1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/DenseMapInfo.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/Analysis/TypeMetadataUtils.h" 39 #include "llvm/IR/CallSite.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/DiagnosticInfo.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/Pass.h" 58 #include "llvm/PassRegistry.h" 59 #include "llvm/PassSupport.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Utils/Evaluator.h" 64 #include <algorithm> 65 #include <cstddef> 66 #include <map> 67 #include <set> 68 #include <string> 69 70 using namespace llvm; 71 using namespace wholeprogramdevirt; 72 73 #define DEBUG_TYPE "wholeprogramdevirt" 74 75 // Find the minimum offset that we may store a value of size Size bits at. If 76 // IsAfter is set, look for an offset before the object, otherwise look for an 77 // offset after the object. 78 uint64_t 79 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 80 bool IsAfter, uint64_t Size) { 81 // Find a minimum offset taking into account only vtable sizes. 82 uint64_t MinByte = 0; 83 for (const VirtualCallTarget &Target : Targets) { 84 if (IsAfter) 85 MinByte = std::max(MinByte, Target.minAfterBytes()); 86 else 87 MinByte = std::max(MinByte, Target.minBeforeBytes()); 88 } 89 90 // Build a vector of arrays of bytes covering, for each target, a slice of the 91 // used region (see AccumBitVector::BytesUsed in 92 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 93 // this aligns the used regions to start at MinByte. 94 // 95 // In this example, A, B and C are vtables, # is a byte already allocated for 96 // a virtual function pointer, AAAA... (etc.) are the used regions for the 97 // vtables and Offset(X) is the value computed for the Offset variable below 98 // for X. 99 // 100 // Offset(A) 101 // | | 102 // |MinByte 103 // A: ################AAAAAAAA|AAAAAAAA 104 // B: ########BBBBBBBBBBBBBBBB|BBBB 105 // C: ########################|CCCCCCCCCCCCCCCC 106 // | Offset(B) | 107 // 108 // This code produces the slices of A, B and C that appear after the divider 109 // at MinByte. 110 std::vector<ArrayRef<uint8_t>> Used; 111 for (const VirtualCallTarget &Target : Targets) { 112 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 113 : Target.TM->Bits->Before.BytesUsed; 114 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 115 : MinByte - Target.minBeforeBytes(); 116 117 // Disregard used regions that are smaller than Offset. These are 118 // effectively all-free regions that do not need to be checked. 119 if (VTUsed.size() > Offset) 120 Used.push_back(VTUsed.slice(Offset)); 121 } 122 123 if (Size == 1) { 124 // Find a free bit in each member of Used. 125 for (unsigned I = 0;; ++I) { 126 uint8_t BitsUsed = 0; 127 for (auto &&B : Used) 128 if (I < B.size()) 129 BitsUsed |= B[I]; 130 if (BitsUsed != 0xff) 131 return (MinByte + I) * 8 + 132 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 133 } 134 } else { 135 // Find a free (Size/8) byte region in each member of Used. 136 // FIXME: see if alignment helps. 137 for (unsigned I = 0;; ++I) { 138 for (auto &&B : Used) { 139 unsigned Byte = 0; 140 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 141 if (B[I + Byte]) 142 goto NextI; 143 ++Byte; 144 } 145 } 146 return (MinByte + I) * 8; 147 NextI:; 148 } 149 } 150 } 151 152 void wholeprogramdevirt::setBeforeReturnValues( 153 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 154 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 155 if (BitWidth == 1) 156 OffsetByte = -(AllocBefore / 8 + 1); 157 else 158 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 159 OffsetBit = AllocBefore % 8; 160 161 for (VirtualCallTarget &Target : Targets) { 162 if (BitWidth == 1) 163 Target.setBeforeBit(AllocBefore); 164 else 165 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 166 } 167 } 168 169 void wholeprogramdevirt::setAfterReturnValues( 170 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 171 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 172 if (BitWidth == 1) 173 OffsetByte = AllocAfter / 8; 174 else 175 OffsetByte = (AllocAfter + 7) / 8; 176 OffsetBit = AllocAfter % 8; 177 178 for (VirtualCallTarget &Target : Targets) { 179 if (BitWidth == 1) 180 Target.setAfterBit(AllocAfter); 181 else 182 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 183 } 184 } 185 186 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 187 : Fn(Fn), TM(TM), 188 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 189 190 namespace { 191 192 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 193 // tables, and the ByteOffset is the offset in bytes from the address point to 194 // the virtual function pointer. 