1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/iterator_range.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/TypeMetadataUtils.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Dominators.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/GlobalAlias.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/LLVMContext.h" 71 #include "llvm/IR/Metadata.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ModuleSummaryIndexYAML.h" 74 #include "llvm/Pass.h" 75 #include "llvm/PassRegistry.h" 76 #include "llvm/PassSupport.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/Error.h" 79 #include "llvm/Support/FileSystem.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Transforms/IPO.h" 82 #include "llvm/Transforms/IPO/FunctionAttrs.h" 83 #include "llvm/Transforms/Utils/Evaluator.h" 84 #include <algorithm> 85 #include <cstddef> 86 #include <map> 87 #include <set> 88 #include <string> 89 90 using namespace llvm; 91 using namespace wholeprogramdevirt; 92 93 #define DEBUG_TYPE "wholeprogramdevirt" 94 95 static cl::opt<PassSummaryAction> ClSummaryAction( 96 "wholeprogramdevirt-summary-action", 97 cl::desc("What to do with the summary when running this pass"), 98 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 99 clEnumValN(PassSummaryAction::Import, "import", 100 "Import typeid resolutions from summary and globals"), 101 clEnumValN(PassSummaryAction::Export, "export", 102 "Export typeid resolutions to summary and globals")), 103 cl::Hidden); 104 105 static cl::opt<std::string> ClReadSummary( 106 "wholeprogramdevirt-read-summary", 107 cl::desc("Read summary from given YAML file before running pass"), 108 cl::Hidden); 109 110 static cl::opt<std::string> ClWriteSummary( 111 "wholeprogramdevirt-write-summary", 112 cl::desc("Write summary to given YAML file after running pass"), 113 cl::Hidden); 114 115 static cl::opt<unsigned> 116 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 117 cl::init(10), cl::ZeroOrMore, 118 cl::desc("Maximum number of call targets per " 119 "call site to enable branch funnels")); 120 121 // Find the minimum offset that we may store a value of size Size bits at. If 122 // IsAfter is set, look for an offset before the object, otherwise look for an 123 // offset after the object. 124 uint64_t 125 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 126 bool IsAfter, uint64_t Size) { 127 // Find a minimum offset taking into account only vtable sizes. 128 uint64_t MinByte = 0; 129 for (const VirtualCallTarget &Target : Targets) { 130 if (IsAfter) 131 MinByte = std::max(MinByte, Target.minAfterBytes()); 132 else 133 MinByte = std::max(MinByte, Target.minBeforeBytes()); 134 } 135 136 // Build a vector of arrays of bytes covering, for each target, a slice of the 137 // used region (see AccumBitVector::BytesUsed in 138 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 139 // this aligns the used regions to start at MinByte. 140 // 141 // In this example, A, B and C are vtables, # is a byte already allocated for 142 // a virtual function pointer, AAAA... (etc.) are the used regions for the 143 // vtables and Offset(X) is the value computed for the Offset variable below 144 // for X. 145 // 146 // Offset(A) 147 // | | 148 // |MinByte 149 // A: ################AAAAAAAA|AAAAAAAA 150 // B: ########BBBBBBBBBBBBBBBB|BBBB 151 // C: ########################|CCCCCCCCCCCCCCCC 152 // | Offset(B) | 153 // 154 // This code produces the slices of A, B and C that appear after the divider 155 // at MinByte. 156 std::vector<ArrayRef<uint8_t>> Used; 157 for (const VirtualCallTarget &Target : Targets) { 158 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 159 : Target.TM->Bits->Before.BytesUsed; 160 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 161 : MinByte - Target.minBeforeBytes(); 162 163 // Disregard used regions that are smaller than Offset. These are 164 // effectively all-free regions that do not need to be checked. 165 if (VTUsed.size() > Offset) 166 Used.push_back(VTUsed.slice(Offset)); 167 } 168 169 if (Size == 1) { 170 // Find a free bit in each member of Used. 171 for (unsigned I = 0;; ++I) { 172 uint8_t BitsUsed = 0; 173 for (auto &&B : Used) 174 if (I < B.size()) 175 BitsUsed |= B[I]; 176 if (BitsUsed != 0xff) 177 return (MinByte + I) * 8 + 178 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 179 } 180 } else { 181 // Find a free (Size/8) byte region in each member of Used. 182 // FIXME: see if alignment helps. 183 for (unsigned I = 0;; ++I) { 184 for (auto &&B : Used) { 185 unsigned Byte = 0; 186 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 187 if (B[I + Byte]) 188 goto NextI; 189 ++Byte; 190 } 191 } 192 return (MinByte + I) * 8; 193 NextI:; 194 } 195 } 196 } 197 198 void wholeprogramdevirt::setBeforeReturnValues( 199 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 200 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 201 if (BitWidth == 1) 202 OffsetByte = -(AllocBefore / 8 + 1); 203 else 204 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 205 OffsetBit = AllocBefore % 8; 206 207 for (VirtualCallTarget &Target : Targets) { 208 if (BitWidth == 1) 209 Target.setBeforeBit(AllocBefore); 210 else 211 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 212 } 213 } 214 215 void wholeprogramdevirt::setAfterReturnValues( 216 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 217 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 218 if (BitWidth == 1) 219 OffsetByte = AllocAfter / 8; 220 else 221 OffsetByte = (AllocAfter + 7) / 8; 222 OffsetBit = AllocAfter % 8; 223 224 for (VirtualCallTarget &Target : Targets) { 225 if (BitWidth == 1) 226 Target.setAfterBit(AllocAfter); 227 else 228 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 229 } 230 } 231 232 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 233 : Fn(Fn), TM(TM), 234 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 235 236 namespace { 237 238 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 239 // tables, and the ByteOffset is the offset in bytes from the address point to 240 // the virtual function pointer. 241 struct VTableSlot { 242 Metadata *TypeID; 243 uint64_t ByteOffset; 244 }; 245 246 } // end anonymous namespace 247 248 namespace llvm { 249 250 template <> struct DenseMapInfo<VTableSlot> { 251 static VTableSlot getEmptyKey() { 252 return {DenseMapInfo<Metadata *>::getEmptyKey(), 253 DenseMapInfo<uint64_t>::getEmptyKey()}; 254 } 255 static VTableSlot getTombstoneKey() { 256 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 257 DenseMapInfo<uint64_t>::getTombstoneKey()}; 258 } 259 static unsigned getHashValue(const VTableSlot &I) { 260 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 261 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 262 } 263 static bool isEqual(const VTableSlot &LHS, 264 const VTableSlot &RHS) { 265 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 266 } 267 }; 268 269 } // end namespace llvm 270 271 namespace { 272 273 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 274 // the indirect virtual call. 275 struct VirtualCallSite { 276 Value *VTable; 277 CallSite CS; 278 279 // If non-null, this field points to the associated unsafe use count stored in 280 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 281 // of that field for details. 