1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/iterator_range.h" 61 #include "llvm/Analysis/AliasAnalysis.h" 62 #include "llvm/Analysis/BasicAliasAnalysis.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TypeMetadataUtils.h" 65 #include "llvm/Bitcode/BitcodeReader.h" 66 #include "llvm/Bitcode/BitcodeWriter.h" 67 #include "llvm/IR/CallSite.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugLoc.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/ModuleSummaryIndexYAML.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/PassRegistry.h" 88 #include "llvm/PassSupport.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Errc.h" 92 #include "llvm/Support/Error.h" 93 #include "llvm/Support/FileSystem.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Transforms/IPO.h" 96 #include "llvm/Transforms/IPO/FunctionAttrs.h" 97 #include "llvm/Transforms/Utils/Evaluator.h" 98 #include <algorithm> 99 #include <cstddef> 100 #include <map> 101 #include <set> 102 #include <string> 103 104 using namespace llvm; 105 using namespace wholeprogramdevirt; 106 107 #define DEBUG_TYPE "wholeprogramdevirt" 108 109 static cl::opt<PassSummaryAction> ClSummaryAction( 110 "wholeprogramdevirt-summary-action", 111 cl::desc("What to do with the summary when running this pass"), 112 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 113 clEnumValN(PassSummaryAction::Import, "import", 114 "Import typeid resolutions from summary and globals"), 115 clEnumValN(PassSummaryAction::Export, "export", 116 "Export typeid resolutions to summary and globals")), 117 cl::Hidden); 118 119 static cl::opt<std::string> ClReadSummary( 120 "wholeprogramdevirt-read-summary", 121 cl::desc( 122 "Read summary from given bitcode or YAML file before running pass"), 123 cl::Hidden); 124 125 static cl::opt<std::string> ClWriteSummary( 126 "wholeprogramdevirt-write-summary", 127 cl::desc("Write summary to given bitcode or YAML file after running pass. " 128 "Output file format is deduced from extension: *.bc means writing " 129 "bitcode, otherwise YAML"), 130 cl::Hidden); 131 132 static cl::opt<unsigned> 133 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 134 cl::init(10), cl::ZeroOrMore, 135 cl::desc("Maximum number of call targets per " 136 "call site to enable branch funnels")); 137 138 static cl::opt<bool> 139 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 140 cl::init(false), cl::ZeroOrMore, 141 cl::desc("Print index-based devirtualization messages")); 142 143 /// Provide a way to force enable whole program visibility in tests. 144 /// This is needed to support legacy tests that don't contain 145 /// !vcall_visibility metadata (the mere presense of type tests 146 /// previously implied hidden visibility). 147 cl::opt<bool> 148 WholeProgramVisibility("whole-program-visibility", cl::init(false), 149 cl::Hidden, cl::ZeroOrMore, 150 cl::desc("Enable whole program visibility")); 151 152 /// Provide a way to force disable whole program for debugging or workarounds, 153 /// when enabled via the linker. 154 cl::opt<bool> DisableWholeProgramVisibility( 155 "disable-whole-program-visibility", cl::init(false), cl::Hidden, 156 cl::ZeroOrMore, 157 cl::desc("Disable whole program visibility (overrides enabling options)")); 158 159 // Find the minimum offset that we may store a value of size Size bits at. If 160 // IsAfter is set, look for an offset before the object, otherwise look for an 161 // offset after the object. 162 uint64_t 163 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 164 bool IsAfter, uint64_t Size) { 165 // Find a minimum offset taking into account only vtable sizes. 166 uint64_t MinByte = 0; 167 for (const VirtualCallTarget &Target : Targets) { 168 if (IsAfter) 169 MinByte = std::max(MinByte, Target.minAfterBytes()); 170 else 171 MinByte = std::max(MinByte, Target.minBeforeBytes()); 172 } 173 174 // Build a vector of arrays of bytes covering, for each target, a slice of the 175 // used region (see AccumBitVector::BytesUsed in 176 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 177 // this aligns the used regions to start at MinByte. 178 // 179 // In this example, A, B and C are vtables, # is a byte already allocated for 180 // a virtual function pointer, AAAA... (etc.) are the used regions for the 181 // vtables and Offset(X) is the value computed for the Offset variable below 182 // for X. 183 // 184 // Offset(A) 185 // | | 186 // |MinByte 187 // A: ################AAAAAAAA|AAAAAAAA 188 // B: ########BBBBBBBBBBBBBBBB|BBBB 189 // C: ########################|CCCCCCCCCCCCCCCC 190 // | Offset(B) | 191 // 192 // This code produces the slices of A, B and C that appear after the divider 193 // at MinByte. 194 std::vector<ArrayRef<uint8_t>> Used; 195 for (const VirtualCallTarget &Target : Targets) { 196 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 197 : Target.TM->Bits->Before.BytesUsed; 198 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 199 : MinByte - Target.minBeforeBytes(); 200 201 // Disregard used regions that are smaller than Offset. These are 202 // effectively all-free regions that do not need to be checked. 203 if (VTUsed.size() > Offset) 204 Used.push_back(VTUsed.slice(Offset)); 205 } 206 207 if (Size == 1) { 208 // Find a free bit in each member of Used. 209 for (unsigned I = 0;; ++I) { 210 uint8_t BitsUsed = 0; 211 for (auto &&B : Used) 212 if (I < B.size()) 213 BitsUsed |= B[I]; 214 if (BitsUsed != 0xff) 215 return (MinByte + I) * 8 + 216 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 217 } 218 } else { 219 // Find a free (Size/8) byte region in each member of Used. 220 // FIXME: see if alignment helps. 221 for (unsigned I = 0;; ++I) { 222 for (auto &&B : Used) { 223 unsigned Byte = 0; 224 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 225 if (B[I + Byte]) 226 goto NextI; 227 ++Byte; 228 } 229 } 230 return (MinByte + I) * 8; 231 NextI:; 232 } 233 } 234 } 235 236 void wholeprogramdevirt::setBeforeReturnValues( 237 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 238 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 239 if (BitWidth == 1) 240 OffsetByte = -(AllocBefore / 8 + 1); 241 else 242 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 243 OffsetBit = AllocBefore % 8; 244 245 for (VirtualCallTarget &Target : Targets) { 246 if (BitWidth == 1) 247 Target.setBeforeBit(AllocBefore); 248 else 249 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 250 } 251 } 252 253 void wholeprogramdevirt::setAfterReturnValues( 254 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 255 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 256 if (BitWidth == 1) 257 OffsetByte = AllocAfter / 8; 258 else 259 OffsetByte = (AllocAfter + 7) / 8; 260 OffsetBit = AllocAfter % 8; 261 262 for (VirtualCallTarget &Target : Targets) { 263 if (BitWidth == 1) 264 Target.setAfterBit(AllocAfter); 265 else 266 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 267 } 268 } 269 270 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 271 : Fn(Fn), TM(TM), 272 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 273 274 namespace { 275 276 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 277 // tables, and the ByteOffset is the offset in bytes from the address point to 278 // the virtual function pointer. 279 struct VTableSlot { 280 Metadata *TypeID; 281 uint64_t ByteOffset; 282 }; 283 284 } // end anonymous namespace 285 286 namespace llvm { 287 288 template <> struct DenseMapInfo<VTableSlot> { 289 static VTableSlot getEmptyKey() { 290 return {DenseMapInfo<Metadata *>::getEmptyKey(), 291 DenseMapInfo<uint64_t>::getEmptyKey()}; 292 } 293 static VTableSlot getTombstoneKey() { 294 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 295 DenseMapInfo<uint64_t>::getTombstoneKey()}; 296 } 297 static unsigned getHashValue(const VTableSlot &I) { 298 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 299 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 300 } 301 static bool isEqual(const VTableSlot &LHS, 302 const VTableSlot &RHS) { 303 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 304 } 305 }; 306 307 template <> struct DenseMapInfo<VTableSlotSummary> { 308 static VTableSlotSummary getEmptyKey() { 309 return {DenseMapInfo<StringRef>::getEmptyKey(), 310 DenseMapInfo<uint64_t>::getEmptyKey()}; 311 } 312 static VTableSlotSummary getTombstoneKey() { 313 return {DenseMapInfo<StringRef>::getTombstoneKey(), 314 DenseMapInfo<uint64_t>::getTombstoneKey()}; 315 } 316 static unsigned getHashValue(const VTableSlotSummary &I) { 317 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 318 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 319 } 320 static bool isEqual(const VTableSlotSummary &LHS, 321 const VTableSlotSummary &RHS) { 322 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 323 } 324 }; 325 326 } // end namespace llvm 327 328 namespace { 329 330 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 331 // the indirect virtual call. 332 struct VirtualCallSite { 333 Value *VTable; 334 CallSite CS; 335 336 // If non-null, this field points to the associated unsafe use count stored in 337 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 338 // of that field for details. 