTypeIdentifierMap( 907 std::vector<VTableBits> &Bits, 908 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 909 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 910 Bits.reserve(M.getGlobalList().size()); 911 SmallVector<MDNode *, 2> Types; 912 for (GlobalVariable &GV : M.globals()) { 913 Types.clear(); 914 GV.getMetadata(LLVMContext::MD_type, Types); 915 if (GV.isDeclaration() || Types.empty()) 916 continue; 917 918 VTableBits *&BitsPtr = GVToBits[&GV]; 919 if (!BitsPtr) { 920 Bits.emplace_back(); 921 Bits.back().GV = &GV; 922 Bits.back().ObjectSize = 923 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 924 BitsPtr = &Bits.back(); 925 } 926 927 for (MDNode *Type : Types) { 928 auto TypeID = Type->getOperand(1).get(); 929 930 uint64_t Offset = 931 cast<ConstantInt>( 932 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 933 ->getZExtValue(); 934 935 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 936 } 937 } 938 } 939 940 bool DevirtModule::tryFindVirtualCallTargets( 941 std::vector<VirtualCallTarget> &TargetsForSlot, 942 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 943 for (const TypeMemberInfo &TM : TypeMemberInfos) { 944 if (!TM.Bits->GV->isConstant()) 945 return false; 946 947 // We cannot perform whole program devirtualization analysis on a vtable 948 // with public LTO visibility. 949 if (TM.Bits->GV->getVCallVisibility() == 950 GlobalObject::VCallVisibilityPublic) 951 return false; 952 953 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 954 TM.Offset + ByteOffset, M); 955 if (!Ptr) 956 return false; 957 958 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 959 if (!Fn) 960 return false; 961 962 if (FunctionsToSkip.match(Fn->getName())) 963 return false; 964 965 // We can disregard __cxa_pure_virtual as a possible call target, as 966 // calls to pure virtuals are UB. 967 if (Fn->getName() == "__cxa_pure_virtual") 968 continue; 969 970 TargetsForSlot.push_back({Fn, &TM}); 971 } 972 973 // Give up if we couldn't find any targets. 974 return !TargetsForSlot.empty(); 975 } 976 977 bool DevirtIndex::tryFindVirtualCallTargets( 978 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 979 uint64_t ByteOffset) { 980 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 981 // Find the first non-available_externally linkage vtable initializer. 982 // We can have multiple available_externally, linkonce_odr and weak_odr 983 // vtable initializers, however we want to skip available_externally as they 984 // do not have type metadata attached, and therefore the summary will not 985 // contain any vtable functions. We can also have multiple external 986 // vtable initializers in the case of comdats, which we cannot check here. 987 // The linker should give an error in this case. 988 // 989 // Also, handle the case of same-named local Vtables with the same path 990 // and therefore the same GUID. This can happen if there isn't enough 991 // distinguishing path when compiling the source file. In that case we 992 // conservatively return false early. 993 const GlobalVarSummary *VS = nullptr; 994 bool LocalFound = false; 995 for (auto &S : P.VTableVI.getSummaryList()) { 996 if (GlobalValue::isLocalLinkage(S->linkage())) { 997 if (LocalFound) 998 return false; 999 LocalFound = true; 1000 } 1001 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1002 VS = cast<GlobalVarSummary>(S->getBaseObject()); 1003 // We cannot perform whole program devirtualization analysis on a vtable 1004 // with public LTO visibility. 1005 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1006 return false; 1007 } 1008 } 1009 if (!VS->isLive()) 1010 continue; 1011 for (auto VTP : VS->vTableFuncs()) { 1012 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1013 continue; 1014 1015 TargetsForSlot.push_back(VTP.FuncVI); 1016 } 1017 } 1018 1019 // Give up if we couldn't find any targets. 1020 return !TargetsForSlot.empty(); 1021 } 1022 1023 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1024 Constant *TheFn, bool &IsExported) { 1025 auto Apply = [&](CallSiteInfo &CSInfo) { 1026 for (auto &&VCallSite : CSInfo.CallSites) { 1027 if (RemarksEnabled) 1028 VCallSite.emitRemark("single-impl", 1029 TheFn->stripPointerCasts()->getName(), OREGetter); 1030 VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast( 1031 TheFn, VCallSite.CB.getCalledOperand()->getType())); 1032 // This use is no longer unsafe. 1033 if (VCallSite.NumUnsafeUses) 1034 --*VCallSite.NumUnsafeUses; 1035 } 1036 if (CSInfo.isExported()) 1037 IsExported = true; 1038 CSInfo.markDevirt(); 1039 }; 1040 Apply(SlotInfo.CSInfo); 1041 for (auto &P : SlotInfo.ConstCSInfo) 1042 Apply(P.second); 1043 } 1044 1045 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1046 // We can't add calls if we haven't seen a definition 1047 if (Callee.getSummaryList().empty()) 1048 return false; 1049 1050 // Insert calls into the summary index so that the devirtualized targets 1051 // are eligible for import. 1052 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1053 // to better ensure we have the opportunity to inline them. 1054 bool IsExported = false; 1055 auto &S = Callee.getSummaryList()[0]; 1056 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1057 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1058 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1059 FS->addCall({Callee, CI}); 1060 IsExported |= S->modulePath() != FS->modulePath(); 1061 } 1062 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1063 FS->addCall({Callee, CI}); 1064 IsExported |= S->modulePath() != FS->modulePath(); 1065 } 1066 }; 1067 AddCalls(SlotInfo.CSInfo); 1068 for (auto &P : SlotInfo.ConstCSInfo) 1069 AddCalls(P.second); 1070 return IsExported; 1071 } 1072 1073 bool DevirtModule::trySingleImplDevirt( 1074 ModuleSummaryIndex *ExportSummary, 1075 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1076 WholeProgramDevirtResolution *Res) { 1077 // See if the program contains a single implementation of this virtual 1078 // function. 