1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines.
28 // During regular LTO, the pass determines the best optimization for each
29 // virtual call and applies the resolutions directly to virtual calls that are
30 // eligible for virtual call optimization (i.e. calls that use either of the
31 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
32 // ThinLTO, the pass operates in two phases:
33 // - Export phase: this is run during the thin link over a single merged module
34 //   that contains all vtables with !type metadata that participate in the link.
35 //   The pass computes a resolution for each virtual call and stores it in the
36 //   type identifier summary.
37 // - Import phase: this is run during the thin backends over the individual
38 //   modules. The pass applies the resolutions previously computed during the
39 //   import phase to each eligible virtual call.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/DenseMapInfo.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/MapVector.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/BasicAliasAnalysis.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/TypeMetadataUtils.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalAlias.h"
63 #include "llvm/IR/GlobalVariable.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/LLVMContext.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ModuleSummaryIndexYAML.h"
73 #include "llvm/Pass.h"
74 #include "llvm/PassRegistry.h"
75 #include "llvm/PassSupport.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Error.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Transforms/IPO.h"
81 #include "llvm/Transforms/IPO/FunctionAttrs.h"
82 #include "llvm/Transforms/Utils/Evaluator.h"
83 #include <algorithm>
84 #include <cstddef>
85 #include <map>
86 #include <set>
87 #include <string>
88 
89 using namespace llvm;
90 using namespace wholeprogramdevirt;
91 
92 #define DEBUG_TYPE "wholeprogramdevirt"
93 
94 static cl::opt<PassSummaryAction> ClSummaryAction(
95     "wholeprogramdevirt-summary-action",
96     cl::desc("What to do with the summary when running this pass"),
97     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
98                clEnumValN(PassSummaryAction::Import, "import",
99                           "Import typeid resolutions from summary and globals"),
100                clEnumValN(PassSummaryAction::Export, "export",
101                           "Export typeid resolutions to summary and globals")),
102     cl::Hidden);
103 
104 static cl::opt<std::string> ClReadSummary(
105     "wholeprogramdevirt-read-summary",
106     cl::desc("Read summary from given YAML file before running pass"),
107     cl::Hidden);
108 
109 static cl::opt<std::string> ClWriteSummary(
110     "wholeprogramdevirt-write-summary",
111     cl::desc("Write summary to given YAML file after running pass"),
112     cl::Hidden);
113 
114 static cl::opt<unsigned>
115     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
116                 cl::init(10), cl::ZeroOrMore,
117                 cl::desc("Maximum number of call targets per "
118                          "call site to enable branch funnels"));
119 
120 // Find the minimum offset that we may store a value of size Size bits at. If
121 // IsAfter is set, look for an offset before the object, otherwise look for an
122 // offset after the object.
123 uint64_t
124 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
125                                      bool IsAfter, uint64_t Size) {
126   // Find a minimum offset taking into account only vtable sizes.
127   uint64_t MinByte = 0;
128   for (const VirtualCallTarget &Target : Targets) {
129     if (IsAfter)
130       MinByte = std::max(MinByte, Target.minAfterBytes());
131     else
132       MinByte = std::max(MinByte, Target.minBeforeBytes());
133   }
134 
135   // Build a vector of arrays of bytes covering, for each target, a slice of the
136   // used region (see AccumBitVector::BytesUsed in
137   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
138   // this aligns the used regions to start at MinByte.
139   //
140   // In this example, A, B and C are vtables, # is a byte already allocated for
141   // a virtual function pointer, AAAA... (etc.) are the used regions for the
142   // vtables and Offset(X) is the value computed for the Offset variable below
143   // for X.
144   //
145   //                    Offset(A)
146   //                    |       |
147   //                            |MinByte
148   // A: ################AAAAAAAA|AAAAAAAA
149   // B: ########BBBBBBBBBBBBBBBB|BBBB
150   // C: ########################|CCCCCCCCCCCCCCCC
151   //            |   Offset(B)   |
152   //
153   // This code produces the slices of A, B and C that appear after the divider
154   // at MinByte.
155   std::vector<ArrayRef<uint8_t>> Used;
156   for (const VirtualCallTarget &Target : Targets) {
157     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
158                                        : Target.TM->Bits->Before.BytesUsed;
159     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
160                               : MinByte - Target.minBeforeBytes();
161 
162     // Disregard used regions that are smaller than Offset. These are
163     // effectively all-free regions that do not need to be checked.
164     if (VTUsed.size() > Offset)
165       Used.push_back(VTUsed.slice(Offset));
166   }
167 
168   if (Size == 1) {
169     // Find a free bit in each member of Used.
170     for (unsigned I = 0;; ++I) {
171       uint8_t BitsUsed = 0;
172       for (auto &&B : Used)
173         if (I < B.size())
174           BitsUsed |= B[I];
175       if (BitsUsed != 0xff)
176         return (MinByte + I) * 8 +
177                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
178     }
179   } else {
180     // Find a free (Size/8) byte region in each member of Used.
181     // FIXME: see if alignment helps.
182     for (unsigned I = 0;; ++I) {
183       for (auto &&B : Used) {
184         unsigned Byte = 0;
185         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
186           if (B[I + Byte])
187             goto NextI;
188           ++Byte;
189         }
190       }
191       return (MinByte + I) * 8;
192     NextI:;
193     }
194   }
195 }
196 
197 void wholeprogramdevirt::setBeforeReturnValues(
198     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
199     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
200   if (BitWidth == 1)
201     OffsetByte = -(AllocBefore / 8 + 1);
202   else
203     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
204   OffsetBit = AllocBefore % 8;
205 
206   for (VirtualCallTarget &Target : Targets) {
207     if (BitWidth == 1)
208       Target.setBeforeBit(AllocBefore);
209     else
210       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
211   }
212 }
213 
214 void wholeprogramdevirt::setAfterReturnValues(
215     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
216     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217   if (BitWidth == 1)
218     OffsetByte = AllocAfter / 8;
219   else
220     OffsetByte = (AllocAfter + 7) / 8;
221   OffsetBit = AllocAfter % 8;
222 
223   for (VirtualCallTarget &Target : Targets) {
224     if (BitWidth == 1)
225       Target.setAfterBit(AllocAfter);
226     else
227       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
228   }
229 }
230 
231 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
232     : Fn(Fn), TM(TM),
233       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
234 
235 namespace {
236 
237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
238 // tables, and the ByteOffset is the offset in bytes from the address point to
239 // the virtual function pointer.