282 unsigned *NumUnsafeUses; 283 284 void 285 emitRemark(const StringRef OptName, const StringRef TargetName, 286 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 287 Function *F = CS.getCaller(); 288 DebugLoc DLoc = CS->getDebugLoc(); 289 BasicBlock *Block = CS.getParent(); 290 291 using namespace ore; 292 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 293 << NV("Optimization", OptName) 294 << ": devirtualized a call to " 295 << NV("FunctionName", TargetName)); 296 } 297 298 void replaceAndErase( 299 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 300 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 301 Value *New) { 302 if (RemarksEnabled) 303 emitRemark(OptName, TargetName, OREGetter); 304 CS->replaceAllUsesWith(New); 305 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 306 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 307 II->getUnwindDest()->removePredecessor(II->getParent()); 308 } 309 CS->eraseFromParent(); 310 // This use is no longer unsafe. 311 if (NumUnsafeUses) 312 --*NumUnsafeUses; 313 } 314 }; 315 316 // Call site information collected for a specific VTableSlot and possibly a list 317 // of constant integer arguments. The grouping by arguments is handled by the 318 // VTableSlotInfo class. 319 struct CallSiteInfo { 320 /// The set of call sites for this slot. Used during regular LTO and the 321 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 322 /// call sites that appear in the merged module itself); in each of these 323 /// cases we are directly operating on the call sites at the IR level. 324 std::vector<VirtualCallSite> CallSites; 325 326 /// Whether all call sites represented by this CallSiteInfo, including those 327 /// in summaries, have been devirtualized. This starts off as true because a 328 /// default constructed CallSiteInfo represents no call sites. 329 bool AllCallSitesDevirted = true; 330 331 // These fields are used during the export phase of ThinLTO and reflect 332 // information collected from function summaries. 333 334 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 335 /// this slot. 336 bool SummaryHasTypeTestAssumeUsers = false; 337 338 /// CFI-specific: a vector containing the list of function summaries that use 339 /// the llvm.type.checked.load intrinsic and therefore will require 340 /// resolutions for llvm.type.test in order to implement CFI checks if 341 /// devirtualization was unsuccessful. If devirtualization was successful, the 342 /// pass will clear this vector by calling markDevirt(). If at the end of the 343 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 344 /// to each of the function summaries in the vector. 345 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 346 347 bool isExported() const { 348 return SummaryHasTypeTestAssumeUsers || 349 !SummaryTypeCheckedLoadUsers.empty(); 350 } 351 352 void markSummaryHasTypeTestAssumeUsers() { 353 SummaryHasTypeTestAssumeUsers = true; 354 AllCallSitesDevirted = false; 355 } 356 357 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 358 SummaryTypeCheckedLoadUsers.push_back(FS); 359 AllCallSitesDevirted = false; 360 } 361 362 void markDevirt() { 363 AllCallSitesDevirted = true; 364 365 // As explained in the comment for SummaryTypeCheckedLoadUsers. 366 SummaryTypeCheckedLoadUsers.clear(); 367 } 368 }; 369 370 // Call site information collected for a specific VTableSlot. 371 struct VTableSlotInfo { 372 // The set of call sites which do not have all constant integer arguments 373 // (excluding "this"). 374 CallSiteInfo CSInfo; 375 376 // The set of call sites with all constant integer arguments (excluding 377 // "this"), grouped by argument list. 378 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 379 380 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 381 382 private: 383 CallSiteInfo &findCallSiteInfo(CallSite CS); 384 }; 385 386 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 387 std::vector<uint64_t> Args; 388 auto *CI = dyn_cast<IntegerType>(CS.getType()); 389 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 390 return CSInfo; 391 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 392 auto *CI = dyn_cast<ConstantInt>(Arg); 393 if (!CI || CI->getBitWidth() > 64) 394 return CSInfo; 395 Args.push_back(CI->getZExtValue()); 396 } 397 return ConstCSInfo[Args]; 398 } 399 400 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 401 unsigned *NumUnsafeUses) { 402 auto &CSI = findCallSiteInfo(CS); 403 CSI.AllCallSitesDevirted = false; 404 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 405 } 406 407 struct DevirtModule { 408 Module &M; 409 function_ref<AAResults &(Function &)> AARGetter; 410 function_ref<DominatorTree &(Function &)> LookupDomTree; 411 412 ModuleSummaryIndex *ExportSummary; 413 const ModuleSummaryIndex *ImportSummary; 414 415 IntegerType *Int8Ty; 416 PointerType *Int8PtrTy; 417 IntegerType *Int32Ty; 418 IntegerType *Int64Ty; 419 IntegerType *IntPtrTy; 420 421 bool RemarksEnabled; 422 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 423 424 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 425 426 // This map keeps track of the number of "unsafe" uses of a loaded function 427 // pointer. The key is the associated llvm.type.test intrinsic call generated 428 // by this pass. An unsafe use is one that calls the loaded function pointer 429 // directly. Every time we eliminate an unsafe use (for example, by 430 // devirtualizing it or by applying virtual constant propagation), we 431 // decrement the value stored in this map. If a value reaches zero, we can 432 // eliminate the type check by RAUWing the associated llvm.type.test call with 433 // true. 434 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 435 436 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 437 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 438 function_ref<DominatorTree &(Function &)> LookupDomTree, 439 ModuleSummaryIndex *ExportSummary, 440 const ModuleSummaryIndex *ImportSummary) 441 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 442 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 443 Int8Ty(Type::getInt8Ty(M.getContext())), 444 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 445 Int32Ty(Type::getInt32Ty(M.getContext())), 446 Int64Ty(Type::getInt64Ty(M.getContext())), 447 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 448 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 449 assert(!(ExportSummary && ImportSummary)); 450 } 451 452 bool areRemarksEnabled(); 453 454 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 455 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 456 457 void buildTypeIdentifierMap( 458 std::vector<VTableBits> &Bits, 459 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 460 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 461 bool 462 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 463 const std::set<TypeMemberInfo> &TypeMemberInfos, 464 uint64_t ByteOffset); 465 466 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 467 bool &IsExported); 468 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 469 VTableSlotInfo &SlotInfo, 470 WholeProgramDevirtResolution *Res); 471 472 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 473 bool &IsExported); 474 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 475 VTableSlotInfo &SlotInfo, 476 WholeProgramDevirtResolution *Res, VTableSlot Slot); 477 478 bool tryEvaluateFunctionsWithArgs( 479 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 480 ArrayRef<uint64_t> Args); 481 482 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 483 uint64_t TheRetVal); 484 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 485 CallSiteInfo &CSInfo, 486 WholeProgramDevirtResolution::ByArg *Res); 487 488 // Returns the global symbol name that is used to export information about the 489 // given vtable slot and list of arguments. 