195 struct VTableSlot { 196 Metadata *TypeID; 197 uint64_t ByteOffset; 198 }; 199 200 } // end anonymous namespace 201 202 namespace llvm { 203 204 template <> struct DenseMapInfo<VTableSlot> { 205 static VTableSlot getEmptyKey() { 206 return {DenseMapInfo<Metadata *>::getEmptyKey(), 207 DenseMapInfo<uint64_t>::getEmptyKey()}; 208 } 209 static VTableSlot getTombstoneKey() { 210 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 211 DenseMapInfo<uint64_t>::getTombstoneKey()}; 212 } 213 static unsigned getHashValue(const VTableSlot &I) { 214 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 215 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 216 } 217 static bool isEqual(const VTableSlot &LHS, 218 const VTableSlot &RHS) { 219 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 220 } 221 }; 222 223 } // end namespace llvm 224 225 namespace { 226 227 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 228 // the indirect virtual call. 229 struct VirtualCallSite { 230 Value *VTable; 231 CallSite CS; 232 233 // If non-null, this field points to the associated unsafe use count stored in 234 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 235 // of that field for details. 236 unsigned *NumUnsafeUses; 237 238 void emitRemark(const Twine &OptName, const Twine &TargetName) { 239 Function *F = CS.getCaller(); 240 emitOptimizationRemark( 241 F->getContext(), DEBUG_TYPE, *F, 242 CS.getInstruction()->getDebugLoc(), 243 OptName + ": devirtualized a call to " + TargetName); 244 } 245 246 void replaceAndErase(const Twine &OptName, const Twine &TargetName, 247 bool RemarksEnabled, Value *New) { 248 if (RemarksEnabled) 249 emitRemark(OptName, TargetName); 250 CS->replaceAllUsesWith(New); 251 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 252 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 253 II->getUnwindDest()->removePredecessor(II->getParent()); 254 } 255 CS->eraseFromParent(); 256 // This use is no longer unsafe. 257 if (NumUnsafeUses) 258 --*NumUnsafeUses; 259 } 260 }; 261 262 struct DevirtModule { 263 Module &M; 264 IntegerType *Int8Ty; 265 PointerType *Int8PtrTy; 266 IntegerType *Int32Ty; 267 268 bool RemarksEnabled; 269 270 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; 271 272 // This map keeps track of the number of "unsafe" uses of a loaded function 273 // pointer. The key is the associated llvm.type.test intrinsic call generated 274 // by this pass. An unsafe use is one that calls the loaded function pointer 275 // directly. Every time we eliminate an unsafe use (for example, by 276 // devirtualizing it or by applying virtual constant propagation), we 277 // decrement the value stored in this map. If a value reaches zero, we can 278 // eliminate the type check by RAUWing the associated llvm.type.test call with 279 // true. 280 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 281 282 DevirtModule(Module &M) 283 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), 284 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 285 Int32Ty(Type::getInt32Ty(M.getContext())), 286 RemarksEnabled(areRemarksEnabled()) {} 287 288 bool areRemarksEnabled(); 289 290 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 291 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 292 293 void buildTypeIdentifierMap( 294 std::vector<VTableBits> &Bits, 295 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 296 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 297 bool 298 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 299 const std::set<TypeMemberInfo> &TypeMemberInfos, 300 uint64_t ByteOffset); 301 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 302 MutableArrayRef<VirtualCallSite> CallSites); 303 bool tryEvaluateFunctionsWithArgs( 304 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 305 ArrayRef<ConstantInt *> Args); 306 bool tryUniformRetValOpt(IntegerType *RetType, 307 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 308 MutableArrayRef<VirtualCallSite> CallSites); 309 bool