1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/iterator_range.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/TypeMetadataUtils.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Dominators.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/GlobalAlias.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/LLVMContext.h" 71 #include "llvm/IR/Metadata.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ModuleSummaryIndexYAML.h" 74 #include "llvm/Pass.h" 75 #include "llvm/PassRegistry.h" 76 #include "llvm/PassSupport.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/Error.h" 79 #include "llvm/Support/FileSystem.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Transforms/IPO.h" 82 #include "llvm/Transforms/IPO/FunctionAttrs.h" 83 #include "llvm/Transforms/Utils/Evaluator.h" 84 #include <algorithm> 85 #include <cstddef> 86 #include <map> 87 #include <set> 88 #include <string> 89 90 using namespace llvm; 91 using namespace wholeprogramdevirt; 92 93 #define DEBUG_TYPE "wholeprogramdevirt" 94 95 static cl::opt<PassSummaryAction> ClSummaryAction( 96 "wholeprogramdevirt-summary-action", 97 cl::desc("What to do with the summary when running this pass"), 98 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 99 clEnumValN(PassSummaryAction::Import, "import", 100 "Import typeid resolutions from summary and globals"), 101 clEnumValN(PassSummaryAction::Export, "export", 102 "Export typeid resolutions to summary and globals")), 103 cl::Hidden); 104 105 static cl::opt<std::string> ClReadSummary( 106 "wholeprogramdevirt-read-summary", 107 cl::desc("Read summary from given YAML file before running pass"), 108 cl::Hidden); 109 110 static cl::opt<std::string> ClWriteSummary( 111 "wholeprogramdevirt-write-summary", 112 cl::desc("Write summary to given YAML file after running pass"), 113 cl::Hidden); 114 115 static cl::opt<unsigned> 116 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 117 cl::init(10), cl::ZeroOrMore, 118 cl::desc("Maximum number of call targets per " 119 "call site to enable branch funnels")); 120 121 // Find the minimum offset that we may store a value of size Size bits at. If 122 // IsAfter is set, look for an offset before the object, otherwise look for an 123 // offset after the object. 124 uint64_t 125 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 126 bool IsAfter, uint64_t Size) { 127 // Find a minimum offset taking into account only vtable sizes. 128 uint64_t MinByte = 0; 129 for (const VirtualCallTarget &Target : Targets) { 130 if (IsAfter) 131 MinByte = std::max(MinByte, Target.minAfterBytes()); 132 else 133 MinByte = std::max(MinByte, Target.minBeforeBytes()); 134 } 135 136 // Build a vector of arrays of bytes covering, for each target, a slice of the 137 // used region (see AccumBitVector::BytesUsed in 138 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 139 // this aligns the used regions to start at MinByte. 140 // 141 // In this example, A, B and C are vtables, # is a byte already allocated for 142 // a virtual function pointer, AAAA... (etc.) are the used regions for the 143 // vtables and Offset(X) is the value computed for the Offset variable below 144 // for X. 145 // 146 // Offset(A) 147 // | | 148 // |MinByte 149 // A: ################AAAAAAAA|AAAAAAAA 150 // B: ########BBBBBBBBBBBBBBBB|BBBB 151 // C: ########################|CCCCCCCCCCCCCCCC 152 // | Offset(B) | 153 // 154 // This code produces the slices of A, B and C that appear after the divider 155 // at MinByte. 156 std::vector<ArrayRef<uint8_t>> Used; 157 for (const VirtualCallTarget &Target : Targets) { 158 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 159 : Target.TM->Bits->Before.BytesUsed; 160 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 161 : MinByte - Target.minBeforeBytes(); 162 163 // Disregard used regions that are smaller than Offset. These are 164 // effectively all-free regions that do not need to be checked. 165 if (VTUsed.size() > Offset) 166 Used.push_back(VTUsed.slice(Offset)); 167 } 168 169 if (Size == 1) { 170 // Find a free bit in each member of Used. 171 for (unsigned I = 0;; ++I) { 172 uint8_t BitsUsed = 0; 173 for (auto &&B : Used) 174 if (I < B.size()) 175 BitsUsed |= B[I]; 176 if (BitsUsed != 0xff) 177 return (MinByte + I) * 8 + 178 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 179 } 180 } else { 181 // Find a free (Size/8) byte region in each member of Used. 182 // FIXME: see if alignment helps. 183 for (unsigned I = 0;; ++I) { 184 for (auto &&B : Used) { 185 unsigned Byte = 0; 186 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 187 if (B[I + Byte]) 188 goto NextI; 189 ++Byte; 190 } 191 } 192 return (MinByte + I) * 8; 193 NextI:; 194 } 195 } 196 } 197 198 void wholeprogramdevirt::setBeforeReturnValues( 199 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 200 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 201 if (BitWidth == 1) 202 OffsetByte = -(AllocBefore / 8 + 1); 203 else 204 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 205 OffsetBit = AllocBefore % 8; 206 207 for (VirtualCallTarget &Target : Targets) { 208 if (BitWidth == 1) 209 Target.setBeforeBit(AllocBefore); 210 else 211 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 212 } 213 } 214 215 void wholeprogramdevirt::setAfterReturnValues( 216 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 217 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 218 if (BitWidth == 1) 219 OffsetByte = AllocAfter / 8; 220 else 221 OffsetByte = (AllocAfter + 7) / 8; 222 OffsetBit = AllocAfter % 8; 223 224 for (VirtualCallTarget &Target : Targets) { 225 if (BitWidth == 1) 226 Target.setAfterBit(AllocAfter); 227 else 228 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 229 } 230 } 231 232 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 233 : Fn(Fn), TM(TM), 234 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 235 236 namespace { 237 238 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 239 // tables, and the ByteOffset is the offset in bytes from the address point to 240 // the virtual function pointer. 241 struct VTableSlot { 242 Metadata *TypeID; 243 uint64_t ByteOffset; 244 }; 245 246 } // end anonymous namespace 247 248 namespace llvm { 249 250 template <> struct DenseMapInfo<VTableSlot> { 251 static VTableSlot getEmptyKey() { 252 return {DenseMapInfo<Metadata *>::getEmptyKey(), 253 DenseMapInfo<uint64_t>::getEmptyKey()}; 254 } 255 static VTableSlot getTombstoneKey() { 256 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 257 DenseMapInfo<uint64_t>::getTombstoneKey()}; 258 } 259 static unsigned getHashValue(const VTableSlot &I) { 260 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 261 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 262 } 263 static bool isEqual(const VTableSlot &LHS, 264 const VTableSlot &RHS) { 265 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 266 } 267 }; 268 269 } // end namespace llvm 270 271 namespace { 272 273 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 274 // the indirect virtual call. 275 struct VirtualCallSite { 276 Value *VTable; 277 CallSite CS; 278 279 // If non-null, this field points to the associated unsafe use count stored in 280 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 281 // of that field for details. 