490 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 491 StringRef Name); 492 493 bool shouldExportConstantsAsAbsoluteSymbols(); 494 495 // This function is called during the export phase to create a symbol 496 // definition containing information about the given vtable slot and list of 497 // arguments. 498 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 499 Constant *C); 500 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 501 uint32_t Const, uint32_t &Storage); 502 503 // This function is called during the import phase to create a reference to 504 // the symbol definition created during the export phase. 505 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 506 StringRef Name); 507 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 508 StringRef Name, IntegerType *IntTy, 509 uint32_t Storage); 510 511 Constant *getMemberAddr(const TypeMemberInfo *M); 512 513 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 514 Constant *UniqueMemberAddr); 515 bool tryUniqueRetValOpt(unsigned BitWidth, 516 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 517 CallSiteInfo &CSInfo, 518 WholeProgramDevirtResolution::ByArg *Res, 519 VTableSlot Slot, ArrayRef<uint64_t> Args); 520 521 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 522 Constant *Byte, Constant *Bit); 523 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 524 VTableSlotInfo &SlotInfo, 525 WholeProgramDevirtResolution *Res, VTableSlot Slot); 526 527 void rebuildGlobal(VTableBits &B); 528 529 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 530 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 531 532 // If we were able to eliminate all unsafe uses for a type checked load, 533 // eliminate the associated type tests by replacing them with true. 534 void removeRedundantTypeTests(); 535 536 bool run(); 537 538 // Lower the module using the action and summary passed as command line 539 // arguments. For testing purposes only. 540 static bool 541 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 542 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 543 function_ref<DominatorTree &(Function &)> LookupDomTree); 544 }; 545 546 struct WholeProgramDevirt : public ModulePass { 547 static char ID; 548 549 bool UseCommandLine = false; 550 551 ModuleSummaryIndex *ExportSummary; 552 const ModuleSummaryIndex *ImportSummary; 553 554 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 555 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 556 } 557 558 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 559 const ModuleSummaryIndex *ImportSummary) 560 : ModulePass(ID), ExportSummary(ExportSummary), 561 ImportSummary(ImportSummary) { 562 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 563 } 564 565 bool runOnModule(Module &M) override { 566 if (skipModule(M)) 567 return false; 568 569 // In the new pass manager, we can request the optimization 570 // remark emitter pass on a per-function-basis, which the 571 // OREGetter will do for us. 572 // In the old pass manager, this is harder, so we just build 573 // an optimization remark emitter on the fly, when we need it. 574 std::unique_ptr<OptimizationRemarkEmitter> ORE; 575 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 576 ORE = make_unique<OptimizationRemarkEmitter>(F); 577 return *ORE; 578 }; 579 580 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 581 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 582 }; 583 584 if (UseCommandLine) 585 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 586 LookupDomTree); 587 588 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 589 ExportSummary, ImportSummary) 590 .run(); 591 } 592 593 void getAnalysisUsage(AnalysisUsage &AU) const override { 594 AU.addRequired<AssumptionCacheTracker>(); 595 AU.addRequired<TargetLibraryInfoWrapperPass>(); 596 AU.addRequired<DominatorTreeWrapperPass>(); 597 } 598 }; 599 600 } // end anonymous namespace 601 602 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 603 "Whole program devirtualization", false, false) 604 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 605 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 606 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 607 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 608 "Whole program devirtualization", false, false) 609 char WholeProgramDevirt::ID = 0; 610 611 ModulePass * 612 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 613 const ModuleSummaryIndex *ImportSummary) { 614 return new WholeProgramDevirt(ExportSummary, ImportSummary); 615 } 616 617 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 618 ModuleAnalysisManager &AM) { 619 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 620 auto AARGetter = [&](Function &F) -> AAResults & { 621 return FAM.getResult<AAManager>(F); 622 }; 623 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 624 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 625 }; 626 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 627 return FAM.getResult<DominatorTreeAnalysis>(F); 628 }; 629 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 630 ImportSummary) 631 .run()) 632 return PreservedAnalyses::all(); 633 return PreservedAnalyses::none(); 634 } 635 636 bool DevirtModule::runForTesting( 637 Module &M, function_ref<AAResults &(Function &)> AARGetter, 638 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 639 function_ref<DominatorTree &(Function &)> LookupDomTree) { 640 ModuleSummaryIndex Summary(/*HaveGVs=*/false); 641 642 // Handle the command-line summary arguments. This code is for testing 643 // purposes only, so we handle errors directly. 