1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BasicAliasAnalysis.h" 64 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 65 #include "llvm/Analysis/TypeMetadataUtils.h" 66 #include "llvm/Bitcode/BitcodeReader.h" 67 #include "llvm/Bitcode/BitcodeWriter.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugLoc.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/ModuleSummaryIndexYAML.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/PassRegistry.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Errc.h" 91 #include "llvm/Support/Error.h" 92 #include "llvm/Support/FileSystem.h" 93 #include "llvm/Support/GlobPattern.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Transforms/IPO.h" 96 #include "llvm/Transforms/IPO/FunctionAttrs.h" 97 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 98 #include "llvm/Transforms/Utils/Evaluator.h" 99 #include <algorithm> 100 #include <cstddef> 101 #include <map> 102 #include <set> 103 #include <string> 104 105 using namespace llvm; 106 using namespace wholeprogramdevirt; 107 108 #define DEBUG_TYPE "wholeprogramdevirt" 109 110 static cl::opt<PassSummaryAction> ClSummaryAction( 111 "wholeprogramdevirt-summary-action", 112 cl::desc("What to do with the summary when running this pass"), 113 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 114 clEnumValN(PassSummaryAction::Import, "import", 115 "Import typeid resolutions from summary and globals"), 116 clEnumValN(PassSummaryAction::Export, "export", 117 "Export typeid resolutions to summary and globals")), 118 cl::Hidden); 119 120 static cl::opt<std::string> ClReadSummary( 121 "wholeprogramdevirt-read-summary", 122 cl::desc( 123 "Read summary from given bitcode or YAML file before running pass"), 124 cl::Hidden); 125 126 static cl::opt<std::string> ClWriteSummary( 127 "wholeprogramdevirt-write-summary", 128 cl::desc("Write summary to given bitcode or YAML file after running pass. " 129 "Output file format is deduced from extension: *.bc means writing " 130 "bitcode, otherwise YAML"), 131 cl::Hidden); 132 133 static cl::opt<unsigned> 134 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 135 cl::init(10), cl::ZeroOrMore, 136 cl::desc("Maximum number of call targets per " 137 "call site to enable branch funnels")); 138 139 static cl::opt<bool> 140 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 141 cl::init(false), cl::ZeroOrMore, 142 cl::desc("Print index-based devirtualization messages")); 143 144 /// Provide a way to force enable whole program visibility in tests. 145 /// This is needed to support legacy tests that don't contain 146 /// !vcall_visibility metadata (the mere presense of type tests 147 /// previously implied hidden visibility). 148 cl::opt<bool> 149 WholeProgramVisibility("whole-program-visibility", cl::init(false), 150 cl::Hidden, cl::ZeroOrMore, 151 cl::desc("Enable whole program visibility")); 152 153 /// Provide a way to force disable whole program for debugging or workarounds, 154 /// when enabled via the linker. 155 cl::opt<bool> DisableWholeProgramVisibility( 156 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 157 cl::ZeroOrMore, 158 cl::desc("Disable whole program visibility (overrides enabling options)")); 159 160 /// Provide way to prevent certain function from being devirtualized 161 cl::list<std::string> 162 SkipFunctionNames("wholeprogramdevirt-skip", 163 cl::desc("Prevent function(s) from being devirtualized"), 164 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); 165 166 /// Mechanism to add runtime checking of devirtualization decisions, trapping on 167 /// any that are not correct. Useful for debugging undefined behavior leading to 168 /// failures with WPD. 169 cl::opt<bool> 170 CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden, 171 cl::ZeroOrMore, 172 cl::desc("Add code to trap on incorrect devirtualizations")); 173 174 namespace { 175 struct PatternList { 176 std::vector<GlobPattern> Patterns; 177 template <class T> void init(const T &StringList) { 178 for (const auto &S : StringList) 179 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 180 Patterns.push_back(std::move(*Pat)); 181 } 182 bool match(StringRef S) { 183 for (const GlobPattern &P : Patterns) 184 if (P.match(S)) 185 return true; 186 return false; 187 } 188 }; 189 } // namespace 190 191 // Find the minimum offset that we may store a value of size Size bits at. If 192 // IsAfter is set, look for an offset before the object, otherwise look for an 193 // offset after the object. 194 uint64_t 195 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 196 bool IsAfter, uint64_t Size) { 197 // Find a minimum offset taking into account only vtable sizes. 198 uint64_t MinByte = 0; 199 for (const VirtualCallTarget &Target : Targets) { 200 if (IsAfter) 201 MinByte = std::max(MinByte, Target.minAfterBytes()); 202 else 203 MinByte = std::max(MinByte, Target.minBeforeBytes()); 204 } 205 206 // Build a vector of arrays of bytes covering, for each target, a slice of the 207 // used region (see AccumBitVector::BytesUsed in 208 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 209 // this aligns the used regions to start at MinByte. 210 // 211 // In this example, A, B and C are vtables, # is a byte already allocated for 212 // a virtual function pointer, AAAA... (etc.) are the used regions for the 213 // vtables and Offset(X) is the value computed for the Offset variable below 214 // for X. 215 // 216 // Offset(A) 217 // | | 218 // |MinByte 219 // A: ################AAAAAAAA|AAAAAAAA 220 // B: ########BBBBBBBBBBBBBBBB|BBBB 221 // C: ########################|CCCCCCCCCCCCCCCC 222 // | Offset(B) | 223 // 224 // This code produces the slices of A, B and C that appear after the divider 225 // at MinByte. 226 std::vector<ArrayRef<uint8_t>> Used; 227 for (const VirtualCallTarget &Target : Targets) { 228 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 229 : Target.TM->Bits->Before.BytesUsed; 230 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 231 : MinByte - Target.minBeforeBytes(); 232 233 // Disregard used regions that are smaller than Offset. These are 234 // effectively all-free regions that do not need to be checked. 235 if (VTUsed.size() > Offset) 236 Used.push_back(VTUsed.slice(Offset)); 237 } 238 239 if (Size == 1) { 240 // Find a free bit in each member of Used. 241 for (unsigned I = 0;; ++I) { 242 uint8_t BitsUsed = 0; 243 for (auto &&B : Used) 244 if (I < B.size()) 245 BitsUsed |= B[I]; 246 if (BitsUsed != 0xff) 247 return (MinByte + I) * 8 + 248 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 249 } 250 } else { 251 // Find a free (Size/8) byte region in each member of Used. 252 // FIXME: see if alignment helps. 253 for (unsigned I = 0;; ++I) { 254 for (auto &&B : Used) { 255 unsigned Byte = 0; 256 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 257 if (B[I + Byte]) 258 goto NextI; 259 ++Byte; 260 } 261 } 262 return (MinByte + I) * 8; 263 NextI:; 264 } 265 } 266 } 267 268 void wholeprogramdevirt::setBeforeReturnValues( 269 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 270 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 271 if (BitWidth == 1) 272 OffsetByte = -(AllocBefore / 8 + 1); 273 else 274 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 275 OffsetBit = AllocBefore % 8; 276 277 for (VirtualCallTarget &Target : Targets) { 278 if (BitWidth == 1) 279 Target.setBeforeBit(AllocBefore); 280 else 281 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 282 } 283 } 284 285 void wholeprogramdevirt::setAfterReturnValues( 286 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 287 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 288 if (BitWidth == 1) 289 OffsetByte = AllocAfter / 8; 290 else 291 OffsetByte = (AllocAfter + 7) / 8; 292 OffsetBit = AllocAfter % 8; 293 294 for (VirtualCallTarget &Target : Targets) { 295 if (BitWidth == 1) 296 Target.setAfterBit(AllocAfter); 297 else 298 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 299 } 300 } 301 302 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 303 : Fn(Fn), TM(TM), 304 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 305 306 namespace { 307 308 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 309 // tables, and the ByteOffset is the offset in bytes from the address point to 310 // the virtual function pointer. 311 struct VTableSlot { 312 Metadata *TypeID; 313 uint64_t ByteOffset; 314 }; 315 316 } // end anonymous namespace 317 318 namespace llvm { 319 320 template <> struct DenseMapInfo<VTableSlot> { 321 static VTableSlot getEmptyKey() { 322 return {DenseMapInfo<Metadata *>::getEmptyKey(), 323 DenseMapInfo<uint64_t>::getEmptyKey()}; 324 } 325 static VTableSlot getTombstoneKey() { 326 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 327 DenseMapInfo<uint64_t>::getTombstoneKey()}; 328 } 329 static unsigned getHashValue(const VTableSlot &I) { 330 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 331 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 332 } 333 static bool isEqual(const VTableSlot &LHS, 334 const VTableSlot &RHS) { 335 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 336 } 337 }; 338 339 template <> struct DenseMapInfo<VTableSlotSummary> { 340 static VTableSlotSummary getEmptyKey() { 341 return {DenseMapInfo<StringRef>::getEmptyKey(), 342 DenseMapInfo<uint64_t>::getEmptyKey()}; 343 } 344 static VTableSlotSummary getTombstoneKey() { 345 return {DenseMapInfo<StringRef>::getTombstoneKey(), 346 DenseMapInfo<uint64_t>::getTombstoneKey()}; 347 } 348 static unsigned getHashValue(const VTableSlotSummary &I) { 349 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 350 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 351 } 352 static bool isEqual(const VTableSlotSummary &LHS, 353 const VTableSlotSummary &RHS) { 354 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 355 } 356 }; 357 358 } // end namespace llvm 359 360 namespace { 361 362 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 363 // the indirect virtual call. 364 struct VirtualCallSite { 365 Value *VTable = nullptr; 366 CallBase &CB; 367 368 // If non-null, this field points to the associated unsafe use count stored in 369 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 370 // of that field for details. 