240 struct VTableSlot {
241   Metadata *TypeID;
242   uint64_t ByteOffset;
243 };
244 
245 } // end anonymous namespace
246 
247 namespace llvm {
248 
249 template <> struct DenseMapInfo<VTableSlot> {
250   static VTableSlot getEmptyKey() {
251     return {DenseMapInfo<Metadata *>::getEmptyKey(),
252             DenseMapInfo<uint64_t>::getEmptyKey()};
253   }
254   static VTableSlot getTombstoneKey() {
255     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
256             DenseMapInfo<uint64_t>::getTombstoneKey()};
257   }
258   static unsigned getHashValue(const VTableSlot &I) {
259     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
260            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
261   }
262   static bool isEqual(const VTableSlot &LHS,
263                       const VTableSlot &RHS) {
264     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
265   }
266 };
267 
268 } // end namespace llvm
269 
270 namespace {
271 
272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
273 // the indirect virtual call.
274 struct VirtualCallSite {
275   Value *VTable;
276   CallSite CS;
277 
278   // If non-null, this field points to the associated unsafe use count stored in
279   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
280   // of that field for details.
281   unsigned *NumUnsafeUses;
282 
283   void
284   emitRemark(const StringRef OptName, const StringRef TargetName,
285              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
286     Function *F = CS.getCaller();
287     DebugLoc DLoc = CS->getDebugLoc();
288     BasicBlock *Block = CS.getParent();
289 
290     using namespace ore;
291     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
292                       << NV("Optimization", OptName)
293                       << ": devirtualized a call to "
294                       << NV("FunctionName", TargetName));
295   }
296 
297   void replaceAndErase(
298       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
299       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
300       Value *New) {
301     if (RemarksEnabled)
302       emitRemark(OptName, TargetName, OREGetter);
303     CS->replaceAllUsesWith(New);
304     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
305       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
306       II->getUnwindDest()->removePredecessor(II->getParent());
307     }
308     CS->eraseFromParent();
309     // This use is no longer unsafe.
310     if (NumUnsafeUses)
311       --*NumUnsafeUses;
312   }
313 };
314 
315 // Call site information collected for a specific VTableSlot and possibly a list
316 // of constant integer arguments. The grouping by arguments is handled by the
317 // VTableSlotInfo class.
318 struct CallSiteInfo {
319   /// The set of call sites for this slot. Used during regular LTO and the
320   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
321   /// call sites that appear in the merged module itself); in each of these
322   /// cases we are directly operating on the call sites at the IR level.
323   std::vector<VirtualCallSite> CallSites;
324 
325   /// Whether all call sites represented by this CallSiteInfo, including those
326   /// in summaries, have been devirtualized. This starts off as true because a
327   /// default constructed CallSiteInfo represents no call sites.
328   bool AllCallSitesDevirted = true;
329 
330   // These fields are used during the export phase of ThinLTO and reflect
331   // information collected from function summaries.
332 
333   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
334   /// this slot.
335   bool SummaryHasTypeTestAssumeUsers = false;
336 
337   /// CFI-specific: a vector containing the list of function summaries that use
338   /// the llvm.type.checked.load intrinsic and therefore will require
339   /// resolutions for llvm.type.test in order to implement CFI checks if
340   /// devirtualization was unsuccessful. If devirtualization was successful, the
341   /// pass will clear this vector by calling markDevirt(). If at the end of the
342   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
343   /// to each of the function summaries in the vector.
344   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
345 
346   bool isExported() const {
347     return SummaryHasTypeTestAssumeUsers ||
348            !SummaryTypeCheckedLoadUsers.empty();
349   }
350 
351   void markSummaryHasTypeTestAssumeUsers() {
352     SummaryHasTypeTestAssumeUsers = true;
353     AllCallSitesDevirted = false;
354   }
355 
356   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
357     SummaryTypeCheckedLoadUsers.push_back(FS);
358     AllCallSitesDevirted = false;
359   }
360 
361   void markDevirt() {
362     AllCallSitesDevirted = true;
363 
364     // As explained in the comment for SummaryTypeCheckedLoadUsers.
365     SummaryTypeCheckedLoadUsers.clear();
366   }
367 };
368 
369 // Call site information collected for a specific VTableSlot.
370 struct VTableSlotInfo {
371   // The set of call sites which do not have all constant integer arguments
372   // (excluding "this").
373   CallSiteInfo CSInfo;
374 
375   // The set of call sites with all constant integer arguments (excluding
376   // "this"), grouped by argument list.
377   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
378 
379   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
380 
381 private:
382   CallSiteInfo &findCallSiteInfo(CallSite CS);
383 };
384 
385 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
386   std::vector<uint64_t> Args;
387   auto *CI = dyn_cast<IntegerType>(CS.getType());
388   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
389     return CSInfo;
390   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
391     auto *CI = dyn_cast<ConstantInt>(Arg);
392     if (!CI || CI->getBitWidth() > 64)
393       return CSInfo;
394     Args.push_back(CI->getZExtValue());
395   }
396   return ConstCSInfo[Args];
397 }
398 
399 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
400                                  unsigned *NumUnsafeUses) {
401   auto &CSI = findCallSiteInfo(CS);
402   CSI.AllCallSitesDevirted = false;
403   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
404 }
405 
406 struct DevirtModule {
407   Module &M;
408   function_ref<AAResults &(Function &)> AARGetter;
409   function_ref<DominatorTree &(Function &)> LookupDomTree;
410 
411   ModuleSummaryIndex *ExportSummary;
412   const ModuleSummaryIndex *ImportSummary;
413 
414   IntegerType *Int8Ty;
415   PointerType *Int8PtrTy;
416   IntegerType *Int32Ty;
417   IntegerType *Int64Ty;
418   IntegerType *IntPtrTy;
419 
420   bool RemarksEnabled;
421   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
422 
423   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
424 
425   // This map keeps track of the number of "unsafe" uses of a loaded function
426   // pointer. The key is the associated llvm.type.test intrinsic call generated
427   // by this pass. An unsafe use is one that calls the loaded function pointer
428   // directly. Every time we eliminate an unsafe use (for example, by
429   // devirtualizing it or by applying virtual constant propagation), we
430   // decrement the value stored in this map. If a value reaches zero, we can
431   // eliminate the type check by RAUWing the associated llvm.type.test call with
432   // true.