644 if (!ClReadSummary.empty()) { 645 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 646 ": "); 647 auto ReadSummaryFile = 648 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 649 650 yaml::Input In(ReadSummaryFile->getBuffer()); 651 In >> Summary; 652 ExitOnErr(errorCodeToError(In.error())); 653 } 654 655 bool Changed = 656 DevirtModule( 657 M, AARGetter, OREGetter, LookupDomTree, 658 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 659 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 660 .run(); 661 662 if (!ClWriteSummary.empty()) { 663 ExitOnError ExitOnErr( 664 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 665 std::error_code EC; 666 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 667 ExitOnErr(errorCodeToError(EC)); 668 669 yaml::Output Out(OS); 670 Out << Summary; 671 } 672 673 return Changed; 674 } 675 676 void DevirtModule::buildTypeIdentifierMap( 677 std::vector<VTableBits> &Bits, 678 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 679 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 680 Bits.reserve(M.getGlobalList().size()); 681 SmallVector<MDNode *, 2> Types; 682 for (GlobalVariable &GV : M.globals()) { 683 Types.clear(); 684 GV.getMetadata(LLVMContext::MD_type, Types); 685 if (GV.isDeclaration() || Types.empty()) 686 continue; 687 688 VTableBits *&BitsPtr = GVToBits[&GV]; 689 if (!BitsPtr) { 690 Bits.emplace_back(); 691 Bits.back().GV = &GV; 692 Bits.back().ObjectSize = 693 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 694 BitsPtr = &Bits.back(); 695 } 696 697 for (MDNode *Type : Types) { 698 auto TypeID = Type->getOperand(1).get(); 699 700 uint64_t Offset = 701 cast<ConstantInt>( 702 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 703 ->getZExtValue(); 704 705 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 706 } 707 } 708 } 709 710 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 711 if (I->getType()->isPointerTy()) { 712 if (Offset == 0) 713 return I; 714 return nullptr; 715 } 716 717 const DataLayout &DL = M.getDataLayout(); 718 719 if (auto *C = dyn_cast<ConstantStruct>(I)) { 720 const StructLayout *SL = DL.getStructLayout(C->getType()); 721 if (Offset >= SL->getSizeInBytes()) 722 return nullptr; 723 724 unsigned Op = SL->getElementContainingOffset(Offset); 725 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 726 Offset - SL->getElementOffset(Op)); 727 } 728 if (auto *C = dyn_cast<ConstantArray>(I)) { 729 ArrayType *VTableTy = C->getType(); 730 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 731 732 unsigned Op = Offset / ElemSize; 733 if (Op >= C->getNumOperands()) 734 return nullptr; 735 736 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 737 Offset % ElemSize); 738 } 739 return nullptr; 740 } 741 742 bool DevirtModule::tryFindVirtualCallTargets( 743 std::vector<VirtualCallTarget> &TargetsForSlot, 744 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 745 for (const TypeMemberInfo &TM : TypeMemberInfos) { 746 if (!TM.Bits->GV->isConstant()) 747 return false; 748 749 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 750 TM.Offset + ByteOffset); 751 if (!Ptr) 752 return false; 753 754 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 755 if (!Fn) 756 return false; 757 758 // We can disregard __cxa_pure_virtual as a possible call target, as 759 // calls to pure virtuals are UB. 760 if (Fn->getName() == "__cxa_pure_virtual") 761 continue; 762 763 TargetsForSlot.push_back({Fn, &TM}); 764 } 765 766 // Give up if we couldn't find any targets. 767 return !TargetsForSlot.empty(); 768 } 769 770 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 771 Constant *TheFn, bool &IsExported) { 772 auto Apply = [&](CallSiteInfo &CSInfo) { 773 for (auto &&VCallSite : CSInfo.CallSites) { 774 if (RemarksEnabled) 775 VCallSite.emitRemark("single-impl", 776 TheFn->stripPointerCasts()->getName(), OREGetter); 777 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 778 TheFn, VCallSite.CS.getCalledValue()->getType())); 779 // This use is no longer unsafe. 780 if (VCallSite.NumUnsafeUses) 781 --*VCallSite.NumUnsafeUses; 782 } 783 if (CSInfo.isExported()) 784 IsExported = true; 785 CSInfo.markDevirt(); 786 }; 787 Apply(SlotInfo.CSInfo); 788 for (auto &P : SlotInfo.ConstCSInfo) 789 Apply(P.second); 790 } 791 792 bool DevirtModule::trySingleImplDevirt( 793 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 794 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 795 // See if the program contains a single implementation of this virtual 796 // function. 797 Function *TheFn = TargetsForSlot[0].Fn; 798 for (auto &&Target : TargetsForSlot) 799 if (TheFn != Target.Fn) 800 return false; 801 802 // If so, update each call site to call that implementation directly. 803 if (RemarksEnabled) 804 TargetsForSlot[0].WasDevirt = true; 805 806 bool IsExported = false; 807 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 808 if (!IsExported) 809 return false; 810 811 // If the only implementation has local linkage, we must promote to external 812 // to make it visible to thin LTO objects. We can only get here during the 813 // ThinLTO export phase. 814 if (TheFn->hasLocalLinkage()) { 815 std::string NewName = (TheFn->getName() + "$merged").str(); 816 817 // Since we are renaming the function, any comdats with the same name must 818 // also be renamed. This is required when targeting COFF, as the comdat name 819 // must match one of the names of the symbols in the comdat. 820 if (Comdat *C = TheFn->getComdat()) { 821 if (C->getName() == TheFn->getName()) { 822 Comdat *NewC = M.getOrInsertComdat(NewName); 823 NewC->setSelectionKind(C->getSelectionKind()); 824 for (GlobalObject &GO : M.global_objects()) 825 if (GO.getComdat() == C) 826 GO.setComdat(NewC); 827 } 828 } 829 830 TheFn->setLinkage(GlobalValue::ExternalLinkage); 831 TheFn->setVisibility(GlobalValue::HiddenVisibility); 832 TheFn->setName(NewName); 833 } 834 835 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 836 Res->SingleImplName = TheFn->getName(); 837 838 return true; 839 } 840 841 void DevirtModule::tryICallBranchFunnel( 842 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 843 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 844 Triple T(M.getTargetTriple()); 845 if (T.getArch() != Triple::x86_64) 846 return; 847 848 if (TargetsForSlot.size() > ClThreshold) 849 return; 850 851 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 852 if (!HasNonDevirt) 853 for (auto &P : SlotInfo.ConstCSInfo) 854 if (!P.second.AllCallSitesDevirted) { 855 HasNonDevirt = true; 856 break; 857 } 858 859 if (!HasNonDevirt) 860 return; 861 862 FunctionType *FT = 863 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 864 Function *JT; 865 if (isa<MDString>(Slot.TypeID)) { 866 JT = Function::Create(FT, Function::ExternalLinkage, 867 getGlobalName(Slot, {}, "branch_funnel"), &M); 868 JT->setVisibility(GlobalValue::HiddenVisibility); 869 } else { 870 JT = Function::Create(FT, Function::InternalLinkage, "branch_funnel", &M); 871 } 872 JT->addAttribute(1, Attribute::Nest); 873 874 std::vector<Value *> JTArgs; 875 JTArgs.push_back(JT->arg_begin()); 876 for (auto &T : TargetsForSlot) { 877 JTArgs.push_back(getMemberAddr(T.TM)); 878 JTArgs.push_back(T.Fn); 879 } 880 881 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 882 Constant *Intr = 883 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 884 885 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 886 CI->setTailCallKind(CallInst::TCK_MustTail); 887 ReturnInst::Create(M.getContext(), nullptr, BB); 888 889 bool IsExported = false; 890 applyICallBranchFunnel(SlotInfo, JT, IsExported); 891 if (IsExported) 892 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 893 } 894 895 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 896 Constant *JT, bool &IsExported) { 897 auto Apply = [&](CallSiteInfo &CSInfo) { 898 if (CSInfo.isExported()) 899 IsExported = true; 900 if (CSInfo.AllCallSitesDevirted) 901 return; 902 for (auto &&VCallSite : CSInfo.CallSites) { 903 CallSite CS = VCallSite.CS; 904 905 // Jump tables are only profitable if the retpoline mitigation is enabled. 