tryUniqueRetValOpt(unsigned BitWidth, 310 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 311 MutableArrayRef<VirtualCallSite> CallSites); 312 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 313 ArrayRef<VirtualCallSite> CallSites); 314 315 void rebuildGlobal(VTableBits &B); 316 317 bool run(); 318 }; 319 320 struct WholeProgramDevirt : public ModulePass { 321 static char ID; 322 323 WholeProgramDevirt() : ModulePass(ID) { 324 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 325 } 326 327 bool runOnModule(Module &M) override { 328 if (skipModule(M)) 329 return false; 330 331 return DevirtModule(M).run(); 332 } 333 }; 334 335 } // end anonymous namespace 336 337 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", 338 "Whole program devirtualization", false, false) 339 char WholeProgramDevirt::ID = 0; 340 341 ModulePass *llvm::createWholeProgramDevirtPass() { 342 return new WholeProgramDevirt; 343 } 344 345 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 346 ModuleAnalysisManager &) { 347 if (!DevirtModule(M).run()) 348 return PreservedAnalyses::all(); 349 return PreservedAnalyses::none(); 350 } 351 352 void DevirtModule::buildTypeIdentifierMap( 353 std::vector<VTableBits> &Bits, 354 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 355 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 356 Bits.reserve(M.getGlobalList().size()); 357 SmallVector<MDNode *, 2> Types; 358 for (GlobalVariable &GV : M.globals()) { 359 Types.clear(); 360 GV.getMetadata(LLVMContext::MD_type, Types); 361 if (Types.empty()) 362 continue; 363 364 VTableBits *&BitsPtr = GVToBits[&GV]; 365 if (!BitsPtr) { 366 Bits.emplace_back(); 367 Bits.back().GV = &GV; 368 Bits.back().ObjectSize = 369 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 370 BitsPtr = &Bits.back(); 371 } 372 373 for (MDNode *Type : Types) { 374 auto TypeID = Type->getOperand(1).get(); 375 376 uint64_t Offset = 377 cast<ConstantInt>( 378 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 379 ->getZExtValue(); 380 381 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 382 } 383 } 384 } 385 386 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 387 if (I->getType()->isPointerTy()) { 388 if (Offset == 0) 389 return I; 390 return nullptr; 391 } 392 393 const DataLayout &DL = M.getDataLayout(); 394 395 if (auto *C = dyn_cast<ConstantStruct>(I)) { 396 const StructLayout *SL = DL.getStructLayout(C->getType()); 397 if (Offset >= SL->getSizeInBytes()) 398 return nullptr; 399 400 unsigned Op = SL->getElementContainingOffset(Offset); 401 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 402 Offset - SL->getElementOffset(Op)); 403 } 404 if (auto *C = dyn_cast<ConstantArray>(I)) { 405 ArrayType *VTableTy = C->getType(); 406 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 407 408 unsigned Op = Offset / ElemSize; 409 if (Op >= C->getNumOperands()) 410 return nullptr; 411 412 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 413 Offset % ElemSize); 414 } 415 return nullptr; 416 } 417 418 bool DevirtModule::tryFindVirtualCallTargets( 419 std::vector<VirtualCallTarget> &TargetsForSlot, 420 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 421 for (const TypeMemberInfo &TM : TypeMemberInfos) { 422 if (!TM.Bits->GV->isConstant()) 423 return false; 424 425 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 426 TM.Offset + ByteOffset); 427 if (!Ptr) 428 return false; 429 430 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 431 if (!Fn) 432 return false; 433 434 // We can disregard __cxa_pure_virtual as a possible call target, as 435 // calls to pure virtuals are UB. 436 if (Fn->getName() == "__cxa_pure_virtual") 437 continue; 438 439 TargetsForSlot.push_back({Fn, &TM}); 440 } 441 442 // Give up if we couldn't find any targets. 443 return !TargetsForSlot.empty(); 444 } 445 446 bool DevirtModule::trySingleImplDevirt( 447 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 448 MutableArrayRef<VirtualCallSite> CallSites) { 449 // See if the program contains a single implementation of this virtual 450 // function. 451 Function *TheFn = TargetsForSlot[0].Fn; 452 for (auto &&Target : TargetsForSlot) 453 if (TheFn != Target.Fn) 454 return false; 455 456 if (RemarksEnabled) 457 TargetsForSlot[0].WasDevirt = true; 458 // If so, update each call site to call that implementation directly. 