433   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
434 
435   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
436                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
437                function_ref<DominatorTree &(Function &)> LookupDomTree,
438                ModuleSummaryIndex *ExportSummary,
439                const ModuleSummaryIndex *ImportSummary)
440       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
441         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
442         Int8Ty(Type::getInt8Ty(M.getContext())),
443         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
444         Int32Ty(Type::getInt32Ty(M.getContext())),
445         Int64Ty(Type::getInt64Ty(M.getContext())),
446         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
447         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
448     assert(!(ExportSummary && ImportSummary));
449   }
450 
451   bool areRemarksEnabled();
452 
453   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
454   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
455 
456   void buildTypeIdentifierMap(
457       std::vector<VTableBits> &Bits,
458       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
459   Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
460   bool
461   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
462                             const std::set<TypeMemberInfo> &TypeMemberInfos,
463                             uint64_t ByteOffset);
464 
465   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
466                              bool &IsExported);
467   bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
468                            VTableSlotInfo &SlotInfo,
469                            WholeProgramDevirtResolution *Res);
470 
471   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
472                               bool &IsExported);
473   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
474                             VTableSlotInfo &SlotInfo,
475                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
476 
477   bool tryEvaluateFunctionsWithArgs(
478       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
479       ArrayRef<uint64_t> Args);
480 
481   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
482                              uint64_t TheRetVal);
483   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
484                            CallSiteInfo &CSInfo,
485                            WholeProgramDevirtResolution::ByArg *Res);
486 
487   // Returns the global symbol name that is used to export information about the
488   // given vtable slot and list of arguments.
489   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
490                             StringRef Name);
491 
492   bool shouldExportConstantsAsAbsoluteSymbols();
493 
494   // This function is called during the export phase to create a symbol
495   // definition containing information about the given vtable slot and list of
496   // arguments.
497   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
498                     Constant *C);
499   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
500                       uint32_t Const, uint32_t &Storage);
501 
502   // This function is called during the import phase to create a reference to
503   // the symbol definition created during the export phase.
504   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
505                          StringRef Name);
506   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
507                            StringRef Name, IntegerType *IntTy,
508                            uint32_t Storage);
509 
510   Constant *getMemberAddr(const TypeMemberInfo *M);
511 
512   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
513                             Constant *UniqueMemberAddr);
514   bool tryUniqueRetValOpt(unsigned BitWidth,
515                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
516                           CallSiteInfo &CSInfo,
517                           WholeProgramDevirtResolution::ByArg *Res,
518                           VTableSlot Slot, ArrayRef<uint64_t> Args);
519 
520   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
521                              Constant *Byte, Constant *Bit);
522   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
523                            VTableSlotInfo &SlotInfo,
524                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
525 
526   void rebuildGlobal(VTableBits &B);
527 
528   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
529   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
530 
531   // If we were able to eliminate all unsafe uses for a type checked load,
532   // eliminate the associated type tests by replacing them with true.
533   void removeRedundantTypeTests();
534 
535   bool run();
536 
537   // Lower the module using the action and summary passed as command line
538   // arguments. For testing purposes only.
539   static bool
540   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
541                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
542                 function_ref<DominatorTree &(Function &)> LookupDomTree);
543 };
544 
545 struct WholeProgramDevirt : public ModulePass {
546   static char ID;
547 
548   bool UseCommandLine = false;
549 
550   ModuleSummaryIndex *ExportSummary;
551   const ModuleSummaryIndex *ImportSummary;
552 
553   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
554     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
555   }
556 
557   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
558                      const ModuleSummaryIndex *ImportSummary)
559       : ModulePass(ID), ExportSummary(ExportSummary),
560         ImportSummary(ImportSummary) {
561     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
562   }
563 
564   bool runOnModule(Module &M) override {
565     if (skipModule(M))
566       return false;
567 
568     // In the new pass manager, we can request the optimization
569     // remark emitter pass on a per-function-basis, which the
570     // OREGetter will do for us.
571     // In the old pass manager, this is harder, so we just build
572     // an optimization remark emitter on the fly, when we need it.
573     std::unique_ptr<OptimizationRemarkEmitter> ORE;
574     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
575       ORE = make_unique<OptimizationRemarkEmitter>(F);
576       return *ORE;
577     };
578 
579     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
580       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
581     };
582 
583     if (UseCommandLine)
584       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
585                                          LookupDomTree);
586 
587     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
588                         ExportSummary, ImportSummary)
589         .run();
590   }
591 
592   void getAnalysisUsage(AnalysisUsage &AU) const override {
593     AU.addRequired<AssumptionCacheTracker>();
594     AU.addRequired<TargetLibraryInfoWrapperPass>();
595     AU.addRequired<DominatorTreeWrapperPass>();
596   }
597 };
598 
599 } // end anonymous namespace
600 
601 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
602                       "Whole program devirtualization", false, false)
603 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
604 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
605 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
606 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
607                     "Whole program devirtualization", false, false)
608 char WholeProgramDevirt::ID = 0;
609 
610 ModulePass *
611 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
612                                    const ModuleSummaryIndex *ImportSummary) {
613   return new WholeProgramDevirt(ExportSummary, ImportSummary);
614 }
615 
616 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
617                                               ModuleAnalysisManager &AM) {
618   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
619   auto AARGetter = [&](Function &F) -> AAResults & {
620     return FAM.getResult<AAManager>(F);
621   };
622   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
623     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
624   };
625   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
626     return FAM.getResult<DominatorTreeAnalysis>(F);
627   };
628   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
629                     ImportSummary)
630            .run())
631     return PreservedAnalyses::all();
632   return PreservedAnalyses::none();
633 }
634 
635 bool DevirtModule::runForTesting(
636     Module &M, function_ref<AAResults &(Function &)> AARGetter,
637     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
638     function_ref<DominatorTree &(Function &)> LookupDomTree) {
639   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
640 
641   // Handle the command-line summary arguments. This code is for testing
642   // purposes only, so we handle errors directly.