371 unsigned *NumUnsafeUses = nullptr; 372 373 void 374 emitRemark(const StringRef OptName, const StringRef TargetName, 375 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 376 Function *F = CB.getCaller(); 377 DebugLoc DLoc = CB.getDebugLoc(); 378 BasicBlock *Block = CB.getParent(); 379 380 using namespace ore; 381 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 382 << NV("Optimization", OptName) 383 << ": devirtualized a call to " 384 << NV("FunctionName", TargetName)); 385 } 386 387 void replaceAndErase( 388 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 389 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 390 Value *New) { 391 if (RemarksEnabled) 392 emitRemark(OptName, TargetName, OREGetter); 393 CB.replaceAllUsesWith(New); 394 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 395 BranchInst::Create(II->getNormalDest(), &CB); 396 II->getUnwindDest()->removePredecessor(II->getParent()); 397 } 398 CB.eraseFromParent(); 399 // This use is no longer unsafe. 400 if (NumUnsafeUses) 401 --*NumUnsafeUses; 402 } 403 }; 404 405 // Call site information collected for a specific VTableSlot and possibly a list 406 // of constant integer arguments. The grouping by arguments is handled by the 407 // VTableSlotInfo class. 408 struct CallSiteInfo { 409 /// The set of call sites for this slot. Used during regular LTO and the 410 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 411 /// call sites that appear in the merged module itself); in each of these 412 /// cases we are directly operating on the call sites at the IR level. 413 std::vector<VirtualCallSite> CallSites; 414 415 /// Whether all call sites represented by this CallSiteInfo, including those 416 /// in summaries, have been devirtualized. This starts off as true because a 417 /// default constructed CallSiteInfo represents no call sites. 418 bool AllCallSitesDevirted = true; 419 420 // These fields are used during the export phase of ThinLTO and reflect 421 // information collected from function summaries. 422 423 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 424 /// this slot. 425 bool SummaryHasTypeTestAssumeUsers = false; 426 427 /// CFI-specific: a vector containing the list of function summaries that use 428 /// the llvm.type.checked.load intrinsic and therefore will require 429 /// resolutions for llvm.type.test in order to implement CFI checks if 430 /// devirtualization was unsuccessful. If devirtualization was successful, the 431 /// pass will clear this vector by calling markDevirt(). If at the end of the 432 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 433 /// to each of the function summaries in the vector. 434 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 435 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 436 437 bool isExported() const { 438 return SummaryHasTypeTestAssumeUsers || 439 !SummaryTypeCheckedLoadUsers.empty(); 440 } 441 442 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 443 SummaryTypeCheckedLoadUsers.push_back(FS); 444 AllCallSitesDevirted = false; 445 } 446 447 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 448 SummaryTypeTestAssumeUsers.push_back(FS); 449 SummaryHasTypeTestAssumeUsers = true; 450 AllCallSitesDevirted = false; 451 } 452 453 void markDevirt() { 454 AllCallSitesDevirted = true; 455 456 // As explained in the comment for SummaryTypeCheckedLoadUsers. 457 SummaryTypeCheckedLoadUsers.clear(); 458 } 459 }; 460 461 // Call site information collected for a specific VTableSlot. 462 struct VTableSlotInfo { 463 // The set of call sites which do not have all constant integer arguments 464 // (excluding "this"). 465 CallSiteInfo CSInfo; 466 467 // The set of call sites with all constant integer arguments (excluding 468 // "this"), grouped by argument list. 469 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 470 471 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 472 473 private: 474 CallSiteInfo &findCallSiteInfo(CallBase &CB); 475 }; 476 477 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 478 std::vector<uint64_t> Args; 479 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 480 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 481 return CSInfo; 482 for (auto &&Arg : drop_begin(CB.args())) { 483 auto *CI = dyn_cast<ConstantInt>(Arg); 484 if (!CI || CI->getBitWidth() > 64) 485 return CSInfo; 486 Args.push_back(CI->getZExtValue()); 487 } 488 return ConstCSInfo[Args]; 489 } 490 491 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 492 unsigned *NumUnsafeUses) { 493 auto &CSI = findCallSiteInfo(CB); 494 CSI.AllCallSitesDevirted = false; 495 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 496 } 497 498 struct DevirtModule { 499 Module &M; 500 function_ref<AAResults &(Function &)> AARGetter; 501 function_ref<DominatorTree &(Function &)> LookupDomTree; 502 503 ModuleSummaryIndex *ExportSummary; 504 const ModuleSummaryIndex *ImportSummary; 505 506 IntegerType *Int8Ty; 507 PointerType *Int8PtrTy; 508 IntegerType *Int32Ty; 509 IntegerType *Int64Ty; 510 IntegerType *IntPtrTy; 511 /// Sizeless array type, used for imported vtables. This provides a signal 512 /// to analyzers that these imports may alias, as they do for example 513 /// when multiple unique return values occur in the same vtable. 514 ArrayType *Int8Arr0Ty; 515 516 bool RemarksEnabled; 517 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 518 519 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 520 521 // This map keeps track of the number of "unsafe" uses of a loaded function 522 // pointer. The key is the associated llvm.type.test intrinsic call generated 523 // by this pass. An unsafe use is one that calls the loaded function pointer 524 // directly. Every time we eliminate an unsafe use (for example, by 525 // devirtualizing it or by applying virtual constant propagation), we 526 // decrement the value stored in this map. If a value reaches zero, we can 527 // eliminate the type check by RAUWing the associated llvm.type.test call with 528 // true. 529 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 530 PatternList FunctionsToSkip; 531 532 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 533 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 534 function_ref<DominatorTree &(Function &)> LookupDomTree, 535 ModuleSummaryIndex *ExportSummary, 536 const ModuleSummaryIndex *ImportSummary) 537 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 538 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 539 Int8Ty(Type::getInt8Ty(M.getContext())), 540 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 541 Int32Ty(Type::getInt32Ty(M.getContext())), 542 Int64Ty(Type::getInt64Ty(M.getContext())), 543 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 544 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 545 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 546 assert(!(ExportSummary && ImportSummary)); 547 FunctionsToSkip.init(SkipFunctionNames); 548 } 549 550 bool areRemarksEnabled(); 551 552 void 553 scanTypeTestUsers(Function *TypeTestFunc, 554 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 555 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 556 557 void buildTypeIdentifierMap( 558 std::vector<VTableBits> &Bits, 559 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 560 bool 561 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 562 const std::set<TypeMemberInfo> &TypeMemberInfos, 563 uint64_t ByteOffset); 564 565 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 566 bool &IsExported); 567 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 568 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 569 VTableSlotInfo &SlotInfo, 570 WholeProgramDevirtResolution *Res); 571 572 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 573 bool &IsExported); 574 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 575 VTableSlotInfo &SlotInfo, 576 WholeProgramDevirtResolution *Res, VTableSlot Slot); 577 578 bool tryEvaluateFunctionsWithArgs( 579 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 580 ArrayRef<uint64_t> Args); 581 582 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 583 uint64_t TheRetVal); 584 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 585 CallSiteInfo &CSInfo, 586 WholeProgramDevirtResolution::ByArg *Res); 587 588 // Returns the global symbol name that is used to export information about the 589 // given vtable slot and list of arguments. 590 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 591 StringRef Name); 592 593 bool shouldExportConstantsAsAbsoluteSymbols(); 594 595 // This function is called during the export phase to create a symbol 596 // definition containing information about the given vtable slot and list of 597 // arguments. 598 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 599 Constant *C); 600 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 601 uint32_t Const, uint32_t &Storage); 602 603 // This function is called during the import phase to create a reference to 604 // the symbol definition created during the export phase. 