339 unsigned *NumUnsafeUses; 340 341 void 342 emitRemark(const StringRef OptName, const StringRef TargetName, 343 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 344 Function *F = CS.getCaller(); 345 DebugLoc DLoc = CS->getDebugLoc(); 346 BasicBlock *Block = CS.getParent(); 347 348 using namespace ore; 349 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 350 << NV("Optimization", OptName) 351 << ": devirtualized a call to " 352 << NV("FunctionName", TargetName)); 353 } 354 355 void replaceAndErase( 356 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 357 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 358 Value *New) { 359 if (RemarksEnabled) 360 emitRemark(OptName, TargetName, OREGetter); 361 CS->replaceAllUsesWith(New); 362 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 363 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 364 II->getUnwindDest()->removePredecessor(II->getParent()); 365 } 366 CS->eraseFromParent(); 367 // This use is no longer unsafe. 368 if (NumUnsafeUses) 369 --*NumUnsafeUses; 370 } 371 }; 372 373 // Call site information collected for a specific VTableSlot and possibly a list 374 // of constant integer arguments. The grouping by arguments is handled by the 375 // VTableSlotInfo class. 376 struct CallSiteInfo { 377 /// The set of call sites for this slot. Used during regular LTO and the 378 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 379 /// call sites that appear in the merged module itself); in each of these 380 /// cases we are directly operating on the call sites at the IR level. 381 std::vector<VirtualCallSite> CallSites; 382 383 /// Whether all call sites represented by this CallSiteInfo, including those 384 /// in summaries, have been devirtualized. This starts off as true because a 385 /// default constructed CallSiteInfo represents no call sites. 386 bool AllCallSitesDevirted = true; 387 388 // These fields are used during the export phase of ThinLTO and reflect 389 // information collected from function summaries. 390 391 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 392 /// this slot. 393 bool SummaryHasTypeTestAssumeUsers = false; 394 395 /// CFI-specific: a vector containing the list of function summaries that use 396 /// the llvm.type.checked.load intrinsic and therefore will require 397 /// resolutions for llvm.type.test in order to implement CFI checks if 398 /// devirtualization was unsuccessful. If devirtualization was successful, the 399 /// pass will clear this vector by calling markDevirt(). If at the end of the 400 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 401 /// to each of the function summaries in the vector. 402 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 403 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 404 405 bool isExported() const { 406 return SummaryHasTypeTestAssumeUsers || 407 !SummaryTypeCheckedLoadUsers.empty(); 408 } 409 410 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 411 SummaryTypeCheckedLoadUsers.push_back(FS); 412 AllCallSitesDevirted = false; 413 } 414 415 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 416 SummaryTypeTestAssumeUsers.push_back(FS); 417 SummaryHasTypeTestAssumeUsers = true; 418 AllCallSitesDevirted = false; 419 } 420 421 void markDevirt() { 422 AllCallSitesDevirted = true; 423 424 // As explained in the comment for SummaryTypeCheckedLoadUsers. 425 SummaryTypeCheckedLoadUsers.clear(); 426 } 427 }; 428 429 // Call site information collected for a specific VTableSlot. 430 struct VTableSlotInfo { 431 // The set of call sites which do not have all constant integer arguments 432 // (excluding "this"). 433 CallSiteInfo CSInfo; 434 435 // The set of call sites with all constant integer arguments (excluding 436 // "this"), grouped by argument list. 437 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 438 439 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 440 441 private: 442 CallSiteInfo &findCallSiteInfo(CallSite CS); 443 }; 444 445 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 446 std::vector<uint64_t> Args; 447 auto *CI = dyn_cast<IntegerType>(CS.getType()); 448 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 449 return CSInfo; 450 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 451 auto *CI = dyn_cast<ConstantInt>(Arg); 452 if (!CI || CI->getBitWidth() > 64) 453 return CSInfo; 454 Args.push_back(CI->getZExtValue()); 455 } 456 return ConstCSInfo[Args]; 457 } 458 459 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 460 unsigned *NumUnsafeUses) { 461 auto &CSI = findCallSiteInfo(CS); 462 CSI.AllCallSitesDevirted = false; 463 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses}); 464 } 465 466 struct DevirtModule { 467 Module &M; 468 function_ref<AAResults &(Function &)> AARGetter; 469 function_ref<DominatorTree &(Function &)> LookupDomTree; 470 471 ModuleSummaryIndex *ExportSummary; 472 const ModuleSummaryIndex *ImportSummary; 473 474 IntegerType *Int8Ty; 475 PointerType *Int8PtrTy; 476 IntegerType *Int32Ty; 477 IntegerType *Int64Ty; 478 IntegerType *IntPtrTy; 479 480 bool RemarksEnabled; 481 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 482 483 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 484 485 // This map keeps track of the number of "unsafe" uses of a loaded function 486 // pointer. The key is the associated llvm.type.test intrinsic call generated 487 // by this pass. An unsafe use is one that calls the loaded function pointer 488 // directly. Every time we eliminate an unsafe use (for example, by 489 // devirtualizing it or by applying virtual constant propagation), we 490 // decrement the value stored in this map. If a value reaches zero, we can 491 // eliminate the type check by RAUWing the associated llvm.type.test call with 492 // true. 493 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 494 495 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 496 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 497 function_ref<DominatorTree &(Function &)> LookupDomTree, 498 ModuleSummaryIndex *ExportSummary, 499 const ModuleSummaryIndex *ImportSummary) 500 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 501 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 502 Int8Ty(Type::getInt8Ty(M.getContext())), 503 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 504 Int32Ty(Type::getInt32Ty(M.getContext())), 505 Int64Ty(Type::getInt64Ty(M.getContext())), 506 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 507 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 508 assert(!(ExportSummary && ImportSummary)); 509 } 510 511 bool areRemarksEnabled(); 512 513 void scanTypeTestUsers(Function *TypeTestFunc); 514 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 515 516 void buildTypeIdentifierMap( 517 std::vector<VTableBits> &Bits, 518 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 519 bool 520 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 521 const std::set<TypeMemberInfo> &TypeMemberInfos, 522 uint64_t ByteOffset); 523 524 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 525 bool &IsExported); 526 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 527 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 528 VTableSlotInfo &SlotInfo, 529 WholeProgramDevirtResolution *Res); 530 531 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 532 bool &IsExported); 533 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 534 VTableSlotInfo &SlotInfo, 535 WholeProgramDevirtResolution *Res, VTableSlot Slot); 536 537 bool tryEvaluateFunctionsWithArgs( 538 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 539 ArrayRef<uint64_t> Args); 540 541 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 542 uint64_t TheRetVal); 543 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 544 CallSiteInfo &CSInfo, 545 WholeProgramDevirtResolution::ByArg *Res); 546 547 // Returns the global symbol name that is used to export information about the 548 // given vtable slot and list of arguments. 549 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 550 StringRef Name); 551 552 bool shouldExportConstantsAsAbsoluteSymbols(); 553 554 // This function is called during the export phase to create a symbol 555 // definition containing information about the given vtable slot and list of 556 // arguments. 557 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 558 Constant *C); 559 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 560 uint32_t Const, uint32_t &Storage); 561 562 // This function is called during the import phase to create a reference to 563 // the symbol definition created during the export phase. 