643   if (!ClReadSummary.empty()) {
644     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
645                           ": ");
646     auto ReadSummaryFile =
647         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
648 
649     yaml::Input In(ReadSummaryFile->getBuffer());
650     In >> Summary;
651     ExitOnErr(errorCodeToError(In.error()));
652   }
653 
654   bool Changed =
655       DevirtModule(
656           M, AARGetter, OREGetter, LookupDomTree,
657           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
658           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
659           .run();
660 
661   if (!ClWriteSummary.empty()) {
662     ExitOnError ExitOnErr(
663         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
664     std::error_code EC;
665     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
666     ExitOnErr(errorCodeToError(EC));
667 
668     yaml::Output Out(OS);
669     Out << Summary;
670   }
671 
672   return Changed;
673 }
674 
675 void DevirtModule::buildTypeIdentifierMap(
676     std::vector<VTableBits> &Bits,
677     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
678   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
679   Bits.reserve(M.getGlobalList().size());
680   SmallVector<MDNode *, 2> Types;
681   for (GlobalVariable &GV : M.globals()) {
682     Types.clear();
683     GV.getMetadata(LLVMContext::MD_type, Types);
684     if (GV.isDeclaration() || Types.empty())
685       continue;
686 
687     VTableBits *&BitsPtr = GVToBits[&GV];
688     if (!BitsPtr) {
689       Bits.emplace_back();
690       Bits.back().GV = &GV;
691       Bits.back().ObjectSize =
692           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
693       BitsPtr = &Bits.back();
694     }
695 
696     for (MDNode *Type : Types) {
697       auto TypeID = Type->getOperand(1).get();
698 
699       uint64_t Offset =
700           cast<ConstantInt>(
701               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
702               ->getZExtValue();
703 
704       TypeIdMap[TypeID].insert({BitsPtr, Offset});
705     }
706   }
707 }
708 
709 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
710   if (I->getType()->isPointerTy()) {
711     if (Offset == 0)
712       return I;
713     return nullptr;
714   }
715 
716   const DataLayout &DL = M.getDataLayout();
717 
718   if (auto *C = dyn_cast<ConstantStruct>(I)) {
719     const StructLayout *SL = DL.getStructLayout(C->getType());
720     if (Offset >= SL->getSizeInBytes())
721       return nullptr;
722 
723     unsigned Op = SL->getElementContainingOffset(Offset);
724     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
725                               Offset - SL->getElementOffset(Op));
726   }
727   if (auto *C = dyn_cast<ConstantArray>(I)) {
728     ArrayType *VTableTy = C->getType();
729     uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
730 
731     unsigned Op = Offset / ElemSize;
732     if (Op >= C->getNumOperands())
733       return nullptr;
734 
735     return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
736                               Offset % ElemSize);
737   }
738   return nullptr;
739 }
740 
741 bool DevirtModule::tryFindVirtualCallTargets(
742     std::vector<VirtualCallTarget> &TargetsForSlot,
743     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
744   for (const TypeMemberInfo &TM : TypeMemberInfos) {
745     if (!TM.Bits->GV->isConstant())
746       return false;
747 
748     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
749                                        TM.Offset + ByteOffset);
750     if (!Ptr)
751       return false;
752 
753     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
754     if (!Fn)
755       return false;
756 
757     // We can disregard __cxa_pure_virtual as a possible call target, as
758     // calls to pure virtuals are UB.
759     if (Fn->getName() == "__cxa_pure_virtual")
760       continue;
761 
762     TargetsForSlot.push_back({Fn, &TM});
763   }
764 
765   // Give up if we couldn't find any targets.
766   return !TargetsForSlot.empty();
767 }
768 
769 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
770                                          Constant *TheFn, bool &IsExported) {
771   auto Apply = [&](CallSiteInfo &CSInfo) {
772     for (auto &&VCallSite : CSInfo.CallSites) {
773       if (RemarksEnabled)
774         VCallSite.emitRemark("single-impl",
775                              TheFn->stripPointerCasts()->getName(), OREGetter);
776       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
777           TheFn, VCallSite.CS.getCalledValue()->getType()));
778       // This use is no longer unsafe.
779       if (VCallSite.NumUnsafeUses)
780         --*VCallSite.NumUnsafeUses;
781     }
782     if (CSInfo.isExported())
783       IsExported = true;
784     CSInfo.markDevirt();
785   };
786   Apply(SlotInfo.CSInfo);
787   for (auto &P : SlotInfo.ConstCSInfo)
788     Apply(P.second);
789 }
790 
791 bool DevirtModule::trySingleImplDevirt(
792     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
793     VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
794   // See if the program contains a single implementation of this virtual
795   // function.
796   Function *TheFn = TargetsForSlot[0].Fn;
797   for (auto &&Target : TargetsForSlot)
798     if (TheFn != Target.Fn)
799       return false;
800 
801   // If so, update each call site to call that implementation directly.
802   if (RemarksEnabled)
803     TargetsForSlot[0].WasDevirt = true;
804 
805   bool IsExported = false;
806   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
807   if (!IsExported)
808     return false;
809 
810   // If the only implementation has local linkage, we must promote to external
811   // to make it visible to thin LTO objects. We can only get here during the
812   // ThinLTO export phase.
813   if (TheFn->hasLocalLinkage()) {
814     std::string NewName = (TheFn->getName() + "$merged").str();
815 
816     // Since we are renaming the function, any comdats with the same name must
817     // also be renamed. This is required when targeting COFF, as the comdat name
818     // must match one of the names of the symbols in the comdat.
819     if (Comdat *C = TheFn->getComdat()) {
820       if (C->getName() == TheFn->getName()) {
821         Comdat *NewC = M.getOrInsertComdat(NewName);
822         NewC->setSelectionKind(C->getSelectionKind());
823         for (GlobalObject &GO : M.global_objects())
824           if (GO.getComdat() == C)
825             GO.setComdat(NewC);
826       }
827     }
828 
829     TheFn->setLinkage(GlobalValue::ExternalLinkage);
830     TheFn->setVisibility(GlobalValue::HiddenVisibility);
831     TheFn->setName(NewName);
832   }
833 
834   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
835   Res->SingleImplName = TheFn->getName();
836 
837   return true;
838 }
839 
840 void DevirtModule::tryICallBranchFunnel(
841     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
842     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
843   Triple T(M.getTargetTriple());
844   if (T.getArch() != Triple::x86_64)
845     return;
846 
847   if (TargetsForSlot.size() > ClThreshold)
848     return;
849 
850   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
851   if (!HasNonDevirt)
852     for (auto &P : SlotInfo.ConstCSInfo)
853       if (!P.second.AllCallSitesDevirted) {
854         HasNonDevirt = true;
855         break;
856       }
857 
858   if (!HasNonDevirt)
859     return;
860 
861   FunctionType *FT =
862       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
863   Function *JT;
864   if (isa<MDString>(Slot.TypeID)) {
865     JT = Function::Create(FT, Function::ExternalLinkage,
866                           M.getDataLayout().getProgramAddressSpace(),
867                           getGlobalName(Slot, {}, "branch_funnel"), &M);
868     JT->setVisibility(GlobalValue::HiddenVisibility);
869   } else {
870     JT = Function::Create(FT, Function::InternalLinkage,
871                           M.getDataLayout().getProgramAddressSpace(),
872                           "branch_funnel", &M);
873   }
874   JT->addAttribute(1, Attribute::Nest);
875 
876   std::vector<Value *> JTArgs;
877   JTArgs.push_back(JT->arg_begin());
878   for (auto &T : TargetsForSlot) {
879     JTArgs.push_back(getMemberAddr(T.TM));
880     JTArgs.push_back(T.Fn);
881   }
882 
883   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
884   Constant *Intr =
885       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
886 
887   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
888   CI->setTailCallKind(CallInst::TCK_MustTail);
889   ReturnInst::Create(M.getContext(), nullptr, BB);
890 
891   bool IsExported = false;
892   applyICallBranchFunnel(SlotInfo, JT, IsExported);
893   if (IsExported)
894     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
895 }
896 
897 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
898                                           Constant *JT, bool &IsExported) {
899   auto Apply = [&](CallSiteInfo &CSInfo) {
900     if (CSInfo.isExported())
901       IsExported = true;
902     if (CSInfo.AllCallSitesDevirted)
903       return;
904     for (auto &&VCallSite : CSInfo.CallSites) {
905       CallSite CS = VCallSite.CS;
906 
907       // Jump tables are only profitable if the retpoline mitigation is enabled.
