1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/iterator_range.h" 50 #include "llvm/ADT/MapVector.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/TypeMetadataUtils.h" 55 #include "llvm/IR/CallSite.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugInfoMetadata.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/DiagnosticInfo.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/GlobalAlias.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/LLVMContext.h" 71 #include "llvm/IR/Metadata.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ModuleSummaryIndexYAML.h" 74 #include "llvm/Pass.h" 75 #include "llvm/PassRegistry.h" 76 #include "llvm/PassSupport.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/Error.h" 79 #include "llvm/Support/FileSystem.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Transforms/IPO.h" 82 #include "llvm/Transforms/IPO/FunctionAttrs.h" 83 #include "llvm/Transforms/Utils/Evaluator.h" 84 #include <algorithm> 85 #include <cstddef> 86 #include <map> 87 #include <set> 88 #include <string> 89 90 using namespace llvm; 91 using namespace wholeprogramdevirt; 92 93 #define DEBUG_TYPE "wholeprogramdevirt" 94 95 static cl::opt<PassSummaryAction> ClSummaryAction( 96 "wholeprogramdevirt-summary-action", 97 cl::desc("What to do with the summary when running this pass"), 98 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 99 clEnumValN(PassSummaryAction::Import, "import", 100 "Import typeid resolutions from summary and globals"), 101 clEnumValN(PassSummaryAction::Export, "export", 102 "Export typeid resolutions to summary and globals")), 103 cl::Hidden); 104 105 static cl::opt<std::string> ClReadSummary( 106 "wholeprogramdevirt-read-summary", 107 cl::desc("Read summary from given YAML file before running pass"), 108 cl::Hidden); 109 110 static cl::opt<std::string> ClWriteSummary( 111 "wholeprogramdevirt-write-summary", 112 cl::desc("Write summary to given YAML file after running pass"), 113 cl::Hidden); 114 115 // Find the minimum offset that we may store a value of size Size bits at. If 116 // IsAfter is set, look for an offset before the object, otherwise look for an 117 // offset after the object. 118 uint64_t 119 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 120 bool IsAfter, uint64_t Size) { 121 // Find a minimum offset taking into account only vtable sizes. 122 uint64_t MinByte = 0; 123 for (const VirtualCallTarget &Target : Targets) { 124 if (IsAfter) 125 MinByte = std::max(MinByte, Target.minAfterBytes()); 126 else 127 MinByte = std::max(MinByte, Target.minBeforeBytes()); 128 } 129 130 // Build a vector of arrays of bytes covering, for each target, a slice of the 131 // used region (see AccumBitVector::BytesUsed in 132 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 133 // this aligns the used regions to start at MinByte. 134 // 135 // In this example, A, B and C are vtables, # is a byte already allocated for 136 // a virtual function pointer, AAAA... (etc.) are the used regions for the 137 // vtables and Offset(X) is the value computed for the Offset variable below 138 // for X. 139 // 140 // Offset(A) 141 // | | 142 // |MinByte 143 // A: ################AAAAAAAA|AAAAAAAA 144 // B: ########BBBBBBBBBBBBBBBB|BBBB 145 // C: ########################|CCCCCCCCCCCCCCCC 146 // | Offset(B) | 147 // 148 // This code produces the slices of A, B and C that appear after the divider 149 // at MinByte. 150 std::vector<ArrayRef<uint8_t>> Used; 151 for (const VirtualCallTarget &Target : Targets) { 152 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 153 : Target.TM->Bits->Before.BytesUsed; 154 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 155 : MinByte - Target.minBeforeBytes(); 156 157 // Disregard used regions that are smaller than Offset. These are 158 // effectively all-free regions that do not need to be checked. 159 if (VTUsed.size() > Offset) 160 Used.push_back(VTUsed.slice(Offset)); 161 } 162 163 if (Size == 1) { 164 // Find a free bit in each member of Used. 165 for (unsigned I = 0;; ++I) { 166 uint8_t BitsUsed = 0; 167 for (auto &&B : Used) 168 if (I < B.size()) 169 BitsUsed |= B[I]; 170 if (BitsUsed != 0xff) 171 return (MinByte + I) * 8 + 172 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 173 } 174 } else { 175 // Find a free (Size/8) byte region in each member of Used. 176 // FIXME: see if alignment helps. 177 for (unsigned I = 0;; ++I) { 178 for (auto &&B : Used) { 179 unsigned Byte = 0; 180 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 181 if (B[I + Byte]) 182 goto NextI; 183 ++Byte; 184 } 185 } 186 return (MinByte + I) * 8; 187 NextI:; 188 } 189 } 190 } 191 192 void wholeprogramdevirt::setBeforeReturnValues( 193 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 194 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 195 if (BitWidth == 1) 196 OffsetByte = -(AllocBefore / 8 + 1); 197 else 198 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 199 OffsetBit = AllocBefore % 8; 200 201 for (VirtualCallTarget &Target : Targets) { 202 if (BitWidth == 1) 203 Target.setBeforeBit(AllocBefore); 204 else 205 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 206 } 207 } 208 209 void wholeprogramdevirt::setAfterReturnValues( 210 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 211 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 212 if (BitWidth == 1) 213 OffsetByte = AllocAfter / 8; 214 else 215 OffsetByte = (AllocAfter + 7) / 8; 216 OffsetBit = AllocAfter % 8; 217 218 for (VirtualCallTarget &Target : Targets) { 219 if (BitWidth == 1) 220 Target.setAfterBit(AllocAfter); 221 else 222 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 223 } 224 } 225 226 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 227 : Fn(Fn), TM(TM), 228 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 229 230 namespace { 231 232 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 233 // tables, and the ByteOffset is the offset in bytes from the address point to 234 // the virtual function pointer. 