564 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 565 StringRef Name); 566 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 567 StringRef Name, IntegerType *IntTy, 568 uint32_t Storage); 569 570 Constant *getMemberAddr(const TypeMemberInfo *M); 571 572 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 573 Constant *UniqueMemberAddr); 574 bool tryUniqueRetValOpt(unsigned BitWidth, 575 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 576 CallSiteInfo &CSInfo, 577 WholeProgramDevirtResolution::ByArg *Res, 578 VTableSlot Slot, ArrayRef<uint64_t> Args); 579 580 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 581 Constant *Byte, Constant *Bit); 582 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 583 VTableSlotInfo &SlotInfo, 584 WholeProgramDevirtResolution *Res, VTableSlot Slot); 585 586 void rebuildGlobal(VTableBits &B); 587 588 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 589 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 590 591 // If we were able to eliminate all unsafe uses for a type checked load, 592 // eliminate the associated type tests by replacing them with true. 593 void removeRedundantTypeTests(); 594 595 bool run(); 596 597 // Lower the module using the action and summary passed as command line 598 // arguments. For testing purposes only. 599 static bool 600 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 601 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 602 function_ref<DominatorTree &(Function &)> LookupDomTree); 603 }; 604 605 struct DevirtIndex { 606 ModuleSummaryIndex &ExportSummary; 607 // The set in which to record GUIDs exported from their module by 608 // devirtualization, used by client to ensure they are not internalized. 609 std::set<GlobalValue::GUID> &ExportedGUIDs; 610 // A map in which to record the information necessary to locate the WPD 611 // resolution for local targets in case they are exported by cross module 612 // importing. 613 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 614 615 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 616 617 DevirtIndex( 618 ModuleSummaryIndex &ExportSummary, 619 std::set<GlobalValue::GUID> &ExportedGUIDs, 620 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 621 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 622 LocalWPDTargetsMap(LocalWPDTargetsMap) {} 623 624 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 625 const TypeIdCompatibleVtableInfo TIdInfo, 626 uint64_t ByteOffset); 627 628 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 629 VTableSlotSummary &SlotSummary, 630 VTableSlotInfo &SlotInfo, 631 WholeProgramDevirtResolution *Res, 632 std::set<ValueInfo> &DevirtTargets); 633 634 void run(); 635 }; 636 637 struct WholeProgramDevirt : public ModulePass { 638 static char ID; 639 640 bool UseCommandLine = false; 641 642 ModuleSummaryIndex *ExportSummary = nullptr; 643 const ModuleSummaryIndex *ImportSummary = nullptr; 644 645 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 646 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 647 } 648 649 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 650 const ModuleSummaryIndex *ImportSummary) 651 : ModulePass(ID), ExportSummary(ExportSummary), 652 ImportSummary(ImportSummary) { 653 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 654 } 655 656 bool runOnModule(Module &M) override { 657 if (skipModule(M)) 658 return false; 659 660 // In the new pass manager, we can request the optimization 661 // remark emitter pass on a per-function-basis, which the 662 // OREGetter will do for us. 663 // In the old pass manager, this is harder, so we just build 664 // an optimization remark emitter on the fly, when we need it. 665 std::unique_ptr<OptimizationRemarkEmitter> ORE; 666 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 667 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 668 return *ORE; 669 }; 670 671 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 672 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 673 }; 674 675 if (UseCommandLine) 676 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, 677 LookupDomTree); 678 679 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, 680 ExportSummary, ImportSummary) 681 .run(); 682 } 683 684 void getAnalysisUsage(AnalysisUsage &AU) const override { 685 AU.addRequired<AssumptionCacheTracker>(); 686 AU.addRequired<TargetLibraryInfoWrapperPass>(); 687 AU.addRequired<DominatorTreeWrapperPass>(); 688 } 689 }; 690 691 } // end anonymous namespace 692 693 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 694 "Whole program devirtualization", false, false) 695 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 696 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 697 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 698 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 699 "Whole program devirtualization", false, false) 700 char WholeProgramDevirt::ID = 0; 701 702 ModulePass * 703 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 704 const ModuleSummaryIndex *ImportSummary) { 705 return new WholeProgramDevirt(ExportSummary, ImportSummary); 706 } 707 708 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 709 ModuleAnalysisManager &AM) { 710 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 711 auto AARGetter = [&](Function &F) -> AAResults & { 712 return FAM.getResult<AAManager>(F); 713 }; 714 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 715 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 716 }; 717 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 718 return FAM.getResult<DominatorTreeAnalysis>(F); 719 }; 720 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 721 ImportSummary) 722 .run()) 723 return PreservedAnalyses::all(); 724 return PreservedAnalyses::none(); 725 } 726 727 // Enable whole program visibility if enabled by client (e.g. linker) or 728 // internal option, and not force disabled. 729 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 730 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 731 !DisableWholeProgramVisibility; 732 } 733 734 namespace llvm { 735 736 /// If whole program visibility asserted, then upgrade all public vcall 737 /// visibility metadata on vtable definitions to linkage unit visibility in 738 /// Module IR (for regular or hybrid LTO). 739 void updateVCallVisibilityInModule(Module &M, 740 bool WholeProgramVisibilityEnabledInLTO) { 741 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 742 return; 743 for (GlobalVariable &GV : M.globals()) 744 // Add linkage unit visibility to any variable with type metadata, which are 745 // the vtable definitions. We won't have an existing vcall_visibility 746 // metadata on vtable definitions with public visibility. 747 if (GV.hasMetadata(LLVMContext::MD_type) && 748 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 749 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 750 } 751 752 /// If whole program visibility asserted, then upgrade all public vcall 753 /// visibility metadata on vtable definition summaries to linkage unit 754 /// visibility in Module summary index (for ThinLTO). 755 void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, 756 bool WholeProgramVisibilityEnabledInLTO) { 757 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 758 return; 759 for (auto &P : Index) { 760 for (auto &S : P.second.SummaryList) { 761 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 762 if (!GVar || GVar->vTableFuncs().empty() || 763 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 764 continue; 765 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 766 } 767 } 768 } 769 770 void runWholeProgramDevirtOnIndex( 771 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 772 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 773 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 774 } 775 776 void updateIndexWPDForExports( 777 ModuleSummaryIndex &Summary, 778 function_ref<bool(StringRef, ValueInfo)> isExported, 779 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 780 for (auto &T : LocalWPDTargetsMap) { 781 auto &VI = T.first; 782 // This was enforced earlier during trySingleImplDevirt. 783 assert(VI.getSummaryList().size() == 1 && 784 "Devirt of local target has more than one copy"); 785 auto &S = VI.getSummaryList()[0]; 786 if (!isExported(S->modulePath(), VI)) 787 continue; 788 789 // It's been exported by a cross module import. 790 for (auto &SlotSummary : T.second) { 791 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 792 assert(TIdSum); 793 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 794 assert(WPDRes != TIdSum->WPDRes.end()); 795 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 796 WPDRes->second.SingleImplName, 797 Summary.getModuleHash(S->modulePath())); 798 } 799 } 800 } 801 802 } // end namespace llvm 803 804 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 805 // Check that summary index contains regular LTO module when performing 806 // export to prevent occasional use of index from pure ThinLTO compilation 807 // (-fno-split-lto-module). This kind of summary index is passed to 808 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 809 const auto &ModPaths = Summary->modulePaths(); 810 if (ClSummaryAction != PassSummaryAction::Import && 811 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 812 ModPaths.end()) 813 return createStringError( 814 errc::invalid_argument, 815 "combined summary should contain Regular LTO module"); 816 return ErrorSuccess(); 817 } 818 819 bool DevirtModule::runForTesting( 820 Module &M, function_ref<AAResults &(Function &)> AARGetter, 821 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 822 function_ref<DominatorTree &(Function &)> LookupDomTree) { 823 std::unique_ptr<ModuleSummaryIndex> Summary = 824 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 825 826 // Handle the command-line summary arguments. This code is for testing 827 // purposes only, so we handle errors directly. 