1079 Function *TheFn = TargetsForSlot[0].Fn; 1080 for (auto &&Target : TargetsForSlot) 1081 if (TheFn != Target.Fn) 1082 return false; 1083 1084 // If so, update each call site to call that implementation directly. 1085 if (RemarksEnabled) 1086 TargetsForSlot[0].WasDevirt = true; 1087 1088 bool IsExported = false; 1089 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1090 if (!IsExported) 1091 return false; 1092 1093 // If the only implementation has local linkage, we must promote to external 1094 // to make it visible to thin LTO objects. We can only get here during the 1095 // ThinLTO export phase. 1096 if (TheFn->hasLocalLinkage()) { 1097 std::string NewName = (TheFn->getName() + "$merged").str(); 1098 1099 // Since we are renaming the function, any comdats with the same name must 1100 // also be renamed. This is required when targeting COFF, as the comdat name 1101 // must match one of the names of the symbols in the comdat. 1102 if (Comdat *C = TheFn->getComdat()) { 1103 if (C->getName() == TheFn->getName()) { 1104 Comdat *NewC = M.getOrInsertComdat(NewName); 1105 NewC->setSelectionKind(C->getSelectionKind()); 1106 for (GlobalObject &GO : M.global_objects()) 1107 if (GO.getComdat() == C) 1108 GO.setComdat(NewC); 1109 } 1110 } 1111 1112 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1113 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1114 TheFn->setName(NewName); 1115 } 1116 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1117 // Any needed promotion of 'TheFn' has already been done during 1118 // LTO unit split, so we can ignore return value of AddCalls. 1119 AddCalls(SlotInfo, TheFnVI); 1120 1121 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1122 Res->SingleImplName = std::string(TheFn->getName()); 1123 1124 return true; 1125 } 1126 1127 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1128 VTableSlotSummary &SlotSummary, 1129 VTableSlotInfo &SlotInfo, 1130 WholeProgramDevirtResolution *Res, 1131 std::set<ValueInfo> &DevirtTargets) { 1132 // See if the program contains a single implementation of this virtual 1133 // function. 1134 auto TheFn = TargetsForSlot[0]; 1135 for (auto &&Target : TargetsForSlot) 1136 if (TheFn != Target) 1137 return false; 1138 1139 // Don't devirtualize if we don't have target definition. 1140 auto Size = TheFn.getSummaryList().size(); 1141 if (!Size) 1142 return false; 1143 1144 // Don't devirtualize function if we're told to skip it 1145 // in -wholeprogramdevirt-skip. 1146 if (FunctionsToSkip.match(TheFn.name())) 1147 return false; 1148 1149 // If the summary list contains multiple summaries where at least one is 1150 // a local, give up, as we won't know which (possibly promoted) name to use. 1151 for (auto &S : TheFn.getSummaryList()) 1152 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1153 return false; 1154 1155 // Collect functions devirtualized at least for one call site for stats. 1156 if (PrintSummaryDevirt) 1157 DevirtTargets.insert(TheFn); 1158 1159 auto &S = TheFn.getSummaryList()[0]; 1160 bool IsExported = AddCalls(SlotInfo, TheFn); 1161 if (IsExported) 1162 ExportedGUIDs.insert(TheFn.getGUID()); 1163 1164 // Record in summary for use in devirtualization during the ThinLTO import 1165 // step. 1166 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1167 if (GlobalValue::isLocalLinkage(S->linkage())) { 1168 if (IsExported) 1169 // If target is a local function and we are exporting it by 1170 // devirtualizing a call in another module, we need to record the 1171 // promoted name. 1172 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1173 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1174 else { 1175 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1176 Res->SingleImplName = std::string(TheFn.name()); 1177 } 1178 } else 1179 Res->SingleImplName = std::string(TheFn.name()); 1180 1181 // Name will be empty if this thin link driven off of serialized combined 1182 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1183 // legacy LTO API anyway. 1184 assert(!Res->SingleImplName.empty()); 1185 1186 return true; 1187 } 1188 1189 void DevirtModule::tryICallBranchFunnel( 1190 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1191 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1192 Triple T(M.getTargetTriple()); 1193 if (T.getArch() != Triple::x86_64) 1194 return; 1195 1196 if (TargetsForSlot.size() > ClThreshold) 1197 return; 1198 1199 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1200 if (!HasNonDevirt) 1201 for (auto &P : SlotInfo.ConstCSInfo) 1202 if (!P.second.AllCallSitesDevirted) { 1203 HasNonDevirt = true; 1204 break; 1205 } 1206 1207 if (!HasNonDevirt) 1208 return; 1209 1210 FunctionType *FT = 1211 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1212 Function *JT; 1213 if (isa<MDString>(Slot.TypeID)) { 1214 JT = Function::Create(FT, Function::ExternalLinkage, 1215 M.getDataLayout().getProgramAddressSpace(), 1216 getGlobalName(Slot, {}, "branch_funnel"), &M); 1217 JT->setVisibility(GlobalValue::HiddenVisibility); 1218 } else { 1219 JT = Function::Create(FT, Function::InternalLinkage, 1220 M.getDataLayout().getProgramAddressSpace(), 1221 "branch_funnel", &M); 1222 } 1223 JT->addAttribute(1, Attribute::Nest); 1224 1225 std::vector<Value *> JTArgs; 1226 JTArgs.push_back(JT->arg_begin()); 1227 for (auto &T : TargetsForSlot) { 