235 struct VTableSlot { 236 Metadata *TypeID; 237 uint64_t ByteOffset; 238 }; 239 240 } // end anonymous namespace 241 242 namespace llvm { 243 244 template <> struct DenseMapInfo<VTableSlot> { 245 static VTableSlot getEmptyKey() { 246 return {DenseMapInfo<Metadata *>::getEmptyKey(), 247 DenseMapInfo<uint64_t>::getEmptyKey()}; 248 } 249 static VTableSlot getTombstoneKey() { 250 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 251 DenseMapInfo<uint64_t>::getTombstoneKey()}; 252 } 253 static unsigned getHashValue(const VTableSlot &I) { 254 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 255 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 256 } 257 static bool isEqual(const VTableSlot &LHS, 258 const VTableSlot &RHS) { 259 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 260 } 261 }; 262 263 } // end namespace llvm 264 265 namespace { 266 267 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 268 // the indirect virtual call. 269 struct VirtualCallSite { 270 Value *VTable; 271 CallSite CS; 272 273 // If non-null, this field points to the associated unsafe use count stored in 274 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 275 // of that field for details. 276 unsigned *NumUnsafeUses; 277 278 void emitRemark(const Twine &OptName, const Twine &TargetName) { 279 Function *F = CS.getCaller(); 280 emitOptimizationRemark( 281 F->getContext(), DEBUG_TYPE, *F, 282 CS.getInstruction()->getDebugLoc(), 283 OptName + ": devirtualized a call to " + TargetName); 284 } 285 286 void replaceAndErase(const Twine &OptName, const Twine &TargetName, 287 bool RemarksEnabled, Value *New) { 288 if (RemarksEnabled) 289 emitRemark(OptName, TargetName); 290 CS->replaceAllUsesWith(New); 291 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 292 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 293 II->getUnwindDest()->removePredecessor(II->getParent()); 294 } 295 CS->eraseFromParent(); 296 // This use is no longer unsafe. 297 if (NumUnsafeUses) 298 --*NumUnsafeUses; 299 } 300 }; 301 302 // Call site information collected for a specific VTableSlot and possibly a list 303 // of constant integer arguments. The grouping by arguments is handled by the 304 // VTableSlotInfo class. 305 struct CallSiteInfo { 306 /// The set of call sites for this slot. Used during regular LTO and the 307 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 308 /// call sites that appear in the merged module itself); in each of these 309 /// cases we are directly operating on the call sites at the IR level. 310 std::vector<VirtualCallSite> CallSites; 311 312 // These fields are used during the export phase of ThinLTO and reflect 313 // information collected from function summaries. 314 315 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 316 /// this slot. 317 bool SummaryHasTypeTestAssumeUsers; 318 319 /// CFI-specific: a vector containing the list of function summaries that use 320 /// the llvm.type.checked.load intrinsic and therefore will require 321 /// resolutions for llvm.type.test in order to implement CFI checks if 322 /// devirtualization was unsuccessful. If devirtualization was successful, the 323 /// pass will clear this vector by calling markDevirt(). If at the end of the 324 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 325 /// to each of the function summaries in the vector. 326 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 327 328 bool isExported() const { 329 return SummaryHasTypeTestAssumeUsers || 330 !SummaryTypeCheckedLoadUsers.empty(); 331 } 332 333 /// As explained in the comment for SummaryTypeCheckedLoadUsers. 334 void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); } 335 }; 336 337 // Call site information collected for a specific VTableSlot. 338 struct VTableSlotInfo { 339 // The set of call sites which do not have all constant integer arguments 340 // (excluding "this"). 341 CallSiteInfo CSInfo; 342 343 // The set of call sites with all constant integer arguments (excluding 344 // "this"), grouped by argument list. 345 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 346 347 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 348 349 private: 350 CallSiteInfo &findCallSiteInfo(CallSite CS); 351 }; 352 353 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 354 std::vector<uint64_t> Args; 355 auto *CI = dyn_cast<IntegerType>(CS.getType()); 356 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 357 return CSInfo; 358 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 359 auto *CI = dyn_cast<ConstantInt>(Arg); 360 if (!CI || CI->getBitWidth() > 64) 361 return CSInfo; 362 Args.push_back(CI->getZExtValue()); 363 } 364 return ConstCSInfo[Args]; 365 } 366 367 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 368 unsigned *NumUnsafeUses) { 369 findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses}); 370 } 371 372 struct DevirtModule { 373 Module &M; 374 function_ref<AAResults &(Function &)> AARGetter; 375 376 ModuleSummaryIndex *ExportSummary; 377 const ModuleSummaryIndex *ImportSummary; 378 379 IntegerType *Int8Ty; 380 PointerType *Int8PtrTy; 381 IntegerType *Int32Ty; 382 IntegerType *Int64Ty; 383 IntegerType *IntPtrTy; 384 385 bool RemarksEnabled; 386 387 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 388 389 // This map keeps track of the number of "unsafe" uses of a loaded function 390 // pointer. The key is the associated llvm.type.test intrinsic call generated 391 // by this pass. An unsafe use is one that calls the loaded function pointer 392 // directly. Every time we eliminate an unsafe use (for example, by 393 // devirtualizing it or by applying virtual constant propagation), we 394 // decrement the value stored in this map. If a value reaches zero, we can 395 // eliminate the type check by RAUWing the associated llvm.type.test call with 396 // true. 397 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 398 399 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 400 ModuleSummaryIndex *ExportSummary, 401 const ModuleSummaryIndex *ImportSummary) 402 : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary), 403 ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), 404 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 405 Int32Ty(Type::getInt32Ty(M.getContext())), 406 Int64Ty(Type::getInt64Ty(M.getContext())), 407 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 408 RemarksEnabled(areRemarksEnabled()) { 409 assert(!