828 if (!ClReadSummary.empty()) { 829 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 830 ": "); 831 auto ReadSummaryFile = 832 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 833 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 834 getModuleSummaryIndex(*ReadSummaryFile)) { 835 Summary = std::move(*SummaryOrErr); 836 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 837 } else { 838 // Try YAML if we've failed with bitcode. 839 consumeError(SummaryOrErr.takeError()); 840 yaml::Input In(ReadSummaryFile->getBuffer()); 841 In >> *Summary; 842 ExitOnErr(errorCodeToError(In.error())); 843 } 844 } 845 846 bool Changed = 847 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 848 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 849 : nullptr, 850 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 851 : nullptr) 852 .run(); 853 854 if (!ClWriteSummary.empty()) { 855 ExitOnError ExitOnErr( 856 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 857 std::error_code EC; 858 if (StringRef(ClWriteSummary).endswith(".bc")) { 859 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 860 ExitOnErr(errorCodeToError(EC)); 861 WriteIndexToFile(*Summary, OS); 862 } else { 863 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); 864 ExitOnErr(errorCodeToError(EC)); 865 yaml::Output Out(OS); 866 Out << *Summary; 867 } 868 } 869 870 return Changed; 871 } 872 873 void DevirtModule::buildTypeIdentifierMap( 874 std::vector<VTableBits> &Bits, 875 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 876 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 877 Bits.reserve(M.getGlobalList().size()); 878 SmallVector<MDNode *, 2> Types; 879 for (GlobalVariable &GV : M.globals()) { 880 Types.clear(); 881 GV.getMetadata(LLVMContext::MD_type, Types); 882 if (GV.isDeclaration() || Types.empty()) 883 continue; 884 885 VTableBits *&BitsPtr = GVToBits[&GV]; 886 if (!BitsPtr) { 887 Bits.emplace_back(); 888 Bits.back().GV = &GV; 889 Bits.back().ObjectSize = 890 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 891 BitsPtr = &Bits.back(); 892 } 893 894 for (MDNode *Type : Types) { 895 auto TypeID = Type->getOperand(1).get(); 896 897 uint64_t Offset = 898 cast<ConstantInt>( 899 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 900 ->getZExtValue(); 901 902 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 903 } 904 } 905 } 906 907 bool DevirtModule::tryFindVirtualCallTargets( 908 std::vector<VirtualCallTarget> &TargetsForSlot, 909 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 910 for (const TypeMemberInfo &TM : TypeMemberInfos) { 911 if (!TM.Bits->GV->isConstant()) 912 return false; 913 914 // We cannot perform whole program devirtualization analysis on a vtable 915 // with public LTO visibility. 916 if (TM.Bits->GV->getVCallVisibility() == 917 GlobalObject::VCallVisibilityPublic) 918 return false; 919 920 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 921 TM.Offset + ByteOffset, M); 922 if (!Ptr) 923 return false; 924 925 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 926 if (!Fn) 927 return false; 928 929 // We can disregard __cxa_pure_virtual as a possible call target, as 930 // calls to pure virtuals are UB. 931 if (Fn->getName() == "__cxa_pure_virtual") 932 continue; 933 934 TargetsForSlot.push_back({Fn, &TM}); 935 } 936 937 // Give up if we couldn't find any targets. 938 return !TargetsForSlot.empty(); 939 } 940 941 bool DevirtIndex::tryFindVirtualCallTargets( 942 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 943 uint64_t ByteOffset) { 944 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 945 // Find the first non-available_externally linkage vtable initializer. 946 // We can have multiple available_externally, linkonce_odr and weak_odr 947 // vtable initializers, however we want to skip available_externally as they 948 // do not have type metadata attached, and therefore the summary will not 949 // contain any vtable functions. We can also have multiple external 950 // vtable initializers in the case of comdats, which we cannot check here. 951 // The linker should give an error in this case. 952 // 953 // Also, handle the case of same-named local Vtables with the same path 954 // and therefore the same GUID. This can happen if there isn't enough 955 // distinguishing path when compiling the source file. In that case we 956 // conservatively return false early. 957 const GlobalVarSummary *VS = nullptr; 958 bool LocalFound = false; 959 for (auto &S : P.VTableVI.getSummaryList()) { 960 if (GlobalValue::isLocalLinkage(S->linkage())) { 961 if (LocalFound) 962 return false; 963 LocalFound = true; 964 } 965 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 966 VS = cast<GlobalVarSummary>(S->getBaseObject()); 967 // We cannot perform whole program devirtualization analysis on a vtable 968 // with public LTO visibility. 969 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 970 return false; 971 } 972 } 973 if (!VS->isLive()) 974 continue; 975 for (auto VTP : VS->vTableFuncs()) { 976 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 977 continue; 978 979 TargetsForSlot.push_back(VTP.FuncVI); 980 } 981 } 982 983 // Give up if we couldn't find any targets. 984 return !TargetsForSlot.empty(); 985 } 986 987 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 988 Constant *TheFn, bool &IsExported) { 989 auto Apply = [&](CallSiteInfo &CSInfo) { 990 for (auto &&VCallSite : CSInfo.CallSites) { 991 if (RemarksEnabled) 992 VCallSite.emitRemark("single-impl", 993 TheFn->stripPointerCasts()->getName(), OREGetter); 994 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 995 TheFn, VCallSite.CS.getCalledValue()->getType())); 996 // This use is no longer unsafe. 997 if (VCallSite.NumUnsafeUses) 998 --*VCallSite.NumUnsafeUses; 999 } 1000 if (CSInfo.isExported()) 1001 IsExported = true; 1002 CSInfo.markDevirt(); 1003 }; 1004 Apply(SlotInfo.CSInfo); 1005 for (auto &P : SlotInfo.ConstCSInfo) 1006 Apply(P.second); 1007 } 1008 1009 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1010 // We can't add calls if we haven't seen a definition 1011 if (Callee.getSummaryList().empty()) 1012 return false; 1013 1014 // Insert calls into the summary index so that the devirtualized targets 1015 // are eligible for import. 1016 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1017 // to better ensure we have the opportunity to inline them. 1018 bool IsExported = false; 1019 auto &S = Callee.getSummaryList()[0]; 1020 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1021 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1022 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1023 FS->addCall({Callee, CI}); 1024 IsExported |= S->modulePath() != FS->modulePath(); 1025 } 1026 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1027 FS->addCall({Callee, CI}); 1028 IsExported |= S->modulePath() != FS->modulePath(); 1029 } 1030 }; 1031 AddCalls(SlotInfo.CSInfo); 1032 for (auto &P : SlotInfo.ConstCSInfo) 1033 AddCalls(P.second); 1034 return IsExported; 1035 } 1036 1037 bool DevirtModule::trySingleImplDevirt( 1038 ModuleSummaryIndex *ExportSummary, 1039 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1040 WholeProgramDevirtResolution *Res) { 1041 // See if the program contains a single implementation of this virtual 1042 // function. 1043 Function *TheFn = TargetsForSlot[0].Fn; 1044 for (auto &&Target : TargetsForSlot) 1045 if (TheFn != Target.Fn) 1046 return false; 1047 1048 // If so, update each call site to call that implementation directly. 1049 if (RemarksEnabled) 1050 TargetsForSlot[0].WasDevirt = true; 1051 1052 bool IsExported = false; 1053 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1054 if (!IsExported) 1055 return false; 1056 1057 // If the only implementation has local linkage, we must promote to external 1058 // to make it visible to thin LTO objects. We can only get here during the 1059 // ThinLTO export phase. 1060 if (TheFn->hasLocalLinkage()) { 1061 std::string NewName = (TheFn->getName() + "$merged").str(); 1062 1063 // Since we are renaming the function, any comdats with the same name must 1064 // also be renamed. This is required when targeting COFF, as the comdat name 1065 // must match one of the names of the symbols in the comdat. 1066 if (Comdat *C = TheFn->getComdat()) { 1067 if (C->getName() == TheFn->getName()) { 1068 Comdat *NewC = M.getOrInsertComdat(NewName); 1069 NewC->setSelectionKind(C->getSelectionKind()); 1070 for (GlobalObject &GO : M.global_objects()) 1071 if (GO.getComdat() == C) 1072 GO.setComdat(NewC); 1073 } 1074 } 1075 1076 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1077 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1078 TheFn->setName(NewName); 1079 } 1080 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1081 // Any needed promotion of 'TheFn' has already been done during 1082 // LTO unit split, so we can ignore return value of AddCalls. 1083 AddCalls(SlotInfo, TheFnVI); 1084 1085 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1086 Res->SingleImplName = std::string(TheFn->getName()); 1087 1088 return true; 1089 } 1090 1091 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1092 VTableSlotSummary &SlotSummary, 1093 VTableSlotInfo &SlotInfo, 1094 WholeProgramDevirtResolution *Res, 1095 std::set<ValueInfo> &DevirtTargets) { 1096 // See if the program contains a single implementation of this virtual 1097 // function. 