906 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 907 if (FSAttr.hasAttribute(Attribute::None) || 908 !FSAttr.getValueAsString().contains("+retpoline")) 909 continue; 910 911 if (RemarksEnabled) 912 VCallSite.emitRemark("branch-funnel", 913 JT->stripPointerCasts()->getName(), OREGetter); 914 915 // Pass the address of the vtable in the nest register, which is r10 on 916 // x86_64. 917 std::vector<Type *> NewArgs; 918 NewArgs.push_back(Int8PtrTy); 919 for (Type *T : CS.getFunctionType()->params()) 920 NewArgs.push_back(T); 921 PointerType *NewFT = PointerType::getUnqual( 922 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 923 CS.getFunctionType()->isVarArg())); 924 925 IRBuilder<> IRB(CS.getInstruction()); 926 std::vector<Value *> Args; 927 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 928 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 929 Args.push_back(CS.getArgOperand(I)); 930 931 CallSite NewCS; 932 if (CS.isCall()) 933 NewCS = IRB.CreateCall(IRB.CreateBitCast(JT, NewFT), Args); 934 else 935 NewCS = IRB.CreateInvoke( 936 IRB.CreateBitCast(JT, NewFT), 937 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 938 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 939 NewCS.setCallingConv(CS.getCallingConv()); 940 941 AttributeList Attrs = CS.getAttributes(); 942 std::vector<AttributeSet> NewArgAttrs; 943 NewArgAttrs.push_back(AttributeSet::get( 944 M.getContext(), ArrayRef<Attribute>{Attribute::get( 945 M.getContext(), Attribute::Nest)})); 946 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 947 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 948 NewCS.setAttributes( 949 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 950 Attrs.getRetAttributes(), NewArgAttrs)); 951 952 CS->replaceAllUsesWith(NewCS.getInstruction()); 953 CS->eraseFromParent(); 954 955 // This use is no longer unsafe. 956 if (VCallSite.NumUnsafeUses) 957 --*VCallSite.NumUnsafeUses; 958 } 959 // Don't mark as devirtualized because there may be callers compiled without 960 // retpoline mitigation, which would mean that they are lowered to 961 // llvm.type.test and therefore require an llvm.type.test resolution for the 962 // type identifier. 963 }; 964 Apply(SlotInfo.CSInfo); 965 for (auto &P : SlotInfo.ConstCSInfo) 966 Apply(P.second); 967 } 968 969 bool DevirtModule::tryEvaluateFunctionsWithArgs( 970 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 971 ArrayRef<uint64_t> Args) { 972 // Evaluate each function and store the result in each target's RetVal 973 // field. 974 for (VirtualCallTarget &Target : TargetsForSlot) { 975 if (Target.Fn->arg_size() != Args.size() + 1) 976 return false; 977 978 Evaluator Eval(M.getDataLayout(), nullptr); 979 SmallVector<Constant *, 2> EvalArgs; 980 EvalArgs.push_back( 981 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 982 for (unsigned I = 0; I != Args.size(); ++I) { 983 auto *ArgTy = dyn_cast<IntegerType>( 984 Target.Fn->getFunctionType()->getParamType(I + 1)); 985 if (!ArgTy) 986 return false; 987 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 988 } 989 990 Constant *RetVal; 991 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 992 !isa<ConstantInt>(RetVal)) 993 return false; 994 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 995 } 996 return true; 997 } 998 999 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1000 uint64_t TheRetVal) { 1001 for (auto Call : CSInfo.CallSites) 1002 Call.replaceAndErase( 1003 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1004 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1005 CSInfo.markDevirt(); 1006 } 1007 1008 bool DevirtModule::tryUniformRetValOpt( 1009 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1010 WholeProgramDevirtResolution::ByArg *Res) { 1011 // Uniform return value optimization. If all functions return the same 1012 // constant, replace all calls with that constant. 1013 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1014 for (const VirtualCallTarget &Target : TargetsForSlot) 1015 if (Target.RetVal != TheRetVal) 1016 return false; 1017 1018 if (CSInfo.isExported()) { 1019 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1020 Res->Info = TheRetVal; 1021 } 1022 1023 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1024 if (RemarksEnabled) 1025 for (auto &&Target : TargetsForSlot) 1026 Target.WasDevirt = true; 1027 return true; 1028 } 1029 1030 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1031 ArrayRef<uint64_t> Args, 1032 StringRef Name) { 1033 std::string FullName = "__typeid_"; 1034 raw_string_ostream OS(FullName); 1035 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1036 for (uint64_t Arg : Args) 1037 OS << '_' << Arg; 1038 OS << '_' << Name; 1039 return OS.str(); 1040 } 1041 1042 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1043 Triple T(M.getTargetTriple()); 1044 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 1045 T.getObjectFormat() == Triple::ELF; 1046 } 1047 1048 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1049 StringRef Name, Constant *C) { 1050 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1051 getGlobalName(Slot, Args, Name), C, &M); 1052 GA->setVisibility(GlobalValue::HiddenVisibility); 1053 } 1054 1055 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1056 StringRef Name, uint32_t Const, 1057 uint32_t &Storage) { 1058 if (shouldExportConstantsAsAbsoluteSymbols()) { 1059 exportGlobal( 1060 Slot, Args, Name, 1061 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1062 return; 1063 } 1064 1065 Storage = Const; 1066 } 1067 1068 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1069 StringRef Name) { 1070 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1071 auto *GV = dyn_cast<GlobalVariable>(C); 1072 if (GV) 1073 GV->setVisibility(GlobalValue::HiddenVisibility); 1074 return C; 1075 } 1076 1077 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1078 StringRef Name, IntegerType *IntTy, 1079 uint32_t Storage) { 1080 if (!shouldExportConstantsAsAbsoluteSymbols()) 1081 return ConstantInt::get(IntTy, Storage); 1082 1083 Constant *C = importGlobal(Slot, Args, Name); 1084 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1085 C = ConstantExpr::getPtrToInt(C, IntTy); 1086 1087 // We only need to set metadata if the global is newly created, in which 1088 // case it would not have hidden visibility. 1089 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1090 return C; 1091 1092 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1093 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1094 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1095 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1096 MDNode::get(M.getContext(), {MinC, MaxC})); 1097 }; 1098 unsigned AbsWidth = IntTy->getBitWidth(); 1099 if (AbsWidth == IntPtrTy->getBitWidth()) 1100 SetAbsRange(~0ull, ~0ull); // Full set. 1101 else 1102 SetAbsRange(0, 1ull << AbsWidth); 1103 return C; 1104 } 1105 1106 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1107 bool IsOne, 1108 Constant *UniqueMemberAddr) { 1109 for (auto &&Call : CSInfo.CallSites) { 1110 IRBuilder<> B(Call.CS.getInstruction()); 1111 Value *Cmp = 1112 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1113 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1114 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1115 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1116 Cmp); 1117 } 1118 CSInfo.markDevirt(); 1119 } 1120 1121 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1122 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1123 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1124 ConstantInt::get(Int64Ty, M->Offset)); 1125 } 1126 1127 bool DevirtModule::tryUniqueRetValOpt( 1128 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1129 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1130 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1131 // IsOne controls whether we look for a 0 or a 1. 