1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/DenseMapInfo.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/Analysis/TypeMetadataUtils.h" 39 #include "llvm/IR/CallSite.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/DiagnosticInfo.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/Pass.h" 58 #include "llvm/PassRegistry.h" 59 #include "llvm/PassSupport.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Utils/Evaluator.h" 64 #include <algorithm> 65 #include <cstddef> 66 #include <map> 67 #include <set> 68 #include <string> 69 70 using namespace llvm; 71 using namespace wholeprogramdevirt; 72 73 #define DEBUG_TYPE "wholeprogramdevirt" 74 75 // Find the minimum offset that we may store a value of size Size bits at. If 76 // IsAfter is set, look for an offset before the object, otherwise look for an 77 // offset after the object. 78 uint64_t 79 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 80 bool IsAfter, uint64_t Size) { 81 // Find a minimum offset taking into account only vtable sizes. 82 uint64_t MinByte = 0; 83 for (const VirtualCallTarget &Target : Targets) { 84 if (IsAfter) 85 MinByte = std::max(MinByte, Target.minAfterBytes()); 86 else 87 MinByte = std::max(MinByte, Target.minBeforeBytes()); 88 } 89 90 // Build a vector of arrays of bytes covering, for each target, a slice of the 91 // used region (see AccumBitVector::BytesUsed in 92 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 93 // this aligns the used regions to start at MinByte. 94 // 95 // In this example, A, B and C are vtables, # is a byte already allocated for 96 // a virtual function pointer, AAAA... (etc.) are the used regions for the 97 // vtables and Offset(X) is the value computed for the Offset variable below 98 // for X. 99 // 100 // Offset(A) 101 // | | 102 // |MinByte 103 // A: ################AAAAAAAA|AAAAAAAA 104 // B: ########BBBBBBBBBBBBBBBB|BBBB 105 // C: ########################|CCCCCCCCCCCCCCCC 106 // | Offset(B) | 107 // 108 // This code produces the slices of A, B and C that appear after the divider 109 // at MinByte. 110 std::vector<ArrayRef<uint8_t>> Used; 111 for (const VirtualCallTarget &Target : Targets) { 112 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 113 : Target.TM->Bits->Before.BytesUsed; 114 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 115 : MinByte - Target.minBeforeBytes(); 116 117 // Disregard used regions that are smaller than Offset. These are 118 // effectively all-free regions that do not need to be checked. 119 if (VTUsed.size() > Offset) 120 Used.push_back(VTUsed.slice(Offset)); 121 } 122 123 if (Size == 1) { 124 // Find a free bit in each member of Used. 125 for (unsigned I = 0;; ++I) { 126 uint8_t BitsUsed = 0; 127 for (auto &&B : Used) 128 if (I < B.size()) 129 BitsUsed |= B[I]; 130 if (BitsUsed != 0xff) 131 return (MinByte + I) * 8 + 132 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 133 } 134 } else { 135 // Find a free (Size/8) byte region in each member of Used. 136 // FIXME: see if alignment helps. 137 for (unsigned I = 0;; ++I) { 138 for (auto &&B : Used) { 139 unsigned Byte = 0; 140 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 141 if (B[I + Byte]) 142 goto NextI; 143 ++Byte; 144 } 145 } 146 return (MinByte + I) * 8; 147 NextI:; 148 } 149 } 150 } 151 152 void wholeprogramdevirt::setBeforeReturnValues( 153 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 154 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 155 if (BitWidth == 1) 156 OffsetByte = -(AllocBefore / 8 + 1); 157 else 158 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 159 OffsetBit = AllocBefore % 8; 160 161 for (VirtualCallTarget &Target : Targets) { 162 if (BitWidth == 1) 163 Target.setBeforeBit(AllocBefore); 164 else 165 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 166 } 167 } 168 169 void wholeprogramdevirt::setAfterReturnValues( 170 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 171 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 172 if (BitWidth == 1) 173 OffsetByte = AllocAfter / 8; 174 else 175 OffsetByte = (AllocAfter + 7) / 8; 176 OffsetBit = AllocAfter % 8; 177 178 for (VirtualCallTarget &Target : Targets) { 179 if (BitWidth == 1) 180 Target.setAfterBit(AllocAfter); 181 else 182 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 183 } 184 } 185 186 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 187 : Fn(Fn), TM(TM), 188 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 189 190 namespace { 191 192 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 193 // tables, and the ByteOffset is the offset in bytes from the address point to 194 // the virtual function pointer. 