908       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
909       if (FSAttr.hasAttribute(Attribute::None) ||
910           !FSAttr.getValueAsString().contains("+retpoline"))
911         continue;
912 
913       if (RemarksEnabled)
914         VCallSite.emitRemark("branch-funnel",
915                              JT->stripPointerCasts()->getName(), OREGetter);
916 
917       // Pass the address of the vtable in the nest register, which is r10 on
918       // x86_64.
919       std::vector<Type *> NewArgs;
920       NewArgs.push_back(Int8PtrTy);
921       for (Type *T : CS.getFunctionType()->params())
922         NewArgs.push_back(T);
923       PointerType *NewFT = PointerType::getUnqual(
924           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
925                             CS.getFunctionType()->isVarArg()));
926 
927       IRBuilder<> IRB(CS.getInstruction());
928       std::vector<Value *> Args;
929       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
930       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
931         Args.push_back(CS.getArgOperand(I));
932 
933       CallSite NewCS;
934       if (CS.isCall())
935         NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args);
936       else
937         NewCS = IRB.CreateInvoke(
938             IRB.CreateBitCast(JT, NewFT),
939             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
940             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
941       NewCS.setCallingConv(CS.getCallingConv());
942 
943       AttributeList Attrs = CS.getAttributes();
944       std::vector<AttributeSet> NewArgAttrs;
945       NewArgAttrs.push_back(AttributeSet::get(
946           M.getContext(), ArrayRef<Attribute>{Attribute::get(
947                               M.getContext(), Attribute::Nest)}));
948       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
949         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
950       NewCS.setAttributes(
951           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
952                              Attrs.getRetAttributes(), NewArgAttrs));
953 
954       CS->replaceAllUsesWith(NewCS.getInstruction());
955       CS->eraseFromParent();
956 
957       // This use is no longer unsafe.
958       if (VCallSite.NumUnsafeUses)
959         --*VCallSite.NumUnsafeUses;
960     }
961     // Don't mark as devirtualized because there may be callers compiled without
962     // retpoline mitigation, which would mean that they are lowered to
963     // llvm.type.test and therefore require an llvm.type.test resolution for the
964     // type identifier.
965   };
966   Apply(SlotInfo.CSInfo);
967   for (auto &P : SlotInfo.ConstCSInfo)
968     Apply(P.second);
969 }
970 
971 bool DevirtModule::tryEvaluateFunctionsWithArgs(
972     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
973     ArrayRef<uint64_t> Args) {
974   // Evaluate each function and store the result in each target's RetVal
975   // field.
976   for (VirtualCallTarget &Target : TargetsForSlot) {
977     if (Target.Fn->arg_size() != Args.size() + 1)
978       return false;
979 
980     Evaluator Eval(M.getDataLayout(), nullptr);
981     SmallVector<Constant *, 2> EvalArgs;
982     EvalArgs.push_back(
983         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
984     for (unsigned I = 0; I != Args.size(); ++I) {
985       auto *ArgTy = dyn_cast<IntegerType>(
986           Target.Fn->getFunctionType()->getParamType(I + 1));
987       if (!ArgTy)
988         return false;
989       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
990     }
991 
992     Constant *RetVal;
993     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
994         !isa<ConstantInt>(RetVal))
995       return false;
996     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
997   }
998   return true;
999 }
1000 
1001 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1002                                          uint64_t TheRetVal) {
1003   for (auto Call : CSInfo.CallSites)
1004     Call.replaceAndErase(
1005         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1006         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1007   CSInfo.markDevirt();
1008 }
1009 
1010 bool DevirtModule::tryUniformRetValOpt(
1011     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1012     WholeProgramDevirtResolution::ByArg *Res) {
1013   // Uniform return value optimization. If all functions return the same
1014   // constant, replace all calls with that constant.
1015   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1016   for (const VirtualCallTarget &Target : TargetsForSlot)
1017     if (Target.RetVal != TheRetVal)
1018       return false;
1019 
1020   if (CSInfo.isExported()) {
1021     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1022     Res->Info = TheRetVal;
1023   }
1024 
1025   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1026   if (RemarksEnabled)
1027     for (auto &&Target : TargetsForSlot)
1028       Target.WasDevirt = true;
1029   return true;
1030 }
1031 
1032 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1033                                         ArrayRef<uint64_t> Args,
1034                                         StringRef Name) {
1035   std::string FullName = "__typeid_";
1036   raw_string_ostream OS(FullName);
1037   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1038   for (uint64_t Arg : Args)
1039     OS << '_' << Arg;
1040   OS << '_' << Name;
1041   return OS.str();
1042 }
1043 
1044 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1045   Triple T(M.getTargetTriple());
1046   return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1047          T.getObjectFormat() == Triple::ELF;
1048 }
1049 
1050 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1051                                 StringRef Name, Constant *C) {
1052   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1053                                         getGlobalName(Slot, Args, Name), C, &M);
1054   GA->setVisibility(GlobalValue::HiddenVisibility);
1055 }
1056 
1057 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1058                                   StringRef Name, uint32_t Const,
1059                                   uint32_t &Storage) {
1060   if (shouldExportConstantsAsAbsoluteSymbols()) {
1061     exportGlobal(
1062         Slot, Args, Name,
1063         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1064     return;
1065   }
1066 
1067   Storage = Const;
1068 }
1069 
1070 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1071                                      StringRef Name) {
1072   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1073   auto *GV = dyn_cast<GlobalVariable>(C);
1074   if (GV)
1075     GV->setVisibility(GlobalValue::HiddenVisibility);
1076   return C;
1077 }
1078 
1079 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1080                                        StringRef Name, IntegerType *IntTy,
1081                                        uint32_t Storage) {
1082   if (!shouldExportConstantsAsAbsoluteSymbols())
1083     return ConstantInt::get(IntTy, Storage);
1084 
1085   Constant *C = importGlobal(Slot, Args, Name);
1086   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1087   C = ConstantExpr::getPtrToInt(C, IntTy);
1088 
1089   // We only need to set metadata if the global is newly created, in which
1090   // case it would not have hidden visibility.