282 unsigned *NumUnsafeUses; 283 284 void 285 emitRemark(const StringRef OptName, const StringRef TargetName, 286 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 287 Function *F = CS.getCaller(); 288 DebugLoc DLoc = CS->getDebugLoc(); 289 BasicBlock *Block = CS.getParent(); 290 291 using namespace ore; 292 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 293 << NV("Optimization", OptName) 294 << ": devirtualized a call to " 295 << NV("FunctionName", TargetName)); 296 } 297 298 void replaceAndErase( 299 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 300 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 301 Value *New) { 302 if (RemarksEnabled) 303 emitRemark(OptName, TargetName, OREGetter); 304 CS->replaceAllUsesWith(New); 305 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 306 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 307 II->getUnwindDest()->removePredecessor(II->getParent()); 308 } 309 CS->eraseFromParent(); 310 // This use is no longer unsafe. 311 if (NumUnsafeUses) 312 --*NumUnsafeUses; 313 } 314 }; 315 316 // Call site information collected for a specific VTableSlot and possibly a list 317 // of constant integer arguments. The grouping by arguments is handled by the 318 // VTableSlotInfo class. 319 struct CallSiteInfo { 320 /// The set of call sites for this slot. Used during regular LTO and the 321 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 322 /// call sites that appear in the merged module itself); in each of these 323 /// cases we are directly operating on the call sites at the IR level. 324 std::vector<VirtualCallSite> CallSites; 325 326 /// Whether all call sites represented by this CallSiteInfo, including those 327 /// in summaries, have been devirtualized. This starts off as true because a 328 /// default constructed CallSiteInfo represents no call sites. 329 bool AllCallSitesDevirted = true; 330 331 // These fields are used during the export phase of ThinLTO and reflect 332 // information collected from function summaries. 333 334 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 335 /// this slot. 336 bool SummaryHasTypeTestAssumeUsers = false; 337 338 /// CFI-specific: a vector containing the list of function summaries that use 339 /// the llvm.type.checked.load intrinsic and therefore will require 340 /// resolutions for llvm.type.test in order to implement CFI checks if 341 /// devirtualization was unsuccessful. If devirtualization was successful, the 342 /// pass will clear this vector by calling markDevirt(). If at the end of the 343 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 344 /// to each of the function summaries in the vector. 345 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 346 347 bool isExported() const { 348 return SummaryHasTypeTestAssumeUsers || 349 !SummaryTypeCheckedLoadUsers.empty(); 350 } 351 352 void markSummaryHasTypeTestAssumeUsers() { 353 SummaryHasTypeTestAssumeUsers = true; 354 AllCallSitesDevirted = false; 355 } 356 357 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 358 SummaryTypeCheckedLoadUsers.push_back(FS); 359 AllCallSitesDevirted = false; 360 } 361 362 void markDevirt() { 363 AllCallSitesDevirted = true; 364 365 // As explained in the comment for SummaryTypeCheckedLoadUsers. 366 SummaryTypeCheckedLoadUsers.clear(); 367 } 368 }; 369 370 // Call site information collected for a specific VTableSlot. 371 struct VTableSlotInfo { 372 // The set of call sites which do not have all constant integer arguments 373 // (excluding "this"). 374 CallSiteInfo CSInfo; 375 376 // The set of call sites with all constant integer arguments (excluding 377 // "this"), grouped by argument list. 378 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 379 380 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 381 382 private: 383 CallSiteInfo &findCallSiteInfo(CallSite CS); 384 }; 385 386 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 387 std::vector<uint64_t> Args; 388 auto *CI = dyn_cast<IntegerType>(CS.getType()); 389 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 390 return CSInfo; 391 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 392 auto *CI = dyn_cast<ConstantInt>(Arg); 393 if (!CI || CI->getBitWidth() > 64) 394 return CSInfo; 395 Args.push_back(CI->getZExtValue()); 396 } 397 return ConstCSInfo[Args]; 398 } 399 400 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 401 unsigned *NumUnsafeUses) { 402 auto &CSI = findCallSiteInfo(CS); 403 CSI.AllCallSitesDevirted = false; 404 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 405 } 406 407 struct DevirtModule { 408 Module &M; 409 function_ref<AAResults &(Function &)> AARGetter; 410 function_ref<DominatorTree &(Function &)> LookupDomTree; 411 412 ModuleSummaryIndex *ExportSummary; 413 const ModuleSummaryIndex *ImportSummary; 414 415 IntegerType *Int8Ty; 416 PointerType *Int8PtrTy; 417 IntegerType *Int32Ty; 418 IntegerType *Int64Ty; 419 IntegerType *IntPtrTy; 420 421 bool RemarksEnabled; 422 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 423 424 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 425 426 // This map keeps track of the number of "unsafe" uses of a loaded function 427 // pointer. The key is the associated llvm.type.test intrinsic call generated 428 // by this pass. An unsafe use is one that calls the loaded function pointer 429 // directly. Every time we eliminate an unsafe use (for example, by 430 // devirtualizing it or by applying virtual constant propagation), we 431 // decrement the value stored in this map. If a value reaches zero, we can 432 // eliminate the type check by RAUWing the associated llvm.type.test call with 433 // true. 434 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 435 436 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 437 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 438 function_ref<DominatorTree &(Function &)> LookupDomTree, 439 ModuleSummaryIndex *ExportSummary, 440 const ModuleSummaryIndex *ImportSummary) 441 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 442 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 443 Int8Ty(Type::getInt8Ty(M.getContext())), 444 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 445 Int32Ty(Type::getInt32Ty(M.getContext())), 446 Int64Ty(Type::getInt64Ty(M.getContext())), 447 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 448 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 449 assert(!(ExportSummary && ImportSummary)); 450 } 451 452 bool areRemarksEnabled(); 453 454 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 455 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 456 457 void buildTypeIdentifierMap( 458 std::vector<VTableBits> &Bits, 459 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 460 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 461 bool 462 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 463 const std::set<TypeMemberInfo> &TypeMemberInfos, 464 uint64_t ByteOffset); 465 466 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 467 bool &IsExported); 468 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 469 VTableSlotInfo &SlotInfo, 470 WholeProgramDevirtResolution *Res); 471 472 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 473 bool &IsExported); 474 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 475 VTableSlotInfo &SlotInfo, 476 WholeProgramDevirtResolution *Res, VTableSlot Slot); 477 478 bool tryEvaluateFunctionsWithArgs( 479 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 480 ArrayRef<uint64_t> Args); 481 482 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 483 uint64_t TheRetVal); 484 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 485 CallSiteInfo &CSInfo, 486 WholeProgramDevirtResolution::ByArg *Res); 487 488 // Returns the global symbol name that is used to export information about the 489 // given vtable slot and list of arguments. 