459 for (auto &&VCallSite : CallSites) { 460 if (RemarksEnabled) 461 VCallSite.emitRemark("single-impl", TheFn->getName()); 462 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 463 TheFn, VCallSite.CS.getCalledValue()->getType())); 464 // This use is no longer unsafe. 465 if (VCallSite.NumUnsafeUses) 466 --*VCallSite.NumUnsafeUses; 467 } 468 return true; 469 } 470 471 bool DevirtModule::tryEvaluateFunctionsWithArgs( 472 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 473 ArrayRef<ConstantInt *> Args) { 474 // Evaluate each function and store the result in each target's RetVal 475 // field. 476 for (VirtualCallTarget &Target : TargetsForSlot) { 477 if (Target.Fn->arg_size() != Args.size() + 1) 478 return false; 479 for (unsigned I = 0; I != Args.size(); ++I) 480 if (Target.Fn->getFunctionType()->getParamType(I + 1) != 481 Args[I]->getType()) 482 return false; 483 484 Evaluator Eval(M.getDataLayout(), nullptr); 485 SmallVector<Constant *, 2> EvalArgs; 486 EvalArgs.push_back( 487 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 488 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); 489 Constant *RetVal; 490 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 491 !isa<ConstantInt>(RetVal)) 492 return false; 493 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 494 } 495 return true; 496 } 497 498 bool DevirtModule::tryUniformRetValOpt( 499 IntegerType *RetType, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 500 MutableArrayRef<VirtualCallSite> CallSites) { 501 // Uniform return value optimization. If all functions return the same 502 // constant, replace all calls with that constant. 503 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 504 for (const VirtualCallTarget &Target : TargetsForSlot) 505 if (Target.RetVal != TheRetVal) 506 return false; 507 508 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); 509 for (auto Call : CallSites) 510 Call.replaceAndErase("uniform-ret-val", TargetsForSlot[0].Fn->getName(), 511 RemarksEnabled, TheRetValConst); 512 if (RemarksEnabled) 513 for (auto &&Target : TargetsForSlot) 514 Target.WasDevirt = true; 515 return true; 516 } 517 518 bool DevirtModule::tryUniqueRetValOpt( 519 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 520 MutableArrayRef<VirtualCallSite> CallSites) { 521 // IsOne controls whether we look for a 0 or a 1. 522 auto tryUniqueRetValOptFor = [&](bool IsOne) { 523 const TypeMemberInfo *UniqueMember = nullptr; 524 for (const VirtualCallTarget &Target : TargetsForSlot) { 525 if (Target.RetVal == (IsOne ? 1 : 0)) { 526 if (UniqueMember) 527 return false; 528 UniqueMember = Target.TM; 529 } 530 } 531 532 // We should have found a unique member or bailed out by now. We already 533 // checked for a uniform return value in tryUniformRetValOpt. 534 assert(UniqueMember); 535 536 // Replace each call with the comparison. 537 for (auto &&Call : CallSites) { 538 IRBuilder<> B(Call.CS.getInstruction()); 539 Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy); 540 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset); 541 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 542 Call.VTable, OneAddr); 543 Call.replaceAndErase("unique-ret-val", TargetsForSlot[0].Fn->getName(), 544 RemarksEnabled, Cmp); 545 } 546 // Update devirtualization statistics for targets. 547 if (RemarksEnabled) 548 for (auto &&Target : TargetsForSlot) 549 Target.WasDevirt = true; 550 551 return true; 552 }; 553 554 if (BitWidth == 1) { 555 if (tryUniqueRetValOptFor(true)) 556 return true; 557 if (tryUniqueRetValOptFor(false)) 558 return true; 559 } 560 return false; 561 } 562 563 bool DevirtModule::tryVirtualConstProp( 564 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 565 ArrayRef<VirtualCallSite> CallSites) { 566 // This only works if the function returns an integer. 567 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 568 if (!RetType) 569 return false; 570 unsigned BitWidth = RetType->getBitWidth(); 571 if (BitWidth > 64) 572 return false; 573 574 // Make sure that each function does not access memory, takes at least one 575 // argument, does not use its first argument (which we assume is 'this'), 576 // and has the same return type. 577 for (VirtualCallTarget &Target : TargetsForSlot) { 578 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || 579 !Target.Fn->arg_begin()->use_empty() || 580 Target.Fn->getReturnType() != RetType) 581 return false; 582 } 583 584 // Group call sites by the list of constant arguments they pass. 585 // The comparator ensures deterministic ordering. 