605 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 606 StringRef Name); 607 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 608 StringRef Name, IntegerType *IntTy, 609 uint32_t Storage); 610 611 Constant *getMemberAddr(const TypeMemberInfo *M); 612 613 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 614 Constant *UniqueMemberAddr); 615 bool tryUniqueRetValOpt(unsigned BitWidth, 616 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 617 CallSiteInfo &CSInfo, 618 WholeProgramDevirtResolution::ByArg *Res, 619 VTableSlot Slot, ArrayRef<uint64_t> Args); 620 621 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 622 Constant *Byte, Constant *Bit); 623 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 624 VTableSlotInfo &SlotInfo, 625 WholeProgramDevirtResolution *Res, VTableSlot Slot); 626 627 void rebuildGlobal(VTableBits &B); 628 629 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 630 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 631 632 // If we were able to eliminate all unsafe uses for a type checked load, 633 // eliminate the associated type tests by replacing them with true. 634 void removeRedundantTypeTests(); 635 636 bool run(); 637 638 // Lower the module using the action and summary passed as command line 639 // arguments. For testing purposes only. 640 static bool 641 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 642 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 643 function_ref<DominatorTree &(Function &)> LookupDomTree); 644 }; 645 646 struct DevirtIndex { 647 ModuleSummaryIndex &ExportSummary; 648 // The set in which to record GUIDs exported from their module by 649 // devirtualization, used by client to ensure they are not internalized. 650 std::set<GlobalValue::GUID> &ExportedGUIDs; 651 // A map in which to record the information necessary to locate the WPD 652 // resolution for local targets in case they are exported by cross module 653 // importing. 654 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 655 656 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 657 658 PatternList FunctionsToSkip; 659 660 DevirtIndex( 661 ModuleSummaryIndex &ExportSummary, 662 std::set<GlobalValue::GUID> &ExportedGUIDs, 663 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 664 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 665 LocalWPDTargetsMap(LocalWPDTargetsMap) { 666 FunctionsToSkip.init(SkipFunctionNames); 667 } 668 669 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 670 const TypeIdCompatibleVtableInfo TIdInfo, 671 uint64_t ByteOffset); 672 673 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 674 VTableSlotSummary &SlotSummary, 675 VTableSlotInfo &SlotInfo, 676 WholeProgramDevirtResolution *Res, 677 std::set<ValueInfo> &DevirtTargets); 678 679 void run(); 680 }; 681 682 struct WholeProgramDevirt : public ModulePass { 683 static char ID; 684 685 bool UseCommandLine = false; 686 687 ModuleSummaryIndex *ExportSummary = nullptr; 688 const ModuleSummaryIndex *ImportSummary = nullptr; 689 690 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 691 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 692 } 693 694 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 695 const ModuleSummaryIndex *ImportSummary) 696 : ModulePass(ID), ExportSummary(ExportSummary), 697 ImportSummary(ImportSummary) { 698 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 699 } 700 701 bool runOnModule(Module &M) override { 702 if (skipModule(M)) 703 return false; 704 705 // In the new pass manager, we can request the optimization 706 // remark emitter pass on a per-function-basis, which the 707 // OREGetter will do for us. 708 // In the old pass manager, this is harder, so we just build 709 // an optimization remark emitter on the fly, when we need it. 710 std::unique_ptr<OptimizationRemarkEmitter> ORE; 711 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 712 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 713 return *ORE; 714 }; 715 716 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 717 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 718 }; 719 720 if (UseCommandLine) 721 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 722 LookupDomTree); 723 724 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 725 ExportSummary, ImportSummary) 726 .run(); 727 } 728 729 void getAnalysisUsage(AnalysisUsage &AU) const override { 730 AU.addRequired<AssumptionCacheTracker>(); 731 AU.addRequired<TargetLibraryInfoWrapperPass>(); 732 AU.addRequired<DominatorTreeWrapperPass>(); 733 } 734 }; 735 736 } // end anonymous namespace 737 738 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 739 "Whole program devirtualization", false, false) 740 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 741 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 743 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 744 "Whole program devirtualization", false, false) 745 char WholeProgramDevirt::ID = 0; 746 747 ModulePass * 748 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 749 const ModuleSummaryIndex *ImportSummary) { 750 return new WholeProgramDevirt(ExportSummary, ImportSummary); 751 } 752 753 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 754 ModuleAnalysisManager &AM) { 755 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 756 auto AARGetter = [&](Function &F) -> AAResults & { 757 return FAM.getResult<AAManager>(F); 758 }; 759 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 760 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 761 }; 762 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 763 return FAM.getResult<DominatorTreeAnalysis>(F); 764 }; 765 if (UseCommandLine) { 766 if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) 767 return PreservedAnalyses::all(); 768 return PreservedAnalyses::none(); 769 } 770 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 771 ImportSummary) 772 .run()) 773 return PreservedAnalyses::all(); 774 return PreservedAnalyses::none(); 775 } 776 777 // Enable whole program visibility if enabled by client (e.g. linker) or 778 // internal option, and not force disabled. 779 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 780 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 781 !DisableWholeProgramVisibility; 782 } 783 784 namespace llvm { 785 786 /// If whole program visibility asserted, then upgrade all public vcall 787 /// visibility metadata on vtable definitions to linkage unit visibility in 788 /// Module IR (for regular or hybrid LTO). 789 void updateVCallVisibilityInModule( 790 Module &M, bool WholeProgramVisibilityEnabledInLTO, 791 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 792 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 793 return; 794 for (GlobalVariable &GV : M.globals()) 795 // Add linkage unit visibility to any variable with type metadata, which are 796 // the vtable definitions. We won't have an existing vcall_visibility 797 // metadata on vtable definitions with public visibility. 798 if (GV.hasMetadata(LLVMContext::MD_type) && 799 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic && 800 // Don't upgrade the visibility for symbols exported to the dynamic 801 // linker, as we have no information on their eventual use. 802 !DynamicExportSymbols.count(GV.getGUID())) 803 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 804 } 805 806 /// If whole program visibility asserted, then upgrade all public vcall 807 /// visibility metadata on vtable definition summaries to linkage unit 808 /// visibility in Module summary index (for ThinLTO). 809 void updateVCallVisibilityInIndex( 810 ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO, 811 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 812 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 813 return; 814 for (auto &P : Index) { 815 for (auto &S : P.second.SummaryList) { 816 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 817 if (!GVar || 818 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic || 819 // Don't upgrade the visibility for symbols exported to the dynamic 820 // linker, as we have no information on their eventual use. 821 DynamicExportSymbols.count(P.first)) 822 continue; 823 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 824 } 825 } 826 } 827 828 void runWholeProgramDevirtOnIndex( 829 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 830 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 831 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 832 } 833 834 void updateIndexWPDForExports( 835 ModuleSummaryIndex &Summary, 836 function_ref<bool(StringRef, ValueInfo)> isExported, 837 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 838 for (auto &T : LocalWPDTargetsMap) { 839 auto &VI = T.first; 840 // This was enforced earlier during trySingleImplDevirt. 841 assert(VI.getSummaryList().size() == 1 && 842 "Devirt of local target has more than one copy"); 843 auto &S = VI.getSummaryList()[0]; 844 if (!isExported(S->modulePath(), VI)) 845 continue; 846 847 // It's been exported by a cross module import. 848 for (auto &SlotSummary : T.second) { 849 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 850 assert(TIdSum); 851 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 852 assert(WPDRes != TIdSum->WPDRes.end()); 853 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 854 WPDRes->second.SingleImplName, 855 Summary.getModuleHash(S->modulePath())); 856 } 857 } 858 } 859 860 } // end namespace llvm 861 862 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 863 // Check that summary index contains regular LTO module when performing 864 // export to prevent occasional use of index from pure ThinLTO compilation 865 // (-fno-split-lto-module). This kind of summary index is passed to 866 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 867 const auto &ModPaths = Summary->modulePaths(); 868 if (ClSummaryAction != PassSummaryAction::Import && 869 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 870 ModPaths.end()) 871 return createStringError( 872 errc::invalid_argument, 873 "combined summary should contain Regular LTO module"); 874 return ErrorSuccess(); 875 } 876 877 bool DevirtModule::runForTesting( 878 Module &M, function_ref<AAResults &(Function &)> AARGetter, 879 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 880 function_ref<DominatorTree &(Function &)> LookupDomTree) { 881 std::unique_ptr<ModuleSummaryIndex> Summary = 882 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 883 884 // Handle the command-line summary arguments. This code is for testing 885 // purposes only, so we handle errors directly. 886 if (!ClReadSummary.empty()) { 887 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 888 ": "); 889 auto ReadSummaryFile = 890 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 891 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 892 getModuleSummaryIndex(*ReadSummaryFile)) { 893 Summary = std::move(*SummaryOrErr); 894 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 895 } else { 896 // Try YAML if we've failed with bitcode. 