490 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 491 StringRef Name); 492 493 bool shouldExportConstantsAsAbsoluteSymbols(); 494 495 // This function is called during the export phase to create a symbol 496 // definition containing information about the given vtable slot and list of 497 // arguments. 498 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 499 Constant *C); 500 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 501 uint32_t Const, uint32_t &Storage); 502 503 // This function is called during the import phase to create a reference to 504 // the symbol definition created during the export phase. 505 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 506 StringRef Name); 507 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 508 StringRef Name, IntegerType *IntTy, 509 uint32_t Storage); 510 511 Constant *getMemberAddr(const TypeMemberInfo *M); 512 513 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 514 Constant *UniqueMemberAddr); 515 bool tryUniqueRetValOpt(unsigned BitWidth, 516 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 517 CallSiteInfo &CSInfo, 518 WholeProgramDevirtResolution::ByArg *Res, 519 VTableSlot Slot, ArrayRef<uint64_t> Args); 520 521 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 522 Constant *Byte, Constant *Bit); 523 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 524 VTableSlotInfo &SlotInfo, 525 WholeProgramDevirtResolution *Res, VTableSlot Slot); 526 527 void rebuildGlobal(VTableBits &B); 528 529 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 530 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 531 532 // If we were able to eliminate all unsafe uses for a type checked load, 533 // eliminate the associated type tests by replacing them with true. 534 void removeRedundantTypeTests(); 535 536 bool run(); 537 538 // Lower the module using the action and summary passed as command line 539 // arguments. For testing purposes only. 540 static bool 541 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 542 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 543 function_ref<DominatorTree &(Function &)> LookupDomTree); 544 }; 545 546 struct WholeProgramDevirt : public ModulePass { 547 static char ID; 548 549 bool UseCommandLine = false; 550 551 ModuleSummaryIndex *ExportSummary; 552 const ModuleSummaryIndex *ImportSummary; 553 554 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 555 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 556 } 557 558 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 559 const ModuleSummaryIndex *ImportSummary) 560 : ModulePass(ID), ExportSummary(ExportSummary), 561 ImportSummary(ImportSummary) { 562 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 563 } 564 565 bool runOnModule(Module &M) override { 566 if (skipModule(M)) 567 return false; 568 569 // In the new pass manager, we can request the optimization 570 // remark emitter pass on a per-function-basis, which the 571 // OREGetter will do for us. 572 // In the old pass manager, this is harder, so we just build 573 // an optimization remark emitter on the fly, when we need it. 574 std::unique_ptr<OptimizationRemarkEmitter> ORE; 575 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 576 ORE = make_unique<OptimizationRemarkEmitter>(F); 577 return *ORE; 578 }; 579 580 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 581 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 582 }; 583 584 if (UseCommandLine) 585 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 586 LookupDomTree); 587 588 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 589 ExportSummary, ImportSummary) 590 .run(); 591 } 592 593 void getAnalysisUsage(AnalysisUsage &AU) const override { 594 AU.addRequired<AssumptionCacheTracker>(); 595 AU.addRequired<TargetLibraryInfoWrapperPass>(); 596 AU.addRequired<DominatorTreeWrapperPass>(); 597 } 598 }; 599 600 } // end anonymous namespace 601 602 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 603 "Whole program devirtualization", false, false) 604 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 605 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 606 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 607 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 608 "Whole program devirtualization", false, false) 609 char WholeProgramDevirt::ID = 0; 610 611 ModulePass * 612 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 613 const ModuleSummaryIndex *ImportSummary) { 614 return new WholeProgramDevirt(ExportSummary, ImportSummary); 615 } 616 617 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 618 ModuleAnalysisManager &AM) { 619 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 620 auto AARGetter = [&](Function &F) -> AAResults & { 621 return FAM.getResult<AAManager>(F); 622 }; 623 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 624 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 625 }; 626 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 627 return FAM.getResult<DominatorTreeAnalysis>(F); 628 }; 629 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 630 ImportSummary) 631 .run()) 632 return PreservedAnalyses::all(); 633 return PreservedAnalyses::none(); 634 } 635 636 bool DevirtModule::runForTesting( 637 Module &M, function_ref<AAResults &(Function &)> AARGetter, 638 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 639 function_ref<DominatorTree &(Function &)> LookupDomTree) { 640 ModuleSummaryIndex Summary(/*HaveGVs=*/false); 641 642 // Handle the command-line summary arguments. This code is for testing 643 // purposes only, so we handle errors directly. 