195 struct VTableSlot { 196 Metadata *TypeID; 197 uint64_t ByteOffset; 198 }; 199 200 } // end anonymous namespace 201 202 namespace llvm { 203 204 template <> struct DenseMapInfo<VTableSlot> { 205 static VTableSlot getEmptyKey() { 206 return {DenseMapInfo<Metadata *>::getEmptyKey(), 207 DenseMapInfo<uint64_t>::getEmptyKey()}; 208 } 209 static VTableSlot getTombstoneKey() { 210 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 211 DenseMapInfo<uint64_t>::getTombstoneKey()}; 212 } 213 static unsigned getHashValue(const VTableSlot &I) { 214 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 215 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 216 } 217 static bool isEqual(const VTableSlot &LHS, 218 const VTableSlot &RHS) { 219 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 220 } 221 }; 222 223 } // end namespace llvm 224 225 namespace { 226 227 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 228 // the indirect virtual call. 229 struct VirtualCallSite { 230 Value *VTable; 231 CallSite CS; 232 233 // If non-null, this field points to the associated unsafe use count stored in 234 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 235 // of that field for details. 236 unsigned *NumUnsafeUses; 237 238 void emitRemark(const Twine &OptName, const Twine &TargetName) { 239 Function *F = CS.getCaller(); 240 emitOptimizationRemark( 241 F->getContext(), DEBUG_TYPE, *F, 242 CS.getInstruction()->getDebugLoc(), 243 OptName + ": devirtualized a call to " + TargetName); 244 } 245 246 void replaceAndErase(const Twine &OptName, const Twine &TargetName, 247 bool RemarksEnabled, Value *New) { 248 if (RemarksEnabled) 249 emitRemark(OptName, TargetName); 250 CS->replaceAllUsesWith(New); 251 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 252 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 253 II->getUnwindDest()->removePredecessor(II->getParent()); 254 } 255 CS->eraseFromParent(); 256 // This use is no longer unsafe. 257 if (NumUnsafeUses) 258 --*NumUnsafeUses; 259 } 260 }; 261 262 struct DevirtModule { 263 Module &M; 264 IntegerType *Int8Ty; 265 PointerType *Int8PtrTy; 266 IntegerType *Int32Ty; 267 268 bool RemarksEnabled; 269 270 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; 271 272 // This map keeps track of the number of "unsafe" uses of a loaded function 273 // pointer. The key is the associated llvm.type.test intrinsic call generated 274 // by this pass. An unsafe use is one that calls the loaded function pointer 275 // directly. Every time we eliminate an unsafe use (for example, by 276 // devirtualizing it or by applying virtual constant propagation), we 277 // decrement the value stored in this map. If a value reaches zero, we can 278 // eliminate the type check by RAUWing the associated llvm.type.test call with 279 // true. 280 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 281 282 DevirtModule(Module &M) 283 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), 284 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 285 Int32Ty(Type::getInt32Ty(M.getContext())), 286 RemarksEnabled(areRemarksEnabled()) {} 287 288 bool areRemarksEnabled(); 289 290 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 291 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 292 293 void buildTypeIdentifierMap( 294 std::vector<VTableBits> &Bits, 295 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 296 bool 297 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 298 const std::set<TypeMemberInfo> &TypeMemberInfos, 299 uint64_t ByteOffset); 300 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 301 MutableArrayRef<VirtualCallSite> CallSites); 302 bool tryEvaluateFunctionsWithArgs( 303 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 304 ArrayRef<ConstantInt *> Args); 305 bool tryUniformRetValOpt(IntegerType *RetType, 306 