(ExportSummary && ImportSummary)); 410 } 411 412 bool areRemarksEnabled(); 413 414 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 415 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 416 417 void buildTypeIdentifierMap( 418 std::vector<VTableBits> &Bits, 419 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 420 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 421 bool 422 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 423 const std::set<TypeMemberInfo> &TypeMemberInfos, 424 uint64_t ByteOffset); 425 426 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 427 bool &IsExported); 428 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 429 VTableSlotInfo &SlotInfo, 430 WholeProgramDevirtResolution *Res); 431 432 bool tryEvaluateFunctionsWithArgs( 433 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 434 ArrayRef<uint64_t> Args); 435 436 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 437 uint64_t TheRetVal); 438 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 439 CallSiteInfo &CSInfo, 440 WholeProgramDevirtResolution::ByArg *Res); 441 442 // Returns the global symbol name that is used to export information about the 443 // given vtable slot and list of arguments. 444 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 445 StringRef Name); 446 447 // This function is called during the export phase to create a symbol 448 // definition containing information about the given vtable slot and list of 449 // arguments. 450 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 451 Constant *C); 452 453 // This function is called during the import phase to create a reference to 454 // the symbol definition created during the export phase. 455 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 456 StringRef Name, unsigned AbsWidth = 0); 457 458 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 459 Constant *UniqueMemberAddr); 460 bool tryUniqueRetValOpt(unsigned BitWidth, 461 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 462 CallSiteInfo &CSInfo, 463 WholeProgramDevirtResolution::ByArg *Res, 464 VTableSlot Slot, ArrayRef<uint64_t> Args); 465 466 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 467 Constant *Byte, Constant *Bit); 468 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 469 VTableSlotInfo &SlotInfo, 470 WholeProgramDevirtResolution *Res, VTableSlot Slot); 471 472 void rebuildGlobal(VTableBits &B); 473 474 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 475 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 476 477 // If we were able to eliminate all unsafe uses for a type checked load, 478 // eliminate the associated type tests by replacing them with true. 479 void removeRedundantTypeTests(); 480 481 bool run(); 482 483 // Lower the module using the action and summary passed as command line 484 // arguments. For testing purposes only. 485 static bool runForTesting(Module &M, 486 function_ref<AAResults &(Function &)> AARGetter); 487 }; 488 489 struct WholeProgramDevirt : public ModulePass { 490 static char ID; 491 492 bool UseCommandLine = false; 493 494 ModuleSummaryIndex *ExportSummary; 495 const ModuleSummaryIndex *ImportSummary; 496 497 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 498 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 499 } 500 501 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 502 const ModuleSummaryIndex *ImportSummary) 503 : ModulePass(ID), ExportSummary(ExportSummary), 504 ImportSummary(ImportSummary) { 505 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 506 } 507 508 bool runOnModule(Module &M) override { 509 if (skipModule(M)) 510 return false; 511 if (UseCommandLine) 512 return DevirtModule::runForTesting(M, LegacyAARGetter(*this)); 513 return DevirtModule(M, LegacyAARGetter(*this), ExportSummary, ImportSummary) 514 .run(); 515 } 516 517 void getAnalysisUsage(AnalysisUsage &AU) const override { 518 AU.addRequired<AssumptionCacheTracker>(); 519 AU.addRequired<TargetLibraryInfoWrapperPass>(); 520 } 521 }; 522 523 } // end anonymous namespace 524 525 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 526 "Whole program devirtualization", false, false) 527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 528 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 529 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 530 "Whole program devirtualization", false, false) 531 char WholeProgramDevirt::ID = 0; 532 533 ModulePass * 534 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 535 const ModuleSummaryIndex *ImportSummary) { 536 return new WholeProgramDevirt(ExportSummary, ImportSummary); 537 } 538 539 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 540 ModuleAnalysisManager &AM) { 541 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 542 auto AARGetter = [&](Function &F) -> AAResults & { 543 return FAM.getResult<AAManager>(F); 544 }; 545 if (!DevirtModule(M, AARGetter, nullptr, nullptr).run()) 546 return PreservedAnalyses::all(); 547 return PreservedAnalyses::none(); 548 } 549 550 bool DevirtModule::runForTesting( 551 Module &M, function_ref<AAResults &(Function &)> AARGetter) { 552 ModuleSummaryIndex Summary; 553 554 // Handle the command-line summary arguments. This code is for testing 555 // purposes only, so we handle errors directly. 