644 if (!ClReadSummary.empty()) { 645 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 646 ": "); 647 auto ReadSummaryFile = 648 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 649 650 yaml::Input In(ReadSummaryFile->getBuffer()); 651 In >> Summary; 652 ExitOnErr(errorCodeToError(In.error())); 653 } 654 655 bool Changed = 656 DevirtModule( 657 M, AARGetter, OREGetter, LookupDomTree, 658 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 659 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 660 .run(); 661 662 if (!ClWriteSummary.empty()) { 663 ExitOnError ExitOnErr( 664 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 665 std::error_code EC; 666 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 667 ExitOnErr(errorCodeToError(EC)); 668 669 yaml::Output Out(OS); 670 Out << Summary; 671 } 672 673 return Changed; 674 } 675 676 void DevirtModule::buildTypeIdentifierMap( 677 std::vector<VTableBits> &Bits, 678 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 679 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 680 Bits.reserve(M.getGlobalList().size()); 681 SmallVector<MDNode *, 2> Types; 682 for (GlobalVariable &GV : M.globals()) { 683 Types.clear(); 684 GV.getMetadata(LLVMContext::MD_type, Types); 685 if (GV.isDeclaration() || Types.empty()) 686 continue; 687 688 VTableBits *&BitsPtr = GVToBits[&GV]; 689 if (!BitsPtr) { 690 Bits.emplace_back(); 691 Bits.back().GV = &GV; 692 Bits.back().ObjectSize = 693 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 694 BitsPtr = &Bits.back(); 695 } 696 697 for (MDNode *Type : Types) { 698 auto TypeID = Type->getOperand(1).get(); 699 700 uint64_t Offset = 701 cast<ConstantInt>( 702 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 703 ->getZExtValue(); 704 705 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 706 } 707 } 708 } 709 710 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 711 if (I->getType()->isPointerTy()) { 712 if (Offset == 0) 713 return I; 714 return nullptr; 715 } 716 717 const DataLayout &DL = M.getDataLayout(); 718 719 if (auto *C = dyn_cast<ConstantStruct>(I)) { 720 const StructLayout *SL = DL.getStructLayout(C->getType()); 721 if (Offset >= SL->getSizeInBytes()) 722 return nullptr; 723 724 unsigned Op = SL->getElementContainingOffset(Offset); 725 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 726 Offset - SL->getElementOffset(Op)); 727 } 728 if (auto *C = dyn_cast<ConstantArray>(I)) { 729 ArrayType *VTableTy = C->getType(); 730 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 731 732 unsigned Op = Offset / ElemSize; 733 if (Op >= C->getNumOperands()) 734 return nullptr; 735 736 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 737 Offset % ElemSize); 738 } 739 return nullptr; 740 } 741 742 bool DevirtModule::tryFindVirtualCallTargets( 743 std::vector<VirtualCallTarget> &TargetsForSlot, 744 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 745 for (const TypeMemberInfo &TM : TypeMemberInfos) { 746 if (!TM.Bits->GV->isConstant()) 747 return false; 748 749 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 750 TM.Offset + ByteOffset); 751 if (!Ptr) 752 return false; 753 754 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 755 if (!Fn) 756 return false; 757 758 // We can disregard __cxa_pure_virtual as a possible call target, as 759 // calls to pure virtuals are UB. 760 if (Fn->getName() == "__cxa_pure_virtual") 761 continue; 762 763 TargetsForSlot.push_back({Fn, &TM}); 764 } 765 766 // Give up if we couldn't find any targets. 767 return !TargetsForSlot.empty(); 768 } 769 770 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 771 Constant *TheFn, bool &IsExported) { 772 auto Apply = [&](CallSiteInfo &CSInfo) { 773 for (auto &&VCallSite : CSInfo.CallSites) { 774 if (RemarksEnabled) 775 VCallSite.emitRemark("single-impl", 776 TheFn->stripPointerCasts()->getName(), OREGetter); 777 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 778 TheFn, VCallSite.CS.getCalledValue()->getType())); 779 // This use is no longer unsafe. 780 if (VCallSite.NumUnsafeUses) 781 --*VCallSite.NumUnsafeUses; 782 } 783 if (CSInfo.isExported()) 784 IsExported = true; 785 CSInfo.markDevirt(); 786 }; 787 Apply(SlotInfo.CSInfo); 788 for (auto &P : SlotInfo.ConstCSInfo) 789 Apply(P.second); 790 } 791 792 bool DevirtModule::trySingleImplDevirt( 793 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 794 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 795 // See if the program contains a single implementation of this virtual 796 // function. 797 Function *TheFn = TargetsForSlot[0].Fn; 798 for (auto &&Target : TargetsForSlot) 799 if (TheFn != Target.Fn) 800 return false; 801 802 // If so, update each call site to call that implementation directly. 803 if (RemarksEnabled) 804 TargetsForSlot[0].WasDevirt = true; 805 806 bool IsExported = false; 807 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 808 if (!IsExported) 809 return false; 810 811 // If the only implementation has local linkage, we must promote to external 812 // to make it visible to thin LTO objects. We can only get here during the 813 // ThinLTO export phase. 814 if (TheFn->hasLocalLinkage()) { 815 std::string NewName = (TheFn->getName() + "$merged").str(); 816 817 // Since we are renaming the function, any comdats with the same name must 818 // also be renamed. This is required when targeting COFF, as the comdat name 819 // must match one of the names of the symbols in the comdat. 820 if (Comdat *C = TheFn->getComdat()) { 821 if (C->getName() == TheFn->getName()) { 822 Comdat *NewC = M.getOrInsertComdat(NewName); 823 NewC->setSelectionKind(C->getSelectionKind()); 824 for (GlobalObject &GO : M.global_objects()) 825 if (GO.getComdat() == C) 826 GO.setComdat(NewC); 827 } 828 } 829 830 TheFn->setLinkage(GlobalValue::ExternalLinkage); 831 TheFn->setVisibility(GlobalValue::HiddenVisibility); 832 TheFn->setName(NewName); 833 } 834 835 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 836 Res->SingleImplName = TheFn->getName(); 837 838 return true; 839 } 840 841 void DevirtModule::tryICallBranchFunnel( 842 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 843 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 844 Triple T(M.getTargetTriple()); 845 if (T.getArch() != Triple::x86_64) 846 return; 847 848 if (TargetsForSlot.size() > ClThreshold) 849 return; 850 851 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 852 if (!HasNonDevirt) 853 for (auto &P : SlotInfo.ConstCSInfo) 854 if (!P.second.AllCallSitesDevirted) { 855 HasNonDevirt = true; 856 break; 857 } 858 859 if (!HasNonDevirt) 860 return; 861 862 FunctionType *FT = 863 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 864 Function *JT; 865 if (isa<MDString>(Slot.TypeID)) { 866 JT = Function::Create(FT, Function::ExternalLinkage, 867 M.getDataLayout().getProgramAddressSpace(), 868 getGlobalName(Slot, {}, "branch_funnel"), &M); 869 JT->setVisibility(GlobalValue::HiddenVisibility); 870 } else { 871 JT = Function::Create(FT, Function::InternalLinkage, 872 M.getDataLayout().getProgramAddressSpace(), 873 "branch_funnel", &M); 874 } 875 JT->addAttribute(1, Attribute::Nest); 876 877 std::vector<Value *> JTArgs; 878 JTArgs.push_back(JT->arg_begin()); 879 for (auto &T : TargetsForSlot) { 880 JTArgs.push_back(getMemberAddr(T.TM)); 881 JTArgs.push_back(T.Fn); 882 } 883 884 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 885 Constant *Intr = 886 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 887 888 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 889 CI->setTailCallKind(CallInst::TCK_MustTail); 890 ReturnInst::Create(M.getContext(), nullptr, BB); 891 892 bool IsExported = false; 893 applyICallBranchFunnel(SlotInfo, JT, IsExported); 894 if (IsExported) 895 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 896 } 897 898 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 899 Constant *JT, bool &IsExported) { 900 auto Apply = [&](CallSiteInfo &CSInfo) { 901 if (CSInfo.isExported()) 902 IsExported = true; 903 if (CSInfo.AllCallSitesDevirted) 904 return; 905 for (auto &&VCallSite : CSInfo.CallSites) { 906 CallSite CS = VCallSite.CS; 907 908 // Jump tables are only profitable if the retpoline mitigation is enabled. 