1098 auto TheFn = TargetsForSlot[0]; 1099 for (auto &&Target : TargetsForSlot) 1100 if (TheFn != Target) 1101 return false; 1102 1103 // Don't devirtualize if we don't have target definition. 1104 auto Size = TheFn.getSummaryList().size(); 1105 if (!Size) 1106 return false; 1107 1108 // If the summary list contains multiple summaries where at least one is 1109 // a local, give up, as we won't know which (possibly promoted) name to use. 1110 for (auto &S : TheFn.getSummaryList()) 1111 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1112 return false; 1113 1114 // Collect functions devirtualized at least for one call site for stats. 1115 if (PrintSummaryDevirt) 1116 DevirtTargets.insert(TheFn); 1117 1118 auto &S = TheFn.getSummaryList()[0]; 1119 bool IsExported = AddCalls(SlotInfo, TheFn); 1120 if (IsExported) 1121 ExportedGUIDs.insert(TheFn.getGUID()); 1122 1123 // Record in summary for use in devirtualization during the ThinLTO import 1124 // step. 1125 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1126 if (GlobalValue::isLocalLinkage(S->linkage())) { 1127 if (IsExported) 1128 // If target is a local function and we are exporting it by 1129 // devirtualizing a call in another module, we need to record the 1130 // promoted name. 1131 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1132 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1133 else { 1134 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1135 Res->SingleImplName = std::string(TheFn.name()); 1136 } 1137 } else 1138 Res->SingleImplName = std::string(TheFn.name()); 1139 1140 // Name will be empty if this thin link driven off of serialized combined 1141 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1142 // legacy LTO API anyway. 1143 assert(!Res->SingleImplName.empty()); 1144 1145 return true; 1146 } 1147 1148 void DevirtModule::tryICallBranchFunnel( 1149 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1150 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1151 Triple T(M.getTargetTriple()); 1152 if (T.getArch() != Triple::x86_64) 1153 return; 1154 1155 if (TargetsForSlot.size() > ClThreshold) 1156 return; 1157 1158 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1159 if (!HasNonDevirt) 1160 for (auto &P : SlotInfo.ConstCSInfo) 1161 if (!P.second.AllCallSitesDevirted) { 1162 HasNonDevirt = true; 1163 break; 1164 } 1165 1166 if (!HasNonDevirt) 1167 return; 1168 1169 FunctionType *FT = 1170 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1171 Function *JT; 1172 if (isa<MDString>(Slot.TypeID)) { 1173 JT = Function::Create(FT, Function::ExternalLinkage, 1174 M.getDataLayout().getProgramAddressSpace(), 1175 getGlobalName(Slot, {}, "branch_funnel"), &M); 1176 JT->setVisibility(GlobalValue::HiddenVisibility); 1177 } else { 1178 JT = Function::Create(FT, Function::InternalLinkage, 1179 M.getDataLayout().getProgramAddressSpace(), 1180 "branch_funnel", &M); 1181 } 1182 JT->addAttribute(1, Attribute::Nest); 1183 1184 std::vector<Value *> JTArgs; 1185 JTArgs.push_back(JT->arg_begin()); 1186 for (auto &T : TargetsForSlot) { 1187 JTArgs.push_back(getMemberAddr(T.TM)); 1188 JTArgs.push_back(T.Fn); 1189 } 1190 1191 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1192 Function *Intr = 1193 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1194 1195 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1196 CI->setTailCallKind(CallInst::TCK_MustTail); 1197 ReturnInst::Create(M.getContext(), nullptr, BB); 1198 1199 bool IsExported = false; 1200 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1201 if (IsExported) 1202 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1203 } 1204 1205 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1206 Constant *JT, bool &IsExported) { 1207 auto Apply = [&](CallSiteInfo &CSInfo) { 1208 if (CSInfo.isExported()) 1209 IsExported = true; 1210 if (CSInfo.AllCallSitesDevirted) 1211 return; 1212 for (auto &&VCallSite : CSInfo.CallSites) { 1213 CallSite CS = VCallSite.CS; 1214 1215 // Jump tables are only profitable if the retpoline mitigation is enabled. 1216 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features"); 1217 if (FSAttr.hasAttribute(Attribute::None) || 1218 !FSAttr.getValueAsString().contains("+retpoline")) 1219 continue; 1220 1221 if (RemarksEnabled) 1222 VCallSite.emitRemark("branch-funnel", 1223 JT->stripPointerCasts()->getName(), OREGetter); 1224 1225 // Pass the address of the vtable in the nest register, which is r10 on 1226 // x86_64. 1227 std::vector<Type *> NewArgs; 1228 NewArgs.push_back(Int8PtrTy); 1229 for (Type *T : CS.getFunctionType()->params()) 1230 NewArgs.push_back(T); 1231 FunctionType *NewFT = 1232 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs, 1233 CS.getFunctionType()->isVarArg()); 1234 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1235 1236 IRBuilder<> IRB(CS.getInstruction()); 1237 std::vector<Value *> Args; 1238 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1239 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I) 1240 Args.push_back(CS.getArgOperand(I)); 1241 1242 CallSite NewCS; 1243 if (CS.isCall()) 1244 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1245 else 1246 NewCS = IRB.CreateInvoke( 1247 NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1248 cast<InvokeInst>(CS.getInstruction())->getNormalDest(), 1249 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args); 1250 NewCS.setCallingConv(CS.getCallingConv()); 1251 1252 AttributeList Attrs = CS.getAttributes(); 1253 std::vector<AttributeSet> NewArgAttrs; 1254 NewArgAttrs.push_back(AttributeSet::get( 1255 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1256 M.getContext(), Attribute::Nest)})); 1257 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1258 NewArgAttrs.push_back(Attrs.getParamAttributes(I)); 1259 NewCS.setAttributes( 1260 AttributeList::get(M.getContext(), Attrs.getFnAttributes(), 1261 Attrs.getRetAttributes(), NewArgAttrs)); 1262 1263 CS->replaceAllUsesWith(NewCS.getInstruction()); 1264 CS->eraseFromParent(); 1265 1266 // This use is no longer unsafe. 1267 if (VCallSite.NumUnsafeUses) 1268 --*VCallSite.NumUnsafeUses; 1269 } 1270 // Don't mark as devirtualized because there may be callers compiled without 1271 // retpoline mitigation, which would mean that they are lowered to 1272 // llvm.type.test and therefore require an llvm.type.test resolution for the 1273 // type identifier. 1274 }; 1275 Apply(SlotInfo.CSInfo); 1276 for (auto &P : SlotInfo.ConstCSInfo) 1277 Apply(P.second); 1278 } 1279 1280 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1281 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1282 ArrayRef<uint64_t> Args) { 1283 // Evaluate each function and store the result in each target's RetVal 1284 // field. 1285 for (VirtualCallTarget &Target : TargetsForSlot) { 1286 if (Target.Fn->arg_size() != Args.size() + 1) 1287 return false; 1288 1289 Evaluator Eval(M.getDataLayout(), nullptr); 1290 SmallVector<Constant *, 2> EvalArgs; 1291 EvalArgs.push_back( 1292 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1293 for (unsigned I = 0; I != Args.size(); ++I) { 1294 auto *ArgTy = dyn_cast<IntegerType>( 1295 Target.Fn->getFunctionType()->getParamType(I + 1)); 1296 if (!ArgTy) 1297 return false; 1298 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1299 } 1300 1301 Constant *RetVal; 1302 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1303 !isa<ConstantInt>(RetVal)) 1304 return false; 1305 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1306 } 1307 return true; 1308 } 1309 1310 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1311 uint64_t TheRetVal) { 1312 for (auto Call : CSInfo.CallSites) 1313 Call.replaceAndErase( 1314 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1315 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 1316 CSInfo.markDevirt(); 1317 } 1318 1319 bool DevirtModule::tryUniformRetValOpt( 1320 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1321 WholeProgramDevirtResolution::ByArg *Res) { 1322 // Uniform return value optimization. If all functions return the same 1323 // constant, replace all calls with that constant. 1324 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1325 for (const VirtualCallTarget &Target : TargetsForSlot) 1326 if (Target.RetVal != TheRetVal) 1327 return false; 1328 1329 if (CSInfo.isExported()) { 1330 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1331 Res->Info = TheRetVal; 1332 } 1333 1334 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1335 if (RemarksEnabled) 1336 for (auto &&Target : TargetsForSlot) 1337 Target.WasDevirt = true; 1338 return true; 1339 } 1340 1341 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1342 ArrayRef<uint64_t> Args, 1343 StringRef Name) { 1344 std::string FullName = "__typeid_"; 1345 raw_string_ostream OS(FullName); 1346 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1347 for (uint64_t Arg : Args) 1348 OS << '_' << Arg; 1349 OS << '_' << Name; 1350 return OS.str(); 1351 } 1352 1353 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1354 Triple T(M.getTargetTriple()); 1355 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1356 } 1357 1358 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1359 StringRef Name, Constant *C) { 1360 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1361 getGlobalName(Slot, Args, Name), C, &M); 1362 GA->setVisibility(GlobalValue::HiddenVisibility); 1363 } 1364 1365 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1366 StringRef Name, uint32_t Const, 1367 uint32_t &Storage) { 1368 if (shouldExportConstantsAsAbsoluteSymbols()) { 1369 exportGlobal( 1370 Slot, Args, Name, 1371 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1372 return; 1373 } 1374 1375 Storage = Const; 1376 } 1377 1378 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1379 StringRef Name) { 1380 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 1381 auto *GV = dyn_cast<GlobalVariable>(C); 1382 if (GV) 1383 GV->setVisibility(GlobalValue::HiddenVisibility); 1384 return C; 1385 } 1386 1387 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1388 StringRef Name, IntegerType *IntTy, 1389 uint32_t Storage) { 1390 if (!shouldExportConstantsAsAbsoluteSymbols()) 1391 return ConstantInt::get(IntTy, Storage); 1392 1393 Constant *C = importGlobal(Slot, Args, Name); 1394 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1395 C = ConstantExpr::getPtrToInt(C, IntTy); 1396 1397 // We only need to set metadata if the global is newly created, in which 1398 // case it would not have hidden visibility. 