556 if (!ClReadSummary.empty()) { 557 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 558 ": "); 559 auto ReadSummaryFile = 560 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 561 562 yaml::Input In(ReadSummaryFile->getBuffer()); 563 In >> Summary; 564 ExitOnErr(errorCodeToError(In.error())); 565 } 566 567 bool Changed = 568 DevirtModule( 569 M, AARGetter, 570 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 571 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 572 .run(); 573 574 if (!ClWriteSummary.empty()) { 575 ExitOnError ExitOnErr( 576 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 577 std::error_code EC; 578 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 579 ExitOnErr(errorCodeToError(EC)); 580 581 yaml::Output Out(OS); 582 Out << Summary; 583 } 584 585 return Changed; 586 } 587 588 void DevirtModule::buildTypeIdentifierMap( 589 std::vector<VTableBits> &Bits, 590 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 591 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 592 Bits.reserve(M.getGlobalList().size()); 593 SmallVector<MDNode *, 2> Types; 594 for (GlobalVariable &GV : M.globals()) { 595 Types.clear(); 596 GV.getMetadata(LLVMContext::MD_type, Types); 597 if (Types.empty()) 598 continue; 599 600 VTableBits *&BitsPtr = GVToBits[&GV]; 601 if (!BitsPtr) { 602 Bits.emplace_back(); 603 Bits.back().GV = &GV; 604 Bits.back().ObjectSize = 605 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 606 BitsPtr = &Bits.back(); 607 } 608 609 for (MDNode *Type : Types) { 610 auto TypeID = Type->getOperand(1).get(); 611 612 uint64_t Offset = 613 cast<ConstantInt>( 614 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 615 ->getZExtValue(); 616 617 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 618 } 619 } 620 } 621 622 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 623 if (I->getType()->isPointerTy()) { 624 if (Offset == 0) 625 return I; 626 return nullptr; 627 } 628 629 const DataLayout &DL = M.getDataLayout(); 630 631 if (auto *C = dyn_cast<ConstantStruct>(I)) { 632 const StructLayout *SL = DL.getStructLayout(C->getType()); 633 if (Offset >= SL->getSizeInBytes()) 634 return nullptr; 635 636 unsigned Op = SL->getElementContainingOffset(Offset); 637 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 638 Offset - SL->getElementOffset(Op)); 639 } 640 if (auto *C = dyn_cast<ConstantArray>(I)) { 641 ArrayType *VTableTy = C->getType(); 642 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 643 644 unsigned Op = Offset / ElemSize; 645 if (Op >= C->getNumOperands()) 646 return nullptr; 647 648 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 649 Offset % ElemSize); 650 } 651 return nullptr; 652 } 653 654 bool DevirtModule::tryFindVirtualCallTargets( 655 std::vector<VirtualCallTarget> &TargetsForSlot, 656 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 657 for (const TypeMemberInfo &TM : TypeMemberInfos) { 658 if (!TM.Bits->GV->isConstant()) 659 return false; 660 661 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 662 TM.Offset + ByteOffset); 663 if (!Ptr) 664 return false; 665 666 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 667 if (!Fn) 668 return false; 669 670 // We can disregard __cxa_pure_virtual as a possible call target, as 671 // calls to pure virtuals are UB. 672 if (Fn->getName() == "__cxa_pure_virtual") 673 continue; 674 675 TargetsForSlot.push_back({Fn, &TM}); 676 } 677 678 // Give up if we couldn't find any targets. 679 return !TargetsForSlot.empty(); 680 } 681 682 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 683 Constant *TheFn, bool &IsExported) { 684 auto Apply = [&](CallSiteInfo &CSInfo) { 685 for (auto &&VCallSite : CSInfo.CallSites) { 686 if (RemarksEnabled) 687 VCallSite.emitRemark("single-impl", TheFn->getName()); 688 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 689 TheFn, VCallSite.CS.getCalledValue()->getType())); 690 // This use is no longer unsafe. 691 if (VCallSite.NumUnsafeUses) 692 --*VCallSite.NumUnsafeUses; 693 } 694 if (CSInfo.isExported()) { 695 IsExported = true; 696 CSInfo.markDevirt(); 697 } 698 }; 699 Apply(SlotInfo.CSInfo); 700 for (auto &P : SlotInfo.ConstCSInfo) 701 Apply(P.second); 702 } 703 704 bool DevirtModule::trySingleImplDevirt( 705 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 706 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 707 // See if the program contains a single implementation of this virtual 708 // function. 709 Function *TheFn = TargetsForSlot[0].Fn; 710 for (auto &&Target : TargetsForSlot) 711 if (TheFn != Target.Fn) 712 return false; 713 714 // If so, update each call site to call that implementation directly. 715 if (RemarksEnabled) 716 TargetsForSlot[0].WasDevirt = true; 717 718 bool IsExported = false; 719 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 720 if (!IsExported) 721 return false; 722 723 // If the only implementation has local linkage, we must promote to external 724 // to make it visible to thin LTO objects. We can only get here during the 725 // ThinLTO export phase. 726 if (TheFn->hasLocalLinkage()) { 727 TheFn->setLinkage(GlobalValue::ExternalLinkage); 728 TheFn->setVisibility(GlobalValue::HiddenVisibility); 729 TheFn->setName(TheFn->getName() + "$merged"); 730 } 731 732 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 733 Res->SingleImplName = TheFn->getName(); 734 735 return true; 736 } 737 738 bool DevirtModule::tryEvaluateFunctionsWithArgs( 739 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 740 ArrayRef<uint64_t> Args) { 741 // Evaluate each function and store the result in each target's RetVal 742 // field. 743 for (VirtualCallTarget &Target : TargetsForSlot) { 744 if (Target.Fn->arg_size() != Args.size() + 1) 745 return false; 746 747 Evaluator Eval(M.getDataLayout(), nullptr); 748 SmallVector<Constant *, 2> EvalArgs; 749 EvalArgs.push_back( 750 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 751 for (unsigned I = 0; I != Args.size(); ++I) { 752 auto *ArgTy = dyn_cast<IntegerType>( 753 Target.Fn->getFunctionType()->getParamType(I + 1)); 754 if (!ArgTy) 755 return false; 756 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 757 } 758 759 Constant *RetVal; 760 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 761 !isa<ConstantInt>(RetVal)) 762 return false; 763 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 764 } 765 return true; 766 } 767 768 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 769 uint64_t TheRetVal) { 770 for (auto Call : CSInfo.CallSites) 771 Call.replaceAndErase( 772 "uniform-ret-val", FnName, RemarksEnabled, 773 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 774 CSInfo.markDevirt(); 775 } 776 777 bool DevirtModule::tryUniformRetValOpt( 778 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 779 WholeProgramDevirtResolution::ByArg *Res) { 780 // Uniform return value optimization. If all functions return the same 781 // constant, replace all calls with that constant. 