1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/Pass.h"
84 #include "llvm/PassRegistry.h"
85 #include "llvm/PassSupport.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/Error.h"
88 #include "llvm/Support/FileSystem.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Transforms/IPO.h"
91 #include "llvm/Transforms/IPO/FunctionAttrs.h"
92 #include "llvm/Transforms/Utils/Evaluator.h"
93 #include <algorithm>
94 #include <cstddef>
95 #include <map>
96 #include <set>
97 #include <string>
98 
99 using namespace llvm;
100 using namespace wholeprogramdevirt;
101 
102 #define DEBUG_TYPE "wholeprogramdevirt"
103 
104 static cl::opt<PassSummaryAction> ClSummaryAction(
105     "wholeprogramdevirt-summary-action",
106     cl::desc("What to do with the summary when running this pass"),
107     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
108                clEnumValN(PassSummaryAction::Import, "import",
109                           "Import typeid resolutions from summary and globals"),
110                clEnumValN(PassSummaryAction::Export, "export",
111                           "Export typeid resolutions to summary and globals")),
112     cl::Hidden);
113 
114 static cl::opt<std::string> ClReadSummary(
115     "wholeprogramdevirt-read-summary",
116     cl::desc("Read summary from given YAML file before running pass"),
117     cl::Hidden);
118 
119 static cl::opt<std::string> ClWriteSummary(
120     "wholeprogramdevirt-write-summary",
121     cl::desc("Write summary to given YAML file after running pass"),
122     cl::Hidden);
123 
124 static cl::opt<unsigned>
125     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
126                 cl::init(10), cl::ZeroOrMore,
127                 cl::desc("Maximum number of call targets per "
128                          "call site to enable branch funnels"));
129 
130 static cl::opt<bool>
131     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
132                        cl::init(false), cl::ZeroOrMore,
133                        cl::desc("Print index-based devirtualization messages"));
134 
135 // Find the minimum offset that we may store a value of size Size bits at. If
136 // IsAfter is set, look for an offset before the object, otherwise look for an
137 // offset after the object.
138 uint64_t
139 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
140                                      bool IsAfter, uint64_t Size) {
141   // Find a minimum offset taking into account only vtable sizes.
142   uint64_t MinByte = 0;
143   for (const VirtualCallTarget &Target : Targets) {
144     if (IsAfter)
145       MinByte = std::max(MinByte, Target.minAfterBytes());
146     else
147       MinByte = std::max(MinByte, Target.minBeforeBytes());
148   }
149 
150   // Build a vector of arrays of bytes covering, for each target, a slice of the
151   // used region (see AccumBitVector::BytesUsed in
152   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
153   // this aligns the used regions to start at MinByte.
154   //
155   // In this example, A, B and C are vtables, # is a byte already allocated for
156   // a virtual function pointer, AAAA... (etc.) are the used regions for the
157   // vtables and Offset(X) is the value computed for the Offset variable below
158   // for X.
159   //
160   //                    Offset(A)
161   //                    |       |
162   //                            |MinByte
163   // A: ################AAAAAAAA|AAAAAAAA
164   // B: ########BBBBBBBBBBBBBBBB|BBBB
165   // C: ########################|CCCCCCCCCCCCCCCC
166   //            |   Offset(B)   |
167   //
168   // This code produces the slices of A, B and C that appear after the divider
169   // at MinByte.
170   std::vector<ArrayRef<uint8_t>> Used;
171   for (const VirtualCallTarget &Target : Targets) {
172     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
173                                        : Target.TM->Bits->Before.BytesUsed;
174     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
175                               : MinByte - Target.minBeforeBytes();
176 
177     // Disregard used regions that are smaller than Offset. These are
178     // effectively all-free regions that do not need to be checked.
179     if (VTUsed.size() > Offset)
180       Used.push_back(VTUsed.slice(Offset));
181   }
182 
183   if (Size == 1) {
184     // Find a free bit in each member of Used.
185     for (unsigned I = 0;; ++I) {
186       uint8_t BitsUsed = 0;
187       for (auto &&B : Used)
188         if (I < B.size())
189           BitsUsed |= B[I];
190       if (BitsUsed != 0xff)
191         return (MinByte + I) * 8 +
192                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
193     }
194   } else {
195     // Find a free (Size/8) byte region in each member of Used.
196     // FIXME: see if alignment helps.
197     for (unsigned I = 0;; ++I) {
198       for (auto &&B : Used) {
199         unsigned Byte = 0;
200         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
201           if (B[I + Byte])
202             goto NextI;
203           ++Byte;
204         }
205       }
206       return (MinByte + I) * 8;
207     NextI:;
208     }
209   }
210 }
211 
212 void wholeprogramdevirt::setBeforeReturnValues(
213     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
214     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
215   if (BitWidth == 1)
216     OffsetByte = -(AllocBefore / 8 + 1);
217   else
218     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
219   OffsetBit = AllocBefore % 8;
220 
221   for (VirtualCallTarget &Target : Targets) {
222     if (BitWidth == 1)
223       Target.setBeforeBit(AllocBefore);
224     else
225       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
226   }
227 }
228 
229 void wholeprogramdevirt::setAfterReturnValues(
230     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
231     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
232   if (BitWidth == 1)
233     OffsetByte = AllocAfter / 8;
234   else
235     OffsetByte = (AllocAfter + 7) / 8;
236   OffsetBit = AllocAfter % 8;
237 
238   for (VirtualCallTarget &Target : Targets) {
239     if (BitWidth == 1)
240       Target.setAfterBit(AllocAfter);
241     else
242       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
243   }
244 }
245 
246 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
247     : Fn(Fn), TM(TM),
248       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
249 
250 namespace {
251 
252 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
253 // tables, and the ByteOffset is the offset in bytes from the address point to
254 // the virtual function pointer.
255 struct VTableSlot {
256   Metadata *TypeID;
257   uint64_t ByteOffset;
258 };
259 
260 } // end anonymous namespace
261 
262 namespace llvm {
263 
264 template <> struct DenseMapInfo<VTableSlot> {
265   static VTableSlot getEmptyKey() {
266     return {DenseMapInfo<Metadata *>::getEmptyKey(),
267             DenseMapInfo<uint64_t>::getEmptyKey()};
268   }
269   static VTableSlot getTombstoneKey() {
270     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
271             DenseMapInfo<uint64_t>::getTombstoneKey()};
272   }
273   static unsigned getHashValue(const VTableSlot &I) {
274     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
275            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
276   }
277   static bool isEqual(const VTableSlot &LHS,
278                       const VTableSlot &RHS) {
279     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
280   }
281 };
282 
283 template <> struct DenseMapInfo<VTableSlotSummary> {
284   static VTableSlotSummary getEmptyKey() {
285     return {DenseMapInfo<StringRef>::getEmptyKey(),
286             DenseMapInfo<uint64_t>::getEmptyKey()};
287   }
288   static VTableSlotSummary getTombstoneKey() {
289     return {DenseMapInfo<StringRef>::getTombstoneKey(),
290             DenseMapInfo<uint64_t>::getTombstoneKey()};
291   }
292   static unsigned getHashValue(const VTableSlotSummary &I) {
293     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
294            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
295   }
296   static bool isEqual(const VTableSlotSummary &LHS,
297                       const VTableSlotSummary &RHS) {
298     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
299   }
300 };
301 
302 } // end namespace llvm
303 
304 namespace {
305 
306 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
307 // the indirect virtual call.
308 struct VirtualCallSite {
309   Value *VTable;
310   CallSite CS;
311 
312   // If non-null, this field points to the associated unsafe use count stored in
313   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
314   // of that field for details.