897 consumeError(SummaryOrErr.takeError()); 898 yaml::Input In(ReadSummaryFile->getBuffer()); 899 In >> *Summary; 900 ExitOnErr(errorCodeToError(In.error())); 901 } 902 } 903 904 bool Changed = 905 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 906 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 907 : nullptr, 908 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 909 : nullptr) 910 .run(); 911 912 if (!ClWriteSummary.empty()) { 913 ExitOnError ExitOnErr( 914 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 915 std::error_code EC; 916 if (StringRef(ClWriteSummary).endswith(".bc")) { 917 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 918 ExitOnErr(errorCodeToError(EC)); 919 WriteIndexToFile(*Summary, OS); 920 } else { 921 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF); 922 ExitOnErr(errorCodeToError(EC)); 923 yaml::Output Out(OS); 924 Out << *Summary; 925 } 926 } 927 928 return Changed; 929 } 930 931 void DevirtModule::buildTypeIdentifierMap( 932 std::vector<VTableBits> &Bits, 933 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 934 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 935 Bits.reserve(M.getGlobalList().size()); 936 SmallVector<MDNode *, 2> Types; 937 for (GlobalVariable &GV : M.globals()) { 938 Types.clear(); 939 GV.getMetadata(LLVMContext::MD_type, Types); 940 if (GV.isDeclaration() || Types.empty()) 941 continue; 942 943 VTableBits *&BitsPtr = GVToBits[&GV]; 944 if (!BitsPtr) { 945 Bits.emplace_back(); 946 Bits.back().GV = &GV; 947 Bits.back().ObjectSize = 948 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 949 BitsPtr = &Bits.back(); 950 } 951 952 for (MDNode *Type : Types) { 953 auto TypeID = Type->getOperand(1).get(); 954 955 uint64_t Offset = 956 cast<ConstantInt>( 957 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 958 ->getZExtValue(); 959 960 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 961 } 962 } 963 } 964 965 bool DevirtModule::tryFindVirtualCallTargets( 966 std::vector<VirtualCallTarget> &TargetsForSlot, 967 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 968 for (const TypeMemberInfo &TM : TypeMemberInfos) { 969 if (!TM.Bits->GV->isConstant()) 970 return false; 971 972 // We cannot perform whole program devirtualization analysis on a vtable 973 // with public LTO visibility. 974 if (TM.Bits->GV->getVCallVisibility() == 975 GlobalObject::VCallVisibilityPublic) 976 return false; 977 978 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 979 TM.Offset + ByteOffset, M); 980 if (!Ptr) 981 return false; 982 983 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 984 if (!Fn) 985 return false; 986 987 if (FunctionsToSkip.match(Fn->getName())) 988 return false; 989 990 // We can disregard __cxa_pure_virtual as a possible call target, as 991 // calls to pure virtuals are UB. 992 if (Fn->getName() == "__cxa_pure_virtual") 993 continue; 994 995 TargetsForSlot.push_back({Fn, &TM}); 996 } 997 998 // Give up if we couldn't find any targets. 999 return !TargetsForSlot.empty(); 1000 } 1001 1002 bool DevirtIndex::tryFindVirtualCallTargets( 1003 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 1004 uint64_t ByteOffset) { 1005 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 1006 // Find a representative copy of the vtable initializer. 1007 // We can have multiple available_externally, linkonce_odr and weak_odr 1008 // vtable initializers. We can also have multiple external vtable 1009 // initializers in the case of comdats, which we cannot check here. 1010 // The linker should give an error in this case. 1011 // 1012 // Also, handle the case of same-named local Vtables with the same path 1013 // and therefore the same GUID. This can happen if there isn't enough 1014 // distinguishing path when compiling the source file. In that case we 1015 // conservatively return false early. 1016 const GlobalVarSummary *VS = nullptr; 1017 bool LocalFound = false; 1018 for (auto &S : P.VTableVI.getSummaryList()) { 1019 if (GlobalValue::isLocalLinkage(S->linkage())) { 1020 if (LocalFound) 1021 return false; 1022 LocalFound = true; 1023 } 1024 auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject()); 1025 if (!CurVS->vTableFuncs().empty() || 1026 // Previously clang did not attach the necessary type metadata to 1027 // available_externally vtables, in which case there would not 1028 // be any vtable functions listed in the summary and we need 1029 // to treat this case conservatively (in case the bitcode is old). 1030 // However, we will also not have any vtable functions in the 1031 // case of a pure virtual base class. In that case we do want 1032 // to set VS to avoid treating it conservatively. 1033 !GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1034 VS = CurVS; 1035 // We cannot perform whole program devirtualization analysis on a vtable 1036 // with public LTO visibility. 1037 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1038 return false; 1039 } 1040 } 1041 // There will be no VS if all copies are available_externally having no 1042 // type metadata. In that case we can't safely perform WPD. 1043 if (!VS) 1044 return false; 1045 if (!VS->isLive()) 1046 continue; 1047 for (auto VTP : VS->vTableFuncs()) { 1048 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1049 continue; 1050 1051 TargetsForSlot.push_back(VTP.FuncVI); 1052 } 1053 } 1054 1055 // Give up if we couldn't find any targets. 1056 return !TargetsForSlot.empty(); 1057 } 1058 1059 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1060 Constant *TheFn, bool &IsExported) { 1061 // Don't devirtualize function if we're told to skip it 1062 // in -wholeprogramdevirt-skip. 1063 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) 1064 return; 1065 auto Apply = [&](CallSiteInfo &CSInfo) { 1066 for (auto &&VCallSite : CSInfo.CallSites) { 1067 if (RemarksEnabled) 1068 VCallSite.emitRemark("single-impl", 1069 TheFn->stripPointerCasts()->getName(), OREGetter); 1070 auto &CB = VCallSite.CB; 1071 IRBuilder<> Builder(&CB); 1072 Value *Callee = 1073 Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType()); 1074 1075 // If checking is enabled, add support to compare the virtual function 1076 // pointer to the devirtualized target. In case of a mismatch, perform a 1077 // debug trap. 1078 if (CheckDevirt) { 1079 auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee); 1080 Instruction *ThenTerm = 1081 SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false); 1082 Builder.SetInsertPoint(ThenTerm); 1083 Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap); 1084 auto *CallTrap = Builder.CreateCall(TrapFn); 1085 CallTrap->setDebugLoc(CB.getDebugLoc()); 1086 } 1087 1088 // Devirtualize. 1089 CB.setCalledOperand(Callee); 1090 1091 // This use is no longer unsafe. 1092 if (VCallSite.NumUnsafeUses) 1093 --*VCallSite.NumUnsafeUses; 1094 } 1095 if (CSInfo.isExported()) 1096 IsExported = true; 1097 CSInfo.markDevirt(); 1098 }; 1099 Apply(SlotInfo.CSInfo); 1100 for (auto &P : SlotInfo.ConstCSInfo) 1101 Apply(P.second); 1102 } 1103 1104 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1105 // We can't add calls if we haven't seen a definition 1106 if (Callee.getSummaryList().empty()) 1107 return false; 1108 1109 // Insert calls into the summary index so that the devirtualized targets 1110 // are eligible for import. 1111 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1112 // to better ensure we have the opportunity to inline them. 1113 bool IsExported = false; 1114 auto &S = Callee.getSummaryList()[0]; 1115 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1116 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1117 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1118 FS->addCall({Callee, CI}); 1119 IsExported |= S->modulePath() != FS->modulePath(); 1120 } 1121 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1122 FS->addCall({Callee, CI}); 1123 IsExported |= S->modulePath() != FS->modulePath(); 1124 } 1125 }; 1126 AddCalls(SlotInfo.CSInfo); 1127 for (auto &P : SlotInfo.ConstCSInfo) 1128 AddCalls(P.second); 1129 return IsExported; 1130 } 1131 1132 bool DevirtModule::trySingleImplDevirt( 1133 ModuleSummaryIndex *ExportSummary, 1134 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1135 WholeProgramDevirtResolution *Res) { 1136 // See if the program contains a single implementation of this virtual 1137 // function. 1138 Function *TheFn = TargetsForSlot[0].Fn; 1139 for (auto &&Target : TargetsForSlot) 1140 if (TheFn != Target.Fn) 1141 return false; 1142 1143 // If so, update each call site to call that implementation directly. 1144 if (RemarksEnabled) 1145 TargetsForSlot[0].WasDevirt = true; 1146 1147 bool IsExported = false; 1148 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1149 if (!IsExported) 1150 return false; 1151 1152 // If the only implementation has local linkage, we must promote to external 1153 // to make it visible to thin LTO objects. We can only get here during the 1154 // ThinLTO export phase. 1155 if (TheFn->hasLocalLinkage()) { 1156 std::string NewName = (TheFn->getName() + ".llvm.merged").str(); 1157 1158 // Since we are renaming the function, any comdats with the same name must 1159 // also be renamed. This is required when targeting COFF, as the comdat name 1160 // must match one of the names of the symbols in the comdat. 1161 if (Comdat *C = TheFn->getComdat()) { 1162 if (C->getName() == TheFn->getName()) { 1163 Comdat *NewC = M.getOrInsertComdat(NewName); 1164 NewC->setSelectionKind(C->getSelectionKind()); 1165 for (GlobalObject &GO : M.global_objects()) 1166 if (GO.getComdat() == C) 1167 GO.setComdat(NewC); 1168 } 1169 } 1170 1171 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1172 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1173 TheFn->setName(NewName); 1174 } 1175 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1176 // Any needed promotion of 'TheFn' has already been done during 1177 // LTO unit split, so we can ignore return value of AddCalls. 