782 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 783 for (const VirtualCallTarget &Target : TargetsForSlot) 784 if (Target.RetVal != TheRetVal) 785 return false; 786 787 if (CSInfo.isExported()) { 788 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 789 Res->Info = TheRetVal; 790 } 791 792 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 793 if (RemarksEnabled) 794 for (auto &&Target : TargetsForSlot) 795 Target.WasDevirt = true; 796 return true; 797 } 798 799 std::string DevirtModule::getGlobalName(VTableSlot Slot, 800 ArrayRef<uint64_t> Args, 801 StringRef Name) { 802 std::string FullName = "__typeid_"; 803 raw_string_ostream OS(FullName); 804 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 805 for (uint64_t Arg : Args) 806 OS << '_' << Arg; 807 OS << '_' << Name; 808 return OS.str(); 809 } 810 811 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 812 StringRef Name, Constant *C) { 813 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 814 getGlobalName(Slot, Args, Name), C, &M); 815 GA->setVisibility(GlobalValue::HiddenVisibility); 816 } 817 818 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 819 StringRef Name, unsigned AbsWidth) { 820 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 821 auto *GV = dyn_cast<GlobalVariable>(C); 822 // We only need to set metadata if the global is newly created, in which 823 // case it would not have hidden visibility. 824 if (!GV || GV->getVisibility() == GlobalValue::HiddenVisibility) 825 return C; 826 827 GV->setVisibility(GlobalValue::HiddenVisibility); 828 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 829 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 830 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 831 GV->setMetadata(LLVMContext::MD_absolute_symbol, 832 MDNode::get(M.getContext(), {MinC, MaxC})); 833 }; 834 if (AbsWidth == IntPtrTy->getBitWidth()) 835 SetAbsRange(~0ull, ~0ull); // Full set. 836 else if (AbsWidth) 837 SetAbsRange(0, 1ull << AbsWidth); 838 return GV; 839 } 840 841 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 842 bool IsOne, 843 Constant *UniqueMemberAddr) { 844 for (auto &&Call : CSInfo.CallSites) { 845 IRBuilder<> B(Call.CS.getInstruction()); 846 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 847 Call.VTable, UniqueMemberAddr); 848 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 849 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, Cmp); 850 } 851 CSInfo.markDevirt(); 852 } 853 854 bool DevirtModule::tryUniqueRetValOpt( 855 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 856 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 857 VTableSlot Slot, ArrayRef<uint64_t> Args) { 858 // IsOne controls whether we look for a 0 or a 1. 859 auto tryUniqueRetValOptFor = [&](bool IsOne) { 860 const TypeMemberInfo *UniqueMember = nullptr; 861 for (const VirtualCallTarget &Target : TargetsForSlot) { 862 if (Target.RetVal == (IsOne ? 1 : 0)) { 863 if (UniqueMember) 864 return false; 865 UniqueMember = Target.TM; 866 } 867 } 868 869 // We should have found a unique member or bailed out by now. We already 870 // checked for a uniform return value in tryUniformRetValOpt. 871 assert(UniqueMember); 872 873 Constant *UniqueMemberAddr = 874 ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy); 875 UniqueMemberAddr = ConstantExpr::getGetElementPtr( 876 Int8Ty, UniqueMemberAddr, 877 ConstantInt::get(Int64Ty, UniqueMember->Offset)); 878 879 if (CSInfo.isExported()) { 880 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 881 Res->Info = IsOne; 882 883 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 884 } 885 886 // Replace each call with the comparison. 887 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 888 UniqueMemberAddr); 889 890 // Update devirtualization statistics for targets. 891 if (RemarksEnabled) 892 for (auto &&Target : TargetsForSlot) 893 Target.WasDevirt = true; 894 895 return true; 896 }; 897 898 if (BitWidth == 1) { 899 if (tryUniqueRetValOptFor(true)) 900 return true; 901 if (tryUniqueRetValOptFor(false)) 902 return true; 903 } 904 return false; 905 } 906 907 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 908 Constant *Byte, Constant *Bit) { 909 for (auto Call : CSInfo.CallSites) { 910 auto *RetType = cast<IntegerType>(Call.CS.getType()); 911 IRBuilder<> B(Call.CS.getInstruction()); 912 Value *Addr = B.CreateGEP(Int8Ty, Call.VTable, Byte); 913 if (RetType->getBitWidth() == 1) { 914 Value *Bits = B.CreateLoad(Addr); 915 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 916 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 917 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 918 IsBitSet); 919 } else { 920 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 921 Value *Val = B.CreateLoad(RetType, ValAddr); 922 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, Val); 923 } 924 } 925 CSInfo.markDevirt(); 926 } 927 928 bool DevirtModule::tryVirtualConstProp( 929 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 930 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 931 // This only works if the function returns an integer. 