315   unsigned *NumUnsafeUses;
316 
317   void
318   emitRemark(const StringRef OptName, const StringRef TargetName,
319              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
320     Function *F = CS.getCaller();
321     DebugLoc DLoc = CS->getDebugLoc();
322     BasicBlock *Block = CS.getParent();
323 
324     using namespace ore;
325     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
326                       << NV("Optimization", OptName)
327                       << ": devirtualized a call to "
328                       << NV("FunctionName", TargetName));
329   }
330 
331   void replaceAndErase(
332       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
333       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
334       Value *New) {
335     if (RemarksEnabled)
336       emitRemark(OptName, TargetName, OREGetter);
337     CS->replaceAllUsesWith(New);
338     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
339       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
340       II->getUnwindDest()->removePredecessor(II->getParent());
341     }
342     CS->eraseFromParent();
343     // This use is no longer unsafe.
344     if (NumUnsafeUses)
345       --*NumUnsafeUses;
346   }
347 };
348 
349 // Call site information collected for a specific VTableSlot and possibly a list
350 // of constant integer arguments. The grouping by arguments is handled by the
351 // VTableSlotInfo class.
352 struct CallSiteInfo {
353   /// The set of call sites for this slot. Used during regular LTO and the
354   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
355   /// call sites that appear in the merged module itself); in each of these
356   /// cases we are directly operating on the call sites at the IR level.
357   std::vector<VirtualCallSite> CallSites;
358 
359   /// Whether all call sites represented by this CallSiteInfo, including those
360   /// in summaries, have been devirtualized. This starts off as true because a
361   /// default constructed CallSiteInfo represents no call sites.
362   bool AllCallSitesDevirted = true;
363 
364   // These fields are used during the export phase of ThinLTO and reflect
365   // information collected from function summaries.
366 
367   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
368   /// this slot.
369   bool SummaryHasTypeTestAssumeUsers = false;
370 
371   /// CFI-specific: a vector containing the list of function summaries that use
372   /// the llvm.type.checked.load intrinsic and therefore will require
373   /// resolutions for llvm.type.test in order to implement CFI checks if
374   /// devirtualization was unsuccessful. If devirtualization was successful, the
375   /// pass will clear this vector by calling markDevirt(). If at the end of the
376   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
377   /// to each of the function summaries in the vector.
378   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
379   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
380 
381   bool isExported() const {
382     return SummaryHasTypeTestAssumeUsers ||
383            !SummaryTypeCheckedLoadUsers.empty();
384   }
385 
386   void markSummaryHasTypeTestAssumeUsers() {
387     SummaryHasTypeTestAssumeUsers = true;
388     AllCallSitesDevirted = false;
389   }
390 
391   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
392     SummaryTypeCheckedLoadUsers.push_back(FS);
393     AllCallSitesDevirted = false;
394   }
395 
396   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
397     SummaryTypeTestAssumeUsers.push_back(FS);
398     markSummaryHasTypeTestAssumeUsers();
399   }
400 
401   void markDevirt() {
402     AllCallSitesDevirted = true;
403 
404     // As explained in the comment for SummaryTypeCheckedLoadUsers.
405     SummaryTypeCheckedLoadUsers.clear();
406   }
407 };
408 
409 // Call site information collected for a specific VTableSlot.
410 struct VTableSlotInfo {
411   // The set of call sites which do not have all constant integer arguments
412   // (excluding "this").
413   CallSiteInfo CSInfo;
414 
415   // The set of call sites with all constant integer arguments (excluding
416   // "this"), grouped by argument list.
417   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
418 
419   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
420 
421 private:
422   CallSiteInfo &findCallSiteInfo(CallSite CS);
423 };
424 
425 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
426   std::vector<uint64_t> Args;
427   auto *CI = dyn_cast<IntegerType>(CS.getType());
428   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
429     return CSInfo;
430   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
431     auto *CI = dyn_cast<ConstantInt>(Arg);
432     if (!CI || CI->getBitWidth() > 64)
433       return CSInfo;
434     Args.push_back(CI->getZExtValue());
435   }
436   return ConstCSInfo[Args];
437 }
438 
439 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
440                                  unsigned *NumUnsafeUses) {
441   auto &CSI = findCallSiteInfo(CS);
442   CSI.AllCallSitesDevirted = false;
443   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
444 }
445 
446 struct DevirtModule {
447   Module &M;
448   function_ref<AAResults &(Function &)> AARGetter;
449   function_ref<DominatorTree &(Function &)> LookupDomTree;
450 
451   ModuleSummaryIndex *ExportSummary;
452   const ModuleSummaryIndex *ImportSummary;
453 
454   IntegerType *Int8Ty;
455   PointerType *Int8PtrTy;
456   IntegerType *Int32Ty;
457   IntegerType *Int64Ty;
458   IntegerType *IntPtrTy;
459 
460   bool RemarksEnabled;
461   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
462 
463   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
464 
465   // This map keeps track of the number of "unsafe" uses of a loaded function
466   // pointer. The key is the associated llvm.type.test intrinsic call generated
467   // by this pass. An unsafe use is one that calls the loaded function pointer
468   // directly. Every time we eliminate an unsafe use (for example, by
469   // devirtualizing it or by applying virtual constant propagation), we
470   // decrement the value stored in this map. If a value reaches zero, we can
471   // eliminate the type check by RAUWing the associated llvm.type.test call with
472   // true.
473   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
474 
475   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
476                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
477                function_ref<DominatorTree &(Function &)> LookupDomTree,
478                ModuleSummaryIndex *ExportSummary,
479                const ModuleSummaryIndex *ImportSummary)
480       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
481         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
482         Int8Ty(Type::getInt8Ty(M.getContext())),
483         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
484         Int32Ty(Type::getInt32Ty(M.getContext())),
485         Int64Ty(Type::getInt64Ty(M.getContext())),
486         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
487         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
488     assert(!(ExportSummary && ImportSummary));
489   }
490 
491   bool areRemarksEnabled();
492 
493   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
494   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
495 
496   void buildTypeIdentifierMap(
497       std::vector<VTableBits> &Bits,
498       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
499   Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
500   bool
501   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
502                             const std::set<TypeMemberInfo> &TypeMemberInfos,
503                             uint64_t ByteOffset);
504 
505   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
506                              bool &IsExported);
507   bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
508                            VTableSlotInfo &SlotInfo,
509                            WholeProgramDevirtResolution *Res);
510 
511   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
512                               bool &IsExported);
513   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
514                             VTableSlotInfo &SlotInfo,
515                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
516 
517   bool tryEvaluateFunctionsWithArgs(
518       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
519       ArrayRef<uint64_t> Args);
520 
521   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
522                              uint64_t TheRetVal);
523   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
524                            CallSiteInfo &CSInfo,
525                            WholeProgramDevirtResolution::ByArg *Res);
526 
527   // Returns the global symbol name that is used to export information about the
528   // given vtable slot and list of arguments.
529   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
530                             StringRef Name);
531 
532   bool shouldExportConstantsAsAbsoluteSymbols();
533 
534   // This function is called during the export phase to create a symbol
535   // definition containing information about the given vtable slot and list of
536   // arguments.
537   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
538                     Constant *C);
539   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
540                       uint32_t Const, uint32_t &Storage);
541 
542   // This function is called during the import phase to create a reference to
543   // the symbol definition created during the export phase.
544   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
545                          StringRef Name);
546   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
547                            StringRef Name, IntegerType *IntTy,
548                            uint32_t Storage);
549 
550   Constant *getMemberAddr(const TypeMemberInfo *M);
551 
552   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
553                             Constant *UniqueMemberAddr);
554   bool tryUniqueRetValOpt(unsigned BitWidth,
555                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
556                           CallSiteInfo &CSInfo,
557                           WholeProgramDevirtResolution::ByArg *Res,
558                           VTableSlot Slot, ArrayRef<uint64_t> Args);
559 
560   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
561                              Constant *Byte, Constant *Bit);
562   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
563                            VTableSlotInfo &SlotInfo,
564                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
565 
566   void rebuildGlobal(VTableBits &B);
567 
568   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
569   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
570 
571   // If we were able to eliminate all unsafe uses for a type checked load,
572   // eliminate the associated type tests by replacing them with true.