586 struct ByAPIntValue { 587 bool operator()(const std::vector<ConstantInt *> &A, 588 const std::vector<ConstantInt *> &B) const { 589 return std::lexicographical_compare( 590 A.begin(), A.end(), B.begin(), B.end(), 591 [](ConstantInt *AI, ConstantInt *BI) { 592 return AI->getValue().ult(BI->getValue()); 593 }); 594 } 595 }; 596 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, 597 ByAPIntValue> 598 VCallSitesByConstantArg; 599 for (auto &&VCallSite : CallSites) { 600 std::vector<ConstantInt *> Args; 601 if (VCallSite.CS.getType() != RetType) 602 continue; 603 for (auto &&Arg : 604 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { 605 if (!isa<ConstantInt>(Arg)) 606 break; 607 Args.push_back(cast<ConstantInt>(&Arg)); 608 } 609 if (Args.size() + 1 != VCallSite.CS.arg_size()) 610 continue; 611 612 VCallSitesByConstantArg[Args].push_back(VCallSite); 613 } 614 615 for (auto &&CSByConstantArg : VCallSitesByConstantArg) { 616 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 617 continue; 618 619 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) 620 continue; 621 622 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) 623 continue; 624 625 // Find an allocation offset in bits in all vtables associated with the 626 // type. 627 uint64_t AllocBefore = 628 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 629 uint64_t AllocAfter = 630 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 631 632 // Calculate the total amount of padding needed to store a value at both 633 // ends of the object. 634 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 635 for (auto &&Target : TargetsForSlot) { 636 TotalPaddingBefore += std::max<int64_t>( 637 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 638 TotalPaddingAfter += std::max<int64_t>( 639 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 640 } 641 642 // If the amount of padding is too large, give up. 643 // FIXME: do something smarter here. 644 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 645 continue; 646 647 // Calculate the offset to the value as a (possibly negative) byte offset 648 // and (if applicable) a bit offset, and store the values in the targets. 649 int64_t OffsetByte; 650 uint64_t OffsetBit; 651 if (TotalPaddingBefore <= TotalPaddingAfter) 652 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 653 OffsetBit); 654 else 655 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 656 OffsetBit); 657 658 if (RemarksEnabled) 659 for (auto &&Target : TargetsForSlot) 660 Target.WasDevirt = true; 661 662 // Rewrite each call to a load from OffsetByte/OffsetBit. 663 for (auto Call : CSByConstantArg.second) { 664 IRBuilder<> B(Call.CS.getInstruction()); 665 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); 666 if (BitWidth == 1) { 667 Value *Bits = B.CreateLoad(Addr); 668 Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 669 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 670 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 671 Call.replaceAndErase("virtual-const-prop-1-bit", 672 TargetsForSlot[0].Fn->getName(), 673 RemarksEnabled, IsBitSet); 674 } else { 675 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 676 Value *Val = B.CreateLoad(RetType, ValAddr); 677 Call.replaceAndErase("virtual-const-prop", 678 TargetsForSlot[0].Fn->getName(), 679 RemarksEnabled, Val); 680 } 681 } 682 } 683 return true; 684 } 685 686 void DevirtModule::rebuildGlobal(VTableBits &B) { 687 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 688 return; 689 690 // Align each byte array to pointer width. 691 unsigned PointerSize = M.getDataLayout().getPointerSize(); 692 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 693 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 694 695 // Before was stored in reverse order; flip it now. 696 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 697 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 698 699 // Build an anonymous global containing the before bytes, followed by the 700 // original initializer, followed by the after bytes. 