932 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 933 if (!RetType) 934 return false; 935 unsigned BitWidth = RetType->getBitWidth(); 936 if (BitWidth > 64) 937 return false; 938 939 // Make sure that each function is defined, does not access memory, takes at 940 // least one argument, does not use its first argument (which we assume is 941 // 'this'), and has the same return type. 942 // 943 // Note that we test whether this copy of the function is readnone, rather 944 // than testing function attributes, which must hold for any copy of the 945 // function, even a less optimized version substituted at link time. This is 946 // sound because the virtual constant propagation optimizations effectively 947 // inline all implementations of the virtual function into each call site, 948 // rather than using function attributes to perform local optimization. 949 for (VirtualCallTarget &Target : TargetsForSlot) { 950 if (Target.Fn->isDeclaration() || 951 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 952 MAK_ReadNone || 953 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 954 Target.Fn->getReturnType() != RetType) 955 return false; 956 } 957 958 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 959 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 960 continue; 961 962 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 963 if (Res) 964 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 965 966 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 967 continue; 968 969 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 970 ResByArg, Slot, CSByConstantArg.first)) 971 continue; 972 973 // Find an allocation offset in bits in all vtables associated with the 974 // type. 975 uint64_t AllocBefore = 976 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 977 uint64_t AllocAfter = 978 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 979 980 // Calculate the total amount of padding needed to store a value at both 981 // ends of the object. 982 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 983 for (auto &&Target : TargetsForSlot) { 984 TotalPaddingBefore += std::max<int64_t>( 985 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 986 TotalPaddingAfter += std::max<int64_t>( 987 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 988 } 989 990 // If the amount of padding is too large, give up. 991 // FIXME: do something smarter here. 992 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 993 continue; 994 995 // Calculate the offset to the value as a (possibly negative) byte offset 996 // and (if applicable) a bit offset, and store the values in the targets. 997 int64_t OffsetByte; 998 uint64_t OffsetBit; 999 if (TotalPaddingBefore <= TotalPaddingAfter) 1000 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1001 OffsetBit); 1002 else 1003 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1004 OffsetBit); 1005 1006 if (RemarksEnabled) 1007 for (auto &&Target : TargetsForSlot) 1008 Target.WasDevirt = true; 1009 1010 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1011 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1012 1013 if (CSByConstantArg.second.isExported()) { 1014 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1015 exportGlobal(Slot, CSByConstantArg.first, "byte", 1016 ConstantExpr::getIntToPtr(ByteConst, Int8PtrTy)); 1017 exportGlobal(Slot, CSByConstantArg.first, "bit", 1018 ConstantExpr::getIntToPtr(BitConst, Int8PtrTy)); 1019 } 1020 1021 // Rewrite each call to a load from OffsetByte/OffsetBit. 1022 applyVirtualConstProp(CSByConstantArg.second, 1023 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1024 } 1025 return true; 1026 } 1027 1028 void DevirtModule::rebuildGlobal(VTableBits &B) { 1029 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1030 return; 1031 1032 // Align each byte array to pointer width. 1033 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1034 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1035 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1036 1037 // Before was stored in reverse order; flip it now. 1038 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1039 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1040 1041 // Build an anonymous global containing the before bytes, followed by the 1042 // original initializer, followed by the after bytes. 1043 auto NewInit = ConstantStruct::getAnon( 1044 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1045 B.GV->getInitializer(), 1046 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1047 auto NewGV = 1048 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1049 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1050 NewGV->setSection(B.GV->getSection()); 1051 NewGV->setComdat(B.GV->getComdat()); 1052 1053 // Copy the original vtable's metadata to the anonymous global, adjusting 1054 // offsets as required. 1055 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1056 1057 // Build an alias named after the original global, pointing at the second 1058 // element (the original initializer). 1059 auto Alias = GlobalAlias::create( 1060 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1061 ConstantExpr::getGetElementPtr( 1062 NewInit->getType(), NewGV, 1063 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1064 ConstantInt::get(Int32Ty, 1)}), 1065 &M); 1066 Alias->setVisibility(B.GV->getVisibility()); 1067 Alias->takeName(B.GV); 1068 1069 B.GV->replaceAllUsesWith(Alias); 1070 B.GV->eraseFromParent(); 1071 } 1072 1073 bool DevirtModule::areRemarksEnabled() { 1074 const auto &FL = M.getFunctionList(); 1075 if (FL.empty()) 1076 return false; 1077 const Function &Fn = FL.front(); 1078 1079 const auto &BBL = Fn.getBasicBlockList(); 1080 if (BBL.empty()) 1081 return false; 1082 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1083 return DI.isEnabled(); 1084 } 1085 1086 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1087 Function *AssumeFunc) { 1088 // Find all virtual calls via a virtual table pointer %p under an assumption 1089 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1090 // points to a member of the type identifier %md. Group calls by (type ID, 1091 // offset) pair (effectively the identity of the virtual function) and store 1092 // to CallSlots. 