573   void removeRedundantTypeTests();
574 
575   bool run();
576 
577   // Lower the module using the action and summary passed as command line
578   // arguments. For testing purposes only.
579   static bool
580   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
581                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
582                 function_ref<DominatorTree &(Function &)> LookupDomTree);
583 };
584 
585 struct DevirtIndex {
586   ModuleSummaryIndex &ExportSummary;
587   // The set in which to record GUIDs exported from their module by
588   // devirtualization, used by client to ensure they are not internalized.
589   std::set<GlobalValue::GUID> &ExportedGUIDs;
590   // A map in which to record the information necessary to locate the WPD
591   // resolution for local targets in case they are exported by cross module
592   // importing.
593   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
594 
595   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
596 
597   DevirtIndex(
598       ModuleSummaryIndex &ExportSummary,
599       std::set<GlobalValue::GUID> &ExportedGUIDs,
600       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
601       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
602         LocalWPDTargetsMap(LocalWPDTargetsMap) {}
603 
604   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
605                                  const TypeIdCompatibleVtableInfo TIdInfo,
606                                  uint64_t ByteOffset);
607 
608   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
609                            VTableSlotSummary &SlotSummary,
610                            VTableSlotInfo &SlotInfo,
611                            WholeProgramDevirtResolution *Res,
612                            std::set<ValueInfo> &DevirtTargets);
613 
614   void run();
615 };
616 
617 struct WholeProgramDevirt : public ModulePass {
618   static char ID;
619 
620   bool UseCommandLine = false;
621 
622   ModuleSummaryIndex *ExportSummary;
623   const ModuleSummaryIndex *ImportSummary;
624 
625   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
626     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
627   }
628 
629   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
630                      const ModuleSummaryIndex *ImportSummary)
631       : ModulePass(ID), ExportSummary(ExportSummary),
632         ImportSummary(ImportSummary) {
633     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
634   }
635 
636   bool runOnModule(Module &M) override {
637     if (skipModule(M))
638       return false;
639 
640     // In the new pass manager, we can request the optimization
641     // remark emitter pass on a per-function-basis, which the
642     // OREGetter will do for us.
643     // In the old pass manager, this is harder, so we just build
644     // an optimization remark emitter on the fly, when we need it.
645     std::unique_ptr<OptimizationRemarkEmitter> ORE;
646     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
647       ORE = make_unique<OptimizationRemarkEmitter>(F);
648       return *ORE;
649     };
650 
651     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
652       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
653     };
654 
655     if (UseCommandLine)
656       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
657                                          LookupDomTree);
658 
659     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
660                         ExportSummary, ImportSummary)
661         .run();
662   }
663 
664   void getAnalysisUsage(AnalysisUsage &AU) const override {
665     AU.addRequired<AssumptionCacheTracker>();
666     AU.addRequired<TargetLibraryInfoWrapperPass>();
667     AU.addRequired<DominatorTreeWrapperPass>();
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
674                       "Whole program devirtualization", false, false)
675 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
676 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
678 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
679                     "Whole program devirtualization", false, false)
680 char WholeProgramDevirt::ID = 0;
681 
682 ModulePass *
683 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
684                                    const ModuleSummaryIndex *ImportSummary) {
685   return new WholeProgramDevirt(ExportSummary, ImportSummary);
686 }
687 
688 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
689                                               ModuleAnalysisManager &AM) {
690   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
691   auto AARGetter = [&](Function &F) -> AAResults & {
692     return FAM.getResult<AAManager>(F);
693   };
694   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
695     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
696   };
697   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
698     return FAM.getResult<DominatorTreeAnalysis>(F);
699   };
700   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
701                     ImportSummary)
702            .run())
703     return PreservedAnalyses::all();
704   return PreservedAnalyses::none();
705 }
706 
707 namespace llvm {
708 void runWholeProgramDevirtOnIndex(
709     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
710     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
711   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
712 }
713 
714 void updateIndexWPDForExports(
715     ModuleSummaryIndex &Summary,
716     StringMap<FunctionImporter::ExportSetTy> &ExportLists,
717     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
718   for (auto &T : LocalWPDTargetsMap) {
719     auto &VI = T.first;
720     // This was enforced earlier during trySingleImplDevirt.
721     assert(VI.getSummaryList().size() == 1 &&
722            "Devirt of local target has more than one copy");
723     auto &S = VI.getSummaryList()[0];
724     const auto &ExportList = ExportLists.find(S->modulePath());
725     if (ExportList == ExportLists.end() ||
726         !ExportList->second.count(VI.getGUID()))
727       continue;
728 
729     // It's been exported by a cross module import.
730     for (auto &SlotSummary : T.second) {
731       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
732       assert(TIdSum);
733       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
734       assert(WPDRes != TIdSum->WPDRes.end());
735       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
736           WPDRes->second.SingleImplName,
737           Summary.getModuleHash(S->modulePath()));
738     }
739   }
740 }
741 
742 } // end namespace llvm
743 
744 bool DevirtModule::runForTesting(
745     Module &M, function_ref<AAResults &(Function &)> AARGetter,
746     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
747     function_ref<DominatorTree &(Function &)> LookupDomTree) {
748   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
749 
750   // Handle the command-line summary arguments. This code is for testing
751   // purposes only, so we handle errors directly.
752   if (!ClReadSummary.empty()) {
753     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
754                           ": ");
755     auto ReadSummaryFile =
756         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
757 
758     yaml::Input In(ReadSummaryFile->getBuffer());
759     In >> Summary;
760     ExitOnErr(errorCodeToError(In.error()));
761   }
762 
763   bool Changed =
764       DevirtModule(
765           M, AARGetter, OREGetter, LookupDomTree,
766           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
767           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
768           .run();
769 
770   if (!ClWriteSummary.empty()) {
771     ExitOnError ExitOnErr(
772         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
773     std::error_code EC;
774     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
775     ExitOnErr(errorCodeToError(EC));
776 
777     yaml::Output Out(OS);
778     Out << Summary;
779   }
780 
781   return Changed;
782 }
783 
784 void DevirtModule::buildTypeIdentifierMap(
785     std::vector<VTableBits> &Bits,
786     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
787   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
788   Bits.reserve(M.getGlobalList().size());
789   SmallVector<MDNode *, 2> Types;
790   for (GlobalVariable &GV : M.globals()) {
791     Types.clear();
792     GV.getMetadata(LLVMContext::MD_type, Types);
793     if (GV.isDeclaration() || Types.empty())
794       continue;
795 
796     VTableBits *&BitsPtr = GVToBits[&GV];
797     if (!BitsPtr) {
798       Bits.emplace_back();
799       Bits.back().GV = &GV;
800       Bits.back().ObjectSize =
801           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
802       BitsPtr = &Bits.back();
803     }
804 
805     for (MDNode *Type : Types) {
806       auto TypeID = Type->getOperand(1).get();
807 
808       uint64_t Offset =
809           cast<ConstantInt>(
810               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
811               ->getZExtValue();
812 
813       TypeIdMap[TypeID].insert({BitsPtr, Offset});
814     }
815   }
816 }
817 
818 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
819   if (I->getType()->isPointerTy()) {
820     if (Offset == 0)
821       return I;
822     return nullptr;
823   }
824 
825   const DataLayout &DL = M.getDataLayout();
826 
827   if (auto *C = dyn_cast<ConstantStruct>(I)) {
828     const StructLayout *SL = DL.getStructLayout(C->getType());
829     if (Offset >= SL->getSizeInBytes())
830       return nullptr;
831 
832     unsigned Op = SL->getElementContainingOffset(Offset);
833     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
834                               Offset - SL->getElementOffset(Op));
835   }
836   if (auto *C = dyn_cast<ConstantArray>(I)) {
837     ArrayType *VTableTy = C->getType();
838     uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
839 
840     unsigned Op = Offset / ElemSize;
841     if (Op >= C->getNumOperands())
842       return nullptr;
843 
844     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
845                               Offset % ElemSize);
846   }
847   return nullptr;
848 }
849 
850 bool DevirtModule::tryFindVirtualCallTargets(
851     std::vector<VirtualCallTarget> &TargetsForSlot,
852     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
853   for (const TypeMemberInfo &TM : TypeMemberInfos) {
854     if (!TM.Bits->GV->isConstant())
855       return false;
856 
857     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
858                                        TM.Offset + ByteOffset);
859     if (!Ptr)
860       return false;
861 
862     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
863     if (!Fn)
864       return false;
865 
866     // We can disregard __cxa_pure_virtual as a possible call target, as
867     // calls to pure virtuals are UB.