1132 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1133 const TypeMemberInfo *UniqueMember = nullptr; 1134 for (const VirtualCallTarget &Target : TargetsForSlot) { 1135 if (Target.RetVal == (IsOne ? 1 : 0)) { 1136 if (UniqueMember) 1137 return false; 1138 UniqueMember = Target.TM; 1139 } 1140 } 1141 1142 // We should have found a unique member or bailed out by now. We already 1143 // checked for a uniform return value in tryUniformRetValOpt. 1144 assert(UniqueMember); 1145 1146 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1147 if (CSInfo.isExported()) { 1148 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1149 Res->Info = IsOne; 1150 1151 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1152 } 1153 1154 // Replace each call with the comparison. 1155 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1156 UniqueMemberAddr); 1157 1158 // Update devirtualization statistics for targets. 1159 if (RemarksEnabled) 1160 for (auto &&Target : TargetsForSlot) 1161 Target.WasDevirt = true; 1162 1163 return true; 1164 }; 1165 1166 if (BitWidth == 1) { 1167 if (tryUniqueRetValOptFor(true)) 1168 return true; 1169 if (tryUniqueRetValOptFor(false)) 1170 return true; 1171 } 1172 return false; 1173 } 1174 1175 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1176 Constant *Byte, Constant *Bit) { 1177 for (auto Call : CSInfo.CallSites) { 1178 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1179 IRBuilder<> B(Call.CS.getInstruction()); 1180 Value *Addr = 1181 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1182 if (RetType->getBitWidth() == 1) { 1183 Value *Bits = B.CreateLoad(Addr); 1184 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1185 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1186 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1187 OREGetter, IsBitSet); 1188 } else { 1189 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1190 Value *Val = B.CreateLoad(RetType, ValAddr); 1191 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1192 OREGetter, Val); 1193 } 1194 } 1195 CSInfo.markDevirt(); 1196 } 1197 1198 bool DevirtModule::tryVirtualConstProp( 1199 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1200 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1201 // This only works if the function returns an integer. 1202 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1203 if (!RetType) 1204 return false; 1205 unsigned BitWidth = RetType->getBitWidth(); 1206 if (BitWidth > 64) 1207 return false; 1208 1209 // Make sure that each function is defined, does not access memory, takes at 1210 // least one argument, does not use its first argument (which we assume is 1211 // 'this'), and has the same return type. 1212 // 1213 // Note that we test whether this copy of the function is readnone, rather 1214 // than testing function attributes, which must hold for any copy of the 1215 // function, even a less optimized version substituted at link time. This is 1216 // sound because the virtual constant propagation optimizations effectively 1217 // inline all implementations of the virtual function into each call site, 1218 // rather than using function attributes to perform local optimization. 1219 for (VirtualCallTarget &Target : TargetsForSlot) { 1220 if (Target.Fn->isDeclaration() || 1221 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1222 MAK_ReadNone || 1223 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1224 Target.Fn->getReturnType() != RetType) 1225 return false; 1226 } 1227 1228 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1229 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1230 continue; 1231 1232 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1233 if (Res) 1234 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1235 1236 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1237 continue; 1238 1239 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1240 ResByArg, Slot, CSByConstantArg.first)) 1241 continue; 1242 1243 // Find an allocation offset in bits in all vtables associated with the 1244 // type. 1245 uint64_t AllocBefore = 1246 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1247 uint64_t AllocAfter = 1248 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1249 1250 // Calculate the total amount of padding needed to store a value at both 1251 // ends of the object. 1252 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1253 for (auto &&Target : TargetsForSlot) { 1254 TotalPaddingBefore += std::max<int64_t>( 1255 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1256 TotalPaddingAfter += std::max<int64_t>( 1257 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1258 } 1259 1260 // If the amount of padding is too large, give up. 1261 // FIXME: do something smarter here. 1262 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1263 continue; 1264 1265 // Calculate the offset to the value as a (possibly negative) byte offset 1266 // and (if applicable) a bit offset, and store the values in the targets. 1267 int64_t OffsetByte; 1268 uint64_t OffsetBit; 1269 if (TotalPaddingBefore <= TotalPaddingAfter) 1270 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1271 OffsetBit); 1272 else 1273 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1274 OffsetBit); 1275 1276 if (RemarksEnabled) 1277 for (auto &&Target : TargetsForSlot) 1278 Target.WasDevirt = true; 1279 1280 1281 if (CSByConstantArg.second.isExported()) { 1282 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1283 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1284 ResByArg->Byte); 1285 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1286 ResByArg->Bit); 1287 } 1288 1289 // Rewrite each call to a load from OffsetByte/OffsetBit. 1290 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1291 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1292 applyVirtualConstProp(CSByConstantArg.second, 1293 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1294 } 1295 return true; 1296 } 1297 1298 void DevirtModule::rebuildGlobal(VTableBits &B) { 1299 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1300 return; 1301 1302 // Align each byte array to pointer width. 1303 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1304 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1305 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1306 1307 // Before was stored in reverse order; flip it now. 1308 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1309 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1310 1311 // Build an anonymous global containing the before bytes, followed by the 1312 // original initializer, followed by the after bytes. 