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 307 MutableArrayRef<VirtualCallSite> CallSites); 308 bool tryUniqueRetValOpt(unsigned BitWidth, 309 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 310 MutableArrayRef<VirtualCallSite> CallSites); 311 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 312 ArrayRef<VirtualCallSite> CallSites); 313 314 void rebuildGlobal(VTableBits &B); 315 316 bool run(); 317 }; 318 319 struct WholeProgramDevirt : public ModulePass { 320 static char ID; 321 322 WholeProgramDevirt() : ModulePass(ID) { 323 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 324 } 325 326 bool runOnModule(Module &M) override { 327 if (skipModule(M)) 328 return false; 329 330 return DevirtModule(M).run(); 331 } 332 }; 333 334 } // end anonymous namespace 335 336 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", 337 "Whole program devirtualization", false, false) 338 char WholeProgramDevirt::ID = 0; 339 340 ModulePass *llvm::createWholeProgramDevirtPass() { 341 return new WholeProgramDevirt; 342 } 343 344 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 345 ModuleAnalysisManager &) { 346 if (!DevirtModule(M).run()) 347 return PreservedAnalyses::all(); 348 return PreservedAnalyses::none(); 349 } 350 351 void DevirtModule::buildTypeIdentifierMap( 352 std::vector<VTableBits> &Bits, 353 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 354 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 355 Bits.reserve(M.getGlobalList().size()); 356 SmallVector<MDNode *, 2> Types; 357 for (GlobalVariable &GV : M.globals()) { 358 Types.clear(); 359 GV.getMetadata(LLVMContext::MD_type, Types); 360 if (Types.empty()) 361 continue; 362 363 VTableBits *&BitsPtr = GVToBits[&GV]; 364 if (!BitsPtr) { 365 Bits.emplace_back(); 366 Bits.back().GV = &GV; 367 Bits.back().ObjectSize = 368 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 369 BitsPtr = &Bits.back(); 370 } 371 372 for (MDNode *Type : Types) { 373 auto TypeID = Type->getOperand(1).get(); 374 375 uint64_t Offset = 376 cast<ConstantInt>( 377 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 378 ->getZExtValue(); 379 380 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 381 } 382 } 383 } 384 385 bool DevirtModule::tryFindVirtualCallTargets( 386 std::vector<VirtualCallTarget> &TargetsForSlot, 387 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 388 for (const TypeMemberInfo &TM : TypeMemberInfos) { 389 if (!TM.Bits->GV->isConstant()) 390 return false; 391 392 auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer()); 393 if (!Init) 394 return false; 395 ArrayType *VTableTy = Init->getType(); 396 397 uint64_t ElemSize = 398 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType()); 399 uint64_t GlobalSlotOffset = TM.Offset + ByteOffset; 400 if (GlobalSlotOffset % ElemSize != 0) 401 return false; 402 403 unsigned Op = GlobalSlotOffset / ElemSize; 404 if (Op >= Init->getNumOperands()) 405 return false; 406 407 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts()); 408 if (!Fn) 409 return false; 410 411 // We can disregard __cxa_pure_virtual as a possible call target, as 412 // calls to pure virtuals are UB. 413 if (Fn->getName() == "__cxa_pure_virtual") 414 continue; 415 416 TargetsForSlot.push_back({Fn, &TM}); 417 } 418 419 // Give up if we couldn't find any targets. 420 return !TargetsForSlot.empty(); 421 } 422 423 bool DevirtModule::trySingleImplDevirt( 424 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 425 MutableArrayRef<VirtualCallSite> CallSites) { 426 // See if the program contains a single implementation of this virtual 427 // function. 428 Function *TheFn = TargetsForSlot[0].Fn; 429 for (auto &&Target : TargetsForSlot) 430 if (TheFn != Target.Fn) 431 return false; 432 433 if (RemarksEnabled) 434 TargetsForSlot[0].WasDevirt = true; 435 // If so, update each call site to call that implementation directly. 436 for (auto &&VCallSite : CallSites) { 437 if (RemarksEnabled) 438 VCallSite.emitRemark("single-impl", TheFn->getName()); 439 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 440 TheFn, VCallSite.CS.getCalledValue()->getType())); 441 // This use is no longer unsafe. 