868     if (Fn->getName() == "__cxa_pure_virtual")
869       continue;
870 
871     TargetsForSlot.push_back({Fn, &TM});
872   }
873 
874   // Give up if we couldn't find any targets.
875   return !TargetsForSlot.empty();
876 }
877 
878 bool DevirtIndex::tryFindVirtualCallTargets(
879     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
880     uint64_t ByteOffset) {
881   for (const TypeIdOffsetVtableInfo P : TIdInfo) {
882     // VTable initializer should have only one summary, or all copies must be
883     // linkonce/weak ODR.
884     assert(P.VTableVI.getSummaryList().size() == 1 ||
885            llvm::all_of(
886                P.VTableVI.getSummaryList(),
887                [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
888                  return GlobalValue::isLinkOnceODRLinkage(Summary->linkage()) ||
889                         GlobalValue::isWeakODRLinkage(Summary->linkage());
890                }));
891     const auto *VS = cast<GlobalVarSummary>(P.VTableVI.getSummaryList()[0].get());
892     if (!P.VTableVI.getSummaryList()[0]->isLive())
893       continue;
894     for (auto VTP : VS->vTableFuncs()) {
895       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
896         continue;
897 
898       TargetsForSlot.push_back(VTP.FuncVI);
899     }
900   }
901 
902   // Give up if we couldn't find any targets.
903   return !TargetsForSlot.empty();
904 }
905 
906 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
907                                          Constant *TheFn, bool &IsExported) {
908   auto Apply = [&](CallSiteInfo &CSInfo) {
909     for (auto &&VCallSite : CSInfo.CallSites) {
910       if (RemarksEnabled)
911         VCallSite.emitRemark("single-impl",
912                              TheFn->stripPointerCasts()->getName(), OREGetter);
913       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
914           TheFn, VCallSite.CS.getCalledValue()->getType()));
915       // This use is no longer unsafe.
916       if (VCallSite.NumUnsafeUses)
917         --*VCallSite.NumUnsafeUses;
918     }
919     if (CSInfo.isExported())
920       IsExported = true;
921     CSInfo.markDevirt();
922   };
923   Apply(SlotInfo.CSInfo);
924   for (auto &P : SlotInfo.ConstCSInfo)
925     Apply(P.second);
926 }
927 
928 bool DevirtModule::trySingleImplDevirt(
929     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
930     VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
931   // See if the program contains a single implementation of this virtual
932   // function.
933   Function *TheFn = TargetsForSlot[0].Fn;
934   for (auto &&Target : TargetsForSlot)
935     if (TheFn != Target.Fn)
936       return false;
937 
938   // If so, update each call site to call that implementation directly.
939   if (RemarksEnabled)
940     TargetsForSlot[0].WasDevirt = true;
941 
942   bool IsExported = false;
943   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
944   if (!IsExported)
945     return false;
946 
947   // If the only implementation has local linkage, we must promote to external
948   // to make it visible to thin LTO objects. We can only get here during the
949   // ThinLTO export phase.
950   if (TheFn->hasLocalLinkage()) {
951     std::string NewName = (TheFn->getName() + "$merged").str();
952 
953     // Since we are renaming the function, any comdats with the same name must
954     // also be renamed. This is required when targeting COFF, as the comdat name
955     // must match one of the names of the symbols in the comdat.
956     if (Comdat *C = TheFn->getComdat()) {
957       if (C->getName() == TheFn->getName()) {
958         Comdat *NewC = M.getOrInsertComdat(NewName);
959         NewC->setSelectionKind(C->getSelectionKind());
960         for (GlobalObject &GO : M.global_objects())
961           if (GO.getComdat() == C)
962             GO.setComdat(NewC);
963       }
964     }
965 
966     TheFn->setLinkage(GlobalValue::ExternalLinkage);
967     TheFn->setVisibility(GlobalValue::HiddenVisibility);
968     TheFn->setName(NewName);
969   }
970 
971   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
972   Res->SingleImplName = TheFn->getName();
973 
974   return true;
975 }
976 
977 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
978                                       VTableSlotSummary &SlotSummary,
979                                       VTableSlotInfo &SlotInfo,
980                                       WholeProgramDevirtResolution *Res,
981                                       std::set<ValueInfo> &DevirtTargets) {
982   // See if the program contains a single implementation of this virtual
983   // function.
984   auto TheFn = TargetsForSlot[0];
985   for (auto &&Target : TargetsForSlot)
986     if (TheFn != Target)
987       return false;
988 
989   // Don't devirtualize if we don't have target definition.
990   auto Size = TheFn.getSummaryList().size();
991   if (!Size)
992     return false;
993 
994   // If the summary list contains multiple summaries where at least one is
995   // a local, give up, as we won't know which (possibly promoted) name to use.
996   for (auto &S : TheFn.getSummaryList())
997     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
998       return false;
999 
1000   // Collect functions devirtualized at least for one call site for stats.
1001   if (PrintSummaryDevirt)
1002     DevirtTargets.insert(TheFn);
1003 
1004   auto &S = TheFn.getSummaryList()[0];
1005   bool IsExported = false;
1006 
1007   // Insert calls into the summary index so that the devirtualized targets
1008   // are eligible for import.
1009   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1010   // to better ensure we have the opportunity to inline them.
1011   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1012   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1013     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1014       FS->addCall({TheFn, CI});
1015       IsExported |= S->modulePath() != FS->modulePath();
1016     }
1017     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1018       FS->addCall({TheFn, CI});
1019       IsExported |= S->modulePath() != FS->modulePath();
1020     }
1021   };
1022   AddCalls(SlotInfo.CSInfo);
1023   for (auto &P : SlotInfo.ConstCSInfo)
1024     AddCalls(P.second);
1025 
1026   if (IsExported)
1027     ExportedGUIDs.insert(TheFn.getGUID());
1028 
1029   // Record in summary for use in devirtualization during the ThinLTO import
1030   // step.
1031   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1032   if (GlobalValue::isLocalLinkage(S->linkage())) {
1033     if (IsExported)
1034       // If target is a local function and we are exporting it by
1035       // devirtualizing a call in another module, we need to record the
1036       // promoted name.
1037       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1038           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1039     else {
1040       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1041       Res->SingleImplName = TheFn.name();
1042     }
1043   } else
1044     Res->SingleImplName = TheFn.name();
1045 
1046   // Name will be empty if this thin link driven off of serialized combined
1047   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1048   // legacy LTO API anyway.