1399 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1400 return C; 1401 1402 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1403 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1404 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1405 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1406 MDNode::get(M.getContext(), {MinC, MaxC})); 1407 }; 1408 unsigned AbsWidth = IntTy->getBitWidth(); 1409 if (AbsWidth == IntPtrTy->getBitWidth()) 1410 SetAbsRange(~0ull, ~0ull); // Full set. 1411 else 1412 SetAbsRange(0, 1ull << AbsWidth); 1413 return C; 1414 } 1415 1416 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1417 bool IsOne, 1418 Constant *UniqueMemberAddr) { 1419 for (auto &&Call : CSInfo.CallSites) { 1420 IRBuilder<> B(Call.CS.getInstruction()); 1421 Value *Cmp = 1422 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 1423 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 1424 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 1425 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1426 Cmp); 1427 } 1428 CSInfo.markDevirt(); 1429 } 1430 1431 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1432 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1433 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1434 ConstantInt::get(Int64Ty, M->Offset)); 1435 } 1436 1437 bool DevirtModule::tryUniqueRetValOpt( 1438 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1439 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1440 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1441 // IsOne controls whether we look for a 0 or a 1. 1442 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1443 const TypeMemberInfo *UniqueMember = nullptr; 1444 for (const VirtualCallTarget &Target : TargetsForSlot) { 1445 if (Target.RetVal == (IsOne ? 1 : 0)) { 1446 if (UniqueMember) 1447 return false; 1448 UniqueMember = Target.TM; 1449 } 1450 } 1451 1452 // We should have found a unique member or bailed out by now. We already 1453 // checked for a uniform return value in tryUniformRetValOpt. 1454 assert(UniqueMember); 1455 1456 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1457 if (CSInfo.isExported()) { 1458 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1459 Res->Info = IsOne; 1460 1461 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1462 } 1463 1464 // Replace each call with the comparison. 1465 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1466 UniqueMemberAddr); 1467 1468 // Update devirtualization statistics for targets. 1469 if (RemarksEnabled) 1470 for (auto &&Target : TargetsForSlot) 1471 Target.WasDevirt = true; 1472 1473 return true; 1474 }; 1475 1476 if (BitWidth == 1) { 1477 if (tryUniqueRetValOptFor(true)) 1478 return true; 1479 if (tryUniqueRetValOptFor(false)) 1480 return true; 1481 } 1482 return false; 1483 } 1484 1485 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1486 Constant *Byte, Constant *Bit) { 1487 for (auto Call : CSInfo.CallSites) { 1488 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1489 IRBuilder<> B(Call.CS.getInstruction()); 1490 Value *Addr = 1491 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1492 if (RetType->getBitWidth() == 1) { 1493 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1494 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1495 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1496 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1497 OREGetter, IsBitSet); 1498 } else { 1499 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1500 Value *Val = B.CreateLoad(RetType, ValAddr); 1501 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1502 OREGetter, Val); 1503 } 1504 } 1505 CSInfo.markDevirt(); 1506 } 1507 1508 bool DevirtModule::tryVirtualConstProp( 1509 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1510 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1511 // This only works if the function returns an integer. 1512 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1513 if (!RetType) 1514 return false; 1515 unsigned BitWidth = RetType->getBitWidth(); 1516 if (BitWidth > 64) 1517 return false; 1518 1519 // Make sure that each function is defined, does not access memory, takes at 1520 // least one argument, does not use its first argument (which we assume is 1521 // 'this'), and has the same return type. 1522 // 1523 // Note that we test whether this copy of the function is readnone, rather 1524 // than testing function attributes, which must hold for any copy of the 1525 // function, even a less optimized version substituted at link time. This is 1526 // sound because the virtual constant propagation optimizations effectively 1527 // inline all implementations of the virtual function into each call site, 1528 // rather than using function attributes to perform local optimization. 1529 for (VirtualCallTarget &Target : TargetsForSlot) { 1530 if (Target.Fn->isDeclaration() || 1531 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1532 MAK_ReadNone || 1533 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1534 Target.Fn->getReturnType() != RetType) 1535 return false; 1536 } 1537 1538 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1539 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1540 continue; 1541 1542 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1543 if (Res) 1544 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1545 1546 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1547 continue; 1548 1549 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1550 ResByArg, Slot, CSByConstantArg.first)) 1551 continue; 1552 1553 // Find an allocation offset in bits in all vtables associated with the 1554 // type. 1555 uint64_t AllocBefore = 1556 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1557 uint64_t AllocAfter = 1558 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1559 1560 // Calculate the total amount of padding needed to store a value at both 1561 // ends of the object. 1562 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1563 for (auto &&Target : TargetsForSlot) { 1564 TotalPaddingBefore += std::max<int64_t>( 1565 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1566 TotalPaddingAfter += std::max<int64_t>( 1567 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1568 } 1569 1570 // If the amount of padding is too large, give up. 1571 // FIXME: do something smarter here. 1572 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1573 continue; 1574 1575 // Calculate the offset to the value as a (possibly negative) byte offset 1576 // and (if applicable) a bit offset, and store the values in the targets. 1577 int64_t OffsetByte; 1578 uint64_t OffsetBit; 1579 if (TotalPaddingBefore <= TotalPaddingAfter) 1580 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1581 OffsetBit); 1582 else 1583 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1584 OffsetBit); 1585 1586 if (RemarksEnabled) 1587 for (auto &&Target : TargetsForSlot) 1588 Target.WasDevirt = true; 1589 1590 1591 if (CSByConstantArg.second.isExported()) { 1592 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1593 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1594 ResByArg->Byte); 1595 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1596 ResByArg->Bit); 1597 } 1598 1599 // Rewrite each call to a load from OffsetByte/OffsetBit. 1600 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1601 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1602 applyVirtualConstProp(CSByConstantArg.second, 1603 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1604 } 1605 return true; 1606 } 1607 1608 void DevirtModule::rebuildGlobal(VTableBits &B) { 1609 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1610 return; 1611 1612 // Align the before byte array to the global's minimum alignment so that we 1613 // don't break any alignment requirements on the global. 1614 MaybeAlign Alignment(B.GV->getAlignment()); 1615 if (!Alignment) 1616 Alignment = 1617 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType())); 1618 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1619 1620 // Before was stored in reverse order; flip it now. 1621 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1622 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1623 1624 // Build an anonymous global containing the before bytes, followed by the 1625 // original initializer, followed by the after bytes. 