442 if (VCallSite.NumUnsafeUses) 443 --*VCallSite.NumUnsafeUses; 444 } 445 return true; 446 } 447 448 bool DevirtModule::tryEvaluateFunctionsWithArgs( 449 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 450 ArrayRef<ConstantInt *> Args) { 451 // Evaluate each function and store the result in each target's RetVal 452 // field. 453 for (VirtualCallTarget &Target : TargetsForSlot) { 454 if (Target.Fn->arg_size() != Args.size() + 1) 455 return false; 456 for (unsigned I = 0; I != Args.size(); ++I) 457 if (Target.Fn->getFunctionType()->getParamType(I + 1) != 458 Args[I]->getType()) 459 return false; 460 461 Evaluator Eval(M.getDataLayout(), nullptr); 462 SmallVector<Constant *, 2> EvalArgs; 463 EvalArgs.push_back( 464 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 465 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); 466 Constant *RetVal; 467 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 468 !isa<ConstantInt>(RetVal)) 469 return false; 470 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 471 } 472 return true; 473 } 474 475 bool DevirtModule::tryUniformRetValOpt( 476 IntegerType *RetType, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 477 MutableArrayRef<VirtualCallSite> CallSites) { 478 // Uniform return value optimization. If all functions return the same 479 // constant, replace all calls with that constant. 480 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 481 for (const VirtualCallTarget &Target : TargetsForSlot) 482 if (Target.RetVal != TheRetVal) 483 return false; 484 485 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); 486 for (auto Call : CallSites) 487 Call.replaceAndErase("uniform-ret-val", TargetsForSlot[0].Fn->getName(), 488 RemarksEnabled, TheRetValConst); 489 if (RemarksEnabled) 490 for (auto &&Target : TargetsForSlot) 491 Target.WasDevirt = true; 492 return true; 493 } 494 495 bool DevirtModule::tryUniqueRetValOpt( 496 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 497 MutableArrayRef<VirtualCallSite> CallSites) { 498 // IsOne controls whether we look for a 0 or a 1. 499 auto tryUniqueRetValOptFor = [&](bool IsOne) { 500 const TypeMemberInfo *UniqueMember = nullptr; 501 for (const VirtualCallTarget &Target : TargetsForSlot) { 502 if (Target.RetVal == (IsOne ? 1 : 0)) { 503 if (UniqueMember) 504 return false; 505 UniqueMember = Target.TM; 506 } 507 } 508 509 // We should have found a unique member or bailed out by now. We already 510 // checked for a uniform return value in tryUniformRetValOpt. 511 assert(UniqueMember); 512 513 // Replace each call with the comparison. 514 for (auto &&Call : CallSites) { 515 IRBuilder<> B(Call.CS.getInstruction()); 516 Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy); 517 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset); 518 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 519 Call.VTable, OneAddr); 520 Call.replaceAndErase("unique-ret-val", TargetsForSlot[0].Fn->getName(), 521 RemarksEnabled, Cmp); 522 } 523 // Update devirtualization statistics for targets. 524 if (RemarksEnabled) 525 for (auto &&Target : TargetsForSlot) 526 Target.WasDevirt = true; 527 528 return true; 529 }; 530 531 if (BitWidth == 1) { 532 if (tryUniqueRetValOptFor(true)) 533 return true; 534 if (tryUniqueRetValOptFor(false)) 535 return true; 536 } 537 return false; 538 } 539 540 bool DevirtModule::tryVirtualConstProp( 541 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 542 ArrayRef<VirtualCallSite> CallSites) { 543 // This only works if the function returns an integer. 544 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 545 if (!RetType) 546 return false; 547 unsigned BitWidth = RetType->getBitWidth(); 548 if (BitWidth > 64) 549 return false; 550 551 // Make sure that each function does not access memory, takes at least one 552 // argument, does not use its first argument (which we assume is 'this'), 553 // and has the same return type. 554 for (VirtualCallTarget &Target : TargetsForSlot) { 555 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || 556 !Target.Fn->arg_begin()->use_empty() || 557 Target.Fn->getReturnType() != RetType) 558 return false; 559 } 560 561 // Group call sites by the list of constant arguments they pass. 562 // The comparator ensures deterministic ordering. 