1228 JTArgs.push_back(getMemberAddr(T.TM)); 1229 JTArgs.push_back(T.Fn); 1230 } 1231 1232 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1233 Function *Intr = 1234 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1235 1236 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1237 CI->setTailCallKind(CallInst::TCK_MustTail); 1238 ReturnInst::Create(M.getContext(), nullptr, BB); 1239 1240 bool IsExported = false; 1241 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1242 if (IsExported) 1243 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1244 } 1245 1246 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1247 Constant *JT, bool &IsExported) { 1248 auto Apply = [&](CallSiteInfo &CSInfo) { 1249 if (CSInfo.isExported()) 1250 IsExported = true; 1251 if (CSInfo.AllCallSitesDevirted) 1252 return; 1253 for (auto &&VCallSite : CSInfo.CallSites) { 1254 CallBase &CB = VCallSite.CB; 1255 1256 // Jump tables are only profitable if the retpoline mitigation is enabled. 1257 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1258 if (FSAttr.hasAttribute(Attribute::None) || 1259 !FSAttr.getValueAsString().contains("+retpoline")) 1260 continue; 1261 1262 if (RemarksEnabled) 1263 VCallSite.emitRemark("branch-funnel", 1264 JT->stripPointerCasts()->getName(), OREGetter); 1265 1266 // Pass the address of the vtable in the nest register, which is r10 on 1267 // x86_64. 1268 std::vector<Type *> NewArgs; 1269 NewArgs.push_back(Int8PtrTy); 1270 for (Type *T : CB.getFunctionType()->params()) 1271 NewArgs.push_back(T); 1272 FunctionType *NewFT = 1273 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1274 CB.getFunctionType()->isVarArg()); 1275 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1276 1277 IRBuilder<> IRB(&CB); 1278 std::vector<Value *> Args; 1279 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1280 Args.insert(Args.end(), CB.arg_begin(), CB.arg_end()); 1281 1282 CallBase *NewCS = nullptr; 1283 if (isa<CallInst>(CB)) 1284 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1285 else 1286 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1287 cast<InvokeInst>(CB).getNormalDest(), 1288 cast<InvokeInst>(CB).getUnwindDest(), Args); 1289 NewCS->setCallingConv(CB.getCallingConv()); 1290 1291 AttributeList Attrs = CB.getAttributes(); 1292 std::vector<AttributeSet> NewArgAttrs; 1293 NewArgAttrs.push_back(AttributeSet::get( 1294 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1295 M.getContext(), Attribute::Nest)})); 1296 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1297 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1298 NewCS->setAttributes( 1299 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1300 Attrs.getRetAttributes(), NewArgAttrs)); 1301 1302 CB.replaceAllUsesWith(NewCS); 1303 CB.eraseFromParent(); 1304 1305 // This use is no longer unsafe. 1306 if (VCallSite.NumUnsafeUses) 1307 --*VCallSite.NumUnsafeUses; 1308 } 1309 // Don't mark as devirtualized because there may be callers compiled without 1310 // retpoline mitigation, which would mean that they are lowered to 1311 // llvm.type.test and therefore require an llvm.type.test resolution for the 1312 // type identifier. 1313 }; 1314 Apply(SlotInfo.CSInfo); 1315 for (auto &P : SlotInfo.ConstCSInfo) 1316 Apply(P.second); 1317 } 1318 1319 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1320 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1321 ArrayRef<uint64_t> Args) { 1322 // Evaluate each function and store the result in each target's RetVal 1323 // field. 1324 for (VirtualCallTarget &Target : TargetsForSlot) { 1325 if (Target.Fn->arg_size() != Args.size() + 1) 1326 return false; 1327 1328 Evaluator Eval(M.getDataLayout(), nullptr); 1329 SmallVector<Constant *, 2> EvalArgs; 1330 EvalArgs.push_back( 1331 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1332 for (unsigned I = 0; I != Args.size(); ++I) { 1333 auto *ArgTy = dyn_cast<IntegerType>( 1334 Target.Fn->getFunctionType()->getParamType(I + 1)); 1335 if (!ArgTy) 1336 return false; 1337 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1338 } 1339 1340 Constant *RetVal; 1341 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1342 !isa<ConstantInt>(RetVal)) 1343 return false; 1344 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1345 } 1346 return true; 1347 } 1348 1349 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1350 uint64_t TheRetVal) { 1351 for (auto Call : CSInfo.CallSites) 1352 Call.replaceAndErase( 1353 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1354 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1355 CSInfo.markDevirt(); 1356 } 1357 1358 bool DevirtModule::tryUniformRetValOpt( 1359 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1360 WholeProgramDevirtResolution::ByArg *Res) { 1361 // Uniform return value optimization. If all functions return the same 1362 // constant, replace all calls with that constant. 