701 auto NewInit = ConstantStruct::getAnon( 702 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 703 B.GV->getInitializer(), 704 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 705 auto NewGV = 706 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 707 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 708 NewGV->setSection(B.GV->getSection()); 709 NewGV->setComdat(B.GV->getComdat()); 710 711 // Copy the original vtable's metadata to the anonymous global, adjusting 712 // offsets as required. 713 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 714 715 // Build an alias named after the original global, pointing at the second 716 // element (the original initializer). 717 auto Alias = GlobalAlias::create( 718 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 719 ConstantExpr::getGetElementPtr( 720 NewInit->getType(), NewGV, 721 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 722 ConstantInt::get(Int32Ty, 1)}), 723 &M); 724 Alias->setVisibility(B.GV->getVisibility()); 725 Alias->takeName(B.GV); 726 727 B.GV->replaceAllUsesWith(Alias); 728 B.GV->eraseFromParent(); 729 } 730 731 bool DevirtModule::areRemarksEnabled() { 732 const auto &FL = M.getFunctionList(); 733 if (FL.empty()) 734 return false; 735 const Function &Fn = FL.front(); 736 auto DI = OptimizationRemark(DEBUG_TYPE, Fn, DebugLoc(), ""); 737 return DI.isEnabled(); 738 } 739 740 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 741 Function *AssumeFunc) { 742 // Find all virtual calls via a virtual table pointer %p under an assumption 743 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 744 // points to a member of the type identifier %md. Group calls by (type ID, 745 // offset) pair (effectively the identity of the virtual function) and store 746 // to CallSlots. 747 DenseSet<Value *> SeenPtrs; 748 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 749 I != E;) { 750 auto CI = dyn_cast<CallInst>(I->getUser()); 751 ++I; 752 if (!CI) 753 continue; 754 755 // Search for virtual calls based on %p and add them to DevirtCalls. 756 SmallVector<DevirtCallSite, 1> DevirtCalls; 757 SmallVector<CallInst *, 1> Assumes; 758 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 759 760 // If we found any, add them to CallSlots. Only do this if we haven't seen 761 // the vtable pointer before, as it may have been CSE'd with pointers from 762 // other call sites, and we don't want to process call sites multiple times. 763 if (!Assumes.empty()) { 764 Metadata *TypeId = 765 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 766 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 767 if (SeenPtrs.insert(Ptr).second) { 768 for (DevirtCallSite Call : DevirtCalls) { 769 CallSlots[{TypeId, Call.Offset}].push_back( 770 {CI->getArgOperand(0), Call.CS, nullptr}); 771 } 772 } 773 } 774 775 // We no longer need the assumes or the type test. 776 for (auto Assume : Assumes) 777 Assume->eraseFromParent(); 778 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 779 // may use the vtable argument later. 780 if (CI->use_empty()) 781 CI->eraseFromParent(); 782 } 783 } 784 785 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 786 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 787 788 for (auto I = TypeCheckedLoadFunc->use_begin(), 789 E = TypeCheckedLoadFunc->use_end(); 790 I != E;) { 791 auto CI = dyn_cast<CallInst>(I->getUser()); 792 ++I; 793 if (!CI) 794 continue; 795 796 Value *Ptr = CI->getArgOperand(0); 797 Value *Offset = CI->getArgOperand(1); 798 Value *TypeIdValue = CI->getArgOperand(2); 799 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 800 801 SmallVector<DevirtCallSite, 1> DevirtCalls; 802 SmallVector<Instruction *, 1> LoadedPtrs; 803 SmallVector<Instruction *, 1> Preds; 804 bool HasNonCallUses = false; 805 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 806 HasNonCallUses, CI); 807 808 // Start by generating "pessimistic" code that explicitly loads the function 809 // pointer from the vtable and performs the type check. If possible, we will 810 // eliminate the load and the type check later. 811 812 // If possible, only generate the load at the point where it is used. 813 // This helps avoid unnecessary spills. 