1049   assert(!Res->SingleImplName.empty());
1050 
1051   return true;
1052 }
1053 
1054 void DevirtModule::tryICallBranchFunnel(
1055     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1056     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1057   Triple T(M.getTargetTriple());
1058   if (T.getArch() != Triple::x86_64)
1059     return;
1060 
1061   if (TargetsForSlot.size() > ClThreshold)
1062     return;
1063 
1064   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1065   if (!HasNonDevirt)
1066     for (auto &P : SlotInfo.ConstCSInfo)
1067       if (!P.second.AllCallSitesDevirted) {
1068         HasNonDevirt = true;
1069         break;
1070       }
1071 
1072   if (!HasNonDevirt)
1073     return;
1074 
1075   FunctionType *FT =
1076       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1077   Function *JT;
1078   if (isa<MDString>(Slot.TypeID)) {
1079     JT = Function::Create(FT, Function::ExternalLinkage,
1080                           M.getDataLayout().getProgramAddressSpace(),
1081                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1082     JT->setVisibility(GlobalValue::HiddenVisibility);
1083   } else {
1084     JT = Function::Create(FT, Function::InternalLinkage,
1085                           M.getDataLayout().getProgramAddressSpace(),
1086                           "branch_funnel", &M);
1087   }
1088   JT->addAttribute(1, Attribute::Nest);
1089 
1090   std::vector<Value *> JTArgs;
1091   JTArgs.push_back(JT->arg_begin());
1092   for (auto &T : TargetsForSlot) {
1093     JTArgs.push_back(getMemberAddr(T.TM));
1094     JTArgs.push_back(T.Fn);
1095   }
1096 
1097   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1098   Function *Intr =
1099       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1100 
1101   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1102   CI->setTailCallKind(CallInst::TCK_MustTail);
1103   ReturnInst::Create(M.getContext(), nullptr, BB);
1104 
1105   bool IsExported = false;
1106   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1107   if (IsExported)
1108     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1109 }
1110 
1111 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1112                                           Constant *JT, bool &IsExported) {
1113   auto Apply = [&](CallSiteInfo &CSInfo) {
1114     if (CSInfo.isExported())
1115       IsExported = true;
1116     if (CSInfo.AllCallSitesDevirted)
1117       return;
1118     for (auto &&VCallSite : CSInfo.CallSites) {
1119       CallSite CS = VCallSite.CS;
1120 
1121       // Jump tables are only profitable if the retpoline mitigation is enabled.
1122       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1123       if (FSAttr.hasAttribute(Attribute::None) ||
1124           !FSAttr.getValueAsString().contains("+retpoline"))
1125         continue;
1126 
1127       if (RemarksEnabled)
1128         VCallSite.emitRemark("branch-funnel",
1129                              JT->stripPointerCasts()->getName(), OREGetter);
1130 
1131       // Pass the address of the vtable in the nest register, which is r10 on
1132       // x86_64.
1133       std::vector<Type *> NewArgs;
1134       NewArgs.push_back(Int8PtrTy);
1135       for (Type *T : CS.getFunctionType()->params())
1136         NewArgs.push_back(T);
1137       FunctionType *NewFT =
1138           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1139                             CS.getFunctionType()->isVarArg());
1140       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1141 
1142       IRBuilder<> IRB(CS.getInstruction());
1143       std::vector<Value *> Args;
1144       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1145       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1146         Args.push_back(CS.getArgOperand(I));
1147 
1148       CallSite NewCS;
1149       if (CS.isCall())
1150         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1151       else
1152         NewCS = IRB.CreateInvoke(
1153             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1154             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1155             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1156       NewCS.setCallingConv(CS.getCallingConv());
1157 
1158       AttributeList Attrs = CS.getAttributes();
1159       std::vector<AttributeSet> NewArgAttrs;
1160       NewArgAttrs.push_back(AttributeSet::get(
1161           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1162                               M.getContext(), Attribute::Nest)}));
1163       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1164         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1165       NewCS.setAttributes(
1166           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1167                              Attrs.getRetAttributes(), NewArgAttrs));
1168 
1169       CS->replaceAllUsesWith(NewCS.getInstruction());
1170       CS->eraseFromParent();
1171 
1172       // This use is no longer unsafe.
1173       if (VCallSite.NumUnsafeUses)
1174         --*VCallSite.NumUnsafeUses;
1175     }
1176     // Don't mark as devirtualized because there may be callers compiled without
1177     // retpoline mitigation, which would mean that they are lowered to
1178     // llvm.type.test and therefore require an llvm.type.test resolution for the
1179     // type identifier.
1180   };
1181   Apply(SlotInfo.CSInfo);
1182   for (auto &P : SlotInfo.ConstCSInfo)
1183     Apply(P.second);
1184 }
1185 
1186 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1187     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1188     ArrayRef<uint64_t> Args) {
1189   // Evaluate each function and store the result in each target's RetVal
1190   // field.
1191   for (VirtualCallTarget &Target : TargetsForSlot) {
1192     if (Target.Fn->arg_size() != Args.size() + 1)
1193       return false;
1194 
1195     Evaluator Eval(M.getDataLayout(), nullptr);
1196     SmallVector<Constant *, 2> EvalArgs;
1197     EvalArgs.push_back(
1198         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1199     for (unsigned I = 0; I != Args.size(); ++I) {
1200       auto *ArgTy = dyn_cast<IntegerType>(
1201           Target.Fn->getFunctionType()->getParamType(I + 1));
1202       if (!ArgTy)
1203         return false;
1204       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1205     }
1206 
1207     Constant *RetVal;
1208     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1209         !isa<ConstantInt>(RetVal))
1210       return false;
1211     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1212   }
1213   return true;
1214 }
1215 
1216 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1217                                          uint64_t TheRetVal) {
1218   for (auto Call : CSInfo.CallSites)
1219     Call.replaceAndErase(
1220         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1221         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1222   CSInfo.markDevirt();
1223 }
1224 
1225 bool DevirtModule::tryUniformRetValOpt(
1226     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1227     WholeProgramDevirtResolution::ByArg *Res) {
1228   // Uniform return value optimization. If all functions return the same
1229   // constant, replace all calls with that constant.
1230   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1231   for (const VirtualCallTarget &Target : TargetsForSlot)
1232     if (Target.RetVal != TheRetVal)
1233       return false;
1234 
1235   if (CSInfo.isExported()) {
1236     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1237     Res->Info = TheRetVal;
1238   }
1239 
1240   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1241   if (RemarksEnabled)
1242     for (auto &&Target : TargetsForSlot)
1243       Target.WasDevirt = true;
1244   return true;
1245 }
1246 
1247 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1248                                         ArrayRef<uint64_t> Args,
1249                                         StringRef Name) {
1250   std::string FullName = "__typeid_";
1251   raw_string_ostream OS(FullName);
1252   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1253   for (uint64_t Arg : Args)
1254     OS << '_' << Arg;
1255   OS << '_' << Name;
1256   return OS.str();
1257 }
1258 
1259 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1260   Triple T(M.getTargetTriple());
1261   return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1262          T.getObjectFormat() == Triple::ELF;
1263 }
1264 
1265 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1266                                 StringRef Name, Constant *C) {
1267   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1268                                         getGlobalName(Slot, Args, Name), C, &M);
1269   GA->setVisibility(GlobalValue::HiddenVisibility);
1270 }
1271 
1272 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1273                                   StringRef Name, uint32_t Const,
1274                                   uint32_t &Storage) {
1275   if (shouldExportConstantsAsAbsoluteSymbols()) {
1276     exportGlobal(
1277         Slot, Args, Name,
1278         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1279     return;
1280   }
1281 
1282   Storage = Const;
1283 }
1284 
1285 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1286                                      StringRef Name) {
1287   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1288   auto *GV = dyn_cast<GlobalVariable>(C);
1289   if (GV)
1290     GV->setVisibility(GlobalValue::HiddenVisibility);
1291   return C;
1292 }
1293 
1294 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1295                                        StringRef Name, IntegerType *IntTy,
1296                                        uint32_t Storage) {
1297   if (!shouldExportConstantsAsAbsoluteSymbols())
1298     return ConstantInt::get(IntTy, Storage);
1299 
1300   Constant *C = importGlobal(Slot, Args, Name);
1301   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1302   C = ConstantExpr::getPtrToInt(C, IntTy);
1303 
1304   // We only need to set metadata if the global is newly created, in which
1305   // case it would not have hidden visibility.