1363 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1364 for (const VirtualCallTarget &Target : TargetsForSlot) 1365 if (Target.RetVal != TheRetVal) 1366 return false; 1367 1368 if (CSInfo.isExported()) { 1369 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1370 Res->Info = TheRetVal; 1371 } 1372 1373 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1374 if (RemarksEnabled) 1375 for (auto &&Target : TargetsForSlot) 1376 Target.WasDevirt = true; 1377 return true; 1378 } 1379 1380 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1381 ArrayRef<uint64_t> Args, 1382 StringRef Name) { 1383 std::string FullName = "__typeid_"; 1384 raw_string_ostream OS(FullName); 1385 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1386 for (uint64_t Arg : Args) 1387 OS << '_' << Arg; 1388 OS << '_' << Name; 1389 return OS.str(); 1390 } 1391 1392 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1393 Triple T(M.getTargetTriple()); 1394 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1395 } 1396 1397 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1398 StringRef Name, Constant *C) { 1399 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1400 getGlobalName(Slot, Args, Name), C, &M); 1401 GA->setVisibility(GlobalValue::HiddenVisibility); 1402 } 1403 1404 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1405 StringRef Name, uint32_t Const, 1406 uint32_t &Storage) { 1407 if (shouldExportConstantsAsAbsoluteSymbols()) { 1408 exportGlobal( 1409 Slot, Args, Name, 1410 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1411 return; 1412 } 1413 1414 Storage = Const; 1415 } 1416 1417 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1418 StringRef Name) { 1419 Constant *C = 1420 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1421 auto *GV = dyn_cast<GlobalVariable>(C); 1422 if (GV) 1423 GV->setVisibility(GlobalValue::HiddenVisibility); 1424 return C; 1425 } 1426 1427 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1428 StringRef Name, IntegerType *IntTy, 1429 uint32_t Storage) { 1430 if (!shouldExportConstantsAsAbsoluteSymbols()) 1431 return ConstantInt::get(IntTy, Storage); 1432 1433 Constant *C = importGlobal(Slot, Args, Name); 1434 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1435 C = ConstantExpr::getPtrToInt(C, IntTy); 1436 1437 // We only need to set metadata if the global is newly created, in which 1438 // case it would not have hidden visibility. 1439 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1440 return C; 1441 1442 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1443 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1444 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1445 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1446 MDNode::get(M.getContext(), {MinC, MaxC})); 1447 }; 1448 unsigned AbsWidth = IntTy->getBitWidth(); 1449 if (AbsWidth == IntPtrTy->getBitWidth()) 1450 SetAbsRange(~0ull, ~0ull); // Full set. 1451 else 1452 SetAbsRange(0, 1ull << AbsWidth); 1453 return C; 1454 } 1455 1456 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1457 bool IsOne, 1458 Constant *UniqueMemberAddr) { 1459 for (auto &&Call : CSInfo.CallSites) { 1460 IRBuilder<> B(&Call.CB); 1461 Value *Cmp = 1462 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1463 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1464 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1465 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1466 Cmp); 1467 } 1468 CSInfo.markDevirt(); 1469 } 1470 1471 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1472 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1473 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1474 ConstantInt::get(Int64Ty, M->Offset)); 1475 } 1476 1477 bool DevirtModule::tryUniqueRetValOpt( 1478 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1479 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1480 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1481 // IsOne controls whether we look for a 0 or a 1. 1482 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1483 const TypeMemberInfo *UniqueMember = nullptr; 1484 for (const VirtualCallTarget &Target : TargetsForSlot) { 1485 if (Target.RetVal == (IsOne ? 1 : 0)) { 1486 if (UniqueMember) 1487 return false; 1488 UniqueMember = Target.TM; 1489 } 1490 } 1491 1492 // We should have found a unique member or bailed out by now. We already 1493 // checked for a uniform return value in tryUniformRetValOpt. 1494 assert(UniqueMember); 1495 1496 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1497 if (CSInfo.isExported()) { 1498 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1499 Res->Info = IsOne; 1500 1501 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1502 } 1503 1504 // Replace each call with the comparison. 1505 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1506 UniqueMemberAddr); 1507 1508 // Update devirtualization statistics for targets. 1509 if (RemarksEnabled) 1510 for (auto &&Target : TargetsForSlot) 1511 Target.WasDevirt = true; 1512 1513 return true; 1514 }; 1515 1516 if (BitWidth == 1) { 1517 if (tryUniqueRetValOptFor(true)) 1518 return true; 1519 if (tryUniqueRetValOptFor(false)) 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1526 Constant *Byte, Constant *Bit) { 1527 for (auto Call : CSInfo.CallSites) { 1528 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1529 IRBuilder<> B(&Call.CB); 1530 Value *Addr = 1531 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1532 if (RetType->getBitWidth() == 1) { 1533 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1534 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1535 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1536 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1537 OREGetter, IsBitSet); 1538 } else { 1539 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1540 Value *Val = B.CreateLoad(RetType, ValAddr); 1541 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1542 OREGetter, Val); 1543 } 1544 } 1545 CSInfo.markDevirt(); 1546 } 1547 1548 bool DevirtModule::tryVirtualConstProp( 1549 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1550 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1551 // This only works if the function returns an integer. 