1091   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1092     return C;
1093 
1094   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1095     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1096     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1097     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1098                     MDNode::get(M.getContext(), {MinC, MaxC}));
1099   };
1100   unsigned AbsWidth = IntTy->getBitWidth();
1101   if (AbsWidth == IntPtrTy->getBitWidth())
1102     SetAbsRange(~0ull, ~0ull); // Full set.
1103   else
1104     SetAbsRange(0, 1ull << AbsWidth);
1105   return C;
1106 }
1107 
1108 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1109                                         bool IsOne,
1110                                         Constant *UniqueMemberAddr) {
1111   for (auto &&Call : CSInfo.CallSites) {
1112     IRBuilder<> B(Call.CS.getInstruction());
1113     Value *Cmp =
1114         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1115                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1116     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1117     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1118                          Cmp);
1119   }
1120   CSInfo.markDevirt();
1121 }
1122 
1123 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1124   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1125   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1126                                         ConstantInt::get(Int64Ty, M->Offset));
1127 }
1128 
1129 bool DevirtModule::tryUniqueRetValOpt(
1130     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1131     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1132     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1133   // IsOne controls whether we look for a 0 or a 1.
1134   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1135     const TypeMemberInfo *UniqueMember = nullptr;
1136     for (const VirtualCallTarget &Target : TargetsForSlot) {
1137       if (Target.RetVal == (IsOne ? 1 : 0)) {
1138         if (UniqueMember)
1139           return false;
1140         UniqueMember = Target.TM;
1141       }
1142     }
1143 
1144     // We should have found a unique member or bailed out by now. We already
1145     // checked for a uniform return value in tryUniformRetValOpt.
1146     assert(UniqueMember);
1147 
1148     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1149     if (CSInfo.isExported()) {
1150       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1151       Res->Info = IsOne;
1152 
1153       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1154     }
1155 
1156     // Replace each call with the comparison.
1157     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1158                          UniqueMemberAddr);
1159 
1160     // Update devirtualization statistics for targets.
1161     if (RemarksEnabled)
1162       for (auto &&Target : TargetsForSlot)
1163         Target.WasDevirt = true;
1164 
1165     return true;
1166   };
1167 
1168   if (BitWidth == 1) {
1169     if (tryUniqueRetValOptFor(true))
1170       return true;
1171     if (tryUniqueRetValOptFor(false))
1172       return true;
1173   }
1174   return false;
1175 }
1176 
1177 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1178                                          Constant *Byte, Constant *Bit) {
1179   for (auto Call : CSInfo.CallSites) {
1180     auto *RetType = cast<IntegerType>(Call.CS.getType());
1181     IRBuilder<> B(Call.CS.getInstruction());
1182     Value *Addr =
1183         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1184     if (RetType->getBitWidth() == 1) {
1185       Value *Bits = B.CreateLoad(Addr);
1186       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1187       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1188       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1189                            OREGetter, IsBitSet);
1190     } else {
1191       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1192       Value *Val = B.CreateLoad(RetType, ValAddr);
1193       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1194                            OREGetter, Val);
1195     }
1196   }
1197   CSInfo.markDevirt();
1198 }
1199 
1200 bool DevirtModule::tryVirtualConstProp(
1201     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1202     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1203   // This only works if the function returns an integer.
1204   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1205   if (!RetType)
1206     return false;
1207   unsigned BitWidth = RetType->getBitWidth();
1208   if (BitWidth > 64)
1209     return false;
1210 
1211   // Make sure that each function is defined, does not access memory, takes at
1212   // least one argument, does not use its first argument (which we assume is
1213   // 'this'), and has the same return type.
1214   //
1215   // Note that we test whether this copy of the function is readnone, rather
1216   // than testing function attributes, which must hold for any copy of the
1217   // function, even a less optimized version substituted at link time. This is
1218   // sound because the virtual constant propagation optimizations effectively
1219   // inline all implementations of the virtual function into each call site,
1220   // rather than using function attributes to perform local optimization.
1221   for (VirtualCallTarget &Target : TargetsForSlot) {
1222     if (Target.Fn->isDeclaration() ||
1223         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1224             MAK_ReadNone ||
1225         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1226         Target.Fn->getReturnType() != RetType)
1227       return false;
1228   }
1229 
1230   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1231     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1232       continue;
1233 
1234     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1235     if (Res)
1236       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1237 
1238     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1239       continue;
1240 
1241     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1242                            ResByArg, Slot, CSByConstantArg.first))
1243       continue;
1244 
1245     // Find an allocation offset in bits in all vtables associated with the
1246     // type.
1247     uint64_t AllocBefore =
1248         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1249     uint64_t AllocAfter =
1250         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1251 
1252     // Calculate the total amount of padding needed to store a value at both
1253     // ends of the object.
1254     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1255     for (auto &&Target : TargetsForSlot) {
1256       TotalPaddingBefore += std::max<int64_t>(
1257           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1258       TotalPaddingAfter += std::max<int64_t>(
1259           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1260     }
1261 
1262     // If the amount of padding is too large, give up.
1263     // FIXME: do something smarter here.
1264     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1265       continue;
1266 
1267     // Calculate the offset to the value as a (possibly negative) byte offset
1268     // and (if applicable) a bit offset, and store the values in the targets.
1269     int64_t OffsetByte;
1270     uint64_t OffsetBit;
1271     if (TotalPaddingBefore <= TotalPaddingAfter)
1272       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1273                             OffsetBit);
1274     else
1275       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1276                            OffsetBit);
1277 
1278     if (RemarksEnabled)
1279       for (auto &&Target : TargetsForSlot)
1280         Target.WasDevirt = true;
1281 
1282 
1283     if (CSByConstantArg.second.isExported()) {
1284       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1285       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1286                      ResByArg->Byte);
1287       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1288                      ResByArg->Bit);
1289     }
1290 
1291     // Rewrite each call to a load from OffsetByte/OffsetBit.
1292     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1293     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1294     applyVirtualConstProp(CSByConstantArg.second,
1295                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1296   }
1297   return true;
1298 }
1299 
1300 void DevirtModule::rebuildGlobal(VTableBits &B) {
1301   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1302     return;
1303 
1304   // Align each byte array to pointer width.
1305   unsigned PointerSize = M.getDataLayout().getPointerSize();
1306   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
1307   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
1308 
1309   // Before was stored in reverse order; flip it now.
1310   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1311     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1312 
1313   // Build an anonymous global containing the before bytes, followed by the
1314   // original initializer, followed by the after bytes.
1315   auto NewInit = ConstantStruct::getAnon(
1316       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1317        B.GV->getInitializer(),
1318        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1319   auto NewGV =
1320       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1321                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1322   NewGV->setSection(B.GV->getSection());
1323   NewGV->setComdat(B.GV->getComdat());
1324 
1325   // Copy the original vtable's metadata to the anonymous global, adjusting
1326   // offsets as required.