1306   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1307     return C;
1308 
1309   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1310     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1311     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1312     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1313                     MDNode::get(M.getContext(), {MinC, MaxC}));
1314   };
1315   unsigned AbsWidth = IntTy->getBitWidth();
1316   if (AbsWidth == IntPtrTy->getBitWidth())
1317     SetAbsRange(~0ull, ~0ull); // Full set.
1318   else
1319     SetAbsRange(0, 1ull << AbsWidth);
1320   return C;
1321 }
1322 
1323 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1324                                         bool IsOne,
1325                                         Constant *UniqueMemberAddr) {
1326   for (auto &&Call : CSInfo.CallSites) {
1327     IRBuilder<> B(Call.CS.getInstruction());
1328     Value *Cmp =
1329         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1330                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1331     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1332     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1333                          Cmp);
1334   }
1335   CSInfo.markDevirt();
1336 }
1337 
1338 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1339   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1340   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1341                                         ConstantInt::get(Int64Ty, M->Offset));
1342 }
1343 
1344 bool DevirtModule::tryUniqueRetValOpt(
1345     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1346     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1347     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1348   // IsOne controls whether we look for a 0 or a 1.
1349   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1350     const TypeMemberInfo *UniqueMember = nullptr;
1351     for (const VirtualCallTarget &Target : TargetsForSlot) {
1352       if (Target.RetVal == (IsOne ? 1 : 0)) {
1353         if (UniqueMember)
1354           return false;
1355         UniqueMember = Target.TM;
1356       }
1357     }
1358 
1359     // We should have found a unique member or bailed out by now. We already
1360     // checked for a uniform return value in tryUniformRetValOpt.
1361     assert(UniqueMember);
1362 
1363     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1364     if (CSInfo.isExported()) {
1365       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1366       Res->Info = IsOne;
1367 
1368       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1369     }
1370 
1371     // Replace each call with the comparison.
1372     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1373                          UniqueMemberAddr);
1374 
1375     // Update devirtualization statistics for targets.
1376     if (RemarksEnabled)
1377       for (auto &&Target : TargetsForSlot)
1378         Target.WasDevirt = true;
1379 
1380     return true;
1381   };
1382 
1383   if (BitWidth == 1) {
1384     if (tryUniqueRetValOptFor(true))
1385       return true;
1386     if (tryUniqueRetValOptFor(false))
1387       return true;
1388   }
1389   return false;
1390 }
1391 
1392 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1393                                          Constant *Byte, Constant *Bit) {
1394   for (auto Call : CSInfo.CallSites) {
1395     auto *RetType = cast<IntegerType>(Call.CS.getType());
1396     IRBuilder<> B(Call.CS.getInstruction());
1397     Value *Addr =
1398         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1399     if (RetType->getBitWidth() == 1) {
1400       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1401       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1402       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1403       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1404                            OREGetter, IsBitSet);
1405     } else {
1406       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1407       Value *Val = B.CreateLoad(RetType, ValAddr);
1408       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1409                            OREGetter, Val);
1410     }
1411   }
1412   CSInfo.markDevirt();
1413 }
1414 
1415 bool DevirtModule::tryVirtualConstProp(
1416     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1417     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1418   // This only works if the function returns an integer.
1419   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1420   if (!RetType)
1421     return false;
1422   unsigned BitWidth = RetType->getBitWidth();
1423   if (BitWidth > 64)
1424     return false;
1425 
1426   // Make sure that each function is defined, does not access memory, takes at
1427   // least one argument, does not use its first argument (which we assume is
1428   // 'this'), and has the same return type.
1429   //
1430   // Note that we test whether this copy of the function is readnone, rather
1431   // than testing function attributes, which must hold for any copy of the
1432   // function, even a less optimized version substituted at link time. This is
1433   // sound because the virtual constant propagation optimizations effectively
1434   // inline all implementations of the virtual function into each call site,
1435   // rather than using function attributes to perform local optimization.
1436   for (VirtualCallTarget &Target : TargetsForSlot) {
1437     if (Target.Fn->isDeclaration() ||
1438         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1439             MAK_ReadNone ||
1440         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1441         Target.Fn->getReturnType() != RetType)
1442       return false;
1443   }
1444 
1445   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1446     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1447       continue;
1448 
1449     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1450     if (Res)
1451       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1452 
1453     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1454       continue;
1455 
1456     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1457                            ResByArg, Slot, CSByConstantArg.first))
1458       continue;
1459 
1460     // Find an allocation offset in bits in all vtables associated with the
1461     // type.
1462     uint64_t AllocBefore =
1463         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1464     uint64_t AllocAfter =
1465         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1466 
1467     // Calculate the total amount of padding needed to store a value at both
1468     // ends of the object.
1469     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1470     for (auto &&Target : TargetsForSlot) {
1471       TotalPaddingBefore += std::max<int64_t>(
1472           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1473       TotalPaddingAfter += std::max<int64_t>(
1474           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1475     }
1476 
1477     // If the amount of padding is too large, give up.
1478     // FIXME: do something smarter here.
1479     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1480       continue;
1481 
1482     // Calculate the offset to the value as a (possibly negative) byte offset
1483     // and (if applicable) a bit offset, and store the values in the targets.
1484     int64_t OffsetByte;
1485     uint64_t OffsetBit;
1486     if (TotalPaddingBefore <= TotalPaddingAfter)
1487       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1488                             OffsetBit);
1489     else
1490       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1491                            OffsetBit);
1492 
1493     if (RemarksEnabled)
1494       for (auto &&Target : TargetsForSlot)
1495         Target.WasDevirt = true;
1496 
1497 
1498     if (CSByConstantArg.second.isExported()) {
1499       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1500       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1501                      ResByArg->Byte);
1502       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1503                      ResByArg->Bit);
1504     }
1505 
1506     // Rewrite each call to a load from OffsetByte/OffsetBit.
1507     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1508     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1509     applyVirtualConstProp(CSByConstantArg.second,
1510                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1511   }
1512   return true;
1513 }
1514 
1515 void DevirtModule::rebuildGlobal(VTableBits &B) {
1516   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1517     return;
1518 
1519   // Align the before byte array to the global's minimum alignment so that we
1520   // don't break any alignment requirements on the global.
1521   unsigned Align = B.GV->getAlignment();
1522   if (Align == 0)
1523     Align = M.getDataLayout().getABITypeAlignment(B.GV->getValueType());
1524   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Align));
1525 
1526   // Before was stored in reverse order; flip it now.
1527   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1528     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1529 
1530   // Build an anonymous global containing the before bytes, followed by the
1531   // original initializer, followed by the after bytes.
1532   auto NewInit = ConstantStruct::getAnon(
1533       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1534        B.GV->getInitializer(),
1535        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1536   auto NewGV =
1537       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1538                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1539   NewGV->setSection(B.GV->getSection());
1540   NewGV->setComdat(B.GV->getComdat());
1541   NewGV->setAlignment(B.GV->getAlignment());
1542 
1543   // Copy the original vtable's metadata to the anonymous global, adjusting
1544   // offsets as required.
1545   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1546 
1547   // Build an alias named after the original global, pointing at the second
1548   // element (the original initializer).