563 struct ByAPIntValue { 564 bool operator()(const std::vector<ConstantInt *> &A, 565 const std::vector<ConstantInt *> &B) const { 566 return std::lexicographical_compare( 567 A.begin(), A.end(), B.begin(), B.end(), 568 [](ConstantInt *AI, ConstantInt *BI) { 569 return AI->getValue().ult(BI->getValue()); 570 }); 571 } 572 }; 573 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, 574 ByAPIntValue> 575 VCallSitesByConstantArg; 576 for (auto &&VCallSite : CallSites) { 577 std::vector<ConstantInt *> Args; 578 if (VCallSite.CS.getType() != RetType) 579 continue; 580 for (auto &&Arg : 581 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { 582 if (!isa<ConstantInt>(Arg)) 583 break; 584 Args.push_back(cast<ConstantInt>(&Arg)); 585 } 586 if (Args.size() + 1 != VCallSite.CS.arg_size()) 587 continue; 588 589 VCallSitesByConstantArg[Args].push_back(VCallSite); 590 } 591 592 for (auto &&CSByConstantArg : VCallSitesByConstantArg) { 593 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 594 continue; 595 596 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) 597 continue; 598 599 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) 600 continue; 601 602 // Find an allocation offset in bits in all vtables associated with the 603 // type. 604 uint64_t AllocBefore = 605 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 606 uint64_t AllocAfter = 607 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 608 609 // Calculate the total amount of padding needed to store a value at both 610 // ends of the object. 611 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 612 for (auto &&Target : TargetsForSlot) { 613 TotalPaddingBefore += std::max<int64_t>( 614 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 615 TotalPaddingAfter += std::max<int64_t>( 616 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 617 } 618 619 // If the amount of padding is too large, give up. 620 // FIXME: do something smarter here. 621 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 622 continue; 623 624 // Calculate the offset to the value as a (possibly negative) byte offset 625 // and (if applicable) a bit offset, and store the values in the targets. 626 int64_t OffsetByte; 627 uint64_t OffsetBit; 628 if (TotalPaddingBefore <= TotalPaddingAfter) 629 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 630 OffsetBit); 631 else 632 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 633 OffsetBit); 634 635 if (RemarksEnabled) 636 for (auto &&Target : TargetsForSlot) 637 Target.WasDevirt = true; 638 639 // Rewrite each call to a load from OffsetByte/OffsetBit. 640 for (auto Call : CSByConstantArg.second) { 641 IRBuilder<> B(Call.CS.getInstruction()); 642 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); 643 if (BitWidth == 1) { 644 Value *Bits = B.CreateLoad(Addr); 645 Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 646 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 647 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 648 Call.replaceAndErase("virtual-const-prop-1-bit", 649 TargetsForSlot[0].Fn->getName(), 650 RemarksEnabled, IsBitSet); 651 } else { 652 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 653 Value *Val = B.CreateLoad(RetType, ValAddr); 654 Call.replaceAndErase("virtual-const-prop", 655 TargetsForSlot[0].Fn->getName(), 656 RemarksEnabled, Val); 657 } 658 } 659 } 660 return true; 661 } 662 663 void DevirtModule::rebuildGlobal(VTableBits &B) { 664 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 665 return; 666 667 // Align each byte array to pointer width. 668 unsigned PointerSize = M.getDataLayout().getPointerSize(); 669 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 670 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 671 672 // Before was stored in reverse order; flip it now. 673 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 674 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 675 676 // Build an anonymous global containing the before bytes, followed by the 677 // original initializer, followed by the after bytes. 