1178 AddCalls(SlotInfo, TheFnVI); 1179 1180 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1181 Res->SingleImplName = std::string(TheFn->getName()); 1182 1183 return true; 1184 } 1185 1186 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1187 VTableSlotSummary &SlotSummary, 1188 VTableSlotInfo &SlotInfo, 1189 WholeProgramDevirtResolution *Res, 1190 std::set<ValueInfo> &DevirtTargets) { 1191 // See if the program contains a single implementation of this virtual 1192 // function. 1193 auto TheFn = TargetsForSlot[0]; 1194 for (auto &&Target : TargetsForSlot) 1195 if (TheFn != Target) 1196 return false; 1197 1198 // Don't devirtualize if we don't have target definition. 1199 auto Size = TheFn.getSummaryList().size(); 1200 if (!Size) 1201 return false; 1202 1203 // Don't devirtualize function if we're told to skip it 1204 // in -wholeprogramdevirt-skip. 1205 if (FunctionsToSkip.match(TheFn.name())) 1206 return false; 1207 1208 // If the summary list contains multiple summaries where at least one is 1209 // a local, give up, as we won't know which (possibly promoted) name to use. 1210 for (auto &S : TheFn.getSummaryList()) 1211 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1212 return false; 1213 1214 // Collect functions devirtualized at least for one call site for stats. 1215 if (PrintSummaryDevirt) 1216 DevirtTargets.insert(TheFn); 1217 1218 auto &S = TheFn.getSummaryList()[0]; 1219 bool IsExported = AddCalls(SlotInfo, TheFn); 1220 if (IsExported) 1221 ExportedGUIDs.insert(TheFn.getGUID()); 1222 1223 // Record in summary for use in devirtualization during the ThinLTO import 1224 // step. 1225 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1226 if (GlobalValue::isLocalLinkage(S->linkage())) { 1227 if (IsExported) 1228 // If target is a local function and we are exporting it by 1229 // devirtualizing a call in another module, we need to record the 1230 // promoted name. 1231 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1232 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1233 else { 1234 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1235 Res->SingleImplName = std::string(TheFn.name()); 1236 } 1237 } else 1238 Res->SingleImplName = std::string(TheFn.name()); 1239 1240 // Name will be empty if this thin link driven off of serialized combined 1241 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1242 // legacy LTO API anyway. 1243 assert(!Res->SingleImplName.empty()); 1244 1245 return true; 1246 } 1247 1248 void DevirtModule::tryICallBranchFunnel( 1249 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1250 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1251 Triple T(M.getTargetTriple()); 1252 if (T.getArch() != Triple::x86_64) 1253 return; 1254 1255 if (TargetsForSlot.size() > ClThreshold) 1256 return; 1257 1258 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1259 if (!HasNonDevirt) 1260 for (auto &P : SlotInfo.ConstCSInfo) 1261 if (!P.second.AllCallSitesDevirted) { 1262 HasNonDevirt = true; 1263 break; 1264 } 1265 1266 if (!HasNonDevirt) 1267 return; 1268 1269 FunctionType *FT = 1270 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1271 Function *JT; 1272 if (isa<MDString>(Slot.TypeID)) { 1273 JT = Function::Create(FT, Function::ExternalLinkage, 1274 M.getDataLayout().getProgramAddressSpace(), 1275 getGlobalName(Slot, {}, "branch_funnel"), &M); 1276 JT->setVisibility(GlobalValue::HiddenVisibility); 1277 } else { 1278 JT = Function::Create(FT, Function::InternalLinkage, 1279 M.getDataLayout().getProgramAddressSpace(), 1280 "branch_funnel", &M); 1281 } 1282 JT->addAttribute(1, Attribute::Nest); 1283 1284 std::vector<Value *> JTArgs; 1285 JTArgs.push_back(JT->arg_begin()); 1286 for (auto &T : TargetsForSlot) { 1287 JTArgs.push_back(getMemberAddr(T.TM)); 1288 JTArgs.push_back(T.Fn); 1289 } 1290 1291 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1292 Function *Intr = 1293 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1294 1295 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1296 CI->setTailCallKind(CallInst::TCK_MustTail); 1297 ReturnInst::Create(M.getContext(), nullptr, BB); 1298 1299 bool IsExported = false; 1300 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1301 if (IsExported) 1302 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1303 } 1304 1305 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1306 Constant *JT, bool &IsExported) { 1307 auto Apply = [&](CallSiteInfo &CSInfo) { 1308 if (CSInfo.isExported()) 1309 IsExported = true; 1310 if (CSInfo.AllCallSitesDevirted) 1311 return; 1312 for (auto &&VCallSite : CSInfo.CallSites) { 1313 CallBase &CB = VCallSite.CB; 1314 1315 // Jump tables are only profitable if the retpoline mitigation is enabled. 1316 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1317 if (!FSAttr.isValid() || 1318 !FSAttr.getValueAsString().contains("+retpoline")) 1319 continue; 1320 1321 if (RemarksEnabled) 1322 VCallSite.emitRemark("branch-funnel", 1323 JT->stripPointerCasts()->getName(), OREGetter); 1324 1325 // Pass the address of the vtable in the nest register, which is r10 on 1326 // x86_64. 1327 std::vector<Type *> NewArgs; 1328 NewArgs.push_back(Int8PtrTy); 1329 append_range(NewArgs, CB.getFunctionType()->params()); 1330 FunctionType *NewFT = 1331 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1332 CB.getFunctionType()->isVarArg()); 1333 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1334 1335 IRBuilder<> IRB(&CB); 1336 std::vector<Value *> Args; 1337 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1338 llvm::append_range(Args, CB.args()); 1339 1340 CallBase *NewCS = nullptr; 1341 if (isa<CallInst>(CB)) 1342 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1343 else 1344 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1345 cast<InvokeInst>(CB).getNormalDest(), 1346 cast<InvokeInst>(CB).getUnwindDest(), Args); 1347 NewCS->setCallingConv(CB.getCallingConv()); 1348 1349 AttributeList Attrs = CB.getAttributes(); 1350 std::vector<AttributeSet> NewArgAttrs; 1351 NewArgAttrs.push_back(AttributeSet::get( 1352 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1353 M.getContext(), Attribute::Nest)})); 1354 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1355 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1356 NewCS->setAttributes( 1357 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1358 Attrs.getRetAttributes(), NewArgAttrs)); 1359 1360 CB.replaceAllUsesWith(NewCS); 1361 CB.eraseFromParent(); 1362 1363 // This use is no longer unsafe. 1364 if (VCallSite.NumUnsafeUses) 1365 --*VCallSite.NumUnsafeUses; 1366 } 1367 // Don't mark as devirtualized because there may be callers compiled without 1368 // retpoline mitigation, which would mean that they are lowered to 1369 // llvm.type.test and therefore require an llvm.type.test resolution for the 1370 // type identifier. 1371 }; 1372 Apply(SlotInfo.CSInfo); 1373 for (auto &P : SlotInfo.ConstCSInfo) 1374 Apply(P.second); 1375 } 1376 1377 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1378 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1379 ArrayRef<uint64_t> Args) { 1380 // Evaluate each function and store the result in each target's RetVal 1381 // field. 1382 for (VirtualCallTarget &Target : TargetsForSlot) { 1383 if (Target.Fn->arg_size() != Args.size() + 1) 1384 return false; 1385 1386 Evaluator Eval(M.getDataLayout(), nullptr); 1387 SmallVector<Constant *, 2> EvalArgs; 1388 EvalArgs.push_back( 1389 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1390 for (unsigned I = 0; I != Args.size(); ++I) { 1391 auto *ArgTy = dyn_cast<IntegerType>( 1392 Target.Fn->getFunctionType()->getParamType(I + 1)); 1393 if (!ArgTy) 1394 return false; 1395 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1396 } 1397 1398 Constant *RetVal; 1399 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1400 !isa<ConstantInt>(RetVal)) 1401 return false; 1402 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1403 } 1404 return true; 1405 } 1406 1407 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1408 uint64_t TheRetVal) { 1409 for (auto Call : CSInfo.CallSites) 1410 Call.replaceAndErase( 1411 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1412 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1413 CSInfo.markDevirt(); 1414 } 1415 1416 bool DevirtModule::tryUniformRetValOpt( 1417 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1418 WholeProgramDevirtResolution::ByArg *Res) { 1419 // Uniform return value optimization. If all functions return the same 1420 // constant, replace all calls with that constant. 1421 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1422 for (const VirtualCallTarget &Target : TargetsForSlot) 1423 if (Target.RetVal != TheRetVal) 1424 return false; 1425 1426 if (CSInfo.isExported()) { 1427 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1428 Res->Info = TheRetVal; 1429 } 1430 1431 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1432 if (RemarksEnabled) 1433 for (auto &&Target : TargetsForSlot) 1434 Target.WasDevirt = true; 1435 return true; 1436 } 1437 1438 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1439 ArrayRef<uint64_t> Args, 1440 StringRef Name) { 1441 std::string FullName = "__typeid_"; 1442 raw_string_ostream OS(FullName); 1443 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1444 for (uint64_t Arg : Args) 1445 OS << '_' << Arg; 1446 OS << '_' << Name; 1447 return OS.str(); 1448 } 1449 1450 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1451 Triple T(M.getTargetTriple()); 1452 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1453 } 1454 1455 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1456 StringRef Name, Constant *C) { 1457 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1458 getGlobalName(Slot, Args, Name), C, &M); 1459 GA->setVisibility(GlobalValue::HiddenVisibility); 1460 } 1461 1462 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1463 StringRef Name, uint32_t Const, 1464 uint32_t &Storage) { 1465 if (shouldExportConstantsAsAbsoluteSymbols()) { 1466 exportGlobal( 1467 Slot, Args, Name, 1468 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1469 return; 1470 } 1471 1472 Storage = Const; 1473 } 1474 1475 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1476 StringRef Name) { 1477 Constant *C = 1478 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1479 auto *GV = dyn_cast<GlobalVariable>(C); 1480 if (GV) 1481 GV->setVisibility(GlobalValue::HiddenVisibility); 1482 return C; 1483 } 1484 1485 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1486 StringRef Name, IntegerType *IntTy, 1487 uint32_t Storage) { 1488 if (!shouldExportConstantsAsAbsoluteSymbols()) 1489 return ConstantInt::get(IntTy, Storage); 1490 1491 Constant *C = importGlobal(Slot, Args, Name); 1492 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1493 C = ConstantExpr::getPtrToInt(C, IntTy); 1494 1495 // We only need to set metadata if the global is newly created, in which 1496 // case it would not have hidden visibility. 