909 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 910 if (FSAttr.hasAttribute(Attribute::None) || 911 !FSAttr.getValueAsString().contains("+retpoline")) 912 continue; 913 914 if (RemarksEnabled) 915 VCallSite.emitRemark("branch-funnel", 916 JT->stripPointerCasts()->getName(), OREGetter); 917 918 // Pass the address of the vtable in the nest register, which is r10 on 919 // x86_64. 920 std::vector<Type *> NewArgs; 921 NewArgs.push_back(Int8PtrTy); 922 for (Type *T : CS.getFunctionType()->params()) 923 NewArgs.push_back(T); 924 PointerType *NewFT = PointerType::getUnqual( 925 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 926 CS.getFunctionType()->isVarArg())); 927 928 IRBuilder<> IRB(CS.getInstruction()); 929 std::vector<Value *> Args; 930 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 931 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 932 Args.push_back(CS.getArgOperand(I)); 933 934 CallSite NewCS; 935 if (CS.isCall()) 936 NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args); 937 else 938 NewCS = IRB.CreateInvoke( 939 IRB.CreateBitCast(JT, NewFT), 940 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 941 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 942 NewCS.setCallingConv(CS.getCallingConv()); 943 944 AttributeList Attrs = CS.getAttributes(); 945 std::vector<AttributeSet> NewArgAttrs; 946 NewArgAttrs.push_back(AttributeSet::get( 947 M.getContext(), ArrayRef<Attribute>{Attribute::get( 948 M.getContext(), Attribute::Nest)})); 949 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 950 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 951 NewCS.setAttributes( 952 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 953 Attrs.getRetAttributes(), NewArgAttrs)); 954 955 CS->replaceAllUsesWith(NewCS.getInstruction()); 956 CS->eraseFromParent(); 957 958 // This use is no longer unsafe. 959 if (VCallSite.NumUnsafeUses) 960 --*VCallSite.NumUnsafeUses; 961 } 962 // Don't mark as devirtualized because there may be callers compiled without 963 // retpoline mitigation, which would mean that they are lowered to 964 // llvm.type.test and therefore require an llvm.type.test resolution for the 965 // type identifier. 966 }; 967 Apply(SlotInfo.CSInfo); 968 for (auto &P : SlotInfo.ConstCSInfo) 969 Apply(P.second); 970 } 971 972 bool DevirtModule::tryEvaluateFunctionsWithArgs( 973 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 974 ArrayRef<uint64_t> Args) { 975 // Evaluate each function and store the result in each target's RetVal 976 // field. 977 for (VirtualCallTarget &Target : TargetsForSlot) { 978 if (Target.Fn->arg_size() != Args.size() + 1) 979 return false; 980 981 Evaluator Eval(M.getDataLayout(), nullptr); 982 SmallVector<Constant *, 2> EvalArgs; 983 EvalArgs.push_back( 984 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 985 for (unsigned I = 0; I != Args.size(); ++I) { 986 auto *ArgTy = dyn_cast<IntegerType>( 987 Target.Fn->getFunctionType()->getParamType(I + 1)); 988 if (!ArgTy) 989 return false; 990 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 991 } 992 993 Constant *RetVal; 994 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 995 !isa<ConstantInt>(RetVal)) 996 return false; 997 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 998 } 999 return true; 1000 } 1001 1002 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1003 uint64_t TheRetVal) { 1004 for (auto Call : CSInfo.CallSites) 1005 Call.replaceAndErase( 1006 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1007 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1008 CSInfo.markDevirt(); 1009 } 1010 1011 bool DevirtModule::tryUniformRetValOpt( 1012 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1013 WholeProgramDevirtResolution::ByArg *Res) { 1014 // Uniform return value optimization. If all functions return the same 1015 // constant, replace all calls with that constant. 1016 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1017 for (const VirtualCallTarget &Target : TargetsForSlot) 1018 if (Target.RetVal != TheRetVal) 1019 return false; 1020 1021 if (CSInfo.isExported()) { 1022 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1023 Res->Info = TheRetVal; 1024 } 1025 1026 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1027 if (RemarksEnabled) 1028 for (auto &&Target : TargetsForSlot) 1029 Target.WasDevirt = true; 1030 return true; 1031 } 1032 1033 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1034 ArrayRef<uint64_t> Args, 1035 StringRef Name) { 1036 std::string FullName = "__typeid_"; 1037 raw_string_ostream OS(FullName); 1038 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1039 for (uint64_t Arg : Args) 1040 OS << '_' << Arg; 1041 OS << '_' << Name; 1042 return OS.str(); 1043 } 1044 1045 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1046 Triple T(M.getTargetTriple()); 1047 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1048 T.getObjectFormat() == Triple::ELF; 1049 } 1050 1051 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1052 StringRef Name, Constant *C) { 1053 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1054 getGlobalName(Slot, Args, Name), C, &M); 1055 GA->setVisibility(GlobalValue::HiddenVisibility); 1056 } 1057 1058 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1059 StringRef Name, uint32_t Const, 1060 uint32_t &Storage) { 1061 if (shouldExportConstantsAsAbsoluteSymbols()) { 1062 exportGlobal( 1063 Slot, Args, Name, 1064 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1065 return; 1066 } 1067 1068 Storage = Const; 1069 } 1070 1071 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1072 StringRef Name) { 1073 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1074 auto *GV = dyn_cast<GlobalVariable>(C); 1075 if (GV) 1076 GV->setVisibility(GlobalValue::HiddenVisibility); 1077 return C; 1078 } 1079 1080 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1081 StringRef Name, IntegerType *IntTy, 1082 uint32_t Storage) { 1083 if (!shouldExportConstantsAsAbsoluteSymbols()) 1084 return ConstantInt::get(IntTy, Storage); 1085 1086 Constant *C = importGlobal(Slot, Args, Name); 1087 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1088 C = ConstantExpr::getPtrToInt(C, IntTy); 1089 1090 // We only need to set metadata if the global is newly created, in which 1091 // case it would not have hidden visibility. 1092 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1093 return C; 1094 1095 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1096 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1097 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1098 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1099 MDNode::get(M.getContext(), {MinC, MaxC})); 1100 }; 1101 unsigned AbsWidth = IntTy->getBitWidth(); 1102 if (AbsWidth == IntPtrTy->getBitWidth()) 1103 SetAbsRange(~0ull, ~0ull); // Full set. 1104 else 1105 SetAbsRange(0, 1ull << AbsWidth); 1106 return C; 1107 } 1108 1109 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1110 bool IsOne, 1111 Constant *UniqueMemberAddr) { 1112 for (auto &&Call : CSInfo.CallSites) { 1113 IRBuilder<> B(Call.CS.getInstruction()); 1114 Value *Cmp = 1115 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1116 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1117 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1118 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1119 Cmp); 1120 } 1121 CSInfo.markDevirt(); 1122 } 1123 1124 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1125 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1126 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1127 ConstantInt::get(Int64Ty, M->Offset)); 1128 } 1129 1130 bool DevirtModule::tryUniqueRetValOpt( 1131 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1132 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1133 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1134 // IsOne controls whether we look for a 0 or a 1. 