1552 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1553 if (!RetType) 1554 return false; 1555 unsigned BitWidth = RetType->getBitWidth(); 1556 if (BitWidth > 64) 1557 return false; 1558 1559 // Make sure that each function is defined, does not access memory, takes at 1560 // least one argument, does not use its first argument (which we assume is 1561 // 'this'), and has the same return type. 1562 // 1563 // Note that we test whether this copy of the function is readnone, rather 1564 // than testing function attributes, which must hold for any copy of the 1565 // function, even a less optimized version substituted at link time. This is 1566 // sound because the virtual constant propagation optimizations effectively 1567 // inline all implementations of the virtual function into each call site, 1568 // rather than using function attributes to perform local optimization. 1569 for (VirtualCallTarget &Target : TargetsForSlot) { 1570 if (Target.Fn->isDeclaration() || 1571 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1572 MAK_ReadNone || 1573 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1574 Target.Fn->getReturnType() != RetType) 1575 return false; 1576 } 1577 1578 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1579 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1580 continue; 1581 1582 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1583 if (Res) 1584 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1585 1586 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1587 continue; 1588 1589 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1590 ResByArg, Slot, CSByConstantArg.first)) 1591 continue; 1592 1593 // Find an allocation offset in bits in all vtables associated with the 1594 // type. 1595 uint64_t AllocBefore = 1596 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1597 uint64_t AllocAfter = 1598 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1599 1600 // Calculate the total amount of padding needed to store a value at both 1601 // ends of the object. 1602 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1603 for (auto &&Target : TargetsForSlot) { 1604 TotalPaddingBefore += std::max<int64_t>( 1605 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1606 TotalPaddingAfter += std::max<int64_t>( 1607 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1608 } 1609 1610 // If the amount of padding is too large, give up. 1611 // FIXME: do something smarter here. 1612 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1613 continue; 1614 1615 // Calculate the offset to the value as a (possibly negative) byte offset 1616 // and (if applicable) a bit offset, and store the values in the targets. 1617 int64_t OffsetByte; 1618 uint64_t OffsetBit; 1619 if (TotalPaddingBefore <= TotalPaddingAfter) 1620 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1621 OffsetBit); 1622 else 1623 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1624 OffsetBit); 1625 1626 if (RemarksEnabled) 1627 for (auto &&Target : TargetsForSlot) 1628 Target.WasDevirt = true; 1629 1630 1631 if (CSByConstantArg.second.isExported()) { 1632 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1633 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1634 ResByArg->Byte); 1635 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1636 ResByArg->Bit); 1637 } 1638 1639 // Rewrite each call to a load from OffsetByte/OffsetBit. 1640 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1641 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1642 applyVirtualConstProp(CSByConstantArg.second, 1643 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1644 } 1645 return true; 1646 } 1647 1648 void DevirtModule::rebuildGlobal(VTableBits &B) { 1649 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1650 return; 1651 1652 // Align the before byte array to the global's minimum alignment so that we 1653 // don't break any alignment requirements on the global. 1654 MaybeAlign Alignment(B.GV->getAlignment()); 1655 if (!Alignment) 1656 Alignment = 1657 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType())); 1658 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1659 1660 // Before was stored in reverse order; flip it now. 1661 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1662 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1663 1664 // Build an anonymous global containing the before bytes, followed by the 1665 // original initializer, followed by the after bytes. 1666 auto NewInit = ConstantStruct::getAnon( 1667 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1668 B.GV->getInitializer(), 1669 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1670 auto NewGV = 1671 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1672 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1673 NewGV->setSection(B.GV->getSection()); 1674 NewGV->setComdat(B.GV->getComdat()); 1675 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1676 1677 // Copy the original vtable's metadata to the anonymous global, adjusting 1678 // offsets as required. 1679 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1680 1681 // Build an alias named after the original global, pointing at the second 1682 // element (the original initializer). 1683 auto Alias = GlobalAlias::create( 1684 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1685 ConstantExpr::getGetElementPtr( 1686 NewInit->getType(), NewGV, 1687 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1688 ConstantInt::get(Int32Ty, 1)}), 1689 &M); 1690 Alias->setVisibility(B.GV->getVisibility()); 1691 Alias->takeName(B.GV); 1692 1693 B.GV->replaceAllUsesWith(Alias); 1694 B.GV->eraseFromParent(); 1695 } 1696 1697 bool DevirtModule::areRemarksEnabled() { 1698 const auto &FL = M.getFunctionList(); 1699 for (const Function &Fn : FL) { 1700 const auto &BBL = Fn.getBasicBlockList(); 1701 if (BBL.empty()) 1702 continue; 1703 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1704 return DI.isEnabled(); 1705 } 1706 return false; 1707 } 1708 1709 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) { 1710 // Find all virtual calls via a virtual table pointer %p under an assumption 1711 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1712 // points to a member of the type identifier %md. Group calls by (type ID, 1713 // offset) pair (effectively the identity of the virtual function) and store 1714 // to CallSlots. 