1497 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1498 return C; 1499 1500 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1501 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1502 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1503 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1504 MDNode::get(M.getContext(), {MinC, MaxC})); 1505 }; 1506 unsigned AbsWidth = IntTy->getBitWidth(); 1507 if (AbsWidth == IntPtrTy->getBitWidth()) 1508 SetAbsRange(~0ull, ~0ull); // Full set. 1509 else 1510 SetAbsRange(0, 1ull << AbsWidth); 1511 return C; 1512 } 1513 1514 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1515 bool IsOne, 1516 Constant *UniqueMemberAddr) { 1517 for (auto &&Call : CSInfo.CallSites) { 1518 IRBuilder<> B(&Call.CB); 1519 Value *Cmp = 1520 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1521 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1522 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1523 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1524 Cmp); 1525 } 1526 CSInfo.markDevirt(); 1527 } 1528 1529 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1530 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1531 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1532 ConstantInt::get(Int64Ty, M->Offset)); 1533 } 1534 1535 bool DevirtModule::tryUniqueRetValOpt( 1536 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1537 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1538 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1539 // IsOne controls whether we look for a 0 or a 1. 1540 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1541 const TypeMemberInfo *UniqueMember = nullptr; 1542 for (const VirtualCallTarget &Target : TargetsForSlot) { 1543 if (Target.RetVal == (IsOne ? 1 : 0)) { 1544 if (UniqueMember) 1545 return false; 1546 UniqueMember = Target.TM; 1547 } 1548 } 1549 1550 // We should have found a unique member or bailed out by now. We already 1551 // checked for a uniform return value in tryUniformRetValOpt. 1552 assert(UniqueMember); 1553 1554 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1555 if (CSInfo.isExported()) { 1556 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1557 Res->Info = IsOne; 1558 1559 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1560 } 1561 1562 // Replace each call with the comparison. 1563 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1564 UniqueMemberAddr); 1565 1566 // Update devirtualization statistics for targets. 1567 if (RemarksEnabled) 1568 for (auto &&Target : TargetsForSlot) 1569 Target.WasDevirt = true; 1570 1571 return true; 1572 }; 1573 1574 if (BitWidth == 1) { 1575 if (tryUniqueRetValOptFor(true)) 1576 return true; 1577 if (tryUniqueRetValOptFor(false)) 1578 return true; 1579 } 1580 return false; 1581 } 1582 1583 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1584 Constant *Byte, Constant *Bit) { 1585 for (auto Call : CSInfo.CallSites) { 1586 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1587 IRBuilder<> B(&Call.CB); 1588 Value *Addr = 1589 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1590 if (RetType->getBitWidth() == 1) { 1591 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1592 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1593 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1594 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1595 OREGetter, IsBitSet); 1596 } else { 1597 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1598 Value *Val = B.CreateLoad(RetType, ValAddr); 1599 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1600 OREGetter, Val); 1601 } 1602 } 1603 CSInfo.markDevirt(); 1604 } 1605 1606 bool DevirtModule::tryVirtualConstProp( 1607 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1608 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1609 // This only works if the function returns an integer. 1610 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1611 if (!RetType) 1612 return false; 1613 unsigned BitWidth = RetType->getBitWidth(); 1614 if (BitWidth > 64) 1615 return false; 1616 1617 // Make sure that each function is defined, does not access memory, takes at 1618 // least one argument, does not use its first argument (which we assume is 1619 // 'this'), and has the same return type. 1620 // 1621 // Note that we test whether this copy of the function is readnone, rather 1622 // than testing function attributes, which must hold for any copy of the 1623 // function, even a less optimized version substituted at link time. This is 1624 // sound because the virtual constant propagation optimizations effectively 1625 // inline all implementations of the virtual function into each call site, 1626 // rather than using function attributes to perform local optimization. 1627 for (VirtualCallTarget &Target : TargetsForSlot) { 1628 if (Target.Fn->isDeclaration() || 1629 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1630 MAK_ReadNone || 1631 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1632 Target.Fn->getReturnType() != RetType) 1633 return false; 1634 } 1635 1636 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1637 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1638 continue; 1639 1640 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1641 if (Res) 1642 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1643 1644 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1645 continue; 1646 1647 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1648 ResByArg, Slot, CSByConstantArg.first)) 1649 continue; 1650 1651 // Find an allocation offset in bits in all vtables associated with the 1652 // type. 1653 uint64_t AllocBefore = 1654 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1655 uint64_t AllocAfter = 1656 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1657 1658 // Calculate the total amount of padding needed to store a value at both 1659 // ends of the object. 1660 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1661 for (auto &&Target : TargetsForSlot) { 1662 TotalPaddingBefore += std::max<int64_t>( 1663 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1664 TotalPaddingAfter += std::max<int64_t>( 1665 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1666 } 1667 1668 // If the amount of padding is too large, give up. 1669 // FIXME: do something smarter here. 1670 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1671 continue; 1672 1673 // Calculate the offset to the value as a (possibly negative) byte offset 1674 // and (if applicable) a bit offset, and store the values in the targets. 1675 int64_t OffsetByte; 1676 uint64_t OffsetBit; 1677 if (TotalPaddingBefore <= TotalPaddingAfter) 1678 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1679 OffsetBit); 1680 else 1681 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1682 OffsetBit); 1683 1684 if (RemarksEnabled) 1685 for (auto &&Target : TargetsForSlot) 1686 Target.WasDevirt = true; 1687 1688 1689 if (CSByConstantArg.second.isExported()) { 1690 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1691 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1692 ResByArg->Byte); 1693 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1694 ResByArg->Bit); 1695 } 1696 1697 // Rewrite each call to a load from OffsetByte/OffsetBit. 1698 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1699 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1700 applyVirtualConstProp(CSByConstantArg.second, 1701 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1702 } 1703 return true; 1704 } 1705 1706 void DevirtModule::rebuildGlobal(VTableBits &B) { 1707 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1708 return; 1709 1710 // Align the before byte array to the global's minimum alignment so that we 1711 // don't break any alignment requirements on the global. 1712 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( 1713 B.GV->getAlign(), B.GV->getValueType()); 1714 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1715 1716 // Before was stored in reverse order; flip it now. 1717 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1718 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1719 1720 // Build an anonymous global containing the before bytes, followed by the 1721 // original initializer, followed by the after bytes. 1722 auto NewInit = ConstantStruct::getAnon( 1723 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1724 B.GV->getInitializer(), 1725 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1726 auto NewGV = 1727 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1728 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1729 NewGV->setSection(B.GV->getSection()); 1730 NewGV->setComdat(B.GV->getComdat()); 1731 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1732 1733 // Copy the original vtable's metadata to the anonymous global, adjusting 1734 // offsets as required. 