1135 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1136 const TypeMemberInfo *UniqueMember = nullptr; 1137 for (const VirtualCallTarget &Target : TargetsForSlot) { 1138 if (Target.RetVal == (IsOne ? 1 : 0)) { 1139 if (UniqueMember) 1140 return false; 1141 UniqueMember = Target.TM; 1142 } 1143 } 1144 1145 // We should have found a unique member or bailed out by now. We already 1146 // checked for a uniform return value in tryUniformRetValOpt. 1147 assert(UniqueMember); 1148 1149 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1150 if (CSInfo.isExported()) { 1151 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1152 Res->Info = IsOne; 1153 1154 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1155 } 1156 1157 // Replace each call with the comparison. 1158 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1159 UniqueMemberAddr); 1160 1161 // Update devirtualization statistics for targets. 1162 if (RemarksEnabled) 1163 for (auto &&Target : TargetsForSlot) 1164 Target.WasDevirt = true; 1165 1166 return true; 1167 }; 1168 1169 if (BitWidth == 1) { 1170 if (tryUniqueRetValOptFor(true)) 1171 return true; 1172 if (tryUniqueRetValOptFor(false)) 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1179 Constant *Byte, Constant *Bit) { 1180 for (auto Call : CSInfo.CallSites) { 1181 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1182 IRBuilder<> B(Call.CS.getInstruction()); 1183 Value *Addr = 1184 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1185 if (RetType->getBitWidth() == 1) { 1186 Value *Bits = B.CreateLoad(Addr); 1187 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1188 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1189 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1190 OREGetter, IsBitSet); 1191 } else { 1192 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1193 Value *Val = B.CreateLoad(RetType, ValAddr); 1194 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1195 OREGetter, Val); 1196 } 1197 } 1198 CSInfo.markDevirt(); 1199 } 1200 1201 bool DevirtModule::tryVirtualConstProp( 1202 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1203 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1204 // This only works if the function returns an integer. 1205 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1206 if (!RetType) 1207 return false; 1208 unsigned BitWidth = RetType->getBitWidth(); 1209 if (BitWidth > 64) 1210 return false; 1211 1212 // Make sure that each function is defined, does not access memory, takes at 1213 // least one argument, does not use its first argument (which we assume is 1214 // 'this'), and has the same return type. 1215 // 1216 // Note that we test whether this copy of the function is readnone, rather 1217 // than testing function attributes, which must hold for any copy of the 1218 // function, even a less optimized version substituted at link time. This is 1219 // sound because the virtual constant propagation optimizations effectively 1220 // inline all implementations of the virtual function into each call site, 1221 // rather than using function attributes to perform local optimization. 1222 for (VirtualCallTarget &Target : TargetsForSlot) { 1223 if (Target.Fn->isDeclaration() || 1224 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1225 MAK_ReadNone || 1226 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1227 Target.Fn->getReturnType() != RetType) 1228 return false; 1229 } 1230 1231 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1232 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1233 continue; 1234 1235 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1236 if (Res) 1237 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1238 1239 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1240 continue; 1241 1242 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1243 ResByArg, Slot, CSByConstantArg.first)) 1244 continue; 1245 1246 // Find an allocation offset in bits in all vtables associated with the 1247 // type. 1248 uint64_t AllocBefore = 1249 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1250 uint64_t AllocAfter = 1251 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1252 1253 // Calculate the total amount of padding needed to store a value at both 1254 // ends of the object. 1255 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1256 for (auto &&Target : TargetsForSlot) { 1257 TotalPaddingBefore += std::max<int64_t>( 1258 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1259 TotalPaddingAfter += std::max<int64_t>( 1260 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1261 } 1262 1263 // If the amount of padding is too large, give up. 1264 // FIXME: do something smarter here. 1265 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1266 continue; 1267 1268 // Calculate the offset to the value as a (possibly negative) byte offset 1269 // and (if applicable) a bit offset, and store the values in the targets. 1270 int64_t OffsetByte; 1271 uint64_t OffsetBit; 1272 if (TotalPaddingBefore <= TotalPaddingAfter) 1273 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1274 OffsetBit); 1275 else 1276 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1277 OffsetBit); 1278 1279 if (RemarksEnabled) 1280 for (auto &&Target : TargetsForSlot) 1281 Target.WasDevirt = true; 1282 1283 1284 if (CSByConstantArg.second.isExported()) { 1285 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1286 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1287 ResByArg->Byte); 1288 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1289 ResByArg->Bit); 1290 } 1291 1292 // Rewrite each call to a load from OffsetByte/OffsetBit. 1293 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1294 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1295 applyVirtualConstProp(CSByConstantArg.second, 1296 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1297 } 1298 return true; 1299 } 1300 1301 void DevirtModule::rebuildGlobal(VTableBits &B) { 1302 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1303 return; 1304 1305 // Align each byte array to pointer width. 1306 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1307 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1308 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1309 1310 // Before was stored in reverse order; flip it now. 1311 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1312 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1313 1314 // Build an anonymous global containing the before bytes, followed by the 1315 // original initializer, followed by the after bytes. 