814 IRBuilder<> LoadB( 815 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 816 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 817 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 818 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 819 820 for (Instruction *LoadedPtr : LoadedPtrs) { 821 LoadedPtr->replaceAllUsesWith(LoadedValue); 822 LoadedPtr->eraseFromParent(); 823 } 824 825 // Likewise for the type test. 826 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 827 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 828 829 for (Instruction *Pred : Preds) { 830 Pred->replaceAllUsesWith(TypeTestCall); 831 Pred->eraseFromParent(); 832 } 833 834 // We have already erased any extractvalue instructions that refer to the 835 // intrinsic call, but the intrinsic may have other non-extractvalue uses 836 // (although this is unlikely). In that case, explicitly build a pair and 837 // RAUW it. 838 if (!CI->use_empty()) { 839 Value *Pair = UndefValue::get(CI->getType()); 840 IRBuilder<> B(CI); 841 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 842 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 843 CI->replaceAllUsesWith(Pair); 844 } 845 846 // The number of unsafe uses is initially the number of uses. 847 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 848 NumUnsafeUses = DevirtCalls.size(); 849 850 // If the function pointer has a non-call user, we cannot eliminate the type 851 // check, as one of those users may eventually call the pointer. Increment 852 // the unsafe use count to make sure it cannot reach zero. 853 if (HasNonCallUses) 854 ++NumUnsafeUses; 855 for (DevirtCallSite Call : DevirtCalls) { 856 CallSlots[{TypeId, Call.Offset}].push_back( 857 {Ptr, Call.CS, &NumUnsafeUses}); 858 } 859 860 CI->eraseFromParent(); 861 } 862 } 863 864 bool DevirtModule::run() { 865 Function *TypeTestFunc = 866 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 867 Function *TypeCheckedLoadFunc = 868 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 869 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 870 871 if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 872 AssumeFunc->use_empty()) && 873 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 874 return false; 875 876 if (TypeTestFunc && AssumeFunc) 877 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 878 879 if (TypeCheckedLoadFunc) 880 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 881 882 // Rebuild type metadata into a map for easy lookup. 883 std::vector<VTableBits> Bits; 884 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 885 buildTypeIdentifierMap(Bits, TypeIdMap); 886 if (TypeIdMap.empty()) 887 return true; 888 889 // For each (type, offset) pair: 890 bool DidVirtualConstProp = false; 891 std::map<std::string, Function*> DevirtTargets; 892 for (auto &S : CallSlots) { 893 // Search each of the members of the type identifier for the virtual 894 // function implementation at offset S.first.ByteOffset, and add to 895 // TargetsForSlot. 896 std::vector<VirtualCallTarget> TargetsForSlot; 897 if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 898 S.first.ByteOffset)) 899 continue; 900 901 if (!trySingleImplDevirt(TargetsForSlot, S.second) && 902 tryVirtualConstProp(TargetsForSlot, S.second)) 903 DidVirtualConstProp = true; 904 905 // Collect functions devirtualized at least for one call site for stats. 906 if (RemarksEnabled) 907 for (const auto &T : TargetsForSlot) 908 if (T.WasDevirt) 909 DevirtTargets[T.Fn->getName()] = T.Fn; 910 } 911 912 if (RemarksEnabled) { 913 // Generate remarks for each devirtualized function. 914 for (const auto &DT : DevirtTargets) { 915 Function *F = DT.second; 916 DISubprogram *SP = F->getSubprogram(); 917 DebugLoc DL = SP ? DebugLoc::get(SP->getScopeLine(), 0, SP) : DebugLoc(); 918 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, DL, 919 Twine("devirtualized ") + F->getName()); 920 } 921 } 922 923 // If we were able to eliminate all unsafe uses for a type checked load, 924 // eliminate the type test by replacing it with true. 925 if (TypeCheckedLoadFunc) { 926 auto True = ConstantInt::getTrue(M.getContext()); 927 for (auto &&U : NumUnsafeUsesForTypeTest) { 928 if (U.second == 0) { 929 U.first->replaceAllUsesWith(True); 930 U.first->eraseFromParent(); 931 } 932 } 933 } 934 935 // Rebuild each global we touched as part of virtual constant propagation to 936 // include the before and after bytes. 937 if (DidVirtualConstProp) 938 for (VTableBits &B : Bits) 939 rebuildGlobal(B); 940 941 return true; 942 } 943