678 auto NewInit = ConstantStruct::getAnon( 679 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 680 B.GV->getInitializer(), 681 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 682 auto NewGV = 683 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 684 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 685 NewGV->setSection(B.GV->getSection()); 686 NewGV->setComdat(B.GV->getComdat()); 687 688 // Copy the original vtable's metadata to the anonymous global, adjusting 689 // offsets as required. 690 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 691 692 // Build an alias named after the original global, pointing at the second 693 // element (the original initializer). 694 auto Alias = GlobalAlias::create( 695 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 696 ConstantExpr::getGetElementPtr( 697 NewInit->getType(), NewGV, 698 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 699 ConstantInt::get(Int32Ty, 1)}), 700 &M); 701 Alias->setVisibility(B.GV->getVisibility()); 702 Alias->takeName(B.GV); 703 704 B.GV->replaceAllUsesWith(Alias); 705 B.GV->eraseFromParent(); 706 } 707 708 bool DevirtModule::areRemarksEnabled() { 709 const auto &FL = M.getFunctionList(); 710 if (FL.empty()) 711 return false; 712 const Function &Fn = FL.front(); 713 auto DI = OptimizationRemark(DEBUG_TYPE, Fn, DebugLoc(), ""); 714 return DI.isEnabled(); 715 } 716 717 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 718 Function *AssumeFunc) { 719 // Find all virtual calls via a virtual table pointer %p under an assumption 720 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 721 // points to a member of the type identifier %md. Group calls by (type ID, 722 // offset) pair (effectively the identity of the virtual function) and store 723 // to CallSlots. 724 DenseSet<Value *> SeenPtrs; 725 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 726 I != E;) { 727 auto CI = dyn_cast<CallInst>(I->getUser()); 728 ++I; 729 if (!CI) 730 continue; 731 732 // Search for virtual calls based on %p and add them to DevirtCalls. 733 SmallVector<DevirtCallSite, 1> DevirtCalls; 734 SmallVector<CallInst *, 1> Assumes; 735 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 736 737 // If we found any, add them to CallSlots. Only do this if we haven't seen 738 // the vtable pointer before, as it may have been CSE'd with pointers from 739 // other call sites, and we don't want to process call sites multiple times. 740 if (!Assumes.empty()) { 741 Metadata *TypeId = 742 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 743 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 744 if (SeenPtrs.insert(Ptr).second) { 745 for (DevirtCallSite Call : DevirtCalls) { 746 CallSlots[{TypeId, Call.Offset}].push_back( 747 {CI->getArgOperand(0), Call.CS, nullptr}); 748 } 749 } 750 } 751 752 // We no longer need the assumes or the type test. 753 for (auto Assume : Assumes) 754 Assume->eraseFromParent(); 755 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 756 // may use the vtable argument later. 757 if (CI->use_empty()) 758 CI->eraseFromParent(); 759 } 760 } 761 762 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 763 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 764 765 for (auto I = TypeCheckedLoadFunc->use_begin(), 766 E = TypeCheckedLoadFunc->use_end(); 767 I != E;) { 768 auto CI = dyn_cast<CallInst>(I->getUser()); 769 ++I; 770 if (!CI) 771 continue; 772 773 Value *Ptr = CI->getArgOperand(0); 774 Value *Offset = CI->getArgOperand(1); 775 Value *TypeIdValue = CI->getArgOperand(2); 776 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 777 778 SmallVector<DevirtCallSite, 1> DevirtCalls; 779 SmallVector<Instruction *, 1> LoadedPtrs; 780 SmallVector<Instruction *, 1> Preds; 781 bool HasNonCallUses = false; 782 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 783 HasNonCallUses, CI); 784 785 // Start by generating "pessimistic" code that explicitly loads the function 786 // pointer from the vtable and performs the type check. If possible, we will 787 // eliminate the load and the type check later. 788 789 // If possible, only generate the load at the point where it is used. 790 // This helps avoid unnecessary spills. 