1316 auto NewInit = ConstantStruct::getAnon( 1317 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1318 B.GV->getInitializer(), 1319 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1320 auto NewGV = 1321 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1322 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1323 NewGV->setSection(B.GV->getSection()); 1324 NewGV->setComdat(B.GV->getComdat()); 1325 1326 // Copy the original vtable's metadata to the anonymous global, adjusting 1327 // offsets as required. 1328 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1329 1330 // Build an alias named after the original global, pointing at the second 1331 // element (the original initializer). 1332 auto Alias = GlobalAlias::create( 1333 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1334 ConstantExpr::getGetElementPtr( 1335 NewInit->getType(), NewGV, 1336 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1337 ConstantInt::get(Int32Ty, 1)}), 1338 &M); 1339 Alias->setVisibility(B.GV->getVisibility()); 1340 Alias->takeName(B.GV); 1341 1342 B.GV->replaceAllUsesWith(Alias); 1343 B.GV->eraseFromParent(); 1344 } 1345 1346 bool DevirtModule::areRemarksEnabled() { 1347 const auto &FL = M.getFunctionList(); 1348 for (const Function &Fn : FL) { 1349 const auto &BBL = Fn.getBasicBlockList(); 1350 if (BBL.empty()) 1351 continue; 1352 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1353 return DI.isEnabled(); 1354 } 1355 return false; 1356 } 1357 1358 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1359 Function *AssumeFunc) { 1360 // Find all virtual calls via a virtual table pointer %p under an assumption 1361 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1362 // points to a member of the type identifier %md. Group calls by (type ID, 1363 // offset) pair (effectively the identity of the virtual function) and store 1364 // to CallSlots. 1365 DenseSet<CallSite> SeenCallSites; 1366 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1367 I != E;) { 1368 auto CI = dyn_cast<CallInst>(I->getUser()); 1369 ++I; 1370 if (!CI) 1371 continue; 1372 1373 // Search for virtual calls based on %p and add them to DevirtCalls. 1374 SmallVector<DevirtCallSite, 1> DevirtCalls; 1375 SmallVector<CallInst *, 1> Assumes; 1376 auto &DT = LookupDomTree(*CI->getFunction()); 1377 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1378 1379 // If we found any, add them to CallSlots. 1380 if (!Assumes.empty()) { 1381 Metadata *TypeId = 1382 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1383 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1384 for (DevirtCallSite Call : DevirtCalls) { 1385 // Only add this CallSite if we haven't seen it before. The vtable 1386 // pointer may have been CSE'd with pointers from other call sites, 1387 // and we don't want to process call sites multiple times. We can't 1388 // just skip the vtable Ptr if it has been seen before, however, since 1389 // it may be shared by type tests that dominate different calls. 1390 if (SeenCallSites.insert(Call.CS).second) 1391 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1392 } 1393 } 1394 1395 // We no longer need the assumes or the type test. 1396 for (auto Assume : Assumes) 1397 Assume->eraseFromParent(); 1398 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1399 // may use the vtable argument later. 1400 if (CI->use_empty()) 1401 CI->eraseFromParent(); 1402 } 1403 } 1404 1405 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1406 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1407 1408 for (auto I = TypeCheckedLoadFunc->use_begin(), 1409 E = TypeCheckedLoadFunc->use_end(); 1410 I != E;) { 1411 auto CI = dyn_cast<CallInst>(I->getUser()); 1412 ++I; 1413 if (!CI) 1414 continue; 1415 1416 Value *Ptr = CI->getArgOperand(0); 1417 Value *Offset = CI->getArgOperand(1); 1418 Value *TypeIdValue = CI->getArgOperand(2); 1419 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1420 1421 SmallVector<DevirtCallSite, 1> DevirtCalls; 1422 SmallVector<Instruction *, 1> LoadedPtrs; 1423 SmallVector<Instruction *, 1> Preds; 1424 bool HasNonCallUses = false; 1425 auto &DT = LookupDomTree(*CI->getFunction()); 1426 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1427 HasNonCallUses, CI, DT); 1428 1429 // Start by generating "pessimistic" code that explicitly loads the function 1430 // pointer from the vtable and performs the type check. If possible, we will 1431 // eliminate the load and the type check later. 1432 1433 // If possible, only generate the load at the point where it is used. 1434 // This helps avoid unnecessary spills. 1435 IRBuilder<> LoadB( 1436 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1437 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1438 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1439 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1440 1441 for (Instruction *LoadedPtr : LoadedPtrs) { 1442 LoadedPtr->replaceAllUsesWith(LoadedValue); 1443 LoadedPtr->eraseFromParent(); 1444 } 1445 1446 // Likewise for the type test. 1447 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1448 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1449 1450 for (Instruction *Pred : Preds) { 1451 Pred->replaceAllUsesWith(TypeTestCall); 1452 Pred->eraseFromParent(); 1453 } 1454 1455 // We have already erased any extractvalue instructions that refer to the 1456 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1457 // (although this is unlikely). In that case, explicitly build a pair and 1458 // RAUW it. 1459 if (!CI->use_empty()) { 1460 Value *Pair = UndefValue::get(CI->getType()); 1461 IRBuilder<> B(CI); 1462 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1463 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1464 CI->replaceAllUsesWith(Pair); 1465 } 1466 1467 // The number of unsafe uses is initially the number of uses. 1468 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1469 NumUnsafeUses = DevirtCalls.size(); 1470 1471 // If the function pointer has a non-call user, we cannot eliminate the type 1472 // check, as one of those users may eventually call the pointer. Increment 1473 // the unsafe use count to make sure it cannot reach zero. 1474 if (HasNonCallUses) 1475 ++NumUnsafeUses; 1476 for (DevirtCallSite Call : DevirtCalls) { 1477 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1478 &NumUnsafeUses); 1479 } 1480 1481 CI->eraseFromParent(); 1482 } 1483 } 1484 1485 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1486 const TypeIdSummary *TidSummary = 1487 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1488 if (!TidSummary) 1489 return; 1490 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1491 if (ResI == TidSummary->WPDRes.end()) 1492 return; 1493 const WholeProgramDevirtResolution &Res = ResI->second; 1494 1495 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1496 // The type of the function in the declaration is irrelevant because every 1497 // call site will cast it to the correct type. 1498 auto *SingleImpl = M.getOrInsertFunction( 1499 Res.SingleImplName, Type::getVoidTy(M.getContext())); 1500 1501 // This is the import phase so we should not be exporting anything. 