1735 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1736 1737 // Build an alias named after the original global, pointing at the second 1738 // element (the original initializer). 1739 auto Alias = GlobalAlias::create( 1740 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1741 ConstantExpr::getGetElementPtr( 1742 NewInit->getType(), NewGV, 1743 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1744 ConstantInt::get(Int32Ty, 1)}), 1745 &M); 1746 Alias->setVisibility(B.GV->getVisibility()); 1747 Alias->takeName(B.GV); 1748 1749 B.GV->replaceAllUsesWith(Alias); 1750 B.GV->eraseFromParent(); 1751 } 1752 1753 bool DevirtModule::areRemarksEnabled() { 1754 const auto &FL = M.getFunctionList(); 1755 for (const Function &Fn : FL) { 1756 const auto &BBL = Fn.getBasicBlockList(); 1757 if (BBL.empty()) 1758 continue; 1759 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1760 return DI.isEnabled(); 1761 } 1762 return false; 1763 } 1764 1765 void DevirtModule::scanTypeTestUsers( 1766 Function *TypeTestFunc, 1767 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 1768 // Find all virtual calls via a virtual table pointer %p under an assumption 1769 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1770 // points to a member of the type identifier %md. Group calls by (type ID, 1771 // offset) pair (effectively the identity of the virtual function) and store 1772 // to CallSlots. 1773 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1774 I != E;) { 1775 auto CI = dyn_cast<CallInst>(I->getUser()); 1776 ++I; 1777 if (!CI) 1778 continue; 1779 1780 // Search for virtual calls based on %p and add them to DevirtCalls. 1781 SmallVector<DevirtCallSite, 1> DevirtCalls; 1782 SmallVector<CallInst *, 1> Assumes; 1783 auto &DT = LookupDomTree(*CI->getFunction()); 1784 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1785 1786 Metadata *TypeId = 1787 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1788 // If we found any, add them to CallSlots. 1789 if (!Assumes.empty()) { 1790 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1791 for (DevirtCallSite Call : DevirtCalls) 1792 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1793 } 1794 1795 auto RemoveTypeTestAssumes = [&]() { 1796 // We no longer need the assumes or the type test. 1797 for (auto Assume : Assumes) 1798 Assume->eraseFromParent(); 1799 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1800 // may use the vtable argument later. 1801 if (CI->use_empty()) 1802 CI->eraseFromParent(); 1803 }; 1804 1805 // At this point we could remove all type test assume sequences, as they 1806 // were originally inserted for WPD. However, we can keep these in the 1807 // code stream for later analysis (e.g. to help drive more efficient ICP 1808 // sequences). They will eventually be removed by a second LowerTypeTests 1809 // invocation that cleans them up. In order to do this correctly, the first 1810 // LowerTypeTests invocation needs to know that they have "Unknown" type 1811 // test resolution, so that they aren't treated as Unsat and lowered to 1812 // False, which will break any uses on assumes. Below we remove any type 1813 // test assumes that will not be treated as Unknown by LTT. 1814 1815 // The type test assumes will be treated by LTT as Unsat if the type id is 1816 // not used on a global (in which case it has no entry in the TypeIdMap). 1817 if (!TypeIdMap.count(TypeId)) 1818 RemoveTypeTestAssumes(); 1819 1820 // For ThinLTO importing, we need to remove the type test assumes if this is 1821 // an MDString type id without a corresponding TypeIdSummary. Any 1822 // non-MDString type ids are ignored and treated as Unknown by LTT, so their 1823 // type test assumes can be kept. If the MDString type id is missing a 1824 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the 1825 // exporting phase of WPD from analyzing it), then it would be treated as 1826 // Unsat by LTT and we need to remove its type test assumes here. If not 1827 // used on a vcall we don't need them for later optimization use in any 1828 // case. 1829 else if (ImportSummary && isa<MDString>(TypeId)) { 1830 const TypeIdSummary *TidSummary = 1831 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString()); 1832 if (!TidSummary) 1833 RemoveTypeTestAssumes(); 1834 else 1835 // If one was created it should not be Unsat, because if we reached here 1836 // the type id was used on a global. 1837 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); 1838 } 1839 } 1840 } 1841 1842 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1843 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1844 1845 for (auto I = TypeCheckedLoadFunc->use_begin(), 1846 E = TypeCheckedLoadFunc->use_end(); 1847 I != E;) { 1848 auto CI = dyn_cast<CallInst>(I->getUser()); 1849 ++I; 1850 if (!CI) 1851 continue; 1852 1853 Value *Ptr = CI->getArgOperand(0); 1854 Value *Offset = CI->getArgOperand(1); 1855 Value *TypeIdValue = CI->getArgOperand(2); 1856 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1857 1858 SmallVector<DevirtCallSite, 1> DevirtCalls; 1859 SmallVector<Instruction *, 1> LoadedPtrs; 1860 SmallVector<Instruction *, 1> Preds; 1861 bool HasNonCallUses = false; 1862 auto &DT = LookupDomTree(*CI->getFunction()); 1863 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1864 HasNonCallUses, CI, DT); 1865 1866 // Start by generating "pessimistic" code that explicitly loads the function 1867 // pointer from the vtable and performs the type check. If possible, we will 1868 // eliminate the load and the type check later. 1869 1870 // If possible, only generate the load at the point where it is used. 1871 // This helps avoid unnecessary spills. 1872 IRBuilder<> LoadB( 1873 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1874 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1875 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1876 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1877 1878 for (Instruction *LoadedPtr : LoadedPtrs) { 1879 LoadedPtr->replaceAllUsesWith(LoadedValue); 1880 LoadedPtr->eraseFromParent(); 1881 } 1882 1883 // Likewise for the type test. 1884 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1885 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1886 1887 for (Instruction *Pred : Preds) { 1888 Pred->replaceAllUsesWith(TypeTestCall); 1889 Pred->eraseFromParent(); 1890 } 1891 1892 // We have already erased any extractvalue instructions that refer to the 1893 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1894 // (although this is unlikely). In that case, explicitly build a pair and 1895 // RAUW it. 1896 if (!CI->use_empty()) { 1897 Value *Pair = UndefValue::get(CI->getType()); 1898 IRBuilder<> B(CI); 1899 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1900 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1901 CI->replaceAllUsesWith(Pair); 1902 } 1903 1904 // The number of unsafe uses is initially the number of uses. 1905 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1906 NumUnsafeUses = DevirtCalls.size(); 1907 1908 // If the function pointer has a non-call user, we cannot eliminate the type 1909 // check, as one of those users may eventually call the pointer. Increment 1910 // the unsafe use count to make sure it cannot reach zero. 1911 if (HasNonCallUses) 1912 ++NumUnsafeUses; 1913 for (DevirtCallSite Call : DevirtCalls) { 1914 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1915 &NumUnsafeUses); 1916 } 1917 1918 CI->eraseFromParent(); 1919 } 1920 } 1921 1922 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1923 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1924 if (!TypeId) 1925 return; 1926 const TypeIdSummary *TidSummary = 1927 ImportSummary->getTypeIdSummary(TypeId->getString()); 1928 if (!TidSummary) 1929 return; 1930 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1931 if (ResI == TidSummary->WPDRes.end()) 1932 return; 1933 const WholeProgramDevirtResolution &Res = ResI->second; 1934 1935 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1936 assert(!Res.SingleImplName.empty()); 1937 // The type of the function in the declaration is irrelevant because every 1938 // call site will cast it to the correct type. 1939 Constant *SingleImpl = 1940 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1941 Type::getVoidTy(M.getContext())) 1942 .getCallee()); 1943 1944 // This is the import phase so we should not be exporting anything. 1945 bool IsExported = false; 1946 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1947 assert(!IsExported); 1948 } 1949 1950 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1951 auto I = Res.ResByArg.find(CSByConstantArg.first); 1952 if (I == Res.ResByArg.end()) 1953 continue; 1954 auto &ResByArg = I->second; 1955 // FIXME: We should figure out what to do about the "function name" argument 1956 // to the apply* functions, as the function names are unavailable during the 1957 // importing phase. For now we just pass the empty string. This does not 1958 // impact correctness because the function names are just used for remarks. 1959 switch (ResByArg.TheKind) { 1960 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1961 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1962 break; 1963 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1964 Constant *UniqueMemberAddr = 1965 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1966 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1967 UniqueMemberAddr); 1968 break; 1969 } 1970 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1971 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1972 Int32Ty, ResByArg.Byte); 1973 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1974 ResByArg.Bit); 1975 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1976 break; 1977 } 1978 default: 1979 break; 1980 } 1981 } 1982 1983 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1984 // The type of the function is irrelevant, because it's bitcast at calls 1985 // anyhow. 