791 IRBuilder<> LoadB( 792 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 793 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 794 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 795 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 796 797 for (Instruction *LoadedPtr : LoadedPtrs) { 798 LoadedPtr->replaceAllUsesWith(LoadedValue); 799 LoadedPtr->eraseFromParent(); 800 } 801 802 // Likewise for the type test. 803 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 804 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 805 806 for (Instruction *Pred : Preds) { 807 Pred->replaceAllUsesWith(TypeTestCall); 808 Pred->eraseFromParent(); 809 } 810 811 // We have already erased any extractvalue instructions that refer to the 812 // intrinsic call, but the intrinsic may have other non-extractvalue uses 813 // (although this is unlikely). In that case, explicitly build a pair and 814 // RAUW it. 815 if (!CI->use_empty()) { 816 Value *Pair = UndefValue::get(CI->getType()); 817 IRBuilder<> B(CI); 818 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 819 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 820 CI->replaceAllUsesWith(Pair); 821 } 822 823 // The number of unsafe uses is initially the number of uses. 824 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 825 NumUnsafeUses = DevirtCalls.size(); 826 827 // If the function pointer has a non-call user, we cannot eliminate the type 828 // check, as one of those users may eventually call the pointer. Increment 829 // the unsafe use count to make sure it cannot reach zero. 830 if (HasNonCallUses) 831 ++NumUnsafeUses; 832 for (DevirtCallSite Call : DevirtCalls) { 833 CallSlots[{TypeId, Call.Offset}].push_back( 834 {Ptr, Call.CS, &NumUnsafeUses}); 835 } 836 837 CI->eraseFromParent(); 838 } 839 } 840 841 bool DevirtModule::run() { 842 Function *TypeTestFunc = 843 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 844 Function *TypeCheckedLoadFunc = 845 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 846 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 847 848 if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 849 AssumeFunc->use_empty()) && 850 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 851 return false; 852 853 if (TypeTestFunc && AssumeFunc) 854 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 855 856 if (TypeCheckedLoadFunc) 857 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 858 859 // Rebuild type metadata into a map for easy lookup. 860 std::vector<VTableBits> Bits; 861 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 862 buildTypeIdentifierMap(Bits, TypeIdMap); 863 if (TypeIdMap.empty()) 864 return true; 865 866 // For each (type, offset) pair: 867 bool DidVirtualConstProp = false; 868 std::map<std::string, Function*> DevirtTargets; 869 for (auto &S : CallSlots) { 870 // Search each of the members of the type identifier for the virtual 871 // function implementation at offset S.first.ByteOffset, and add to 872 // TargetsForSlot. 873 std::vector<VirtualCallTarget> TargetsForSlot; 874 if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 875 S.first.ByteOffset)) 876 continue; 877 878 if (!trySingleImplDevirt(TargetsForSlot, S.second) && 879 tryVirtualConstProp(TargetsForSlot, S.second)) 880 DidVirtualConstProp = true; 881 882 // Collect functions devirtualized at least for one call site for stats. 883 if (RemarksEnabled) 884 for (const auto &T : TargetsForSlot) 885 if (T.WasDevirt) 886 DevirtTargets[T.Fn->getName()] = T.Fn; 887 } 888 889 if (RemarksEnabled) { 890 // Generate remarks for each devirtualized function. 891 for (const auto &DT : DevirtTargets) { 892 Function *F = DT.second; 893 DISubprogram *SP = F->getSubprogram(); 894 DebugLoc DL = SP ? DebugLoc::get(SP->getScopeLine(), 0, SP) : DebugLoc(); 895 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, DL, 896 Twine("devirtualized ") + F->getName()); 897 } 898 } 899 900 // If we were able to eliminate all unsafe uses for a type checked load, 901 // eliminate the type test by replacing it with true. 902 if (TypeCheckedLoadFunc) { 903 auto True = ConstantInt::getTrue(M.getContext()); 904 for (auto &&U : NumUnsafeUsesForTypeTest) { 905 if (U.second == 0) { 906 U.first->replaceAllUsesWith(True); 907 U.first->eraseFromParent(); 908 } 909 } 910 } 911 912 // Rebuild each global we touched as part of virtual constant propagation to 913 // include the before and after bytes. 914 if (DidVirtualConstProp) 915 for (VTableBits &B : Bits) 916 rebuildGlobal(B); 917 918 return true; 919 } 920