1313 auto NewInit = ConstantStruct::getAnon( 1314 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1315 B.GV->getInitializer(), 1316 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1317 auto NewGV = 1318 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1319 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1320 NewGV->setSection(B.GV->getSection()); 1321 NewGV->setComdat(B.GV->getComdat()); 1322 1323 // Copy the original vtable's metadata to the anonymous global, adjusting 1324 // offsets as required. 1325 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1326 1327 // Build an alias named after the original global, pointing at the second 1328 // element (the original initializer). 1329 auto Alias = GlobalAlias::create( 1330 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1331 ConstantExpr::getGetElementPtr( 1332 NewInit->getType(), NewGV, 1333 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1334 ConstantInt::get(Int32Ty, 1)}), 1335 &M); 1336 Alias->setVisibility(B.GV->getVisibility()); 1337 Alias->takeName(B.GV); 1338 1339 B.GV->replaceAllUsesWith(Alias); 1340 B.GV->eraseFromParent(); 1341 } 1342 1343 bool DevirtModule::areRemarksEnabled() { 1344 const auto &FL = M.getFunctionList(); 1345 for (const Function &Fn : FL) { 1346 const auto &BBL = Fn.getBasicBlockList(); 1347 if (BBL.empty()) 1348 continue; 1349 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1350 return DI.isEnabled(); 1351 } 1352 return false; 1353 } 1354 1355 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1356 Function *AssumeFunc) { 1357 // Find all virtual calls via a virtual table pointer %p under an assumption 1358 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1359 // points to a member of the type identifier %md. Group calls by (type ID, 1360 // offset) pair (effectively the identity of the virtual function) and store 1361 // to CallSlots. 1362 DenseSet<CallSite> SeenCallSites; 1363 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1364 I != E;) { 1365 auto CI = dyn_cast<CallInst>(I->getUser()); 1366 ++I; 1367 if (!CI) 1368 continue; 1369 1370 // Search for virtual calls based on %p and add them to DevirtCalls. 1371 SmallVector<DevirtCallSite, 1> DevirtCalls; 1372 SmallVector<CallInst *, 1> Assumes; 1373 auto &DT = LookupDomTree(*CI->getFunction()); 1374 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1375 1376 // If we found any, add them to CallSlots. 1377 if (!Assumes.empty()) { 1378 Metadata *TypeId = 1379 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1380 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1381 for (DevirtCallSite Call : DevirtCalls) { 1382 // Only add this CallSite if we haven't seen it before. The vtable 1383 // pointer may have been CSE'd with pointers from other call sites, 1384 // and we don't want to process call sites multiple times. We can't 1385 // just skip the vtable Ptr if it has been seen before, however, since 1386 // it may be shared by type tests that dominate different calls. 1387 if (SeenCallSites.insert(Call.CS).second) 1388 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1389 } 1390 } 1391 1392 // We no longer need the assumes or the type test. 1393 for (auto Assume : Assumes) 1394 Assume->eraseFromParent(); 1395 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1396 // may use the vtable argument later. 1397 if (CI->use_empty()) 1398 CI->eraseFromParent(); 1399 } 1400 } 1401 1402 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1403 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1404 1405 for (auto I = TypeCheckedLoadFunc->use_begin(), 1406 E = TypeCheckedLoadFunc->use_end(); 1407 I != E;) { 1408 auto CI = dyn_cast<CallInst>(I->getUser()); 1409 ++I; 1410 if (!CI) 1411 continue; 1412 1413 Value *Ptr = CI->getArgOperand(0); 1414 Value *Offset = CI->getArgOperand(1); 1415 Value *TypeIdValue = CI->getArgOperand(2); 1416 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1417 1418 SmallVector<DevirtCallSite, 1> DevirtCalls; 1419 SmallVector<Instruction *, 1> LoadedPtrs; 1420 SmallVector<Instruction *, 1> Preds; 1421 bool HasNonCallUses = false; 1422 auto &DT = LookupDomTree(*CI->getFunction()); 1423 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1424 HasNonCallUses, CI, DT); 1425 1426 // Start by generating "pessimistic" code that explicitly loads the function 1427 // pointer from the vtable and performs the type check. If possible, we will 1428 // eliminate the load and the type check later. 1429 1430 // If possible, only generate the load at the point where it is used. 1431 // This helps avoid unnecessary spills. 1432 IRBuilder<> LoadB( 1433 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1434 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1435 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1436 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1437 1438 for (Instruction *LoadedPtr : LoadedPtrs) { 1439 LoadedPtr->replaceAllUsesWith(LoadedValue); 1440 LoadedPtr->eraseFromParent(); 1441 } 1442 1443 // Likewise for the type test. 1444 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1445 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1446 1447 for (Instruction *Pred : Preds) { 1448 Pred->replaceAllUsesWith(TypeTestCall); 1449 Pred->eraseFromParent(); 1450 } 1451 1452 // We have already erased any extractvalue instructions that refer to the 1453 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1454 // (although this is unlikely). In that case, explicitly build a pair and 1455 // RAUW it. 1456 if (!CI->use_empty()) { 1457 Value *Pair = UndefValue::get(CI->getType()); 1458 IRBuilder<> B(CI); 1459 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1460 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1461 CI->replaceAllUsesWith(Pair); 1462 } 1463 1464 // The number of unsafe uses is initially the number of uses. 1465 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1466 NumUnsafeUses = DevirtCalls.size(); 1467 1468 // If the function pointer has a non-call user, we cannot eliminate the type 1469 // check, as one of those users may eventually call the pointer. Increment 1470 // the unsafe use count to make sure it cannot reach zero. 1471 if (HasNonCallUses) 1472 ++NumUnsafeUses; 1473 for (DevirtCallSite Call : DevirtCalls) { 1474 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1475 &NumUnsafeUses); 1476 } 1477 1478 CI->eraseFromParent(); 1479 } 1480 } 1481 1482 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1483 const TypeIdSummary *TidSummary = 1484 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1485 if (!TidSummary) 1486 return; 1487 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1488 if (ResI == TidSummary->WPDRes.end()) 1489 return; 1490 const WholeProgramDevirtResolution &Res = ResI->second; 1491 1492 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1493 // The type of the function in the declaration is irrelevant because every 1494 // call site will cast it to the correct type. 1495 auto *SingleImpl = M.getOrInsertFunction( 1496 Res.SingleImplName, Type::getVoidTy(M.getContext())); 1497 1498 // This is the import phase so we should not be exporting anything. 