1626 auto NewInit = ConstantStruct::getAnon( 1627 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1628 B.GV->getInitializer(), 1629 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1630 auto NewGV = 1631 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1632 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1633 NewGV->setSection(B.GV->getSection()); 1634 NewGV->setComdat(B.GV->getComdat()); 1635 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); 1636 1637 // Copy the original vtable's metadata to the anonymous global, adjusting 1638 // offsets as required. 1639 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1640 1641 // Build an alias named after the original global, pointing at the second 1642 // element (the original initializer). 1643 auto Alias = GlobalAlias::create( 1644 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1645 ConstantExpr::getGetElementPtr( 1646 NewInit->getType(), NewGV, 1647 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1648 ConstantInt::get(Int32Ty, 1)}), 1649 &M); 1650 Alias->setVisibility(B.GV->getVisibility()); 1651 Alias->takeName(B.GV); 1652 1653 B.GV->replaceAllUsesWith(Alias); 1654 B.GV->eraseFromParent(); 1655 } 1656 1657 bool DevirtModule::areRemarksEnabled() { 1658 const auto &FL = M.getFunctionList(); 1659 for (const Function &Fn : FL) { 1660 const auto &BBL = Fn.getBasicBlockList(); 1661 if (BBL.empty()) 1662 continue; 1663 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1664 return DI.isEnabled(); 1665 } 1666 return false; 1667 } 1668 1669 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) { 1670 // Find all virtual calls via a virtual table pointer %p under an assumption 1671 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1672 // points to a member of the type identifier %md. Group calls by (type ID, 1673 // offset) pair (effectively the identity of the virtual function) and store 1674 // to CallSlots. 1675 DenseSet<CallSite> SeenCallSites; 1676 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1677 I != E;) { 1678 auto CI = dyn_cast<CallInst>(I->getUser()); 1679 ++I; 1680 if (!CI) 1681 continue; 1682 1683 // Search for virtual calls based on %p and add them to DevirtCalls. 1684 SmallVector<DevirtCallSite, 1> DevirtCalls; 1685 SmallVector<CallInst *, 1> Assumes; 1686 auto &DT = LookupDomTree(*CI->getFunction()); 1687 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1688 1689 // If we found any, add them to CallSlots. 1690 if (!Assumes.empty()) { 1691 Metadata *TypeId = 1692 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1693 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1694 for (DevirtCallSite Call : DevirtCalls) { 1695 // Only add this CallSite if we haven't seen it before. The vtable 1696 // pointer may have been CSE'd with pointers from other call sites, 1697 // and we don't want to process call sites multiple times. We can't 1698 // just skip the vtable Ptr if it has been seen before, however, since 1699 // it may be shared by type tests that dominate different calls. 1700 if (SeenCallSites.insert(Call.CS).second) 1701 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1702 } 1703 } 1704 1705 // We no longer need the assumes or the type test. 1706 for (auto Assume : Assumes) 1707 Assume->eraseFromParent(); 1708 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1709 // may use the vtable argument later. 1710 if (CI->use_empty()) 1711 CI->eraseFromParent(); 1712 } 1713 } 1714 1715 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1716 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1717 1718 for (auto I = TypeCheckedLoadFunc->use_begin(), 1719 E = TypeCheckedLoadFunc->use_end(); 1720 I != E;) { 1721 auto CI = dyn_cast<CallInst>(I->getUser()); 1722 ++I; 1723 if (!CI) 1724 continue; 1725 1726 Value *Ptr = CI->getArgOperand(0); 1727 Value *Offset = CI->getArgOperand(1); 1728 Value *TypeIdValue = CI->getArgOperand(2); 1729 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1730 1731 SmallVector<DevirtCallSite, 1> DevirtCalls; 1732 SmallVector<Instruction *, 1> LoadedPtrs; 1733 SmallVector<Instruction *, 1> Preds; 1734 bool HasNonCallUses = false; 1735 auto &DT = LookupDomTree(*CI->getFunction()); 1736 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1737 HasNonCallUses, CI, DT); 1738 1739 // Start by generating "pessimistic" code that explicitly loads the function 1740 // pointer from the vtable and performs the type check. If possible, we will 1741 // eliminate the load and the type check later. 1742 1743 // If possible, only generate the load at the point where it is used. 1744 // This helps avoid unnecessary spills. 1745 IRBuilder<> LoadB( 1746 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1747 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1748 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1749 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1750 1751 for (Instruction *LoadedPtr : LoadedPtrs) { 1752 LoadedPtr->replaceAllUsesWith(LoadedValue); 1753 LoadedPtr->eraseFromParent(); 1754 } 1755 1756 // Likewise for the type test. 1757 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1758 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1759 1760 for (Instruction *Pred : Preds) { 1761 Pred->replaceAllUsesWith(TypeTestCall); 1762 Pred->eraseFromParent(); 1763 } 1764 1765 // We have already erased any extractvalue instructions that refer to the 1766 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1767 // (although this is unlikely). In that case, explicitly build a pair and 1768 // RAUW it. 1769 if (!CI->use_empty()) { 1770 Value *Pair = UndefValue::get(CI->getType()); 1771 IRBuilder<> B(CI); 1772 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1773 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1774 CI->replaceAllUsesWith(Pair); 1775 } 1776 1777 // The number of unsafe uses is initially the number of uses. 1778 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1779 NumUnsafeUses = DevirtCalls.size(); 1780 1781 // If the function pointer has a non-call user, we cannot eliminate the type 1782 // check, as one of those users may eventually call the pointer. Increment 1783 // the unsafe use count to make sure it cannot reach zero. 1784 if (HasNonCallUses) 1785 ++NumUnsafeUses; 1786 for (DevirtCallSite Call : DevirtCalls) { 1787 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1788 &NumUnsafeUses); 1789 } 1790 1791 CI->eraseFromParent(); 1792 } 1793 } 1794 1795 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1796 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 1797 if (!TypeId) 1798 return; 1799 const TypeIdSummary *TidSummary = 1800 ImportSummary->getTypeIdSummary(TypeId->getString()); 1801 if (!TidSummary) 1802 return; 1803 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1804 if (ResI == TidSummary->WPDRes.end()) 1805 return; 1806 const WholeProgramDevirtResolution &Res = ResI->second; 1807 1808 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1809 assert(!Res.SingleImplName.empty()); 1810 // The type of the function in the declaration is irrelevant because every 1811 // call site will cast it to the correct type. 1812 Constant *SingleImpl = 1813 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 1814 Type::getVoidTy(M.getContext())) 1815 .getCallee()); 1816 1817 // This is the import phase so we should not be exporting anything. 1818 bool IsExported = false; 1819 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1820 assert(!IsExported); 1821 } 1822 1823 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1824 auto I = Res.ResByArg.find(CSByConstantArg.first); 1825 if (I == Res.ResByArg.end()) 1826 continue; 1827 auto &ResByArg = I->second; 1828 // FIXME: We should figure out what to do about the "function name" argument 1829 // to the apply* functions, as the function names are unavailable during the 1830 // importing phase. For now we just pass the empty string. This does not 1831 // impact correctness because the function names are just used for remarks. 1832 switch (ResByArg.TheKind) { 1833 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1834 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1835 break; 1836 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1837 Constant *UniqueMemberAddr = 1838 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1839 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1840 UniqueMemberAddr); 1841 break; 1842 } 1843 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1844 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1845 Int32Ty, ResByArg.Byte); 1846 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1847 ResByArg.Bit); 1848 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1849 break; 1850 } 1851 default: 1852 break; 1853 } 1854 } 1855 1856 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 1857 // The type of the function is irrelevant, because it's bitcast at calls 1858 // anyhow. 