1715 DenseSet<CallBase *> SeenCallSites; 1716 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1717 I != E;) { 1718 auto CI = dyn_cast<CallInst>(I->getUser()); 1719 ++I; 1720 if (!CI) 1721 continue; 1722 1723 // Search for virtual calls based on %p and add them to DevirtCalls. 1724 SmallVector<DevirtCallSite, 1> DevirtCalls; 1725 SmallVector<CallInst *, 1> Assumes; 1726 auto &DT = LookupDomTree(*CI->getFunction()); 1727 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1728 1729 // If we found any, add them to CallSlots. 1730 if (!Assumes.empty()) { 1731 Metadata *TypeId = 1732 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1733 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1734 for (DevirtCallSite Call : DevirtCalls) { 1735 // Only add this CallSite if we haven't seen it before. The vtable 1736 // pointer may have been CSE'd with pointers from other call sites, 1737 // and we don't want to process call sites multiple times. We can't 1738 // just skip the vtable Ptr if it has been seen before, however, since 1739 // it may be shared by type tests that dominate different calls. 1740 if (SeenCallSites.insert(&Call.CB).second) 1741 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1742 } 1743 } 1744 1745 // We no longer need the assumes or the type test. 1746 for (auto Assume : Assumes) 1747 Assume->eraseFromParent(); 1748 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1749 // may use the vtable argument later. 1750 if (CI->use_empty()) 1751 CI->eraseFromParent(); 1752 } 1753 } 1754 1755 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1756 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1757 1758 for (auto I = TypeCheckedLoadFunc->use_begin(), 1759 E = TypeCheckedLoadFunc->use_end(); 1760 I != E;) { 1761 auto CI = dyn_cast<CallInst>(I->getUser()); 1762 ++I; 1763 if (!CI) 1764 continue; 1765 1766 Value *Ptr = CI->getArgOperand(0); 1767 Value *Offset = CI->getArgOperand(1); 1768 Value *TypeIdValue = CI->getArgOperand(2); 1769 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1770 1771 SmallVector<DevirtCallSite, 1> DevirtCalls; 1772 SmallVector<Instruction *, 1> LoadedPtrs; 1773 SmallVector<Instruction *, 1> Preds; 1774 bool HasNonCallUses = false; 1775 auto &DT = LookupDomTree(*CI->getFunction()); 1776 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1777 HasNonCallUses, CI, DT); 1778 1779 // Start by generating "pessimistic" code that explicitly loads the function 1780 // pointer from the vtable and performs the type check. If possible, we will 1781 // eliminate the load and the type check later. 1782 1783 // If possible, only generate the load at the point where it is used. 1784 // This helps avoid unnecessary spills. 1785 IRBuilder<> LoadB( 1786 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1787 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1788 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1789 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1790 1791 for (Instruction *LoadedPtr : LoadedPtrs) { 1792 LoadedPtr->replaceAllUsesWith(LoadedValue); 1793 LoadedPtr->eraseFromParent(); 1794 } 1795 1796 // Likewise for the type test. 1797 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1798 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1799 1800 for (Instruction *Pred : Preds) { 1801 Pred->replaceAllUsesWith(TypeTestCall); 1802 Pred->eraseFromParent(); 1803 } 1804 1805 // We have already erased any extractvalue instructions that refer to the 1806 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1807 // (although this is unlikely). In that case, explicitly build a pair and 1808 // RAUW it. 1809 if (!CI->use_empty()) { 1810 Value *Pair = UndefValue::get(CI->getType()); 1811 IRBuilder<> B(CI); 1812 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1813 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1814 CI->replaceAllUsesWith(Pair); 1815 } 1816 1817 // The number of unsafe uses is initially the number of uses. 1818 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1819 NumUnsafeUses = DevirtCalls.size(); 1820 1821 // If the function pointer has a non-call user, we cannot eliminate the type 1822 // check, as one of those users may eventually call the pointer. Increment 1823 // the unsafe use count to make sure it cannot reach zero. 1824 if (HasNonCallUses) 1825 ++NumUnsafeUses; 1826 for (DevirtCallSite Call : DevirtCalls) { 1827 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1828 &NumUnsafeUses); 1829 } 1830 1831 CI->eraseFromParent(); 1832 } 1833 } 1834 1835 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1836 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1837 if (!TypeId) 1838 return; 1839 const TypeIdSummary *TidSummary = 1840 ImportSummary->getTypeIdSummary(TypeId->getString()); 1841 if (!TidSummary) 1842 return; 1843 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1844 if (ResI == TidSummary->WPDRes.end()) 1845 return; 1846 const WholeProgramDevirtResolution &Res = ResI->second; 1847 1848 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1849 assert(!Res.SingleImplName.empty()); 1850 // The type of the function in the declaration is irrelevant because every 1851 // call site will cast it to the correct type. 1852 Constant *SingleImpl = 1853 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1854 Type::getVoidTy(M.getContext())) 1855 .getCallee()); 1856 1857 // This is the import phase so we should not be exporting anything. 