1327   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1328 
1329   // Build an alias named after the original global, pointing at the second
1330   // element (the original initializer).
1331   auto Alias = GlobalAlias::create(
1332       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1333       ConstantExpr::getGetElementPtr(
1334           NewInit->getType(), NewGV,
1335           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1336                                ConstantInt::get(Int32Ty, 1)}),
1337       &M);
1338   Alias->setVisibility(B.GV->getVisibility());
1339   Alias->takeName(B.GV);
1340 
1341   B.GV->replaceAllUsesWith(Alias);
1342   B.GV->eraseFromParent();
1343 }
1344 
1345 bool DevirtModule::areRemarksEnabled() {
1346   const auto &FL = M.getFunctionList();
1347   for (const Function &Fn : FL) {
1348     const auto &BBL = Fn.getBasicBlockList();
1349     if (BBL.empty())
1350       continue;
1351     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1352     return DI.isEnabled();
1353   }
1354   return false;
1355 }
1356 
1357 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1358                                      Function *AssumeFunc) {
1359   // Find all virtual calls via a virtual table pointer %p under an assumption
1360   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1361   // points to a member of the type identifier %md. Group calls by (type ID,
1362   // offset) pair (effectively the identity of the virtual function) and store
1363   // to CallSlots.
1364   DenseSet<CallSite> SeenCallSites;
1365   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1366        I != E;) {
1367     auto CI = dyn_cast<CallInst>(I->getUser());
1368     ++I;
1369     if (!CI)
1370       continue;
1371 
1372     // Search for virtual calls based on %p and add them to DevirtCalls.
1373     SmallVector<DevirtCallSite, 1> DevirtCalls;
1374     SmallVector<CallInst *, 1> Assumes;
1375     auto &DT = LookupDomTree(*CI->getFunction());
1376     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1377 
1378     // If we found any, add them to CallSlots.
1379     if (!Assumes.empty()) {
1380       Metadata *TypeId =
1381           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1382       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1383       for (DevirtCallSite Call : DevirtCalls) {
1384         // Only add this CallSite if we haven't seen it before. The vtable
1385         // pointer may have been CSE'd with pointers from other call sites,
1386         // and we don't want to process call sites multiple times. We can't
1387         // just skip the vtable Ptr if it has been seen before, however, since
1388         // it may be shared by type tests that dominate different calls.
1389         if (SeenCallSites.insert(Call.CS).second)
1390           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1391       }
1392     }
1393 
1394     // We no longer need the assumes or the type test.
1395     for (auto Assume : Assumes)
1396       Assume->eraseFromParent();
1397     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1398     // may use the vtable argument later.
1399     if (CI->use_empty())
1400       CI->eraseFromParent();
1401   }
1402 }
1403 
1404 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1405   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1406 
1407   for (auto I = TypeCheckedLoadFunc->use_begin(),
1408             E = TypeCheckedLoadFunc->use_end();
1409        I != E;) {
1410     auto CI = dyn_cast<CallInst>(I->getUser());
1411     ++I;
1412     if (!CI)
1413       continue;
1414 
1415     Value *Ptr = CI->getArgOperand(0);
1416     Value *Offset = CI->getArgOperand(1);
1417     Value *TypeIdValue = CI->getArgOperand(2);
1418     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1419 
1420     SmallVector<DevirtCallSite, 1> DevirtCalls;
1421     SmallVector<Instruction *, 1> LoadedPtrs;
1422     SmallVector<Instruction *, 1> Preds;
1423     bool HasNonCallUses = false;
1424     auto &DT = LookupDomTree(*CI->getFunction());
1425     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1426                                                HasNonCallUses, CI, DT);
1427 
1428     // Start by generating "pessimistic" code that explicitly loads the function
1429     // pointer from the vtable and performs the type check. If possible, we will
1430     // eliminate the load and the type check later.
1431 
1432     // If possible, only generate the load at the point where it is used.
1433     // This helps avoid unnecessary spills.
1434     IRBuilder<> LoadB(
1435         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1436     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1437     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1438     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1439 
1440     for (Instruction *LoadedPtr : LoadedPtrs) {
1441       LoadedPtr->replaceAllUsesWith(LoadedValue);
1442       LoadedPtr->eraseFromParent();
1443     }
1444 
1445     // Likewise for the type test.
1446     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1447     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1448 
1449     for (Instruction *Pred : Preds) {
1450       Pred->replaceAllUsesWith(TypeTestCall);
1451       Pred->eraseFromParent();
1452     }
1453 
1454     // We have already erased any extractvalue instructions that refer to the
1455     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1456     // (although this is unlikely). In that case, explicitly build a pair and
1457     // RAUW it.
1458     if (!CI->use_empty()) {
1459       Value *Pair = UndefValue::get(CI->getType());
1460       IRBuilder<> B(CI);
1461       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1462       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1463       CI->replaceAllUsesWith(Pair);
1464     }
1465 
1466     // The number of unsafe uses is initially the number of uses.
1467     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1468     NumUnsafeUses = DevirtCalls.size();
1469 
1470     // If the function pointer has a non-call user, we cannot eliminate the type
1471     // check, as one of those users may eventually call the pointer. Increment
1472     // the unsafe use count to make sure it cannot reach zero.
1473     if (HasNonCallUses)
1474       ++NumUnsafeUses;
1475     for (DevirtCallSite Call : DevirtCalls) {
1476       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1477                                                    &NumUnsafeUses);
1478     }
1479 
1480     CI->eraseFromParent();
1481   }
1482 }
1483 
1484 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1485   const TypeIdSummary *TidSummary =
1486       ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
1487   if (!TidSummary)
1488     return;
1489   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1490   if (ResI == TidSummary->WPDRes.end())
1491     return;
1492   const WholeProgramDevirtResolution &Res = ResI->second;
1493 
1494   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1495     // The type of the function in the declaration is irrelevant because every
1496     // call site will cast it to the correct type.
1497     auto *SingleImpl = M.getOrInsertFunction(
1498         Res.SingleImplName, Type::getVoidTy(M.getContext()));
1499 
1500     // This is the import phase so we should not be exporting anything.
1501     bool IsExported = false;
1502     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1503     assert(!IsExported);
1504   }
1505 
1506   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1507     auto I = Res.ResByArg.find(CSByConstantArg.first);
1508     if (I == Res.ResByArg.end())
1509       continue;
1510     auto &ResByArg = I->second;
1511     // FIXME: We should figure out what to do about the "function name" argument
1512     // to the apply* functions, as the function names are unavailable during the
1513     // importing phase. For now we just pass the empty string. This does not
1514     // impact correctness because the function names are just used for remarks.