1093 DenseSet<Value *> SeenPtrs; 1094 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1095 I != E;) { 1096 auto CI = dyn_cast<CallInst>(I->getUser()); 1097 ++I; 1098 if (!CI) 1099 continue; 1100 1101 // Search for virtual calls based on %p and add them to DevirtCalls. 1102 SmallVector<DevirtCallSite, 1> DevirtCalls; 1103 SmallVector<CallInst *, 1> Assumes; 1104 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 1105 1106 // If we found any, add them to CallSlots. Only do this if we haven't seen 1107 // the vtable pointer before, as it may have been CSE'd with pointers from 1108 // other call sites, and we don't want to process call sites multiple times. 1109 if (!Assumes.empty()) { 1110 Metadata *TypeId = 1111 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1112 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1113 if (SeenPtrs.insert(Ptr).second) { 1114 for (DevirtCallSite Call : DevirtCalls) { 1115 CallSlots[{TypeId, Call.Offset}].addCallSite(CI->getArgOperand(0), 1116 Call.CS, nullptr); 1117 } 1118 } 1119 } 1120 1121 // We no longer need the assumes or the type test. 1122 for (auto Assume : Assumes) 1123 Assume->eraseFromParent(); 1124 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1125 // may use the vtable argument later. 1126 if (CI->use_empty()) 1127 CI->eraseFromParent(); 1128 } 1129 } 1130 1131 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1132 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1133 1134 for (auto I = TypeCheckedLoadFunc->use_begin(), 1135 E = TypeCheckedLoadFunc->use_end(); 1136 I != E;) { 1137 auto CI = dyn_cast<CallInst>(I->getUser()); 1138 ++I; 1139 if (!CI) 1140 continue; 1141 1142 Value *Ptr = CI->getArgOperand(0); 1143 Value *Offset = CI->getArgOperand(1); 1144 Value *TypeIdValue = CI->getArgOperand(2); 1145 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1146 1147 SmallVector<DevirtCallSite, 1> DevirtCalls; 1148 SmallVector<Instruction *, 1> LoadedPtrs; 1149 SmallVector<Instruction *, 1> Preds; 1150 bool HasNonCallUses = false; 1151 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1152 HasNonCallUses, CI); 1153 1154 // Start by generating "pessimistic" code that explicitly loads the function 1155 // pointer from the vtable and performs the type check. If possible, we will 1156 // eliminate the load and the type check later. 1157 1158 // If possible, only generate the load at the point where it is used. 1159 // This helps avoid unnecessary spills. 1160 IRBuilder<> LoadB( 1161 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1162 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1163 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1164 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1165 1166 for (Instruction *LoadedPtr : LoadedPtrs) { 1167 LoadedPtr->replaceAllUsesWith(LoadedValue); 1168 LoadedPtr->eraseFromParent(); 1169 } 1170 1171 // Likewise for the type test. 1172 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1173 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1174 1175 for (Instruction *Pred : Preds) { 1176 Pred->replaceAllUsesWith(TypeTestCall); 1177 Pred->eraseFromParent(); 1178 } 1179 1180 // We have already erased any extractvalue instructions that refer to the 1181 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1182 // (although this is unlikely). In that case, explicitly build a pair and 1183 // RAUW it. 1184 if (!CI->use_empty()) { 1185 Value *Pair = UndefValue::get(CI->getType()); 1186 IRBuilder<> B(CI); 1187 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1188 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1189 CI->replaceAllUsesWith(Pair); 1190 } 1191 1192 // The number of unsafe uses is initially the number of uses. 1193 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1194 NumUnsafeUses = DevirtCalls.size(); 1195 1196 // If the function pointer has a non-call user, we cannot eliminate the type 1197 // check, as one of those users may eventually call the pointer. Increment 1198 // the unsafe use count to make sure it cannot reach zero. 1199 if (HasNonCallUses) 1200 ++NumUnsafeUses; 1201 for (DevirtCallSite Call : DevirtCalls) { 1202 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1203 &NumUnsafeUses); 1204 } 1205 1206 CI->eraseFromParent(); 1207 } 1208 } 1209 1210 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1211 const TypeIdSummary *TidSummary = 1212 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1213 if (!TidSummary) 1214 return; 1215 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1216 if (ResI == TidSummary->WPDRes.end()) 1217 return; 1218 const WholeProgramDevirtResolution &Res = ResI->second; 1219 1220 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1221 // The type of the function in the declaration is irrelevant because every 1222 // call site will cast it to the correct type. 1223 auto *SingleImpl = M.getOrInsertFunction( 1224 Res.SingleImplName, Type::getVoidTy(M.getContext()), nullptr); 1225 1226 // This is the import phase so we should not be exporting anything. 1227 bool IsExported = false; 1228 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1229 assert(!IsExported); 1230 } 1231 1232 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1233 auto I = Res.ResByArg.find(CSByConstantArg.first); 1234 if (I == Res.ResByArg.end()) 1235 continue; 1236 auto &ResByArg = I->second; 1237 // FIXME: We should figure out what to do about the "function name" argument 1238 // to the apply* functions, as the function names are unavailable during the 1239 // importing phase. For now we just pass the empty string. This does not 1240 // impact correctness because the function names are just used for remarks. 