1858 bool IsExported = false; 1859 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1860 assert(!IsExported); 1861 } 1862 1863 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1864 auto I = Res.ResByArg.find(CSByConstantArg.first); 1865 if (I == Res.ResByArg.end()) 1866 continue; 1867 auto &ResByArg = I->second; 1868 // FIXME: We should figure out what to do about the "function name" argument 1869 // to the apply* functions, as the function names are unavailable during the 1870 // importing phase. For now we just pass the empty string. This does not 1871 // impact correctness because the function names are just used for remarks. 1872 switch (ResByArg.TheKind) { 1873 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1874 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1875 break; 1876 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1877 Constant *UniqueMemberAddr = 1878 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1879 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1880 UniqueMemberAddr); 1881 break; 1882 } 1883 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1884 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1885 Int32Ty, ResByArg.Byte); 1886 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1887 ResByArg.Bit); 1888 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1889 break; 1890 } 1891 default: 1892 break; 1893 } 1894 } 1895 1896 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1897 // The type of the function is irrelevant, because it's bitcast at calls 1898 // anyhow. 1899 Constant *JT = cast<Constant>( 1900 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1901 Type::getVoidTy(M.getContext())) 1902 .getCallee()); 1903 bool IsExported = false; 1904 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1905 assert(!IsExported); 1906 } 1907 } 1908 1909 void DevirtModule::removeRedundantTypeTests() { 1910 auto True = ConstantInt::getTrue(M.getContext()); 1911 for (auto &&U : NumUnsafeUsesForTypeTest) { 1912 if (U.second == 0) { 1913 U.first->replaceAllUsesWith(True); 1914 U.first->eraseFromParent(); 1915 } 1916 } 1917 } 1918 1919 bool DevirtModule::run() { 1920 // If only some of the modules were split, we cannot correctly perform 1921 // this transformation. We already checked for the presense of type tests 1922 // with partially split modules during the thin link, and would have emitted 1923 // an error if any were found, so here we can simply return. 1924 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1925 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1926 return false; 1927 1928 Function *TypeTestFunc = 1929 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1930 Function *TypeCheckedLoadFunc = 1931 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1932 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1933 1934 // Normally if there are no users of the devirtualization intrinsics in the 1935 // module, this pass has nothing to do. But if we are exporting, we also need 1936 // to handle any users that appear only in the function summaries. 1937 if (!ExportSummary && 1938 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1939 AssumeFunc->use_empty()) && 1940 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1941 return false; 1942 1943 if (TypeTestFunc && AssumeFunc) 1944 scanTypeTestUsers(TypeTestFunc); 1945 1946 if (TypeCheckedLoadFunc) 1947 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1948 1949 if (ImportSummary) { 1950 for (auto &S : CallSlots) 1951 importResolution(S.first, S.second); 1952 1953 removeRedundantTypeTests(); 1954 1955 // We have lowered or deleted the type instrinsics, so we will no 1956 // longer have enough information to reason about the liveness of virtual 1957 // function pointers in GlobalDCE. 1958 for (GlobalVariable &GV : M.globals()) 1959 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 1960 1961 // The rest of the code is only necessary when exporting or during regular 1962 // LTO, so we are done. 1963 return true; 1964 } 1965 1966 // Rebuild type metadata into a map for easy lookup. 1967 std::vector<VTableBits> Bits; 1968 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1969 buildTypeIdentifierMap(Bits, TypeIdMap); 1970 if (TypeIdMap.empty()) 1971 return true; 1972 1973 // Collect information from summary about which calls to try to devirtualize. 1974 if (ExportSummary) { 1975 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1976 for (auto &P : TypeIdMap) { 1977 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1978 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1979 TypeId); 1980 } 1981 1982 for (auto &P : *ExportSummary) { 1983 for (auto &S : P.second.SummaryList) { 1984 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1985 if (!FS) 1986 continue; 1987 // FIXME: Only add live functions. 