1859 Constant *JT = cast<Constant>( 1860 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 1861 Type::getVoidTy(M.getContext())) 1862 .getCallee()); 1863 bool IsExported = false; 1864 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1865 assert(!IsExported); 1866 } 1867 } 1868 1869 void DevirtModule::removeRedundantTypeTests() { 1870 auto True = ConstantInt::getTrue(M.getContext()); 1871 for (auto &&U : NumUnsafeUsesForTypeTest) { 1872 if (U.second == 0) { 1873 U.first->replaceAllUsesWith(True); 1874 U.first->eraseFromParent(); 1875 } 1876 } 1877 } 1878 1879 bool DevirtModule::run() { 1880 // If only some of the modules were split, we cannot correctly perform 1881 // this transformation. We already checked for the presense of type tests 1882 // with partially split modules during the thin link, and would have emitted 1883 // an error if any were found, so here we can simply return. 1884 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 1885 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 1886 return false; 1887 1888 Function *TypeTestFunc = 1889 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1890 Function *TypeCheckedLoadFunc = 1891 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1892 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1893 1894 // Normally if there are no users of the devirtualization intrinsics in the 1895 // module, this pass has nothing to do. But if we are exporting, we also need 1896 // to handle any users that appear only in the function summaries. 1897 if (!ExportSummary && 1898 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1899 AssumeFunc->use_empty()) && 1900 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1901 return false; 1902 1903 if (TypeTestFunc && AssumeFunc) 1904 scanTypeTestUsers(TypeTestFunc); 1905 1906 if (TypeCheckedLoadFunc) 1907 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1908 1909 if (ImportSummary) { 1910 for (auto &S : CallSlots) 1911 importResolution(S.first, S.second); 1912 1913 removeRedundantTypeTests(); 1914 1915 // We have lowered or deleted the type instrinsics, so we will no 1916 // longer have enough information to reason about the liveness of virtual 1917 // function pointers in GlobalDCE. 1918 for (GlobalVariable &GV : M.globals()) 1919 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 1920 1921 // The rest of the code is only necessary when exporting or during regular 1922 // LTO, so we are done. 1923 return true; 1924 } 1925 1926 // Rebuild type metadata into a map for easy lookup. 1927 std::vector<VTableBits> Bits; 1928 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1929 buildTypeIdentifierMap(Bits, TypeIdMap); 1930 if (TypeIdMap.empty()) 1931 return true; 1932 1933 // Collect information from summary about which calls to try to devirtualize. 1934 if (ExportSummary) { 1935 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1936 for (auto &P : TypeIdMap) { 1937 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1938 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1939 TypeId); 1940 } 1941 1942 for (auto &P : *ExportSummary) { 1943 for (auto &S : P.second.SummaryList) { 1944 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1945 if (!FS) 1946 continue; 1947 // FIXME: Only add live functions. 1948 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1949 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1950 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 1951 } 1952 } 1953 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1954 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1955 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 1956 } 1957 } 1958 for (const FunctionSummary::ConstVCall &VC : 1959 FS->type_test_assume_const_vcalls()) { 1960 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1961 CallSlots[{MD, VC.VFunc.Offset}] 1962 .ConstCSInfo[VC.Args] 1963 .addSummaryTypeTestAssumeUser(FS); 1964 } 1965 } 1966 for (const FunctionSummary::ConstVCall &VC : 1967 FS->type_checked_load_const_vcalls()) { 1968 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1969 CallSlots[{MD, VC.VFunc.Offset}] 1970 .ConstCSInfo[VC.Args] 1971 .addSummaryTypeCheckedLoadUser(FS); 1972 } 1973 } 1974 } 1975 } 1976 } 1977 1978 // For each (type, offset) pair: 1979 bool DidVirtualConstProp = false; 1980 std::map<std::string, Function*> DevirtTargets; 1981 for (auto &S : CallSlots) { 1982 // Search each of the members of the type identifier for the virtual 1983 // function implementation at offset S.first.ByteOffset, and add to 1984 // TargetsForSlot. 1985 std::vector<VirtualCallTarget> TargetsForSlot; 1986 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1987 S.first.ByteOffset)) { 1988 WholeProgramDevirtResolution *Res = nullptr; 1989 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1990 Res = &ExportSummary 1991 ->getOrInsertTypeIdSummary( 1992 cast<MDString>(S.first.TypeID)->getString()) 1993 .WPDRes[S.first.ByteOffset]; 1994 1995 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 1996 DidVirtualConstProp |= 1997 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 1998 1999 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2000 } 2001 2002 // Collect functions devirtualized at least for one call site for stats. 2003 if (RemarksEnabled) 2004 for (const auto &T : TargetsForSlot) 2005 if (T.WasDevirt) 2006 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2007 } 2008 2009 // CFI-specific: if we are exporting and any llvm.type.checked.load 2010 // intrinsics were *not* devirtualized, we need to add the resulting 2011 // llvm.type.test intrinsics to the function summaries so that the 2012 // LowerTypeTests pass will export them. 2013 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2014 auto GUID = 2015 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2016 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2017 FS->addTypeTest(GUID); 2018 for (auto &CCS : S.second.ConstCSInfo) 2019 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 2020 FS->addTypeTest(GUID); 2021 } 2022 } 2023 2024 if (RemarksEnabled) { 2025 // Generate remarks for each devirtualized function. 2026 for (const auto &DT : DevirtTargets) { 2027 Function *F = DT.second; 2028 2029 using namespace ore; 2030 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2031 << "devirtualized " 2032 << NV("FunctionName", DT.first)); 2033 } 2034 } 2035 2036 removeRedundantTypeTests(); 2037 2038 // Rebuild each global we touched as part of virtual constant propagation to 2039 // include the before and after bytes. 2040 if (DidVirtualConstProp) 2041 for (VTableBits &B : Bits) 2042 rebuildGlobal(B); 2043 2044 // We have lowered or deleted the type instrinsics, so we will no 2045 // longer have enough information to reason about the liveness of virtual 2046 // function pointers in GlobalDCE. 2047 for (GlobalVariable &GV : M.globals()) 2048 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2049 2050 return true; 2051 } 2052 2053 void DevirtIndex::run() { 2054 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2055 return; 2056 2057 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2058 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2059 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2060 } 2061 2062 // Collect information from summary about which calls to try to devirtualize. 2063 for (auto &P : ExportSummary) { 2064 for (auto &S : P.second.SummaryList) { 2065 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2066 if (!FS) 2067 continue; 2068 // FIXME: Only add live functions. 2069 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2070 for (StringRef Name : NameByGUID[VF.GUID]) { 2071 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2072 } 2073 } 2074 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2075 for (StringRef Name : NameByGUID[VF.GUID]) { 2076 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2077 } 2078 } 2079 for (const FunctionSummary::ConstVCall &VC : 2080 FS->type_test_assume_const_vcalls()) { 2081 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2082 CallSlots[{Name, VC.VFunc.Offset}] 2083 .ConstCSInfo[VC.Args] 2084 .addSummaryTypeTestAssumeUser(FS); 2085 } 2086 } 2087 for (const FunctionSummary::ConstVCall &VC : 2088 FS->type_checked_load_const_vcalls()) { 2089 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2090 CallSlots[{Name, VC.VFunc.Offset}] 2091 .ConstCSInfo[VC.Args] 2092 .addSummaryTypeCheckedLoadUser(FS); 2093 } 2094 } 2095 } 2096 } 2097 2098 std::set<ValueInfo> DevirtTargets; 2099 // For each (type, offset) pair: 2100 for (auto &S : CallSlots) { 2101 // Search each of the members of the type identifier for the virtual 2102 // function implementation at offset S.first.ByteOffset, and add to 2103 // TargetsForSlot. 2104 std::vector<ValueInfo> TargetsForSlot; 2105 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2106 assert(TidSummary); 2107 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2108 S.first.ByteOffset)) { 2109 WholeProgramDevirtResolution *Res = 2110 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) 2111 .WPDRes[S.first.ByteOffset]; 2112 2113 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2114 DevirtTargets)) 2115 continue; 2116 } 2117 } 2118 2119 // Optionally have the thin link print message for each devirtualized 2120 // function. 2121 if (PrintSummaryDevirt) 2122 for (const auto &DT : DevirtTargets) 2123 errs() << "Devirtualized call to " << DT << "\n"; 2124 2125 return; 2126 } 2127