1241 switch (ResByArg.TheKind) { 1242 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1243 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1244 break; 1245 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1246 Constant *UniqueMemberAddr = 1247 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1248 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1249 UniqueMemberAddr); 1250 break; 1251 } 1252 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1253 Constant *Byte = importGlobal(Slot, CSByConstantArg.first, "byte", 32); 1254 Byte = ConstantExpr::getPtrToInt(Byte, Int32Ty); 1255 Constant *Bit = importGlobal(Slot, CSByConstantArg.first, "bit", 8); 1256 Bit = ConstantExpr::getPtrToInt(Bit, Int8Ty); 1257 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1258 } 1259 default: 1260 break; 1261 } 1262 } 1263 } 1264 1265 void DevirtModule::removeRedundantTypeTests() { 1266 auto True = ConstantInt::getTrue(M.getContext()); 1267 for (auto &&U : NumUnsafeUsesForTypeTest) { 1268 if (U.second == 0) { 1269 U.first->replaceAllUsesWith(True); 1270 U.first->eraseFromParent(); 1271 } 1272 } 1273 } 1274 1275 bool DevirtModule::run() { 1276 Function *TypeTestFunc = 1277 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1278 Function *TypeCheckedLoadFunc = 1279 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1280 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1281 1282 // Normally if there are no users of the devirtualization intrinsics in the 1283 // module, this pass has nothing to do. But if we are exporting, we also need 1284 // to handle any users that appear only in the function summaries. 1285 if (!ExportSummary && 1286 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1287 AssumeFunc->use_empty()) && 1288 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1289 return false; 1290 1291 if (TypeTestFunc && AssumeFunc) 1292 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1293 1294 if (TypeCheckedLoadFunc) 1295 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1296 1297 if (ImportSummary) { 1298 for (auto &S : CallSlots) 1299 importResolution(S.first, S.second); 1300 1301 removeRedundantTypeTests(); 1302 1303 // The rest of the code is only necessary when exporting or during regular 1304 // LTO, so we are done. 1305 return true; 1306 } 1307 1308 // Rebuild type metadata into a map for easy lookup. 1309 std::vector<VTableBits> Bits; 1310 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1311 buildTypeIdentifierMap(Bits, TypeIdMap); 1312 if (TypeIdMap.empty()) 1313 return true; 1314 1315 // Collect information from summary about which calls to try to devirtualize. 1316 if (ExportSummary) { 1317 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1318 for (auto &P : TypeIdMap) { 1319 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1320 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1321 TypeId); 1322 } 1323 1324 for (auto &P : *ExportSummary) { 1325 for (auto &S : P.second) { 1326 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1327 if (!FS) 1328 continue; 1329 // FIXME: Only add live functions. 1330 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1331 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1332 CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers = 1333 true; 1334 } 1335 } 1336 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1337 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1338 CallSlots[{MD, VF.Offset}] 1339 .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS); 1340 } 1341 } 1342 for (const FunctionSummary::ConstVCall &VC : 1343 FS->type_test_assume_const_vcalls()) { 1344 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1345 CallSlots[{MD, VC.VFunc.Offset}] 1346 .ConstCSInfo[VC.Args] 1347 .SummaryHasTypeTestAssumeUsers = true; 1348 } 1349 } 1350 for (const FunctionSummary::ConstVCall &VC : 1351 FS->type_checked_load_const_vcalls()) { 1352 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1353 CallSlots[{MD, VC.VFunc.Offset}] 1354 .ConstCSInfo[VC.Args] 1355 .SummaryTypeCheckedLoadUsers.push_back(FS); 1356 } 1357 } 1358 } 1359 } 1360 } 1361 1362 // For each (type, offset) pair: 1363 bool DidVirtualConstProp = false; 1364 std::map<std::string, Function*> DevirtTargets; 1365 for (auto &S : CallSlots) { 1366 // Search each of the members of the type identifier for the virtual 1367 // function implementation at offset S.first.ByteOffset, and add to 1368 // TargetsForSlot. 1369 std::vector<VirtualCallTarget> TargetsForSlot; 1370 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1371 S.first.ByteOffset)) { 1372 WholeProgramDevirtResolution *Res = nullptr; 1373 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1374 Res = &ExportSummary 1375 ->getOrInsertTypeIdSummary( 1376 cast<MDString>(S.first.TypeID)->getString()) 1377 .WPDRes[S.first.ByteOffset]; 1378 1379 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) && 1380 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first)) 1381 DidVirtualConstProp = true; 1382 1383 // Collect functions devirtualized at least for one call site for stats. 1384 if (RemarksEnabled) 1385 for (const auto &T : TargetsForSlot) 1386 if (T.WasDevirt) 1387 DevirtTargets[T.Fn->getName()] = T.Fn; 1388 } 1389 1390 // CFI-specific: if we are exporting and any llvm.type.checked.load 1391 // intrinsics were *not* devirtualized, we need to add the resulting 1392 // llvm.type.test intrinsics to the function summaries so that the 1393 // LowerTypeTests pass will export them. 1394 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1395 auto GUID = 1396 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1397 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1398 FS->addTypeTest(GUID); 1399 for (auto &CCS : S.second.ConstCSInfo) 1400 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1401 FS->addTypeTest(GUID); 1402 } 1403 } 1404 1405 if (RemarksEnabled) { 1406 // Generate remarks for each devirtualized function. 1407 for (const auto &DT : DevirtTargets) { 1408 Function *F = DT.second; 1409 DISubprogram *SP = F->getSubprogram(); 1410 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, SP, 1411 Twine("devirtualized ") + F->getName()); 1412 } 1413 } 1414 1415 removeRedundantTypeTests(); 1416 1417 // Rebuild each global we touched as part of virtual constant propagation to 1418 // include the before and after bytes. 1419 if (DidVirtualConstProp) 1420 for (VTableBits &B : Bits) 1421 rebuildGlobal(B); 1422 1423 return true; 1424 } 1425