1986 Constant *JT = cast<Constant>( 1987 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1988 Type::getVoidTy(M.getContext())) 1989 .getCallee()); 1990 bool IsExported = false; 1991 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1992 assert(!IsExported); 1993 } 1994 } 1995 1996 void DevirtModule::removeRedundantTypeTests() { 1997 auto True = ConstantInt::getTrue(M.getContext()); 1998 for (auto &&U : NumUnsafeUsesForTypeTest) { 1999 if (U.second == 0) { 2000 U.first->replaceAllUsesWith(True); 2001 U.first->eraseFromParent(); 2002 } 2003 } 2004 } 2005 2006 bool DevirtModule::run() { 2007 // If only some of the modules were split, we cannot correctly perform 2008 // this transformation. We already checked for the presense of type tests 2009 // with partially split modules during the thin link, and would have emitted 2010 // an error if any were found, so here we can simply return. 2011 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 2012 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 2013 return false; 2014 2015 Function *TypeTestFunc = 2016 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 2017 Function *TypeCheckedLoadFunc = 2018 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 2019 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 2020 2021 // Normally if there are no users of the devirtualization intrinsics in the 2022 // module, this pass has nothing to do. But if we are exporting, we also need 2023 // to handle any users that appear only in the function summaries. 2024 if (!ExportSummary && 2025 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 2026 AssumeFunc->use_empty()) && 2027 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 2028 return false; 2029 2030 // Rebuild type metadata into a map for easy lookup. 2031 std::vector<VTableBits> Bits; 2032 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 2033 buildTypeIdentifierMap(Bits, TypeIdMap); 2034 2035 if (TypeTestFunc && AssumeFunc) 2036 scanTypeTestUsers(TypeTestFunc, TypeIdMap); 2037 2038 if (TypeCheckedLoadFunc) 2039 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 2040 2041 if (ImportSummary) { 2042 for (auto &S : CallSlots) 2043 importResolution(S.first, S.second); 2044 2045 removeRedundantTypeTests(); 2046 2047 // We have lowered or deleted the type instrinsics, so we will no 2048 // longer have enough information to reason about the liveness of virtual 2049 // function pointers in GlobalDCE. 2050 for (GlobalVariable &GV : M.globals()) 2051 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2052 2053 // The rest of the code is only necessary when exporting or during regular 2054 // LTO, so we are done. 2055 return true; 2056 } 2057 2058 if (TypeIdMap.empty()) 2059 return true; 2060 2061 // Collect information from summary about which calls to try to devirtualize. 2062 if (ExportSummary) { 2063 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 2064 for (auto &P : TypeIdMap) { 2065 if (auto *TypeId = dyn_cast<MDString>(P.first)) 2066 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 2067 TypeId); 2068 } 2069 2070 for (auto &P : *ExportSummary) { 2071 for (auto &S : P.second.SummaryList) { 2072 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2073 if (!FS) 2074 continue; 2075 // FIXME: Only add live functions. 2076 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2077 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2078 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2079 } 2080 } 2081 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2082 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2083 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2084 } 2085 } 2086 for (const FunctionSummary::ConstVCall &VC : 2087 FS->type_test_assume_const_vcalls()) { 2088 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2089 CallSlots[{MD, VC.VFunc.Offset}] 2090 .ConstCSInfo[VC.Args] 2091 .addSummaryTypeTestAssumeUser(FS); 2092 } 2093 } 2094 for (const FunctionSummary::ConstVCall &VC : 2095 FS->type_checked_load_const_vcalls()) { 2096 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2097 CallSlots[{MD, VC.VFunc.Offset}] 2098 .ConstCSInfo[VC.Args] 2099 .addSummaryTypeCheckedLoadUser(FS); 2100 } 2101 } 2102 } 2103 } 2104 } 2105 2106 // For each (type, offset) pair: 2107 bool DidVirtualConstProp = false; 2108 std::map<std::string, Function*> DevirtTargets; 2109 for (auto &S : CallSlots) { 2110 // Search each of the members of the type identifier for the virtual 2111 // function implementation at offset S.first.ByteOffset, and add to 2112 // TargetsForSlot. 2113 std::vector<VirtualCallTarget> TargetsForSlot; 2114 WholeProgramDevirtResolution *Res = nullptr; 2115 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID]; 2116 if (ExportSummary && isa<MDString>(S.first.TypeID) && 2117 TypeMemberInfos.size()) 2118 // For any type id used on a global's type metadata, create the type id 2119 // summary resolution regardless of whether we can devirtualize, so that 2120 // lower type tests knows the type id is not Unsat. If it was not used on 2121 // a global's type metadata, the TypeIdMap entry set will be empty, and 2122 // we don't want to create an entry (with the default Unknown type 2123 // resolution), which can prevent detection of the Unsat. 2124 Res = &ExportSummary 2125 ->getOrInsertTypeIdSummary( 2126 cast<MDString>(S.first.TypeID)->getString()) 2127 .WPDRes[S.first.ByteOffset]; 2128 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, 2129 S.first.ByteOffset)) { 2130 2131 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2132 DidVirtualConstProp |= 2133 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2134 2135 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2136 } 2137 2138 // Collect functions devirtualized at least for one call site for stats. 2139 if (RemarksEnabled) 2140 for (const auto &T : TargetsForSlot) 2141 if (T.WasDevirt) 2142 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2143 } 2144 2145 // CFI-specific: if we are exporting and any llvm.type.checked.load 2146 // intrinsics were *not* devirtualized, we need to add the resulting 2147 // llvm.type.test intrinsics to the function summaries so that the 2148 // LowerTypeTests pass will export them. 2149 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2150 auto GUID = 2151 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2152 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2153 FS->addTypeTest(GUID); 2154 for (auto &CCS : S.second.ConstCSInfo) 2155 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2156 FS->addTypeTest(GUID); 2157 } 2158 } 2159 2160 if (RemarksEnabled) { 2161 // Generate remarks for each devirtualized function. 2162 for (const auto &DT : DevirtTargets) { 2163 Function *F = DT.second; 2164 2165 using namespace ore; 2166 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2167 << "devirtualized " 2168 << NV("FunctionName", DT.first)); 2169 } 2170 } 2171 2172 removeRedundantTypeTests(); 2173 2174 // Rebuild each global we touched as part of virtual constant propagation to 2175 // include the before and after bytes. 2176 if (DidVirtualConstProp) 2177 for (VTableBits &B : Bits) 2178 rebuildGlobal(B); 2179 2180 // We have lowered or deleted the type instrinsics, so we will no 2181 // longer have enough information to reason about the liveness of virtual 2182 // function pointers in GlobalDCE. 2183 for (GlobalVariable &GV : M.globals()) 2184 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2185 2186 return true; 2187 } 2188 2189 void DevirtIndex::run() { 2190 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2191 return; 2192 2193 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2194 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2195 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2196 } 2197 2198 // Collect information from summary about which calls to try to devirtualize. 2199 for (auto &P : ExportSummary) { 2200 for (auto &S : P.second.SummaryList) { 2201 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2202 if (!FS) 2203 continue; 2204 // FIXME: Only add live functions. 2205 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2206 for (StringRef Name : NameByGUID[VF.GUID]) { 2207 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2208 } 2209 } 2210 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2211 for (StringRef Name : NameByGUID[VF.GUID]) { 2212 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2213 } 2214 } 2215 for (const FunctionSummary::ConstVCall &VC : 2216 FS->type_test_assume_const_vcalls()) { 2217 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2218 CallSlots[{Name, VC.VFunc.Offset}] 2219 .ConstCSInfo[VC.Args] 2220 .addSummaryTypeTestAssumeUser(FS); 2221 } 2222 } 2223 for (const FunctionSummary::ConstVCall &VC : 2224 FS->type_checked_load_const_vcalls()) { 2225 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2226 CallSlots[{Name, VC.VFunc.Offset}] 2227 .ConstCSInfo[VC.Args] 2228 .addSummaryTypeCheckedLoadUser(FS); 2229 } 2230 } 2231 } 2232 } 2233 2234 std::set<ValueInfo> DevirtTargets; 2235 // For each (type, offset) pair: 2236 for (auto &S : CallSlots) { 2237 // Search each of the members of the type identifier for the virtual 2238 // function implementation at offset S.first.ByteOffset, and add to 2239 // TargetsForSlot. 2240 std::vector<ValueInfo> TargetsForSlot; 2241 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2242 assert(TidSummary); 2243 // Create the type id summary resolution regardlness of whether we can 2244 // devirtualize, so that lower type tests knows the type id is used on 2245 // a global and not Unsat. 2246 WholeProgramDevirtResolution *Res = 2247 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2248 .WPDRes[S.first.ByteOffset]; 2249 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2250 S.first.ByteOffset)) { 2251 2252 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2253 DevirtTargets)) 2254 continue; 2255 } 2256 } 2257 2258 // Optionally have the thin link print message for each devirtualized 2259 // function. 2260 if (PrintSummaryDevirt) 2261 for (const auto &DT : DevirtTargets) 2262 errs() << "Devirtualized call to " << DT << "\n"; 2263 } 2264