1988 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1989 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1990 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 1991 } 1992 } 1993 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1994 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1995 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1996 } 1997 } 1998 for (const FunctionSummary::ConstVCall &VC : 1999 FS->type_test_assume_const_vcalls()) { 2000 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2001 CallSlots[{MD, VC.VFunc.Offset}] 2002 .ConstCSInfo[VC.Args] 2003 .addSummaryTypeTestAssumeUser(FS); 2004 } 2005 } 2006 for (const FunctionSummary::ConstVCall &VC : 2007 FS->type_checked_load_const_vcalls()) { 2008 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2009 CallSlots[{MD, VC.VFunc.Offset}] 2010 .ConstCSInfo[VC.Args] 2011 .addSummaryTypeCheckedLoadUser(FS); 2012 } 2013 } 2014 } 2015 } 2016 } 2017 2018 // For each (type, offset) pair: 2019 bool DidVirtualConstProp = false; 2020 std::map<std::string, Function*> DevirtTargets; 2021 for (auto &S : CallSlots) { 2022 // Search each of the members of the type identifier for the virtual 2023 // function implementation at offset S.first.ByteOffset, and add to 2024 // TargetsForSlot. 2025 std::vector<VirtualCallTarget> TargetsForSlot; 2026 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 2027 S.first.ByteOffset)) { 2028 WholeProgramDevirtResolution *Res = nullptr; 2029 if (ExportSummary && isa<MDString>(S.first.TypeID)) 2030 Res = &ExportSummary 2031 ->getOrInsertTypeIdSummary( 2032 cast<MDString>(S.first.TypeID)->getString()) 2033 .WPDRes[S.first.ByteOffset]; 2034 2035 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2036 DidVirtualConstProp |= 2037 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2038 2039 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2040 } 2041 2042 // Collect functions devirtualized at least for one call site for stats. 2043 if (RemarksEnabled) 2044 for (const auto &T : TargetsForSlot) 2045 if (T.WasDevirt) 2046 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2047 } 2048 2049 // CFI-specific: if we are exporting and any llvm.type.checked.load 2050 // intrinsics were *not* devirtualized, we need to add the resulting 2051 // llvm.type.test intrinsics to the function summaries so that the 2052 // LowerTypeTests pass will export them. 2053 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2054 auto GUID = 2055 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2056 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2057 FS->addTypeTest(GUID); 2058 for (auto &CCS : S.second.ConstCSInfo) 2059 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2060 FS->addTypeTest(GUID); 2061 } 2062 } 2063 2064 if (RemarksEnabled) { 2065 // Generate remarks for each devirtualized function. 2066 for (const auto &DT : DevirtTargets) { 2067 Function *F = DT.second; 2068 2069 using namespace ore; 2070 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2071 << "devirtualized " 2072 << NV("FunctionName", DT.first)); 2073 } 2074 } 2075 2076 removeRedundantTypeTests(); 2077 2078 // Rebuild each global we touched as part of virtual constant propagation to 2079 // include the before and after bytes. 2080 if (DidVirtualConstProp) 2081 for (VTableBits &B : Bits) 2082 rebuildGlobal(B); 2083 2084 // We have lowered or deleted the type instrinsics, so we will no 2085 // longer have enough information to reason about the liveness of virtual 2086 // function pointers in GlobalDCE. 2087 for (GlobalVariable &GV : M.globals()) 2088 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2089 2090 return true; 2091 } 2092 2093 void DevirtIndex::run() { 2094 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2095 return; 2096 2097 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2098 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2099 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2100 } 2101 2102 // Collect information from summary about which calls to try to devirtualize. 2103 for (auto &P : ExportSummary) { 2104 for (auto &S : P.second.SummaryList) { 2105 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2106 if (!FS) 2107 continue; 2108 // FIXME: Only add live functions. 2109 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2110 for (StringRef Name : NameByGUID[VF.GUID]) { 2111 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2112 } 2113 } 2114 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2115 for (StringRef Name : NameByGUID[VF.GUID]) { 2116 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2117 } 2118 } 2119 for (const FunctionSummary::ConstVCall &VC : 2120 FS->type_test_assume_const_vcalls()) { 2121 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2122 CallSlots[{Name, VC.VFunc.Offset}] 2123 .ConstCSInfo[VC.Args] 2124 .addSummaryTypeTestAssumeUser(FS); 2125 } 2126 } 2127 for (const FunctionSummary::ConstVCall &VC : 2128 FS->type_checked_load_const_vcalls()) { 2129 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2130 CallSlots[{Name, VC.VFunc.Offset}] 2131 .ConstCSInfo[VC.Args] 2132 .addSummaryTypeCheckedLoadUser(FS); 2133 } 2134 } 2135 } 2136 } 2137 2138 std::set<ValueInfo> DevirtTargets; 2139 // For each (type, offset) pair: 2140 for (auto &S : CallSlots) { 2141 // Search each of the members of the type identifier for the virtual 2142 // function implementation at offset S.first.ByteOffset, and add to 2143 // TargetsForSlot. 2144 std::vector<ValueInfo> TargetsForSlot; 2145 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2146 assert(TidSummary); 2147 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2148 S.first.ByteOffset)) { 2149 WholeProgramDevirtResolution *Res = 2150 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2151 .WPDRes[S.first.ByteOffset]; 2152 2153 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2154 DevirtTargets)) 2155 continue; 2156 } 2157 } 2158 2159 // Optionally have the thin link print message for each devirtualized 2160 // function. 2161 if (PrintSummaryDevirt) 2162 for (const auto &DT : DevirtTargets) 2163 errs() << "Devirtualized call to " << DT << "\n"; 2164 2165 return; 2166 } 2167