1515     switch (ResByArg.TheKind) {
1516     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1517       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1518       break;
1519     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1520       Constant *UniqueMemberAddr =
1521           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1522       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1523                            UniqueMemberAddr);
1524       break;
1525     }
1526     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1527       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1528                                       Int32Ty, ResByArg.Byte);
1529       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1530                                      ResByArg.Bit);
1531       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1532       break;
1533     }
1534     default:
1535       break;
1536     }
1537   }
1538 
1539   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1540     auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1541                                      Type::getVoidTy(M.getContext()));
1542     bool IsExported = false;
1543     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1544     assert(!IsExported);
1545   }
1546 }
1547 
1548 void DevirtModule::removeRedundantTypeTests() {
1549   auto True = ConstantInt::getTrue(M.getContext());
1550   for (auto &&U : NumUnsafeUsesForTypeTest) {
1551     if (U.second == 0) {
1552       U.first->replaceAllUsesWith(True);
1553       U.first->eraseFromParent();
1554     }
1555   }
1556 }
1557 
1558 bool DevirtModule::run() {
1559   Function *TypeTestFunc =
1560       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1561   Function *TypeCheckedLoadFunc =
1562       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1563   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1564 
1565   // If only some of the modules were split, we cannot correctly handle
1566   // code that contains type tests or type checked loads.
1567   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1568       (ImportSummary && ImportSummary->partiallySplitLTOUnits())) {
1569     if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
1570         (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
1571       report_fatal_error("inconsistent LTO Unit splitting with llvm.type.test "
1572                          "or llvm.type.checked.load");
1573     return false;
1574   }
1575 
1576   // Normally if there are no users of the devirtualization intrinsics in the
1577   // module, this pass has nothing to do. But if we are exporting, we also need
1578   // to handle any users that appear only in the function summaries.
1579   if (!ExportSummary &&
1580       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1581        AssumeFunc->use_empty()) &&
1582       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1583     return false;
1584 
1585   if (TypeTestFunc && AssumeFunc)
1586     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1587 
1588   if (TypeCheckedLoadFunc)
1589     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1590 
1591   if (ImportSummary) {
1592     for (auto &S : CallSlots)
1593       importResolution(S.first, S.second);
1594 
1595     removeRedundantTypeTests();
1596 
1597     // The rest of the code is only necessary when exporting or during regular
1598     // LTO, so we are done.
1599     return true;
1600   }
1601 
1602   // Rebuild type metadata into a map for easy lookup.
1603   std::vector<VTableBits> Bits;
1604   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1605   buildTypeIdentifierMap(Bits, TypeIdMap);
1606   if (TypeIdMap.empty())
1607     return true;
1608 
1609   // Collect information from summary about which calls to try to devirtualize.
1610   if (ExportSummary) {
1611     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1612     for (auto &P : TypeIdMap) {
1613       if (auto *TypeId = dyn_cast<MDString>(P.first))
1614         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1615             TypeId);
1616     }
1617 
1618     for (auto &P : *ExportSummary) {
1619       for (auto &S : P.second.SummaryList) {
1620         auto *FS = dyn_cast<FunctionSummary>(S.get());
1621         if (!FS)
1622           continue;
1623         // FIXME: Only add live functions.
1624         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1625           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1626             CallSlots[{MD, VF.Offset}]
1627                 .CSInfo.markSummaryHasTypeTestAssumeUsers();
1628           }
1629         }
1630         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1631           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1632             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1633           }
1634         }
1635         for (const FunctionSummary::ConstVCall &VC :
1636              FS->type_test_assume_const_vcalls()) {
1637           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1638             CallSlots[{MD, VC.VFunc.Offset}]
1639                 .ConstCSInfo[VC.Args]
1640                 .markSummaryHasTypeTestAssumeUsers();
1641           }
1642         }
1643         for (const FunctionSummary::ConstVCall &VC :
1644              FS->type_checked_load_const_vcalls()) {
1645           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1646             CallSlots[{MD, VC.VFunc.Offset}]
1647                 .ConstCSInfo[VC.Args]
1648                 .addSummaryTypeCheckedLoadUser(FS);
1649           }
1650         }
1651       }
1652     }
1653   }
1654 
1655   // For each (type, offset) pair:
1656   bool DidVirtualConstProp = false;
1657   std::map<std::string, Function*> DevirtTargets;
1658   for (auto &S : CallSlots) {
1659     // Search each of the members of the type identifier for the virtual
1660     // function implementation at offset S.first.ByteOffset, and add to
1661     // TargetsForSlot.
1662     std::vector<VirtualCallTarget> TargetsForSlot;
1663     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1664                                   S.first.ByteOffset)) {
1665       WholeProgramDevirtResolution *Res = nullptr;
1666       if (ExportSummary && isa<MDString>(S.first.TypeID))
1667         Res = &ExportSummary
1668                    ->getOrInsertTypeIdSummary(
1669                        cast<MDString>(S.first.TypeID)->getString())
1670                    .WPDRes[S.first.ByteOffset];
1671 
1672       if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
1673         DidVirtualConstProp |=
1674             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1675 
1676         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1677       }
1678 
1679       // Collect functions devirtualized at least for one call site for stats.
1680       if (RemarksEnabled)
1681         for (const auto &T : TargetsForSlot)
1682           if (T.WasDevirt)
1683             DevirtTargets[T.Fn->getName()] = T.Fn;
1684     }
1685 
1686     // CFI-specific: if we are exporting and any llvm.type.checked.load
1687     // intrinsics were *not* devirtualized, we need to add the resulting
1688     // llvm.type.test intrinsics to the function summaries so that the
1689     // LowerTypeTests pass will export them.
1690     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1691       auto GUID =
1692           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1693       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1694         FS->addTypeTest(GUID);
1695       for (auto &CCS : S.second.ConstCSInfo)
1696         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1697           FS->addTypeTest(GUID);
1698     }
1699   }
1700 
1701   if (RemarksEnabled) {
1702     // Generate remarks for each devirtualized function.
1703     for (const auto &DT : DevirtTargets) {
1704       Function *F = DT.second;
1705 
1706       using namespace ore;
1707       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1708                         << "devirtualized "
1709                         << NV("FunctionName", F->getName()));
1710     }
1711   }
1712 
1713   removeRedundantTypeTests();
1714 
1715   // Rebuild each global we touched as part of virtual constant propagation to
1716   // include the before and after bytes.
1717   if (DidVirtualConstProp)
1718     for (VTableBits &B : Bits)
1719       rebuildGlobal(B);
1720 
1721   return true;
1722 }
1723