1549   auto Alias = GlobalAlias::create(
1550       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1551       ConstantExpr::getGetElementPtr(
1552           NewInit->getType(), NewGV,
1553           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1554                                ConstantInt::get(Int32Ty, 1)}),
1555       &M);
1556   Alias->setVisibility(B.GV->getVisibility());
1557   Alias->takeName(B.GV);
1558 
1559   B.GV->replaceAllUsesWith(Alias);
1560   B.GV->eraseFromParent();
1561 }
1562 
1563 bool DevirtModule::areRemarksEnabled() {
1564   const auto &FL = M.getFunctionList();
1565   for (const Function &Fn : FL) {
1566     const auto &BBL = Fn.getBasicBlockList();
1567     if (BBL.empty())
1568       continue;
1569     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1570     return DI.isEnabled();
1571   }
1572   return false;
1573 }
1574 
1575 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1576                                      Function *AssumeFunc) {
1577   // Find all virtual calls via a virtual table pointer %p under an assumption
1578   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1579   // points to a member of the type identifier %md. Group calls by (type ID,
1580   // offset) pair (effectively the identity of the virtual function) and store
1581   // to CallSlots.
1582   DenseSet<CallSite> SeenCallSites;
1583   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1584        I != E;) {
1585     auto CI = dyn_cast<CallInst>(I->getUser());
1586     ++I;
1587     if (!CI)
1588       continue;
1589 
1590     // Search for virtual calls based on %p and add them to DevirtCalls.
1591     SmallVector<DevirtCallSite, 1> DevirtCalls;
1592     SmallVector<CallInst *, 1> Assumes;
1593     auto &DT = LookupDomTree(*CI->getFunction());
1594     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1595 
1596     // If we found any, add them to CallSlots.
1597     if (!Assumes.empty()) {
1598       Metadata *TypeId =
1599           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1600       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1601       for (DevirtCallSite Call : DevirtCalls) {
1602         // Only add this CallSite if we haven't seen it before. The vtable
1603         // pointer may have been CSE'd with pointers from other call sites,
1604         // and we don't want to process call sites multiple times. We can't
1605         // just skip the vtable Ptr if it has been seen before, however, since
1606         // it may be shared by type tests that dominate different calls.
1607         if (SeenCallSites.insert(Call.CS).second)
1608           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1609       }
1610     }
1611 
1612     // We no longer need the assumes or the type test.
1613     for (auto Assume : Assumes)
1614       Assume->eraseFromParent();
1615     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1616     // may use the vtable argument later.
1617     if (CI->use_empty())
1618       CI->eraseFromParent();
1619   }
1620 }
1621 
1622 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1623   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1624 
1625   for (auto I = TypeCheckedLoadFunc->use_begin(),
1626             E = TypeCheckedLoadFunc->use_end();
1627        I != E;) {
1628     auto CI = dyn_cast<CallInst>(I->getUser());
1629     ++I;
1630     if (!CI)
1631       continue;
1632 
1633     Value *Ptr = CI->getArgOperand(0);
1634     Value *Offset = CI->getArgOperand(1);
1635     Value *TypeIdValue = CI->getArgOperand(2);
1636     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1637 
1638     SmallVector<DevirtCallSite, 1> DevirtCalls;
1639     SmallVector<Instruction *, 1> LoadedPtrs;
1640     SmallVector<Instruction *, 1> Preds;
1641     bool HasNonCallUses = false;
1642     auto &DT = LookupDomTree(*CI->getFunction());
1643     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1644                                                HasNonCallUses, CI, DT);
1645 
1646     // Start by generating "pessimistic" code that explicitly loads the function
1647     // pointer from the vtable and performs the type check. If possible, we will
1648     // eliminate the load and the type check later.
1649 
1650     // If possible, only generate the load at the point where it is used.
1651     // This helps avoid unnecessary spills.
1652     IRBuilder<> LoadB(
1653         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1654     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1655     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1656     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1657 
1658     for (Instruction *LoadedPtr : LoadedPtrs) {
1659       LoadedPtr->replaceAllUsesWith(LoadedValue);
1660       LoadedPtr->eraseFromParent();
1661     }
1662 
1663     // Likewise for the type test.
1664     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1665     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1666 
1667     for (Instruction *Pred : Preds) {
1668       Pred->replaceAllUsesWith(TypeTestCall);
1669       Pred->eraseFromParent();
1670     }
1671 
1672     // We have already erased any extractvalue instructions that refer to the
1673     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1674     // (although this is unlikely). In that case, explicitly build a pair and
1675     // RAUW it.
1676     if (!CI->use_empty()) {
1677       Value *Pair = UndefValue::get(CI->getType());
1678       IRBuilder<> B(CI);
1679       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1680       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1681       CI->replaceAllUsesWith(Pair);
1682     }
1683 
1684     // The number of unsafe uses is initially the number of uses.
1685     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1686     NumUnsafeUses = DevirtCalls.size();
1687 
1688     // If the function pointer has a non-call user, we cannot eliminate the type
1689     // check, as one of those users may eventually call the pointer. Increment
1690     // the unsafe use count to make sure it cannot reach zero.
1691     if (HasNonCallUses)
1692       ++NumUnsafeUses;
1693     for (DevirtCallSite Call : DevirtCalls) {
1694       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1695                                                    &NumUnsafeUses);
1696     }
1697 
1698     CI->eraseFromParent();
1699   }
1700 }
1701 
1702 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1703   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1704   if (!TypeId)
1705     return;
1706   const TypeIdSummary *TidSummary =
1707       ImportSummary->getTypeIdSummary(TypeId->getString());
1708   if (!TidSummary)
1709     return;
1710   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1711   if (ResI == TidSummary->WPDRes.end())
1712     return;
1713   const WholeProgramDevirtResolution &Res = ResI->second;
1714 
1715   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1716     assert(!Res.SingleImplName.empty());
1717     // The type of the function in the declaration is irrelevant because every
1718     // call site will cast it to the correct type.
1719     Constant *SingleImpl =
1720         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1721                                              Type::getVoidTy(M.getContext()))
1722                            .getCallee());
1723 
1724     // This is the import phase so we should not be exporting anything.
1725     bool IsExported = false;
1726     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1727     assert(!IsExported);
1728   }
1729 
1730   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1731     auto I = Res.ResByArg.find(CSByConstantArg.first);
1732     if (I == Res.ResByArg.end())
1733       continue;
1734     auto &ResByArg = I->second;
1735     // FIXME: We should figure out what to do about the "function name" argument
1736     // to the apply* functions, as the function names are unavailable during the
1737     // importing phase. For now we just pass the empty string. This does not
1738     // impact correctness because the function names are just used for remarks.
1739     switch (ResByArg.TheKind) {
1740     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1741       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1742       break;
1743     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1744       Constant *UniqueMemberAddr =
1745           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1746       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1747                            UniqueMemberAddr);
1748       break;
1749     }
1750     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1751       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1752                                       Int32Ty, ResByArg.Byte);
1753       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1754                                      ResByArg.Bit);
1755       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1756       break;
1757     }
1758     default:
1759       break;
1760     }
1761   }
1762 
1763   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1764     // The type of the function is irrelevant, because it's bitcast at calls
1765     // anyhow.
1766     Constant *JT = cast<Constant>(
1767         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1768                               Type::getVoidTy(M.getContext()))
1769             .getCallee());
1770     bool IsExported = false;
1771     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1772     assert(!IsExported);
1773   }
1774 }
1775 
1776 void DevirtModule::removeRedundantTypeTests() {
1777   auto True = ConstantInt::getTrue(M.getContext());
1778   for (auto &&U : NumUnsafeUsesForTypeTest) {
1779     if (U.second == 0) {
1780       U.first->replaceAllUsesWith(True);
1781       U.first->eraseFromParent();
1782     }
1783   }
1784 }
1785 
1786 bool DevirtModule::run() {
1787   // If only some of the modules were split, we cannot correctly perform
1788   // this transformation. We already checked for the presense of type tests
1789   // with partially split modules during the thin link, and would have emitted
1790   // an error if any were found, so here we can simply return.