1499 bool IsExported = false; 1500 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1501 assert(!IsExported); 1502 } 1503 1504 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1505 auto I = Res.ResByArg.find(CSByConstantArg.first); 1506 if (I == Res.ResByArg.end()) 1507 continue; 1508 auto &ResByArg = I->second; 1509 // FIXME: We should figure out what to do about the "function name" argument 1510 // to the apply* functions, as the function names are unavailable during the 1511 // importing phase. For now we just pass the empty string. This does not 1512 // impact correctness because the function names are just used for remarks. 1513 switch (ResByArg.TheKind) { 1514 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1515 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1516 break; 1517 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1518 Constant *UniqueMemberAddr = 1519 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1520 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1521 UniqueMemberAddr); 1522 break; 1523 } 1524 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1525 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1526 Int32Ty, ResByArg.Byte); 1527 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1528 ResByArg.Bit); 1529 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1530 break; 1531 } 1532 default: 1533 break; 1534 } 1535 } 1536 1537 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1538 auto *JT = M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1539 Type::getVoidTy(M.getContext())); 1540 bool IsExported = false; 1541 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1542 assert(!IsExported); 1543 } 1544 } 1545 1546 void DevirtModule::removeRedundantTypeTests() { 1547 auto True = ConstantInt::getTrue(M.getContext()); 1548 for (auto &&U : NumUnsafeUsesForTypeTest) { 1549 if (U.second == 0) { 1550 U.first->replaceAllUsesWith(True); 1551 U.first->eraseFromParent(); 1552 } 1553 } 1554 } 1555 1556 bool DevirtModule::run() { 1557 Function *TypeTestFunc = 1558 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1559 Function *TypeCheckedLoadFunc = 1560 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1561 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1562 1563 // Normally if there are no users of the devirtualization intrinsics in the 1564 // module, this pass has nothing to do. But if we are exporting, we also need 1565 // to handle any users that appear only in the function summaries. 1566 if (!ExportSummary && 1567 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1568 AssumeFunc->use_empty()) && 1569 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1570 return false; 1571 1572 if (TypeTestFunc && AssumeFunc) 1573 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1574 1575 if (TypeCheckedLoadFunc) 1576 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1577 1578 if (ImportSummary) { 1579 for (auto &S : CallSlots) 1580 importResolution(S.first, S.second); 1581 1582 removeRedundantTypeTests(); 1583 1584 // The rest of the code is only necessary when exporting or during regular 1585 // LTO, so we are done. 1586 return true; 1587 } 1588 1589 // Rebuild type metadata into a map for easy lookup. 1590 std::vector<VTableBits> Bits; 1591 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1592 buildTypeIdentifierMap(Bits, TypeIdMap); 1593 if (TypeIdMap.empty()) 1594 return true; 1595 1596 // Collect information from summary about which calls to try to devirtualize. 1597 if (ExportSummary) { 1598 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1599 for (auto &P : TypeIdMap) { 1600 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1601 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1602 TypeId); 1603 } 1604 1605 for (auto &P : *ExportSummary) { 1606 for (auto &S : P.second.SummaryList) { 1607 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1608 if (!FS) 1609 continue; 1610 // FIXME: Only add live functions. 1611 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1612 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1613 CallSlots[{MD, VF.Offset}] 1614 .CSInfo.markSummaryHasTypeTestAssumeUsers(); 1615 } 1616 } 1617 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1618 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1619 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1620 } 1621 } 1622 for (const FunctionSummary::ConstVCall &VC : 1623 FS->type_test_assume_const_vcalls()) { 1624 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1625 CallSlots[{MD, VC.VFunc.Offset}] 1626 .ConstCSInfo[VC.Args] 1627 .markSummaryHasTypeTestAssumeUsers(); 1628 } 1629 } 1630 for (const FunctionSummary::ConstVCall &VC : 1631 FS->type_checked_load_const_vcalls()) { 1632 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1633 CallSlots[{MD, VC.VFunc.Offset}] 1634 .ConstCSInfo[VC.Args] 1635 .addSummaryTypeCheckedLoadUser(FS); 1636 } 1637 } 1638 } 1639 } 1640 } 1641 1642 // For each (type, offset) pair: 1643 bool DidVirtualConstProp = false; 1644 std::map<std::string, Function*> DevirtTargets; 1645 for (auto &S : CallSlots) { 1646 // Search each of the members of the type identifier for the virtual 1647 // function implementation at offset S.first.ByteOffset, and add to 1648 // TargetsForSlot. 1649 std::vector<VirtualCallTarget> TargetsForSlot; 1650 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1651 S.first.ByteOffset)) { 1652 WholeProgramDevirtResolution *Res = nullptr; 1653 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1654 Res = &ExportSummary 1655 ->getOrInsertTypeIdSummary( 1656 cast<MDString>(S.first.TypeID)->getString()) 1657 .WPDRes[S.first.ByteOffset]; 1658 1659 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) { 1660 DidVirtualConstProp |= 1661 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1662 1663 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 1664 } 1665 1666 // Collect functions devirtualized at least for one call site for stats. 1667 if (RemarksEnabled) 1668 for (const auto &T : TargetsForSlot) 1669 if (T.WasDevirt) 1670 DevirtTargets[T.Fn->getName()] = T.Fn; 1671 } 1672 1673 // CFI-specific: if we are exporting and any llvm.type.checked.load 1674 // intrinsics were *not* devirtualized, we need to add the resulting 1675 // llvm.type.test intrinsics to the function summaries so that the 1676 // LowerTypeTests pass will export them. 1677 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1678 auto GUID = 1679 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1680 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1681 FS->addTypeTest(GUID); 1682 for (auto &CCS : S.second.ConstCSInfo) 1683 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1684 FS->addTypeTest(GUID); 1685 } 1686 } 1687 1688 if (RemarksEnabled) { 1689 // Generate remarks for each devirtualized function. 1690 for (const auto &DT : DevirtTargets) { 1691 Function *F = DT.second; 1692 1693 using namespace ore; 1694 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1695 << "devirtualized " 1696 << NV("FunctionName", F->getName())); 1697 } 1698 } 1699 1700 removeRedundantTypeTests(); 1701 1702 // Rebuild each global we touched as part of virtual constant propagation to 1703 // include the before and after bytes. 1704 if (DidVirtualConstProp) 1705 for (VTableBits &B : Bits) 1706 rebuildGlobal(B); 1707 1708 return true; 1709 } 1710