1502 bool IsExported = false; 1503 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1504 assert(!IsExported); 1505 } 1506 1507 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1508 auto I = Res.ResByArg.find(CSByConstantArg.first); 1509 if (I == Res.ResByArg.end()) 1510 continue; 1511 auto &ResByArg = I->second; 1512 // FIXME: We should figure out what to do about the "function name" argument 1513 // to the apply* functions, as the function names are unavailable during the 1514 // importing phase. For now we just pass the empty string. This does not 1515 // impact correctness because the function names are just used for remarks. 1516 switch (ResByArg.TheKind) { 1517 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1518 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1519 break; 1520 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1521 Constant *UniqueMemberAddr = 1522 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1523 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1524 UniqueMemberAddr); 1525 break; 1526 } 1527 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1528 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1529 Int32Ty, ResByArg.Byte); 1530 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1531 ResByArg.Bit); 1532 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1533 break; 1534 } 1535 default: 1536 break; 1537 } 1538 } 1539 1540 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1541 auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1542 Type::getVoidTy(M.getContext())); 1543 bool IsExported = false; 1544 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1545 assert(!IsExported); 1546 } 1547 } 1548 1549 void DevirtModule::removeRedundantTypeTests() { 1550 auto True = ConstantInt::getTrue(M.getContext()); 1551 for (auto &&U : NumUnsafeUsesForTypeTest) { 1552 if (U.second == 0) { 1553 U.first->replaceAllUsesWith(True); 1554 U.first->eraseFromParent(); 1555 } 1556 } 1557 } 1558 1559 bool DevirtModule::run() { 1560 Function *TypeTestFunc = 1561 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1562 Function *TypeCheckedLoadFunc = 1563 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1564 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1565 1566 // Normally if there are no users of the devirtualization intrinsics in the 1567 // module, this pass has nothing to do. But if we are exporting, we also need 1568 // to handle any users that appear only in the function summaries. 1569 if (!ExportSummary && 1570 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1571 AssumeFunc->use_empty()) && 1572 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1573 return false; 1574 1575 if (TypeTestFunc && AssumeFunc) 1576 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1577 1578 if (TypeCheckedLoadFunc) 1579 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1580 1581 if (ImportSummary) { 1582 for (auto &S : CallSlots) 1583 importResolution(S.first, S.second); 1584 1585 removeRedundantTypeTests(); 1586 1587 // The rest of the code is only necessary when exporting or during regular 1588 // LTO, so we are done. 1589 return true; 1590 } 1591 1592 // Rebuild type metadata into a map for easy lookup. 1593 std::vector<VTableBits> Bits; 1594 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1595 buildTypeIdentifierMap(Bits, TypeIdMap); 1596 if (TypeIdMap.empty()) 1597 return true; 1598 1599 // Collect information from summary about which calls to try to devirtualize. 1600 if (ExportSummary) { 1601 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1602 for (auto &P : TypeIdMap) { 1603 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1604 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1605 TypeId); 1606 } 1607 1608 for (auto &P : *ExportSummary) { 1609 for (auto &S : P.second.SummaryList) { 1610 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1611 if (!FS) 1612 continue; 1613 // FIXME: Only add live functions. 1614 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1615 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1616 CallSlots[{MD, VF.Offset}] 1617 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1618 } 1619 } 1620 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1621 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1622 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1623 } 1624 } 1625 for (const FunctionSummary::ConstVCall &VC : 1626 FS->type_test_assume_const_vcalls()) { 1627 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1628 CallSlots[{MD, VC.VFunc.Offset}] 1629 .ConstCSInfo[VC.Args] 1630 .markSummaryHasTypeTestAssumeUsers(); 1631 } 1632 } 1633 for (const FunctionSummary::ConstVCall &VC : 1634 FS->type_checked_load_const_vcalls()) { 1635 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1636 CallSlots[{MD, VC.VFunc.Offset}] 1637 .ConstCSInfo[VC.Args] 1638 .addSummaryTypeCheckedLoadUser(FS); 1639 } 1640 } 1641 } 1642 } 1643 } 1644 1645 // For each (type, offset) pair: 1646 bool DidVirtualConstProp = false; 1647 std::map<std::string, Function*> DevirtTargets; 1648 for (auto &S : CallSlots) { 1649 // Search each of the members of the type identifier for the virtual 1650 // function implementation at offset S.first.ByteOffset, and add to 1651 // TargetsForSlot. 1652 std::vector<VirtualCallTarget> TargetsForSlot; 1653 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1654 S.first.ByteOffset)) { 1655 WholeProgramDevirtResolution *Res = nullptr; 1656 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1657 Res = &ExportSummary 1658 ->getOrInsertTypeIdSummary( 1659 cast<MDString>(S.first.TypeID)->getString()) 1660 .WPDRes[S.first.ByteOffset]; 1661 1662 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1663 DidVirtualConstProp |= 1664 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1665 1666 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1667 } 1668 1669 // Collect functions devirtualized at least for one call site for stats. 1670 if (RemarksEnabled) 1671 for (const auto &T : TargetsForSlot) 1672 if (T.WasDevirt) 1673 DevirtTargets[T.Fn->getName()] = T.Fn; 1674 } 1675 1676 // CFI-specific: if we are exporting and any llvm.type.checked.load 1677 // intrinsics were *not* devirtualized, we need to add the resulting 1678 // llvm.type.test intrinsics to the function summaries so that the 1679 // LowerTypeTests pass will export them. 1680 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1681 auto GUID = 1682 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1683 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1684 FS->addTypeTest(GUID); 1685 for (auto &CCS : S.second.ConstCSInfo) 1686 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1687 FS->addTypeTest(GUID); 1688 } 1689 } 1690 1691 if (RemarksEnabled) { 1692 // Generate remarks for each devirtualized function. 1693 for (const auto &DT : DevirtTargets) { 1694 Function *F = DT.second; 1695 1696 using namespace ore; 1697 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1698 << "devirtualized " 1699 << NV("FunctionName", F->getName())); 1700 } 1701 } 1702 1703 removeRedundantTypeTests(); 1704 1705 // Rebuild each global we touched as part of virtual constant propagation to 1706 // include the before and after bytes. 1707 if (DidVirtualConstProp) 1708 for (VTableBits &B : Bits) 1709 rebuildGlobal(B); 1710 1711 return true; 1712 } 1713