1791   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1792       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1793     return false;
1794 
1795   Function *TypeTestFunc =
1796       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1797   Function *TypeCheckedLoadFunc =
1798       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1799   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1800 
1801   // Normally if there are no users of the devirtualization intrinsics in the
1802   // module, this pass has nothing to do. But if we are exporting, we also need
1803   // to handle any users that appear only in the function summaries.
1804   if (!ExportSummary &&
1805       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1806        AssumeFunc->use_empty()) &&
1807       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1808     return false;
1809 
1810   if (TypeTestFunc && AssumeFunc)
1811     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1812 
1813   if (TypeCheckedLoadFunc)
1814     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1815 
1816   if (ImportSummary) {
1817     for (auto &S : CallSlots)
1818       importResolution(S.first, S.second);
1819 
1820     removeRedundantTypeTests();
1821 
1822     // The rest of the code is only necessary when exporting or during regular
1823     // LTO, so we are done.
1824     return true;
1825   }
1826 
1827   // Rebuild type metadata into a map for easy lookup.
1828   std::vector<VTableBits> Bits;
1829   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1830   buildTypeIdentifierMap(Bits, TypeIdMap);
1831   if (TypeIdMap.empty())
1832     return true;
1833 
1834   // Collect information from summary about which calls to try to devirtualize.
1835   if (ExportSummary) {
1836     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1837     for (auto &P : TypeIdMap) {
1838       if (auto *TypeId = dyn_cast<MDString>(P.first))
1839         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1840             TypeId);
1841     }
1842 
1843     for (auto &P : *ExportSummary) {
1844       for (auto &S : P.second.SummaryList) {
1845         auto *FS = dyn_cast<FunctionSummary>(S.get());
1846         if (!FS)
1847           continue;
1848         // FIXME: Only add live functions.
1849         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1850           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1851             CallSlots[{MD, VF.Offset}]
1852                 .CSInfo.markSummaryHasTypeTestAssumeUsers();
1853           }
1854         }
1855         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1856           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1857             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1858           }
1859         }
1860         for (const FunctionSummary::ConstVCall &VC :
1861              FS->type_test_assume_const_vcalls()) {
1862           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1863             CallSlots[{MD, VC.VFunc.Offset}]
1864                 .ConstCSInfo[VC.Args]
1865                 .markSummaryHasTypeTestAssumeUsers();
1866           }
1867         }
1868         for (const FunctionSummary::ConstVCall &VC :
1869              FS->type_checked_load_const_vcalls()) {
1870           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1871             CallSlots[{MD, VC.VFunc.Offset}]
1872                 .ConstCSInfo[VC.Args]
1873                 .addSummaryTypeCheckedLoadUser(FS);
1874           }
1875         }
1876       }
1877     }
1878   }
1879 
1880   // For each (type, offset) pair:
1881   bool DidVirtualConstProp = false;
1882   std::map<std::string, Function*> DevirtTargets;
1883   for (auto &S : CallSlots) {
1884     // Search each of the members of the type identifier for the virtual
1885     // function implementation at offset S.first.ByteOffset, and add to
1886     // TargetsForSlot.
1887     std::vector<VirtualCallTarget> TargetsForSlot;
1888     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1889                                   S.first.ByteOffset)) {
1890       WholeProgramDevirtResolution *Res = nullptr;
1891       if (ExportSummary && isa<MDString>(S.first.TypeID))
1892         Res = &ExportSummary
1893                    ->getOrInsertTypeIdSummary(
1894                        cast<MDString>(S.first.TypeID)->getString())
1895                    .WPDRes[S.first.ByteOffset];
1896 
1897       if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
1898         DidVirtualConstProp |=
1899             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1900 
1901         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1902       }
1903 
1904       // Collect functions devirtualized at least for one call site for stats.
1905       if (RemarksEnabled)
1906         for (const auto &T : TargetsForSlot)
1907           if (T.WasDevirt)
1908             DevirtTargets[T.Fn->getName()] = T.Fn;
1909     }
1910 
1911     // CFI-specific: if we are exporting and any llvm.type.checked.load
1912     // intrinsics were *not* devirtualized, we need to add the resulting
1913     // llvm.type.test intrinsics to the function summaries so that the
1914     // LowerTypeTests pass will export them.
1915     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1916       auto GUID =
1917           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1918       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1919         FS->addTypeTest(GUID);
1920       for (auto &CCS : S.second.ConstCSInfo)
1921         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1922           FS->addTypeTest(GUID);
1923     }
1924   }
1925 
1926   if (RemarksEnabled) {
1927     // Generate remarks for each devirtualized function.
1928     for (const auto &DT : DevirtTargets) {
1929       Function *F = DT.second;
1930 
1931       using namespace ore;
1932       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1933                         << "devirtualized "
1934                         << NV("FunctionName", DT.first));
1935     }
1936   }
1937 
1938   removeRedundantTypeTests();
1939 
1940   // Rebuild each global we touched as part of virtual constant propagation to
1941   // include the before and after bytes.
1942   if (DidVirtualConstProp)
1943     for (VTableBits &B : Bits)
1944       rebuildGlobal(B);
1945 
1946   return true;
1947 }
1948 
1949 void DevirtIndex::run() {
1950   if (ExportSummary.typeIdCompatibleVtableMap().empty())
1951     return;
1952 
1953   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1954   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1955     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1956   }
1957 
1958   // Collect information from summary about which calls to try to devirtualize.
1959   for (auto &P : ExportSummary) {
1960     for (auto &S : P.second.SummaryList) {
1961       auto *FS = dyn_cast<FunctionSummary>(S.get());
1962       if (!FS)
1963         continue;
1964       // FIXME: Only add live functions.
1965       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1966         for (StringRef Name : NameByGUID[VF.GUID]) {
1967           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1968         }
1969       }
1970       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1971         for (StringRef Name : NameByGUID[VF.GUID]) {
1972           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1973         }
1974       }
1975       for (const FunctionSummary::ConstVCall &VC :
1976            FS->type_test_assume_const_vcalls()) {
1977         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1978           CallSlots[{Name, VC.VFunc.Offset}]
1979               .ConstCSInfo[VC.Args]
1980               .addSummaryTypeTestAssumeUser(FS);
1981         }
1982       }
1983       for (const FunctionSummary::ConstVCall &VC :
1984            FS->type_checked_load_const_vcalls()) {
1985         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1986           CallSlots[{Name, VC.VFunc.Offset}]
1987               .ConstCSInfo[VC.Args]
1988               .addSummaryTypeCheckedLoadUser(FS);
1989         }
1990       }
1991     }
1992   }
1993 
1994   std::set<ValueInfo> DevirtTargets;
1995   // For each (type, offset) pair:
1996   for (auto &S : CallSlots) {
1997     // Search each of the members of the type identifier for the virtual
1998     // function implementation at offset S.first.ByteOffset, and add to
1999     // TargetsForSlot.
2000     std::vector<ValueInfo> TargetsForSlot;
2001     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2002     assert(TidSummary);
2003     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2004                                   S.first.ByteOffset)) {
2005       WholeProgramDevirtResolution *Res =
2006           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2007                .WPDRes[S.first.ByteOffset];
2008 
2009       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2010                                DevirtTargets))
2011         continue;
2012     }
2013   }
2014 
2015   // Optionally have the thin link print message for each devirtualized
2016   // function.
2017   if (PrintSummaryDevirt)
2018     for (const auto &DT : DevirtTargets)
2019       errs() << "Devirtualized call to " << DT << "\n";
2020 
2021   return;
2022 }
2023